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Transport-entropy and functional forms of
Blaschke–Santaló inequalities

Matthieu Fradelizi, Nathaël Gozlan, Shay Sadovsky and Simon Zugmeyer

Abstract. We explore alternative functional or transport-entropy formulations of the
Blaschke–Santaló inequality. In particular, we obtain new Blaschke–Santaló inequal-
ities for s-concave functions. We also obtain new sharp symmetrized transport-en-
tropy inequalities for a large class of spherically invariant probability measures,
including the uniform measure on the unit Euclidean sphere and generalized Cauchy
and Barenblatt distributions.

1. Introduction

The classical Blaschke–Santaló inequality [5, 28] states that if K � Rn is a convex body,
then there exists z 2 Rn such that

(1.1) jKj j.K � z/ıj � jBn2 j
2;

where the polar of a set A � Rn is defined by Aı D ¹y 2 Rn W hx; yi � 1; 8x 2 Aº,
and Bn2 denotes the Euclidean unit ball of Rn. Equality holds in (1.1) if and only if K
is an ellipsoid. Moreover, if one of the convex bodies K or Kı has its barycenter at 0
(which is for instance the case for centrally symmetric convex bodies), then (1.1) holds
with z D 0.

The inequality (1.1) admits a functional version, first proved by Ball [3] in the case of
even functions, and then extended to arbitrary functions by Artstein-Avidan, Klartag and
Milman [1]: for any function 'WRn ! R [ ¹C1º, there exists z 2 Rn such that

(1.2)
Z
e�' dx

Z
e�.'z/

�

dx � .2�/n;

where 'z.x/ D '.x C z/, x 2 Rn, and the Fenchel–Legendre transform of a function
f WRn ! R [ ¹C1º is defined by

f �.y/ D sup
x2Rn

¹hx; yi � '.x/º; y 2 Rn:
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Lehec [17] gave another proof of inequality (1.2) and showed that, if
R
xe�'.x/ dx D 0,

then (1.2) holds with z D 0. One sees that (1.2) gives back (1.1) by taking ' D k � k2K=2.
Recently, a sharp form of Talagrand’s transport-entropy inequality for the Gaussian

standard measure 
 on Rn has been deduced from (1.2) by Fathi [10]. More precisely, for
all probability measures �1 and �2 on Rd , with �2 centered, it holds

(1.3) W 2
2 .�1; �2/ � 2H.�1 j
/C 2H.�2 j
/;

where W2 denotes the usual quadratic Wasserstein distance (with respect to the usual
Euclidean norm j � j on Rn), defined by

W 2
2 .�1; �2/ D inf EŒjX1 �X2j

2�;

where the infimum runs over random vectors satisfyingX1� �1 andX2� �2, andH. � j�/
denotes the relative entropy functional with respect to some measure � on Rn, and is
defined by

H.� j�/ D

Z
log

d�

d�
d�;

whenever � is absolutely continuous with respect to �, and C1 if this is not the case.
Choosing �2 D 
 , inequality (1.3) immediately gives back the following classical inequal-
ity obtained by Talagrand in [29]: for all probability measures �1 on Rn,

(1.4) W 2
2 .�1; 
/ � 2H.�1j
/:

Without centering assumptions on �2, the following inequality can be easily deduced
from (1.4): for all probability measures �1 and �2 on Rn,

(1.5) W 2
2 .�1; �2/ � 4H.�1 j
/C 4H.�2 j
/:

Interestingly, inequalities (1.3), (1.4) and (1.5) are all sharp. We refer to [16] or [13]
for applications of transport-entropy inequalities to the concentration of measure phe-
nomenon.

The main objective of this paper is to extend the preceding results to other model
probability spaces than the Gaussian space .Rn; j � j; 
/. For that purpose, we will rely on
a more general functional version of the Blaschke–Santaló inequality that we shall now
present. The functional inequality (1.2) is in fact a particular case of the following result,
first proved by Ball [3] for even functions, then by the first named author and Meyer [11]
for log-concave functions, and finally extended by Lehec [19] to arbitrary measurable
functions: if f WRn! RC is integrable, then there exists a point z 2 Rn such that for any
measurable function gWRn ! RC satisfying

f .x C z/g.y/ � �.hx; yi/2; 8x; y 2 Rn such that hx; yi > 0;

it holds

(1.6)
Z
f .x/ dx

Z
g.y/ dy �

� Z
�.jxj2/ dx

�2
;
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where � WRC!RC is some weight function such that
R
�.jxj2/dx <C1. As first proved

by Ball [3], if f is even, then z can be chosen to be 0. Inequality (1.2) corresponds to the
weight function �0.t/ D e�t=2, t � 0.

In the spirit of Fathi’s version of Talagrand’s inequality (1.3), we show in Theorem 3.1
that the general functional version of the Blaschke–Santaló inequality (1.6) implies sharp
transport-entropy inequalities for a class of spherically invariant probability measures that
contain the standard Gaussian as a particular case. More precisely, we prove the following
result in Theorem 3.1.

Theorem. Suppose that � WRC! .0;1/ is a continuous nonincreasing function such thatR
�.jxj2/ dx < C1 and t 7! � log �.et / is convex on R. Then the probability measure

��.dx/ D
�.jxj2/R
�.jyj2/ dy

dx

satisfies the following inequality: for all �1; �2 2 P .Rn/ with �1 and �2 symmetric,

(1.7) T!�.�1; �2/ � H.�1 j��/CH.�2 j��/;

where
T!�.�1; �2/ D inf

X1��1;X2��2
EŒ!�.X1; X2/�

is the optimal transport cost associated with the cost function !� defined, for x;y2Rn, by

!�.x; y/ D

8̂<̂
: log

� �.hx; yi/2

�.jxj2/�.jyj2/

�
if hx; yi � 0;

C1 otherwise.

In the result above, and in the rest of the paper, a probability measure � on Rn will be
called symmetric if it is invariant under the map Rn ! Rn W x 7! �x.

The proof of this result relies on a classical duality argument due to Bobkov and
Götze [6]. Since inequality (1.7) holds only for symmetric probability measures, it can
be considered as some transport-entropy version of Ball’s functional Blaschke–Santaló
inequality for even functions. Linearizing inequality (1.7) around �� gives back a sharp
Brascamp–Lieb type inequality recently used by Cordero-Erausquin and Rotem [8] in
their study of the .B/ conjecture and the Gardner–Zvavitch conjecture for rotationally
invariant probability measures. More precisely, we get the following in Theorem 4.1.

Theorem. Let � WRC! RC be such that t 7! v�.t/D � log�.et / is convex and increas-
ing. Define the measure �� in the same way as in the previous theorem. Then, for all
f 2 C1c .R

n/ even and such that
R
f d�� D 0,

(1.8)
Z
f 2 d�� �

1

2

Z
hH�1� rf;rf i d��;

where H� is the positive matrix given by

1

2
H�.y/ D

1

jyj2

h�
In �

y ˝ y

jyj2

�
v0�.t/C

y ˝ y

jyj2
v00�.t/

i
where, for simplicity, we used the notation t D 2 logjyj.
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Since (1.8) admits equality cases, this shows in particular that inequality (1.7) is sharp.
In comparison to Fathi’s inequality (1.3), it seems natural to ask if (1.7) can be exten-

ded to more general couples of probability measures, for instance for couples of the form
.�1; �2/ with �1 arbitrary and �2 centered with respect to ��. A closely related question is
whether, for a given weight function �, the functional Blaschke–Santaló inequality (1.6) is
true with z D 0 whenever f has its barycenter at 0, as proved by Lehec [17] in the partic-
ular case of the weight function �0 defined above. As we will now explain, the answer to
these questions depends on the weight function �. Consider the class of weight functions
.�s/s2R, defined for s ¤ 0 by

�s.t/ D .1 � st/
1=.2s/
C ; t � 0:

The associated probability measures are the following:
• For s > 0, we will denote

(1.9) d
s.x/ WD ��s .dx/ D
1

Zs

�
1 � sjxj2

�1=.2s/
C

dx;

which is a particular case of the so-called Barenblatt profiles. Note that 
s ! 
 as
s ! 0 (in the sense of pointwise convergence of densities, for instance).

• For ˇ > n=2, we will denote

d�ˇ .x/ D
1

Zˇ .1C jxj
2/ˇ

dx;

which is a Cauchy-type distribution and corresponds to (a dilation of) ��s with s D
�1=.2ˇ/.
Let us first present our main contributions in the range s > 0. As we shall see in

Theorem 3.2, the following is true.

Theorem. Let s > 0. Consider the probability 
s defined in (1.9). Then, for any �1 and �2
with compact support included in the open Euclidean ball Bs centered at the origin and
of radius 1=

p
s, and with �2 centered,

(1.10) Tks .�1; �2/ � H.�1 j
s/CH.�2 j
s/;

where ks WBs � Bs ! R is given by

ks.x; y/ D
1

s
log

� 1 � shx; yi

.1 � sjxj2/1=2 .1 � sjyj2/1=2

�
; x; y 2 Bs :

This result is analogous to Fathi’s result (1.3) in the Gaussian case, and gives back (1.3)
by sending s! 0. One can show that (1.10) (see Remark 3.3 for explanations) also implies
the following version of the functional Blaschke–Santaló inequality: for all continuous
f WRn ! RC and g WRn ! RC with supports in Bs and such that

bar.f / WD

R
xf .x/ dxR
f .y/ dy

D 0

and

(1.11) f .x/g.y/ � �s.hx; yi/
2; 8x; y 2 Bs;
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it holds Z
f .x/ dx

Z
g.y/ dy �

� Z
�s.jxj

2/ dx
�2
:

This generalizes the Blaschke–Santaló inequality under a centering condition obtained by
Lehec in [17] for the weight �0 (which corresponds to the limit case s ! 0). As we will
see with Theorem 2.9, one can go a step further:

Theorem. If f WRn ! RC is integrable and is such that 0 2 int.Conv.supp.f ///, then it
holdsZ
f .x/ dx

Z
Lsf .y/ dy �

� Z
�s.jxj

2/ dx
�2 �

1 � shSans.Ls.f //; bar.f /i
�nC1C1=s

;

where

Lsf .y/ D inf
x2Rn

.1 � shx; yi/
1=s
C

f .x/
; for s ¤ 0,

the infimum being taken on ¹x 2Rn W f .x/ > 0º, and where Sans.g/ denotes the s-Santaló
point of g, whose definition is given in Lemma 2.8.

