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Short incompressible graphs and 2-free groups

Florent Balacheff and Wolfgang Pitsch

Abstract. Consider a finite connected 2-complex X endowed with a piecewise
Riemannian metric, and whose fundamental group is freely indecomposable, of rank
at least 3, and in which every 2-generated subgroup is free. In this paper, we show
that we can always find a connected graph � � X such that �1� ' F2 ,! �1X (in
short, a 2-incompressible graph) whose length satisfies the following curvature-free
inequality: `.�/ � 4

p
2Area.X/. This generalizes a previous inequality proved by

Gromov for closed Riemannian surfaces with negative Euler characteristic. As a con-
sequence, we obtain that the volume entropy of such 2-complexes with unit area is
always bounded away from zero.

1. Introduction

We are interested in the geometry of 2-free groups. Recall that a finitely presented groupG
is said to be k-free for some k � 1 if any of its subgroups generated by k elements is
free (possibly of rank � k). A 1-free group is just a group without torsion, and a k-free
group is always p-free for any p � k. Obviously, the free group Fn with n � 1 generators
is k-free for any positive k, and prime non-trivial examples of such groups are surface
groups of genus g � 2 which are .2g � 1/-free. Also, observe that the only 2-free groups
with rank at most 2 are the free groups with one or two generators. According to [2], the
subclass of 2-free groups is generic among groups with 3 generators, which makes this
class particularly relevant.

In order to capture this algebraic property geometrically, we first consider the various
topological realizations of a group as the fundamental group of some finite 2-complex,
and then study the possible geometries that can be put on these complexes. More pre-
cisely, fix a 2-free finitely presented group G with rank at least 3 and any finite connected
2-complex X endowed with a piecewise Riemannian metric such that �1X D G. An
embedded connected graph i W � ,! X is said to be 2-incompressible if (1) �1� ' F2,
and (2) the induced map i� W�1� ! �1X is injective. It is worth saying that we do not re-
quire the graph to lie in the 1-skeleton ofX , and that we can always find 2-incompressible
graphs since loops lying in the 1-skeleton generate the fundamental group. We then define

L2.X/ WD inf
�
`.�/;
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where the infimum is taken over all 2-incompressible graphs � , and `.�/ denotes the total
length of � for the length metric induced by X . This is a metric invariant closely related
to the Margulis constant �.X/, which is by definition the largest number L such that at
any point x, the subgroup of �1X generated by loops based at x with length less than L
is cyclic, see Definition 4.1 in [13]. In fact, it can be easily checked that

(1.1) �.X/ � L2.X/ � 2�.X/:

The natural metric invariant L2 belongs to a larger family of invariants defined as follows.
For any finite connected 2-complex X endowed with a piecewise Riemannian metric,
define the increasing sequence of positive numbers ¹Lk.X/ºk�1 by setting Lk.X/ WD
inf� `.�/, where the infimum is taken over graphs which are k-incompressible (that is,
such that �1� ' Fk ,! �1X ). These numbers are well defined without any particular
assumption on the fundamental group of X by setting Lk.X/ D 1 if X does not admit
any k-incompressible graph. Observe that L1.X/ is nothing but the systole of X (the
shortest length of a non-contractible loop) in the case where the fundamental group of X
is 1-free. So the higher invariants Lk.X/ can be thought of as a generalization of the
systole. In this context, it is natural to define for any finitely presented group G its k-free
systolic area by the formula

Sk.G/ WD inf
�1XDG

Area.X/=L2k.X/;

where the infimum is taken over the set of finite connected 2-complexes X with given
fundamental group G and endowed with a piecewise Riemannian metric. Note that taking
the supremum over the space of all piecewise flat metrics on X would yield the same
value, see [1] and Section 3 of [4]. Obviously, Sk.G/D 0 for any k � 1 ifG is free. For a
1-free group G, the invariant S1.G/ coincides with the notion of systolic area as defined
in [7], p. 337. According to Theorem 6.7.A in [6], any 1-free group G which is not free
satisfies the following inequality:

S1.G/ � 1=100:

The current best lower bound known is �=16, see [12]. The main purpose of this article is
to prove the following analog for 2-free groups.

