© 2024 Real Sociedad Matemática Española Published by EMS Press and licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license

Short incompressible graphs and 2-free groups

Florent Balacheff and Wolfgang Pitsch

Abstract. Consider a finite connected 2-complex X endowed with a piecewise Riemannian metric, and whose fundamental group is freely indecomposable, of rank at least 3, and in which every 2-generated subgroup is free. In this paper, we show that we can always find a connected graph $\Gamma \subset X$ such that $\pi_1 \Gamma \simeq \mathbb{F}_2 \hookrightarrow \pi_1 X$ (in short, a 2-incompressible graph) whose length satisfies the following curvature-free inequality: $\ell(\Gamma) \leq 4\sqrt{2 \text{Area}(X)}$. This generalizes a previous inequality proved by Gromov for closed Riemannian surfaces with negative Euler characteristic. As a consequence, we obtain that the volume entropy of such 2-complexes with unit area is always bounded away from zero.

1. Introduction

We are interested in the geometry of 2-free groups. Recall that a finitely presented group G is said to be *k-free* for some $k \ge 1$ if any of its subgroups generated by k elements is free (possibly of rank $\leq k$). A 1-free group is just a group without torsion, and a k-free group is always p-free for any $p \leq k$. Obviously, the free group \mathbb{F}_n with $n \geq 1$ generators is k -free for any positive k, and prime non-trivial examples of such groups are surface groups of genus $g \ge 2$ which are $(2g - 1)$ -free. Also, observe that the only 2-free groups with rank at most 2 are the free groups with one or two generators. According to [\[2\]](#page-9-1), the subclass of 2-free groups is generic among groups with 3 generators, which makes this class particularly relevant.

In order to capture this algebraic property geometrically, we first consider the various topological realizations of a group as the fundamental group of some finite 2-complex, and then study the possible geometries that can be put on these complexes. More precisely, fix a 2-free finitely presented group G with rank at least 3 and any finite connected 2-complex X endowed with a piecewise Riemannian metric such that $\pi_1 X = G$. An embedded connected graph $i: \Gamma \hookrightarrow X$ is said to be 2*-incompressible* if (1) $\pi_1 \Gamma \simeq \mathbb{F}_2$, and (2) the induced map $i_* : \pi_1 \Gamma \to \pi_1 X$ is injective. It is worth saying that we do not require the graph to lie in the 1-skeleton of X , and that we can always find 2-incompressible graphs since loops lying in the 1-skeleton generate the fundamental group. We then define

$$
L_2(X) := \inf_{\Gamma} \ell(\Gamma),
$$

Mathematics Subject Classification 2020: 53C23 (primary); 20F05, 20F34 (secondary). *Keywords:* incompressible graphs, 2-free groups, systolic area, volume entropy.

where the infimum is taken over all 2-incompressible graphs Γ , and $\ell(\Gamma)$ denotes the total length of Γ for the length metric induced by X. This is a metric invariant closely related to the *Margulis constant* $\mu(X)$, which is by definition the largest number L such that at any point x, the subgroup of $\pi_1 X$ generated by loops based at x with length less than L is cyclic, see Definition 4.1 in [\[13\]](#page-9-2). In fact, it can be easily checked that

(1.1)
$$
\mu(X) \le L_2(X) \le 2\mu(X).
$$

The natural metric invariant L_2 belongs to a larger family of invariants defined as follows. For any finite connected 2-complex X endowed with a piecewise Riemannian metric, define the increasing sequence of positive numbers ${L_k(X)}_{k>1}$ by setting $L_k(X)$:= inf_{Γ} $\ell(\Gamma)$, where the infimum is taken over graphs which are k-incompressible (that is, such that $\pi_1 \Gamma \simeq \mathbb{F}_k \hookrightarrow \pi_1 X$). These numbers are well defined without any particular assumption on the fundamental group of X by setting $L_k(X) = \infty$ if X does not admit any k-incompressible graph. Observe that $L_1(X)$ is nothing but the *systole* of X (the shortest length of a non-contractible loop) in the case where the fundamental group of X is 1-free. So the higher invariants $L_k(X)$ can be thought of as a generalization of the systole. In this context, it is natural to define for any finitely presented group G its k*-free systolic area* by the formula

$$
\mathfrak{S}_k(G) := \inf_{\pi_1 X = G} \text{Area}(X) / L_k^2(X),
$$

where the infimum is taken over the set of finite connected 2-complexes X with given fundamental group G and endowed with a piecewise Riemannian metric. Note that taking the supremum over the space of all piecewise flat metrics on X would yield the same value, see [\[1\]](#page-9-3) and Section 3 of [\[4\]](#page-9-4). Obviously, $\mathfrak{S}_k(G) = 0$ for any $k > 1$ if G is free. For a 1-free group G, the invariant $\mathfrak{S}_1(G)$ coincides with the notion of systolic area as defined in $[7]$, p. 337. According to Theorem 6.7.A in $[6]$, any 1-free group G which is not free satisfies the following inequality:

$$
\mathfrak{S}_1(G) \ge 1/100.
$$

The current best lower bound known is $\pi/16$, see [\[12\]](#page-9-7). The main purpose of this article is to prove the following analog for 2-free groups.