The proof of this theorem relies on the fact that the integral of Ls.fz/ with respect to
Lebesgue measure, where fz.x/ D f .z C x/, x 2 Rn, can be expressed as the integral
of Ls.f / under some weighted measure. The same type of arguments can also be used at
the level of the Blaschke–Santaló inequality for sets. In particular, we show the following
in Theorem 2.1.

Theorem. If K is a compact set such that jKj > 0 and 0 2 int.Conv.K//, then

jKj jKıj � jBn2 j
2 .1 � hSan.Kı/; bar.K/i/nC1;

with equality if and only if K is a centered ellipsoid, where San.Kı/ is defined in Sec-
tion 2. In particular, if bar.K/ WD 1

jKj

R
K
x dx D 0, then jKj jKıj � jBn2 j

2.

The centered inequality above seems to be new, even for convex bodies, while the
case where bar.K/ D 0 extends a result by Lutwak [20], also reproved differently by
Lehec [17], who both obtained the same inequality but under the additional assumption
that K is star-shaped.

Let us now turn to the range s < 0. Applying inequality (1.7) with the weight function
t 7! .1C t /�ˇ and ˇ > n=2, yields

(1.12) ˇT!.�1; �2/ � H.�1 j�ˇ /CH.�2 j�ˇ /;

where the optimal transport cost T! is defined with respect to the cost function ! given,
for x; y 2 Rn, by

!.x; y/ D

8̂<̂
: � 2 log

�
1C hx; yip

1C jxj2
p
1C jyj2

�
if hx; yi > 0;

C1 otherwise.

The fact that the cost function ! can take the value C1 makes inequality (1.12)
for Cauchy-type distributions more rigid than its counterpart (1.10) for Barenblatt-type
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distributions. Namely, it is not possible to extend (1.12) to couples of probability meas-
ures .�1; �2/ with �1 arbitrary and �2 symmetric. See Remark 3.9 for more details. For
the particular value ˇ D .nC 1/=2, it turns out that the canonical geometric framework
for (1.12) is the unit sphere Sn � RnC1 equipped with the uniform probability measure,
denoted by � . In Theorem 3.7, we establish the following.

Theorem. Let ˛ WSn � Sn ! RC [ ¹C1º be the cost function defined, for u; v2Sn, by

(1.13) ˛.u; v/ D

²
log

�
1
hu;vi

�
if hu; vi > 0;

C1 otherwise,

and denote by T˛ the corresponding transport cost on P .Sn/. Then, for all probability
measures �1 and �2 on Sn which are invariant under the maps Sn ! Sn W u 7! �u and
Sn ! Sn W u 7! .u1; : : : ; un;�unC1/, it holds

(1.14) .nC 1/T˛.�1; �2/ � H.�1 j�/CH.�2 j�/:

This result is deduced from (1.12) using the fact that the standard Cauchy distribution
�.nC1/=2 is the image of �C, the uniform probability measure on the upper half sphere SnC,
under the so-called gnomonic transformation:

SnC ! Rn W u 7!
� u1

unC1
;
u2

unC1
; : : : ;

un

unC1

�
:

The cost function ˛ defined above has been introduced by Oliker [25] (see also [4,15]) in
connection with the so-called Aleksandrov problem in convex geometry. Recently, Koles-
nikov [15] proved the following inequality involving the transport cost T˛: for any sym-
metric probability measure � on Sn (that is, invariant under the map Sn ! SnWu 7! �u),
it holds

(1.15) .nC 1/ T˛.�; �/ � H.� j�/:

Thus (1.14) already improves (1.15) for a special class of distributions. As it turns out, one
can improve (1.15) further. We show in Theorem 3.7, by a direct proof using the Blaschke–
Santaló inequality written in polar coordinates, together with the dual Kantorovich type
formula for T˛ , that (1.14) holds under the sole assumption that �1 and �2 are symmetric.
We refer to the end of Section 3.3 for additional comments about the sharpness of this
improvement of Kolesnikov inequality (1.15).

2. Blaschke–Santaló’s inequality for compact sets and s-concave
functions

In Subsection 2.1, we extend to arbitrary compact sets the result of Lutwak [20] and
Lehec [17] stating that the Blaschke–Santaló inequality holds for star-shaped sets with
barycenter at the origin. In Subsection 2.2, we generalize this to the Blaschke–Santaló
inequality for s-concave functions, for s � 0. Recall that a function f WRn ! RC is
s-concave, for s > 0, if f s is concave on its support; for s < 0, if f s is convex; and
for s D 0, one says log-concave and it means that log.f / is concave. In fact, for sets as
well as for functions, we prove an inequality valid also if the barycenter is not at the origin.
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2.1. Blaschke–Santaló inequality for compact sets

For any set A in Rn, we define its polar by Aı D ¹y 2 Rn W hx; yi � 1;8x 2 Aº. Then,
one has Aı D .Conv.A; 0//ı, thus the set Aı is a closed convex set containing the origin
and, from the bipolar theorem, one has that .Aı/ı D Conv.A; 0/. The classical Blaschke–
Santaló [5, 28] inequality asserts that, for any convex body K in Rn, one has

min
z2int.K/

jKj j.K � z/ıj � jBn2 j
2;

with equality if and only if K is an ellipsoid. For any convex body K, we define its
support function hK.y/D supx2Khx; yi, for y 2 Rn. If, moreover,K contains the origin,
we define its radial function by �K.u/ D sup¹t W tu 2 Kº, for u 2 Sn�1, and one has
�Kı.u/ D hK.u/

�1, for all u 2 Sn�1. For any z in the interior of a convex body K and
any y 2 Rn, one has

hK�z.y/ D sup
x2K

hx � z; yi D hK.y/ � hz; yi:

Integrating in polar coordinates, we get

(2.1) j.K � z/ıj D
1

n

Z
Sn�1

�.K�z/ı.u/
nd�.u/ D

1

n

Z
Sn�1

d�.u/

.hK.u/ � hz; ui/n
�

This formula shows that the map z 7! j.K � z/ıj is strictly convex. Moreover, it is not
difficult to see that j.K � z/ıj tends to infinity when z! @K. It follows that the minimum
minz j.K � z/ıj is reached at a unique point San.K/, called the Santaló point ofK, which
is in the interior of K. It follows that the Blaschke–Santaló theorem may be reformulated
as follows: for any convex bodyK such that San.K/D 0, one has jKj jKıj � jBn2 j

2, with
equality if and only ifK is a centered ellipsoid. We say that a measurable setK with finite
and positive volume is centered if its center of mass bar.K/, defined by

bar.K/ D
Z
K

x dx

jKj
;

is at the origin. Since San.K/ is the unique critical point of the function z 7! j.K � z/ıj,
we get that z D San.K/ if and only if rj.K � z/ıj D 0. By differentiating (2.1) and
integrating in spherical coordinates, we get

rj.K � z/ıj D

Z
Sn�1

ud�.u/

.hK.u/ � hz; ui/nC1

D .nC 1/

Z
.K�z/ı

x dx D .nC 1/ j.K � z/ıj bar..K � z/ı/:

It follows that the Santaló point San.K/ of the convex body K is also the unique point z
such that bar..K � z/ı/D 0. One deduces from this property that San..K � bar.K//ı/D 0
and that San.K/ D 0 if and only if bar.Kı/ D 0. Thus, the following third reformulation
of the Blaschke–Santaló inequality holds: for any convex body K such that bar.K/ D 0,
one has jKj jKıj � jBn2 j

2, with equality if and only if K is an ellipsoid. Lutwak noticed
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this in [20] and extended it to the case of compact star-shaped bodies. A compact set A is
called star-shaped with respect to the origin if for any a 2 A, the segment ¹ta W t 2 Œ0; 1�º
is contained in A. In his Theorem 3.15 in [20], Lutwak proved that if A is star-shaped with
respect to the origin and has barycenter at the origin, then jAj jAıj � jBn2 j

2, with equality
if and only if A is a centered ellipsoid. This result was also reproved by Lehec [17], who
deduced it from a version of this theorem for log-concave functions. In the following
theorem, we extend Lutwak’s theorem to any compact set with a different proof.

Theorem 2.1. Let K be a compact set such that jKj > 0 and 0 2 int.Conv.K//. Then

(2.2) jKj jKıj � jBn2 j
2 .1 � hSan.Kı/; bar.K/i/nC1;

with equality if and only if K is a centered ellipsoid. In particular, if bar.K/ D 0, then
jKj jKıj � jBn2 j

2, with equality if and only if K is a centered ellipsoid.

Remark 2.2. Formula (2.2) seems to be new even in the case of convex sets.

Remark 2.3. IfK is convex, since bar.K/ 2K and San.Kı/ 2Kı, one has the inequality
hSan.Kı/;bar.K/i � 1, but it follows from the proof that actually hSan.Kı/;bar.K/i � 0,
see Remark 2.6.

Remark 2.4. Another formulation of the Blaschke–Santaló inequality for compact sets
follows directly from the case of convex sets, but with a less natural polarity point: given
a compact set A, choosing z D San.Conv.A// and applying the classical inequality to
Conv.A/, we get .A � z/ı D .Conv.A/ � z/ı, and we deduce that

jAj j.A � z/ıj � jConv.A/j j.Conv.A/ � z/ıj � jBn2 j
2:

Before proving this theorem, we first give a lemma which is very classical in projective
geometry.

Lemma 2.5. For z ¤ 0, we denote the open halfspaceHz D ¹y W 1C hy; zi > 0º, and we
define the map Fz WHz ! Rn by

Fz.y/ D
y

1C hy; zi
; for any y 2 Hz .

Then

(i) The map Fz is a bijection from Hz onto H�z whose reciprocal is F�z , and the
Jacobian determinant of Fz is Jz.y/ WD .1C hy; zi/�.nC1/.

