
Rev. Mat. Iberoam. 40 (2024), no. 5, 1701–1730
DOI 10.4171/RMI/1494

© 2024 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

Reductive covers of klt varieties

Lukas Braun and Joaquín Moraga

Abstract. In this article, we study G-covers of klt varieties, where G is a reductive
group. First, we exhibit an example of a klt singularity admitting a PGLn.K/-cover
that is not of klt type. Then, we restrict ourselves to G-quasi-torsors, a special class
of G-covers that behave like G-torsors outside closed subsets of codimension two.
Given a G-quasi-torsor X ! Y , where G is a finite extension of a torus T , we show
that X is of klt type if and only if Y is of klt type. We prove a structural theorem
for T -quasi-torsors over normal varieties in terms of Cox rings. As an application,
we show that every sequence of T -quasi-torsors over a variety with klt type singu-
larities is eventually a sequence of T -torsors. This is the torus version of a result due
to Greb–Kebekus–Peternell regarding finite quasi-torsors of varieties with klt type
singularities. On the contrary, we show that in any dimension there exists a sequence
of finite quasi-torsors and T -quasi-torsors over a klt type variety, such that infinitely
many of them are not torsors. We show that every variety with klt type singularities is
a quotient of a variety with canonical factorial singularities. We prove that a variety
with Zariski locally toric singularities is indeed the quotient of a smooth variety by a
solvable group. Finally, motivated by the work of Stibitz, we study the optimal class
of singularities for which the previous results hold.

1. Introduction

In algebraic geometry, we often encounter singularities which are quotients of other sin-
gularities by algebraic groups. Orbifold singularities are finite quotients of smooth points,
toric singularities are abelian quotients of smooth points [16], and terminal 3-fold singular-
ities are finite quotients of hypersurface singularities [35]. Furthermore, many interesting
factorial singularities are SLn.K/-quotients of smooth points [8, 9]. In most cases, the
respective group is reductive [32]. Indeed, the reductivity assumption is what ensures
that the quotient is of finite type. Reductive quotients preserve normal singularities and
rational singularities [7]. Recently, together with Greb and Langlois, the authors proved
that reductive quotients preserve the singularities of the minimal model program [13], the
so-called klt type singularities [24].

In this article, we study a central topic in algebraic geometry: how to improve the
singularities of an algebraic variety by taking appropriate covers. We focus on the singu-
larities of the minimal model program. To tackle this question, we need to comprehend
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what type of covers will indeed improve the singularities that we are studying. This will
lead us to the concepts of G-covers and G-quasi-torsors.

1.1. G-covers of klt singularities

Let G be an algebraic group. A G-cover of a singularity .X I x/ is an algebraic singular-
ity .Y Iy/ endowed with a G-action fixing y so that X is isomorphic to the quotient Y==G
and x is the image of y (see Definition 2.6). In this setting, we say that .Y Iy/ is aG-cover
of .X Ix/, and we say that .X Ix/ is aG-quotient of .Y Iy/. One can think about aG-cover
of a singularity as a degenerate principal G-bundle over the singularity having maximal
degeneration at the distinguished singular point. G-covers often occur in singularity the-
ory; when replacing a singularity with its universal cover [10, 12, 28], when taking the
index one cover with respect to a Q-Cartier divisor [25], and when taking the Cox ring
of the singularity [11, 14]. G-covers are often useful to compute invariants of singularit-
ies [30]. Thus, it is natural to ask whether a class of singularities is preserved byG-covers.
Of course, the answer to this question depends on the choice of G. The first question that
we settle on in this article is whether the class of klt type singularities is closed under
reductive covers. Our first theorem is a negative answer to this question. We show the
existence of a 3-dimensional toric singularity admitting a 5-dimensional PGL3.K/-cover
which is not of klt type.

Theorem 1.1. There exists a 3-fold toric singularity .X Ix/ that admits a PGL3.K/-cover
.Y Iy/! .X I x/ from a 5-dimensional singularity .Y Iy/ which is not of klt type.

In Proposition 3.2, we give further examples in this direction in which the group
PGLn.K/ acts freely on an open subset Y . However, the singularities are of higher dimen-
sion in these cases.

The previous theorem is the local analog of the well-known fact that projective bundles
over Fano type varieties may not be of Fano type. Indeed, there exist projective bundles
over Fano type surfaces that are not Mori dream spaces [20]. However, it is known that
split projective bundles over Fano type varieties are Fano type [14]. Furthermore, finite
covers of Fano type varieties are again Fano type varieties, under a restrictive hypothesis
in case there is ramification in codimension one (see, e.g., Lemma 3.18 in [31]). These
two facts motivate the proof of the following theorem.

Theorem 1.2. Let .X I x/ be a klt type singularity. Let G be a finite extension of a torus
and let Y ! X be a G-quasi-torsor. Then .Y Iy/ is a klt type singularity.

A G-quasi-torsor is a special kind of G-cover which behaves like a G-torsor outside
codimension two subsets of X and Y . G-quasi-torsors are also called almost principal
fiber bundles in the literature. Hence, the class of klt type singularities is preserved under
reductive quotients and underG-quasi-torsors, wheneverG is a finite extension of a torus.
We emphasize that the condition on the ramification is necessary: even finite covers of a
smooth point with codimension one ramification may not be of klt type (see Example 7.1).
Note that G being a finite extension of a torus is equivalent to asking that the derived sub-
group of its connected component is trivial [23]. It is an open problem to decide whether
the previous statement holds forG a reductive group (see Question 7.8). With the previous
theorem, we have found the right type of covers that can improve our klt type singularity:
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finite quasi-torsors and torus quasi-torsors. Whenever these are torsors, i.e., finite étale
covers and toric bundles, the class of singularities of our variety will not change. Thus, we
are mostly interested in the finite quasi-torsors and T -quasi-torsors that are not torsors.
These are the covers for which the étale class of a singularity may change. Moreover,
these are exactly the covers detected by the regional fundamental group of the singularity
and by the local Cox ring of the singularity (see [10] and Definition 2.11).

1.2. Torus covers of klt varieties

As mentioned above, one way to improve the singularities of a variety is to produce
T -quasi-torsors. For instance, all toric varieties are quotients of a smooth affine variety
by the action of an abelian linear algebraic group. In a similar vein, the local Cox ring of
a singularity often simplifies the singularity. A natural way to obtain a T -quasi-torsor of
a variety is to mimic the Cox ring construction. For example, if we consider Weil divisors
W1; : : : ; Wk in X spanning the subgroup N of WDiv.X/, then we can define the sheaf

R.X/N WD
M

.m1;:::;mk/2Zk

OX .m1W1 C � � � CmkWk/:

Then, the relative spectrum

Y WD SpecX .R.X/N /! X;

admits a natural T -cover structure over X which is a T -quasi-torsor. Here, T is a k-di-
men-sional algebraic torus, and the action of T on Y is induced by the Zk-grading of the
sheaf R.X/N . Note that Y ! X is a T -torsor precisely at the points at which all theWi ’s
are Cartier divisors. The variety Y will be called a relative Cox space of X . Indeed, this
relative version of the Cox space locally behaves like the Cox space of the singularities
of X .

Our next theorem states that every T -quasi-torsor over a normal variety is equivari-
antly isomorphic to a relative Cox space.

Theorem 1.3. Let X be a normal variety. Let Y ! X be a T -quasi-torsor. Then, we can
find Weil divisors W1; : : : ; Wk on X for which there is a T -equivariant isomorphism

Y ' SpecX

� M
.m1;:::;mk/2Zk

OX .m1W1 C � � � CmkWk/

�
:

Theorem 1.2 implies that a T -quasi-torsor over a klt type singularity is again of klt
type. On the other hand, Theorem 1.3, implies that a relative Cox ring of a normal variety
is equivariantly isomorphic to a T -quasi-torsor. Combining these two results, we obtain
that a relative Cox ring of a klt type variety also has klt type singularities.

Theorem 1.4. LetX be a variety with klt type singularities. Let Y ! X be a relative Cox
ring. Then Y has klt type singularities.

In summary, the class of T -quasi-torsors of klt type varieties agrees with the class
of relative Cox spaces. Furthermore, the Cox spaces again have klt type singularities. In
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Example 7.3, we show that the singularities can indeed improve by taking the relative
Cox ring.

In Theorem 1.1 of [21], the authors show that any sequence of finite quasi-torsors
over a variety with klt type singularities is eventually a sequence of finite torsors. This
means that all but finitely many of the finite quasi-torsors are torsors, i.e., finite Galois
étale covers. It is natural to ask if a similar principle holds for T -quasi-torsors. In this
direction, we prove a torus version of the theorem due to Greb, Kebekus, and Peternell.

Theorem 1.5. Let X be a variety with klt type singularities. Consider a sequence of
morphisms

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
�iC2oo

such that each �i WXi ! Xi�1 is a T -quasi-torsor. Then, there exists j such that, for
every i � j , the morphism �j is a T -torsor.

1.3. Iteration of torus and finite covers

Our previous theorem states that any sequence of T -quasi-torsors over a variety with klt
type singularities is eventually a sequence of T -torsors. It is natural to investigate what
happens for sequences of T -quasi-torsors and finite quasi-torsors, i.e., to study mixed
sequences of torus and finite covers. In this direction, we will show that all but finitely
many of the finite quasi-torsors are indeed torsors.

Theorem 1.6. Let X be a variety with klt type singularities. Consider a sequence of
morphisms

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
iC2oo

such that each �i is either a finite quasi-torsor or a torus quasi-torsor. Then, all but finitely
many of the finite quasi-torsors are torsors, i.e., finite étale Galois morphisms.

Note that the previous theorem gives a generalization of Theorem 1.1 in [21]. Indeed, if
we require that each �i is a finite quasi-torsor, then we recover this statement. It is natural
to wonder whether in the context of the previous theorem we can further obtain that all but
finitely many of the T -quasi-torsors are torsors. First, notice that such a statement holds
trivially for smooth varieties. Indeed, by the purity of the branch locus, every finite quasi-
torsor over a smooth variety is a finite torsor. On the other hand, by Theorem 1.3, every
T -quasi-torsor over a smooth variety is a T -torsor. Hence, in order to produce interesting
sequences of quasi-torsors we need to consider singular varieties. Toric singularities are
arguably the simplest kind of klt singularities because of their combinatorial nature. The
following theorem shows that even for varieties with toric singularities, we may produce
infinite sequences of finite quasi-torsors and T -quasi-torsors so that infinitely many of the
T -quasi-torsors are not torsors.

Theorem 1.7. For each n � 2, there exists an n-dimensional projective variety Xn with
toric singularities and an infinite sequence of morphisms

Xn D Xn0 Xn1
�1oo Xn2

�2oo Xn3
�3oo � � �

�4oo Xni
�ioo XniC1

�iC1oo � � �
iC2oo
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such that the following conditions hold:
(1) each �i is either a finite quasi-torsor or a T -quasi-torsor,

(2) infinitely many of the �i ’s are finite torsors, and

(3) infinitely many of the �i ’s are T -quasi-torsors that are not torsors.

Note that (2) in the previous theorem is implied by Theorem 1.5. Thus, the import-
ance relies on (3). It shows that a full generalization of Greb-Kebekus-Peternell to the
case of T -quasi-torsors and finite quasi-torsors is not feasible. Our final statement in this
subsection says that this failure can be fixed if we restrict ourselves to a special class
of T -quasi-torsors. A T -quasi-torsor Y ! X is said to be factorial if the variety Y is
factorial.

Theorem 1.8. Let X be a variety with klt type singularities. Consider a sequence of
morphisms

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
�iC2oo

such that each �i is either a finite quasi-torsor or a factorial T -quasi-torsor. Then, all but
finitely many of the �i are torsors.

1.4. Factorial models

In this section, motivated by the previous statement, we study factorial covers of klt
varieties. In Theorem 1.5 of [21], the authors prove that a variety X with klt type singu-
larities admits a quasi-étale finite Galois cover Y ! X for which �1.Y reg/ is isomorphic
to �1.Y /. In particular, every étale cover of Y reg extends to an étale cover of Y . Our next
aim is to improve this result by considering both; finite quasi-torsors and torus quasi-
torsors. By doing so, we can also improve the local class groups of the variety Y obtained
by Greb, Kebekus, and Peternell. We show that any variety with klt type singularities is
a G-quotient of a variety with canonical factorial singularities for which its étale funda-
mental group agrees with the étale fundamental group of its smooth locus.

Theorem 1.9. LetX be a variety with klt type singularities. Then, there exists a variety Y
satisfying the following conditions:

(1) the natural epimorphism O�1.Y reg/! O�1.Y / of étale fundamental groups is an iso-
morphism,

(2) for every finite quasi-étale morphism Y 0! Y , the variety Y 0 has canonical factorial
singularities,

(3) Y admits the action of a reductive group G,

(4) the group G is the extension of an algebraic torus by a finite solvable group, and

(5) the isomorphism X ' Y==G holds.

In particular, Y itself has canonical factorial singularities.

In general, this factorial variety is highly non-unique. The previous theorem can be
regarded as a generalization of Theorem 1.5 in [21]. Part (1) of Theorem 1.9 follows from
Theorem 1.1 in [21]. An equivalent statement of the latter does not hold for combinations



L. Braun and J. Moraga 1706

of finite and torus covers (cf. Theorem 1.7). However, the statement is still valid if we
restrict ourselves to finite quasi-torsors and factorial torus quasi-torsors. Thus, we may
still apply Theorem 1.8. We also observe that the singularities of the variety Y produced
in the previous theorem cannot be improved by taking finite quasi-étale covers and relative
Cox rings. Indeed, every finite quasi-torsor or torus quasi-torsor over Y is a torsor.

A classic topic in algebraic geometry is deciding when a variety which is locally a
quotient is indeed globally a quotient. Fulton asked whether varieties with finite quotient
singularities are finite quotients of smooth varieties. In [17], the authors prove that a vari-
ety with finite quotient singularities is the quotient of a smooth variety by a linear algebraic
group. In [27], it is proved that a variety with finite quotient singularities admits a finite flat
surjection from a smooth variety. In Theorem 1.2 of [18], the authors show that a variety
with finite abelian quotient singularities that is globally the quotient of a smooth variety
by a torus is globally the quotient of a smooth variety by a finite group. In this last paper,
the language of stacks and Cox rings is used. In this direction, we prove the following
positive result in the case of locally toric singularities.

Theorem 1.10. LetX be a variety with locally toric singularities. Then,X admits a torus
quasi-torsor which is a smooth variety. In particular,X is the quotient of a smooth variety
by the action of a torus.

In the previous theorem, a singularity x 2 X is said to be locally toric if there exists a
toric variety T and a closed invariant point t 2 T such thatXx ' Tt . Here,Xx (respective-
ly, Tt ) is the spectrum of the local ring OX;x (respectively, OT; t ). The previous theorem
can be regarded as a generalization of the fact that a toric variety is the quotient of an open
subset of An by a torus action. A point x 2 X is said to be formally toric if there exists a
toric variety T and a closed invariant point t 2 T such that yXx ' yTt . The statement of the
previous theorem does not hold if we replace the condition on locally toric singularities
with formally toric singularities (see Example 7.4).

1.5. Normal singularities

Throughout the introduction, we focused on varieties with klt type singularities. In this
last part, we discuss what class of singularities is the optimal class for which the previous
theorems work. We recall the following theorem due to Stibitz (see Theorem 1 in [37]).

Theorem 1.11. Let X be a normal variety. The following conditions are equivalent.

(1) Every sequence of finite quasi-torsors

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
�iC2oo

is eventually a sequence of torsors.

(2) For every point x 2 X , the image of the homomorphism O� reg
1 .X I x/ ! O�

reg
1 .X/

is finite.

The group O� reg
1 .X/ is the étale fundamental group of the smooth locus of X . On the

other hand, O� reg
1 .X I x/, called étale regional fundamental group, is the profinite comple-

tion of the fundamental group of the smooth locus around the singularity (see, e.g., [11]).



Reductive covers of klt varieties 1707

The regional fundamental group of klt type singularities is finite, so the previous theorem
recovers Theorem 1.1 in [21]. Motivated by the previous result, we prove the following
theorem regarding T -quasi-torsors and the Zariski-local class group Cl.X I x/ of X at x,
cf. [2], p. 61.

Theorem 1.12. Let X be a normal variety. The following conditions are equivalent.

(1) Every sequence of T -quasi-torsors

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
�iC2oo

is eventually a sequence of torsors.

(2) For every point x 2 X , the group Cl.X I x/ is finitely generated.

Due to Theorem 1.7, we know that the similar statement for finite quasi-torsors and
torus quasi-torsors fails, even for toric singularities. However, in view of Theorem 1.8,
we can expect a similar statement to hold for finite quasi-torsors and factorial T -quasi-
torsors. In order to state the following theorem, we need to introduce the concept of partial
quasi-étale Henselizations.

Definition 1.13. Let X be an algebraic variety and let x 2 X be a point. The partial
quasi-étale Henselization of X at x, denoted by Xph

x , is the spectrum of the colimit of all
quasi-étale covers OX;x ! R that extend to quasi-étale covers of X itself.

With the previous definition, we can state the theorem that describes the optimal class
of singularities for which every sequence of finite quasi-torsors and factorial T -quasi-
torsors is eventually étale.

Theorem 1.14. Let X be a normal variety. The following conditions are equivalent.

(1) Every sequence of finite quasi-torsors and factorial T -quasi-torsors

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
�iC2oo

is eventually a sequence of torsors.

(2) For every point x 2 X , the following two conditions are satisfied:
(a) the image O� reg

1 .X I x/! O�
reg
1 .X/ is finite, and

(b) the class group Cl.Xph
x / is finitely generated.

The proofs of Theorem 1.12 and Theorem 1.14 are quite similar to those of the state-
ments for klt type singularities. We will prove these statements in Subsection 6.1.

2. Preliminaries

In this section, we recall the definitions of the singularities of the minimal model program.
We also recall the definition of G-quotients and G-quasi-torsors, and prove some prelim-
inary results. We work over an algebraically closed field K of characteristic zero. All the
considered varieties are normal unless stated otherwise. A reductive group G is a linear
algebraic group G for which the unipotent radical is trivial.
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2.1. Singularities of the MMP

In this subsection, we recall the definitions of the singularities of the MMP.

Definition 2.1. A log pair .X; �/ consists of the data of a quasi-projective variety X
and an effective Q-divisor � for which KX C� is Q-Cartier. The standard approxima-
tion of � is the largest effective divisor �s with coefficients of the form coeffD.�s/ D
1 � 1=nD for positive integers nD and satisfying � � �s . Let x 2 X be a closed point.
We write .X; �I x/ for the log pair .X; �/ around x. When we write statements about
.X;�Ix/, we mean that such statement holds for .X;�/ on a sufficiently small neighbor-
hood of x.

Definition 2.2. Let .X;�/ be a log pair. Let � WY ! X be a projective birational morph-
ism from a normal quasi-projective variety Y . Let E � Y be a prime divisor. We let �Y
be the strict transform of � on Y . We fix canonical divisors KY on Y and KX on X for
which ��KY D KX . The log discrepancy of .X; �/ at E, denoted by aE .X; �/, is the
rational number

1C coeffE .KY � ��.KX C�//:

Hence, the following equality holds:

��.KX C�/ D KY C�Y C .1 � aE .X;�//E:

The log discrepancy aE .X;�/ only depends on E and does not depend on Y . We say that
.X;�/ is a Kawamata log terminal pair (or klt pair for short) if the inequality

aE .X;�/ > 0

holds for every prime divisorE overX . We say that the pair .X;�/ is log canonical (or lc
for short) if the inequality

aE .X;�/ � 0

holds for every prime divisor E over X .

Definition 2.3. We say that .X;�0/ is of klt type if there exists a boundary� � �0 on X
for which the pair .X;�/ is klt. We say that .X;�0/ is of lc type if there exists a boundary
� � �0 on X for which the pair .X;�/ is lc.

The following proposition is proved in Section 4 of [13].

Proposition 2.4. The klt type condition is an étale condition. More precisely, let X be an
algebraic variety, if for every point x 2 X we can find an étale neighborhood Ux ! X

and a boundary �x for which .Ux ; �x/ is klt, then there exists a boundary � on X for
which .X;�/ is klt.

2.2. G -quotients and G -quasi-torsors

In this section, we recall the definitions of G-quotients and G-quasi-torsors.

Definition 2.5. Let .X;�/ be a pair. LetG be a reductive group acting on .X;�/. Assume
that the quotient Y WD X==G exists. Then, we say that Y is a G-quotient of X . We also
say that X is a G-cover of the variety Y .
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Definition 2.6. Let .X;�Ix/ be a singularity of a pair. Assume thatX is an affine variety.
LetG be a reductive group acting on .X;�/ and fixing x, i.e., we have that g��D� and
g.x/ D x for each g 2 G. Let .X;�I x/! .Y I y/ be the quotient morphism where y is
the image of x. We say that .X;�Ix/! .Y Iy/ is a G-quotient around x. The morphism
X ! Y will be called a G-quotient. We say that Y is the G-quotient of X and that X is
the G-cover of Y .

Now, we turn to define better behaved quotients. We introduce the concept ofG-quasi-
torsors.

Definition 2.7. Let .Y;�Y / be a log pair. LetX be a variety with the action ofG reductive
for which Y ' X==G. We say that the quotient morphism �WX ! Y is a G-quasi-torsor
for .Y;�Y / if the following conditions are satisfied:

(1) there are codimension two open subsets UY � Y and UX D ��1.UY /�X for which

�jUX W UX ! UY

is a G-torsor, and
(2) the global invertible homogeneous functions on X descend to Y via the induced

homomorphism O.X/G ' O.Y / ,! O.X/.

In general, the G-quotient Y does not come with a naturally defined boundary. How-
ever, in some cases, it is possible to introduce such boundary and compare the log dis-
crepancies on X with those on Y . The following lemma is well known to the experts (see,
e.g., Proposition 2.11 in [29]).

Lemma 2.8. Let .X I x/ be a klt type singularity. Then, the following statements hold.

(1) Let G be a finite group acting on .X I x/. The G-quotient .Y Iy/ is of klt type.

(2) Let G be a finite group and let .Y Iy/! .X Ix/ be a G-quasi-torsor. Then, .Y Iy/ is
of klt type.

Definition 2.9. We say that a G-quasi-torsor is an abelian quasi-torsor if G is an abelian
group. We say that a G-quasi-torsor is a torus quasi-torsor if G is a torus. In this case,
we also write T -quasi-torsor or T -torsor. A quasi-torsor Y ! X is said to be a factorial
quasi-torsor if Y is factorial.

The next lemma follows from the definitions.

Lemma 2.10. Let Y !X be a T -quasi-torsor and let T0 6 T be a sub-torus. Let Y ! Y 0

be the quotient of Y by T0, and let Y 0!X be the induced morphism. Then, both Y ! Y 0

and Y 0 ! X are torus quasi-torsors.

2.3. Cox rings

In this subsection, we recall some statements about Cox rings for singularities and pairs.
First, we define the concept of affine local Cox rings.

Definition 2.11. Let .X Ix/ be a singularity. Recall that by Cl.X Ix/we denote the Zariski-
local class group ofX at x. Assume that Cl.X Ix/ is finitely generated. LetN 6 WDiv.X/
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be a free finitely generated subgroup surjecting onto Cl.X Ix/ and N 0 be the kernel of the
surjection � WN !Cl.X Ix/. Consider a group homomorphism �WN 0!K.X/� for which

div.�.E// D E

for all E 2 N 0. We call such � a character. Let � be the sheaf of divisorial algebras asso-
ciated to N and I be the ideal subsheaf generated by sections 1 � �.E/, where E 2 N 0.
Then, we define the affine local Cox ring of .X;�/ at x to be

Cox.X I x/aff
N;� WD

M
ŒD�2Cl.X Ix/

L
D02��1.ŒD�/ �D0.X/

I.X/
�

Now, we define the concept of relative Cox ring for a log pair .X; �/. Recall from
Definition 3.1 in [14] that the group WDiv.X; �/ of orbifold Weil divisors is the free
abelian group generated by Q-divisors D on X so that for the standard approximation
�s D

P
.1 � 1=nP /P and every prime divisor P � X , the denominator of coeffP .D/

divides nP .

Definition 2.12. Let .X; �/ be a log pair. Let W1; : : : ; Wk be orbifold Weil divisors on
.X;�/. Let N be the subgroup of WDiv.X/ spanned byW1; : : : ;Wk . We define the sheaf

R.X/N WD
M
D2N

OX .D/ '
M

.m1;:::;mk/2Zk

OX .m1W1 C � � � CmkWk/:

The ring R.X/N is called a relative Cox ring of X . The relative spectrum

Y WD SpecX .R.X/N /! X;

is called a relative Cox space of X . We may also call R.X/N the relative Cox ring asso-
ciated to N and Y the relative Cox space associated to N .

Note that in the definition of the local Cox ring, we quotient by a certain ideal I.X/

which comes from a character �. However, in our definition of the relative Cox ring we
do not perform such a quotient. Example 7.2 shows some pathology that would happen
otherwise. The definition of the relative Cox ring does not depend on the choice of Wi in
its linear equivalence class.

Lemma 2.13. Let X be an algebraic variety. Let W1; : : : ; Wk be Weil divisors on X
spanningN in WDiv.X/. For each i 2 ¹1; : : : ; kº, letW 0i �Wi . LetN 0 be the subgroup in
WDiv.X/ spanned by the Weil divisors W 0i . Then, we have a T -equivariant isomorphism

R.X/N ' R.X/N 0 :

The following is proved in Proposition 4.10 of [14] for the case of klt type singularities.
The general case follows from the theory of polyhedral divisors [1]. It states that in the
affine setting a torus quasi-torsor is the same as a relative Cox space.

Lemma 2.14. Let X be a normal affine variety and x 2 X a closed point. Let Y ! X

be a T -quasi-torsor over X . Then, up to shrinking X around x, we can find a finitely
generated subgroup N 6 WDiv.X/ for which the following isomorphism holds:

Y ' Spec
� M
D2N

H 0.X;OX .D//
�
:
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Furthermore, the Cox ring in the local setting has klt type singularities (see, e.g., The-
orem 3.23 in [14]).

Lemma 2.15. Let X be an affine variety and let .X I x/ be a klt type singularity. Let
N 6 WDiv.X;�/ be a free finitely generated subgroup and letN 0 WD ker.N !Cl.X Ix//.
Let �WN 0 ! K.X/� be a character. Then, the spectrum of the affine local Cox ring,

Cox.X I x/aff
N;�;

is an affine variety with klt type singularities.

Remark 2.16. Usually, when defining a Cox ring over some variety X , finite generation
of Cl.X/ is required. On the other hand, even if Cl.X/ is not finitely generated, as long
as the group N=N 0 is so, we can still investigate finite generation properties of Cox rings
Cox.X I x/aff

N;�. In other words, finite generation of Cl.X/ and finite generation of Cox
rings over X associated to finitely generated groups of Weil divisors is a priori unrelated.
This can be seen in the finite generation statement (Corollary 1.1.9 in [4]), which makes
no assumption on the class group and is formulated relatively for a pushforward of a
Cox sheaf.

