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Flat morphisms with regular fibers
do not preserve F -rationality

Eamon Quinlan-Gallego, Austyn Simpson and Anurag K. Singh

Abstract. For each prime integer p > 0, we construct a standard graded F'-rational
ring R, over a field K of characteristic p, such that R ® g K is not F-rational.
By localizing, we obtain a flat local homomorphism (R, m) — (S, n) such that R
is F-rational, S/mS is regular (in fact, a field), but S is not F-rational. In the pro-
cess, we also obtain standard graded F-rational rings R for which R ® ¢ R is not
F -rational.

1. Introduction

Let & denote a local property of noetherian rings. The following types of ascent have been
studied extensively; recall that for K a field, a noetherian K-algebra A is geometrically
regular over K if A ® g L is regular for each finite extension field L of K.

(ASCy) For a flat local homomorphism (R, m) — (S, n) of excellent local rings, if R
is & and the closed fiber S/mS is regular, then S is &.

(ASCy) For a flat local homomorphism (R, m) — (S, n) of excellent local rings, if R
is &# and the closed fiber S/mS is geometrically regular over R/, then S
is P.

Our main interest here is when & is F-rationality, a property rooted in Hochster and
Huneke’s theory of tight closure [14]: a local ring (R, m) of positive prime character-
istic is F-rational if R is Cohen—-Macaulay and each ideal generated by a system of
parameters for R is tightly closed. Smith [22] proved that F-rational rings have rational
singularities, while Hara [11] and Mehta—Srinivas [19] independently proved that rings
with rational singularities have F-rational type. Rational singularities of characteristic
zero satisfy (ASC), as proven by Elkik, see Théoréme 5 in [5].

In the situation of (ASCy), geometric regularity of the closed fiber R/t — S/mS
implies that of each fiber

k(p) > S ®r k(p) forp € Spec R,
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see [3], p. 297. The ascent (ASCyy) holds for F-rationality; this, and its variations, are due
to Vélez (Theorem 3.1 in [23]), Enescu (Theorem 2.27 in [6]), Hashimoto (Theorem 6.4
in [12]), and Aberbach—Enescu (Theorem 4.3 in [2]). A common thread amongst these
is that each affirmative answer requires assumptions along the lines that the fibers are
geometrically regular.

The situation is similar for F-injectivity in this regard; a local ring (R, m) of positive
prime characteristic is F-injective if the Frobenius action on local cohomology modules

F: HX(R) — HE(R)

is injective for each k = 0. Datta and Murayama, see Theorem A in [4], proved that
if (R, m) is F-injective, and (R, m) — (S, n) is a flat local map such that S/mS is
Cohen-Macaulay and geometrically F-injective over R /w, then S is F-injective; see also
Theorem 4.3 in [7] and Corollary 5.7 in [12]. We present examples demonstrating that the
geometric assumptions are indeed required, i.e., that F-rationality and F-injectivity do
not satisfy (ASCy):

Theorem 1.1. For each prime integer p > 0, there exists a flat local map (R, m) — (S, n)
of excellent local rings of characteristic p such that the ring R is F-rational, S/mS is
regular, but S is not F-rational or even F -injective.

Enescu had earlier demonstrated that F-injectivity does not satisfy (ASCj), though
the examples on p. 3075 of [7] are not normal; the question of whether normal F'-injective
rings satisfy (ASC)) has been raised earlier, see, e.g., Question 8.1 in [20], and is settled in
the negative by Theorem 1.1. There is a more recent notion, F -anti-nilpotence, developed
in the papers [8, 17, 18]; in view of the implications

F-rational == F-anti-nilpotent = F-injective,

Theorem 1.1 also shows that F-anti-nilpotence does not satisfy (ASCy).

It is worth mentioning that the rings R in Theorem 1.1 are necessarily not Gorenstein,
since F'-rational Gorenstein rings are F-regular by Theorem 4.2 in [15], and F -regularity
satisfies (ASCy) by Theorem 3.6 in [1]. Another subtlety is that such examples can only
exist over imperfect fields, since (ASCy) and (ASCyy) coincide when R/m is a perfect
field, and F-rationality satisfies (ASCyy).

