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Half-space theorems for recurrent
minimal and H -surfaces of R3

G. Pacelli Bessa, Luquesio P. Jorge and Leandro F. Pessoa

Abstract. We prove a version of the strong half-space theorem between the classes
of recurrent minimal surfaces and complete minimal surfaces with bounded cur-
vature of R3. The use of subsolutions in the barrier sense allow us to deal with
non-proper minimal surfaces immersed with bounded curvature. We show that any
minimal hypersurface immersed with bounded curvature in M � RC equals some
M � ¹sº provided M is a complete, recurrent n-dimensional Riemannian manifold
with RicM � 0 and whose sectional curvatures are bounded from above. Further-
more, we prove a half-space theorem for the class of stochastically complete H -
surfaces. We present a maximum principle at infinity assuming M has non-empty
boundary. Finally, we present examples of a complete non-proper recurrent minimal
surface with unbounded curvature.

1. Introduction

A classical theorem in the global theory of minimal surfaces by Xavier [54] states that
the convex hull of a complete non-planar minimal surface of R3 with bounded curvature
is the entire R3. This implies that the class of complete minimal surfaces with bounded
curvature has the half-space property, meaning that any complete minimal surface with
bounded curvature cannot lie in a half-space defined by some plane P � R3 unless it is
a plane parallel to P . To show that the examples of complete minimal surfaces between
two parallel planes constructed in [24, 49] were not properly immersed, Hoffman and
Meeks [19] showed that the class of properly immersed minimal surfaces of R3 has the
half-space property. This result, together with Theorem 8 and Corollary 1 in [34], yielded
the Hoffman–Meeks strong half-space theorem, which states that two properly immersed
minimal surfaces of R3 intersect unless they are parallel planes.

Likewise, Xavier’s half-space theorem yielded a strong half-space theorem for min-
imal surfaces with bounded curvature, i.e., two complete minimal surfaces of R3 with
bounded curvature must intersect unless they are parallel planes [3, 47]. The proof given
in [3] yields, as a corollary, a strong half-space theorem between the classes of complete
proper minimal surfaces and complete minimal surfaces with bounded curvature of R3,
see Corollary 1.4 in [3].
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In this spirit, we add another piece in the puzzle proving a strong half-space theorem
between the classes of complete minimal surfaces with bounded curvature and of recurrent
minimal surfaces of R3.

Theorem 1.1. Let M be a recurrent minimal surface and let N be a complete minimal
surface with bounded curvature, immersed into R3. Then M \ N ¤ ; unless they are
parallel flat surfaces.1

A Riemannian manifold is said to be recurrent (parabolic) if the standard Brownian
motion visits any open set at arbitrary large moments of time with probability one, and it is
transient otherwise. It is known that the recurrence of a manifold, not necessarily geodesi-
cally complete, can be described in terms of various analytic, geometric and potential
theoretic properties (see [16, 43, 44]), for instance, it is equivalent to the following Liou-
ville property: any bounded solution of the differential inequality4u � 0 is constant.

The class of recurrent immersed minimal surfaces of R3 contains the complete mini-
mal immersions of the complex plane C into R3, the complete properly embedded mini-
mal surfaces of R3 with finite genus [35], the complete minimal surfaces with quadratic
volume growth, in particular, the complete surfaces with finite total curvature. In contrast,
the first surface of Scherk is transient, see [20, 29]. We also have examples of complete
recurrent, non-proper minimal surface with bounded curvature, see [1]. In Section 2, we
present examples of recurrent non-proper minimal surfaces of R3 with unbounded curva-
ture, showing that Theorem 1.1 is not contained in the results in [3, 19, 47].

Remark 1.2. We recall that every n-dimensional minimal hypersurface M immersed
in RnC1, n � 3, is transient. Indeed, the isoperimetric inequality for a minimal hypersur-
face is given by j@�j � njBnj1=nj�j.n�1/=n for all� bM , see [5]. Then by Theorem 8.1
in [16], M must be transient.

In Theorem 1.2 of [48], Rosenberg, Schulze, and Spruck, capturing the stochastic
nature of the Hoffmann–Meeks half-space theorem, proved a higher dimension half-space
theorem for properly immersed minimal hypersurfaces of M � R, assuming that M was
a complete recurrent n-manifold with bounded curvature (see also [31, 39]). Recently,
Theorem 1.2 in [48] was extended by Colombo, Magliaro, Mari and Rigoli [7] to com-
plete recurrent Riemannian n-manifolds with Ricci curvature bounded from below Ric �
�.n � 1/ƒ2.

Theorem 1.3 ([7], Theorem 1.3 (ii)). LetM be a complete recurrent Riemannian n-mani-
fold with Ricci curvature Ric � �.n � 1/ƒ2 for some ƒ > 0. Then any complete hyper-
surface minimally and properly immersed in M �RC is a slice M � ¹sº.

Our second result is a version of Theorem 1.2 in [48] and Theorem 1.3(ii) in [7] for
complete minimal hypersurfaces with bounded curvature.

Theorem 1.4. Let M be a complete recurrent Riemannian n-manifold with non-negative
Ricci curvature RicM � 0, sectional curvature bounded from above KM � ƒ2, and posi-
tive injectivity radius. Then, any complete hypersurface N with bounded sectional curva-
ture minimally immersed in M �RC equals a slice M � ¹sº.

1M could be a plane minus a set of capacity zero parallel to a plane N .
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Remark 1.5. B. White proved a strong half-space type theorem (Corollary 9.2 of [53])
in 3-manifolds � with non-negative Ricci curvature Ric� � 0, implying the Hoffmann–
Meeks strong half-space theorem when � D R3. Other half-space theorems have been
established in homogeneous spaces by Daniel, Meeks, and Rosenberg [9]. They proved
half-space theorems for properly immersed minimal surfaces of Nil3 and Sol3, where
the half-space was defined by some distinguished minimal surfaces of these spaces, see
also [8, 38].

The intersection problem for surfaces of R3 with constant mean curvature H > 0,
called H -surface for short, was addressed by Ros and Rosenberg in [46]. Recall that a
properly embedded H -surfaces N separates R3 into two connected components, and the
mean convex side is the connected component of R3 n N into which the mean curvature
vector field of N points.