Theorem 1. *Any* 2*-free group* G *which is freely indecomposable and of rank at least* 3 *satisfies the following inequality*:

$$
\mathfrak{S}_2(G) \ge 1/32.
$$

Therefore, the new invariant \mathfrak{S}_2 is non-trivial for a large natural class of groups.

Theorem [1](#page-1-0) can be restated as follows: *any finite connected* 2*-complex* X *endowed with a piecewise Riemannian metric whose fundamental group is* 2*-free and freely indecomposable, but not cyclic, satisfies the following estimate*:

$$
L_2(X) \le 4\sqrt{2 \operatorname{Area}(X)}.
$$

This generalizes the result (see Theorem 5.4.A in [\[6\]](#page-9-6)) that any Riemannian closed orientable surface S of genus at least 2 satisfies $L_2(S) \leq 2\sqrt{2 \text{Area}(S)}$. Observe that here the

assumption on the genus ensures that the fundamental group $\pi_1 S$ is 2-free. See also Theorem 6.6.C in [\[6\]](#page-9-6) for a higher dimensional generalization of this last inequality. Combined with inequality $(1,1)$ $(1,1)$ $(1,1)$. Theorem 1 also provides an analog in the context of 2-complexes of a curvature-free inequality between the volume and the Margulis constant obtained for Riemannian manifolds whose fundamental group is 2-free, see Theorem 4.5(1) in [\[13\]](#page-9-2).

Presently, we do not see how to adapt our strategy to prove an analog of Theorem [1](#page-1-0) for $k > 2$, but it seems reasonable to conjecture that for each such k, the invariant \mathfrak{S}_k is uniformly bounded from below for any k -free group freely indecomposable with rank at least $k + 1$. Also, we do not know how to extend our current proof to encompass the freely decomposable groups: a 2-complex X with decomposable fundamental group $\pi_1 X =$ $G_1 * G_2$ does not have to split in any meaningful way in pieces corresponding to the subgroups G_1 and G_2 .

Lastly, Theorem [1](#page-1-0) implies the following curvature-free inequality relating the volume entropy and the area. Recall that the volume entropy $h(Y)$ of a finite connected complex Y (of any dimension) endowed with a piecewise Riemannian metric is defined as the exponential growth rate of the number of homotopy classes with length at most L , namely

$$
h(Y) = \lim_{L \to \infty} \frac{1}{L} \cdot \log(\text{card}\{[\gamma] \in \pi_1 Y \mid \gamma \text{ based loop of length at most } L\}).
$$

This definition does not depend on the chosen point where loops are based. As a consequence of Theorem [1,](#page-1-0) we get the following.

Corollary 2. *Any finite connected* 2*-complex* X *endowed with a piecewise Riemannian metric whose fundamental group is* 2*-free, freely indecomposable and of rank at least* 3*, satisfies the following estimate*:

$$
h(X) \cdot \sqrt{\text{Area}(X)} \ge 3 \log 2/(4\sqrt{2}).
$$

There is no reason for the above constant to be optimal, but this result generalizes the following (sharp) estimate [\[9\]](#page-9-8) that for S an orientable closed surface whose fundamental group is 2-free, the inequality $h(S) \cdot \sqrt{\text{Area}(S)} \geq 2\sqrt{\pi}$ is always satisfied. This corollary also improves a previous result, due to Babenko and privately communicated to the authors, proving an analog lower bound with a worst constant but valid without the freely indecomposable assumption.

2. Topology of small balls in piecewise flat 2-complexes

Consider a finite connected 2-complex X endowed with a piecewise flat metric, and fix a point x in X. In this section, we focus on the topology of closed balls

$$
B(x, r) := \{ y \in X \mid d(y, x) \le r \}
$$

and their boundary spheres

$$
\partial B(x, r) := \{ y \in X \mid d(y, x) = r \}
$$

for relatively small radius $r > 0$.

Our starting point is the following result, proved in Corollary 6.8 of [\[10\]](#page-9-9), for which it is crucial that the metric is piecewise flat and not just piecewise smooth.

Proposition 3. *For any* r > 0*, the triangulation of* X *can be refined in such a way that both* $B(x, r)$ *and* $\partial B(x, r)$ *are CW-subcomplexes of* X.