Some preliminary results are recorded in Section 2, including an extension of a crite-
rion for F-rationality due to Fedder and Watanabe [9]. In Section 3, we construct two fam-
ilies of examples that each imply Theorem 1.1: the first has the advantage that the proofs
are more transparent, though the transcendence degree of the imperfect field over I,
increases with the characteristic p; the second family accomplishes the desired with tran-
scendence degree one, independent of the characteristic p > 0, though the calculations
are more involved. The examples in Section 3 are constructed as standard graded rings,
with the relevant properties preserved under passing to localizations. In the process, we
also obtain standard graded F-rational rings R, with the degree zero component being
a field K of positive characteristic, such that the enveloping algebra R ®k R is not
F-rational.
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2. Preliminaries

Following [13], p. 125, a local ring of positive prime characteristic is F-rational if it is a
homomorphic image of a Cohen—Macaulay ring, and each ideal generated by a system of
parameters is tightly closed. It follows from this definition that an F-rational local ring is
Cohen—Macaulay, see Theorem 4.2 in [15], so the notion coincides with that in Section 1.
Moreover, an F-rational local ring is a normal domain. A localization of an F-rational
local ring at a prime ideal is again F-rational; with this in mind, a noetherian ring of pos-
itive prime characteristic — which is not necessarily local — is F -rational if its localization
at each maximal ideal (equivalently, at each prime ideal) is F'-rational.

For the case of interest in this paper, let R be an N-graded Cohen—Macaulay normal
domain, such that the degree zero component is a field K of characteristic p > 0, and R
is a finitely generated K-algebra. Then R is F-rational if and only if the ideal generated
by some (equivalently, any) homogeneous system of parameters for R is tightly closed;
see Theorem 4.7 in [16] and the remark preceding it. An equivalent formulation in terms
of local cohomology, following Proposition 3.3 in [21], is described next.

Fix a homogeneous system of parameters xi, ..., x; for R, i.e., a sequence of d :=
dim R homogeneous elements that generate an ideal with radical the homogeneous maxi-
mal ideal m of R. The local cohomology module HI‘fI(R) may then be computed using a
Cech complex on xi,...,Xxg as

Ry, ..
HE (R) = ___ T xiXd |
m Zi Ry gyxy
This module admits a natural Z-grading, where the cohomology class
r
2.1) m:[T——7}eﬂgmx
xl DY xd

for r € R a homogeneous element, has

d
degn := degr—kZdegxi.

i=1
The Frobenius endomorphism F: R — R induces a map

F: Hg(R) — Hiay(R) = Hi(R)

that is the Frobenius action on Hfé (R); this is simply the map

r r
@2 1= | = =[5
Xk Xk xfp...xsp
Since R is Cohen—Macaulay by assumption, R is F'-injective precisely when the map (2.2)
is injective.
The element 7 as in (2.1) belongs to 0

p

*
) HE(R)
there exists a nonzero element ¢ € R such that for all ¢ € N, one has

the tight closure of zero in Ht‘fl (R), if

cF¢(n) =0
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in Hr‘f[ (R). This translates as
cr? e (x]fpe, el x];pe)R
for all e € N. In particular, R is F-rational precisely when

* p—
Hg ) = O
It follows that an F-rational ring must be F-injective.

We next review Veronese subrings. Let S be an N-graded ring for which the degree
zero component is a field K, and S is a finitely generated K-algebra. Fix a positive inte-
ger n. Then the n-th Veronese subring of S is the ring

S = P Sux.

keN

Set R := S™_ The extension R C S is split, so if S is normal ring, then so is R. Let m
denote the homogeneous maximal ideal of R, and note that m.S is primary to the homo-
geneous maximal ideal 1 of S. For alli < d := dim S = dim R, it follows that H. (R)
is a direct summand of H! (S) = HI(S), and hence that the ring R is Cohen-Macaulay
whenever S is. Moreover, by Theorem 3.1.1 in [10], one has

HE(R) = @D HI ()],

keZ

Suppose S := K|[xg, ..., xq]/(f), where f is a homogeneous polynomial that is
monic of degree m with respect to the indeterminate xo. Then S is free over the polyno-
mial subring K[x1, ..., x4], with basis {1, xo, ..., x""!}. The local cohomology mod-
ule Hl‘f (S), as computed using a Cech complex on xi, ..., xg, thus has a K-basis con-
sisting of elements

xy°
2.3) [*} e HY(S)
x(lxl-i-l x3d+1 u

where each ¢; is a nonnegative integer, and a9 < m — 1. When S is graded, by restricting to
elements of appropriate degree, one obtains a basis for a graded component of Hl‘f (S), or
for the local cohomology Hlf’I (R) of the Veronese subring R. Similarly, for the enveloping
algebra § ®x S, one has a K-basis as follows: use yy, ..., yq for the second copy of §,
and consider the maximal ideal Nt := (xo, ..., X4, Yo,...,yq) of S ®k S. Then the local
cohomology module Hg%d (S ®k S) has a K-basis

ao . Bo
(24) |: a;+1 a,;[x-gly([)ﬁ-kl ﬂd-‘rl:l’
'xl Y xd yl Y yd

where each «;, ; is a nonnegative integer, g <m — 1,and o <m — 1.
The following is a variation of Theorem 2.8 in [9] and Theorem 7.12 in [16], and is
used in the proof of Theorem 3.2.
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Theorem 2.1. Let S be an N-graded Cohen—Macaulay normal domain, such that the
degree zero component is a field K of positive characteristic, and S is a finitely gener-
ated K-algebra. Let n denote the homogeneous maximal ideal of S, and set d := dim S.

Suppose each nonzero element of n has a power that is a test element, and that there
exists an integer n > 0 such that the Frobenius action on

[H ()<,
is injective. Then the tight closure of zero in Ht‘f (S) is contained in [Ht‘f (e,

Proof. The hypotheses ensure that S has a homogeneous system of parameters x1,.. ., xq,
where each x; is a test element; we compute local cohomology using a Cech complex on
such a homogeneous system of parameters. Suppose the assertion of the theorem is false;

then there exists a nonzero homogeneous element 7 in 0}"1 4(s) with deg n < —n. After
n

possibly replacing the x; by powers, we may assume that

N
=[]
X1 Xq

for s a homogeneous element of S. Since each x; is a test element, one has
x;5? € (x‘ll,...,xg)
for each ¢ = p®, and hence
sTe(xf o xhyir(xanoxa) = (XD e xg)? T

where the equality is because x1, ..., x4 is a regular sequence. Since F¢(n) is nonzero in
view of the injectivity of the Frobenius action on [Hr‘f (8)]<_,» one has

s ¢ (x{. ... xD).
This implies that deg s9 > deg(x; --- x4)4~! for each ¢ = p®, which translates as

—1

degs = 1 deg(xy -+ xq).

Taking the limit e — oo gives
degs = deg(xy--- x4),
so degn = 0. This contradicts degn < —n < 0. ]

A ring S is standard graded if it is N-graded, with the degree zero component being
a field K, such that S is generated as a K-algebra by finitely many elements of S;.

While Theorem 2.1 requires the injectivity of the Frobenius action on [HZ (S Nen»
additional hypotheses enable one to verify the injectivity of Frobenius on one graded com-
ponent; the following corollary will be used in the proof of Theorem 3.2. Following [10],
the a-invariant of a Cohen—Macaulay graded ring S, as in Theorem 2.1, is

a(S) :=max{i € Z | [HI(S)]; # 0}
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Corollary 2.2. Let S be a standard graded Gorenstein normal domain, of character-
istic p > 0, such that the homogeneous maximal ideal n is an isolated singular point.
Set d := dim S. Suppose a(S) < 0, and that there exists an integer n with —n < a(S)
such that the Frobenius action

F:[HL(S)]_, = [HE(S)_,,

is injective. Then the Veronese subring S is F-rational.

Proof. Because u is an isolated singular point, each nonzero element of n has a power
that is a test element, and Theorem 2.1 is applicable. Since S is Gorenstein, each nonzero
homogeneous element ; of [HZ (S )l<_,, has a nonzero multiple 57 in the socle of HA(S),

which is the graded component [Ht‘f ($)]acs)- As S is standard graded, such a multi-
plier s € S can be chosen to be a product of elements of degree one, therefore 1 has a
nonzero multiple s'7 in [Hr‘f (S)]_,- Since F(s'n) is nonzero, so is F(n). It follows that
the Frobenius action on [HZ (S )<_, is injective, so Theorem 2.1 implies that the tight
closure of zero in Hl‘f (S) is contained in [Hl‘f (S,

Set R := S The hypotheses —n < a(S) < 0 give

HE(R) € [HE(9)]_,

where 1 is the homogeneous maximal ideal of R. As the tight closure of zero in Hr‘fl (R)
is contained in the tight closure of zero in Hg (S), the assertion follows. ]

3. The examples

Theorem 3.1. Fix a prime integer p > 0. Let ty,. . .,1, be indeterminates over the field I,
and set K :=Fp(t1,...,1p). Consider the hypersurface

S = K[xo.....xp]/ (x§ —t;x) —---—1,xF

with the standard N-grading, and its p-th Veronese subring R := SP). Then:
(1) The ring R is F-rational.
(2) The rings R @k KY? and R ®k K are not F -injective, hence not F-rational.
(3) The enveloping algebra R @k R is not F-injective, hence not F -rational.

Proof. First consider the hypersurface
. P P
A=TFplti ... tp, X0, ... xp] /(x5 — ;X7 —---—tpxlﬁ’).

The Jacobian criterion shows A,; is regular for each i, so A is normal by Serre’s criterion.
By inverting an appropriate multiplicative set in A, one obtains the ring S, which therefore
is also normal. Since R is a pure subring of the finite extension ring S, it follows that R is
normal and Cohen—Macaulay.
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Note that S is not F-injective: set 1 to be the homogeneous maximal ideal of S;
computing local cohomology H (S) using a Cech complex on the system of parameters
X1,...,xp for S, the cohomology class

X
e ngs)
'xl e xp
maps to zero under the Frobenius action on H.Z (S). We shall see that the Frobenius action
on Hrﬁ(R), with m the homogeneous maximal ideal of R, is however injective.
First note that [HA (R)]_ p 1s the socle of HE(R): it is the highest degree component,

and any nonzero homogeneous element 7 € H2 (R) has a nonzero multiple s in the socle
of HZ(S), which is [HZ (S)]_;; but then it has a nonzero multiple "7 in

[HE(S)]_, = [HZ(R)]_,.

for s, s’ homogeneous in S, in which case degree considerations imply that s’ € R.

To verify that the Frobenius action F on H (R) is injective, it suffices to prove the
injectivity of F on the socle [H& (R)]_ p Which, following (2.3), is the K-vector space
spanned by the cohomology classes

xa1+~-~+o¢p
o 0 b4
Mo -= [ o1+1 0lp+1i| € [Hm(R)]—p’
xl Dy xp
where each ¢; is a nonnegative integer, Y \o; < p — 1, and & := (e, .. ., ap). Since

xg =t;x{ +---41,xF

in the ring S, one has

o o
(t,x7 oo+ 1, xD)= '}_ (Ca)! [tf“---tpp}
X{Ja1+p x;;mpﬂ’ ap!ap! [ x? P

G Fe) = [

_xl e _xp

where the latter equality uses the pigeonhole principle. The elements #7" - - - tp“ " of K,asa
varies subject to the conditions above, are linearly independent over the subfield K7. It
follows that for any nonzero K-linear combination 7 of the elements 74, one has F(n) # 0.
This proves that the ring R is F'-injective.

One may now use Corollary 2.2 to conclude that R is F-rational; alternatively, one
can also argue as follows: equation (3.1) shows that the image of [HE (R)]_ p under F lies
in the K-span of the cohomology class

1
He= [x{’---x,’,’]’

so it suffices to verify that & does not belong to the tight closure of zero in HZ (R). This
holds since no nonzero homogeneous form in R annihilates

1
Fe(ﬂ)z[ﬁ]
x{, o xg +1

for each e = 0.
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For (2), let R denote either of R ®x K'/? or R ®x K. Note that

tl/p X0 _ll/p X0
2 2 e 1 2 ...
X1 X2 Xp X1X5 X3 Xp

is a nonzero element of H& (R), since it is a nontrivial linear combination of basis ele-
ments as in (2.3). However, its image under the Frobenius action is

. |:t1xf’+---+tpx5} , [zlx{’+---+sz{,’]
2 — 1

2p _p p p . 2p _p p
X1 X3 " Xp X1 Xp" X3 - Xp

51 5]
1%2 4 142 4
which, of course, is zero.

Lastly, for (3), write the enveloping algebra S @k S of S as

P P P P
K[xo.....Xp. Yo ¥pl/ (X = tyx] — oo =1, X7 yg =11 y] = =1, Vp).

with the N2-grading under which deg x; = (1,0) and deg y; = (0, 1) for each i. Then

R®k R = @ [S (274 S](pk,pl)'
k,leN

Note that R ®x R admits a standard grading; let 9 denote its homogeneous maximal
ideal. Then MM (S ®k S) is primary to N := (xo, ..., Xp, Yo,...,Yp), the homogeneous
maximal ideal of S ® g S, and

) 2
Hg (R ®k R) = @ [Hy" (S ®K ]y 1)
k,leN

The cohomology class

[ XoY1 — X1Y0

€ H2?(R ®k R)
x%xz.--xpy%yzn--yp} mt

is nonzero since it is a nontrivial linear combination of basis elements as in (2.4); however,
it is readily seen to be in the kernel of the Frobenius action. ]

Note that R Qg K P and R ® x K in the previous theorem are not reduced: for
example,

1/p
1 X

1
(xo —t —---—tp/pxp)xl--~xp_1

is a nonzero nilpotent element. This gives an alternative proof of (2), since F-injective
rings are reduced by Remark 2.6 in [20].

In the examples provided by Theorem 3.1, the transcendence degree of K over IF,
increases with p; for the interested reader, the following theorem gets around this, though
the proof is perhaps more technical.
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Theorem 3.2. Fix a prime integer p > 0. Let t be an indeterminate over the field I, and
set K := T, (t). Consider the hypersurface

S:=K[w,x,y, z1,....2p—1] /(WP —txPT1 — xy? — Z::ll zf’“)
with the standard N-grading, and set R := SP). Then:
(1) The ring R is F-rational.
(2) The rings R @k KY? and R ®k K are not F -injective, hence not F-rational.
(3) The enveloping algebra R @k R is not F-injective, hence not F -rational.

Proof. We begin with the hypersurface
. 1 1 +1
A:=TFyt,w,x,y, 21,...,21,,_1]/(11)"’+ —txPt —xyp—Zizf )

The Jacobian criterion shows that, up to radical, the defining ideal of the singular locus
of A contains (w,x, y,z1,...,Zp—1). Thering S is obtained from A by inverting an appro-
priate multiplicative set; it follows that S has an isolated singular point at its homogeneous
maximal ideal 1. In particular, S is normal by Serre’s criterion.

To prove that R is F-rational, it suffices by Corollary 2.2 to verify that

(3.2) F[HPPNS))_, = [HETN(S)]_,»

is injective. Using the Cech complex on x, y,z; ..., Zp—1, the vector space [Hr’[’Jrl (S,
has a K-basis, as in (2.3), consisting of cohomology classes

wl+0t+,3+z Vi :|

Na.py = [ T
Yo+l yﬁ-i-l Hi Ziy

where «, B, y1, ..., Yp—1 are nonnegative integers with @ + 8+ > y; < p — 1. The
ring S admits a (Z/(p + 1))?*1-grading with

degz; =¢;, degw=e¢e, and degx =ep;1 =degy,

where ey, ..., e, denote standard basis vectors modulo p 4 1. Since ged(p, p+1) =1,
the action (3.2) maps distinct multigraded components to distinct multigraded compo-
nents, so it suffices to verify the injectivity componentwise. Note that

degr)a,ﬂ,y:<_V1_1,---s_)’p—1_171+05+/3+ZV1'7_05_.3_2>
i

with respect to the multigrading. Thus, for fixed nonnegative integers k and y; with

0 < k+2y,- < p-—1,
i
a homogeneous element of [H? + (8)]—-, with multidegree

(—yl—l, e =Yp—1— 1, 1+k+Zy,~, —k—2)

1
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has the form

Z CoNa,B,y>

a+B=k
where o and § are nonnegative integers witha + 8 = k, and ¢4 € K.
Setm :=k + )_ y;, and suppose that the above element

wm+1
3-3) D Calupy= ) C"‘xﬂya[ , 1]
k1 yktt I, 20t

a+pB=k a+p=k

belongs to the kernel of the Frobenius action. Then
( Z ngﬂpyap> wm+orp
a+p=k
belongs to the ideal

(x(k+l)p7 (k+1)p’Z§)’1+1)P,“ z(””"H)”)S.

y 0 “p—1

Since w™+ VP = yP=m y(PTDM and 1 < p —m < p, it follows that

(3.4) ( Z cé’xﬁpy“p)<txp+1+xyp+1§zf+1)m

a+B=k i=1
belongs to the monomial ideal

(3.5) (x(k+l)p y(k+1)p Z§y1+1)p Z(Vp—1+1)17

L D)

in the polynomial ring K|[x, y, z1, ..., zp—1]. Bearing in mind that m = k + _ y;, the
terms in the multinomial expansion of (3.4) that include the monomial

nzi(pﬂ)w
i

constitute the polynomial
( m )( Z cé’ xBp yap> (txp+1 + xyp)k Hzi(pﬂ)yi
k»Vl,--wVp—l - .
a+pB=k i
which, therefore, also belongs to the monomial ideal (3.5). But then
( Z chﬂpyap> (xPH! 4 xyP)k ¢ (x(k+1)p,y(k+l)p)
a+B=k

in the polynomial ring K [x, y]. This implies that the coefficient of x*P+¥ %P in the poly-
nomial above must be zero, i.e., that

> (’;)cgr“ =0.

a+p=k
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Since ¢f € K? for each a, and k < [KP(t) : KP] = p, this forces each ¢, to be zero.
But then the element (3.3) is zero, so the map (3.2) is indeed injective as claimed. This
completes the proof of (1).

For (2), let m denote ihe homogeneous maximal ideal of R, and let R denote either
of R®k K7 or R @k K. Then

w? L w? _
- /p p+1

—t e H R

[xzyHiZi] [xyzﬂizz'] w (R)

is a nontrivial linear combination of basis elements as in (2.3). The ring R is not F-injec-
tive since under the Frobenius action on H£+1 (R), this element maps to

[ wPtx } t|: wP1x } 0
20 7|~
xPyP[]; z; xPy?[]; z;

For (3), use w’, x’, y’, z/ for the second copy of S, and proceed as in the proof of
Theorem 3.1. Using M for the homogeneous maximal ideal of R ® R, the cohomology

class
[ (ww)* (xy — xy')
(ex'yy? [ zi T 2
is a nontrivial linear combination of basis elements as in (2.4), and is in the kernel of

the Frobenius action on H;f +2(R ®x R). It follows then that the ring R ®g R is not

F-injective. ]

} e HyP (R ®k R)

Theorem 1.1 follows readily from the results of this section.

Proof of Theorem 1.1. Let K and R be as in Theorem 3.1 or in Theorem 3.2, and let S :=
R ®k K'? or R ®k K. An example is then obtained after localizing at the homogeneous
maximal ideals; note that the closed fiber is the field K/ or K in the respective cases. m
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