Theorem 1. Any 2-free group G which is freely indecomposable and of rank at least 3
satisfies the following inequality:

S2.G/ � 1=32:

Therefore, the new invariant S2 is non-trivial for a large natural class of groups.
Theorem 1 can be restated as follows: any finite connected 2-complexX endowed with

a piecewise Riemannian metric whose fundamental group is 2-free and freely indecompos-
able, but not cyclic, satisfies the following estimate:

L2.X/ � 4
p
2Area.X/:

This generalizes the result (see Theorem 5.4.A in [6]) that any Riemannian closed orient-
able surface S of genus at least 2 satisfies L2.S/ � 2

p
2Area.S/. Observe that here the
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assumption on the genus ensures that the fundamental group �1S is 2-free. See also The-
orem 6.6.C in [6] for a higher dimensional generalization of this last inequality. Combined
with inequality (1.1), Theorem 1 also provides an analog in the context of 2-complexes
of a curvature-free inequality between the volume and the Margulis constant obtained for
Riemannian manifolds whose fundamental group is 2-free, see Theorem 4.5(1) in [13].

Presently, we do not see how to adapt our strategy to prove an analog of Theorem 1
for k > 2, but it seems reasonable to conjecture that for each such k, the invariant Sk is
uniformly bounded from below for any k-free group freely indecomposable with rank at
least kC 1. Also, we do not know how to extend our current proof to encompass the freely
decomposable groups: a 2-complex X with decomposable fundamental group �1X D
G1 � G2 does not have to split in any meaningful way in pieces corresponding to the
subgroups G1 and G2.

Lastly, Theorem 1 implies the following curvature-free inequality relating the volume
entropy and the area. Recall that the volume entropy h.Y / of a finite connected com-
plex Y (of any dimension) endowed with a piecewise Riemannian metric is defined as the
exponential growth rate of the number of homotopy classes with length at most L, namely

h.Y / D lim
L!1

1

L
� log.card¹Œ� 2 �1Y j  based loop of length at most Lº/:

This definition does not depend on the chosen point where loops are based. As a con-
sequence of Theorem 1, we get the following.

Corollary 2. Any finite connected 2-complex X endowed with a piecewise Riemannian
metric whose fundamental group is 2-free, freely indecomposable and of rank at least 3,
satisfies the following estimate:

h.X/ �
p

Area.X/ � 3 log 2=.4
p
2/:

There is no reason for the above constant to be optimal, but this result generalizes the
following (sharp) estimate [9] that for S an orientable closed surface whose fundamental
group is 2-free, the inequality h.S/ �

p
Area.S/ � 2

p
� is always satisfied. This corol-

lary also improves a previous result, due to Babenko and privately communicated to the
authors, proving an analog lower bound with a worst constant but valid without the freely
indecomposable assumption.

2. Topology of small balls in piecewise flat 2-complexes

Consider a finite connected 2-complex X endowed with a piecewise flat metric, and fix a
point x in X . In this section, we focus on the topology of closed balls

B.x; r/ WD ¹y 2 X j d.y; x/ � rº

and their boundary spheres

@B.x; r/ WD ¹y 2 X j d.y; x/ D rº

for relatively small radius r > 0.
Our starting point is the following result, proved in Corollary 6.8 of [10], for which it

is crucial that the metric is piecewise flat and not just piecewise smooth.
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Proposition 3. For any r > 0, the triangulation of X can be refined in such a way that
both B.x; r/ and @B.x; r/ are CW-subcomplexes of X .

As a direct consequence, we find the following.

Proposition 4. For any r > 0 and any x 2X , the fundamental group of B.x; r/ is finitely
presented.