Theorem 1.6 (Ros–Rosenberg). A properly embedded H -surface M of R3 cannot lie in
the mean convex side of another properly embedded H -surface N .

The Ros–Rosenberg half-space theorem for embedded H -surface was extended to
other homogeneous three-spaces. For instance, Rodriguez and Rosenberg in [45] proved
a half-space theorem for properly embedded 1-surfaces of H3, while Hauswirth, Rosen-
berg and Spruck [18], and Earp and Nelli in [40], proved half-space theorems for properly
embedded 1=2-surfaces of H2 � R; see [33] for graphs with 0 < H < 1=2 in H2 � R.
Using fairly general techniques, Mazet [31] unified the proof of various half-spaces the-
orems for generic three-spaces, in particular for Lie groups with left-invariant metric, see
also [32].

In the second part of this article, we are going to consider half-space theorems for
H -surfaces of R3 in the same vein of Theorems 1.1 and 1.6. Following ideas from [31],
Section 4, we have the next definition.

Definition 1.7. Let N be a complete oriented properly immersed surface of R3. Assume
that the mean curvature of N does not change sign, and choose the unit normal vector
field � in such a way that EHN D HN �, with HN � 0 on N . Let W be a connected com-
ponent of R3 nN .
(1) The mean curvature vector field ofN at z0 2N \ @W is said to point intoW if either

HN .z0/D 0 or for any sequence yn 2W with yn! z0, we have yn D expz.t�.z//
for some 0 < t < " and z in a neighborhood V � N of z0.

(2) Let M be a surface immersed into R3. We say that N is well-oriented with respect
to M if M lies in the connected component W of R3 nN into which the mean
curvature vector field of N points.

Note that with such definition, every complete oriented properly immersed minimal
surface N of R3 is well-oriented with respect to any surface immersed in R3 nN . Our
next result gives a stochastic version of Theorem 1.6.

Theorem 1.8. Let M be an immersed surface of R3, and let N be an oriented complete
surface properly immersed in R3 with bounded curvature. Then, unless M and N are
parallel flat minimal surfaces, the surface N cannot be well-oriented with respect to M
provided that
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(a) either M is recurrent with mean curvature supM jHMj � infN HN ,

(b) or M is stochastically complete with supM jHMj < infN HN .

Remark 1.9. This result should be compared with the barrier principle proved in Theo-
rem 1.1 of [14]. Indeed, since N is well-oriented, the connected component � of R3 nN
that contains M , for which the mean curvature vector points to, satisfies HN � infN HN
in the barrier sense. By Gauss equation, N has bounded second fundamental form, which
implies that @� has locally bounded bending from outwards according to [14]. There-
fore, � matches the assumptions in Theorem 1.1 of [14]. On the other hand, our require-
ments on M differ from those therein since the parabolicity and stochastic completeness
of M improve conditions .1:7/ and .1:4/ in [14], respectively. Compare also with Theo-
rem 7.3 in [53].

A Riemannian manifold M is stochastically complete if the diffusion process associ-
ated to the Laplacian4 satisfies the conservation property

(1.1)
Z
M

p.t; x; y/ d�.y/ D 1;

for some/every x2M and all t > 0. Here p 2C1..0;C1/ �M �M is the heat kernel
of M . The equation (1.1) has the following stochastic interpretation. The probability of
the Brownian motion Xt emanating from x to be found in M is 1, see [16, 17]. The
class of stochastically complete manifolds contains all complete manifolds with quadratic
curvature decay or with quadratic exponential volume growth, as well as the properly
immersed submanifolds of Rn with bounded mean curvature [16, 44].

Among the many equivalent characterizations for stochastic completeness, we are
going to use the following Liouville property: for all � > 0, any bounded, non-negative
solution of the differential inequality 4u � �u is identically zero. It implies that recur-
rent manifolds are also stochastically complete. However, it is known that the converse
statement is false, as Scherk’s first surface is transient and has bounded curvature, thus
stochastically complete, see [20, 29].

It is curious that the difference between the nature of intersection results for the class
of minimal and H -surfaces is revealed by the threshold � D 0 and � > 0 in the Liouville
properties, translated as the conditions (a) and (b). When M is a stochastically complete
surface of R3 satisfying supM jHM j D infN HN > 0, we are able to prove only that
dist.M;N / D 0, which can be seen as a version of Theorem 5.1 in [39] for surfaces with
positive mean curvature.

Theorem 1.10. Let M be a stochastically complete surface, and let N be a complete
proper surface with bounded curvature, immersed in R3. If N is well-oriented with respect
to M and supM jHM j D infN HN > 0, then dist.M;N / D 0.

Theorem 1.10 can be restated in terms of relevant geometric conditions, sufficient for
stochastic completeness as follow.

Corollary 1.11. Let N be a complete embedded H -surface of R3 with bounded curva-
ture, and let M be an H -surface of R3 immersed in the mean convex side of N . Then,
dist.M;N / D 0 provided that either

(1) M is properly immersed (cf. Proposition 4 in [25], or [44] and references therein),
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(2) M has curvature KM .x/ � ��2.x/, � D distM .xo; x/ (see Theorem 15:4 in [16]
and references therein),

(3) M has volume growth vol.Bo.r/\M/� Aer
2
, A> 0 (see Theorem 9:1 in [16] and

references therein).

Finally, we notice that the techniques developed to prove our results can be adapted
to prove the maximum principle at infinity between parabolic surfaces with non-empty
boundary (possibly non-compact) and complete surfaces with bounded curvature immer-
sed in R3. Several versions of the maximum principle at infinity were proved in [26,36,50]
for minimal surfaces, and in [10, 11] for H -surfaces, and later generalized in [14, 37, 46].

Theorem 1.12. Let M and N be two disjoint immersed surfaces of a complete flat three-
manifoldP . Assume thatM is parabolic with boundary @M ¤;; and thatN is a complete
surface with bounded curvature.

(1) If both are minimal surfaces, then dist.M;N / D dist.@M;N /.
(2) If supM jHM j � infN HN , infN HN > 0, N is two-sided, proper and well-oriented

with respect to M , then dist.M;N / D dist.@M;N /.