(ii) For any compact set K in Rn such that 0; z 2 int.Conv.K//, we have .K � z/ı D
F�z.K

ı/ and

(2.3) j.K � z/ıj D

Z
Kı

dx

.1 � hz; xi/nC1
�

Notice that formula (2.3) is classical, and can be found for example in Lemma 3 of [24]
by Meyer and Werner, who proved it by using (2.1) and a change of variable. We give here
another proof which we shall extend to the functional case in the next section.
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Proof. (i) From the definition of the map Fz , it is immediate that Fz.Hz/ � H�z and
that F�z.Fz.y// D y, for all y 2 Hz . It follows that Fz is a bijection from Hz onto H�z
whose reciprocal is F�z . The computation of the Jacobian matrix of Fz is direct and gives

Jac.Fz/.y/ D
1

1C hy; zi

�
In �

yzT

1C hy; zi

�
:

Using the following Sylvester’s identity, det.Ip C AB/ D det.Iq C BA/, for any matrix
A 2Mp;q and B 2Mq;p , we conclude that the Jacobian determinant of Fz is

Jz.y/ D det.Jac.Fz/.y// D
1

.1C hy; zi/n

�
1 �

hy; zi

1C hy; zi

�
D

1

.1C hy; zi/nC1
�

(ii) One has

.K � z/ı D ¹y W hy; x � zi � 1; 8x 2 Kº D ¹y W hy; xi � 1C hy; zi; 8x 2 Kº:

Since 0 2 int.Conv.K//, for any y 2 .K � z/ı, one has hy;�zi< 1, hence 1C hy; zi> 0,
thus

.K � z/ı D
°
y W

D y

1C hy; zi
; x
E
� 1; 8x 2 K

±
D ¹y W Fz.y/ 2 K

ı
º D F�z.K

ı/:

The last equality follows from the fact that Kı � H�z , which in turn follows from the
hypothesis z 2 int.Conv.K//. Formula (2.3) follows by using a change of variable and the
formula for the Jacobian from (i).

Now we give the proof of Theorem 2.1.

Proof of Theorem 2.1. LetK be a compact set such that 0 < jKj <C1 and suppose that
0 2 int.Conv.K//. Then Kı is a convex body to which we apply the classical Blaschke–
Santaló’s inequality: for z D San.Kı/, one has

jKıj j.Kı � z/ıj � jBn2 j
2;

with equality if and only ifKı is an ellipsoid. Since 0 2 int.Kı/ and z 2 int.Kı/, we may
apply formula (2.3) to Kı and we get

j.Kı � z/ıj D

Z
Kıı

dx

.1 � hz; xi/nC1
�

Using now that K � Kıı and applying Jensen’s inequality to the function '.x/ D
.1 � hz; xi/�.nC1/, which is convex on K, we deduce that

(2.4) j.Kı � z/ıj �

Z
K

dx

.1 � hz; xi/nC1
�

jKj

.1 � hSan.Kı/; bar.K/i/nC1
�

This concludes the proof of the inequality. If there is equality in this inequality, then, from
the equality case in Blaschke–Santaló’s inequality, we deduce that Kı is an ellipsoid.
Moreover, from the equality case in Jensen’s inequality, it follows that San.Kı/ D 0, thus
bar.K/D 0. Finally, one has jKj D jKııj, which implies that jConv.K/ nKj D 0. SinceK
is compact, it follows that K D Kıı. We thus conclude that K is a centered ellipsoid.
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Remark 2.6. This is the proof of Remark 2.3: if K is convex then, using that in for-
mula (2.4) one has z D San.Kı/, it follows from the definition of the Santaló point that
j.Kı � z/ıj � jKııj D jKj. Thus, we conclude that hSan.Kı/; bar.K/i � 0. Notice that,
applied to Kı, this gives also hSan.K/; bar.Kı/i � 0.

2.2. Blaschke–Santaló inequality for the s-concave duality

The following general form of the functional Blaschke–Santaló inequality was proved by
Ball [3] in the even case, by the first-named author and Meyer [11] in the log-concave
case, and by Lehec [19] in the general case.

Theorem 2.7. Let f WRn!RC be integrable. Then there exists z2Rn such that whenever
gWRn!RC is a measurable function satisfying f .xC z/g.y/� �.hx;yi/2 for all x;y 2
Rn such that hx; yi > 0, for some weight function � WRC! RC such that

R
�.jxj2/ dx <

C1, it holds Z
f .x/ dx

Z
g.y/ dy �

� Z
�.jxj2/ dx

�2
:

Moreover, the point z can be selected in the interior of the convex hull of the support of
the measure with density f . In the case where f is even, then z can be chosen to be 0.

The fact that z can be chosen in the convex hull of the support of �f .dx/ D f .x/ dx
follows from Lehec’s construction of z as the center of a Yao–Yao partition for �f (see
Theorem 9 in [19]) and from Proposition 5 of [18], which implies that the center of any
such partition must belong to the convex hull of the support of �f . In the following, we
shall denote fz D f .z C �/:

For s 2 R and g WRn! RC not identically zero, we define its s-concave dual function
Lsg WRn ! RC in the following way: for every y 2 Rn,

(2.5) Lsg.y/ D inf
x2Rn

.1 � shx; yi/
1=s
C

g.x/
; for s ¤ 0,

where the infimum is taken on ¹x 2 Rn W g.x/ > 0º. For s D 0, we set

L0g.y/ D inf
x2Rn

e�hx;yi

g.x/
�

Notice that the s-dual (even of a non-s-concave function) is s-concave, and that the 0-dual
is very much related to the Legendre transform since for any function ' WRn!R[¹C1º,
one has L0.e

�'/ D e�'
�

, where '� is the Legendre transform of ', defined by '�.y/ D
supx.hx; yi � '.x//.

This class was previously studied by Artstein-Avidan and Milman in [2], where they
proved that Ls is essentially the only order reversing transformation on s-concave func-
tions. They also show that this duality is the usual polarity transform on the epigraphs of
the functions for s D 1.

Applied to the function �s.t/ D .1 � st/
1=.2s/
C , for s ¤ 0, and �0.t/ D e�t=2, The-

orem 2.7 implies that for any integrable function f WRn ! RC, there exists z such that
for any s > �1=n,

(2.6)
Z

Rn

f .x/ dx

Z
Rn

Ls.fz/.y/ dy �
� Z

Rn

�s.jxj
2/ dx

�2
µ cs;
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where a direct explicit computation gives that c0 D .2�/n and

cs D

8̂̂̂̂
<̂
ˆ̂̂:
��
s

�n� �
�
1C 1

2s

�
�
�
1C 1

2s
C

n
2

��2 for s > 0,

� �
jsj

�n��� 1
2jsj
�
n
2

�
�
�
1
2jsj

� �2
for �1=n < s < 0.

Inequality (2.6) was established earlier in the cases where 1=s is an integer and s D 0

by Artstein-Avidan, Klartag, and Milman [1]. For s < 0, inequality (2.6) was proved by
Rotem in [27]. In particular, for s D 0, this gives back the Blaschke–Santaló inequality
for the Legendre transform established in [1], which states that for any function ' WRn !
R [ ¹C1º, there exists z 2 Rn such thatZ

e�'
Z
e�.'z/

�

� .2�/n:

This theorem was reproved by Lehec [17], who also established that if the barycenter
of e�' (defined as bar.e�'/D

R
xe�'.x/ dx=

R
e�') is at the origin, then one may choose

z D 0, that is, Z
e�'

Z
e�'

�

� .2�/n:

We extend this theorem to the s-duality for any s � 0. First we define the barycenter of f
to be bar.f / D

R
xf .x/ dx=

R
f . As in the case of sets, we first state a lemma that is the

functional analogue of Lemma 2.5. Recall that

Fz.y/ D
y

1C hy; zi
�

Lemma 2.8. Let s � 0 and let f WRn!RC be a measurable function such that f .0/ > 0.

(1) Then for every z; y 2 Rn, one has Ls.fz/.y/ D .1C shz; yi/
1=s
C Lsf .Fsz.y//, for

s > 0, and L0.fz/.y/ D e
hz;yiL0f .y/.

(2) Moreover, if f .z/ > 0, then ¹x WLsf .x/ > 0º �H�sz D ¹x W 1� shz; xi > 0º and,
for s > 0,

(2.7)
Z

Ls.fz/ D

Z
Lsf .x/

.1 � shz; xi/nC1C1=s
dx:

(3) If f is bounded and Lsf is integrable, then the function S.z/ WD
R

Ls.fz/ is strictly
convex and admits a unique minimum at a point Sans.f /, that we call the s-Santaló
point of f , and which is in the interior of Conv.supp.f //.

Proof. (1) For s D 0, the relation is clear. Let us assume that s > 0. From the definition,
one has

Ls.fz/.y/ D inf
x

.1 � shx; yi/
1=s
C

f .x C z/
D inf

x

.1C shz; yi � shx; yi/
1=s
C

f .x/
�
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Since the infimum runs on the set ¹x W f .x/ > 0º, and since f .0/ > 0, one deduces that

Ls.fz/.y/ �
.1C shz; yi/

1=s
C

f .0/
�

Hence Ls.fz/.y/ D 0 if 1C shz; yi � 0. Moreover, for y 2 Hsz , one has

Ls.fz/.y/ D .1C shz; yi/
1=s Lsf

� y

1C shz; yi

�
D .1C shz; yi/1=s Lsf .Fsz.y//:

(2) In the same way, from the definition of Ls , if f .z/ > 0 then, for all y,

Ls.f /.y/ �
.1 � shz; yi/

1=s
C

f .z/
�

Thus if Ls.f /.y/ > 0, then 1� shz; yi > 0, which means that y2H�sz . Thus, using the
change of variable yDF�sz.x/ for y2Hsz , and the fact that .1Cshz; yi/.1�shz; xi/D1,
we get Z

Ls.fz/.y/ dy D

Z
Hsz

.1C shz; yi/1=s Lsf .Fsz.y// dy

D

Z
H�sz

Lsf .x/

.1 � shz; xi/nC1C1=s
dx:

(3) The convexity is a direct consequence of formula (2.7). The boundedness of f
implies that Lsf .0/ > 0, and so 0 is in the interior of the support of Lsf . The existence
of a unique minimizer was recently proved by Ivanov and Werner in [14]. They assumed
for their proof that f is s-concave, but using that LsLsLsfz D Lsfz , we can actually
assume that f is s-concave. Moreover, it is clear that supp.Lsfz/ D .supp.fz//ı, so if z
is not in the interior of Conv.supp.f //, then 0 is not in the interior of Conv.supp.fz// and
supp.Lsfz/ D .supp.fz//ı is unbounded, which implies that

R
Lsfz D C1.

Using the preceding lemma, we can now prove the following theorem.

Theorem 2.9. Let s � 0 and let f WRn!RC be an integrable function such that
R
f > 0

and 0 2 int.Conv.supp.f ///. Then, for s > 0,Z
f

Z
Lsf � cs.1 � shSans.Ls.f //; bar.f /i/nC1C1=s

and Z
f

Z
L0f � .2�/

n e�hSan0.L0.f //;bar.f /i:

In particular, if bar.f / D 0, then
R
f
R

Lsf � cs .