As a direct consequence, we find the following.

Proposition 4. For any $r > 0$ and any $x \in X$, the fundamental group of $B(x, r)$ is finitely *presented.*

Proof. According to Proposition [3,](#page-3-0) choose a refinement of the triangulation of X such that $B(x, r)$ is a CW-subspace of X. Since X is compact, any triangulation contains finitely many simplices, as does the triangulation of the closed ball $B(x, r)$. Hence its fundamental group is finitely presented.

We now turn to the boundary spheres and show that they generically admit trivial tubular neighborhoods.

Proposition 5. For all but finitely many values of $r > 0$, the boundary sphere $\partial B(x, r)$ *is a finite graph, and for each connected component* C *of* $\partial B(x, r)$ *, there exists an open neighborhood of* C *in* X *homeomorphic to* $C \times]0,1[$ *.*

Proof. Denote by $f = d(x, \cdot)$: $X \to \mathbb{R}_+$ the function *distance to the point* x. Recall that the Reeb space $R(f)$ is the quotient of X by the relation that identifies two points y_0 and y_1 if and only if $d(x, y_0) = d(x, y_1)$ and both points belong to the same connected component of the level set $f^{-1}(f(y_0))$. The space $R(f)$ admits a length structure induced from X. By construction, we have a canonical projection map $p: X \to R(f)$ which is 1-Lipschitz. We argue as in Section 4 of $[10]$: the function f is a semi-algebraic function, and then standard arguments show that $R(f)$ is a finite graph and that $R(f)$ admits a finite subdivision such that the natural map p yields a trivial bundle over the interior of each edge. For all distances r but the finitely many ones corresponding to the vertices of the subdivision, if C is a connected component of $f^{-1}(r)$, then by triviality of the bundle, the connected component of $p^{-1}($ $|r - \varepsilon, r + \varepsilon|)$ containing C is an open neighborhood of C of the desired form provided ε is small enough. More precisely, ε has to be chosen at most equal to the shortest distance from $p(C)$ to one of the two ends of the edge containing it.

In the last part of this section, we focus on the image in X of the fundamental group of small metric balls. Consider the map $i_*: \pi_1(B(x, r), x) \to \pi_1(X, x)$ induced by the inclusion $B(x, r) \subset X$.

According to Proposition 3.2 in [\[12\]](#page-9-7) (see also [\[10\]](#page-9-9)), when $\pi_1 X$ is 1-free, Im i_* is trivial if the radius r satisfies $r < L_1(X)/2$. The last result of this section describes how Im i_* remains simple under a similar assumption on the radius.

Proposition 6. *Suppose that* $\pi_1 X$ *is a* 2*-free group and* βx $r \in (0, L_2(X)/4)$ *.*

Then the image of the map $i_* : \pi_1(B(x, r), x) \to \pi_1(X, x)$ *induced by the inclusion* $B(x, r) \subset X$ *is either trivial, or isomorphic to* \mathbb{Z} *.*

Proof. Suppose that Im i_* is not trivial. We first prove that Im i_* is locally cyclic, that is, that every pair of elements in the group generates a cyclic group.

For this, let γ_1 and γ_2 be two non-contractible loops of X contained in $B(x, r)$ and based at x. As $\pi_1(X, x)$ is 2-free, these loops span in $\pi_1(X, x)$ a free subgroup $H(\gamma_1, \gamma_2)$ of rank at most 2. Fix $\delta > 0$ such that $2r + \delta < L_2(X)/2$. We first decompose each γ_i into segments of length at most δ . Then, for $i = 1, 2$, write γ_i as a concatenation of loops $c_{i,1} * \cdots * c_{i,n_i}$ based at x, where each $c_{i,k}$ is made of the union of one of these small segments together with two shortest paths from its extremal points to x . Any of these loops $c_{i,k}$ based at x lies by construction in $B(x, r)$ and has length at most $2r + \delta < L_2(X)/2$. So a graph made of the union of any two of these loops is of total length $\lt L_2(X)$, hence the subgroup in $\pi_1(X, x)$ generated by any of these pairs of loops is cyclic (if not zero). Then the subgroup $H({c_i},j)$ generated by all the homotopy classes of the loops ${c_i},j$ is abelian, as its generators pairwise commute. In particular, there exists some positive k such that $H({c_{i,j}}) \simeq \mathbb{Z}^k$, as $\pi_1 X$ is torsion-free. But $\pi_1 X$ is also 2-free, so that $k = 1$. This implies that $H(\gamma_1, \gamma_2) = \mathbb{Z}$, and hence Im i_* is locally cyclic.