From the stochastic viewpoint, a surface M with boundary @M is said to be parabolic
if the absorbed Brownian motion is recurrent, that is, if any Brownian path, starting from
an interior point of M , reaches the boundary (and dies) in a finite time with probabil-
ity 1 (see [41]). From a potential-theoretic point of view (cf. Proposition 10 in [42]),
it is equivalent to the following Ahlfors maximum principle: every bounded solution
u 2 C 0.M/ \W

1;2
loc .int M/ of the differential inequality4u � 0 on int M must satisfy

sup
M

u D sup
@M

u:

This notion of parabolicity for surfaces with boundary is weaker than the natural definition
for which the Brownian motion reflects at @M (see [21, 42]).

Throughout this paper, all the surfaces are smooth, orientable, connected and with
empty boundary, unless stated otherwise.

2. Preliminaries

Let 'WM ! P be an isometric immersion of a complete manifold M into a complete
Riemannian manifold P . The limit set lim' of ' is defined as

lim' D ¹y2 P W 9¹xkº
1
kD1 �M; xk !1; '.xk/! yº:

Observe that lim' is closed , and notice that lim' D ; if and only if ' is proper.
In this section, we are going to sketch the local structure of lim ' when 'WM ! P

is a minimal hypersurface with bounded curvature immersed in a complete Riemmanian
manifold P with bounded curvature. For lim ' ¤ ;, we take y2 lim ' and a sequence
¹xkº ! 1 in M with '.xk/ ! y in P . By Gauss equations, the second fundamental
form ˛ of ' is uniformly bounded in the set �y.1/ D '�1.By.1//, where By.1/ is the
geodesic ball of P centred at y with radius 1. This implies that there are r0; r1 > 0,
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depending on sup�y k˛k and on the injective radius injP .y/ of P at y, such that for each
xk 2 �y.1/, the ball B'.xk/.r1/ � '.M/ is graph of a smooth function uk WB0.r0/ �
TxkM ! R. Here TxkM is the tangent space of M at xk . This sequence of graphs con-
verge, passing to a subsequence if necessary, to a minimal graph y2 Sy � P with same
curvature bounds ofM containing a geodesic ball of radius "D ".r0; r1/ > 0 centred at y.
This sketches the proof of the following lemma (more details can be found in [3, 4, 47]).

Lemma 2.1. Let 'WM !N be a complete non-proper minimal hypersurface with bound-
ed curvature immersed into a complete Riemannian manifold P with bounded curvature.
For each y2 lim ', there exist r0; r1 > 0, depending on ' and y, and a sequence of
balls Bxk .r1/ � M , graphs of uk WB0.r0/ � TxkM ! R, converging uniformly in the
C1-topology to a minimal hypersurface S1 � lim' containing a geodesic ball of radius
" D ".r0; r1/ > 0 centred at y. Moreover, if P has positive injective radius, then S1 can
be extended to a complete minimal surface lying in lim' with bounded curvature.

With the aid of Lemma 2.1, it was proved in Theorem 1.2 of [3] that the limit set of a
complete non-proper minimal surface 'WM ! R3 immersed with bounded curvature in
a mean convex region � ¨ R3 is a union of parallel planes lying in the interior of a slab
or in a half-space inside �. Describing the structure of the limit set of a complete non-
proper minimal hypersurfaces of Rn is an intriguing problem. For instance, what is the
Hausdorff dimension of the limit set of a non-proper minimal hypersurface 'WM ! Rn?
WhenM has bounded curvature, then dimH .lim'/ � 2. In [30], Martin and Nadirashvili
constructed a complete minimal immersion of the disk 'WD ! R3 whose limit set is a
non-rectifiable Jordan curve ˇ of Hausdorff dimension 1.

In the following, we present two examples of recurrent minimal surfaces that are
non-proper and have unbounded curvature. The first example is a complete, non-proper
minimal immersion of C into R3 whose sectional curvature decay to zero along the
lines t ! te� , � ¤ k�=4, k D 1; 3; 5; 7, and decay quadratically to �1 along the lines
� D k�=4, k D 1; 3; 5; 7, with limit set having four points only. The second exam-
ple, following ideas from Andrade [1], is a non-trivial geodesically incomplete minimal
immersion of C into R3 with unbounded curvature whose closure in R3 has non-empty
interior.

Example 2.2. Let f; gWC ! C be the entire functions given by

f .z/ D
2
p
�
er1z

2

and g.z/ D e�r2z
2

;

with the constants r1 and r2 satisfying either r2 > r1 > 0 or 2r2 > r1 > r2. These functions
define a minimal immersion �WC ! R3 by �.z/ D .x1.z/; x2.z/; x3.z// (cf. [2]), where

x1.z/ D Re
Z z 1

2
.1 � g2/f dz D

1
p
�

Re
Z z �

er1z
2

� e.r1�2r2/z
2�
dz;

x2.z/ D Re
Z z i

2
.1C g2/f dz D �

1
p
�

Im
Z z �

er1z
2

C e.r1�2r2/z
2�
dz;

x3.z/ D Re
Z z

gf dz D
2
p
�

Re
Z z

e.r1�r2/z
2

dz:
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For simplicity, we will consider r2D 5 and r1D 1. In this case, the above integrals defining
�WC ! C �R are given explicitly in terms of the error function and the imaginary error
function:

(2.1) �.z/ D
�erfi. Nz/

2
�

erf.3z/
6

, ReŒerf.2z/�
2

�
;

where

erf.z/ D
2
p
�

Z z

0

e�t
2

dt and erfi.z/ D �
2i
p
�

Z iz

0

e�t
2

dt:

The minimal surface � is geodesically complete since its induced metric satisfies

ds D
1

2
jf j .1C jgj2/ jdzj �

1
p
�
jdzj:

The Gaussian curvature of � is given by

K.z/ D �

�
20
p
� jzj

.e3 Re.z2/ C e�7 Re.z2//2

�2
�

For a small " > 0, set

C."/ D
4[
iD1

°
z D jzjei� 2 C W � 2

� .2i � 1/�
4

� ";
.2i � 1/�

4
C "

�±
:

The curvature of � at z D tei� , for � 62 C."/, is bounded by

�
A t2

eD."/ t
2
� K.�.z// � �

A t2

eB."/ t
2

,

with A D 400� , B."/ D 6 cos.�=2� 2"/ andD."/ D 14 cos.�=2� 2"/. However, along
�.tej�=4/, j D 1; 3; 5; 7, the curvature is unbounded,

K.�.tej�=4// D �100� t2:

Regarding the non-properness of �, one can show that (see Appendix A)

¹q�=4; q3�=4; q5�=4; q7�=4º � lim�;

where

q�=4 D
�
�
1

6
,�
1

2
, 1
2

�
; q3�=4 D

�1
6

,�
1

2
,�
1

2

�
;

q5�=4 D
�1
6

, 1
2

,�
1

2

�
; q7�=4 D

�
�
1

6
, 1
2

, 1
2

�
:

We plot below a piece of the curve t ! �.
� .t// for � D �=4; 5�=4.
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Figure 1. Curve z.x/ D x C ix in a surface with r1 D 1 and r2 D 5.

Example 2.3. Consider an Enneper immersion �WC ! C �R given by

�.z/ D .L.z/ �H.z/; h.z//;

where L and H are holomorphic functions defined by

L.z/ D .r1 � r2/ e
z and H.z/ D �d e.r1=r2�1/z ;

and h is a harmonic function defined as follows:

h.z/ D �4
� d
r2

�1=2 ˇ̌̌r2
r1

ˇ̌̌
jr1 � r2jRe

�
ie

r1
2r2

z�
:

We assume some non-degenerate assumptions for the parameters r1; r2; d 2 R, namely,
r1 ¤ r2 and r1r2d ¤ 0, as well as some extra technical conditions:

0 < r1 < 4r2 < 3r1;
r1

r2
… Q and d D r1 � r2 > 0:

Following the same reasoning as in [1], it is possible to show that the immersion �.uC iv/
is dense in an open subset of R3, its Gaussian curvature K.uC iv/! �1, and ds2 D
�2.uC iv/jdzj2 ! 0 as u! �1.

3. Proof of Theorem 1.1

We first observe that if N is a complete flat minimal surface, thus a plane, such that
M \N D ;, the associated height function restricted to M is harmonic and bounded on
one side, so constant by recurrence. HenceM is a flat surface contained in a parallel plane
to N .

In what follows, we are going to consider the case where N is not flat. We will split
the proof in two steps. In the first we address the case where N is embedded and in the
second step we improve the argument in the Step 1 to treat the general case. It should be
remarked that differently from [14] and [53] we do not assume that the submanifold is
contained in a region whose boundary offers a natural barrier.

Step 1. The case N embedded.
If N is embedded then there is a tubular "-neighborhood U."/ D T".N / which is

embedded for every 0 < " � .
p
3� 1/=2jƒj, whereKN � �ƒ2 (see Theorem 2 in [51]).
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For our purposes, we are going to consider 0 < " < 1=2jƒj. Since N is embedded in R3,
it is two-sided. Hence, we can choose a smooth normal vector field � to N and decom-
pose the tubular neighborhood U."/ D U�."/ [ N [ UC."/, where � points toward the
connected component UC."/. Let t WU."/! R be the signed distance function defined by

t .y/ D

²
dist.y;N / if y2 UC."/;
�dist.y;N / if y2 U�."/:

Since recurrence is invariant by isometries, up to an Euclidean translation, we may assume
that distR3.M;N / D 0, and M \ UC."=4/ ¤ ;, replacing � by �� if necessary.

Define F WUC."/ � R3 ! R by

(3.1) F.y/ D log
� 2C "c

2C 4 ct.y/

�
;

with c :
D jƒj D sup � > 0, where � :

D �2 � 0 is the non-negative principal curvature
of N , and the principal curvatures �i are computed with respect to the direction pointing
towards UC."/. Let uW '�1.UC."// ! R be given by u D F ı ', where 'WM ! R3

is the isometric minimal immersion of M into R3. Clearly u is smooth and bounded.
Moreover, u is non-constant. For if we would have thatM is contained in a parallel surface
N t ofN , and by the evolution of the principal curvatures ofN (see Corollary 3.5 in [15]),

.�ti /
0
D .�ti /

2 and .H t /0 � .H t /2;

we would have thatH t � 0, and consequently �ti � 0. But this contradicts the fact thatN
is not flat. Therefore u is non-constant and u � 0 on '�1.@UC."=4//. We claim that

4Mu � 0 on '�1.UC."=2//:

Indeed, consider the foliation N t by parallel surfaces to N for t 2 .0; "/. For each y2
N t \ UC."=2/ \M with coordinates .x; t/ 2 N � .0; "=2/, there exists an orthonormal
basis ¹E1; E2º � TyN t such that ¹E1; E2;rtº diagonalize the Hessian HessR3F . An
easy computation yields

rR3F D �
2c

1C 2ct
rt and HessR3F D

4c2

.1C 2ct/2
rt ˝rt �

2c

1C 2ct
r
2t:

Then, with respect to the splitting Rrt ˚ TyN t , the eigenvalues of HessR3F are

�1 D �
2c

1C 2ct

�

1C t �
, �2 D

2c

1C 2ct

�

1 � t �
and �3 D

4c2

.1C 2ct/2
�

Since 0 < 2t � " < 1=2jƒj D 1=2c, the monotonicity �1 � �2 < �3 holds. Therefore,
applying Lemma 2.3 in [23] for the 2-dimensional subspace W :

D TyM of R3, we have

4Mu D TrTMHessR3FjW � �1 C �2 D
2c

1C 2ct

2t �2

1 � t2�2
� 0:

Observe that M \ UC."=4/ ¤ ; and

uj'�1.UC."=4// > 0; uj'�1.@UC."=4// � 0; uj'�1.UC."=2/ n UC."=4// < 0:
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Therefore, extending u negatively outside of '�1.UC."=2// and defining uWM ! R
by uDmax¹u; 0º, we may have a continuous, bounded subharmonic function in the sense
of distributions on a recurrent manifold. However, by the Liouville property, it must be
constant (cf. Theorem 5.1 in [16]). A contradiction.

Step 2. The case N immersed.
As we have seen in the embedded case, we need to construct a bounded weak solution

u 2 C 0.M/\W
1;2

loc .M/ to the differential inequality4u � 0 onM . In view of Step 1, it
is natural to consider u D F ı 'W '�1.U."=2//! R, where 'WM ! R3 is an isometric
immersion and F WR3 ! R is given as in (3.1) by a composition F D g ı tN of the
distance function from N , namely tN , and a smooth real valued function g. However,
the distance function to N is only Lipschitz continuous in general. The non-smoothness
may occur when the set of self intersections � � R3 of N is non-empty, and the function
P WU."/! N given by

P.y/ D ¹z 2 N W distR3.y; z/ D distR3.y;N /º

is a multivalued function. Also, focal points are points at which tN is not twice differ-
entiable. We will search for solutions to the differential inequality 4u � 0 in the barrier
sense. Recall that a function u is said to satisfy4u � 0 at a point q in the barrier sense if,
for any ı > 0, there exists a smooth function �ı around q such that²

�ı D u at q;
�ı � u near q;

and 4�ı.q/ > �ı:

To overcome these regularity issues, we introduce the following lemma, which could
be of independent interest and should be compared to Lemma 2.2 in [6] and Lemma 1.3
in [13].

Lemma 3.1. Let N be a complete minimal surface immersed in R3 with bounded curva-
ture. For any immersed minimal surface 'WM ! R3 such that M \ N D ;, there exist
" > 0 and a bounded function uWM ! R, u D u.tN / decreasing on tN , satisfying

4u � 0 in the barrier sense

on the subset�" D ¹q 2M W 0 � 2tN .'.q// < "º, where tN denotes the distance function
from N .

Proof. Since N is a complete minimal surface immersed in R3 with bounded curvature,
by Lemma 2.1, for each x 2N , there exists a complete minimal surface x 2 Lx �N with
bounded curvature KLx � �ƒ

2. We will split the proof in two cases. First, assume that
N \M D ;, that is, tN .'.q// > 0 for all q 2 M . For a fixed y2 U."=2/ and for each
z 2 P.y/, there exists a locally embedded neighborhood Vz � Lz � N of z that is graph
over an open ball Wz � TzLz with radius uniformly bounded from below. Along each
neighborhood Vz , we can consider a regular tubular neighborhood

(3.2) Cz."/ D ¹exp?.tv/ W v 2 T V ?z ; t 2 .�"; "/º

with radius " > 0 and define the oriented distance function to Vz , tz WCz."/! R, such
that tz.y/ > 0. This yields the following split: Cz."/ D CCz ."/ [ Vz [ C

�
z ."/. In order
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to construct a smooth support function, we may select one neighborhood Vz for some
z 2P.y/. To avoid the analysis of the non-focal points of the cut locus of the boundary @Vz
of the surface Vz , and as in Section 2 of [14], we will consider a supporting surface Sz
for CCz ."/ at z 2 Vz , that is, a smooth surface such that z 2 Sz and CCz ."/ \ Sz D ;.
Following the agreement in [14], modifying Sz outside of a tiny neighborhood of z, we
may assume that Sz is the boundary of a small topological ball BSz � C

�
z ."/. For any

given � > 0, we can find a supporting surface S�z for CCz ."/ at z 2 Vz , with BS�z � BSz ,
and whose mean curvature H� satisfies

H�.z/ > ��;

see Lemma 2.1 in [14]. This supporting surface can be constructed by deforming smoothly
the boundary of a small ball B � C�z ."/ touching Vz at z. Thus, since N has bounded
curvature, the principal curvatures �1 and �2 of S�z at z can be chosen to be uniformly
bounded for all z 2 P.y/ and all y2 N , 0 < � < 1. We denote by 0 < c Dmax¹�1; �2º <
1, and for 0 < " < 1=2c, we define the function uW '�1.U."=2//! R by u D F ı ',
where F D g ı tN and

g.t/ D log
� 2C "c
2C 4 ct

�
:

The following lemma says that we can choose S�z so that y … cut.S�z /.

Lemma 3.2 (Lemma 2.1 in [14]). Fix y 2 U."=2/ and a nearest point z 2 Vz to y. For a
supporting surface Sz at z, there exists S 0z , close to Sz in the C1 topology in a neighbor-
hood of z, still supporting surface at z, and such that y … cut.S 0z/.

We pick a point q 2M such that y D '.q/ 2 U."=2/, z 2 P.y/ and select a neighbor-
hood Vz as described above. Given ı > 0, we will consider as a support function to u at q,
the function �ı

:
D F

�
z ı ', where F �z D g ı t

�
z , and t�z is the oriented distance function

to S�z with t�z .y/ > 0. Moreover, by Lemma 3.2, we may assume that S�z is a supporting
surface for which y … cut.S�z / for some � D �.ı/ to be chosen later. To show that t�z
supports tN , one should guarantee that points near y can be joined to S�z by at least one
segment crossing Vz , but this is the case since we are in the Euclidean space. Hence, the
support function �ı is smooth in a small neighborhood of q. Furthermore, �ı.q/ D u.q/,
and taking a small ball B�.y/ � U."=2/ centred at y and with radius � > 0, for every
� 2 B�.y/ it holds that

tN .�/ � t
�
z .�/:

The decreasing property of g in t asserts the inequality �ı � u near to q. In order to show
that u satisfies4Mu.q/ � 0 in the barrier sense, we are going to prove

4M�ı.q/ > �ı:

Since 0 < 2t < " � 1=2c, following up computations from Step 1, we have

HessR3F �z D
4c2

.1C 2ct
�
z /2
rt�z ˝rt

�
z �

2c

1C 2ct
�
z

r
2t�z ;

whose eigenvalues are given by

�1 D
2c

1C 2ct
�
z

�t1; �2 D
2c

1C 2ct
�
z

�t2 and �3 D
4c2

.1C 2ct
�
z /2

,
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where
�t1 D

�1

1 � t
�
z �1

and �t2 D
�2

1 � t
�
z �2

are the principal curvatures of the parallel surfaces to S�z at y. We first observe that,
independently of the sign of �i .i D 1; 2/, it holds

(3.3) �i �
2c

1C 2ct
�
z

�i ; for i D 1; 2:

The restriction on " � 1=2c and the inequality above give us the monotonicity �1 � �2 <
�3. Again, applying Lemma 2.3 in [23] and inequality H�

z > ��, we can write

4M�ı � �1 C �2 �
2c

1C 2ct
�
z

H�
z � �

2c�

1C 2ct
�
z

�

Then choose � :
D ı=2c to conclude that4�ı > �ı:

It remains to consider the case N \M 6D ;. In this case, there are points q 2 M
such that tN .'.q// D 0 and '.q/ 2 L'.q/ � limN for some minimal leaf. However, by
the maximum principle for minimal surfaces, M and L'.q/ must coincide locally along
an open disk Dq � M . Therefore, for every p 2 Dq , we have tN .'.p// D 0, and the
function u must be constant on Dq . Therefore, the function �.x/ D log.1C "c=2/ is a
barrier function at every point q 2M such that tN .'.p//D 0, and the proof is finished.