Proof of Theorem 2.9. The proof of this theorem is similar to that of Theorem 2.1. Fix
a function f (without any concavity assumption) such that 0 2 int.Conv.supp.f /// and
0 <

R
Rnf < C1. Then, from (2.6) applied to Lsf , one has, for z D Sans.Lsf /,Z

Rn

Lsf .x/ dx

Z
Rn

Ls..Lsf /z/.y/ dy � cs :
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Since Lsf .z/ > 0, applying (2) of Lemma 2.8, we deduce thatZ
Rn

Ls..Lsf /z/.y/ dy D

Z
LsLsf .x/

.1 � shz; xi/nC1C1=s
dx:

Using that LsLsf .x/ � f .x/ and Jensen’s inequality, we getZ
Rn

Ls..Lsf /z/.y/ dy �

Z
f .x/

.1 � shz; xi/nC1C1=s
dx

�

R
f .x/ dx

.1 � shSans.Ls.f //; bar.f /i/nC1C1=s
;

which concludes the proof of the theorem.

3. Transport-entropy forms of Blaschke–Santaló inequality

Given a measurable cost function c WRn � Rn ! R [ ¹C1º, bounded from below, the
optimal transport cost between two probability measures �1; �2 2 P .Rn/ is defined as
follows:

Tc.�1; �2/ D inf
Z
c.x; y/ d�.x; y/;

where the infimum runs over the set of all � 2 P .Rn �Rn/ such that �.Rn � � /D �1. � /
and �. � �Rn/ D �2. � /, with P .Rn/ (respectively, P .Rn �Rn/) denoting the set of all
Borel probability measures on Rn (respectively, Rn �Rn).

Relative entropy is another classical functional on P .Rn/ that we shall now recall.
Wheneverm is some measure on Rn (not necessarily of mass 1) and d� D fdm 2P .Rn/,
the relative entropy of � with respect to m is defined by

H.�jm/ D

Z
f logf dm;

as soon as the right-hand side makes sense (that is to say, f logCf or f log�f is m-in-
tegrable). In particular, when m is a probability measure, H.� jm/ always makes sense in
RC [ ¹C1º.

Comparing optimal transport costs to relative entropy is the purpose of the family of
transport-entropy inequalities introduced by Marton [21–23] and Talagrand [29] in the
nineties. We refer to the survey [13] for a presentation of this class of inequalities and
their applications in the concentration of measure phenomenon. One of the most classical
example of such an inequality is the so-called Talagrand’s transport inequality for the
standard Gaussian measure. It reads as follows:

W 2
2 .�; 
/ � 2H.� j
/; 8� 2 P .Rn/;

where 
 is the standard Gaussian probability measure on Rn, andW 2
2 .�; 
/ is the squared

Wasserstein distance, which is equal to Tc.�; 
/ for c.x; y/ D jx � yj2, x; y 2 Rn. This
inequality is optimal, with equality obtained when � is a translation of 
 . Using the triangle
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inequality for W2, it is easily seen that the following variant involving two probability
measures also holds:

W 2
2 .�1; �2/ � 4H.�1 j
/C 4H.�2 j
/; 8�1; �2 2 P .Rn/:

This inequality is still optimal, with equality achieved when �1 and �2 are two standard
Gaussian with opposite means. Recently, a symmetrized version of this inequality was
obtained by Fathi [10], namely

(3.1) W 2
2 .�1; �2/ � 2H.�1 j
/C 2H.�2 j
/;

whenever �1 is centered and �2 is arbitrary. Fathi derived (3.1) from a functional version
of Blaschke–Santaló’s inequality.

The aim of this section is to further explore the relationships between transport-entropy
inequalities and functional forms of the Blaschke–Santaló inequality given in Theorem 2.7.
We will in particular derive from the latter some optimal transport-entropy inequalities for
spherically invariant probability models that go beyond the Gaussian case.

3.1. General costs

Utilizing Theorem 2.7 gives us two different families of transport-entropy inequalities for
a large class of spherically invariant probability measures.

Theorem 3.1. Let �WRC ! .0;1/ be a continuous nonincreasing function such thatR
�.jxj2/ dx <C1, and t 7! � log�.et / is convex on R: Let �� be the probability meas-

ure with density proportional to �.jxj2/.

(i) For all �1; �2 2 P .Rn/, we have

(3.2) T Q!�.�1; �2/ � H.�1 j��/CH.�2 j��/;

where the optimal transport cost T Q!� is defined with respect to the cost function Q!�
given by

Q!�.x; y/ D log
� �.jhx; yij/2

�.jxj2/ �.jyj2/

�
; x; y 2 Rn:

(ii) For all �1; �2 2 P .Rn/ with �1 and �2 symmetric, we have

(3.3) T!�.�1; �2/ � H.�1 j��/CH.�2 j��/;

where the optimal transport cost T!� is defined with respect to the cost function !�
given, for x; y 2 Rn, by

!�.x; y/ D

8̂<̂
: log

� �.hx; yi/2

�.jxj2/ �.jyj2/

�
if hx; yi � 0;

C1 otherwise.

Furthermore, there is equality in inequalities (3.2) and (3.3) when �1 D �2 D ��.
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Before turning to the proof of Theorem 3.1, let us make some comments. If (3.2)
holds for all couples �1; �2 without restriction, note that the cost Q!� is not very stand-
ard. For instance, if �0.t/ D e�t=2, for which �� D 
 is the standard Gaussian, one gets
Q!�0.x; y/ D

1
2
.jxj � jyj/2, x; y 2 R, instead of the usual quadratic cost 1

2
jx � yj2. The

cost !� seems better adapted to the geometry of the measure ��, but the corresponding
transport-entropy inequality (3.3) requires symmetry assumptions on �1 and �2. Taking
Fathi’s result (3.1) into consideration, a natural question is to ask whether these symmetry
assumptions can be relaxed or not. We will see in the next two sections that the answer to
this question depends on the cost function �.

Proof. In this proof, we adapt the classical dualization argument by Bobkov and Götze [6]
to our context. Let us first prove (i). Rewriting Theorem 2.7 (even case) with respect to
the functions

F.x/ D logf .x/ � log �.jxj2/ and G.y/ D logg.y/ � log �.jyj2/;

we get the following: for all bounded measurable functions F;G such that F is even and

(3.4) F ˚G � Q!�;

it holds

(3.5)
Z

Rn

eF d��

Z
Rn

eG d�� � 1;

where F ˚ G.x; y/ D F.x/C G.y/, for x; y 2 Rn: We now introduce two probability
measures �1 and �2. Then, taking the logarithm of inequality (3.5), we find that

H.�1 jm/CH.�2 jm/ �

Z
Rn

F d�1 � log
Z

Rn

eF d�� C

Z
Rn

G d�2 � log
Z

Rn

eG d��

�

Z
Rn

F d�1 C

Z
Rn

G d�2;(3.6)

where the first inequality comes from the duality formula for the relative entropy func-
tional: if � 2 P .Rn/ and log d�=dm 2 L1.�/, then

H.�jm/ D sup
f2L1.�/

° Z
Rn

f d� � log
Z

Rn

ef dm
±
:

Optimizing in (3.6) with respect to F and G, we thus find that

H.�1 j��/CH.�2 j��/ � sup
.F;G/2S

° Z
Rn

F d�1 C

Z
Rn

G d�2

±
where the supremum runs over the set S of couples of bounded measurable functions
.F;G/ with F even and satisfying (3.4).

Now, if .F; G/ is a couple of bounded measurable functions satisfying (3.4) (with F
not necessarily even), then by the symmetry of Q!�, the even function given by QF .x/ D
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max¹F.x/; F.�x/º, x 2 Rn, is such that . QF ;G/ 2 S , and
R

Rn
QF d�1 �

R
Rn F d�1, and

so we may remove the assumption on evenness of F and conclude that

sup
.F;G/2S

° Z
Rn

F d�1 C

Z
Rn

G d�2

±
D sup
.F;G/WF˚G� Q!�

° Z
Rn

F d�1 C

Z
Rn

G d�2

±
D T Q!�.�1; �2/;

where the second equality comes from the Kantorovich duality theorem (see, e.g., The-
orem 5.10 in [30]), which applies since the cost function Q!� is lower semicontinuous (and
even continuous) and bounded from below thanks to the log-concavity of t 7! �.et / (it is,
in fact, non-negative, a proof of which can be found in Lemma 4.3). This completes the
proof of (i).

Let us now prove (ii). Reasoning exactly as before, one concludes that for any �1; �2 2
P .Rn/, it holds

H.�1 j��/CH.�2 j��/ � sup
.F;G/2 NS

° Z
Rn

F d�1 C

Z
Rn

G d�2

±
;

where NS is the set of couples of bounded measurable functions .F; G/ with F even such
that F ˚ G � !�. Let .F; G/ be a couple of bounded measurable functions (with F not
necessarily even) such that F ˚G �!�. Since, for all x;y 2Rn, !�.x;y/D!�.�x;�y/,
defining NF .x/D 1

2
.F.x/CF.�x// and NG.y/D 1

2
.G.y/CG.�y//, one gets that . NF ; NG/

2 NS . If �1 and �2 are further assumed to be symmetric, it holds
R
NF d�1 D

R
F d�1 andR

NG d�2 D
R
G d�2. Thus, in this case,

sup
.F;G/2 NS

° Z
Rn

F d�1 C

Z
Rn

G d�2

±
D sup
.F;G/WF˚G�!�

° Z
Rn

F d�1 C

Z
Rn

G d�2

±
D T!�.�1; �2/;

applying Kantorovich duality for the last equation, which completes the proof of (ii).
Finally, note that Q!� and !� are both non-negative and vanish on the diagonal, so that

T Q!�.��; ��/ D T!�.��; ��/ D 0. There is thus equality in inequalities (3.2) and (3.3)
when �1 D �2 D ��.

In the next subsections, we will study the consequences of Theorem 3.1 for two special
costs, related respectively to Barenblatt-type and Cauchy-type distributions.

3.2. Barenblatt-type distributions

Let s > 0 and denote by Bs D ¹x 2 Rn W jxj < 1=
p
sº the open Euclidean ball of center 0

and radius 1=
p
s. Consider the probability measure


s.dx/ D
1

Zs
.1 � sjxj2/1=.2s/1Bs .x/ dx;

which is a particular case of the so-called Barenblatt profiles. Consider the cost function
ks WBs � Bs ! R defined by

ks.x; y/ D
1

s
log

� 1 � shx; yi

.1 � sjxj2/1=2 .1 � sjyj2/1=2

�
; x; y 2 Bs :
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For this particular cost, the conclusion of Theorem 3.1 can be improved, as shown in the
following result.