As Im i_* is also finitely generated, thanks to Proposition [4,](#page-3-1) we deduce that it is cyclic. Furthermore, as Im i_* has no torsion, since $\pi_1 X$ is torsion-free, it is isomorphic to \mathbb{Z} . \blacksquare

3. Geometry of small balls in piecewise flat 2-complexes

In this section, we prove the central technical result of this paper.

Consider a finite connected 2-complex X endowed with a piecewise flat metric and whose fundamental group is 2-free, freely indecomposable and of rank at least 3. Fix $\varepsilon > 0$ and let Γ be a 2-incompressible graph whose length satisfies $\ell(\Gamma) \leq L_2(X) + \varepsilon$. Observe that Γ may be chosen with no vertex of degree 1. Let x be any point on Γ .

Theorem 7. For all but finitely many values of $r \in (\varepsilon, L_2(X)/4)$, the following holds:

$$
\ell(\partial B(x,r)) \geq r - \varepsilon.
$$

In particular, using the coarea formula (see Theorem 3.2.11 in [\[5\]](#page-9-10)), we derive the lower bound

Area
$$
(B(x, L_2(X)/4)) \ge (L_2(X) - \varepsilon)^2/32
$$
.

This implies that

$$
\text{Area}(X) \ge L_2(X)^2/32,
$$

which still holds true for piecewise smooth Riemannian metrics by approximation (see [\[1\]](#page-9-3)) and Section 3 of [\[4\]](#page-9-4)), and implies Theorem [1.](#page-1-0)

Proof. Fix $r \in (\varepsilon, L_2(X)/4)$ so that Proposition [5](#page-3-2) applies, and set $B := B(x, r)$. Denote by X_1, \ldots, X_k the path connected components of $X \setminus \text{int}(B)$ with non-empty interior, and by C_1, \ldots, C_n the connected components of ∂B . According to Proposition [3,](#page-3-0) each C_i is a connected finite graph, and there exists an open neighborhood U of $C_1 \sqcup \cdots \sqcup C_n$ in X such that hom

$$
U \stackrel{\text{nom}}{\simeq} (C_1 \times]0,1[) \sqcup \cdots \sqcup (C_n \times]0,1[).
$$

According to Proposition [6,](#page-3-3) the inclusion $i: B \hookrightarrow X$ induces a homomorphism of fundamental groups whose image is either trivial or isomorphic to \mathbb{Z} . So each graph C_i satisfies either $i_*(\pi_1 C_i) = 0$ or $i_*(\pi_1 C_i) = \mathbb{Z}$. Furthermore, if rank $i_*(\pi_1 C_i) = \text{rank }i_*(\pi_1 C_i) = 1$, then the subgroup generated by both these subgroups is a subgroup of $i_*(\pi(B)) = \mathbb{Z}$, and hence is again isomorphic to \mathbb{Z} . In particular, elements in $i_*(\pi_1 C_i)$ commute with those in $i_*(\pi_1C_i)$.

Let $Y = (X_1 \sqcup \cdots \sqcup X_k)/\sim$, where $x \sim y$ if and only if x and y belong to the same connected component C_i for some $i \in \{1, \ldots, n\}$. Denote by a_1, \ldots, a_n the points in Y that are images of the boundary graphs C_1, \ldots, C_n under the projection map

$$
f: X_1 \sqcup \cdots \sqcup X_k \to Y.
$$

The space Y decomposes into a disjoint union

$$
Y_1\sqcup\cdots\sqcup Y_k
$$

of path-connected components Y_1, \ldots, Y_k such that $X_j = f^{-1}(Y_j)$. Define, for each $j =$ $1, \ldots, k$, the subset $I_i \subset \{1, \ldots, n\}$ such that $a_l \in Y_j \Leftrightarrow l \in I_j$. Therefore, $\{1, \ldots, n\}$ $I_1 \sqcup \cdots \sqcup I_k$ and

$$
B \cap X_j = \bigsqcup_{l \in I_j} C_l.
$$

If $k = n$, we may assume, up to reindexing the boundary graphs, that $a_i \in Y_i$ for each $j = 1, \ldots, n$ (or equivalently, that $I_i = \{j\}$).

If $k < n$, then $|I_i| \ge 2$ for some $j \in \{1, \ldots, k\}$, and the following holds true.

Lemma 8. Assume that $|I_i| \geq 2$. Then $i_*(\pi_1C_i) = \mathbb{Z}$ for all $l \in I_i$.

Proof. By contradiction, let $l \in I_j$ be such that $i_*(\pi_1 C_l) = 0$, and fix a neighborhood U_l of C_l such that $U_l \simeq C_l \times]0, 1[$. By construction, U_l is connected, $X = U_l \cup (X \setminus C_l)$, and because $|I_j| \geq 2$, the open set $X \setminus C_l$ is also connected. Observe that $A_l := U_l \cap$ $(X \setminus C_l)$ has exactly two connected components, and choose a point x_1 and x_2 in each one of them. Fix a path β in U_l and a path γ in $X \setminus C_l$ both going from x_1 to x_2 . We denote by $\varphi_1: \pi_1(A_l, x_1) \to \pi_1(U_l, x_1)$ and $\psi_1: \pi_1(A_l, x_1) \to \pi_1(X \setminus C_l, x_1)$ the homomorphisms induced by the respective inclusion maps, and we define two homomorphisms $\varphi_2: \pi_1(A_l, x_2) \to \pi_1(U_l, x_1)$ and $\psi_2: \pi_1(A_l, x_2) \to \pi_1(X \setminus C_l, x_1)$ by setting

$$
\varphi_2(\alpha) = \beta \alpha \beta^{-1}
$$
 and $\psi_2(\alpha) = \gamma \alpha \gamma^{-1}$.

We also define a homomorphism $\mu: \mathbb{Z} \simeq \langle a \rangle \to \pi_1(X, x_1)$ by setting

$$
\mu(a) = \beta \gamma^{-1}.
$$

By the Van Kampen theorem, see Proposition 2 on p. 422 of [\[3\]](#page-9-11), there exists a unique surjective homomorphism

$$
M: \pi_1(U_l, x_1) * \pi_1(X \setminus C_l, x_1) * \mathbb{Z} \to \pi_1(X, x_1)
$$

which coincides with μ on the factor $\mathbb Z$ and with the homomorphisms induced by the respective natural inclusions on the two factors $\pi_1(U_l, x_1)$ and $\pi_1(X \setminus C_l, x_1)$, and whose kernel is normally generated by the elements of the form

- (1) $\varphi_2(v) a \psi_2(v)^{-1} a^{-1}$ for $v \in \pi_1(A_l, x_2)$;
- (2) $\varphi_1(v)\psi_1(v)^{-1}$ for $v \in \pi_1(A_l, x_1)$.

As the image of $\pi_1 C_l \simeq \pi_1(U_l, x_1)$ is trivial in $\pi_1(X, x_1)$, the homomorphisms $M \circ \varphi_1$ and $M \circ \varphi_2$ are trivial, and consequently, the surjective homomorphism M factorizes as

$$
M: \pi_1(X \setminus C_l, x_1) * \mathbb{Z} \to \pi_1(X, x_1),
$$

with kernel normally generated by the elements of the form

- (1) $\psi_2(v)$ for $v \in \pi_1(A_1, x_2);$
- (2) $\psi_1(v)$ for $v \in \pi_1(A_l, x_1)$.

By definition, all these relations are written in the group $\pi_1(X \setminus C_l, x_1)$. So if we denote by H the quotient of $\pi_1(X \setminus C_l, x_1)$ by these relations, M induces an isomorphism

$$
\overline{M}: H * \mathbb{Z} \to \pi_1(X, x_1),
$$

contradicting the fact that the fundamental group of X is freely indecomposable and of rank at least 3.

We may assume that Γ is transverse to $C_1 \sqcup \cdots \sqcup C_n$. Because it has no vertex of degree 1, Γ is one of the three following graphs with first Betti number equal to 2:

As the graph Γ is 2-incompressible, the subgraph $\Gamma \cap B$ has cyclic number at most 1 according to Proposition [6,](#page-3-3) and the graph Γ escapes from B and so necessarily intersects the boundary $C_1 \sqcup \cdots \sqcup C_n$. Set $\Gamma_i := \Gamma \cap X_i$ and observe that some of these graphs may be empty (but not all). Furthermore, let $\Gamma_0 = \Gamma \cap B$ be the remaining part of the graph Γ which completes the decomposition as follows:

$$
\Gamma = \Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_k.
$$

Now construct a new graph $\overline{\Gamma}$ starting from Γ , and obtained by deleting Γ_0 and pasting all the boundary graphs as follows:

$$
\overline{\Gamma} := (\Gamma \setminus \Gamma_0) \cup (C_1 \cup \cdots \cup C_n).
$$

We shall see that we can always extract from $\bar{\Gamma}$ a 2-incompressible subgraph Γ' , and this implies the desired lower bound. Indeed, the 2-incompressible subgraph Γ' will satisfy $\ell(\Gamma') \ge L_2(X)$, as well as $\ell(\Gamma') \le \ell(\Gamma) - r + \sum_{j=1}^n \ell(C_j)$ as $\ell(\Gamma_0) \ge r$. Given that $\ell(\Gamma) \leq L_2(X) + \varepsilon$, we get the announced lower bound

$$
\ell(\partial B) \geq \sum_{j=1}^n \ell(C_j) \geq r - \varepsilon.
$$

To extract the 2-incompressible subgraph Γ' from $\overline{\Gamma}$, we argue as follows.

Suppose first that the inclusion $B \subset X$ *induces the zero morphism:* $i_*(\pi_1B) = 0$ *.*

In particular, any boundary component C satisfies $i_*(\pi_1 C) = 0$, as its fundamental group factors through $i_*(\pi_1B)$. Thus Lemma [8](#page-5-0) implies that $k = n$. The key point is that there exists a unique $j \in \{1,\ldots,n\}$ such that $i_*(\pi_1 X_j) \neq 0$. Indeed, given that $i_*(\pi_1 B) = 0$ and applying the Van Kampen theorem to the covering $\{B, X_1, \ldots, X_n\}$ of X, we get that $\pi_1 X \simeq \pi_1 X_1 \ast \cdots \ast \pi_1 X_n$. As $\pi_1 X$ is freely indecomposable, only one of these free factors is non-trivial.

So the 2-incompressible graph Γ , which has cyclic number 2, must intersect the boundary graph C_i of the non-trivial piece X_i . Fix two homotopically independent loops c_1 and c_2 of Γ based at the same point, say p, of the boundary graph C_i . By homotopically independent we mean that the two loops generate a free subrgoup of rank 2 of the fundamental group. If they are not entirely contained in X_i , and as $\pi_1(B \cup (\cup_{l \neq i} X_l)) = 0$, we can for each of the c_i 's homotope each of their subarcs lying outside X_i into a subarc of C_i without moving their respective endpoints. Therefore we can homotope c_1 and c_2 into two new homotopically independent loops still based at p and lying in $\Gamma_i \cup C_i \subset \Gamma$. Therefore, as wanted, we can extract a 2-incompressible subgraph from Γ .

Suppose now that the inclusion $B \subset X$ *induces a morphism of rank* 1: $i_*(\pi_1 B) = \mathbb{Z}$.

Fix an element a of $\pi_1 B$ that generates $i_*(\pi_1 B) = \mathbb{Z}$ and a closed curve c of Γ based at x and homotopically independent from a. The loop c necessarily escapes from B . Denote by p_1, \ldots, p_N the intersection points along c with ∂B (it may happen that $p_i =$ p_{i+1} for some i). Denote by δ_1 the subpath of c that goes from x to p_1 , by δ_N the subpath of c going backwards from x to p_N , and fix for $i = 2, ..., N - 1$ any path δ_i contained in B from x to p_i . We can decompose the loop c into a concatenation of loops c_i based at x, each one being made by first following δ_i , then the portion denoted by η_i of c from p_i to the next intersection point p_{i+1} , and then going back to x using δ_{i+1}^{-1} . One of these loops must be homotopically independent from the generator a of $\pi_1 B$: the loop c does not homotopically commute with a, and thus at least one of the c_i 's does not homotopically commute with a either. Again, this loop, that we denote simply by c_i , necessarily escapes from B and the corresponding portion η_i lies outside int(B). Let X_j be the path connected component of $X \setminus \text{int}(B)$ that contains η_i .

If X_i *has more than one boundary component*, then by Lemma [8](#page-5-0) all boundary components are homotopically non-trivial in B and in X , and we argue as follows.

Suppose first that the endpoints of η_i belong to two distinct boundary graphs C_l and C_l for some $l \neq l'$. First observe that l and l' both necessarily belong to the same subset I_j , as $\eta_i \subset X_j$. Moreover, $i_*(\pi_1 C_l) = \mathbb{Z}$ and $i_*(\pi_1 C_{l'}) = \mathbb{Z}$, as already observed. Fix two non-trivial loops $b_l \in C_l$ and $b_{l'} \in C_{l'}$ respectively based at p_i and p_{i+1} . Set $\delta = \delta_i^{-1} * \delta_{i+1}$. Observe that the homotopy classes of $\eta_i * b_{l'} * \eta_i^{-1}$ and $c_i * (\delta * b_{l'} *$ δ^{-1}) * c_i^{-1} (where c_i is viewed as a loop based at p_i) coincide. If the loop $\eta_i * b_{i'} * \eta_i^{-1}$ was not homotopically independent with b_l , then we would have that $[c_i] \cdot a^{n} \cdot [c_i^{-1}] = a^m$ for some $m, n \in \mathbb{Z} \setminus \{0\}$, as both loops $\delta * b_{l'} * \delta^{-1}$ and b_l induce homotopy classes in $\pi_1 B = \langle a \rangle$. But this is impossible, as c_i was chosen homotopically independent from the class a. So the two loops $\eta_i * b_{l'} * \eta_i^{-1}$ and b_l based at p_i are homotopically independent and are both contained in $\Gamma_j \cup C_l \cup C_{l'} \subset \overline{\Gamma}$. So their union forms a 2-incompressible graph $\Gamma' \subset \overline{\Gamma}$.

Now suppose that both endpoints of η_i belong to the same connected boundary component C_l , and fix some subarc α in C_l from p_i to p_{i+1} . The closed curve c_i (viewed as a loop based at p_i) is homotopic to the concatenation of the loop $\eta_i * \alpha^{-1}$ with the loop $\alpha * \delta_{i+1}^{-1} * \delta_i$. The second loop is included in B, and therefore its homotopy class $[\alpha * \delta_{i+1}^{-1} * \delta_i]$ is equal to a^k for some $k \in \mathbb{Z}$. Hence the first loop $\eta_i * \alpha^{-1}$ is homotopically independent from a. Now define Γ'' to be a subgraph of C_l that contains α , such that $\pi_1 \Gamma'' \simeq \mathbb{Z}$ and $\pi_1 \Gamma'' \to \pi_1 X$ is injective. Then $\Gamma' = \Gamma'' \cup \eta_i$ is the desired 2-incompressible subgraph of Γ .

If X_j has a unique boundary component C_l , observe that $i_*(\pi_1 C_l) \neq 0$. For if it is trivial, by applying the Van Kampen theorem to the covering of X by the open set $X \setminus X_i$ and its complement X_i slightly enlarged so that these two open sets overlap along a half-tubular neighborhood $U \simeq C_l \times]0,1[$ of $C_l,$ we would get a non-trivial free decomposition $\pi_1 X \simeq \pi_1 X_i * \pi_1(X \setminus X_i)$, where both pieces are non-trivial: a contradiction. Finally, because the loop c_i is homotopically independent from the class a , we can extract a 2-incompressible subgraph from $C_l \cup \eta_i \subset \Gamma$.

4. A universal bound for the volume entropy

We conclude by explaining how to derive Corollary [2](#page-2-0) from Theorem [1.](#page-1-0)

Proof of Corollary [2](#page-2-0). Let X be a finite connected 2-complex X endowed with a piecewise Riemannian metric whose fundamental group is 2-free, freely indecomposable and of rank at least 3. According to Theorem [1,](#page-1-0) we can find a 2-incompressible graph $\Gamma \hookrightarrow X$ with induced length at most $4\sqrt{2}\sqrt{\text{Area}(X)}$. The fact that $\pi_1 \Gamma \simeq \mathbb{F}_2$ implies by [\[8\]](#page-9-12) (see also $[11]$) that

$$
\ell(\Gamma) \cdot h(\Gamma) \ge 3 \log 2,
$$

where $h(\Gamma)$ denotes the volume entropy of the finite connected 1-dimensional complex Γ for the piecewise Riemannian metric induced by X. The injection $\pi_1 \Gamma \hookrightarrow \pi_1 X$ ensures that $h(X) > h(\Gamma)$, from which we derive the desired lowerbound:

$$
h(X) \cdot \sqrt{\text{Area}(X)} \ge \frac{1}{4\sqrt{2}} \cdot h(\Gamma) \cdot \ell(\Gamma) \ge \frac{3\log 2}{4\sqrt{2}}.
$$

Acknowledgements. We would like to thank I. Babenko and S. Sabourau for valuable exchanges, and the two anonymous referees for their useful comments.

Funding. The first author acknowledges support by the FSE/AEI/MICINN grant RYC-2016-19334 and by the FEDER/AEI/MICINN grant PID2021-125625NB-I00. The second author acknowledges support by the FSE/AEI/MICINN grant PID2020-116481GB-I00. Both authors acknowledges support by the AGAUR grant 2021-SGR-01015.

References

- [1] Aleksandrov, A. D. and Zalgaller, V. A.: *[Intrinsic geometry of surfaces](https://doi.org/10.1090/mmono/015)*. Transl. Math. Monogr. 15, American Mathematical Society, Providence, RI, 1967. Zbl [0146.44103](https://zbmath.org/?q=an:0146.44103) MR [0216434](https://mathscinet.ams.org/mathscinet-getitem?mr=0216434)
- [2] Arzhantseva, G. N. and Ol'shanskiı̆, A. Y.: [The class of groups all of whose subgroups with](https://doi.org/10.1007/BF02308683) [lesser number of generators are free is generic.](https://doi.org/10.1007/BF02308683) *Math. Notes* 59 (1996), no. 4, 350–355. Zbl [0877.20021](https://zbmath.org/?q=an:0877.20021) MR [1445193](https://mathscinet.ams.org/mathscinet-getitem?mr=1445193)
- [3] Bourbaki, N.: *Éléments de mathématique. Topologie algébrique. Chapitres 1 à 4*. Springer, Heidelberg, 2016. Zbl [1355.55001](https://zbmath.org/?q=an:1355.55001) MR [3617167](https://mathscinet.ams.org/mathscinet-getitem?mr=3617167)
- [4] Burago, Y. D. and Zalgaller, V. A.: *[Geometric inequalities](https://doi.org/10.1007/978-3-662-07441-1)*. Grundlehren Math. Wiss. 285, Springer, Berlin, 1988. Zbl [0633.53002](https://zbmath.org/?q=an:0633.53002) MR [0936419](https://mathscinet.ams.org/mathscinet-getitem?mr=0936419)
- [5] Federer, H.: *Geometric measure theory*. Grundlehren Math. Wiss. 153, Springer, New York, 1969. Zbl [0176.00801](https://zbmath.org/?q=an:0176.00801) MR [0257325](https://mathscinet.ams.org/mathscinet-getitem?mr=0257325)
- [6] Gromov, M.: [Filling Riemannian manifolds.](https://doi.org/10.4310/jdg/1214509283) *J. Differential Geom.* 18 (1983), no. 1, 1–147. Zbl [0515.53037](https://zbmath.org/?q=an:0515.53037) MR [0697984](https://mathscinet.ams.org/mathscinet-getitem?mr=0697984)
- [7] Gromov, M.: Systoles and intersystolic inequalities. In *Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992)*, pp. 291–362. Sémin. Congr. 1, Société mathématique de France, Paris, 1996. Zbl [0877.53002](https://zbmath.org/?q=an:0877.53002) MR [1427763](https://mathscinet.ams.org/mathscinet-getitem?mr=1427763)
- [8] Kapovich, I. and Nagnibeda, T.: [The Patterson–Sullivan embedding and minimal volume](https://doi.org/10.1007/s00039-007-0621-z) [entropy for outer space.](https://doi.org/10.1007/s00039-007-0621-z) *Geom. Funct. Anal.* 17 (2007), no. 4, 1201–1236. Zbl [1135.20031](https://zbmath.org/?q=an:1135.20031) MR [2373015](https://mathscinet.ams.org/mathscinet-getitem?mr=2373015)
- [9] Katok, A.: [Entropy and closed geodesics.](https://doi.org/10.1017/S0143385700001656) *Ergodic Theory Dynam. Systems* 2 (1982), no. 3-4, 339–365 (1983). Zbl [0525.58027](https://zbmath.org/?q=an:0525.58027) MR [0721728](https://mathscinet.ams.org/mathscinet-getitem?mr=0721728)
- [10] Katz, M. G., Rudyak, Y. B. and Sabourau, S.: [Systoles of 2-complexes, Reeb graph, and](https://doi.org/10.1155/IMRN/2006/54936) [Grushko decomposition.](https://doi.org/10.1155/IMRN/2006/54936) *Int. Math. Res. Not.* (2006), article no. 54936, 30 pp. Zbl [1116.57001](https://zbmath.org/?q=an:1116.57001) MR [2250017](https://mathscinet.ams.org/mathscinet-getitem?mr=2250017)
- [11] Lim, S.: [Minimal volume entropy for graphs.](https://doi.org/10.1090/S0002-9947-08-04227-X) *Trans. Amer. Math. Soc.* 360 (2008), no. 10, 5089–5100. Zbl [1155.37014](https://zbmath.org/?q=an:1155.37014) MR [2415065](https://mathscinet.ams.org/mathscinet-getitem?mr=2415065)
- [12] Rudyak, Y. B. and Sabourau, S.: [Systolic invariants of groups and 2-complexes via Grushko](https://doi.org/10.5802/aif.2369) [decomposition.](https://doi.org/10.5802/aif.2369) *Ann. Inst. Fourier (Grenoble)* 58 (2008), no. 3, 777–800. Zbl [1142.53035](https://zbmath.org/?q=an:1142.53035) MR [2427510](https://mathscinet.ams.org/mathscinet-getitem?mr=2427510)
- [13] Sabourau, S.: [Small volume of balls, large volume entropy and the Margulis constant.](https://doi.org/10.1007/s00208-016-1502-2) *Math. Ann.* 369 (2017), no. 3-4, 1557–1571. Zbl [1391.53052](https://zbmath.org/?q=an:1391.53052) MR [3713550](https://mathscinet.ams.org/mathscinet-getitem?mr=3713550)

Received May 8, 2023; revised March 14, 2024.

Florent Balacheff

Departament de Matemàtiques, Universitat Autònoma de Barcelona Facultat de Ciències, 08193 Bellaterra, Spain; florent.balacheff@uab.cat

Wolfgang Pitsch

Departament de Matemàtiques, Universitat Autònoma de Barcelona Facultat de Ciències, 08193 Bellaterra, Spain; wolfgang.pistch@uab.cat