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Bi-Lipschitz arcs in metric spaces
with controlled geometry

Jacob Honeycutt, Vyron Vellis and Scott Zimmerman

Abstract. In this paper, we generalize a bi-Lipschitz extension result of David and
Semmes from Euclidean spaces to complete metric measure spaces with controlled
geometry (Ahlfors regularity and supporting a Poincaré inequality). In particular, we
find sharp conditions on metric measure spaces X so that any bi-Lipschitz embed-
ding of a subset of the real line into X extends to a bi-Lipschitz embedding of the
whole line. Along the way, we prove that if the complement of an open subset Y
of X has small Assouad dimension, then it is a uniform domain. Finally, we prove a
quantitative approximation of continua in X by bi-Lipschitz curves.

1. Introduction

Given metric spaces .X;dX / and .Y;dY /, a map f WX ! Y is said to be an L-bi-Lipschitz
embedding (or simplyL-bi-Lipschitz, or just bi-Lipschitz) if there is a constantL� 1 such
that

L�1dX .x1; x2/ � dY .f .x1/; f .x2// � LdX .x1; x2/

for all x1; x2 2 X . A bi-Lipschitz arc in a metric space X is the image of an interval in the
real line R under a bi-Lipschitz map.

We will consider the following question: given a set E � X which is the image of a
subset of R under a bi-Lipschitz map, is E contained in a bi-Lipschitz arc? If E is any
finite subset of Rn, the answer is trivially “yes”. For general sets E � Rn, the question
was answered in the positive when n � 3 by the following extension theorem of David
and Semmes [6].

Theorem 1.1 (Proposition 17.1 in [6]). Let n � 3 be an integer, let A � R, and let the
function f WA! Rn be a bi-Lipschitz embedding. Then there exists a bi-Lipschitz exten-
sion F WR! Rn.

MacManus [24] extended the result of David and Semmes to the case n D 2, which
is much more difficult since intersecting lines in R3 may be easily modified so that they
no longer intersect, but this is not the case in R2. One may view these extension results as

Mathematics Subject Classification 2020: 30L05 (primary); 30L99, 51F99 (secondary).
Keywords: bi-Lipschitz extension, Poincaré inequality, uniform domain.

https://creativecommons.org/licenses/by/4.0/


J. Honeycutt, V. Vellis and S. Zimmerman 1888

rougher versions of the classical Whitney extension theorem [35]; while the maps consid-
ered here are analytically weaker (as they are bi-Lipschitz rather than differentiable), they
are metrically and topologically stronger.

Theorem 1.1 is a special case of a more general result in [6], where A � Rd and
n � 2d C 1. The main motivation behind that result was to establish the equivalence of
the boundedness of certain singular operators on Rn via quantitative rectifiability. More
precisely, Theorem 1.1 was used in [6] to show that, when n � 3, every Ahlfors 1-regular
set A � Rn (see (2.1) for the definition of Ahlfors regularity) which admits a corona
decomposition (roughly speaking,A can be decomposed into a collection of subsets which
are well-approximated by Lipschitz graphs and a collection of subsets which are not, and
both of these collections have controlled measure) contains “big pieces” of bi-Lipschitz
arcs, i.e., for any " > 0, there exists an M > 0 such that, for any x 2A and any R > 0,
there is an M -bi-Lipschitz embedding �WR! Rn such that

jE \ .B.x;R/ n �.R//j � "R:

Another application of Theorem 1.1 is in the problem of the bi-Lipschitz rectifiability
of sets in Euclidean spaces. In other words, one hopes to classify those subsets of Rn

that are contained in a bi-Lipschitz arc. While the classical characterization of the Lips-
chitz rectifiability of sets in Euclidean spaces has been completely resolved [17, 27], the
problem of bi-Lipschitz rectifiability remains open mainly due to topological constraints.
Theorem 1.1 can be used to show that, if a set E � Rn has Assouad dimension less
than 1, then E is bi-Lipschitz rectifiable; see Corollary 3.5 in [1] for a different approach.
See Section 2 for the definition of the Assouad dimension.

In this article, we generalize Theorem 1.1 to the setting in which Euclidean spaces Rn

are replaced by a large class of metric measure spaces. There are two main difficulties
in this generalization. Firstly, the target metric space X must contain many of rectifiable
curves, and this notion of “many” must be understood quantitatively. A notable example
(and, in fact, the initial motivation for this project) is the Heisenberg group H, in which the
classical Whitney extension theorem for curves has been well-studied recently; see [28,30,
36, 37]. We will not define the Heisenberg group here, but only recall that it is a geodesic
space homeomorphic to R3, and there exists a distribution H WR3 ! Gr.2;R3/ such
that if a curve ”W Œ0; 1�! H is rectifiable, then it is differentiable almost everywhere and
P”.t/ 2H”.t/ for almost every t . This fact implies that there must be many fewer rectifiable
curves in H than in R3. Secondly, the proof in the Euclidean case relies on the existence
of differentiable bump functions �WR! Rn with controlled derivatives, and we cannot
hope to recover this idea in a general metric space.

The class of metric measure spaces to which the bi-Lipschitz extension result will be
generalized will have two properties. The first is Ahlfors regularity: we say that a metric
measure space .X; d;�/ is AhlforsQ-regular (or simplyQ-regular) if the measure of any
ball of radius r is comparable to rQ. The second property is the existence of a Poincaré
inequality. Such an inequality roughly states that, if we use uB to denote the average
value of a function uWX ! R on a ball B , then the average of the variation ju � uB j is
controlled by the average of a “weak derivative” of u on B . See Section 2 for all relevant
definitions. It is known that Ahlfors regular spaces supporting a Poincaré inequality must
contain quantitatively many rectifiable curves. Moreover, such spaces admit a notion of
differentiation [5].
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The following is the main result of this paper.

Theorem 1.2. Let .X; d;�/ be aQ-regular, complete metric measure space supporting a
p-Poincaré inequality for some 1 < p �Q� 1. If A�R and f WA!X is a bi-Lipschitz
embedding, then f extends to a bi-Lipschitz embedding F WI !X , where I is the smallest
closed interval containing A.

In Theorem 6.1, we prove a stronger quantitative version of this result in the sense that
the bi-Lipschitz constant of F depends only the bi-Lipschitz constant of f and on the data
of Ahlfors Q-regularity and the Poincaré inequality. Moreover, if X is unbounded, then
we can choose I D R.

A large variety of metric spaces satisfy the assumptions of Theorem 1.2, including
orientable, n-regular, linearly locally contractible n-manifolds with n � 3 ([29]), Carnot
groups ([16, 34]) (which include Euclidean spaces and the Heisenberg group), certain
hyperbolic buildings [3], Laakso spaces ([20]), and certain Menger sponges ([8, 23]).

The assumptions of the theorem are sharp in that neither Ahlfors regularity nor the
Poincaré inequality can be removed from the statement. For Ahlfors regularity, let X D
S2 � R, with the length metric and the induced Hausdorff 3-measure. Then X is com-
plete, has Ricci curvature bounded from below so it satisfies the 1-Poincaré inequality
(see Chapter VI.5 of [4]), but is not Ahlfors regular. Define f W ¹2n W n 2 Nº ! X by
f .2n/ D .p0; .�2/

n/, where p0 2 S2. The map f is bi-Lipschitz, and if F WR! X is
any homeomorphic extension of f , then for any n 2 N, F.Œ2n; 2nC1�/ intersects with
.S2 � ¹0º/, so F cannot be bi-Lipschitz.

Since the Poincaré inequality is an open ended condition [19], we may assume that
p < Q � 1 for the proof of the theorem. However, the bound Q � 1 is sharp. To see this,
let n � 2, let P1 and P2 be two n-dimensional planes in R2n�1 intersecting on a line `,
and let p0 2 `. The metric space X D .P1 [ P2/ n B.p0; 1/ with the induced Euclidean
metric and n-dimensional Lebesgue measure is complete, n-regular, and satisfies the p-
Poincaré inequality for all p > n � 1, see Theorem 6.15 in [10]. Let f W .�1; �1� [
¹�1=2; 1=2º [ Œ1;1/!X be a map such that f .�1=2/ 2 P1 n .`[B.p0; 1//, f .1=2/ 2
P2 n .` [ B.p0; 1//, and f maps R n .�1; 1/ isometrically onto ` n B.p0; 1/. Then f is
bi-Lipschitz but admits no homeomorphic (let alone bi-Lipschitz) extension F WR! X .

1.1. Related results

The first corollary of Theorem 1.2 gives a sufficient condition for bi-Lipschitz rectifiability
in Ahlfors regular spaces satisfying a Poincaré inequality.

Corollary 1.3. Let X be a complete Q-regular metric measure space which supports a
p-Poincaré inequality for some 1 < p � Q � 1. If E � X has Assouad dimension less
than 1, then E is bi-Lipschitz rectifiable.

The proof of the corollary follows the same ideas as in the Euclidean case. Since
the Assouad dimension of E is less than 1, Lemma 15.2 in [7] implies that E must be
uniformly disconnected, and hence it is bi-Lipschitz equivalent to an ultrametric space Z
of Assouad dimension less than 1, see Proposition 15.7 in [7]. By Theorem 3.8 in [21],
there exists a bi-Lipschitz embedding gWE!R, and, by Theorem 1.2, there exist a closed
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interval I and a bi-Lipschitz extension f W I ! X of the map g�1W g.E/ ! X . Thus
E � f .I /, so E is contained in a bi-Lipschitz arc.

The proof of Theorem 1.2 has two main ingredients. The first is the construction of
short curves in X nf .A/ that stay quantitatively far from f .A/. To build such curves,
we will use the notion of the uniformity of a set. Given a set U � X , we say that U is
c-uniform if, for every x; y 2 U , there exists a path ”W Œ0; 1�! U joining x to y such that

(1) the length of ” is at most cd.x; y/, and
(2) dist.”.t/; X nU/ � c�1 dist.”.t/; ¹x; yº/ for all t 2 Œ0; 1�.

In other words, U is uniform if, for any x;y 2 U , there exists a curve connecting them
which is short compared to d.x; y/ and stays far from X n U quantitatively. If U satisfies
only property (1) in this definition, then we say that U is c-quasiconvex.

It is an open problem to classify the closed sets Y �X for whichX n Y is quasiconvex
or uniform. Hakobyan and Herron [9] showed that, if Y � Rn has Hausdorff .n � 1/-
measure Hn�1.Y / D 0, then Rn n Y is quasiconvex. Moreover, this assumption is sharp.
Herron, Lukyanenko, and Tyson [14] proved the same result in the Heisenberg group H
where, in this setting, it is assumed that H3.Y / D 0. The dimension 3 is natural as H
is 4-regular, while Rn is n-regular. It is unknown if a similar result exists in all Carnot
groups.

The question of whether X n Y is uniform has been studied in terms of uniform dis-
connectedness of Y , [25], and quasihyperbolicity of X and Y , [12, 13, 15]. Väisälä [33]
showed that, if Rn n Y is uniform, then the topological dimension of Y is at most n � 2.
The following proposition, which we prove in Section 3, works in the opposite direction:
if X is Ahlfors regular and supports a Poincaré inequality, and if the Assouad dimension
of Y is small, then X n Y is uniform.

Proposition 1.4. Let .X; d; �/ be a complete Q-Ahlfors regular metric measure space
supporting a p-Poincaré inequality for some 1 < p � Q. If Y � X is a closed set with
Assouad dimension less than Q � p, then X nY is a uniform domain.

Note that if Y � X and has Assouad dimension less thanQ� p, then HQ�p.Y /D 0.
The assumption on the Assouad dimension is sharp. For example, letX DRn, let P be an
.n � 1/-dimensional hyperplane in Rn, and let Y be a maximal 1-separated subset of P .
Then it is easy to see that dimA.Y / D n � 1, Hn�1.Y / D 0, and RnnY is not uniform.

The second ingredient in the proof of Theorem 1.2 is a standard “straightening” argu-
ment for paths. In particular, Lytchak and Wenger (Lemma 4.2 in [22]) proved that, given
any topological arc in a geodesic space, there exists a bi-Lipschitz arc with the same end-
points that is close to the original one; see also Lemma 4.2 in [26] for a similar result for
topological circles. In Section 4, we prove a quantitative version of their result. Moreover,
under the additional assumptions of Q-regularity and a Poincaré inequality, we show as a
corollary of Theorem 1.2 that every continuum (i.e., every compact connected set) can be
approximated by a bi-Lipschitz curve in the Hausdorff distance.

Proposition 1.5. Let .X;d;�/ be a completeQ-regular metric measure space supporting
a p-Poincaré inequality for some 1 < p � Q � 1, let K � X be a continuum, and let
" 2 .0; 1/. For any x; y 2K with d.x; y/ � " diamK, there exists a curve ”W Œ0; 1�! X

with ”.0/ D x and ”.1/ D y, and there exists a constant L � 1 depending only on ", the
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constants of Q-regularity, and the data of the Poincaré inequality, such that

1

L
js � t j diamK � d.”.t/; ”.s// � L js � t j diamK

for all s; t 2 Œ0; 1�, and the Hausdorff distance distH .K; ”.Œ0; 1�// � " diamK.

In particular, we have that every compact Ahlfors regular metric measure space sup-
porting a Poincaré inequality contains “almost space-filling” bi-Lipschitz curves.

1.2. Outline of the proof of Theorem 1.2

We start with two simple reductions. First, since bi-Lipschitz maps extend on the comple-
tion of their domain, we may assume that A is a closed set. Second, it is well known that
the Poincaré inequality, completeness, and Ahlfors regularity imply that X is quasiconvex
(Theorem 17.1 in [5]). Every complete quasiconvex space is bi-Lipschitz equivalent to a
geodesic metric space and since the properties of AhlforsQ-regularity and the p-Poincaré
inequality are preserved under bi-Lipschitz mappings (Lemma 8.3.18 in [11]), we may
assume for the rest that X is geodesic.

For the proof of Theorem 1.2, similar to the proof of Theorem 1.1 and the Whitney
extension theorem, we construct a Whitney decomposition ¹Qiºi2N of I nA, i.e., a col-
lection of closed intervals in I nA with mutually disjoint interiors such that their union
is I nA and the length of each interval is comparable to its distance from A.

In Section 5, we define two auxiliary embeddings. Specifically, in Section 5.1 we
construct a bi-Lipschitz embedding � of E into X , where E is the set of endpoints of
the Whitney intervals Qi . The final map F will map elements of E very close to their
image under � . In Section 5.2, we use the results of Sections 3 and 4 to define a second
bi-Lipschitz embedding

g W A [
[
i2N

OQi ! X

of f . Here, OQi denotes the middle third closed interval in Qi . If we write Qi D Œx;y�, then
the image g. OQi / is a bi-Lipschitz curve that has endpoints very close to �.x/ and �.y/.

In Section 6, we describe a method to modify and extend the map g near the points
�.x/ to build a curve on the entire interval I , and we verify that this curve is indeed
bi-Lipschitz to complete the proof of Theorem 1.2.

2. Preliminaries

Given quantities x; y � 0 and constants a1; : : : ; an > 0, we write x .a1;:::;an y if there
exists a constant C depending at most on a1; : : : ; an such that x � Cy. If C is universal,
we write x .y. We write x 'a1;:::;an y if x .a1;:::;an y and y .a1;:::;an x.

Given a metric space .X;d/ and two points x;y 2 X , we say that ” is a path joining x
with y if there exists some continuous ”W Œ0; 1�! X with ”.0/ D x and ”.1/ D y.

Given a set Y � X and r > 0, we write B.Y; r/ WD ¹x 2X W dist.x; Y / < rº:
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2.1. Porosity and regularity

For a constantC > 1, a metric spaceX is calledC -doubling if every ball of radius r can be
covered by at most C balls of radii at most r=2. Given another constant ˛ � 0, X is called
.C;˛/-homogeneous if every ball of radiusR can be covered by at most C.R=r/˛ balls of
radii at most r . We will occasionally refer to such a metric space as ˛-homogeneous when
the constant C is not important. Clearly, a .C; ˛/-homogeneous space is .C2˛/-doubling.
Conversely, given C > 0, there exist C 0 > 0 and ˛ > 0 such that a C -doubling space is
.C 0; ˛/-homogeneous.

The Assouad dimension of a metric space X (denoted dimA.X/) is the infimum of all
˛ � 0 such that X is ˛-homogeneous.

A metric measure space .X; d; �/ is said to be Q-Ahlfors regular (or Q-regular) for
Q � 0 if there exists C � 1 such that, for all x 2X and all r 2 .0; diamX/,

(2.1) C�1rQ � �.B.x; r// � CrQ:

It is easy to see that if the space .X; d; �/ is Q-regular, then X is Q-homogeneous and
dimA.X/DQ. If we want to emphasize the constant C in (2.1), then we say that .X;d;�/
is .C;Q/-regular.

Given Y �X , we say that Y is p-porous for some p � 1 if, for all y 2 Y and all
r 2 .0;diamX/, there exists some x 2B.y; r/ such that B.x; r=p/ � B.y; r/nY . In other
words, Y contains relatively large “holes” near every point.

Lemma 2.1 (Lemma 3.12 in [2]). Let .X; d;HQ/ be .C;Q/-regular, where HQ is the
Q-dimensional Hausdorff measure. A set Y � X is p-porous for some p � 1 if and only
if dimA.Y / �Q � " for some " > 0. Here, " and p depend only on each other,Q, and C .

2.2. Poincaré inequality

Given a locally Lipschitz function u defined on a metric space .X; d/, we say that a
function gWX ! Œ0;1/ is an upper gradient of u if

ju.x/ � u.y/j �

Z
”

g ds

for all x; y 2 X and all paths ” in X joining x with y.
We say that a metric measure space .X; d; �/ supports a .1; p/-Poincaré inequality

(or simply a p-Poincaré inequality) for some 1 � p <1 if there exist � � 1 and C > 1

with the following property: if uWX ! R is locally Lipschitz and gWX ! Œ0;1/ is an
upper gradient of u, then, for all x 2X and r > 0,

(2.2)
−
B.x;r/

ju � uB.x;r/j d� � C diam.B.x; �r//
� −

B.x;�r/

gp d�
�1=p

;

where −
A

f d� D
1

�.A/

Z
A

f d� and uB.x;r/ D

−
B.x;r/

u d�:

It follows from Hölder’s inequality that if 1 � p � q and .X; d; �/ satisfies a p-Poincaré
inequality, then it satisfies a q-Poincaré inequality. Moreover, if the space is geodesic and
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doubling, then one can choose �D 1; see for example Remark 9.1.19 in [11]. Henceforth,
given a geodesic doubling spaceX that satisfies the p-Poincaré inequality, we will assume
that � D 1 in (2.2), and the constant C will be called the data of the Poincaré inequality.

For a detailed exposition on the Poincaré inequality on metric measure spaces, the
reader is referred to [11].

2.3. Modulus of curve families

The basic tool in the proof of Theorem 1.2 and Proposition 1.4 is the notion of the modulus
of curves. In a sense, the modulus is a measurement of “how many” rectifiable curves are
contained in a curve family.

Given a family � of rectifiable curves in a metric measure space .X;d;�/, we say that
a Borel function �WX ! Œ0;1/ is admissible for � ifZ

”

� ds � 1 for all ” 2 �:

For p � 1, we define the p-modulus of � by

Modp.�/ WD inf
° Z

X

�p d� W � is admissible for �
±
:

It is well known that Modp is an outer measure on the space of all curve families in X .
The next lemma relates the modulus of curve families with the locally Lipschitz capac-

ity between compact sets. Given two sets E and F in a metric space, we say that a curve ”
joins E with F if there are points x 2E and y 2 F such that ” joins x with y.

Lemma 2.2 (Theorem 1.1 in [18]). Suppose that .X; d; �/ is a geodesic metric measure
space equipped with a doubling measure � and supporting a p-Poincaré inequality with
p > 1, and suppose that � is a domain in X . Let E and F be disjoint, compact, non-
empty subsets of �, and let � be the collection of curves in � that join E with F . Then
the p-modulus of � is equal to the p-capacity of E and F :

Modp.�/ D Capp.E; F / WD inf
Z
�

gp d� I

the infimum is taken over all Borel functions gW�! Œ0;1/ such that each g is an upper
gradient of some locally Lipschitz function uW�! R satisfying ujE � 1 and ujF � 0.

3. Uniformity in metric measure spaces

The goal of this section is the proof of Proposition 1.4. The next lemmas are the crux of
the proof.

Lemma 3.1. Let .X; d; �/ be a .C1; Q/-Ahlfors regular geodesic metric measure space
supporting a p-Poincaré inequality with data C , for some C;C1 � 1, and 1 < p <Q. Let
x; y 2 X , let r 2 .0; d.x; y/=3/, and let � be the collection of paths in B.x; 2d.x; y//
that connect B.x; r/ with B.y; r/. Then

Modp.�/ &p;C;C1;Q .d.x; y//Q�p
�d.x; y/

r

��Qp
:
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Proof. Set D D d.x; y/. Let uWB.x; 2D/! R be a locally Lipschitz function satisfying
ujB.x;r/ � 1 and ujB.y;r/ � 0. Let also gWB.x; 2D/! Œ0;1/ be an upper gradient of u.
By the p-Poincaré inequality,Z

B.x;2D/

gp d�

�
�.B.x; 2D//

CpŒdiam.B.x; 2D//�.B.x; 2D//�p

� Z
B.x;2D/

ju � uB.x;2D/j d�
�p

&p;C;C1;Q DQ�p�Qp
� Z

B.x;r/[B.y;r/

ju � uB.x;2D/j d�
�p

� DQ�p�Qp
�1
2

min¹�.B.x; r//; �.B.y; r//º
�p

&p;C1 DQ�p
�D
r

��Qp
:

Denote by � the collection of curves joining B.x; r/ with B.y; r/. By Lemma 2.2,

Modp.�/ &p;C;C1;Q DQ�p
�D
r

��Qp
:

Lemma 3.2. Let .X;d;�/ be a .C1;Q/-Ahlfors regular metric measure space, let R > 0,
let ` > 0, and let � be the collection of paths in B.x; R/ that have length at least `R.
Then,

Modp.�/ .C1 `�pRQ�p:

Proof. Note that the function � D .`R/�1�B.x;R/ is admissible for � . Therefore,

Modp.�/ �
Z
X

�p d� � C1`�pRQ�p:

Lemma 3.3. Let .X;d;�/ be a .C1;Q/-Ahlfors regular metric measure space, let Y �X
be a .C2; ˛/-homogeneous set, let R > 0, let ı > 0, and let � be the collection of paths in
B.x;R/ with an endpoint outside of B.Y; 2ıR/ and which intersect B.Y; ıR/. Then

Modp.�/ .Q;C1;C2 ıQ�p�˛RQ�p:

Proof. Define the function

� WD .ıR/�1�B.Y;2ıR/\B.x;R/

and note that � is admissible for � . Indeed, if ” 2 � , then the total length of the part of ”
that is inside B.Y; 2ıR/ must be at least ıR.

If V is a .ıR/-net of Y \ B.x;R/, then

B.Y; 2ıR/ \ B.x;R/ �
[
v2V

B.v; 3ıR/;

and, by the homogeneity of Y , it follows that card.V / .C2 ı�˛ . Therefore

Modp.�/ �
Z
X

�p d� .Q;C1;C2 ıQ�p�˛RQ�p:
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Corollary 3.4. Let .X; d; �/ be a .C1; Q/-regular, geodesic metric measure space sup-
porting a p-Poincaré inequality with 1 < p < Q and data C . Let Y � X be a .C2; ˛/-
homogeneous set with 0 < ˛ < Q � p. Given x; y 2 X nY , there exists a path ”W Œ0; 1�!
X n Y such that ”.0/ D x, ”.1/ D y,

(1) ”.Œ0; 1�/ � B.x; 2d.x; y//,
(2)

length.”/ .p;C;C1;Q d.x; y/max
°
1;
� d.x; y/

dist.¹x; yº; Y /

�Q±
;

(3) for all z in the image of ”,

dist.z; Y / &p;˛;Q;C;C1;C2 d.x; y/min
²
1;
�dist.¹x; yº; Y /

d.x; y/

�QpCQ�p�˛
Q�p�˛

³
:

Proof. Set D WD d.x; y/ and

r WD
1

4
min¹D; dist.¹x; yº; Y /º:

Let �1 be the collection of all curves in B.x; 2D/ that join B.x; r/ to B.y; r/. Let �`
be the collection of all curves in B.x; 2D/ that have length at least 2D`. Let � 0

ı
be the

collection of all curves in B.x; 2D/ that intersect a .2Dı/-neighborhood of Y and have
length at least 2Dı.

By Lemma 3.1, Lemma 3.2, and Lemma 3.3, there exist

` 'p;C;C1;Q

�D
r

�Q
and ı 'p;˛;Q;C;C1;C2

� r
D

� Qp
Q�p�˛

such that
Modp.� n.�l [ � 0ı// > 0:

It follows that � n.�l [ � 0ı/ is non-empty. Fix now ” 2 � n.�l [ �
0
ı
/ and concatenate ”

with geodesic segments Œx; ”.0/� and Œ”.1/; y�. The resulting curve satisfies the conclu-
sions of the corollary.

Proof of Proposition 1.4. By Lemma 2.1, the regularity of X , and the homogeneity of Y ,
there exists p0 > 1 such that Y is p0-porous.

Fix now x;y 2X nY and denote r WD d.x;y/. There exists z0 2B.x; r/n.B.x;2�1r/
[B.y; 2�1r// such that

B.z0; 2
�1r=p0/ � B.x; r/n

�
.B.x; 2�1r/ [ B.y; 2�1r/ [ Y /

�
by applying porosity of Y to a ball of radius 2�1r contained in

B.x; r/n
�
.B.x; 2�1r/ [ B.y; 2�1r//

�
:

Moreover, for each n 2 N, there exist points zn 2 B.x; 2�nr/nB.x; 2�n�1r/ and z�n 2
B.y; 2�nr/nB.y; 2�n�1r/ such that

B.zn; 2
�n�1r=p0/ � B.x; 2

�nr/n.B.x; 2�n�1r/ [ Y /;

B.z�n; 2
�n�1r=p0/ � B.y; 2

�nr/n.B.y; 2�n�1r/ [ Y /;

again by applying the porosity of Y to balls in the annuli B.x; 2�nr/nB.x; 2�n�1r/ and
B.y; 2�nr/nB.y; 2�n�1r/.
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Applying Corollary 3.4, there exists c > 1 depending only on p0, p, Q, C , and C1
such that, for each n 2 Z, there exists a path ”nW Œ0; 1�! X nY with

(1) ”n.0/ D zn, ”n.1/ D znC1,
(2) length.”n/ � cd.zn; znC1/ � 23�jnj cr , and
(3) for all t 2 Œ0; 1�, dist.”n.t/; Y / � c�12�2�jnj r .

Concatenating all the paths ¹”nºn2Z and adding the points x and y, we obtain a path
”W Œ0; 1�! X nY . Note that

length.”/ D
X
n2Z

length.”n/ �
X
n2Z

23�jnj cr D 24cr D 24cd.x; y/:

Let now z 2 ”.Œ0; 1�/. If z is either of x or y, then there is nothing to show. Otherwise,
there exists n 2 Z such that z is in the image of ”n. Assume as we may that n � 0. Then

d.x; z/ � d.zn; x/C d.zn; z/ � .8c C 1/ 2
�nr � 4c.8c C 1/ dist.z; Y /;

which completes the proof.

4. Bi-Lipschitz approximation of curves

In this section, we show how paths in geodesic spaces can be approximated by bi-Lipschitz
arcs with the same endpoints. The main goal will be the proof of Proposition 1.5.

The next lemma is important in the proof of Theorem 1.2, and is almost identical to
Lemma 4.2 in [22]. The difference here is the quantitative control on the bi-Lipschitz
constant L.

Lemma 4.1. Given C � 1 and " > 0, there exists L D L.C; "/ � 1 with the following
property. Let .X; d/ be a C -doubling geodesic metric space, and let � W Œ0; 1� ! X be
a curve with �.0/ ¤ �.1/. There exists a curve ”W Œ0; 1� ! X such that ”.0/ D �.0/,
”.1/ D �.1/, for all s; t 2 Œ0; 1�,

1

L
js � t j diam �.Œ0; 1�/ � d.”.s/; ”.t// � L js � t j diam �.Œ0; 1�/;

and
dist.”.t/; �.Œ0; 1�// � " diam �.Œ0; 1�/:

The doubling property is not necessary to guarantee the existence of the bi-Lipschitz
map ”; see Lemma 4.2 in [22]. It is, however, necessary to control the constant L. For
example, let X D `2, let e1; e2; : : : be an orthonormal basis of `2, and let n 2 N. Define
� W Œ0; 1�! `2 so that �.0/ D e0 WD 0, �.i=n/ D ei for i 2 ¹1; : : : ; nº, and � jŒ.i�1/=n;i=n�
is linear for each i 2 ¹1; : : : ; nº. Note that diam �.Œ0; 1�/ D

p
2. It is easy to see that, if

" < 1=6, then for each i 2 ¹1; : : : ; n � 1º, the set

B.�.Œ0; 1�/;
p
2"/ n B.�.i=n/; 3

p
2"/

is disconnected. Therefore, if ” is a path in `2 joining 0 with en and satisfying ”.Œ0; 1�/ �
B.�.Œ0;1�/;

p
2"/, then ”.Œ0;1�/must intersect each ballB.�.i=n/;3

p
2"/ for iD1; : : : ;n.

In particular, the length of ” is at least a fixed multiple of n, while j”.0/ � ”.1/j D 1. It
follows that, if ” is L-bi-Lipschitz, then L must depend on n and not just on ".
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For the proof of Lemma 4.1, we require a simple lemma. Here and for the rest of this
section, all geodesic curves are parameterized by arc-length.

Lemma 4.2. Let X be a geodesic metric space, let a � b > 0, let f W Œ0; a�! X be L-bi-
Lipschitz, let p 2 X , and suppose f .b/ is the closest point in f .Œ0; a�/ to p, i.e.,

c WD dist.f .Œ0; a�/; p/ D d.f .b/; p/:

If gW Œb; b C c�! X is the geodesic from f .b/ to p, then the concatenation of f jŒ0;b�
and g is .2L/-bi-Lipschitz.

Proof. Let hW Œ0; b C c� ! X be the concatenation of f jŒ0;b� and g. Clearly, hjŒ0;b� is
L-bi-Lipschitz and hjŒb;bCc� is 1-bi-Lipschitz. Fix now s 2 Œ0; b� and t 2 Œb; c�. Then

d.h.s/; h.t// � d.f .s/; f .b//C d.g.b/; g.t// � L.b � s/C t � b � L.t � s/:

For the lower bound, we claim that d.h.t/; h.s// � d.h.t/; h.b//. Indeed, if this were
not the case, then

dist.f .Œ0; b�/; p/ � d.h.s/; h.t//C d.h.t/; p/ < d.h.b/; h.t//C d.h.t/; p/
D d.f .b/; p/ D dist.f .Œ0; b�/; p/;

which is impossible. Similarly, d.h.s/; h.t// � d.h.s/; h.b//. Therefore,

d.h.s/; h.t// � 1
2
d.h.s/; h.b//C 1

2
d.h.t/; h.b// � .2L/�1 js � bj C 1

2
jb � t j

� .2L/�1 js � t j:

We are now ready to show Lemma 4.1.

Proof of Lemma 4.1. Without loss of generality, assume that diam �.Œ0; 1�/ D 1. Since X
is doubling, it is .C 0; ˛/-homogeneous for some C 0 > 0 and ˛ > 0.

Fix " > 0. If d.�.0/; �.1// < 2", then we can simply define ” to be the geodesic
from �.0/ to �.1/ which is 1-bi-Lipschitz. Assume now that d.�.0/; �.1// � 2".

Let Y � �.Œ0; 1�/ be a maximal ."=4/-separated set that contains �.0/ and �.1/. Since
�.Œ0; 1�/ is connected, there exists a finite sequence of distinct points x0; : : : ; xn in Y
such that x0 D �.0/, xn D �.1/, and d.xi�1; xi / < "=2 for all i 2 ¹1; : : : ; nº. By the
homogeneity of X , we have that n � C 0."=4/�˛ .

We define a curve ” inductively. Let ”1W Œ0; s1�! X be a geodesic with ”1.0/ D �.0/
and ”1.s1/ D x1. Clearly, ”1 is 1-bi-Lipschitz, and for all t 2 Œ0; s1�,

dist.”1.t/; �.Œ0; 1�/ � length.”1/ � "=2:

Suppose that for some k 2 ¹1; : : : ; n� 1º we have defined sk > 0 and a 2k�1-bi-Lipschitz
curve ”k W Œ0; sk �!X , parameterized by arc-length, such that ”k.0/D �.0/, ”k.sk/D xk ,
and ”k.Œ0; sk �/ � B.�.Œ0; 1�/; "=2/. Let rk 2 Œ0; sk � be such that

ck WD dist.”k.Œ0; sk �/; xkC1/ D d.”k.rk/; xkC1/:
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Define skC1 D rk C ck and let ”kC1W Œ0; skC1�! X be the concatenation of ”kjŒ0;rk � with
a geodesic joining ”k.rk/ to xkC1 2 �.Œ0; 1�/. Note that

d.”k.rk/; xkC1/ � d.xk ; xkC1/ < "=2;

so for each t 2 Œ0; skC1�, we have

dist.”kC1.t/; �.Œ0; 1�// < "=2:

Moreover, by Lemma 4.2, the curve ”kC1 is 2k-bi-Lipschitz.
By induction, we have defined a number 0 < sn � n."=2/ and a 2n�1-bi-Lipschitz

curve ”n W Œ0; sn�! X such that ”n.0/ D �.0/, ”n.sn/ D �.1/, and

”n.Œ0; sn�/ � B.�.Œ0; 1�/; "/:

The desired curve ”W Œ0; 1�! X is the reparameterization ”.t/ D ”n.snt /.

4.1. Proof of Proposition 1.5

The proof of Proposition 1.5 will rely on the quantitative version of Theorem 1.2; see
Theorem 6.1.

We first review some elementary notions from graph theory. A (combinatorial) graph
is a pair G D .V; E/ of a finite vertex set V and an edge set E, which contains elements
of the form ¹v; v0º, where v; v0 2 V and v ¤ v0. A graph G0 D .V 0; E 0/ is a subgraph
of G D .V; E/ if V 0 � V , E 0 � E, and E 0 � V 0 � V 0. A simple path joining x; y 2 V
in G is a set ” D ¹v0; : : : ; ; vnº � V of distinct points such that v0 D x, vn D y, and
¹vi�1; viº 2 E for all i 2 ¹1; : : : ; nº. A graph G is connected if any two distinct vertices
can be joined by a simple path in G.

Lemma 4.3. Given a graph G D .V; E/ and two distinct v; v0 2 V , there exists a finite
sequence .vi /NiD1 in V such that ¹v1; : : : ;vnºDV , v1D v, vnD v0, we have ¹vi ;viC1º 2E
for each i 2 ¹1; : : : ; n� 1º, and for each e 2 E, there exist at most two i 2 ¹1; : : : ; n� 1º
such that e D ¹vi ; viC1º.

Proof. We will use the fact that every connected graph admits a 2-to-1 Euler tour along its
edges, that is, for each vertex z, there exists a finite sequence .zj /mjD1 of vertices inG such
that z1 D zm D z, ¹zj ; zjC1º is an edge for all j , and for each edge e there exists exactly
two j such that e D ¹zj ; zjC1º. See, e.g., the Euler tour technique introduced in [32].

Now let G, v and v0 be as in the statement. Deleting some edges from E, we may
assume that G is a (combinatorial) tree, that is, for any two distinct vertices, there exists
a unique simple path in G that connects them. Let QV D ¹v1; : : : ; vkº be the unique such
path with v1 D v and vk D v0. For each i 2 ¹1; : : : ; kº, let Gi D .Vi ; Ei / be the maximal
subgraph of G with the property that any simple path connecting a vertex of Gi with a
vertex of QV must contain vi . Since G is connected, it follows that each Gi is connected.
Moreover, since G is a tree, for any i ¤ j the graphs Gi and Gj are trees with mutually
disjoint vertices (and hence edges).

The construction of the finite sequence .vi /i is as follows. Firstly, do a 2-to-1 tour
of G1 starting and ending on v1. Then proceed to v2 and do a 2-to-1 tour of G2 starting
and ending on v2. Continue in this way until reaching vk , where we do a 2-to-1 tour ofGk
starting and ending on vk .
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Proof of Proposition 1.5. If diamK D 0, then there is nothing to prove. Assume now that
diamK > 0 and, rescaling, we may further assume that diamK D 1.

Let Y be a maximal ."=4/-separated subset of K that contains x and y. By the reg-
ularity of X , the cardinality of Y is at most C 0"�Q for some C 0 > 0 depending only on
the constants of Q-regularity. Define a graph G with vertex set Y such that two points
z; z0 2 G are connected by an edge if and only if d.z; z0/ < "=2. Since K is connected, it
follows that G is connected. By Lemma 4.3, there exists a tour x D v0; : : : ; vn D y of the
vertices Y such that each edge is visited at most twice.

For each z 2 Y , denote by mz the number of indices i such that vi D z. There exists
C 00 > 0, depending only on the constants of Q-regularity, such that each vertex of G
is contained in at most C 00 edges. Therefore, for each z 2 Y , mz � C 00, and it follows
that n � C 00C 0"�Q. Moreover, there exists c > 4, depending only on the constants of
Q-regularity, such that for each z 2 Y there exist points vz;1; : : : ; vz;mz 2 B.z; "=16/
such that

d.vz;i ; vz;j / � c
�1"; for all z 2 Y and i ¤ j :

We may also assume that vx;1 D x and vy;my D y.
Given i 2 ¹0; : : : ; nº, let j.i/ be the number of indices l 2 ¹0; : : : ; iº such that vl D vi .

Define now Qvi D vvi ;j.i/. Note that the new sequence Qv0; : : : ; Qvn satisfies
(1) Qv0 D x, Qvn D y,
(2) for each distinct i; j2 ¹0; : : : ; nº we have d. Qvi ; Qvj / � c�1",
(3) for each z 2 K there exists i 2 ¹0; : : : ; nº such that d.z; Qvi / � "=2,
(4) for each i 2 ¹0; : : : ; nº, dist. Qvi ; K/ � "=16.

Define a map f W ¹i" W i D 0; : : : ; nº ! X by f .i"/ D Qvi , and note that f is L0-
bi-Lipschitz, with L0 D max¹nc; 2="º. Indeed, for any distinct i and j , we have that
" � ji" � j"j � n" and c�1" � d.f .i"/; f .j"// � 1C 2c�1" < 2.

By Theorem 6.1, there exists a constant L, depending on ", the constants of Q-
regularity and the data of the Poincaré inequality, and there exists a L-bi-Lipschitz arc
F W Œ0; n"�! X that extends f and

distH .K; F.Œ0; n"�// . ":

The arc ”W Œ0; 1�! X in question is obtained by reparameterizing F .

5. Whitney intervals and a preliminary extension

Here and for the rest of this section, we assume that X is a complete geodesic .C1; Q/-
Ahlfors regular metric measure space supporting a p-Poincaré inequality with data C ,
where p 2 .1;Q � 1/ and C1; C > 1. We also assume that A � R is a closed set, and that
f WA! X is an L-bi-Lipschitz embedding.

Let I be the smallest closed interval with A � I (possibly R). We need a Whitney
decomposition of I nA as in Whitney’s classical proof of his extension theorem [35]. We
may assume that A is not a closed interval itself, as then there is no extension to be made.

Lemma 5.1 (Theorem VI.1.1 and Proposition VI.1.1 in [31]). There exists a collection of
closed intervals ¹Qiºi 2N such that
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(i)
S1
iD1 Qi D I nA,

(ii) the intervals ¹Qiº have disjoint interiors, and

(iii) diam Qi � dist.Qi ; A/ � 4 diam Qi for all i 2N.

Moreover, if the intervals Qi and Qj share an endpoint, then

(5.1) 1
4

diam Qj � diam Qi � 4 diam Qj :

Henceforth, the intervals ¹Qiºi 2N will be called Whitney intervals.

5.1. Reference points

Let E denote the collection of endpoints of ¹Qiºi2N . For each x 2E, fix a point ax 2A
that is a closest point of A to x, that is, jx � axj D dist.x; A/.

Proposition 5.2. There exist � 2 .0; 1/ and QL > 1, depending only on L, C1, and Q, and
there exists an QL-bi-Lipschitz map � WE ! X such that, for all distinct x; y 2 E,

(1) 1
4
jx � axj � d.�.x/; f .ax// � 4 jx � axj,

(2) dist.�.x/; f .A// � � jx � axj,
(3) d.�.x/; �.y// � �.jx � axj C jy � ay j/.

Moreover, if Qi D Œx; y�, then

d.�.x/; �.y// � d.f .ax/; f .ay//C 36 diam Qi � 46L diam Qi :(5.2)

We start with a result that allows us to partition E into a finite number of subsets such
that elements of the same subset are far apart quantitatively. Recall that, by Lemma 2.1,
there exists p0 � 1, depending only on L, C1 and Q, such that f .A/ is p0-porous.

Lemma 5.3. There exists n 2 N depending only on L, C1 and Q, and there exists a
partition of E into mutually disjoint sets E1; : : : ; En such that, for any i 2 ¹1; : : : ; nº and
for any x; y 2 Ei ,

(F1) either jx � yj > .12L/max¹jx � axj; jy � ay jº,
(F2) or max¹jx � axj; jy � ay jº > .8p0/min¹jx � axj; jy � ay jº.

Proof. EnumerateE D ¹x1; x2; : : : º, and for each i 2N, define Vi be the set of all indices
j 2 N such that

jxi � xj j � .12L/max¹jxi � axi j; jxj � axj jº

and
.8p0/

�1
jxi � axi j � jxj � axj j � .8p0/jxi � axi j:

Note that i 2 Vj if and only if j 2 Vi .
We claim that there exists n2N, depending only onL,C1 andQ, such that card.Vi /�

n for each i 2N. To this end, fix i 2N and note that for any j; k 2 Vi with j ¤ k,

(5.3) jxj � xkj � .24L/max¹jxj � axj j; jxk � axk j; jxi � axi jº � .192p0L/ jxi � axi j:
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Moreover, let j; k 2 Vi with j ¤ k, let Qj1 and Qj2 be the two Whitney intervals
which share the endpoint xj , and let Qk1 and Qk2 be the two Whitney intervals which
share the endpoint xk . We have

dist.Qj1 ; A/ � jxj � axj j � diam Qj1 � jxj � axj j � dist.Qj1 ; A/;

so jxj � axj j � 2 dist.Qj1 ; A/. By Lemma 5.1(iii),

diam Qj1 �
1
4

dist.Qj1 ; A/ �
1
8
jxj � axj j;

and a similar estimate holds for Qj2 , Qk1 , and Qk2 . