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Elliptic Reeb orbit on some real projective
three-spaces via ECH

Brayan Ferreira

Abstract. We prove the existence of an elliptic Reeb orbit for some contact forms on
the real projective three space RP 3. The main ingredient of the proof is the existence
of a distinguished pseudoholomorphic curve in the symplectization given by the U
map on ECH. Also, we check that the first value on the ECH spectrum coincides
with the smallest action of null-homologous orbit sets for 1=4-pinched Riemannian
metrics. This action coincides with twice the length of a shortest closed geodesic. In
addition, we compute the ECH spectrum for the irrational Katok metric example.

1. Introduction

Given a .2n� 1/ dimensional closed oriented manifold Y equipped with a contact form �,
i.e., � ^ d�.n�1/ > 0, the Reeb vector field R is defined implicitly by the equations
d�.R; �/ D 0 and �.R/ � 1 on Y . The flow �t induced by R is then called the Reeb
flow, and a closed trajectory 
 WR=TZ ! Y for the Reeb flow is called a Reeb orbit.
There is a famous conjecture due to Weinstein [48] asserting that every contact manifold
.Y; �/ admits a Reeb orbit. Although the Weinstein conjecture is still open in full gener-
ality, it has been proved in some cases; the most general one is the positive answer due to
Taubes [45] in dimension 3. In this paper, our focus will be on the case where n D 2.

We denote by � D ker � � T Y the two plane distribution defined by �, namely the
contact structure. For a Reeb orbit 
 WR=TZ! Y , one defines the linearized Poincaré
map P
 WD d�T j� W �
.0/ ! �
.0/. Since P
 is a symplectic linear map, its eigenvalues
are inverse to each other. We say that 
 is elliptic if the eigenvalues of P
 are norm one
complex numbers and irrationally elliptic if their arguments as complex numbers are irra-
tional. The Reeb orbit 
 is positive (respectively, negative) hyperbolic if these eigenvalues
are positive (respectively, negative) real numbers. Moreover, 
 is nondegenerate if P

does not admit 1 as an eigenvalue, and � is a nondegenerate contact form if every Reeb
orbit on .Y; �/ is nondegenerate.

The embedded contact homology (ECH) is an algebraic invariant of closed contact
3-manifolds in which has shown to be very useful to understand symplectic embeddings
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in dimension 4 and Reeb dynamics in dimension 3. In a nutshell, ECH is a homology gen-
erated by suitable sets of Reeb orbits on .Y;�/ such that differential counts some punctured
pseudoholomorphic curves in the symplectization .R � Y; d.es�// which asymptotically
converges (near the punctures) to the chain complex generators, as reviewed in Section 2.
In fact, it is a fundamental tool in the proof of 3d Weinstein conjecture and some of its
refinements, see e.g. [14,15,30]. In [15], Cristofaro-Gardiner, Hutchings and Pomerleano
used the ECH structure and its U map to prove the existence of global surfaces of sec-
tion and, applying a result due to Franks (Theorem 4.4 in [18]), they proved the following
improvement of 3d Weinstein conjecture.

Theorem 1.1 (Theorem 1.4 in [15]). Let Y be a closed connected three-manifold and
let � be a nondegenerate contact form on Y . Assume that c1.�/ 2 H 2.Y IZ/ is torsion.
Then � has either two or infinitely many simple Reeb orbits.

This result was extended dropping the condition on the first Chern class c1.�/ by
Colin, Dehornoy and Rechtman in Theorem 1.1 and Corollary 4.8 of [10] and, more
recently, Cristofaro-Gardiner, Hryniewicz, Hutchings and Liu proved that the nondegen-
eracy condition in Theorem 1.1 is not necessary, i.e., if c1.�/ is torsion, there must exist
two or infinitely many simple Reeb orbits on .Y; �/, see Theorem 1.1 in [13]. Moreover,
in a previous work also using ECH tools, they completely described the case of a contact
form admitting exactly two Reeb orbits.

Theorem 1.2 (Theorem 1.2 in [12]). Let Y be a closed three-manifold, and let � be a
contact form on Y with exactly two simple Reeb orbits. Then � is nondegenerate and
both Reeb orbits are irrationally elliptic. Furthermore, if Y is a lens space, then � is
dynamically convex, � is tight, and there is a direct relation between the contact volume
of Y and the periods of the simple Reeb orbits.

Inspired by these results, one may ask for even more specific qualitative properties of
Reeb flows on a given manifold. In this paper, we apply ECH tools to study the qualitative
properties of Reeb flows on the real projective 3-space, RP 3. Namely, we study a refine-
ment of the Weinstein conjecture for this particular manifold, proving the existence of an
elliptic Reeb orbit under some assumptions.

1.1. Elliptic Reeb orbit on RP3

Before stating the main results of this paper, we introduce some notation. Recall that
given a Reeb orbit 
 and a symplectic trivialization � of �j
 , there is a well defined
Conley–Zehnder index CZ� .
/. This index is a well defined integer depending just on
the trivialization � when the first Chern class c1.�/ vanishes, and has a simple description
for nondegenerate Reeb orbits in dimension 3, as we now recall. Let 
 be a nondegenerate
Reeb orbit on .Y; �/. If 
 is hyperbolic, the linearized Reeb flow rotates an eigenvector of
the Poincaré map P
 by angle �k, for some integer1 k, and

CZ� .
n/ D nk:

1The integer k is even when 
 is positive hyperbolic, and odd in the negative hyperbolic case.
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Here 
n denotes the n-fold iterate,


n W R=TZ! Y

s 7! 
.ns/;

of the Reeb orbit 
 . In particular, when 
 is a hyperbolic Reeb orbit, the Conley–Zehnder
index CZ� .
/ is linear with respect to the iterates of 
 . On the other hand, if 
 WR=TZ!
Y is elliptic, the linearized Reeb flow d�t j� is conjugate to a rotation by angle 2��t 2 R,
where �t is continuous with respect to t 2 Œ0; T � and �0 D 0. In this case, one has

CZ� .
n/ D 2bn�c C 1;

where � D �T is the rotation angle of 
 with respect to � .
We denote by CZ.
/ the Conley–Zehnder index with respect to a symplectic trivializa-

tion that extends over a disk bounded by 
 . In particular, we use it for a global trivialization
of � (in case of a trivial bundle).

Definition 1.3. For a three dimensional contact manifold .Y; �/ with c1.ker�/j�2.Y / D 0,
the contact form � is called linearly positive if CZ.
/> 0 for every contractible Reeb orbit.
Moreover, � is dynamically convex if CZ.
/ � 3 for every contractible Reeb orbit 
 .

We recall that RP 3 D L.2; 1/ admits a unique tight contact structure up to isotopy,
see Theorem 2.1 in [23], and that the standard tight contact structure �0 D ker �0 is a
trivial symplectic vector bundle. Here �0 denotes the induced contact form on RP 3 by
the restriction to the three sphere S3 of the standard Liouville form

�0 D
1

2
.x1 dy1 � y1 dx1 C x2 dy2 � y2 dx2/

defined on R4. Now we are ready to state the first result of this paper.

Theorem 1.4. Let � be a nondegenerate linearly positive contact form on RP 3 defining a
tight contact structure �. Suppose � does not admit a contractible Reeb orbit with Conley–
Zehnder index 2. Then, the Reeb flow for � has an elliptic Reeb orbit with Conley–Zehnder
index 1. In particular, this holds when � is nondegenerate and dynamically convex.

Remark 1.5. Leonardo Macarini pointed out to the author that this result also follows
from S1-equivariant symplectic homology theory. In fact, this homology is generated by
Reeb orbits and it admits a grading given by the Conley–Zehnder index. Since the degree 1
group is nontrivial, there must exist an orbit with Conley–Zehnder index 1. The fact that
this orbit is elliptic follows from the hypothesis on Conley–Zehnder index 2 orbits and
the behavior of the index under iterations. In addition, the dynamically convex case in the
theorem also follows from a more general result due to Hryniewicz and Salomão in [26].
However, the approach we shall follow in the proof here, despite being related, is different
from the one followed by them. Further, still in this case, there is a more general result
for (possibly degenerate) dynamically convex contact forms in RP 2nC1 due to Leonardo
Macarini and Miguel Abreu, see Corollary 2.7 in [1].

In [31], Hutchings defined the ECH spectrum for a contact three manifold .Y; �/. This
is a sequence of nonnegative numbers

0 D c0.Y; �/ < c1.Y; �/ � c2.Y; �/ � � � � � 1;
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defined using the U map on ECH. These numbers have nice properties that we shall not
discuss here except for one: if ck.Y;�/ <1, then there exists an orbit set ˛, which is null-
homologous, with ck.Y; �/ D A.˛/. Here an orbit set is a set of the form ˛ D ¹.
i ; mi /º,
where 
i are embedded Reeb orbits and mi are positive integers, and A.˛/ denotes the
total action of ˛, i.e.,

A.˛/ D
X
i

miA.
i / WD
X
i

mi

Z

i

�:

Moreover, ˛ being a null-homologous orbit set means that the total homology class

Œ˛� WD
X
i

mi Œ
i � 2 H1.Y IZ/

is equal to zero. The described property is sometimes called the spectrality property.
Denote by A0

min.�/ the smallest action of a null-homologous orbit set. By the spectral-
ity property, it is easy to see that c1.Y; �/ � A0

min.�/. Under the hypothesis that c1.Y; �/
is realized by A0

min.�/, we can weaken the condition on Conley–Zehnder index 2 orbits in
Theorem 1.4 and obtain an estimate for the action of the elliptic Reeb orbit found.