Theorem 3.2. For all s > 0, the probability measure 
s satisfies the following transport-
entropy inequality:

Tks .�1; �2/ � H.�1 j
s/CH.�2 j
s/;

for all probability measures �1 and �2, one of which is centered, and with supports
K1; K2 � Bs .

This result is exactly analogous to Fathi’s result (3.1) in the Gaussian case. Moreover,
note that as s ! 0, it holds 
s ! 
 (the standard Gaussian) and one recovers (3.1).

Proof of Theorem 3.2. Applying Theorem 2.7 to �s.t/ D Œ1 � st �
1=.2s/
C , t � 0, yields the

following: for any s > 0 and f WRn ! RC integrable, it holdsZ
f .x/ dx inf

z2 convSf

Z
Ls.fz/.y/ dy �

� Z
Bs

.1 � sjxj2/1=.2s/ dx
�2
D Z2s ;

where Sf denotes the support of the measure �f .dx/ D f .x/ dx, and the operator Ls is
defined by (2.5). Let

bs.x; y/ D
1

s
logŒ1 � shx; yi�C; x; y 2 Rn:

It is enough to prove that

(3.7) Tbs .�1; �2/ � H.�1 jLeb/CH.�2 jLeb/C 2 logZs;

for all probability measures �1 and �2 with supports K1; K2 � Bs and such that �1 is
centered. Note that bs is bounded and continuous on K1 �K2. Therefore, applying Kan-
torovich duality theorem on K1 �K2 yields the following identity:

(3.8) Tbs .�1; �2/ D sup
'2Cb.K2/

° Z
K1

Qs'.x1/ d�1.x1/ �

Z
K2

'.x2/ d�2.x2/
±
;

where Cb.K2/ denotes the set of bounded continuous functions on K2 and

Qs'.x1/ D inf
x22K2

¹'.x2/C bs.x1; x2/º; x1 2 Rn:

Take ' 2Cb.K2/ and define f WRn!RC by f .x2/D e�'.x2/ if x2 2K2, and 0 otherwise.
Note the following relation:

(3.9) eQs' D Ls.f /:

According to what precedes, it holdsZ
f .x2/ dx2 inf

z2convK2

Z
Ls.fz/.x1/ dx1 � Z

2
s :
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Indeed, by its construction, the support of the measure f .x/ dx is K2. Note that the fol-
lowing inequality holds, for any z 2 Rn:

Ls.fz/.y/ � .1C shz; yi/CLsf .Fsz.y//; 8y 2 Rn;

where, for any a 2Rn n ¹0º, the mapFa.y/D
y

1Chz;ai
, y 2HaD¹y 2Rn W 1Chz;ai>0º

is a bijection from Ha onto H�a (this is item (1) of Lemma 2.5; when f .0/ D 0 there is
equality, but this is not needed here). So it holdsZ

Ls.fz/.x1/ dx1 �

Z
.1C shz; x1i/

1=s
C Lsf .Fsz.x1// dx1

D

Z
Hsz

.1C shz; x1i/
1=s Lsf .Fsz.x1// dx1

D

Z
H�sz

1

.1 � shz; ui/nC1C1=s
Lsf .u/ du D

Z
eQs'.u/ dmz.u/;

where
dmz.u/ D

1

.1 � shz; ui/nC1C1=s
1H�sz .u/ du:

Therefore,

�2 logZs � � log
Z
K2

e�'.x2/ dx2 � inf
z2 convK2

log
Z
eQs'.x1/ dmz.x1/;

and so,

� 2 logZs C
Z
Qs' d�1 �

Z
' d�2

�

Z
�' d�2 � log

Z
K2

e�'.x2/ dx2C

Z
Qs' d�1 � inf

z2 convK2
log

Z
eQs'.x1/ dmz.x1/

� H.�2 jLeb/C sup
z2 convK2

H.�1 jmz/;

where the last inequality follows from the boundZ
 d� � log

Z
e� dm � H.� jm/; 8� � m:

Note that if z 2 Bs , then Bs � H�sz and so in particular �1 � mz .
Finally, for all z 2 Bs , it holds

H.�1 jmz/ D

Z
Bs

log
d�1

dmz
d�1 D H.�1 jLeb/ �

Z
Bs

log
dmz

dx
d�1

D H.�1 jLeb/C
�
nC 1C

1

s

� Z
Bs

log .1 � shz; x1i/ d�1.x1/

� H.�1 jLeb/C
�
nC 1C

1

s

�
log

�
1 � s

D
z;

Z
x1 d�1.x1/

E�
D H.�1 jLeb/;

using the concavity of the logarithm and the fact that �1 is centered. This completes the
proof.
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Remark 3.3. Suppose that f WRn!RC is a continuous function such that
R
xf .x/dxD0

and f D 0 outsideBs . Denote byK2D¹x 2Bs W f .x/¤ 0º and let 'D� logf 2Cb.K2/.
Then, using (3.7) and (3.8), one getsZ

Qs' d�1 �H.�1 jLeb/C
Z
�' d�2 �H.�2 jLeb/ � 2 logZs;

for all �1; �2 with compact support in Bs , and �2 centered. Taking

d�1.x/ D
eQs'.x/R
eQs'.y/ dy

dx D
Lsf .x/R
Lsf .y/ dy

dx

and

d�2.x/ D
e�'.x/R
e�'.y/ dy

dx D
f .x/R
f .y/ dy

dx

(thanks to (3.9)) and noting that �2 is centered, one getsZ
f

Z
Lsf �

� Z
�s.jxj

2/ dx
�2
;

which essentially gives back the conclusion of Theorem 2.9 in the centered case.

3.3. Cauchy-type distributions

In this section, we consider the cost function

�ˇ .t/ D
1

.1C t /ˇ
; t � 0;

for which x 7! �ˇ .jxj
2/ is integrable whenever ˇ > n=2. For ˇ > n=2, we consider the

following Cauchy-type distribution:

d�ˇ .x/ D
1

Zˇ .1C jxj
2/ˇ

dx; with Zˇ D �
n=2 �.ˇ � n=2/

�.ˇ/
�

The following result follows immediately from item (ii) of Theorem 3.1.

Corollary 3.4. For any ˇ > n=2, the Cauchy-type probability measure �ˇ satisfies the
following transport-entropy inequality: for all �1; �2 2 P .Rn/ with �1 and �2 symmetric,
we have

(3.10) ˇT!.�1; �2/ � H.�1 j�ˇ /CH.�2 j�ˇ /;

where the optimal transport cost T! is defined with respect to the cost function ! given,
for x; y 2 Rn, by

(3.11) !.x; y/ D

8̂<̂
: � 2 log

� 1C hx; yip
1C jxj2

p
1C jyj2

�
if hx; yi > 0;

C1 otherwise.
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Note that a similar transport-entropy inequality holds with respect to the cost function

Q!.x; y/ D �2 log
� 1C jhx; yijp

1C jxj2
p
1C jyj2

�
; x; y 2 Rn;

without symmetry restrictions on �1; �2.

Proof. The function t 7! log.1 C et / being convex on R, the conclusion immediately
follows from Theorem 3.1 (item (ii)).

It turns out that sharp transport-entropy inequalities for a family of probability meas-
ures on the Euclidean unit sphere can be derived from Corollary 3.4. To state this result,
we need to introduce additional notation. Let

Sn D
°
u D .u1; : : : ; unC1/ W

nC1X
iD1

u2i D 1
±

and SnC D Sn \ ¹u 2 RnC1 W unC1 � 0º

be, respectively, the n-dimensional Euclidean unit sphere and the upper half unit sphere
of RnC1. Denote by � the uniform probability measure on Sn and by �C. � /D 2�.SnC \ � /
the normalized restriction of � to SnC (the dimension n is omitted in the notation of �
and �C). For any ˇ >n=2, let �ˇ;C 2P .SnC/ (respectively, �ˇ 2P .Sn// be the probability
measure with a density proportional to

u 7! junC1j
2ˇ�.nC1/

with respect to �C (respectively, to � ). Note that � and �C correspond to the parameter
ˇ D .nC 1/=2.

The set of Borel probability measures on Sn (respectively, SnC) will be denoted by
P .Sn/ (respectively, P .SnC/). A probability measure� 2P .Sn/will be called symmetric
if it is invariant under the map Sn ! Sn W u 7! �u. The set of all symmetric probability
measures on Sn will be denoted by Ps.Sn/.

Finally, let ˛ WSn � Sn! RC [ ¹C1º be the cost function defined, for u; v 2 Sn, by

˛.u; v/ D

8<: log
� 1

hu; vi

�
if hu; vi > 0;

C1 otherwise,

and let T˛ be the associated optimal transport cost on P .Sn/. This cost function has
been introduced by Oliker [25] (see also [4] and [15]) in connection with the so-called
Aleksandrov problem in convex geometry.

Recall the definition of the geodesic distance dSn on Sn:

dSn.u; v/ D arccos.hu; vi/; u; v 2 Sn:

The cost ˛ can thus also be expressed, for u; v 2 Sn, as

(3.12) ˛.u; v/ D

´
� log cos.dSn.u; v// if dSn.u; v/ < �=2;

C1 otherwise.



Transport-entropy and functional forms of Blaschke–Santaló inequalities 1937

Remark 3.5. Characterizing couples .�; �/ for which the transport cost T˛.�; �/ is finite
is a delicate question, discussed in particular in [4]. Note that, according to Lemma 3.3
of [15] and Remark 4.9 of [4], if �; � are symmetric probability measures such that � has
a positive density with respect to � and � is such that �.Sn \L/D 0 for any hyperplaneL
passing through the origin, then T˛.�; �/ < C1.

Corollary 3.6. Let ˇ > n=2.

(i) For any �1; �2 2 P .SnC/ which are invariant under the map

SnC ! SnC W u 7! .�u1; : : : ;�un; unC1/;

it holds
2ˇT˛.�1; �2/ � H.�1 j�ˇ;C/CH.�2 j�ˇ;C/:

(ii) For any �1; �2 2 Ps.Sn/ which are also invariant under the map

Sn ! Sn W u 7! .u1; : : : ; un;�unC1/;

it holds
2ˇT˛.�1; �2/ � H.�1 j�ˇ /CH.�2 j�ˇ /:

Proof. Let us prove (i), following the proof of Theorem 19 in [12]. Denote by � D
�.nC1/=2 the multivariate Cauchy distribution with density Z�1.1C jxj2/�.nC1/=2. Con-
sider the map

T W Rn ! SnCC; x 7!
1

.1C jxj2/1=2
.x; 1/;

denoting by SnCC D Sn \ ¹u 2 RnC1 W unC1 > 0º. This transformation is bijective, with
inverse

T �1 W SnCC ! Rn; u 7!
1

unC1
.u1; : : : ; un/;

which is sometimes called gnomonic projection. It is easy to check that T �1 pushes for-
ward �C onto �, or equivalently, that T pushes forward � onto �C. For any ˇ > n=2, the
probability measure �ˇ has density

gˇ .x/ D
Cˇ

.1C jxj2/ˇ�.nC1/=2
; x 2 Rn;

with respect to �. Therefore, the probability measure T#�ˇ has density gˇ .T �1/ with
respect to T#� D �C. A simple calculation shows that

gˇ .T
�1.u// D Cˇ u

2ˇ�.nC/
nC1 ; u 2 SnC;

and so
�ˇ;C D T#�ˇ :

Note the following relation between the cost functions ! (of Corollary 3.4) and ˛:

˛.u; v/ �
1

2
!.T �1.u/; T �1.v//; 8u; v 2 SnCC:
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Let �1; �2 2 P .SnC/ be measures invariant under the map u 7! .�u1; : : : ;�un; unC1/. If
H.�1 j�ˇ;C/ D C1 or H.�2 j�ˇ;C/ D C1, there is nothing to prove. Let assume that
H.�1 j�ˇ;C/ < C1 and H.�2 j�ˇ;C/ < C1. In particular, �1 and �2 do not give mass
to Sn \ ¹u 2 RnC1 W unC1 D 0º, and can thus be seen as elements of P .SnCC/. Define
�01 WD T

�1
# �1 and �02 WD T

�1
# �2, which are symmetric and so, according to Corollary 3.4

applied to �ˇ , it holds

ˇT!.�
0
1; �
0
2/ � H.�

0
1 j�ˇ /CH.�

0
2 j�ˇ /:

If � 0 is a coupling between �01 and �02 and � is the push forward of � 0 under the map
.x; y/ 7! .T .x/; T .y//, it holds

1

2

“
!.x; y/ d� 0.x; y/ D

1

2

“
!.T �1.u/; T �1.v// d�.u; v/

�

“
˛.u; v/ d�.u; v/ � T˛.�1; �2/;

since � has �1 and �2 as marginals. Therefore, T˛.�1; �2/�
1
2

T!.�
0
1; �
0
2/. Finally, a simple

calculation shows that

H.�0i j�ˇ / D H.T
�1

# �i jT
�1

# �ˇ;C/ D H.�i j�ˇ;C/;

which completes the proof of (i).
Let us now prove (ii). Let �1; �2 2 P .Sn/ be invariant under the maps u 7! �u and

u 7! .u1; : : : ; un;�unC1/, with densities f1 and f2 with respect to �ˇ . For i D 1; 2, it
holds �i .SnC/ D 1=2. Define d�i;C.u/ D 2fi 1SnC

.u/d�ˇ .u/ D fi .u/d�ˇ;C.u/. Then it
holds

H.�i j�ˇ /D

Z
fi logfi d�ˇ D 2

Z
SnC

fi logfi d�ˇ D
Z
fi logfi d�ˇ;CDH.�i;C j�ˇ;C/:

On the other hand, if .U; V / is a coupling between �1;C and �2;C and " is such that
P ." D ˙1/ D 1=2 and is independent of .U; V /, then X D .U1; : : : ; Un; "UnC1/, Y D
.V1; : : : ; Vn; "VnC1/ is a coupling between �1 and �2, and it holds that EŒ˛.X; Y /� D
EŒ˛.U; V /�. From this follows that T˛.�1; �2/ � T˛.�1;C; �2;C/: Thus (ii) immediately
follows from (i), which completes the proof.

For the probability measure � (corresponding to ˇ D .nC 1/=2), the conclusion of
Corollary 3.6 can be improved, as the following result shows.

Theorem 3.7. For all symmetric probability measures �1 and �2 on Sn, it holds

(3.13) .nC 1/T˛.�1; �2/ � H.�1 j�/CH.�2 j�/:

The preceding result is an improvement of a result by Kolesnikov [15], who obtained
the following transport-entropy inequality on Sn:

(3.14) .nC 1/T˛.�; �/ � H.� j�/;
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for all symmetric probability � 2P .Sn/. The proof by Kolesnikov is based on the Monge–
Ampère equation relating the density of � to the optimal transport map T transporting �
on �. The determinant of the Jacobian matrix of T is controlled with the help of the
classical Blaschke–Santaló inequality for convex bodies (see the proof of Theorem 7.3
in [15]). Kolesnikov also establishes links between minimizers of the functional

�1 7! H.�1 j�/ � .nC 1/T˛.�1; �2/;

with �1 and �2 symmetric, and the log-Minkowski problem; we refer to [15] for fur-
ther explanations and references. Remark 3.11 below gathers further comments on (3.13)
and (3.14).

Before turning to the proof of (3.13), let us comment on the role of the symmetry
assumption. It turns out that for any constant C > 0, the inequality

CT˛.�; �/ � H.� j�/;

cannot be true for all � 2 P .Sn/. This follows immediately from the following lemma.

Lemma 3.8. There exists � 2 P .Sn/ such that T˛.�; �/ D C1 and H.� j�/ < C1.

In particular, contrary to Fathi’s inequality (3.1) for the standard Gaussian measure,
the inequality (3.13) is not true if only one of the probability measures �1; �2 is assumed
to be symmetric.

Proof of Lemma 3.8. Let A � Sn be some spherical cap, and define

d� D
1A
�.A/

d�:

ThenH.� j�/D� log�.A/ <C1. On the other hand, if .X;Y / is a coupling between �
and �, then denoting by

A�=2 D ¹y 2 Sn W 9x 2 A such that dSn.x; y/ < �=2º;

it holds
P .d.X; Y / < �=2/ � P .Y 2 A�=2/ D �.A�=2/:

If A is small enough, then �.A�=2/ < 1 and so P .d.X; Y / � �=2/ > 0. Therefore, by
definition of ˛, EŒ˛.X; Y /� D C1. The coupling being arbitrary, one concludes that
T˛.�; �/ D C1.

Remark 3.9. The preceding construction can be easily adapted to show that, for any
ˇ > n=2, (3.10) can be false if only one of the measures �1; �2 is assumed to be symmetric.

Our proof of Theorem 3.7 is based on the following Kantorovich type duality for the
cost function ˛. To state this result, let us introduce additional notation. Recall that if
C � RnC1 is a convex body, the support function of C is the function denoted by hC
defined by

hC .y/ D sup
x2C

hx; yi; 8y 2 RnC1;

and when C contains 0 in its interior, the radial function of C is the function denoted
by �C defined by

�C .x/ D sup¹r � 0 W rx 2 C º; 8x 2 RnC1:
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Lemma 3.10. For all probability measures �1 and �2 on Sn, it holds

T˛.�1; �2/ D sup
C

Z
� ln hC d�1 C

Z
ln �C d�2;

where the supremum runs over the set of all convex bodies C containing 0 in their interi-
ors. Moreover, when �1 and �2 are symmetric, the supremum can be restricted to centrally
symmetric convex bodies C .

This duality relation was first established by Oliker in [25] in his transport approach to
Alexandrov’s problem on the Gauss curvature prescription of Euclidean convex sets (see
also [4] in particular for the question of dual attainment). For the sake of completeness,
we briefly sketch the proof of Lemma 3.10.

Proof. For any probability measures �1 and �2 on Sn, Kantorovich duality (see The-
orem 5.10 (i) in [30]) yields to

(3.15) T˛.�1; �2/ D sup
�; 

Z
� d�1 C

Z
 d�2;

where the supremum runs over the set of couples .�; / of bounded continuous functions
on Sn such that

(3.16) �.x/C  .y/ � ˛.x; y/; 8x; y 2 Sn:

Whenever �1 and �2 are symmetric, and .�;  / satisfies (3.16), then defining

N�.x/ D
1

2
.�.x/C �.�x// and N .y/ D

1

2
. .y/C  .�y//; x; y 2 Sn;

the couple . N�; N / satisfies (3.16) (because ˛.�x;�y/ D ˛.x; y/) and is such thatZ
N� d�1 C

Z
N d�2 D

Z
� d�1 C

Z
 d�2:

Therefore, in this symmetric case, the supremum in (3.15) can be further restricted to
couples of even functions .�;  /. Let us now consider the ˛-transform f ˛ of a function
f WSn ! R defined by

f ˛.y/ D inf
x2Sn
¹˛.x; y/ � f .x/º; y 2 Sn:

It is not difficult to check that whenever f is bounded on Sn, then f ˛ is bounded and
continuous on Sn, and that if f is even, then f ˛ is also even. Using a well-known double
conjugation argument (see Theorem 5.10 (i) in [30] for details), one sees that the duality
formula (3.15) can be further restricted to couples .�;  / of ˛-conjugate functions, that
is to say such that �˛ D  and  ˛ D �. Moreover, in the case where �1 and �2 are
symmetric, (3.15) can be restricted to couples .�; / of even ˛-conjugate functions. With
the change of functions hD e�� and � D e , we see that .�; / is a couple of continuous
(even) ˛-conjugate functions if and only if .h; �/ is a couple of continuous (even) positive
functions such that

h.x/ D sup
y2Sn

�.y/hx; yi; 8x 2 Sn and
1

�.y/
D sup
x2Sn

hx; yi

h.x/
; 8y 2 Sn:
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It is well-known that to any such couple .h; �/ uniquely corresponds a convex body C
containing 0 in its interior such that h D hC and � D �C ; we refer to Theorem 2 in [25]
for details. In the case where h and � are both even, then C is centrally symmetric, which
completes the proof.

Proof of Theorem 3.7. Let C be a centrally symmetric convex body in RnC1. According
to the classical Blaschke–Santaló inequality, it holds

jC j jC ıj � jBnC12 j
2:

Calculating the volume of C in polar coordinates yields to

jC j D .nC 1/jBnC12 j

Z
Sn

� Z
RC

1C .ru/ rn dr
�
d�.u/ D jBnC12 j

Z
Sn
�C .u/

nC1 d�.u/;

where �C denotes the radial function of C . Similarly,

jC ıj D jBnC12 j

Z
Sn
�C ı.u/

nC1 d�.u/ D jBnC12 j

Z
Sn

1

hC .u/nC1
d�.u/;

using the well-known (and easy to check) relation �C ı D 1=hC , where hC is the support
function of C . So, for every symmetric convex C body in RnC1, it holds

(3.17)
Z

Sn
�C .u/

nC1 d�.u/

Z
Sn

1

hC .u/nC1
d�.u/ � 1:

On the other hand, if �1 and �2 are two symmetric probability measures on Sn,
Lemma 3.10 yields

.nC 1/T˛.�1; �2/ D sup
C

Z
� ln.hnC1C / d�1 C

Z
ln.�nC1C / d�2;

where the supremum runs over the set of all centrally symmetric convex bodies C con-
taining 0 in their interiors. Reasoning exactly as in the proof of Theorem 3.1, one sees
that (3.17) implies (and is in fact equivalent to)

.nC 1/T˛.�1; �2/ � H.�1 j�/CH.�2 j�/;

for all �1; �2 symmetric. This completes the proof.

In order to discuss inequalities (3.13) and (3.14), let us recall that the uniform probab-
ility measure � on Sn satisfies the following Poincaré inequality: for any smooth function
f WSn ! R,

(3.18) �1.S
n/Var� .f / �

Z
jrSnf j

2 d�;

with the sharp constant �1.Sn/ D n (corresponding to the spectral gap of the Laplace
operator on Sn). Equality in (3.18) is reached for every linear form. Under symmetry
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assumptions, the constant in (3.18) can be improved. More precisely, for all smooth func-
tions f WSn ! R such that f .�u/ D f .u/, for all u 2 Sn, it holds

(3.19) �2.S
n/Var� .f / �

Z
jrSnf j

2 d�;

where �2.Sn/ D 2.n C 1/ is the second non-zero eigenvalue of the Laplace operator
on Sn. Moreover, equality in (3.19) is reached whenever f is the restriction to Sn of a
homogeneous polynomial of degree 2. For the sake of completeness, we recall the clas-
sical argument leading to (3.19).

Proof of (3.19). For all d D 0; 1; 2 : : :, denote by Hd � L2.�/ the space of degree d
homogeneous harmonic polynomials (restricted to Sn). It is well known that

L2.�/ D

C1M
dD0

Hd ;

and that for all f 2 Hd , it holds

�Snf D �d.d C n � 1/f:

If f WSn ! R is a smooth even function, then it can be written as f D
PC1
kD0 f2k , with

f2k 2 H2k , for all k � 0: Therefore, by integration by parts,Z
jrSnf j

2 d� D �

Z
f:�Snf d� D

C1X
kD0

2k.2k C n � 1/

Z
f 2k d�

� 2.nC 1/

C1X
kD1

Z
f 2k d� D 2.nC 1/Var� .f /;

which proves (3.19). Whenever f 2 H0 ˚H2, equality clearly holds. This is, in particu-
lar, the case if f is the restriction to the sphere of a degree 2 homogeneous polynomial.
Indeed, suppose that f DPjSn , whereP WRnC1!R is some degree 2 homogeneous poly-
nomial. Then there is some constant c such that �RnC1P D c. The polynomial Q defined
by Q.x/ D P.x/ � c

2.nC1/
jxj2, x 2 RnC1, is homogeneous of degree 2 and harmonic.

Moreover, it holds f D QjSn C c
2.nC1/

and so f 2 H0 ˚H2.

Recall the expression (3.12), which will be used in the following remark on the optim-
ality of (3.13).

Remark 3.11. (a) First, let us relate Kolesnikov’s inequality (3.14) to existing transport-
entropy inequalities on Sn. A simple calculation shows that � log cos u � u2=2 for all
u2 Œ0;�=2�. Therefore, (3.14) implies that for all symmetric probability measures � on Sn,
it holds

(3.20)
nC 1

2
W 2
2 .�; �/ � H.� j�/;
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with W2 being the usual Wasserstein distance on Sn (with respect to the geodesic dis-
tance dSn ). The inequality (3.20) is an improvement of the following classical transport-
entropy inequality:

(3.21)
n

2
W 2
2 .�; �/ � H.� j�/;

that holds for all � 2 P .Sn/. Inequality (3.21) can for instance be deduced from the log-
Sobolev inequality on Sn that holds with the optimal constant 2=n using the Otto–Villani
theorem [26]. The constant n=2 in (3.21) is optimal. Indeed, according to a well-known
general linearization argument of [26], (3.21) implies the sharp Poincaré inequality (3.18).
Using the fact that the function u 7! � log cos

p
u is convex and increasing on Œ0; .�=2/2�,

it follows from Jensen’s inequality that (3.14) implies the following transport-entropy
inequality:

(3.22) �.nC 1/ log cosW2.�; �/ � H.� j�/;

for all symmetric � 2 P .Sn/. Inequality (3.22) improves the conclusion of Corollary 3.29
in [9] in the case of symmetric probability measures on Sn. See Remark 7.4 of [15] for
other transport-entropy inequalities derived from (3.14).

(b) Now let us discuss the sharpness of inequality (3.13). Reasoning as above, we see
that (3.13) implies the following variant of (3.20):

(3.23)
nC 1

2
W 2
2 .�1; �2/ � H.�1 j�/CH.�2 j�/

for all symmetric probability measure �1 and �2 on Sn. Adapting the linearization argu-
ment of [26] (see below for a sketch of proof), one can see that (3.23) implies the Poincaré
inequality (3.19) for smooth even functions f WSn!R. In comparison, for the same class
of functions f , (3.20) only yields to Poincaré’s inequality with the sub-optimal constant
� D nC 1, so that (3.13) is a strict improvement of (3.14). As explained above, the con-
stant 2.nC 1/ is sharp, with equality obtained for instance for f .u/ D u21, u 2 Sn.

For the sake of completeness, let us recall how to deduce the Poincaré inequality (3.19)
from (3.23).

Proof of (3.23)) (3.19). Let f WSn!R be a smooth and even function. Without loss of
generality, one can also assume that

R
f d� D 0. Bounding the second-order derivatives,

one sees there is some constant C > 0 such that

f .v/ � f .u/C jrSnf j.u/ dSn.u; v/C Cd
2
Sn.u; v/; 8u; v 2 Sn:

For all t > 0, consider �1;t D .1 � tf /� and �2;t D .1C tf /� . For all t small enough,
�1;t and �2;t are symmetric probability measures on Sn. If � is an coupling between �1;t
and �2;t for W2, it holdsZ

f 2 d� D

Z
f d

��2;t � �1;t
2t

�
D

1

2t

Z
f .v/ � f .u/ d�.u; v/

�
1

2t

Z
jrSnf j.u/ dSn.u; v/C Cd

2
Sn.u; v/ d�.u; v/

�
1

2t

� Z
jrSnf j

2 d�
�1=2

W2.�1;t ; �2;t /C
C

2t
W 2
2 .�1;t ; �2;t /:
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According to (3.23), it holds

1

t2
W 2
2 .�1;t ; �2;t / �

2

nC 1

�H.�1;t j�/
t2

C
H.�2;t j�/

t2

�
;

and a simple calculation shows that

H.�i;t j�/

t2
!

1

2

Z
f 2 d�:

Therefore,

lim sup
t!0

1

t2
W 2
2 .�1;t ; �2;t / �

2

nC 1

Z
f 2 d�:

Passing to the limit above yieldsZ
f 2 d� �

1

2

� Z
jrSnf j

2 d�
�1=2� 2

nC 1

Z
f 2 d�

�1=2
;

which amounts to (3.19).

In the following, we derive some simple consequences of inequality (3.13) in terms of
measure concentration for symmetric sets of the sphere. Whenever A;B � Sn, we will set

dSn.A;B/ D inf
x2A;y2B

dSn.x; y/

to denote the distance between A and B .

Corollary 3.12. Suppose A;B � Sn are two symmetric subsets of Sn. Then dSn.A;B/�

�=2, and it holds

(3.24) �.A/�.B/ � cosnC1.dSn.A;B//:

Proof. The fact that dSn.A; B/ � �=2 is obvious. Inequality (3.24) is then immediately
derived from the transport entropy inequality (3.13) using a general argument by Marton
which is detailed in, e.g., Theorem 10 in [12].

Remark 3.13. Inequality (3.24) is not always true for general sets A and B such that
dSn.A; B/ � �=2. Indeed, if A and B are two (small enough) spherical caps such that
dSn.A;B/D �=2, then inequality (3.24) would imply that �.A/�.B/D 0, which is obvi-
ously false.

In particular, ifA is some symmetric set of Sn such that �.A/� 1=2 andB D Sn nAr ,
where 0 < r � �=2, andAr D ¹y 2 Sn W dSn.y;A/ < rº is the r-enlargement ofA, it holds

(3.25) �.Sn n Ar / � 2 cosnC1.r/; 8 0 � r � �=2:

In comparison, for a general set A � Sn such that �.A/ � 1=2, the classical Talagrand
inequality (3.21) yields to

(3.26) �.Sn n Ar / � 2e
�nr2=4; 8 0 � r � �=2;
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and, if A is supposed symmetric, inequality (3.23) gives

(3.27) �.Sn n Ar / � 2e
�.nC1/r2=2; 8 0 � r � �=2:

Since cos.r/�e�r
2=2 for r�0��=2, the bound (3.25) is clearly better than bounds (3.26)

and (3.27). On the other hand, the classical isoperimetric inequality on Sn implies that if
a general set A � Sn is such that �.A/ � 1=2, then

(3.28) �.Sn n Ar / �  n.r/´
1

2sn

Z �=2

r

cosn�1.u/ du; 8r � 0;

with

sn D

Z �=2

0

cosn�1.u/ du

(see, e.g., [16]), with equality if A is a spherical cap of measure 1=2. It is not difficult to
see that

cosn.r/
n

�

Z �=2

r

cosn�1.u/ du �
1

sin.r/
cosn.r/
n

; 8 0 < r � �=2;

and sn �
p
�=.2n/, so that for any 0 < a < b < �=2,

c
cosnC1.r/
p
n

�  n.r/ �
c0

sin.a/ cos.b/
cosnC1.r/
p
n

; 8r 2 Œa; b�;

where c and c0 are constants independent of a, b and n. Thus for r 2 Œa;b�, the bound (3.25)
is off only by a factor of order 1=

p
n from the optimal bound (3.28).

4. Linearization of transport-entropy inequalities

In this section, we show that, by linearizing the transport-entropy inequality (3.3), one
recovers the following sharp Brascamp–Lieb type inequality due to Cordero-Erausquin
and Rotem [8]. Notice that the same inequality can be also obtained by linearizing the
functional Blaschke–Santaló inequality (1.6).

Theorem 4.1. Assume that t 7! v�.t/ D � log �.et / is convex and increasing. Then, for
all f 2 C1c .R

n/ even and such that
R
f d�� D 0,

(4.1)
Z
f 2 d�� �

1

2

Z
hH�1� rf;rf i d��;

where the positive matrix H� is given by

1

2
H�.y/ D

1

jyj2

h�
In �

y ˝ y

jyj2

�
v0�.s/C

y ˝ y

jyj2
v00�.s/

i
;

where we set s D 2 logjyj.
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Remark 4.2. This result is exactly the one obtained in Theorem 3 of [8] for the probabil-
ity ��. Namely, using the same notation as in [8], if v�.s/ D w.es=2/, we find

2H�.y/ D
w0.jyj/

jyj

�
2In �

y ˝ y

jyj2

�
C
y ˝ y

jyj2
w00.jyj/;

which is easily seen to be the same matrix as the one appearing in Theorem 3 of [8].
As observed in [8], the Poincaré inequality (4.1) admits non-trivial equality cases, and is
therefore sharp. Note however that Theorem 3 in [8] is much stronger than Theorem 4.1
above since it shows that the weighted Poincaré inequality (4.1) is satisfied not only by
the model probability measure ��, but also by any log-concave perturbation of ��: This
raises the question to know if (3.3) is also true for log-concave perturbations of ��.

Our proof, adapted from [7], relies on a well-known linearization technique involving
the following Hopf–Lax operator:

(4.2) RF.y/ D inf
x2Rn
¹F.x/C !�.x; y/º; y 2 Rn;

where we recall that the cost function !� is defined by

(4.3) !�.x; y/ D

8̂<̂
: log

� �.hx; yi/2

�.jxj2/�.jyj2/

�
if hx; yi > 0;

C1 otherwise.

The following result collects some properties of the cost function !�, and in particular
relates the matrix H� to the behavior of !� near the diagonal.

Lemma 4.3. Assume that �WR�C ! R�C is nonincreasing, and that t 7! �.et / is log-
concave. The cost function !� defined in (4.3) then satisfies the following:

(1) !� � 0.

If t 7! �.et / is furthermore assumed to be strictly log-concave, then

(2) if � is of class C3, then for every y ¤ 0, there exists a symmetric definite positive
matrix H� such that

!�.y C h; y/ D
1

2
hH�h; hi C o.jhj

2/ when h! 0;

(3) for every compact subset K and � > 0, there exists a constant � > 0 such that, for
all x 2 K and y 2 Rn,

jx � yj > ı H) !�.x; y/ � �:

Remark 4.4. The log-concavity of t 7! �.et / is, in fact, equivalent to the nonnegativity
of !� if � is assumed nonincreasing.

Proof. First, note that by monotonicity, for any x; y 2 Rn,

!�.x; y/ � log
� �.jxj jyj/2

�.jxj2/ �.jyj2/

�
:
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To prove point (1), it suffices to show that, for any s; t > 0,

log
��.es=2 et=2/2
�.es/ �.et /

�
� 0:

Rewriting this inequality in terms of v�.t/ D � log.�.et //, we find that it is equivalent to

v�

�s C t
2

�
�
1

2
v�.s/C

1

2
v�.t/;

which in turn is equivalent to the convexity of v�.
Item (2) is a direct consequence of the computation of the second derivative of '.h/D

!�.y; y C h/ or, in terms of the function v�,

'.h/ D �2v�.log.hy; y C hi//C v�.log.jyj2//C v�.log.jy C hj2//:

We find that

r'.0/ D 0 and r
2'.0/ D

2

jyj2

h�
In �

y ˝ y

jyj2

�
v0�.s/C

y ˝ y

jyj2
v00�.s/

i
µ H�;

where we wrote jyj2 D es for brevity. Strict convexity implies monotonicity of v�, so
both matrices appearing in the Hessian are nonnegative. Moreover, the second matrix is
positive on the line spanned by y, and the first matrix is positive on its orthogonal, thus
their sum must be positive. For future reference, we may rewrite H� in terms of � rather
than v�:

1

2
H� D �

�0.s/

�.s/
In C

��02.s/
�2.s/

�
�00.s/

�.s/

�
.y ˝ y/:

A Taylor expansion yields the formula of item (2).
The last point is an immediate (but useful enough to be stated) consequence of the

strict convexity of v�. Notice that !�.x; y/ > 0 whenever x ¤ y. This is true because
the monotonicity and the convexity of � are strict. The stated result is then simply the
consequence of continuity, if x and y are taken in some compact sets. However, we want
a uniform estimate when y is any point in Rn, which is a bit more than we can say with
just continuity. Fix R > 0. So far, we proved that the property is true for all x; y such that
jxj < R and jyj < 2R. If jyj � 2R, then

!�.x; y/ � log
� �.jxj jyj/2

�.jxj2/�.jyj2/

�
D �2v�

�s C t
2

�
C v�.s/C v�.t/

if we once again write jxj2 D es and jyj2 D et . Since v� is convex, v0� is nondecreasing,
and we find that

!�.x; y/ � �2v�

� log.R2/C log.4R2/
2

�
C v�.log.R2//C v�.log.4R2// > 0:

Combining this estimate at infinity with the local one we had due to continuity, we may
conclude.
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The next result establishes some Hamilton–Jacobi type (in)equation for R."f / as "
goes to 0.

Lemma 4.5. Let f 2 C1c .R
n/, and assume that � is strictly decreasing, and that t 7!

�.et / is log-concave. Then

(4.4) R."f / � "f �
1

2
"2hH�1� rf;rf i C o."

2/; when "! 0,

with

(4.5)
1

2
H� D �

�0.s/

�.s/
In C

��02.s/
�2.s/

�
�
�00.s/

�.s/
.y ˝ y/; s D 2 logjyj:

Proof. As is usual when linearizing such semigroups, the key is to localize the infimum.
Namely, recalling (4.2),

R."f /.y/ D inf
x2Rn
¹"f .x/C !�.x; y/º;

if x" is a minimizer of this expression, we want to prove that jx" � yj goes to 0 uniformly
in y as " goes to 0. Of course, we must also prove that such a x" exists.

We would like the result to be independent from the variable y. To that end, notice that
since f has compact support, we may restrict the study to y in a compact subset of Rn.
Indeed, notice that, in general, R."f /.y/ � "f .y/. Assume more specifically now that
y 2 supp.f /c . In that case, R."f /.y/ � 0. Since !� � 0, the infimum in the Hopf–Lax
semigroup can only be reached for x D y, or for x 2 supp.f /. In other words, whenever
y 2 supp.f /c ,

R."f /.y/ D inf
x2Rn
¹"f .x/C !�.x; y/º D min

�
0; inf
x2 suppf

¹"f .x/C !�.x; y/º
�
:

Furthermore, according to point (3) of Lemma 4.3, there exists � > 0 such that x2 supp.f /
and jx � yj > 1 implies that !�.x; y/ > �. As such, if " < �=kf k1, d.y; supp.f // > ı
implies that R."f /.y/ D 0.

We now restrict our study to some ball B that contains supp.f /C B.0; 1/. Assume
that y 2 B . To make the calculations a little bit clearer, we rewrite (4.2) as

R."f /.y/ D inf
h2Rn
¹"f .y C h/C !�.y C h; y/º:

The immediate estimate R."f / � "kf k1 means that, in order to find the infimum, we
may restrict h to be in the set®
h 2 Rn; "f .y C h/C !�.y C h; y/ � "kf k1

¯
�
®
h 2 Rn; !�.y C h; y/ � 2"kf k1

¯
:

Now, recall that for any y 2 B ,

!�.y C h; y/ D
1

2
hH�h; hi C o.jhj

2/;
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where H� is a continuous (positive definite) function of y, and the remainder term is
uniform in y. This implies that there exist r; ı > 0 such that jhj < r implies

!�.y C h; y/ � ı jhj
2:

Owing to point (3) of Lemma 4.3, there also exists �0 > 0 such that if jhj > r , then

!�.y C h; y/ � �
0:

If 2"kf k1 < �0, then !�.y C h; y/ � 2"kf k1 implies that jhj < r , and thus

R."f /.y/ D inf
jhj<r
¹"f .y C h/C !�.y C h; y/º:

The fact that B.0; r/ is compact implies the existence of a minimizer h" such that

R."f /.y/ D "f .y C h"/C !�.y C h"; y/:

Since !�.y C h; y/ � �jhj
2, we can already state that jh"j � C

p
" for some constant C

independent from y, but we can do better. The functionf is Lipschitz for some constant
L > 0. Then,

"f .y/ � "Ljh"j C ı jh"j
2
� R."f /.y/ � "f .y/;

and thus jh"j � C 0" for C 0 D L=ı > 0, which we emphasize is independent from y.
Now that the minimizer h" is localized, the rest follows naturally:

R."f /.y/ D "f .y C h"/C !�.y C h"; y/

D "f .y/C "hrf .y/; h"i C
1

2
hH�h"; h"i C o."

2/

� "f .y/ �
1

2
"2hH�1� rf .y/;rf .y/i C o."

2/;

since hH�z; zi � 0, where z D h" C "H�1� rf .y/.

We are now in a position to prove Theorem 4.1. Let us underline that in order to
retrieve the sharp constant in the final inequality, one needs to consider a two sided linear-
ization involving T!�..1 � "f /��; .1C "f /��/, rather than T!�..1C "f /��; ��/.

Proof of Theorem 4.1. Choose f 2 C1c .R
n/ such that its integral against �� is 0, and

consider, for " > 0,

�1 D .1C "f /�� and �2 D .1 � "f /��:

Linearizing the entropy is straightforward: since

.1C "/ ln.1C "/ D "2=2C o."2/;

the right-hand side of inequality (3.3) is equal to

H..1C "f /�� j��/CH..1 � "f /�� j��/ D "
2

Z
f 2 d�� C o."

2/:
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For the left-hand side, note that since R."f /.y/ � "f .x/ � !�.x; y/,

T!�.�1; �2/ �

Z
R."f / d�1 �

Z
"f d�2 D

Z
R."f /.1C "f / d��

�

Z
"f .1 � "f / d��:

Lemma 4.5 applies, and assuming that " is sufficiently small, the remainder term is uni-
form and zero outside of a compact. We may integrate it to find

T!�.�1; �2/ �

Z �
"f �

"2

2
hH�1� rf;rf i

�
.1C "f / d�� �

Z
"f .1 � "f / d�� C o."

2/

D "2
�
�
1

2

Z
hH�1� rf;rf i d�� C 2

Z
f 2 d�� C o.1/

�
:

Combine these two observations to find that, after dividing by "2, letting it go to 0 leads
to the claimed Poincaré inequality.
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