To conclude the proof in the immersed case, we first assume that N \M D ;. In
this case, we apply Lemma 3.1 to show that the function u is bounded and subharmonic
in the barrier sense, therefore in the viscosity sense in '�1.U."=2//. As in Step 1, we
extend u and recall that u > 0 on '�1.U."=4// to define u D max¹u; 0º in the whole M .
By Theorem 1 in [22], u is a non-negative subharmonic in the sense of distributions and
u 2 C 0.M/ \ W

1;2
loc .M/. We achieve the same contradiction as in the embedded case

from the Liouville property, see Theorem 5.1 in [16]; see also [27, 28] for a direct proof
for viscosity solutions. If N \M 6D ;, then either M \ N 6D ;, or M is contained in
some complete minimal leaf L of limN . Note that L has also bounded curvature, so by
Theorem 1.1 in [3],N must intersect L. SinceM has empty boundary, L nM is an union
of points, and it is not possible that M \N D ;.

4. Proof of Theorem 1.4

In the proof of Theorem 1.4, we intend to make explicit how the geometry of the ambient
space influences this kind of intersection problem for minimal hypersurfaces. We will
follow the same strategy applied in the proof of Theorem 1.1. The main difference appears
to be in the way to compute the Laplacian of the selected function, where we will use the
ideas from [31].

Recall that our assumptions on the sectional and Ricci curvatures of M imply a uni-
form bound for the sectional curvature of the product ambient space M � R. Since N is
a minimal hypersurface with bounded sectional curvature, the Gauss equation gives us a
uniform bound for the second fundamental form of N . As a consequence of the extended
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Rauch theorem (see Corollary 4.2 in [52]), there exists a real value " > 0 such that, for
every normal geodesic � issuing from a point �.0/ 2 N , there is no focal points on �jŒ0;"/ .
By Proposition 4.4 in Chapter X of [12], this means that the restriction of the exponential
map exp?W .TN /? !M �R has no critical values in the tubular neighborhood U."/.

Following ideas from Lemma 3.1, we notice that for each point y 2 U."/, the projec-
tion points that realize the distance from y to N are contained in N or in the limit set
of N . If a projection point z lies on N , it is contained in an geodesic disk Vz � N which
is embedded and has radius uniformly bounded from below. On the other hand, if the pro-
jection point z lies on the limit set of N , sinceM has a uniform bound from below for the
injective radius, we can apply Lemma 2.1 to guarantee the existence of a minimal geodesic
disk Vz with radius uniformly bounded from below, and contained in the limit set of N .
For each Vz , we associate the regular tubular neighborhood Cz."/DCCz ."/[ Vz [C

�
z ."/

as defined in (3.2).
Let us consider a slice M � ¹sº, still called M , such that dist.M; N / D 0. Define a

function F WU."/! R given by F D g ı tN , where

(4.1) g.t/ D log
� 2C "c
2C 4 ct

�
;

tN WU."/ ! R denotes the distance function to N , and c > 0 is a constant which will
depend on " and the principal curvatures ofN . Consider the function uW'�1.U."=2//!R
given by u D F ı {, with {WM ! M � R, {.x/ D .x; 0/, being the inclusion isometric
immersion. Again, our main claim is that u is a subharmonic function in the barrier sense
on the subset '�1.U."=2//. Here is where the assumption on the injectivity radius enters
into play. Up to reducing " > 0, we can consider that 2" is less than the injectivity radius
of M �R.

Take a point q 2 M such that y D {.q/ 2 CCz ."=2/, that is, we assume tN .y/ > 0,
and select a projection point z 2 N with a neighborhood Vz constructed as above. For
any ı > 0 given, we will take � D �.ı/ > 0, to be chosen later, and a supporting surface
S
�
z � C

�
z ."=2/ as in Lemma 3.2 satisfying

y … cut.S�z / and H�
z .z/ > ��:

Since y 2 CCz ."=2/, there exists a minimizing geodesic 
 � CCz ."=2/ with end points y
and z. We claim that there is a supporting surface S�z � C�z ."=2/ such that the distance
function to S�z , namely t�z , is a smooth supporting function from above to tN . Indeed,
assume the contrary. Then there exist balls By.rj /, with rj ! 0, points yj 2 By.rj /, and
support surfaces S�z;j such that there is a minimizing geodesic �j from yj to S�z;j that
does not intersect N . However, passing to a subsequence of �j , if necessary, we will find
another minimizing geodesic from y to z different from 
 , which contradicts our choice
of " being less than the injectivity radius of M .

Thus, a support function to uD F ı { at q is given by �ı
:
D F

�
z ı {, where F �z D g ı t

�
z

and � D �.ı/.
It remains to compute the Laplace operator of �ı . For this, we take along M an

orthonormal basis ¹e1; : : : ; en; enC1º of TM � RC such that enC1 D @=@t . Using this
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basis, and since M is totally geodesic in M �RC, we can write

(4.2) 4M�ı D g
0.t�z /

nX
iD1

HessM�RC t
�
z .ei ; ei /C g

00.t�z /

nX
iD1

hrM�RC t
�
z ; ei i

2:

Let St be the parallel surface to S�z given by the image of a exponential map at
time t , and denote by �t1; : : : ; �

t
n its associated principal curvatures in direction rt�z . Let

¹at1; : : : ; a
t
nº be an orthonormal basis of TSt which diagonalizes the shape operator of St ,

and set atnC1 D �, where � is the normal vector field along St pointing towards M . The
matrix of change of basis from ei to ati has the elements .�ij /1�i;j�nC1 defined by

ei D

nC1X
jD1

�ij a
t
j :

With the above notation, we can rewrite (4.2) as

4M�ı D g
0.t�z / .��

t
1.1 � �

2
nC1;1/ � � � � � �

t
n.1 � �

2
nC1;n//C g

00.t�z / .1 � �
2
nC1;nC1/:

A main fact we shall use is the monotonicity of the mean curvature of the parallel
surfaces along normal geodesics issuing from S

�
z , see (3.3). A sufficient condition for this

monotonicity to hold is given by non-negativeness of the Ricci curvature of the ambient
space, which in our case is guaranteed by the hypothesis RicM � 0. In fact, from the
evolution equation of the principal curvatures (cf. Corollary 3.5 in [15]), we have

.�ti /
2
�ƒ2 � .�ti /

0
D .�ti /

2
CK.�; ati / � .�

t
i /
2
Cƒ2

and
.H t /0 � .H t /2 C Ric.�; ati / � 0;

where K.�; ati / is the sectional curvature of M � R on the 2-plane spanned by ¹ati ; �º �
TSt , andƒ2 D sup jK.�; ati /j for all 0 < t < ". The monotonicity forH t follows directly
from the latter inequality, and the former guarantees that we can define the constant c > 0
used in (4.1) as

(4.3) c
:
D sup
Œ0;"�

max¹j�t1j; : : : ; j�
t
njº C 1 <1:

Therefore, using this monotonicity property and recalling that g0.t�z / < 0, we can estimate

4M�ı � g
0.t�z / .�C �

t
1�

2
nC1;1 C � � � C �

t
n�

2
nC1;n/C g

00.t�z / .1 � �
2
nC1;nC1/:

We can represent the unitary vector .�nC1;1; �nC1;2; : : : ; �nC1;nC1/ using the n-dimen-
sional spherical coordinates .�1; �2; : : : ; �n/ 2 Œ0; �� � � � � � Œ0; �� � Œ0; 2�� as follows:

�nC1;nC1 D cos �1;
�nC1;n D sin �1 cos �2;

�nC1;n�1 D sin �1 sin �2 cos �3;
:::

�nC1;2 D sin �1 � � � sin �n�1 cos �n;
�nC1;1 D sin �1 � � � sin �n�1 sin �n:
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Applying these coordinates in the above estimate for the Laplacian, together with (4.3),
we get

4M�ı � g
0.t�z /

�
�C �t1.sin �1 � � � sin �n�1 sin �n/2 C � � � C �tn .sin �1 cos �2/2

�
C g00.t�z /.1 � cos2 �1/

� cg0.t�z /
�
.sin �2 � � � sin �n�1 sin �n/2 C � � � C .sin �2 cos �2/2

�
sin2 �1

C �g0.t�z /C g
00.t�z / sin2 �1

� �g0.t�z /C .g
00.t�z /C c g

0.t�z // sin2 �1 on '�1.U."=2//:

As before, reducing " if necessary, we can take 0 < 2t < " � 1=2c and � D ı=2. These
choices lead us to conclude that

4M�ı > �ı:

Therefore, once established that u is a bounded subharmonic function in the barrier
sense on the subset '�1.U."=2//, we proceed extending u outside '�1.UC."=4// by zero,
and showing that the function Nu D max¹u; 0º will satisfy Nu 2 C 0.M/ \ W

1;2
loc .M/ and

4M Nu � 0 in the weak sense. Again, Nu will contradict the Liouville property.

5. Proof of Theorems 1.8 and 1.10

The proof of Theorems 1.8 and 1.10 follows the same strategy used in the proof of The-
orem 1.1 in the immersed case. Let N be a complete proper surface immersed in R3

with bounded curvature, and let M be an immersed surface of R3. Suppose that N is
well-oriented with respect to M . Definition 1.7 says that M lies in an open connected
component W of R3 n N for which the mean curvature vector field EHN D HN � along
@W � N points into W . We recall that the boundary of W is given as a union of smooth
pieces of N with non-negative mean curvature HN in the inward direction, and whose
inner angles are not bigger than � along an intersection set � .

Similarly to the minimal case, there exists a regular tubular neighborhood UC."/�W
with uniform radius " > 0 depending only on the lower bound for the curvature and the
norm of the second fundamental form of N . Let tN WUC."/! R be the distance function
to N , which is a positive Lipschitz function. For any point y 2 UC."/, it is not hard to
see that the nearest points to y on @W cannot be on the part of � where the inner angle is
less than to � , otherwise the minimizing segment connecting y to @W will be normal to
two different tangent planes. Therefore, for any point z 2 @W that minimizes the distance
to y 2 UC."/, and any � > 0, we can deform one smooth piece of N passing through z
to obtain a smooth supporting surface S�z for UC."/ at z 2 @W with mean curvature
H
�
z .z/ > HN .z/ � �. Moreover, using Lemma 3.2, we can assume the oriented distance

function to S�z , here called tz , is smooth around y and touches tN from above at y.
Again, we set c > 0 to be the maximum norm of the principal curvatures of N and

consider the function F WUC."/ � R3 ! R defined as F D g ı tN , where

g.t/ D log
� 2C "c
2C 4ct

�
:
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We also follow the convention 0 < " � 1=2c. Let 'WM ! R3 be the isometric immersion
of M , and define the function u D F ı ' on '�1.UC."=2//. Observe that, up to an isom-
etry of R3, we may assume that '.M/ \ UC."=4/ 6D ;. We are going to prove that u is a
solution, in the barrier sense, of the differential inequality

(5.1) 4Mu �
2c

1C 2ctz

�
inf
N
HN � sup

M

jHM j
�

on '�1.UC."=2//:

For any x 2 '�1.UC."=2// and ı > 0, let us consider �ı
:
D F ız ı ', where F ız D g ı tz

and tz is the oriented distance function to Sı=2cz with '.x/ … cut.Sı=2cz /. Then, the func-
tion �ı is a test function for u at x. Arguing along similar lines from the proof of Theo-
rem 1.1, we see that

HessR3F ız D
4c2

.1C 2ctz/2
rtz ˝rtz �

2c

1C 2ctz
r
2tz ;

whose eigenvalues are

�1 D
2c

1C 2ctz

�1

1 � tz�1
, �2 D

2c

1C 2ctz

�2

1 � tz�2
and �3 D

4c2

.1C 2ctz/2
,

where �1 � �2 are the ordered principal curvatures of Sı=2cz . The monotonicity �1 ��2 <
�3 holds because 2" c � 1, as well as the inequality

�i D
2c

1C 2ctz
�ti �

2c

1C 2ctz
�i ; for i D 1; 2:

Applying Lemma 2.3 in [23], we get

4M�ı D TrTMHessR3F ız C hrR3F ız ;HM i � �1 C �2 �
2c

1C 2c tz
sup
M

jHM j

�
2c

1C 2ctz

�
HN �

ı

2c
� sup

M

jHM j
�
�

2c

1C 2ctz

�
inf
N
HN � sup

M

jHM j
�
� ı:

Therefore, u is a solution of (5.1) in the barrier sense.