Proof. According to Proposition 3, choose a refinement of the triangulation ofX such that
B.x; r/ is a CW-subspace of X . Since X is compact, any triangulation contains finitely
many simplices, as does the triangulation of the closed ballB.x;r/. Hence its fundamental
group is finitely presented.

We now turn to the boundary spheres and show that they generically admit trivial
tubular neighborhoods.

Proposition 5. For all but finitely many values of r > 0, the boundary sphere @B.x; r/
is a finite graph, and for each connected component C of @B.x; r/, there exists an open
neighborhood of C in X homeomorphic to C� �0; 1Œ.

Proof. Denote by f D d.x; �/ W X ! RC the function distance to the point x. Recall that
the Reeb space R.f / is the quotient of X by the relation that identifies two points y0
and y1 if and only if d.x; y0/ D d.x; y1/ and both points belong to the same connected
component of the level set f �1.f .y0//. The spaceR.f / admits a length structure induced
from X . By construction, we have a canonical projection map pWX ! R.f / which is
1-Lipschitz. We argue as in Section 4 of [10]: the function f is a semi-algebraic function,
and then standard arguments show that R.f / is a finite graph and that R.f / admits a
finite subdivision such that the natural map p yields a trivial bundle over the interior of
each edge. For all distances r but the finitely many ones corresponding to the vertices of
the subdivision, if C is a connected component of f �1.r/, then by triviality of the bundle,
the connected component of p�1. �r � "; r C "Œ/ containing C is an open neighborhood
of C of the desired form provided " is small enough. More precisely, " has to be chosen
at most equal to the shortest distance from p.C / to one of the two ends of the edge
containing it.

In the last part of this section, we focus on the image in X of the fundamental group
of small metric balls. Consider the map i� W �1.B.x; r/; x/! �1.X; x/ induced by the
inclusion B.x; r/ � X .

According to Proposition 3.2 in [12] (see also [10]), when �1X is 1-free, Im i� is
trivial if the radius r satisfies r < L1.X/=2. The last result of this section describes how
Im i� remains simple under a similar assumption on the radius.

Proposition 6. Suppose that �1X is a 2-free group and fix r 2 .0; L2.X/=4/.
Then the image of the map i� W �1.B.x; r/; x/! �1.X; x/ induced by the inclusion

B.x; r/ � X is either trivial, or isomorphic to Z.

Proof. Suppose that Im i� is not trivial. We first prove that Im i� is locally cyclic, that is,
that every pair of elements in the group generates a cyclic group.

For this, let 1 and 2 be two non-contractible loops of X contained in B.x; r/ and
based at x. As �1.X; x/ is 2-free, these loops span in �1.X; x/ a free subgroup H.1; 2/
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of rank at most 2. Fix ı > 0 such that 2r C ı < L2.X/=2. We first decompose each i
into segments of length at most ı. Then, for i D 1; 2, write i as a concatenation of loops
ci;1 � � � � � ci;ni based at x, where each ci;k is made of the union of one of these small
segments together with two shortest paths from its extremal points to x. Any of these loops
ci;k based at x lies by construction in B.x; r/ and has length at most 2r C ı < L2.X/=2.
So a graph made of the union of any two of these loops is of total length < L2.X/, hence
the subgroup in �1.X; x/ generated by any of these pairs of loops is cyclic (if not zero).
Then the subgroup H.¹ci;j º/ generated by all the homotopy classes of the loops ¹ci;j º
is abelian, as its generators pairwise commute. In particular, there exists some positive k
such that H.¹ci;j º/ ' Zk , as �1X is torsion-free. But �1X is also 2-free, so that k D 1.
This implies that H.1; 2/ D Z, and hence Im i� is locally cyclic.

As Im i� is also finitely generated, thanks to Proposition 4, we deduce that it is cyclic.
Furthermore, as Im i� has no torsion, since �1X is torsion-free, it is isomorphic to Z.

3. Geometry of small balls in piecewise flat 2-complexes

In this section, we prove the central technical result of this paper.
Consider a finite connected 2-complex X endowed with a piecewise flat metric and

whose fundamental group is 2-free, freely indecomposable and of rank at least 3. Fix
" > 0 and let � be a 2-incompressible graph whose length satisfies `.�/ � L2.X/C ".
Observe that � may be chosen with no vertex of degree 1. Let x be any point on � .

Theorem 7. For all but finitely many values of r 2 ."; L2.X/=4/, the following holds:

`.@B.x; r// � r � ":

In particular, using the coarea formula (see Theorem 3.2.11 in [5]), we derive the lower
bound

Area.B.x;L2.X/=4// � .L2.X/ � "/2=32:

This implies that
Area.X/ � L2.X/2=32;

which still holds true for piecewise smooth Riemannian metrics by approximation (see [1]
and Section 3 of [4]), and implies Theorem 1.

Proof. Fix r 2 ."; L2.X/=4/ so that Proposition 5 applies, and set B WD B.x; r/. Denote
byX1; : : : ;Xk the path connected components ofX n int.B/ with non-empty interior, and
by C1; : : : ; Cn the connected components of @B . According to Proposition 3, each Ci is
a connected finite graph, and there exists an open neighborhood U of C1 t � � � t Cn in X
such that

U
hom
' .C1� �0; 1Œ/ t � � � t .Cn� �0; 1Œ/:

According to Proposition 6, the inclusion i WB ,! X induces a homomorphism of funda-
mental groups whose image is either trivial or isomorphic to Z. So each graph Ci satisfies
either i�.�1Ci /D 0 or i�.�1Ci /DZ. Furthermore, if rank i�.�1Ci /D rank i�.�1Cj /D 1,
then the subgroup generated by both these subgroups is a subgroup of i�.�.B//D Z, and
hence is again isomorphic to Z. In particular, elements in i�.�1Ci / commute with those
in i�.�1Cj /.
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Let Y D .X1 t � � � tXk/= �, where x � y if and only if x and y belong to the same
connected component Ci for some i 2 ¹1; : : : ; nº. Denote by a1; : : : ; an the points in Y
that are images of the boundary graphs C1; : : : ; Cn under the projection map

f W X1 t � � � tXk ! Y:

The space Y decomposes into a disjoint union

Y1 t � � � t Yk

of path-connected components Y1; : : : ; Yk such that Xj D f �1.Yj /. Define, for each j D
1; : : : ; k, the subset Ij � ¹1; : : : ; nº such that al 2 Yj , l 2 Ij . Therefore, ¹1; : : : ; nº D
I1 t � � � t Ik and

B \Xj D
G
l2Ij

Cl :

If k D n, we may assume, up to reindexing the boundary graphs, that aj 2 Yj for each
j D 1; : : : ; n (or equivalently, that Ij D ¹j º).

If k < n, then jIj j � 2 for some j 2 ¹1; : : : ; kº, and the following holds true.

Lemma 8. Assume that jIj j � 2. Then i�.�1Cl / D Z for all l 2 Ij .

Proof. By contradiction, let l 2 Ij be such that i�.�1Cl / D 0, and fix a neighborhood Ul
of Cl such that Ul ' Cl � �0; 1Œ. By construction, Ul is connected, X D Ul [ .X n Cl /,
and because jIj j � 2, the open set X n Cl is also connected. Observe that Al WD Ul \

.X n Cl / has exactly two connected components, and choose a point x1 and x2 in each
one of them. Fix a path ˇ in Ul and a path  in X n Cl both going from x1 to x2. We
denote by '1W�1.Al ; x1/! �1.Ul ; x1/ and  1 W �1.Al ; x1/! �1.X nCl ; x1/ the homo-
morphisms induced by the respective inclusion maps, and we define two homomorphisms
'2W�1.Al ; x2/! �1.Ul ; x1/ and  2W�1.Al ; x2/! �1.X n Cl ; x1/ by setting