Theorem 1.6. Let � be a nondegenerate linearly positive contact form on RP 3 defining
a tight contact structure � . Suppose that every contractible Reeb orbit with Conley–
Zehnder index 2 is embedded. Moreover, suppose that the first value of the ECH spectrum
c1.RP 3; �/ is equal to the smallest action of a null-homologous orbit set A0

min.�/. Then,
the Reeb flow for � has an elliptic Reeb orbit with Conley–Zehnder index 1 and action in
the interval ŒA0

min.�/=2;A
0
min.�/�.

In fact, the arguments presented in the proofs of Theorem 1.4 and Theorem 1.6 are
almost the same. In particular, one concludes that the elliptic Reeb orbit found in Theo-
rem 1.4 has action in the interval Œc1.RP 3; �/=2; c1.RP 3; �/�.

We note that sinceH1.RP 3IZ/D Z2, the inequality A0
min.�/ � 2Amin.�/must hold,

where Amin.�/ is the minimal action between all the Reeb orbits for �. Therefore, the
elliptic Reeb orbit obtained in the previous theorem has action in the interval

ŒAmin.�/;A
0
min.�/� � ŒAmin.�/; 2Amin.�/�:

Similar results can be obtained analogously to what we do for some tight lens spaces.
In fact, after the initial version of this paper, Shibata has independently proved interesting
related results for dynamically convex contact forms on lens spaces L.p;p � 1/, see [44].

Since the case of a contact form admitting exactly two Reeb orbits was described
by Theorem 1.2, the interesting cases for Theorem 1.4 and Theorem 1.6 are those with
infinitely many Reeb orbits. In this case, we have the following result due to Shibata.

Theorem 1.7 (Theorem 1.6 in [43]). Let Y be a closed three manifold such that b1.Y /D
rk.H1.Y IZ// D 0. Suppose that � is a nondegenerate contact form on Y such that the
Reeb flow has infinitely many simple periodic orbits and at least one elliptic orbit. Then,
there exists at least one simple positive hyperbolic orbit.

Putting this together with Theorems 1.2, 1.4 and 1.6, we obtain the following conse-
quence.
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Corollary 1.8. Let � be a contact form on RP 3 satisfying the hypotheses of Theorem 1.4
or Theorem 1.6. Then, either � admits exactly two Reeb orbits being both of them irra-
tionally elliptic, or � admits infinitely many simple Reeb orbits with at least one being
elliptic with Conley–Zehnder index 1 and at least one being positive hyperbolic.

Remark 1.9. It follows from Theorem 1.1 and Theorem 1.2 that the property of having
infinitely many simple Reeb orbits is a necessary condition to the existence of a hyperbolic
Reeb orbit for any nondegenerate contact form on2 RP 3.

1.2. Elliptic closed geodesic on Finsler 2-spheres

Let F WTS2 ! Œ0;1/ be a Finsler metric3 on the two sphere S2. We denote by SF S2 D
F �1.1/ the unit tangent bundle for the Finsler metric F . As we shall recall in Section 4,
SF S

2 Š RP 3 admits a contact form, namely the Hilbert form �F , such that the Reeb
flow coincides with the geodesic flow for F . In particular, a closed geodesic on .S2; F /
has the same type (elliptic or hyperbolic) as a corresponding Reeb orbit on .SF S2; �F /.
Moreover, the contact structure �F D ker �F is tight and symplectically trivial. Further,
the Conley–Zehnder index of a Reeb orbit with respect to a global trivialization of �F
agrees with the Morse index of the corresponding geodesic on S2.

There are still seemingly simple open problems about closed geodesics for a given
Finsler metric F on S2. For instance, it is known that for any reversible F , there exists
infinitely many closed geodesics; but it is still a conjecture that there must be two or
infinitely many closed geodesics for an irreversible F , see e.g. Conjecture 1 in [40]. The-
orem 1.1 above gives a positive answer to this conjecture for the bumpy4 case. In addition,
Remark 1.9 confirms a conjecture due to Long asserting that the existence of a hyperbolic
prime closed geodesic on a Finsler S2 implies the existence of infinitely many prime
closed geodesics, see Conjecture 2.2.2 in [6], but also just for the bumpy case. Moreover,
there is another conjecture by Long directly related to the two previous results.

Conjecture (Conjecture 5 in [40]). There exists at least one elliptic closed geodesic for
any Finsler metric on the two sphere S2.

As already observed in [26], a nice consequence of Theorem 1.4 related to this con-
jecture is the following result. Let r WD max¹F.�v/ j F.v/ D 1º � 1 be the reversibility
of the Finsler metric F , as defined by Rademacher.

Corollary 1.10. Let .S2; F / be a bumpy Finsler sphere with reversibility r . If F is
.r=.1C r//2-pinched, i.e., if

(1.1)
� r

1C r

�2
< K � 1;

for all flag curvatures K, then there exists an elliptic closed geodesic with Morse index 1
on .S2; F /.

2In fact, it holds on any closed three dimensional manifold due to the “2 or infinitely many orbits” result
due to Colin, Dehornoy and Rechtman in [10].

3For the definition of a Finsler metric, see Section 4.
4A metric F is bumpy when every closed geodesic is nondegenerate.
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Proof. Harris and Paternain proved in [20], using a length estimate of the shortest geodesic
loop for F due to Rademacher in [42], that condition (1.1) is sufficient for the Hilbert
form �F being dynamically convex on SF S2 Š RP 3. Hence, this corollary follows from
Theorem 1.4.

For a more general and detailed discussion containing this corollary, see Section 2.3
in [1], where they extend the existence of an elliptic closed geodesic even for the case that
one does not have the strict inequality in (1.1) and obtain other similar results.

1.3. Computations on ECH spectra

Inspired in Theorem 1.6, one may ask the following question.

Question 1.11. For which contact forms on RP 3 does c1.RP 3; �/ D A0
min.�/ hold?

Using a result due to Ballman, Thorbergsson and Ziller (Theorem 4.2 in [3]), we give
the following partial answer to Question 1.11.

Theorem 1.12. Let .S2; g/ be a Riemannian sphere such that 1=4 < K � 1, where K is
the sectional curvature. Then

(1.2) c1.SgS
2; �g/ D A0

min.�g/ D 2L;

where L is the length of a shortest closed geodesic for g. Moreover, it is well known that
L 2 Œ2�; 4�/ in this case.

In Proposition 3.2 of [17] one can check that property (1.2) holds for any Zoll metric on
the sphere. Moreover, from Proposition 1.9 in [17], we note that it also holds for metrics
corresponding to ellipsoids of revolution in R3. There are also examples coming from
quotients of suitable symmetric hypersurfaces in C2 called monotone toric domains, see
e.g. Theorem 1.7 in [19].

The author believes that Theorem 1.12 might hold for Finsler metrics satisfying the
pinching condition (1.1) as well. The proof we present here uses the reversibility of the
Riemannian metric and the existence of the Birkhoff annulus for an embedded closed
geodesic in positive curvature. Nevertheless, it might be adapted to that more general case
as long as one can obtain versions of the Klingenberg (Theorem 2.6.9 in [36]) and the
Toponogov (Theorem 2.7.12 in [36]) estimates, and a result due to Ballman, Thorbergsson
and Ziller (Theorem 4.2 in [3]) that we use, for nonreversible Finsler metrics.

The positivity of the curvature is necessary to ensure the equality c1.SgS2; �g/ D
A0

min.�g/ in Theorem 1.12. To see this, consider the dumbbell metric g on S2, that is, a
metric isometric to the dumbbell surface in the Euclidean space R3. In this dumbbell, each
half is close to the round sphere of constant curvature K D 1, and the pipe connecting the
two halves has a sufficiently small radius " > 0 such that the shortest closed geodesic has
length 2�", see e.g. Figure 1 in [8] or Figure 4 in [7]. In this case, one has

A0
min.�g/ D 4�" < 2� � c1.SgS

2; �g/:

The inequality c1.SgS2; �g/ � 2� can be verified using the monotonicity property of
the ECH spectrum and the existence of a symplectic embedding

.intB.2�/; !0/ ,! .intD�gS
2; !can/:



Elliptic Reeb orbit on some real projective three-spaces via ECH 1839

Here,

B.2�/ D
°
.x1; x2; y1; y2/ 2 R4

ˇ̌ 2X
jD1

x2j C y
2
j � 2

±
denotes the Euclidean ball of capacity 2� , !0 D

P2
jD1 dxj ^ dyj is the standard sym-

plectic form on R4,D�gS
2 D ¹.q;p/ 2 T �S2 j kpkg � 1º denotes the unit disk cotangent

bundle over S2 with respect to the metric g, and !can is the canonical symplectic form on
the cotangent bundle T �S2, locally given by

P2
jD1 dpj ^ dqj in cotangent coordinates.

The existence of such a symplectic embedding follows from Theorem 1.3 in [16]. This
embedding yields the inequality

2� D c1.@B.2�/; �0/ � c1.SgS
2; �g/;

where �0 is once again the restriction of the standard Liouville form on R4.

Remark 1.13. Note that by Corollary 6.1 in [20], we have that �g is dynamically convex
for a 1=4-pinched Riemannian metric g on the sphere S2. Therefore, inspired by Theo-
rem 1.12, the author conjectures that c1.RP 3; �/ D A0

min.�/ holds for every dynamically
convex contact form �. On the other hand, this equality holds for Hilbert forms coming
from ellipsoids of revolution in R3 but, as already noted by Harris and Paternain in Sec-
tion 6 of [20], some of them are not dynamically convex contact forms on RP 3.

Katok found interesting examples of Finsler metrics in [35]. Among them, he studied
a family of irreversible metrics with only finitely many closed geodesics. In particular, the
irrational Katok metric example on S2 gives a irreversible metric Fa admitting exactly two
closed geodesics for every irrational number a 2 .0; 1/. The last result of this paper is the
computation of the ECH spectrum for this example. For this, we recall that, given two real
numbers a; b > 0, one defines the sequence N.a; b/ consisting of all nonnegative integer
linear combinations of a and b arranged in nondecreasing order, and indexed starting
at 0. We denote by M2.N.a; b// the subsequence of N.a; b/ formed by the linear integer
combinations with even total weight, i.e., combinations ma C nb such that mC n is an
even nonnegative integer.

Theorem 1.14. Let a 2 .0; 1/ be an irrational number and let Fa be the Katok metric for
the two sphere. The ECH spectrum of its unit tangent bundle equipped with the Hilbert
form is given by

.ck.SFaS
2; �Fa//k DM2

�
N
� 2�

1C a
;
2�

1 � a

��
:

More precisely, ck.SFaS
2; �Fa/ is the k-th term in the sequence of nonnegative integer

combinations m1 2�
1Ca
C m2

2�
1�a

such that m1 C m2 is even, ordered in nondecreasing
order. In particular,

c1.SFaS
2; �Fa/ D

4�

1C a
D A0

min.�Fa/ D 2L:

We note that, by continuity of the ECH spectrum with respect to the contact form, the
theorem above holds for any a 2 Œ0; 1/ and, for a D 0, this recovers the computation of
the ECH spectrum for the round metric obtained in Theorem 1.4 of [16].
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Remark 1.15. In Lemma 4.1 of [20], it is shown that there is a double covering S3 !
SF S

2 for any Finsler metric on the sphere S2. In the case of the Katok metric Fa, it yields
a double covering �WS3! SFaS

2 such that ���Fa D 2h�0, where h�0 is the contact form
corresponding to the ellipsoid

@E
� 2�

1C a
;
2�

1 � a

�
D

°
.z1; z2/ 2 C2

j �
�1C a
2�
jz1j

2
C
1 � a

2�
jz2j

2
�
D 1

±
:

Moreover, Hutchings has computed the ECH spectrum of the ellipsoid @E.a; b/ in [31],
obtaining

ck.@E.a; b/; �0/ D N.a; b/k ;

for any a; b > 0. In particular, for a 2 Œ0; 1/, the ECH spectrum ck.SFa ; �Fa/ is a distin-
guished subsequence of the ECH spectrum of the corresponding ellipsoid.

As in Sections 4 and 5 of [16], the computation of the ECH and the ECH spectrum
for the Katok example found in this paper suggests an interesting relation and a method
for computing ECH elements of global quotients of hypersurfaces in C2. This relation
probably can be better explored in a more general context in future works.

2. Quick review on ECH

We start with a quick review on the theory of embedded contact homology. For a more
detailed explanation on this subject, we recommend [32].

2.1. Chain complex

Let Y be a three dimensional closed manifold, and let � be a nondegenerate contact form
on Y . For a fixed � 2H1.Y IZ/, the ECH chain complex ECC�.Y; �; �/ is the Z2-vector
space generated by admissible orbit sets, i.e., sets of the form ˛ D ¹.˛i ; mi /º, where
• ˛i WR=TiZ! Y are embedded Reeb orbits.
• mi are positive integers satisfyingmi D 1, whenever ˛i is (positive or negative) hyper-

bolic.
• Œ˛� D

P
i mi Œ˛i � D � 2 H1.Y IZ/.

We often use the product notation ˛ D …i

mi
i , and we commonly refer to an admis-

sible orbit set simply as an ECH generator. The differential @ is defined using a generic
symplectization-admissible almost complex structure J on the symplectization R � Y ,
meaning that J satisfies

• J @
@s
D R, where R is the Reeb vector field defined by � and s is the coordinate on R,

• J � D �, where � D ker� is the contact structure,
• d�.v; J v/ > 0 for every nonzero vector v 2 � .

For two ECH generators ˛ and ˇ, the coefficient h@˛; ˇi is defined to be a Z2-count
of J -holomorphic currents on the symplectization R � Y with ECH index 1 and which
converge as currents to ˛ (respectively, to ˇ/ when s tends to C1 (respectively, to �1).
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We note that since h@˛;ˇi ¤ 0 implies the existence of a J -holomorphic current connect-
ing ˛ to ˇ, it must hold A.˛/ > A.ˇ/, i.e., the differential decreases the action. In fact,
if J is symplectization-admissible, then d� is pointwise nonnegative restricted to any
J -holomorphic curve in R � Y , and the inequality follows from Stoke’s theorem. This
inequality is strict because d�.w; Jw/ � 0 for every w 2 T .R � Y / and d�.w; Jw/D 0
if, and only if, w is in the subspace generated by @=@s and the Reeb vector field R. Hence,
if zuW†! R � Y is a connected J -holomorphic curve such that

R
†
zu�d� D 0, zu must be

a trivial cylinder R � 
 , where 
 is a Reeb orbit on .Y; �/. More precisely, we must have

zu W R �R=TZ! R � Y

.s; t/ 7! .s; 
.t//:

2.2. ECH index and grading

Given two orbit sets ˛ D …i˛
mi
i and ˇ D …jˇ

nj
j , we denote by H2.Y; ˛; ˇ/ the affine

space over the singular homology group H2.Y / consisting of 2-chains † in Y such that

@† D
X
i

mi ˛i �
X
j

nj ǰ :

Given a homology class Z in H2.Y; ˛; ˇ/, its ECH index is defined by the equation

I.Z/ D c� .Z/CQ� .Z/C CZI� .˛/ � CZI� .ˇ/;

where � is a trivialization of the contact structure � over the orbits appearing in ˛ and ˇ,
c� .Z/ is the relative Chern class, Q� .Z/ is a relative intersection number, and

CZI� .˛/ D
X
i

miX
kD1

CZ� .˛ki /

is a sum of Conley–Zehnder indices of iterates of the orbits ˛i , and similarly for CZI� .ˇ/.
More precisely, given a smooth map f WS ! Y representing Z,

c� .Z/ D c1.�jf .S/; �/

is the number of zeros of a generic section of f �� obtained by extending a nonvanishing
section of f ��j@S .

The relative intersection number Q� .Z/ is defined as Q� .Z; Z/, where Q� .Z; Z0/
denotes the signed count of transverse intersections for suitable representatives of Z
and Z0 in .�1; 1/ � Y . We note that this number is quadratic on Z:

Q� .Z CZ
0/ D Q� .Z/C 2Q� .Z;Z

0/CQ� .Z
0/:

In addition, given two null-homologous Reeb orbits 
1 and 
2 on .Y; �/, for two classes
Z1 2 H2.Y; 
1;;/ and Z2 2 H2.Y; 
2;;/, we have

Q� .Z1; Z2/ D lk.
1; 
2/:
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Here lk.
1; 
2/ denotes the linking number

lk.
1; 
2/ WD 
1 � S
2 2 Z;

where S
2 is an embedded Seifert surface for the null-homologous oriented knot 
2 which
is transverse to 
1. Moreover, given a knot 
 which is transverse to the contact structure �,
e.g., a Reeb orbit, one defines the self-linking number:

sl.
; S
 / D lk.
; 
 0/;

where S
 is a Seifert surface for 
 and 
 0 is a parallel copy of 
 obtained pushing 

in the direction of a nonvanishing section of �jS
 . We note that this number does not
depend on S
 when c1.�/ 2H 2.Y IZ/ vanishes, and hence, we write sl.
/. Following the
definitions, one obtains the relation

sl.
/ D Q� .Z/ � c� .Z/;

whenever Z 2 H2.Y; 
;;/ and 
 is a null-homologous Reeb orbit.
With substantial work, Hutchings and Taubes verified that the differential is well

defined and satisfies @2 D @ ı @ D 0, see [33, 34]. The resulting homology is commonly
denoted by ECH�.Y; �; �; J /. Further, one can define a (relative) grading in the chain
complex ECC�.Y; �; �; J / in the following way. Fix an admissible orbit set ˇ such that
Œˇ� D � and put jˇj D 0. For any other admissible ˛ in the class � , we define

(2.1) j˛j WD I.Z/;

whereZ 2H2.Y;˛;ˇ/ is an arbitrary class. By the index ambiguity formula in Section 3.4
of [32], if we choose another class Z0 in H2.Y; ˛; ˇ/,

I.Z/ � I.Z0/ D hc1.�/C 2PD.�/;Z �Z0i

holds, where PD.�/ denotes the Poincaré dual of � . Hence, (2.1) is not a well defined
integer. Nevertheless, it has a well defined class in Zd , where d is the integer such that
the subgroup

¹hc1.�/C 2PD.�/; hi j h 2 H2.Y IZ/º � Z

is isomorphic to dZ. In particular, if

c1.�/C 2PD.�/ D 0;

equation (2.1) defines an actual Z-grading. Moreover, for the singular homology class
� D 0, one has the distinguished choice of picking ˇ as the empty set ;. The ECH index
has an additivity property which ensures that j� j � j˛j � 1 mod d , for every � such that
h@˛; �i ¤ 0.

2.3. U map and ECH spectrum

There is also a degree �2 map

U W ECH�.Y; �; �; J /! ECH��2.Y; �; �; J /;
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coming from a map defined in the chain complex. Similarly to the differential, for two
ECH generators ˛;ˇ, the coefficient hU˛;ˇi is defined to be a Z2-count of J -holomorphic
currents on the symplectization R� Y with ECH index 2, which converge as currents to ˛
(respectively, to ˇ/ when s tends to C1 (respectively, to �1), and pass through a fixed
based point .0; y/ 2 R � Y , where y 2 Y is a generic point which is not on any (closed)
Reeb orbit. Extending linearly, one obtain a map defined on the whole chain complex
ECC�.Y; �; �/ which turns out to be a chain map, and hence, descends to a well defined
map on homology. Likewise we noted for the differential, if hU˛; ˇi ¤ 0, it must hold
A.˛/ > A.ˇ/, i.e., the U map decreases the action.

Given a real number L > 0, we define the filtered ECH as follows. Consider the Z2-
vector space, ECCL� .Y; �; �/, generated by admissible orbit sets with action < L. Since @
decreases the action, the latter vector space is in fact a subcomplex of ECC�.Y; �; �/. In
this case, the L-filtered ECH group is defined as the homology group of this subcomplex,
and is denoted by ECHL� .Y; �; �; J /.

As a consequence of the existence of ECH cobordism maps, one can conclude that
Œ;�¤ 0 2 ECH�.Y; �; 0; J / holds whenever � is symplectically fillable, see Example 1.10
in [32]. The latter means that there exists a four dimensional symplectic manifold .X;d Q�/
such that @X D Y and Q�jY D �. Hutchings used this fact to define the following sequence
of nontrivial quantitative invariants. Let c0.Y; �/ D 0 and define

ck.Y; �/ D inf¹L j 9� 2 ECHL� .Y; �; 0; J /I U
k� D Œ;�º;

for each k 2 Z�1. This is well defined as long as � is a nondegenerate contact form. For
the degenerate case, we define

(2.2) ck.Y; �/ D lim
n!1

ck.Y; fn�/;

where fnWY ! R>0 are functions on Y , with fn� nondegenerate contact forms for all n,
and limn!1 fn D 1 in the C 0 topology. It follows from Section 3.1 in [31] that the limit
in (2.2) exists and does not depend on the sequence fn. Hence, the ECH spectrum is well
defined for any contact form � on Y .

Although we need some choices to define the differential and the U map, Taubes
proved that ECH and the U map do not depend on the almost complex structure J and
neither on the contact form �.

Theorem 2.1 ([46, 47]). There is a canonical isomorphism of relatively graded modules

ECH�.Y; �; �; J / D bHM��.Y; s� C PD.�//:

Moreover, the U map defined on ECH agrees with the analogous U map on the Seiberg–
Witten Floer cohomology.

In Theorem 2.1, bHM��.Y;s�CPD.�// denotes the “from” version of Seiberg–Witten
Floer cohomology defined by Kronheimer and Mrowka in [37].

Since ECH does not depend on � or J , from now on, we write ECH.Y; �; �/.
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2.4. ECH of RP3

The ECH of real projective three space RP 3 is well known.

Theorem 2.2. Let RP 3 be the real projective three space and let �0 be its standard tight
contact structure. Then its ECH is given by

ECH�.RP 3; �0; �/ D

´
Z2; if � 2 2Z�0;
0; otherwise,

for each � 2 H1.RP 3/ Š Z2.

This result follows from the Taubes’s isomorphism in Theorem 2.1, together with the
computation of the Seiberg–Witten Floer cohomology in Section 3.3 of [37] and in Corol-
lary 3.4 of [38], or computing the ECH visualizing this manifold as a prequantization
bundle over the sphere S2 and using a Morse–Bott direct limit argument as in Theorem 7.6
of [41], or similarly done in Proposition 4.7 of [16]. Also, one can use an irrational Katok
metric as we shall explain in Section 4.3. Now, via the U map on Seiberg–Witten Floer
cohomology, we can describe the U map on ECH.

Theorem 2.3 (Proposition 4.9 in [16]). The U map for RP 3 with the standard tight con-
tact structure U W ECH�.RP 3; �0; 0/ ! ECH��2.RP 3; �0; 0/ is given by U�k D �k�1,
where �k is the generator of ECH2k.RP3; �0; 0/, for k � 1.

3. Elliptic Reeb orbit via ECH

Now we use the ECH structure of RP 3 discussed above to prove Theorems 1.4 and 1.6.

3.1. Distinguished curve via U map

The first step is to find an interesting pseudoholomorphic curve in the symplectization
R �RP 3, as stated in the following result.

Proposition 3.1. Let � be a nondegenerate linearly positive contact form on RP 3 defin-
ing a tight contact structure � D ker �. For a generic symplectization-admissible almost
complex structure J on R � RP 3, there exists at least one of the following embedded
J -holomorphic curves in R �RP 3 :
(a) A genus one surface with only one positive end at a Reeb orbit 
a with CZ.
a/D 1.

(b) A plane asymptotic to a Reeb orbit 
b with CZ.
b/ D 3.

(c) A cylinder with positive ends at 
c1 and 
c2 such that CZ.
c1/ D CZ.
c2/ D 1.

Proof. First, we note that RP 3 admits a unique tight contact structure modulo isotopies,
see Theorem 2.1 in [23], and hence, � is symplectically trivial and fillable5. Then, let J be

5For any Riemannian metric g on S2, consider a disk cotangent bundle D�gS
2 D ¹p 2 T �S2 j kpkg � 1º

equipped with the restriction of the canonical symplectic form.
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a symplectization-admissible almost complex structure on R �RP 3 such that the homol-
ogy ECH�.RP 3; �; J; �/ and the map

U W ECH�.RP 3; �; J; �/! ECH��2.RP 3; �; J; �/

are well defined. From Theorem 2.1 and Theorem 2.2, we get

ECH�.RP 3; �; J; �/ D

´
Z2; if � 2 2Z�0;
0; otherwise,

for each � 2 H1.RP 3IZ/. Let � D 0. From Theorem 2.3, the U map is an isomorphism
in all nonzero degrees. Then, following the discussion in Section 2.2, we can define a Z
grading by setting j˛j D I.˛;;/ for every orbit set ˛ in the class � D 0 2H1.RP 3IZ/. In
this grading, the empty set has degree zero and, since � is symplectically fillable, Œ;�¤ 0 is
the generator of ECH0.RP 3; �; 0/. Since the U map is an isomorphism in degree 2, there
exists a class x in ECH2.RP 3; �; 0/ such that Ux D Œ;�. Let

Pn
kD1 ˛k be a representative

of x. By the definition of the U map, we obtain
Pn
kD1ŒU˛k � D Œ;�. Hence, we conclude

that there must exist at least one ECH index 2 J -holomorphic current in R � RP 3 with
positive ends in an admissible orbit set ˛k0 and no negative ends. From Proposition 3.7
in [32], this current must be an embedded curveC with ind.C /D I.C /D 2, where ind.C /
denotes the Fredholm index of the curve C . Now let 
1; : : : ; 
q be the positive ends of C .
Then

2 D ind.C / D ��.C /C 2c� .C /C
qX
nD1

CZ� .
n/

D 2g.C / � 2C q C

qX
nD1

CZ� .
n/ � 2g.C / � 2C 2q;

where � is a global trivialization of � and we use the hypothesis CZ� .
/ > 0 for all Reeb
orbit 
 , i.e., that � is linearly positive. Thus, C has q � 2 positive ends and we get two
possibilities for q.

Case q D 1. The Fredholm index equation yields

2 D 2g.C / � 2C 1C CZ� .
/;

and so, there are two possibilities here, g.C / D 1 and CZ� .
/ D 1, or g.C / D 0 and
CZ� .
/ D 3. These are described in (a), and (b), respectively.

Case q D 2. In this case, the Fredholm index equation yields

2 D 2g.C / � 2C 2C CZ� .
1/C CZ� .
2/;

and hence, since � is linearly positive, C has genus zero and positive ends at orbits 
1
and 
2 such that CZ� .
1/ D CZ� .
2/ D 1. This is the possibility in (c).
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3.2. Global surfaces of section

We shall also use an important concept in dynamical systems theory, which goes back to
Poincaré and the planar circular restricted three-body problem, namely: global surfaces of
section. For a smooth flow 't on a smooth 3-dimensional manifold Y , a global surface
of section for 't is a compact embedded surface † � Y which satisfies the following
properties:

(i) Each component of @† is a periodic orbit of 't ,
(ii) 't is transverse to †n@†,
(iii) for every y 2 Y n@†, there exist tC > 0 and t� < 0 such that 'tC.y/ and 't�.y/

belong to † n @†.
A disk-like global surface of section is a global surface of section † which is diffeo-

morphic to a two-dimensional disk. Likewise, an annulus-like global surface of section
is a global surface of section which is diffeomorphic to an annulus. The study of global
surfaces of section for Reeb flows in dimension 3 has received significant attention, see
e.g. [9, 11, 15, 21, 22, 26–28].

Among the known results, we would like to state two that are relevant to what follows.
The first one is due to Birkhoff, and consists of the existence of an annulus-like global
surface of section for geodesic flows on positively curved Riemannian spheres. Given
an embedded closed geodesic on a Riemannian 2-sphere, we recall that there are two
hemispheres determined by it. The Birkhoff annulus is the set of unit vectors based at the
geodesic that points towards one of these hemispheres.

Theorem 3.2 (Chapter VI in [5]). Let .S2; g/ be a Riemannian sphere such that K > 0

everywhere. For an embedded closed geodesic c, the Birkhoff annulus Bc � SgS2 is a
positive6 annulus-like global surface of section for the geodesic flow in the unit tangent
bundle corresponding to g.

The second one is due to Hofer, Wyzocki and Zehnder, and ensures the existence of a
disk-like global surface of section for Reeb flows on dynamically convex three spheres.

Theorem 3.3 (Theorem 1.3 in [22]). Let � be a dynamically convex contact form on S3.
Then there exists a simple Reeb orbit with Conley–Zehnder index 3 that bounds a disk-like
global surface of section for the Reeb flow.

In this work, we shall say that † is simply a global surface of section if it is for the
Reeb flow. In [15], a criterion is provided to assert if the projection u in Y of a J -holo-
morphic curve QuD .a;u/WC !R� Y is a global surface of section. Denote by hC.C / the
number of positive hyperbolic orbits that are ends of a curve C . Moreover, denote by MJ

C

the component of the moduli space of J -holomorphic curves containing a fixed curve C .

Proposition 3.4 (Proposition 3.2 in [15]). Let .Y; �/ be a nondegenerate contact three-
manifold, and let J be a �-compatible almost complex structure on R � Y . Let C be an
irreducible J -holomorphic curve in R � Y such that

(i) Every C 0 2MJ
C is embedded in R � Y .

6Here, positive means that the induced orientation of the boundary agrees with the orientation along the
flow.
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(ii) g.C / D hC.C / D 0 and ind.C / D 2.

(iii) C does not have two positive ends, or two negative ends, at covers of the same
simple Reeb orbit.

(iv) Let 
 be a simple Reeb orbit with rotation number � 2 R=Z. If C has a positive
end at a m-fold cover of 
 , then gcd.m; bm�c/ D 1. If C has a negative end at a
m-fold cover of 
 , then gcd.m; dm�e/ D 1.

(v) MJ
C =R is compact.

Then �Y .C / � Y is a global surface of section for the Reeb flow.

Using this criterion, we obtain the following result.

Proposition 3.5. Under the hypotheses in Proposition 3.1, suppose in addition there is
no J -holomorphic plane in R � RP 3 asymptotic to a Reeb orbit with Conley–Zehnder
index 2. Then,

(a) the plane in Proposition 3.1(b) projects to a disk-like global surface of section
in RP 3,

(b) if the ends of the cylinder in Proposition 3.1(c) are not at the same Reeb orbit, i.e.,
if 
c1 ¤ 
c2 , then its projection is an annulus-like global surface of section in RP 3.

Proof. It is enough to verify that these curves satisfy conditions (i) to (v) in Proposi-
tion 3.4. In the proof of Proposition 3.1, we saw that the curves have ends at admissible
orbit sets, namely at ˛k0 and ;. Then, every curve in the component of moduli space
of one of them has ends at admissible orbit sets and ECH index 2. So (i) follows from
Proposition 3.7 in [32]. Since the possible ends have odd Conley–Zehnder index, they are
not positive hyperbolic, and then (ii) is readily verified. For the plane, (iii) is clear. For
the cylinder, it follows from our assumption. Now we recall that the Conley–Zehnder
indices possibilities of the ends are 1 and 3. In any case, m� � 3=2, and hence, (iv)
also holds. Finally, let C be the plane or the cylinder in discussion and suppose that
MJ
C =R is not compact. It follows from Lemma 5.12 in [32] that there exists a sequence of

J -holomorphic curves in MJ
C =R converging to a broken holomorphic current .CC;C�/

with I.CC/ D I.C�/ D 1. Moreover, CC is positive asymptotic to ˛k0 and C� has no
negative ends. By Proposition 3.7 in [32], C� WD C� must be an embedded curve and
I.C�/ D ind.C�/ D 1. Let 
C1 ; : : : ; 


C
q be the positive ends of C�. The Fredholm index

equation yields

1 D ind.C�/ D ��.C�/C 2c� .C�/C
qX
nD1

CZ� .
Cn /

D 2g.C�/ � 2C q C

qX
nD1

CZ� .
Cn / � 2g.C�/ � 2C 2q;

and so, q D 1 and g.C�/ D 0. Therefore, C� must be a plane asymptotic to a Reeb orbit
with Conley–Zehnder index 2. This contradicts our hypotheses and then, (v) must hold.

Remark 3.6. One can repeat the discussion above for the case of Y D S3 and combining
Propositions 3.1 and 3.5, it recovers Theorem 3.3 in the nondegenerate case.
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3.3. Elliptic Reeb orbits on some RP3

Propositions 3.1 and 3.5, together with a characterization of the tight S3 in [21], lead us
to the proof of Theorem 1.4.

Proof of Theorem 1.4. Since �1.RP 3/ D Z2, � does not admit a hyperbolic Reeb orbit
with Conley–Zehnder index 1. Indeed, if it does, the double iterate of such an orbit would
be a contractible orbit with Conley–Zehnder index 2, which contradicts our hypothesis.
Now, we claim that the three cases in Proposition 3.1 imply the existence of an elliptic
orbit with Conley–Zehnder index 1. It is clear for cases (a) and (c). Suppose then (b)
holds, i.e., there exists an ECH index 2 J -holomorphic plane in R � RP 3 asymptotic
to a Reeb orbit 
 such that CZ.
/ D 3. If 
 were simple, it would be a contractible,
simple and nondegenerate Reeb orbit. Moreover, by Proposition 3.5, 
 would bound a
disk-like global surface of section for the Reeb flow in RP 3, namely the projection of the
latter plane. In this situation, Theorem 1.4 in [21] leads us to a contradiction yielding that
.RP 3; �/ is contactomorphic to the tight .S3; �0/. Therefore, 
 cannot be simple and must
be a covering of an elliptic Reeb orbit with Conley–Zehnder index 1.

Similarly, we prove Theorem 1.6.

Proof of Theorem 1.6. With the additional hypothesis of c1.RP 3; �/ D A0
min.�/, we can

take the orbit set ˛k0 such that A.˛k0/DA0
min.�/. In particular, the moduli space of planes

as in (b) in Proposition 3.1 is still compact. Moreover, by the hypothesis on the Conley–
Zehnder index 2 Reeb orbits, the possibilities (a) and (c) in Proposition 3.1 still fit in the
conclusion. Hence the proof follows in the same way of the proof of Theorem 1.4. The
action range claimed in the statement of Theorem 1.6 follows from the fact that A.˛k0/D

A0
min.�/ is an element in the set ¹A.
a/;A.
b/;A.
c1/CA.
c2/º.

4. ECH of Finsler spheres

4.1. From Finsler to contact geometry

In this section, we follow [25] and summarize the dictionary relating Finsler metrics on
manifolds and the Hilbert contact form on the unit tangent bundle associated to this metric.

Let N be a smooth manifold and F WTN ! Œ0;C1/ be a Finsler metric on N , that is,
F is a continuous map which satisfies the following.

(i) (Smoothness) F is smooth on TN nN , i.e., away from the zero section.
(ii) (Homogeneity) F.tv/ D tF .v/, for all v 2 TN and t 2 R>0.
(iii) (Convexity) The symmetric bilinear form

gv W TqN � TqN ! R(4.1)

.u;w/ 7!
1

2

@2

@t@s
F 2.v C suC tw/jsDtD0

is positive-definite for all v 2 TqN n¹0º and every q 2 N .
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Note that given a Riemannian metric g on the manifold N , one can define a Finsler
metric by F.v/ WD

p
g.v; v/, and hence, Finsler metrics generalizes the notion of Rie-

mannian metrics. Moreover, a Finsler metric gives a natural identification between the
tangent bundle and the cotangent bundle of the given manifold N . In fact, the Legendre
transformation defined by

LF W TN nN ! T �N nN(4.2)
v 7! gv.v; �/

is a diffeomorphism.
We then define the unit tangent bundle of N and the unit cotangent bundle of N by

SFN WD F
�1.1/ D ¹v 2 TN j F.v/ D 1º;

and
S�FN WD ¹p 2 T

�N j F.L�1F .p// D 1º;

respectively. Note that these two are odd dimensional manifolds (codimension 1 subman-
ifolds on the bundles TN and T �N , respectively). It is well known that the tautological
one form �taut on T �N restricts to a contact form on S�FN . Moreover, similarly to the
definition of �taut, one defines the Hilbert form �F on TN by

(4.3) .�F /v.�/ D gv.v; d� � �/;

for any v 2 TN and � 2 TvTN , and where � WTN ! N is the natural projection. In fact,
the Legendre transformation LF interchanges these two forms, i.e., L�F �taut D �F . In
particular, �F restricts to a contact form on the unit tangent bundle SFN .

It is a simple exercise to check that the contact structure �F D ker�F does not depend
essentially on the metric. More precisely, given two Finsler metrics F1 and F2 onN , there
exists a contactomorphism �W .SF1N; �F1/! .SF2N; �F2/, meaning that � is a diffeomor-
phism such that ���F1 D �F2 . In particular, for N D S2, the round metric g0 is such that
.Sg0S

2; �g0/ is contactomorphic to the standard tight .RP 3; �0/, and hence, the contact
structure defined by any Finsler metric on the sphere S2 is tight.

The following result shows that the Reeb vector field for the Hilbert form �F agrees
with a well-known vector field in differential geometry.

Proposition 4.1 (Teorema 4.4.10 in [25]). Let F be a Finsler metric defined on a smooth
manifold N . Then the Reeb vector field of .SFN; �F / agrees with the geodesic vector
field for F .

Thus, given a closed geodesic parametrized by arc length cW I ! N , one has a cor-
responding Reeb orbit 
 D .c; Pc/W I ! SFN . In fact, whenever F is reversible7, such a
geodesic c gives rise to two Reeb orbits .c;˙Pc/ on .SFN; �F /. It is simple to check that

A.c; Pc/ D

Z
.c; Pc/

�F D

Z
I

F. Pc/ dt D Length.c/:

7That is, F.v/ D F.�v/ for all v 2 TN .
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Further, the linearized Poincaré map for the Reeb orbit 
 D .c; Pc/ is conjugated to the
linear Poincaré map for the geodesic c defined using Jacobi fields, see Lemma 2.3 in [24].
In addition, it follows from [39] that the Conley–Zehnder index of 
 with respect to a
trivialization of �F that extends to a disk bounding the orbit coincides with the Morse
index of the closed geodesic c.

4.2. First value on ECH spectrum for 1=4-pinched metrics

In this section, we compute the first value on the ECH spectrum for the 1=4-pinched
Riemannian case, proving Theorem 1.12. We shall use two lemmas. The first one uses
the Klingenberg (Theorem 2.6.9 in [36]) and the Toponogov (Theorem 2.7.12 in [36])
estimates to guarantee that A0

min.�g/ D 2L for the 1=4-pinched Riemannian case.

Lemma 4.2. Let .S2; g/ be a Riemannian sphere such that 1=4 < K � 1, where K is the
sectional curvature. Hence

(4.4) 4� � A0
min.�g/ D 2L < 8�;

where L is the length of a shortest geodesic for g.

Proof. Note that a null-homologous orbit set with minimal action must be of the form 


such that A.
/ D A0
min.�g/, 
1
2, or z
 2, where each of these latter Reeb orbits corre-

sponds to closed geodesics with minimal length on .S2; g/. This holds due to �1.RP 3/
D Z2 and to the fact that a smooth curve cW I ! S2 parametrized by arc length and which
all self-intersections are transverse induces a contractible curve .c; Pc/W I ! SgS

2 Š RP 3

if, and only if, c has an odd number of self-intersections. Hence, A0
min.�g/ must agree

with the smallest element in the set

¹A.
/;A.
1/CA.
2/; 2A.z
/º D ¹A.
/; 2Lº;

where L is the length of a shortest closed geodesic. Since 1=4 < K � 1, it follows from
the Klingenberg and the Toponogov comparison theorems that a closed geodesic for g
either is simple with length in the interval Œ2�; 4�/, or have at least two self-intersections
and length � 6� . Therefore, if 
 is a null-homologous Reeb orbit, 
 must correspond to
a closed geodesic c
 with at least three self-intersections and by Klingenberg’s estimate8,
A.
/ D Length.c
 / � 8� , and hence, we obtain (4.4).

The second lemma will be useful to extend the computation of c1.SgS2; �g/ to the
degenerate case.

Lemma 4.3. Let ¹gnºn2N be a sequence of Riemannian metrics with sectional curvature
Kn > 0 on the two dimensional sphere S2 converging to a positively curved Riemannian
metric g in the C 0-topology. Suppose that the sequence Ln consisting of lengths of short-
est closed geodesics for gn converges to a positive real number L. Then L is the length of
a shortest closed geodesic for g.

8Klingenberg’s estimate ensures that the injectivity radius, inj.p/, is at least � for every p in S2, yielding
that geodesic loops have length � 2� .
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Proof. By a well-known result of Calabi and Cao (see Theorem D in [7]; see also the
Appendix due to Abbondandolo and Mazzucchelli in [4]), Ln is the length of a simple
closed geodesic 
n which is the Birkhoff minmax geodesic:

Ln D bir.S2; gn/ WD inf
u2U

max
z2Œ�1;1�

En.u.z//
1=2:

Here, for each n 2 N, En denotes the energy functional

En W W
1;2.S1; S2/! Œ0;1/

� 7! En.�/ D

Z
S1
kP�kgndt

defined on the W 1;2 free loop space, and U � C 0.Œ�1; 1�; W 1;2.S1; S2// is the space
of sweepouts consisting of suitable one parameter families of closed curves starting and
ending at point curves. Similarly, since g is also positively curved, the length of a shortest
geodesic for g coincides with bir.S2; g/. The lemma then follows from the continuity of
the Birkhoff minmax value with respect to the metric. In fact, one can check that

L D lim
n!C1

Ln D lim
n!C1

bir.S2; gn/ D bir.S2; g/:

In particular, the conclusion in Lemma 4.3 holds if ¹gnºn2N is a sequence satisfy-
ing Kn � ı > 0 and C 2-converges to a Riemannian metric g, since in this case K D
limn!C1Kn is automatically positive. Now we are ready to prove Theorem 1.12.

Proof of Theorem 1.12. Suppose first that g is a bumpy metric. In this case, the contact
form �g is nondegenerate, and hence, for a generic almost complex structure J we have
a well defined homology ECH�.SgS2; �g ; �; J /. Since 1=4 < K � 1, it follows from
Theorem 4.2 in [3] that any shortest closed geodesic9 for g is simple and has Morse
index 1. Let 
 and 
 be the two Reeb orbits corresponding to a shortest closed geodesic
traversed in both directions on S2. Note that we have

A.
 
/ D 2L D A0
min.�g/;

where the last equality follows from Lemma 4.2. Since

c1.SgS
2; �g/ � A0

min.�g/;

it is enough to prove that 

 represents an element in homology and U.Œ

�/ D Œ;�.
First, we claim that 

 is closed, that is, @.

/D 0. Note that h@.

/;ˇiD 0 for ˇ¤;

because the differential decreases the action and 

 has the minimal action among the
null-homologous orbit sets. Moreover, if h@.

/; ;i ¤ 0, there would exist an embedded
J -holomorphic curve C in R � SgS2 such that I.C / D ind.C / D 1. In this case,

1 D ind.C / D 2g.C / � 2C 2C CZ.
/C CZ.
/ D 2g.C /C 1C 1 � 2

leads us to a contradiction. Here we used that CZ.
/D CZ.
/D 1 agrees with the Morse
index of the corresponding geodesic which is equal to 1. This proves the claim.

9That is, a closed geodesic with minimal length among all closed geodesics for g.
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To prove that U.Œ

�/ D Œ;�, let .0; y/ 2 R � SgS2 be a fixed base point such that
y 2 SgS

2 is a generic point which is not on any (closed) Reeb orbit and such that the U
map Uy;J WECC�.SgS2; �g ; 0; J /! ECC�.SgS2; �g ; 0; J / is well defined. Since the U
map decreases the action, we have hU.

/; ˇi D 0 for every ˇ ¤ ; again.

By Theorem 3.2, the Birkhoff annulus B
 � SgS2 is a global surface of section with
boundary @B
 D 
 [ 
 . This yields the existence of an open book decomposition of SgS2

supporting ker �g , where 
 [ 
 is the binding, and whose pages are diffeomorphic to
annuli. It follows from Proposition 3.16 in [28] that there exists (possibly other) open
book decomposition supporting ker �g whose pages are annulus-like global surfaces of
section for the Reeb flow on .SgS2; �g ) and are projections of curves in MJ .

; ;/.
The latter denotes the moduli space of embedded genus zero J -holomorphic curves in
R � SgS2 with exactly two positive ends converging asymptotically to 
 and 
 , and no
negative ends.

Note that, given a curve C 2MJ .

;;/, we have

ind.C / D 2g.C / � 2C 2C CZ.
/C CZ.
/ D 1C 1 D 2:

Since C is embedded, I.C /D ind.C /must hold by the index inequality in [32], p. 41. We
can take C as being an element in MJ .

; ;/ such that the projection �SgS2.C / is the
unique page whose y lies in the interior and, by translating in the R component, we can
suppose that .0; y/ 2 C . Hence, C is a curve counted in the coefficient hUy;J .

/;;i.

We claim that there is no other curve counted in this coefficient. Indeed, let C 0 be a
J -holomorphic curve counted in hUy;J .

/;;i. By the definition of the U map, C 0 is an
element in MJ .

;;/ such that I.C 0/D 2 and .0; y/ 2 C 0. Since 1=4 < K � 1, the con-
tact form �g is dynamically convex and then satisfies the hypotheses in Propositions 3.1
and 3.5. Thus, Proposition 3.4 guarantees that the projection �SgS2.C

0/ is an annulus-like
global surface of section. In this case, we have y 2 �SgS2.C /\ �SgS2.C

0/, and hence, C 0

must be equal to C . This equality holds because Proposition 3.5 in [28] ensures that the
projection of two curves in MJ .

; ;/ are either equal or disjoint. Therefore, C is the
unique curve counted in the coefficient hUy;J .

/;;i, yielding Uy;J .

/ D ;. In partic-
ular, it follows from Proposition 2.3 that 

 represents a nonzero class in homology (the
generator �2 of ECH2.SgS2; �g ; 0; J /).

By the definition of c1.SgS2; �g/ in the nondegenerate case, we conclude

c1.SgS
2; �g/ � A.

/ D A0

min.�g/;

and this finishes the proof for the bumpy case.
For the general case, let � be the degenerate contact form on RP 3 corresponding

to �g on SgS2, that is, .RP 3; �/ is strictly contactomorphic to .SgS2; �g/. Recall that
by definition in the degenerate case in (2.2), we have

c1.SgS
2; �g/ D c1.RP

3; �/ D lim
n!1

c1.RP
3; fn�/;

where fn is any sequence of positive functions such that fn� are nondegenerate contact
forms and limn!1 fn D 1 in the C 0 topology. Note that by the bumpy metrics theo-
rem (Theorem 1 in [2]), there must exist a sequence of 1=4-pinched bumpy metrics ¹gnº
converging to g in the C1 topology. In particular, if fgn WRP

3 ! R>0 is the function
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such that .RP 3; fgn�/ Š .SgnS
2; �gn/ for each n, we have limn!1 fgn D 1 in the C 0

topology provided the convergence gn ! g. Hence, it is enough to compute the limit

lim
n!1

c1.RP
3; fn�/ D lim

n!1
c1.SgnS

2; �gn/ D lim
n!1

2Ln;

where the last equality follows from the proof above for the bumpy case, and where Ln
denotes the length of a shortest geodesic for gn.

By the pinching condition, Lemma 4.2 confirms that 2� � Ln < 4� , for each n, and
thus, there exists a subsequence of ¹Lnºn2N converging to L � 2� > 0. Lemma 4.3
ensures that L is the length of a shortest geodesic for g. Putting all these together, we
conclude that

c1.SgS
2; �g/ D lim

n!1
c1.SgnS

2; �gn/ D lim
n!1

2Ln D 2L D A0
min.�g/;

using again Lemma 4.2 to obtain the last equality.

4.3. ECH of irrational Katok example

Now we study the ECH of irrational Katok metrics and compute its ECH spectrum. First,
we follow [49] and summarize Katok’s example. Let g0 be the round metric on S2 � R3,
a 2 R, and consider the Hamiltonian HaWT �S2 ! R defined by

Ha.p/ D kpk
�
g0
C ap.@� /;

where kpk�g0 is the dual norm (with respect to the norm induced by g0), and @� is the
Killing vector field generating the rotations around z-axis on S2 � R3. Namely, @� D
.�y@x C x@y/ in cartesian coordinates .x; y; z/ 2 R3. Consider the Legendre transfor-
mation associated to 1

2
H 2
a :

L 1
2H

2
a
W T �S2 ! TS2

p 7! Ha.p/
� .gb0/�1.p/
kpk�

C a@�

�
:

Here gb0 denotes the usual bundle isomorphism

gb0 W TS
2
! T �S2

v 7! g0.v; �/

induced by the round metric g0. Moreover, it is straightforward to check that

Fa WD Ha ıL 1
2H

2
a

is a Finsler metric when j˛j < 1. This metric can be interpreted as the metric obtained
by perturbing the round metric g0 on S2 in the direction of the wind @� , meaning that
distances are now computed considering a small contribution in favor of a rotation around
the z-axis in R3.
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One can check that for a 2 RnQ \ .0; 1/, the closed geodesics for Fa are exactly the
closed geodesics for the round metric g0 which are invariant by the rotations around the
z-axis. Hence, after the wind @� perturbation, the only closed geodesics of g0 that survive
are the equators. In this case, Fa has exactly two closed geodesics c1 and c2, with lengths
2�=.1C a/ and 2�=.1 � a/, corresponding to the equator traversed in or opposite to the
direction of the rotation, respectively. Moreover, the linear Poincaré maps Pc1 and Pc2
corresponding to these geodesics are conjugated to rotations with angle 2�=.1C a/ and
2�=.1 � a/, respectively. From now on, we fix a 2 RnQ \ .0; 1/.

4.3.1. The chain complex. Translating the latter facts to the contact topology side, we
get the 3-dimensional closed contact manifold .SFaS

2;�Fa/ admitting exactly two elliptic
Reeb orbits 
1 and 
2 with actions 2�=.1C a/ and 2�=.1� a/, respectively. Further, there
is a symplectic global trivialization � of the contact structure �Fa WD ker �Fa on SFaS

2

such that

CZ� .
k1 / D 2
j k

1C a

k
C 1 and CZ� .
2/ D 2

j k

1 � a

k
C 1:

Since �Fa is nondegenerate, the ECH chain complex ECC�.SFaS
2; �Fa ; �; J / is well

defined for a generic symplectization-admissible almost complex structure on R� SFaS
2.

Moreover, since the Reeb orbits 
1 and 
2 are elliptic, the index parity property of ECH
index (Proposition 1.6 in [29]) yields that the ECH index between two generators is always
an even number. Thus, the differential

@ W ECC�.SFaS
2; �Fa ; �; J /! ECC�.SFaS

2; �Fa ; �; J /

vanishes for any J and, therefore, the homology ECH�.SFaS
2; �Fa ; �/ agrees with its

chain complex and is generated by orbit sets ˛ D ¹.
1; m1/; .
2; m2/º such that

Œ˛� D m1 Œ
1�Cm2 Œ
2� D � 2 H1.SFaS
2
IZ/ Š Z2:

This last condition is equivalent to m1 C m2 � � mod 2 identifying � 2 Z2, since the
projections of the Reeb orbits are simple closed geodesics on the sphere S2, and so, they
cannot be null-homologous on SFaS

2.

4.3.2. Grading by ECH index. We now define an absolute Z grading on the chain com-
plex ECC�.SFaS

2; �Fa ; �/. Recall that �Fa is a trivial contact structure and so c1.�/C
2PD.�/ D 0 for each � , where PD.�/ denotes the Poincaré dual of � . In this case,

j˛j WD I.˛;;/ and jˇj WD I.ˇ; 
1/

define absolute Z gradings on ECC�.SFaS
2; �Fa ; �/ for � D 0 and � D 1, respectively.

Lemma 4.4. The gradings defined above are given, when m1 Cm2 � 0 mod 2, by

(4.5)

j

m1
1 


m2
2 j D 2

�m1 Cm2
2

�
m21
4
C
m1m2

2
�
m22
4
C

m1X
kD1

j k

1C ˛

k
C

m2X
kD1

j k

1 � ˛

k�
;
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and when n1 C n2 � 1 mod 2, by

(4.6)

j

n1
1 


n2
2 j D 2

� .n1 C n2/
2

�
n21
4
C
n1n2

2
�
n22
4
�
1

2
C

n1X
kD1

j k

1 � a

k
C

n2X
kD1

j k

1 � a

k�
:

Proof. Let ˛ D 
m11 

m2
2 2 � D 0, i.e., m1 Cm2 is even. Since

H2.SFaS
2
IZ/ Š H2.RP

3
IZ/ D 0;

there exists a unique class Z 2 H2.SFaS
2; ˛; ;/. We shall use the global trivialization �

of �Fa mentioned above, and hence, the term c� vanishes identically. Similarly to the proof
of Proposition 4.4 in [16], we compute

Q� .Z/ D
1

4
Q� .2Z/ D

1

4
.m21 sl.
21 /C 2m1m2 lk.
1; 
2/Cm22 sl.
22 //

D
1

4
.�2m21 C 4m1m2 � 2m

2
2/ D �

m21
2
Cm1m2 �

m22
2
�

Therefore,

j

m1
1 


m2
2 j D Q� .Z/C

m1X
kD1

CZ� .
k1 /C
m2X
kD1

CZ� .
k2 /

D
�m21
2
Cm1m2 C

�m22
2
C

m1X
kD1

2
j k

1C a

k
C 1C

m2X
kD1

2
j k

1 � a

k
C 1

D
�m21
2
Cm1m2 C

�m22
2
Cm1 Cm2 C

m1X
kD1

2
j k

1C a

k
C

m2X
kD1

2
j k

1 � a

k
D 2

�m1 Cm2
2

�
m21
4
C
m1m2

2
�
m22
4
C

m1X
kD1

j k

1C ˛

k
C

m2X
kD1

j k

1 � ˛

k�
:

For ˇ D 

n1
1 


n2
2 2 � D 1, let W be the unique class in H2.SFaS

2; ˇ; 
1/. If S0 is a
representative of the class in H2.SFaS

2; 

2n1�2
1 


2n2
2 ; ;/, we can take S0 C R � 
21 as a

representative of 2W . Then we compute

Q� .W / D
1

4
Q� .2W / D

1

4
Q� .S0 CR � 
21 / D

1

4

�
Q� .S0/C 2Q� .S0;R � 


2
1 /
�

D
1

4

�
� 2.n1 � 1/

2
C 4.n1 � 1/n2 C�2n

2
2 � 4.n1 � 1/C 4n2

�
D �

n21
2
C n1n2 �

n22
2
;

since
Q� .S0/ D .n1 � 1/

2 sl.
21 /C 2.n1 � 1/n2 lk.
21 ; 

2
2 /C n

2
2 sl.
21 /
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and
Q� .S0;R � 


2
1 / D .n1 � 1/ sl.
21 /C n2 lk.
21 ; 


2
2 /:

Thus the grading is given by

j

n1
1 


n2
2 j D Q� .W /C

n1X
kD1

CZ� .
k1 /C
n2X
kD1

CZ� .
k2 / � CZ� .
1/

D �
n21
2
C n1n2 �

n22
2
C

n1X
kD1

�
2
j k

1Ca

k
C 1

�
C

n2X
kD1

�
2
j k

1�a

k
C 1

�
� 1

D �
n21
2
C n1n2 �

n22
2
C n1 C n2 C

n1X
kD1

2
j k

1C a

k
C

n2X
kD1

2
j k

1 � a

k
� 1

D 2
� .n1Cn2/

2
�
n21
4
C
n1n2

2
�
n22
4
�
1

2
C

n1X
kD1

j k

1�a

k
C

n2X
kD1

j k

1�a

k�
:

This completes the proof.

Now we are ready to compute the ECH groups for the irrational Katok metric on the
sphere.

Proposition 4.5. The ECH chain complex of the unit tangent bundle of the sphere for a
irrational Katok metric Fa is given by

ECC�.SFaS
2; �Fa ; �/ D

´
Z2; if � 2 2Z�0;
0; otherwise,

for each � 2 H1.SFaS
2IZ/ Š Z2.

Proof. It is readily verified that both gradings in Lemma 4.4 are always positive even
integers. We claim that these give bijections between the generators and 2Z�0 for the two
homology classes in H1.SFaS

2IZ/, and this is enough to prove this proposition. Note
that half of the grading in (4.5) yields the map

fa W .m1; m2/ 7!
m1 Cm2

2
�
m21
4
C
m1m2

2
�
m22
4
C

m1X
kD1

j k

1C a

k
C

m2X
kD1

j k

1 � a

k
;

for nonnegative integers m1 and m2 such that m1 Cm2 is even. Note thatj k

1C a

k
D

j
k �

ka

1C a

k
D k �

j ka

1C a

k
� 1;

and similarly, that j k

1 � a

k
D

j
k C

ka

1 � a

k
D k C

j ka

1 � a

k
:
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Then, we compute

fa.m1; m2/ D
m1 Cm2

2
�
m21
4
C
m1m2

2
�
m22
4
C
m21 Cm1

2
�m1 �

m1X
kD1

j ka

1C a

k
C
m22 Cm2

2
C

m2X
kD1

j ka

1 � a

k
D

�m1 Cm2
2

�2
Cm2 �

m1X
kD1

j ka

1C a

k
C

m2X
kD1

j ka

1 � a

k
:

Let n WD .m1 Cm2/=2 and m WD m2. Under this transformation, we have

fa W D WD ¹.n;m/ 2 Z2�0 j m � 2nº ! Z�0

.n;m/ 7! n2 Cm �

2n�mX
kD1

j ka

1C a

k
C

mX
kD1

j ka

1 � a

k
:(4.7)

Claim. Let .n; m/ 2 D � R2. Then fa.n; m/ C 1 is the number of lattice points in D
below the line of slope �.1 � a/=a passing through the point .n;m/.

Proof of the Claim. LetDa.n;m/�D be the subset consisting in points inD lying below
the line of slope�.1� a/=a passing through the point .n;m/. The number of lattice points
in Da.n;m/ can be computed by

(4.8) L.Da.n;m// D L.T1/CL.T2/ �L.T3/CL.S/;

where L.A/ D #.A \ Z2/ denotes the number of lattice points in a subset A � R2, and
the subsets Ti � R2, for i D 1; 2; 3 and S � R2 are defined as follows. The subset S is
the line segment from .n; 0/ to .n;m/. The triangle T1 is delimited by the x-axis, the line
y D 2x and (not including) the line x D n. The triangle T2 is delimited by (not including)
the line segment S , the line of slope �.1 � a/=a passing through the point .n;m/ and the
x-axis. Finally, T3 is the triangle delimited by the line yD 2x, the line of slope�.1� a/=a
passing through the point .n;m/, and (not including) the line x D n, see Figure 1.

Now we compute the number of lattice points in each of these sets. It is simple to
check that

L.T1/ D 1C 3C � � � C 2n � 1 D n
2;(4.9)

L.S/ D mC 1;(4.10)

L.T2/ D

mX
kD1

j
k

1

.1 � a/=a

k
D

mX
kD1

j ka

1 � a

k
:(4.11)

To compute L.T3/, we first apply the SL.2;Z/ transformation
�
�1 0
2 �1

�
, and then the

translation by .n; 0/ to the triangle T3. So L.T3/ agrees with the number of lattice points
in the new triangle delimited by the coordinate axis and the line with slope �.1C a/=a
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Figure 1. Subsets Ti � R2 and S � R2.

passing through .0; 2n �m/. Hence,

(4.12) L.T3/ D

2n�mX
kD1

j ka

1C a

k
;

and putting (4.8), (4.9), (4.10), (4.11) and (4.12) together, we obtain L.Da.n; m// D

f .n;m/C 1, proving the claim.

Since a is irrational, the slope �.1 � a/=a is also irrational and hence, for each
j 2 Z�1 there exists a unique .n; m/ such that j D L.Da.n; m//. Therefore, the fact
L.Da.n; m// D fa.n; m/ C 1 ensures that fa defined in (4.7) is a bijection. Thus, the
grading in (4.5) factors through the bijections

¹
m1p1 

m2
p2
j m1 Cm2 2 2Z�0º

nD.m1Cm2/=2
����������!

mDm2
¹.n;m/ 2 Z2�0 j m � 2nº

2f
��! 2Z�0:

This concludes the proof for � D 0 2 H1.SFaS
2IZ/. One can deal with the case � D 1

analogously.

Since the differential vanishes in the chain complex ECC�.SFaS
2; �Fa ; �/, Proposi-

tion 4.5 gives also the computation of the ECH groups and, using the invariance due to
Taubes, this recovers Theorem 2.2. Now we are ready to compute the ECH spectrum of
.SFaS

2; �Fa/, proving Theorem 1.14.

Proof of Theorem 1.14. By Proposition 4.5, for any integer k > 0,

ECH2k.SFaS
2; �Fa ; 0/ Š Z2



Elliptic Reeb orbit on some real projective three-spaces via ECH 1859

has exactly one generator. Let �k be this generator. Since the U map does not depend on
the contact form by Theorem 2.1, then Theorem 2.3 still holds in this case, i.e., U�k D
�k�1, for k � 1. Moreover, a generator is an orbit set ˛ D 
m11 


m2
2 , where m1 C m2 is

even, and as such, it has total action given by

A.˛/ D m1
2�

1C a
Cm2

2�

1 � a
�

Thus, the result follows from the fact that the U map decreases the action.

As a consequence, we recover the ECH spectrum for the unit cotangent bundle of the
round sphere first computed in Theorem 1.4 of [16], as follows. We have the following
strict contactomorphisms:

.SFaS
2; �Fa/ Š .S

�
Fa
S2; �taut/ Š .S

�S2; fa�taut/;

where fa�taut is the contact form on the unit cotangent bundle of the round sphere S�S2

corresponding to the restriction of the tautological form on S�FaS
2. Therefore, by defini-

tion of the ECH spectrum for the degenerate case in (2.2), we obtain

ck.S
�S2; �taut/ D lim

n!1
ck.S

�S2; fan�taut/ D lim
n!1

ck.SFanS
2; �Fan /

D .M2 .N.2�; 2�///k ;

where we used Theorem 1.14 for a sequence an of irrational numbers in .0; 1/ converg-
ing to 0. The same argument yields the conclusion that Theorem 1.14 holds for any real
number a 2 Œ0; 1/.
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