Proof of Theorem 1.8, item (a). Following the same arguments employed on the previous
proofs, we may conclude from infN HN � supM jHM j that tN is constant, and thus M
lies in a parallel surface of N . Since N is proper, M cannot be at distance zero to N , and
the evolution of the mean curvature along the parallel surfaces (cf. Corollary 3.5 in [15])
gives that infN HN D supM jHM j, and consequently HN D HM D 0 everywhere. Thus,
in this case, M and N must be parallel flat surfaces.

Proof of Theorem 1.8, item (b). We notice that under the restriction on ", setting � D
infN HN � supM jHM j > 0 and using the inequality s � 1 � log s � 0 for s > 0, the
function u satisfies

4Mu � � log
�2c C 1C 2ctz

1C 2ctz

�
� ı � � log

� 2C 2"

2C 4ctz

�
� ı(5.2)

D �u � ı on '�1.UC."=2//:
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Thus 4Mu � �u in the barrier sense on '�1.UC."=2//. Since u vanishes only at the set
'�1.@UC."=4// and it is subharmonic in the open set '�1.UC."=2//, defining NuWM ! R
as Nu D max¹u; 0º, we have that Nu is a bounded solution for the differential inequality
4M Nu � � Nu on M in the barrier sense, hence in the viscosity and weak sense (cf. [22]),
such that supM u > 0. Again this contradicts the Liouville property for stochastic com-
pleteness, see Theorem 5.1 in [16].

Proof of Theorem 1.10. We shall assume by contradiction that tz � tN � 2
 for a small
constant 
 such that 0 < 2
H < 1, where H D supM jHM j D infN HN . We recall that
the principal curvatures �ti of the parallel surfaces to Sı=2cz are given by

�ti D
�i

1 � �i tz
� �i for i D 1; 2:

Denote by Hz the mean curvature of Sı=2cz and assume Hz > H � ı=2c > H=2: There-
fore, using that �1 � Hz=2 � �2, we have

4M�ı �
2c

1C 2ctz

� �1

1 � �1 tz
C

�2

1 � �2 tz
�H

�
�

2c

1C 2ctz

�
�1 C

�2

1 � 
Hz
�Hz �

ı

2c

�
�

2c

1C 2ctz


H 2
z

2 � 2
Hz
�

ı

1C 2ctz
�

2c

1C 2ctz


H 2

4.2 � 
H/
� ı:

Taking

� D

H 2

4.2 � 
H/
> 0

and recalling inequality (5.2), we will conclude that4Mu � �u on '�1.UC."=2// in the
barrier sense. The result can be finished by extending the function u outside '�1.UC."=4//
by zero and using the Liouville property for stochastic completeness, see Theorem 5.1
in [16].

6. Sketch of the proof of Theorem 1.12

We shall first prove that the theorem holds true in the Euclidean space R3. As have seen
before, up to translation, we can assume that dist.M; N / D 0. We just observe that the
selected function u used in the proof of all theorems is also a bounded solution of4u � 0
on '�1.U."=2// \ int M , where ' denotes the usual isometric immersion of .M; @M/

into R3. Furthermore, Nu D max¹u; 0º belongs to C 0.M/ \W
1;2

loc .intM/, and thus, it is a
weak bounded subharmonic function on intM . Since M is assumed to be parabolic, the
Ahlfors maximum principle (Proposition 10 in [42]) says that

sup
M

u D sup
@M

u:

To conclude, we only recall that u.x/! supM u if and only if dist.'.x/;N /! 0.
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For the general case where the surfaces M and N are immersed in a complete flat
three-manifold P , we may apply the arguments used in Corollary 5.2 of [37] to reduce to
the case where M and N are immersed in R3. We notice that the lifting to the universal
covering preserves parabolicity (see Proposition 3.3 in [37]), as well as the boundedness
of curvature.

A. Appendix

In this appendix, we are going to show that the limit set of the minimal surface �WC!R3

described in Example 2.2 has at least four points. We recall from (2.1) that

�.z/ D
�erfi. Nz/

2
�

erf.3z/
6

, ReŒerf.2z/�
2

�
:

Let us consider a curve 
� .t/ D tei� in C. Note that 
2
�
.t/ D i t2 if � D �=4, 5�=4, and

that 
2
�
.t/ D �i t2 if � D 3�=4; 7�=4. Thus, for � D �=4,

x1.
�=4.t// D
1
p
�

Re
Z t

0

.eit
2

� e�9it
2

/ ei�=4 dt

D

p
2

2
p
�

� Z t

0

Œcos.t2/ � sin.t2/� dt �
Z t

0

Œcos.9t2/C sin.9t2/� dt
�

D
1

6

�
3C

�r 2

�
t
�
� 3S

�r 2

�
t
�
� C

�r18

�
t
�
� S

�r18

�
t
��
:

Here C.t/ and S.t/ are, respectively, the FresnelC and the FresnelS functions. It is known
that limt!1 .C.at/ � S.at//D 0 and limt!1 .C.at/C S.at//D 1 for all a > 0. There-
fore,

lim
t!1

x1.
�=4.t// D �
1

6
�

Likewise,

x2.
�=4.t// D �
1

6

�
3C
�r 2

�
t
�
C 3S

�r 2

�
t
�
� C

�r18

�
t
�
C S

�r18

�
t
��

and

x3.
�=4.t// D
1

2

�
C
�r 8

�
t
�
C S

�r 8

�
t
��
:

Thus
lim
t!1

x2.
�=4.t// D �
1

2
and lim

t!1
x3.
�=4.t// D

1

2
�

We conclude that the point

q�=4 D
�
�
1

6
,�
1

2
, 1
2

�
2 lim�:

The other three points ¹q3�=4; q5�=4; q7�=4º � lim� can be found similarly.
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