'2.˛/ D ˇ˛ˇ
�1 and  2.˛/ D ˛

�1:

We also define a homomorphism �WZ ' hai ! �1.X; x1/ by setting

�.a/ D ˇ�1:

By the Van Kampen theorem, see Proposition 2 on p. 422 of [3], there exists a unique
surjective homomorphism

M W �1.Ul ; x1/ � �1.X n Cl ; x1/ � Z! �1.X; x1/

which coincides with � on the factor Z and with the homomorphisms induced by the
respective natural inclusions on the two factors �1.Ul ; x1/ and �1.X nCl ; x1/, and whose
kernel is normally generated by the elements of the form

(1) '2.v/a 2.v/�1a�1 for v 2 �1.Al ; x2/;
(2) '1.v/ 1.v/�1 for v 2 �1.Al ; x1/.

As the image of �1Cl '�1.Ul ;x1/ is trivial in �1.X;x1/, the homomorphismsM ı'1
and M ı'2 are trivial, and consequently, the surjective homomorphism M factorizes as

M W �1.X n Cl ; x1/ � Z! �1.X; x1/;
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with kernel normally generated by the elements of the form
(1)  2.v/ for v 2�1.Al ; x2/;
(2)  1.v/ for v 2�1.Al ; x1/.

By definition, all these relations are written in the group �1.X n Cl ; x1/. So if we
denote byH the quotient of �1.X nCl ; x1/ by these relations,M induces an isomorphism

M W H � Z! �1.X; x1/;

contradicting the fact that the fundamental group of X is freely indecomposable and of
rank at least 3.

We may assume that � is transverse to C1 t � � � t Cn. Because it has no vertex of
degree 1, � is one of the three following graphs with first Betti number equal to 2:

As the graph � is 2-incompressible, the subgraph � \ B has cyclic number at most 1
according to Proposition 6, and the graph � escapes from B and so necessarily intersects
the boundary C1 t � � � tCn. Set �j WD � \Xj and observe that some of these graphs may
be empty (but not all). Furthermore, let �0 D � \ B be the remaining part of the graph �
which completes the decomposition as follows:

� D �0 [ �1 [ � � � [ �k :

Now construct a new graph � starting from � , and obtained by deleting �0 and pasting
all the boundary graphs as follows:

� WD .� n �0/ [ .C1 [ � � � [ Cn/:

We shall see that we can always extract from � a 2-incompressible subgraph � 0, and this
implies the desired lower bound. Indeed, the 2-incompressible subgraph � 0 will satisfy
`.� 0/ � L2.X/, as well as `.� 0/ � `.�/ � r C

Pn
jD1 `.Cj / as `.�0/ � r . Given that

`.�/ � L2.X/C ", we get the announced lower bound

`.@B/ �

nX
jD1

`.Cj / � r � ":

To extract the 2-incompressible subgraph � 0 from � , we argue as follows.
Suppose first that the inclusion B � X induces the zero morphism: i�.�1B/ D 0.
In particular, any boundary component C satisfies i�.�1C/ D 0, as its fundamental

group factors through i�.�1B/. Thus Lemma 8 implies that k D n. The key point is that
there exists a unique j 2¹1; : : : ;nº such that i�.�1Xj /¤ 0. Indeed, given that i�.�1B/D 0
and applying the Van Kampen theorem to the covering ¹B;X1; : : : ; Xnº of X , we get that
�1X ' �1X1 � � � � � �1Xn. As �1X is freely indecomposable, only one of these free
factors is non-trivial.
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B

x

X1

C1

Xj

Cj

Xn

Cn

Γ

So the 2-incompressible graph � , which has cyclic number 2, must intersect the bound-
ary graph Cj of the non-trivial piece Xj . Fix two homotopically independent loops c1
and c2 of � based at the same point, say p, of the boundary graph Cj . By homotopically
independent we mean that the two loops generate a free subrgoup of rank 2 of the fun-
damental group. If they are not entirely contained in Xj , and as �1.B [ .[l¤jXl // D 0,
we can for each of the ci ’s homotope each of their subarcs lying outside Xj into a subarc
of Cj without moving their respective endpoints. Therefore we can homotope c1 and c2
into two new homotopically independent loops still based at p and lying in �j [ Cj � � .
Therefore, as wanted, we can extract a 2-incompressible subgraph from � .