This very statement leads to the well-known finite generation property of the Cox
ring of a Fano variety, see Corollary 1.3.2 in [4]. The original statement is again relative
over an affine base U , and when U is chosen to be a point, then X becomes a Fano
variety and the pushforward Cox sheaf from Corollary 1.1.9 in [4] becomes the Cox ring.
A central observation from [11], further developed in [14], is that if one considers the
other extreme for the structure morphism X ! U , namely the identity, then one achieves
finite generation of Cox rings – associated to finitely generated groups of Weil divisors –
over affine klt type varieties.

Apart from the finite generation claim, Lemma 2.15 makes a statement about klt-ness
of the Cox ring. Similar to the question of finite generation, this is analogous to the pro-
jective case, where [15,19] shows that the Cox ring of a Fano variety has klt singularities.
Indeed, the local and the global statement are equivalent. While [19] uses reduction to
characteristic p, the proof in [15] reduces the question iteratively to line bundles. In [14],
see Lemma 3.22, Theorem 3.23 and Corollary 3.24, the statement is proven with a flavor
similar to [15], but in the relative and, in particular, in the affine setting. The reason that
the global Cox ring of a klt but non-Fano variety may be non-klt, is that it captures global
geometry of X in the non-klt points. These points are in the vanishing locus of the so-
called irrelevant ideal, so they are not in the relative spectrum of the Cox sheaf (which is
klt), and consequently do not map to some point of X .

The next lemma will be used in the comparison of quasi-torsors and relative Cox rings.

Lemma 2.17. Let W and W 0 be two Weil divisors on a normal variety X . Denote

XW WD SpecX
�M
m2Z

OX .mW /
�

and XW 0 WD SpecX
�M
m2Z

OX .mW
0/
�
:

Then, the following are equivalent:
(1) There is a Gm-equivariant isomorphism XW ' XW 0 .

(2) We have that W � W 0 on X .
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Proof. We first prove that item (1) follows from item (2). This follows verbatim from the
proof of Construction 1.4.1.1 in [2]. Since the conditions there are different from ours (but
lead to the same conclusion), we recall the argument. Let W �W 0 D div.f / and define a
homomorphism

� W hWZi ! K.X/� and kW 7! f k :

Then we obtain an equivariant isomorphism between the sheaves
L
m2Z OX .mW / andL

m2Z OX .mW
0/ by mapping f 2 OX .kW / to �.kW / � f 2 OX .kW

0/.
Now, we prove that item (2) follows from item (1). This is essentially contained in

the proof of Proposition 1.6.4.5 in [2]. Denote the multiplicative groups of homogeneous
rational functions on XW and XW 0 by E.XW / and E.XW 0/, respectively. Denote by
q�WWDiv.XW /

Gm !WDiv.X/ the pushforward from invariant Weil divisors on XW to
Weil divisors on X sending prime divisors to the closure of their images if it is of codi-
mension 1 and to 0 otherwise. By abuse of notation, we denote the respective pushforward
for XW 0 by q� as well. Then we have homomorphisms

ıW W E.XW /!WDiv.X/ and ıW 0 W E.XW 0/!WDiv.X/

mapping a rational function f to q�div.f /. As the proof of Proposition 1.6.4.5 in [2]
shows, these induce monomorphisms Z ! Cl.X/ from the respective grading groups
mapping m 2 Z to ŒıW .f /� D ŒmW � (or ŒıW 0.f /� D ŒmW 0�, respectively) for some f 2
OX .mW / (or f 2 OX .mW

0/, respectively). The claim follows since the Gm-equivariant
isomorphism XW ' XW 0 induces an isomorphism of the grading groups.

3. G -covers of klt type singularities

In this section, we study G-covers of klt type singularities. As seen in Example 7.1, we
need to focus on those G-covers that are unramified over codimension one points. First,
we will show that semisimple covers of klt type singularities may not be of klt type. The
following is a generalization of Theorem 1.1 to higher-dimensional toric singularities.

Theorem 3.1. For any n � 2, there exists a .nC 1/-dimensional toric singularity .X I x/
that admits a PGLr .K/-cover Y ! X , satisfying the following conditions:
(1) we have r D 3 if n 2 ¹2; 3º and r D n otherwise,

(2) the singularity .Y Iy/ has dimension .nC r � 1/, and

(3) the singularity .Y Iy/ is not of klt type.

Proof. First, we choose an appropriate projective toric variety, depending on the value
of n. If nD 2, we choose a smooth projective toric surface T of Picard rank 4 and fix r D 3.
If n D 3, we choose a smooth projective toric threefold T of Picard rank 3 and fix r D 3.
For n � 4, we choose a smooth projective toric .n � 1/-fold T of Picard rank n and we
fix r D n. In any of the previous cases, by Theorem 1.1 in [20], we can find a vector
bundle E of rank r over T such that the Cox ring of P .E/ is not finitely generated. We fix
G WD PGLr .K/ to be the projective linear group acting on P .E/. Note that � WP .E/! T

is a quotient for the G-action. Let AT be an ample toric divisor on T . Let m be a positive
integer. Then

OP.E/.1/˝OP.E/.�
�AT =m/
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is an ample Q-line bundle on P .E/, for m large enough, which is G-invariant. Thus, the
affine variety

Y D Spec
�M
n2Z

H 0
�
P .E/;OP.E/.n/˝OP.E/.n�

�AT =m/
� �

admits aG-action which fixes the vertex y2Y of the Gm-action induced by the Z-grading.
Observe that an element

f 2 H 0
�
P .E/;OP.E/.n/˝OP.E/.n�

�AT =m/
�

is preserved by the action of G if and only if it is constant along the fibers of P .E/! T .
In other words, the G-invariant elements must have the form f D ��g, for some g 2
H 0.T;OT .nAT =m//. We conclude that there is an isomorphism

Y==G ' Spec
�M
n2Z

H 0.T;OT .nAT =m//
�
D X:

Thus, the quotient Y==G is isomorphic to the cone over a Q-ample toric divisor on a
smooth projective toric variety. Hence, .X I x/ is a toric singularity of dimension n. It
suffices to check that .Y Iy/ is not of klt type.

We proceed by contradiction. Assume that .Y I y/ is of klt type. Let zY ! Y be the
blow-up of Y at the maximal ideal of y. Then, the exceptional divisor E of �W zY ! Y is
isomorphic to P .E/. Since P .E/ is smooth, we conclude that zY has Q-factorial singular-
ities. Let �Y be the effective divisor through y for which .Y;�Y Iy/ has klt singularities.
Let � zY be the strict transform of �Y on zY . We write

��.KY C�Y / D K zY C� zY C .1 � a/E;

for some positive number a. Note that � zY is ample over Y as �. zY =Y / D 1. We conclude
thatK zY C .1� a/E is antiample over Y , soKY CE is antiample over Y as well. SinceE
is smooth, we conclude that the pair .Y;E/ is plt. Thus, the pairKEC�E D .KY CE/jE ,
obtained by performing adjunction to E, is log Fano. In particular, the projective variety
P .E/ ' E is of Fano type. Thus, the Cox ring of P .E/ is finitely generated, by Corol-
lary 1.9 in [4]. This leads to a contradiction. We conclude that .Y I y/ is not a klt type
singularity.

In the previous theorem, the action is not free outside the point y 2 Y . We show that
this can be improved in the following statement.

Proposition 3.2. For any n � 2, there exists a .n C 1/-dimensional toric singularity
.X I x/ that admits a PGLr .K/-cover Y ! X , satisfying the following conditions:

(1) we have that r D 3 if n 2 ¹2; 3º and r D n otherwise,

(2) the germ .Y Iy/ has dimension nC r2,

(3) the action of PGLr .K/ on Y is free on a dense open set, and

(4) the singularity .Y Iy/ is not of klt type.

Proof. Let T be a n-dimensional smooth projective toric variety. Let P .E/ be the rank r
vector bundle over T considered in the proof of Theorem 3.1. Hence, the variety P .E/
is not a Mori dream space. Let Y0! T be the associated principal PGLr .K/-bundle. Con-
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sider a PGLr .K/-equivariant projectivization Y0 ,! NY with a relatively ample line bundle
O NY .1/ over T . Observe that the action of PGLr .K/ on NY is free on the open subset Y0.
We claim that NY is not a Mori dream space. Let �WPGLr .K/! Aut.P r / be the standard
representation. Then NY � P r admits the action of G given by g � .u; v/ D .g�1u; �.g/v/.
The quotient of NY � P r by G is isomorphic P .E/. If NY is a Mori dream space, then P .E/
is also a Mori dream space, by Theorem 1.1 in [33]. This leads to a contradiction. We con-
clude that NY is not a Mori dream space. The rest of the proof proceeds as in Theorem 3.1,
by replacing P .E/ with NY .

Now, we turn to prove that G-covers of klt type singularities are again of klt type,
provided that G is a finite extension of a torus. The following is a generalization of The-
orem 1.2 which allows ramification over codimension one points.

Theorem 3.3. Let .X;�Ix/ be a klt type singularity. LetG be a finite extension of a torus.
Let � WY ! X be a G-quasi-torsor. Then, the variety Y is of klt type.

Proof. By Lemma 2.8, we know that klt type singularities are preserved under finite cov-
ers and finite quotients. Hence, we may assume thatG 'Gk

m for some k. By Lemma 2.14,
we know that there exists a finitely generated subgroup N 6 WDiv.X; �/ such that the
isomorphism

Y ' Spec
� M
D2N

H 0.X;OX .D//
�

holds. Let � WN ! Cl.X; �I x/ be the induced homomorphism. Let N0 be the kernel
of � . We can choose a homomorphism �WN0! K.X/� so that div.�.E// D E for every
E 2 N0. Then, we can define the local-affine Cox ring of .X; �I x/ associated to the
data N and � as in Definition 2.11. We denote this ring by

Cox.X;�I x/aff
N;�

and we denote by Y0 its spectrum. By Lemma 2.15, we know that Y0 has klt type sin-
gularities. Applying Lemma 2.14 to the torus cover Y ! Y0, we can find a free finitely
generated subgroup N1 6 CaDiv.Y0/ for which the isomorphism

Y ' Spec
� M
D2N1

H 0.Y0;OY0.D//
�

holds. Observe that we can choose the divisors of N1 to be Cartier on Y0. Indeed, these
divisors correspond to the divisors of N , which become Cartier on Y0. Thus, we conclude
that the torus quotient Y ! Y0 is a principal torus cover. Hence, the variety Y has klt type
singularities, since the klt type property is locally étale by Proposition 2.4.

4. Weil divisors modulo Cartier divisors

In this section, we study the group of Weil divisors modulo Cartier divisors, which is called
the local class group in [6]. In general, the group WDiv.X/=CaDiv.X/ is not finitely
generated. This group is trivial if and only if X is locally factorial. In [5], the authors
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prove that the Q-factorial and factorial locus of an algebraic variety are open. In Section 14
of [26], the author studies the non-Q-Cartier loci of Weil divisors. We recall the following
proposition due to Kollár (see Proposition 138 in [26]).

Proposition 4.1. Let X be a normal proper variety. Let Z � X be an irreducible variety.
There exists a dense open subset Z0 � Z such that the following holds. Let D be a Weil
divisor that is Cartier at the generic point �Z of Z. Then, the divisor D is Cartier at
every closed point of Z0.

Due to the previous proposition, we can prove the following theorem using Noetherian
induction.

Theorem 4.2. LetX be a normal variety. There are finitely many closed points x1; : : : ; xr
2 X such that the homomorphism

WDiv.X/=CaDiv.X/!
rM
iD1

Cl.X I xi /;

is a monomorphism.

Proof. Let U1; : : : ; Us be an affine open cover of X . Observe that the homomorphism

WDiv.X/=CaDiv.X/!
sM
iD1

WDiv.Ui /=CaDiv.Ui /;

induced by restricting D 7! .DjU1 ; : : : ; DjUs /, is a monomorphism. Hence, it suffices to
prove the statement for an affine variety.

Without loss of generality, we may assume that X is affine. Let NX be its closure in
a projective space. By Proposition 4.1, there exists an open set NX0 � NX so that every
Weil divisor on NX is Cartier at every closed point of NX0. Let Z1; : : : ; Zk be the irredu-
cible components of NX n NX0. For each i 2 ¹1; : : : ; kº, we choose Z0i as in the statement
of Proposition 4.1. Then, we proceed inductively with the irreducible components of
each Zi nZ0i .

We obtain a finite set of irreducible subvarieties Z1; : : : ; Zr0 � NX and dense open
subsets Z0i � Zi so that the following set-theoretic equality holds:

NX D

r0[
iD1

Z0i :

We may assume that there exists r � r0 for which

(4.1) X D

r[
iD1

Z0i \X;

and each intersection Z0i \X is non-empty for i 2 ¹1; : : : ; rº. For each i 2 ¹1; : : : ; rº, we
choose a closed point xi 2 Z0i \X . The homomorphism

(4.2) WDiv.X/=CaDiv.X/!
rM
iD1

Cl.X I xi /;
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is well defined. Indeed, Cartier divisors are mapped to the zero element on the right-
hand side.

It suffices to prove that (4.2) is a monomorphism. LetD be a Weil divisor onX . Let ND
be the closure of D on NX . Assume that ŒDxi � D 0 2 Cl.Xxi / for every i 2 ¹1; : : : ; rº.
Then, ND is Cartier at the generic point �Zi of Zi for every i 2 ¹1; : : : ; rº. By Proposi-
tion 4.1, we conclude that ND is Cartier at every closed point ofZ0i for every i 2 ¹1; : : : ; rº.
In particular, D D ND \ X is Cartier at every closed point of Z0i \ X . By equality (4.1),
we conclude that D is Cartier at every closed point of X . This means that

ŒD� D 0 2WDiv.X/=CaDiv.X/:

This finishes the proof of the theorem.

We conclude that the group WDiv.X/=CaDiv.X/ is finitely generated if the variety
has rational singularities. In particular, we have the following statement.

Theorem 4.3. LetX be a normal variety. Then, the group WDiv.X/=CaDiv.X/ is finitely
generated if X has klt type singularities.

Proof. Let X be a variety with klt type singularities. Let x1; : : : ; xr 2 X be closed points.
By Theorem 3.27 in [14], we know that

Lr
iD1 Cl.X I xi / is a finitely generated abelian

group. By Theorem 4.2, we conclude that WDiv.X/=CaDiv.X/ is a finitely generated
abelian group.

We have the following corollary from the previous theorem.

Corollary 4.4. Let .X;�/ be a klt type pair. Then, the group WDiv.X;�/=CaDiv.X/ is
finitely generated.

5. Torus covers of klt type varieties

In this section, we study torus covers. We establish a characterization theorem for torus
quasi-torsors over varieties with klt type singularities. We will start with the following
lemma, that will be used in this section.

Lemma 5.1. Let X be a variety that admits a T -action. Let W be a Weil divisor on X .
We can find a T -invariant Weil divisor W 0 on X for which W � W 0.

Proof. By Sumihiro’s equivariant completion [38], we may assume that X is an affine
T -variety, where T is an n-dimensional torus. By Proposition 1.6 in [1], we can find T -in-
variant divisorsD1; : : : ;Dk such thatX n

Sk
iD1Di 'T �U for some varietyU . We may

assume that U is smooth. Let U ,! Y be a smooth projectivization. By Exercise 12.6 (b)
in [22], we know that Cl.Y �Pn/'Cl.Y /�Z. The class group of Y �Pn is generated by
Y �H and divisors of the form �1 � Pn; : : : ; �r � Pn, where �i � Y are prime divisors
and H � Pn is a hyperplane. Hence, the class group of T � U is generated by torus
invariant divisors. This implies that the class group of X is generated by torus invariant
divisors.
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Now, we can prove that every torus quasi-torsor is a relative Cox ring.

Proof of Theorem 1.3. Let X be a normal variety. Let Y ! X be a T -quasi-torsor. We
will prove the statement by induction on k, the dimension of T . First, we will show that
the statement holds for k D 1.

Let � W Y ! X be a Gm-quasi-torsor. Let U � X be the largest open subset of X for
which there is a Gm-equivariant isomorphism

(5.1) ��1.U / ' SpecU
�M
m2Z

OU .mW /
�

for a certain Weil divisor W on U . By Lemma 2.14, we know that U is not empty. We
claim that U D X . By contradiction, assume that U ¨ X . Let x 2 X be a closed point
contained in the complement of U . By definition, we can find a Weil divisor W on X
for which the isomorphism (5.1) holds. By Lemma 2.14, we may find an affine neighbor-
hood V of x and a Weil divisorW 0 on V for which there is a Gm-equivariant isomorphism

(5.2) ��1.V / ' SpecV
�M
m2Z

OV .W
0/
�
:

In particular, there is a Gm-equivariant isomorphism

SpecU\V
�M
m2Z

OU\V .mW jU\V /

�
' SpecU\V

�M
m2Z

OU\V .mW
0
jU\V /

�
over U \ V . By Lemma 2.17, we conclude that W jU\V � W 0jU\V holds in U \ V .
Write

W jU\V �W
0
U\V D div.f /jU\V

for some f 2K.X/. We can replaceW 0 withW 0C div.f /. By Lemma 2.13, this replace-
ment preserves the equivariant isomorphism (5.2). Thus, we may assume that W jU\V D
W 0jU\V . Hence, we can find a Weil divisor W 00 on U [ V for which there is a Gm-equi-
variant isomorphism

��1.U [ V / ' SpecX
�M
m2Z

OU[V .W
00/
�
:

This contradicts the maximality of U . We conclude that U D X . Thus, the statement of
the theorem holds for k D 1.

Now, let Y ! X be a T -quasi-torsor. Let Y ! Y0 be the quotient by a sub-torus
T0 6 T of dimension k � 1. By Lemma 2.10, we conclude that �1WY ! Y0 is a T0-quasi-
torsor and �0WY0 ! X is a Gm-quasi-torsor. By induction on the dimension, we can find
Weil divisors W1; : : : ; Wk�1 on Y0 for which

Y ' SpecY0

� M
.m1;:::;mk�1/2Zk�1

OY0.m1W1 C � � � Cmk�1Wk�1/

�
;

and W on X for which
Y0 ' SpecX

�M
m2Z

OX .mW /
�
:
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Both isomorphisms are torus equivariant. By Lemmas 5.1 and 2.13, we may assume that
each Wi , with i 2 ¹1; : : : ; k � 1º is torus invariant. Since Y0 ! X contains no horizontal
Gm-invariant divisors, we conclude thatWi D ��0Wi;X for some Weil divisorsWi;X . Here,
the pull-back is defined by restricting to the smooth locus. We set

Y 0 WD SpecX

� M
.m1;:::;mk/2Zk

.m1WX;1 C � � � Cmk�1WX;k�1 CmkWk/

�
:

Note that Y 0 has a T0-quotient Y 00 obtained by considering the graded subring given by
mi D 0 for every i 2 ¹1; : : : ; k � 1º. This quotient is isomorphic to Y0. Hence, we have a
commutative diagram

Y

�1

��

Y 0

� 01
��

Y0

�0
��

� // Y 00

� 00~~
X:

By construction, we have that

Wi D �
�
0 WX;i D �

�� 00
�
WX;i

holds for every i 2 ¹1; : : : ; k � 1º. We conclude that Y 0 is T -equivariantly isomorphic
to Y . This finishes the proof.

Proof of Theorem 1.4. This statement is local. Hence, it follows from Theorem 1.2 and
Theorem 1.3.

In order to prove Theorem 1.5, we will need the following lemma.

Lemma 5.2. Let �WY !X be a T�-quasi-torsor and let WZ! Y be a T -quasi-torsor.
The following statements hold:

(1) the composition � ı  WZ ! X is a torus quasi-torsor,

(2) if � corresponds to the subgroup NY 6 WDiv.X/ and Z ! X corresponds to the
subgroup NZ 6 WDiv.X/, then NY 6 NZ , and

(3) the torus quasi-torsor  is a torsor if and only if for every closed point x 2 X ,
the images NY ! Cl.X I x/ and NZ ! Cl.X I x/ agree. In particular, if the images
of NY and NZ agree on

WDiv.X/=CaDiv.X/;

then  is a torsor.

Proof. We start by showing that if �WY ! X and  WZ ! Y are two torus quasi-torsors
with acting tori T� and T respectively, then � ı WZ!X is a torus quasi-torsor as well.
By Theorem 1.3, corresponds to a relative Cox ring, i.e., to a sheaf of graded algebras as
in Section 4.2.3 of [2]. Thus, we can lift the action of T� on Y toZ by Proposition 4.2.3.6
in [2]. The quotient by the action of T� �T is � ı . This is a quasi-torsor, since � and 
are so. Again by Theorem 1.3, � ı  corresponds to a relative Cox ring with respect to a
subgroup N 6 WDiv.X/. This shows .1/. The previous construction also shows .2/.
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For .3/, note that  is a torsor if and only if every element of ��NZ is Cartier in Y .
Since NY 6 NZ , this happens if and only if the image of NZ equals the image of NY in
every local class group of X .

Proof of Theorem 1.5. Let X be a variety with klt type singularities. Consider a sequence
of morphisms

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
�iC2oo

such that each �i W Xi ! Xi�1 is a T -quasi-torsor. We write  i D �i ı � � � ı �1. By
Lemma 5.2 (1), we know that each  i is a T -quasi-torsor corresponding to a subgroup
Ni 6 WDiv.X/. By Lemma 5.2 (2), we know that there is a sequence of subgroups

N1 6 N2 6 � � � 6 Ni 6 : : :

By Theorem 4.3, we know that WDiv.X/=CaDiv.X/ is a finitely generated abelian group.
In particular, for some i0, we have that the image of every Ni , with i � i0, stabilizes in
WDiv.X/=CaDiv.X/. By Lemma 5.2 (3), we conclude that each �i , with i � i0, is a torus
torsor. This finishes the proof of the theorem.

6. Iteration of torus and finite covers

In this section, we study the iteration of quasi-étale G-covers, where G is either finite or a
torus.

Proof of Theorem 1.6. We consider a sequence

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
�iC2oo

as in the statement of Theorem 1.6. We claim that if �i is a T -cover and �iC1 is a finite
GiC1-cover (for any i � 1), then we have a variety X 0i , a commutative diagram

XiC1
�iC1 //

�0iC1
��

Xi

�i
��

X 0i
�0i // Xi�1;

where �0i (respectively, �0iC1) is a GiC1-cover (respectively, T -cover), which is étale if
and only if �iC1 (respectively, �i ) is étale. This claim holds since, by the proof of Propos-
ition 5.1 in [14], we have an exact sequence

Zdim.T/ // �1.X
reg
i /

' // �1.X
reg
i�1/

// 1;

where T is the general fiber of �i . Thus if the finite cover �iC1 corresponds to the normal
subgroup N 6 �1.X

reg
i /, then we get �0i as the finite cover of Xi�1 corresponding to
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the image of N in �1.X
reg
i / under the above homomorphism '. By the fiber product

XiC1 D Xi �Xi�1 X
0
i (which preserves étaleness, finiteness and GIT-quotients), we get

the commutative diagram.
Thus, if for all j 2 N, there exists a k � j such that �k is a finite quasi-étale but not

étale cover, by reordering of the �i according to the claim just proven, we can construct
an infinite sequence

X 0 D X0 X 01
�01oo X 02

�02oo X 03
�03oo � � �

�04oo X 0i
�0ioo X 0iC1

�0iC1oo � � �
�0iC2oo

where the �0i are finite Galois quasi-étale but not étale covers. But this is a contradiction
to Theorem 1.1 in [21]. Thus, there are only finitely many finite Galois quasi-étale and not
étale covers in the sequence, i.e., there are only finitely many finite quasi-torsors in this
sequence that are not finite torsors.

In what follows, we turn to prove Theorem 1.7. To do so, we will use the following
lemmata.

Lemma 6.1. Let �W Y ! X be a T -quasi-torsor of a klt type variety corresponding to
the subgroup N of WDiv.X/. Let � WX 0 ! X be a finite torsor. Let Y 0 D Y �X X 0 and
Y 0 ! X 0 be the associated T -quasi-torsors so that we have a commutative diagram

Y

�

��

Y 0oo

�0

��
X X 0:

�oo

Then, �0 is the T -quasi-torsor associated to the subgroup ��N of WDiv.X 0/.

Proof. We consider the dual diagramL
D2N OX .D/ //

�L
D2N OX .D/

�
˝OX OX 0

OX //

OO

OX 0 :

OO

The top right entry equals
L
D2N .OX .D/˝OX OX 0/. By definition of the pull-back, we

have OX 0.�
�D/ D OX .D/˝OX OX 0 . So the claim follows.

Lemma 6.2. Let Y ! X be a torus quasi-torsor corresponding to the subgroup NY of
WDiv.X/. Let Z ! X be a torus quasi-torsor corresponding to the subgroup NZ of
WDiv.X/. If NZ > NY and NZ=NY is torsion free, then there is an induced torus quasi-
torsor Z ! Y .

Proof. The condition that NZ=NY is torsion free means that we have a direct product
representation NZ D NY ˚ N 0 with a subgroup N 0 of NZ isomorphic to NZ=NY . The
downgrading of OZ from NZ to N 0 gives an action of a subtorus TN 0 6 TNZ on Z. By
construction, Z==TN 0 D Y . Now the statement follows from Lemma 2.10.
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Proof of Theorem 1.7. The proof of the theorem will consist of three steps. We briefly
explain the steps here. In the first step, we will produce a singular variety with a special
toric divisor. In the second step, we will produce an infinite sequence of finite torsors for
such a singular variety. We show that the rank of the group of Weil divisors modulo Cartier
divisors diverges in this sequence. Finally, we will use this divergence property to produce
the infinite sequence of T -quasi-torsors that are not torsors.

Step 1. For each n � 2, we construct a n-dimensional projective variety with a single
isolated toric singularity and infinite étale fundamental group.

Let Zn be a smooth projective variety with infinite étale fundamental group. Let
z 2 Zn be a smooth point. In local coordinates around z 2Z, the formal completion OOZ;z
corresponds to the standard fan he1; : : : ; eni � Rn. For each n � 2, we consider the blow-
up given by the fan decomposition

†n WD ¹h Ne1; e2; e3; : : : ; en; vi; he1; Ne2; e2; e3; : : : ; vi; : : : ; he1; : : : ; en�1; Nen; viº;

where v D 2e1 C e2 C e3 C � � � C en. We let Y n! Zn to be the corresponding blow-up.
Observe that Y n has a unique isolated toric singularity. We let yn 2 Y n be such isolated
toric singularity. Note that the local class group of Y n at yn is Z2. For n D 2, this point
is a rational double point. By construction, there is a divisor T n � Y n which is a normal
projective toric variety and yn is contained in T n. Indeed, this toric variety corresponds to
the primitive lattice generator v 2†n.1/. Since Y n has klt singularities andZn is smooth,
we conclude that �1.Y n/ ' �1.Zn/. In particular, the étale fundamental group of Y n is
infinite.

Step 2. We construct a sequence of finite étale Galois covers of Y n and study their
groups of Weil divisors modulo Cartier divisors.

Let

Y n D Y n0 Y n1
f1oo Y n2

f2oo Y n3
f3oo � � �

f4oo Y ni
fioo Y niC1

fiC1oo � � �
fiC2oo

be an infinite sequence of finite étale Galois covers. Let ki WD deg.Y niC1 ! Y ni / be the
degree of the cover. Then, the variety Y ni is n-dimensional and it has k0 � � � ki�1 isolated
singularities. We denote these singularities as

yni;.m0;:::;mi�1/ 2 Y
n
i ;

where 1 � mj � kj for each j . We can order the singularities in such a way that

f �1i .yi�1;.m0;:::;mi�1// D

ki[
mD1

yni;.m0;:::;mi�1;m/:

Since T n has trivial fundamental group, we conclude that f �i : : : f
�
1 T

n is the disjoint
union of k0 � � � ki�1 toric varieties isomorphic to T n. We write T n

i;.m0;:::;mi�1/
with 1 �

mj � kj for such toric divisors. By construction, the toric divisor T n
i;.m0;:::;mi�1/

contains
the singular point yn

i;.m0;:::;mi�1/
. We claim that

(6.1) WDiv.Y ni /=CaDiv.Y ni / '
k0���ki�1M
iD1

Z2:
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First, observe that T n
i;.m0;:::;mi�1/

is not a Cartier divisor. Indeed, if this was the case, then
T n
i;.m0;:::;mi�1/

would be analytically Cartier around yn
i;.m0;:::;mi�1/

. This implies that T n is
analytically Cartier around yn, leading to a contradiction.

On the other hand, 2T n
i;.m0;:::;mi�1/

is Cartier in Y ni as it is the pull-back of 2T n

on a neighborhood of the only singular point that it contains. We conclude that each
T n
i;.m0;:::;mi�1/

is 2-torsion in the abelian group WDiv.Y n/=CaDiv.Y n/. Let J � .Œ1; k0�\
Z/ � � � � � .Œ1; ki�1� \ Z/ be a subset. Assume that we have a relation of the formX

j2J

T ni;j D 0 2WDiv.Yn/=CaDiv.Y n/:

This means that the divisor
P
j2J T

n
i;j is Cartier in Y ni . Let j0 2 J be a fixed element.

For each jk ¤ j0 in J , we have that T ni;jk is Cartier at yni;j0 . We conclude that T ni;j0 is
Cartier at yni;j0 . Hence, it is a Cartier divisor. This leads to a contradiction. Then, the
isomorphism (6.1) holds.

Step 3. We construct an infinite sequence of finite torsors and torus quasi-torsors of Y n.
For each i � 1, we denote by Ni the group of WDiv.Y ni / generated by

¹T ni;.m0;:::;mi�1/ j 1 � m0 � k0; : : : ; 1 � mi�2 � ki�2; and 1 � mi�1 � ki�1 � 1º:

For each i � 0, we define Xn2i to be the relative Cox ring of Y ni with respect to Ni . We
define X2iC1 to be X2i �Y ni Y

n
iC1. We define �2iC1WXn2iC1 ! Xn2i to be the induced

morphism. Thus, we have a commutative diagram as follows:

Xn2i

��

Xn2iC1
�2iC1oo

��
Y ni Y niC1:

fiC1oo

By Lemma 6.1, the torus quasi-torsorXn2iC1!Y niC1 is induced by the subgroup f �iC1Ni 6
WDiv.Y niC1/. By construction, we have that f �iC1Ni 6 NiC1. By Lemma 6.2 there is a
corresponding quasi-torsor �2.iC1/WX2.iC1/ ! Xn2iC1.

We claim that �2.iC1/ is not a torus torsor. Let C be the class group of YiC1 at the
point yiC1;.k0;:::;ki�1;1/. By the isomorphism (6.1), we know that C ' Z2. Note that the
image ofNiC1 inC is isomorphic to Z2. Indeed, the image of the divisor T n

iC1;.k0;:::;ki�1;1/

generatesC . On the other hand, the image of f �iC1Ni inC is trivial since no divisor among
the generators of Ni pass through yi;.k0;:::;ki�1/. By Lemma 5.2, we conclude that �2.iC1/
is a torus quasi-torsor which is not a torsor. We deduce that there exists an infinite sequence

Xn D Xn0 Xn1
�1oo Xn2

�2oo Xn3
�3oo � � �

�4oo Xni
�ioo XniC1

�iC1oo � � �
iC2oo

satisfying the following conditions:
• Xn is a n-dimensional projective variety with a single isolated toric singularity,
• each �i , with i odd, is a finite torsor, and
• each �i , with i � 2 even, is a T -quasi-torsor which is not a torsor.

This finishes the proof.
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Now, we turn to prove Theorem 1.8. We will need the following two lemmata.

Lemma 6.3. Let f WX 0 ! X be a finite G-torsor. Let x 2 X and x0 2 f �1.x/ be two
closed points. Then, the induced homomorphism f �WCl.X I x/! Cl.X 0I x0/ is a mono-
morphism.

Proof. Let W be a Weil divisor through x 2 X such that f �W is principal near x0. We
can even assume that there is a G-invariant open around x0 where f �W D div.h/. By
Theorem II.3.1 in [36], h is a semiinvariant, i.e., g�h D �.g/h, where �.g/ 2 K�, for
every g in G. But the induced action via �WG ! K� � KŒX�� on X is ramified if it is
nontrivial. This cannot happen since f is étale. Therefore, h is G-invariant and defines
W D divU .h/ on some x 2 U � X . The claim follows.

Lemma 6.4. Let Y ! X be the T -quasi-torsor associated to the group N 6 WDiv.X/.
The variety Y is locally factorial if and only if N !Cl.X Ix/ is surjective for every closed
point x 2 X . In particular, if N !WDiv.X/=CaDiv.X/ is surjective, then Y ! X is a
factorial T -quasi-torsor.

Proof. The statement follows from Theorem 1.3.3.3 in [2] applied to the spectrum Xx
of the local ring OX;x , where we view N as a subgroup of WDiv.Xx/ by restriction.
Then the aforementioned theorem says that the stalk R.X/N;x is factorial if and only if
N ! Cl.X I x/ is surjective. In fact, Theorem 1.3.3.3 in [2] only states one direction, but
it directly follows from applying Theorem 1.3.3.1 in [2] to the smooth locus, which gives
an equivalence. It is clear that Y is locally factorial if and only if all the stalks R.X/N;x
are factorial.

Proof of Theorem 1.8. Consider a sequence

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
�iC2oo

as in the statement of the theorem. This means that every �i is either a factorial T -quasi-
torsor or a finite quasi-torsor. By Theorem 1.6, we may assume, after possibly truncating
our sequence, that every finite quasi-torsor in this sequence is a finite torsor, i.e., a finite
Galois étale cover. Proceeding as in the proof of Theorem 1.6, we obtain a sequence of
finite torsors

X 0 D X 00 X 01
�01oo X 02

�02oo X 03
�03oo � � �

�04oo X 0i
�0ioo X 0iC1

�0iC1oo � � �
�0iC2oo

so that each Xi ! X 0i is a relative Cox ring with respect to the subgroupNi 6 WDiv.X 0i /.
By Lemma 5.2, we know that every T -quasi-torsor over a factorial variety is indeed a
torsor. We write  i D �i ı � � � ı �1. By Theorem 3.4 (1) in [3], there exists a locally closed
decomposition

X 0 D
G
j2J

Y 0j

such that the class group of X 0i at x is independent of x 2  �1i .Y 0j /. Applying Lemma 6.3
to closed points of Y 0j , we conclude that there exists i0 2 Z>0 such that

(6.2) �0i
�
W Cl.X 0i Iy/! Cl.X 0iC1I x/
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is an isomorphism for every x 2X 0i , every y 2 �0i
�1
.x/, and i � i0. It suffices to show that

whenever Xi is factorial and XiC1 ! Xi is a finite étale Galois cover in our sequence,
the variety XiC1 is again factorial for every i � i0. In this case, we have a commutative
diagram

Xi

�i
��

XiC1

�iC1

��

�ioo

X 0i XiC1;
�0ioo

where �i is the relative Cox ring over X 0i with respect to the subgroup Ni 6 WDiv.X 0i /.
By Lemma 6.1, the T -quasi-torsor XiC1 ! Xi is induced by �0i

�
Ni 6 WDiv.XiC1/. By

Lemma 6.4, we know that for every closed point x 2 X 0i , the induced homomorphism

(6.3) Ni ! Cl.X 0i I x/

is surjective. By isomorphism (6.2) and surjectivity (6.3), we conclude that for every
closed point x 2 X 0iC1, we have that

�0i
�
Ni ! Cl.X 0iC1I x/

is surjective. By Lemma 6.4, we conclude thatXiC1 is a factorial variety. This finishes the
proof.

Proof of Theorem 1.9. Due to Theorem 1.8, we may find a variety Y satisfying the fol-
lowing properties:

(i) every finite quasi-torsor over Y is a finite torsor,
(ii) every factorial T -quasi-torsor over a finite torsor of Y is a T -torsor,
(iii) Y admits the action of a reductive group G,
(iv) the group G is an extension of an algebraic torus by a finite solvable group, and
(v) the isomorphism X ' Y==G holds.

Note that condition (i) implies that the natural epimorphism

O�1.Y
reg/! O�1.Y /

is an isomorphism. Otherwise, we could find a finite Galois quasi-étale cover of Y that
ramifies over the singular locus. This shows that (1) in the statement of the theorem holds.

Let Y 0 ! Y be a finite quasi-étale morphism. By condition (i) this morphism is
indeed a finite étale morphism. Assume that Y 0 is not factorial at the point y0. By The-
orem 3.7 in [21], there exists a finite étale Galois morphism Y 00! Y such that Y 00 admits
a finite étale Galois morphism to Y 0. By Lemma 6.3, we conclude that Y 00 is not factorial.
Thus, Y 00 admits a factorial T -quasi-torsor that is not a T -torsor. Indeed, we can take the
relative Cox ring of Y 00 with respect to a subgroup N of WDiv.Y 00/ that surjects onto
WDiv.Y 00/=CaDiv.Y 00/. This contradicts condition (ii). We conclude that (2) in the state-
ment of the theorem holds. Note that (iii)–(v) are the same than (3)–(5) in the statement
of the theorem. This finishes the proof.
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Proof of Theorem 1.10. Locally toric singularities are klt type singularities. Then, we can
apply Theorem 1.6 to deduce that X admits a torus quasi-torsor Y that is factorial. By
Theorem 1.4, the variety Y has klt type singularities, hence canonical factorial singular-
ities. The local Cox ring of a locally toric singularity is a locally toric singularity. Hence,
the variety Y has factorial locally toric singularities. However, a factorial toric singularity
is smooth. We conclude that Y is a smooth variety.

6.1. Normal singularities

In this subsection, we show that some of the proofs explained above naturally generalize
to normal singularities with some minor considerations.

Proof of Theorem 1.12. If each class group Cl.X I x/ is finitely generated, then by The-
orem 4.2, we know that WDiv.X/=CaDiv.X/ is finitely generated. Then, the proof is
verbatim from the proof of Theorem 1.5. This shows that .2/ implies .1/.

Now, we turn to prove that .1/ implies .2/. On the other hand, assume that some
local class group Cl.X I x0/ is not finitely generated. We consider an infinite sequence of
divisors ¹Wiºi2N in WDiv.X/ such that the image of Nk WD hW1; : : : ; Wki in Cl.X I x0/
strictly contains Nk�1. Let Xi ! X be the T -quasi-torsor associated to Ni . By con-
struction, the quotients NiC1=Ni are free. Then, by Lemma 6.2, we have associated torus
quasi-torsors

X D X0 X1
�1oo X2

�2oo X3
�3oo � � �

�4oo Xi
�ioo XiC1

�iC1oo � � �
�iC2oo

By Lemma 5.2 (3), no �i is a T -torsor.

Now, we turn to give a proof of Theorem 1.14 that discusses optimal normal singular-
ities for which sequences of quasi-torsors are eventually torsors. We will use the following
lemma.

Lemma 6.5. Let f WX 0 ! X be a quasi-étale finite Galois morphism. Let x 2 X and
x0 2 f �1.x/ be finite points. Then, if Cl.X 0I x0/ is finitely generated, then Cl.X I x/ is
finitely generated.

Proof. Let W be a Weil divisor through x 2 X such that f �W is Cartier. Then, passing
to a G-invariant affine, we may assume f �W D div.h/. The regular function hjGj is
G-invariant. Hence mW � 0 around x. We conclude that the kernel of f �WCl.X I x/!
Cl.X 0I x0/ is torsion. So, if Cl.X I x/ is not finitely generated, then f �Cl.X I x/ is not
finitely generated and the claim follows.

Proof of Theorem 1.14. First, assume that conditions (a) and (b) are satisfied. In the proof
of Theorem 1.8, we used the argument of Theorem 1.6 to deduce that the finite quasi-
torsors are eventually torsors. The same argument goes through in the present case by
replacing Theorem 1.1 in [21] with Theorem 1 in [37].

On the other hand, in the proof of Theorem 1.8, we used the constructibility of the
functor Cl in the étale topology. We argue that this still holds in the present setting. By
Lemma 6.5, every local class group Cl.X I x/ is finitely generated. Let f WX 0 ! X be a
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resolution of singularities. In this case, we have that R1f�.OX 0/ D 0 as the local class
groups are finitely generated. Then, we can apply Theorem 3.1 (4) in [21] to conclude that
the class group functor is constructible in the étale topology. Now, the proof is verbatim
from the proof of Theorem 1.8.

Now, assume that condition .1/ is not satisfied. By Theorem 1 in [37], there is an
infinite sequence of finite quasi-torsors ofX that are not torsors. On the other hand, assume
that condition .2/ is not satisfied. Then, there exists a finite quasi-étale cover X 0! X and
a point x0 for which Cl.X 0Ix0/ is not finitely generated. Hence, proceeding as in the proof
of Theorem 1.12, we conclude that there exists an infinite sequence of T -quasi-torsors
over X 0 that are not torsors.

7. Examples and questions

In this section, we collect some examples related to the theorems of the article and some
questions that lead to further research.

Example 7.1. In this example, we show that finite covers of klt singularities ramified over
codimension one points may not be klt. Let

D D ¹.y; z/ j y3 C zm D 0º � A2y;z :

Then the singularity
X WD ¹.x; y; z/ j x2 C y3 C zm D 0º

is a double cover of A2y;z ramified along D. The singularity .X I .0; 0; 0// is Du Val for
m 2 N�5. Otherwise, it is not a klt surface singularity.

Example 7.2. In the construction of the local Cox ring of a singularity .X Ix/, we choose a
homomorphismN ! Cl.X Ix/with kernelN0 and a character �WN 0!K.X/� for which
div.�.E//DE for allE 2N 0. IfX is a projective variety for which WDiv.X/=CaDiv.X/
is torsion, then we can consider a surjective homomorphism N ! WDiv.X/=CaDiv.X/
with kernelN 0 and a character as before �WN 0!K.X/�. If I is the ideal sheaf generated
by 1 � �.E/ with E 2 N 0, then the morphism

Y WD SpecX .R.X/N =I/! X

is finite and ramifies over codimension one points. A priori, it is not clear how to control
the divisors over which the previous morphism ramifies. Hence, it is not clear whether Y
has klt type singularities provided that X has klt type singularities. This means that the
concept of relative Cox ring with quotients induced by characters is not well behaved from
the singularities perspective.

Example 7.3. The local Cox ring of a klt type singularity .X I x/ is non-trivial whenever
Cl.X Ix/ is non-trivial. If .Y Iy/! .X Ix/ is the spectrum of the local Cox ring of .X Ix/,
then we expect that the equations defining .Y Iy/ are somewhat simpler than the equations
defining .X I x/. Although, whenever Cl.X I x/ has non-trivial free part, the dimension of
.Y Iy/ is larger than the dimension of .X I x/. For instance, if .X I x/ is a toric singularity,
then Cox.X I x/ is a smooth point of dimension dimX C �.Xx/.
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Example 7.4. Consider the affine variety

X D ¹.x; y; z; w/ j xy C zw C z3 C w3 D 0º:

The variety X is canonical with isolated singularities. Furthermore, X is factorial at x WD
.0; 0; 0; 0/. However, X is not analytically factorial at x. Let Y ! X be a T -quasi-torsor.
Then, � W Y ! X is a T -torsor on an affine neighborhood of x 2 X , by Lemma 5.2.
Hence, Y is singular along ��1.x/. This leads to a contradiction.

Example 7.5. Over a smooth point, every finite quasi-torsor is a torsor and every torus
quasi-torsor is a torsor. In this example, we show the existence of a SLn.K/-quasi-torsor
over a smooth germ that is not a torsor. We refer the reader to [34] for more examples in
this direction.

In what follows, we let n� 2. LetW be the space of linear transformations from CnC1

to Cn. Note that W has dimension n2 C n. Let SLn.C/ act on W by acting on the range
of the linear function. The action is free exactly at all the points corresponding to surject-
ive linear transformations. The closure of the orbit of an element contains 0 2 W if and
only if the corresponding linear transformation does not have full rank. Let U �W be the
open set consisting of surjective linear transformations. Note that the SLn.C/-action nat-
urally extends to a Gln.C/-action. The space of surjective linear transformations, up to the
GLn.C/-action, is parametrized by their kernels. Hence, the quotient U==GLn.C/ ' Pn.
Furthermore, we have that U==SLn.C/ ' AnC1 � ¹0º. It follows that W==SLn.C/ ' An.
As explained above, the action is free onU , soW !An is a SLn.C/-torsor over An � ¹0º.
On the other hand, the fiber over ¹0º is given by the vanishing of at least n minors, so its
codimension in W is at least 2. Thus, W ! An gives a SLn.C/-quasi-torsor which is not
a torsor.

Remark 7.6. One of the reasons that makes the understanding of finite quasi-torsors of a
singularity .X I x/ easier than other kinds of quasi-torsors is the existence of an algebraic
object that detects them. The same holds for torus quasi-torsors.

The previous example might point in the direction that this is not true anymore for
arbitrary reductive groups, which might render the study of their (quasi-)torsors a lot more
complicated.

Question 7.7. In Theorem 1.1, we showed that there exists a 3-fold toric singularity .T I t /
that admits a PGL3.K/-cover from a 5-dimensional singularity which is not of klt type.
This cover is unramified over codimension points over T so the pathology in Example 7.1
does not happen. This naturally leads to the following question. Is there a G-cover over
a surface klt singularity that is unramified over codimension one points and is not of klt
type?

Question 7.8. In Theorem 1.2, we showed that if .X I x/ is a klt type singularity and G
is a finite extension of a torus, then a G-quasi-torsor over .X I x/ is of klt type. Does this
statement still hold if we only assume that G is a reductive group? We expect that there
are counter-examples for this statement if G is a unipotent group.
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