Suppose now that the inclusion B � X induces a morphism of rank 1: i�.�1B/ D Z.
Fix an element a of �1B that generates i�.�1B/ D Z and a closed curve c of �

based at x and homotopically independent from a. The loop c necessarily escapes fromB .
Denote by p1; : : : ; pN the intersection points along c with @B (it may happen that pi D
piC1 for some i ). Denote by ı1 the subpath of c that goes from x to p1, by ıN the subpath
of c going backwards from x to pN , and fix for i D 2; : : : ; N � 1 any path ıi contained
in B from x to pi . We can decompose the loop c into a concatenation of loops ci based
at x, each one being made by first following ıi , then the portion denoted by �i of c from pi
to the next intersection point piC1, and then going back to x using ı�1iC1. One of these loops
must be homotopically independent from the generator a of �1B: the loop c does not
homotopically commute with a, and thus at least one of the ci ’s does not homotopically
commute with a either. Again, this loop, that we denote simply by ci , necessarily escapes
from B and the corresponding portion �i lies outside int.B/. LetXj be the path connected
component of X n int.B/ that contains �i .

If Xj has more than one boundary component, then by Lemma 8 all boundary com-
ponents are homotopically non-trivial in B and in X , and we argue as follows.

Suppose first that the endpoints of �i belong to two distinct boundary graphs Cl
and Cl 0 for some l ¤ l 0. First observe that l and l 0 both necessarily belong to the same
subset Ij , as �i � Xj . Moreover, i�.�1Cl / D Z and i�.�1Cl 0/ D Z, as already observed.
Fix two non-trivial loops bl 2 Cl and bl 0 2 Cl 0 respectively based at pi and piC1. Set
ı D ı�1i � ıiC1. Observe that the homotopy classes of �i � bl 0 � ��1i and ci � .ı � bl 0 �
ı�1/ � c�1i (where ci is viewed as a loop based at pi ) coincide. If the loop �i � bl 0 � ��1i
was not homotopically independent with bl , then we would have that Œci � � an � Œc�1i �D am

for some m; n 2 Z n ¹0º, as both loops ı � bl 0 � ı�1 and bl induce homotopy classes in
�1B D hai. But this is impossible, as ci was chosen homotopically independent from the
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class a. So the two loops �i � bl 0 � ��1i and bl based at pi are homotopically independent
and are both contained in �j [ Cl [ Cl 0 � � . So their union forms a 2-incompressible
graph � 0 � � .

Now suppose that both endpoints of �i belong to the same connected boundary com-
ponent Cl , and fix some subarc ˛ in Cl from pi to piC1. The closed curve ci (viewed
as a loop based at pi ) is homotopic to the concatenation of the loop �i � ˛�1 with the
loop ˛ � ı�1iC1 � ıi . The second loop is included in B , and therefore its homotopy class
Œ˛ � ı�1iC1 � ıi � is equal to ak for some k 2 Z. Hence the first loop �i � ˛�1 is homo-
topically independent from a. Now define � 00 to be a subgraph of Cl that contains ˛,
such that �1� 00 ' Z and �1� 00 ! �1X is injective. Then � 0 D � 00 [ �i is the desired
2-incompressible subgraph of � .

If Xj has a unique boundary component Cl , observe that i�.�1Cl / ¤ 0. For if it
is trivial, by applying the Van Kampen theorem to the covering of X by the open set
X nXj and its complement Xj slightly enlarged so that these two open sets overlap along
a half-tubular neighborhood U ' Cl � �0; 1Œ of Cl , we would get a non-trivial free decom-
position �1X ' �1Xj � �1.X n Xj /, where both pieces are non-trivial: a contradiction.
Finally, because the loop ci is homotopically independent from the class a, we can extract
a 2-incompressible subgraph from Cl [ �i � � .

4. A universal bound for the volume entropy

We conclude by explaining how to derive Corollary 2 from Theorem 1.

Proof of Corollary 2. Let X be a finite connected 2-complex X endowed with a piece-
wise Riemannian metric whose fundamental group is 2-free, freely indecomposable and
of rank at least 3. According to Theorem 1, we can find a 2-incompressible graph � ,! X

with induced length at most 4
p
2
p

Area.X/. The fact that �1� ' F2 implies by [8] (see
also [11]) that

`.�/ � h.�/ � 3 log 2;

where h.�/ denotes the volume entropy of the finite connected 1-dimensional complex �
for the piecewise Riemannian metric induced by X . The injection �1� ,! �1X ensures
that h.X/ � h.�/, from which we derive the desired lowerbound:

h.X/ �
p

Area.X/ �
1

4
p
2
� h.�/ � `.�/ �

3 log 2

4
p
2
�

Acknowledgements. We would like to thank I. Babenko and S. Sabourau for valuable
exchanges, and the two anonymous referees for their useful comments.

Funding. The first author acknowledges support by the FSE/AEI/MICINN grant RYC-
2016-19334 and by the FEDER/AEI/MICINN grant PID2021-125625NB-I00. The second
author acknowledges support by the FSE/AEI/MICINN grant PID2020-116481GB-I00.
Both authors acknowledges support by the AGAUR grant 2021-SGR-01015.



F. Balacheff and W. Pitsch 1700

References

[1] Aleksandrov, A. D. and Zalgaller, V. A.: Intrinsic geometry of surfaces. Transl. Math.
Monogr. 15, American Mathematical Society, Providence, RI, 1967. Zbl 0146.44103
MR 0216434

[2] Arzhantseva, G. N. and Ol’shanskiı̆, A. Y.: The class of groups all of whose subgroups with
lesser number of generators are free is generic. Math. Notes 59 (1996), no. 4, 350–355.
Zbl 0877.20021 MR 1445193

[3] Bourbaki, N.: Éléments de mathématique. Topologie algébrique. Chapitres 1 à 4. Springer,
Heidelberg, 2016. Zbl 1355.55001 MR 3617167

[4] Burago, Y. D. and Zalgaller, V. A.: Geometric inequalities. Grundlehren Math. Wiss. 285,
Springer, Berlin, 1988. Zbl 0633.53002 MR 0936419

[5] Federer, H.: Geometric measure theory. Grundlehren Math. Wiss. 153, Springer, New York,
1969. Zbl 0176.00801 MR 0257325

[6] Gromov, M.: Filling Riemannian manifolds. J. Differential Geom. 18 (1983), no. 1, 1–147.
Zbl 0515.53037 MR 0697984

[7] Gromov, M.: Systoles and intersystolic inequalities. In Actes de la Table Ronde de Géométrie
Différentielle (Luminy, 1992), pp. 291–362. Sémin. Congr. 1, Société mathématique de France,
Paris, 1996. Zbl 0877.53002 MR 1427763

[8] Kapovich, I. and Nagnibeda, T.: The Patterson–Sullivan embedding and minimal volume
entropy for outer space. Geom. Funct. Anal. 17 (2007), no. 4, 1201–1236. Zbl 1135.20031
MR 2373015

[9] Katok, A.: Entropy and closed geodesics. Ergodic Theory Dynam. Systems 2 (1982), no. 3-4,
339–365 (1983). Zbl 0525.58027 MR 0721728

[10] Katz, M. G., Rudyak, Y. B. and Sabourau, S.: Systoles of 2-complexes, Reeb graph, and
Grushko decomposition. Int. Math. Res. Not. (2006), article no. 54936, 30 pp.
Zbl 1116.57001 MR 2250017

[11] Lim, S.: Minimal volume entropy for graphs. Trans. Amer. Math. Soc. 360 (2008), no. 10,
5089–5100. Zbl 1155.37014 MR 2415065

[12] Rudyak, Y. B. and Sabourau, S.: Systolic invariants of groups and 2-complexes via Grushko
decomposition. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 3, 777–800. Zbl 1142.53035
MR 2427510

[13] Sabourau, S.: Small volume of balls, large volume entropy and the Margulis constant. Math.
Ann. 369 (2017), no. 3-4, 1557–1571. Zbl 1391.53052 MR 3713550

Received May 8, 2023; revised March 14, 2024.

Florent Balacheff
Departament de Matemàtiques, Universitat Autònoma de Barcelona
Facultat de Ciències, 08193 Bellaterra, Spain;
florent.balacheff@uab.cat

Wolfgang Pitsch
Departament de Matemàtiques, Universitat Autònoma de Barcelona
Facultat de Ciències, 08193 Bellaterra, Spain;
wolfgang.pistch@uab.cat

https://doi.org/10.1090/mmono/015
https://zbmath.org/?q=an:0146.44103
https://mathscinet.ams.org/mathscinet-getitem?mr=0216434
https://doi.org/10.1007/BF02308683
https://doi.org/10.1007/BF02308683
https://zbmath.org/?q=an:0877.20021
https://mathscinet.ams.org/mathscinet-getitem?mr=1445193
https://zbmath.org/?q=an:1355.55001
https://mathscinet.ams.org/mathscinet-getitem?mr=3617167
https://doi.org/10.1007/978-3-662-07441-1
https://zbmath.org/?q=an:0633.53002
https://mathscinet.ams.org/mathscinet-getitem?mr=0936419
https://zbmath.org/?q=an:0176.00801
https://mathscinet.ams.org/mathscinet-getitem?mr=0257325
https://doi.org/10.4310/jdg/1214509283
https://zbmath.org/?q=an:0515.53037
https://mathscinet.ams.org/mathscinet-getitem?mr=0697984
https://zbmath.org/?q=an:0877.53002
https://mathscinet.ams.org/mathscinet-getitem?mr=1427763
https://doi.org/10.1007/s00039-007-0621-z
https://doi.org/10.1007/s00039-007-0621-z
https://zbmath.org/?q=an:1135.20031
https://mathscinet.ams.org/mathscinet-getitem?mr=2373015
https://doi.org/10.1017/S0143385700001656
https://zbmath.org/?q=an:0525.58027
https://mathscinet.ams.org/mathscinet-getitem?mr=0721728
https://doi.org/10.1155/IMRN/2006/54936
https://doi.org/10.1155/IMRN/2006/54936
https://zbmath.org/?q=an:1116.57001
https://mathscinet.ams.org/mathscinet-getitem?mr=2250017
https://doi.org/10.1090/S0002-9947-08-04227-X
https://zbmath.org/?q=an:1155.37014
https://mathscinet.ams.org/mathscinet-getitem?mr=2415065
https://doi.org/10.5802/aif.2369
https://doi.org/10.5802/aif.2369
https://zbmath.org/?q=an:1142.53035
https://mathscinet.ams.org/mathscinet-getitem?mr=2427510
https://doi.org/10.1007/s00208-016-1502-2
https://zbmath.org/?q=an:1391.53052
https://mathscinet.ams.org/mathscinet-getitem?mr=3713550
mailto:florent.balacheff@uab.cat
mailto:wolfgang.pistch@uab.cat

	1. Introduction
	2. Topology of small balls in piecewise flat 2-complexes
	3. Geometry of small balls in piecewise flat 2-complexes
	4. A universal bound for the volume entropy
	References

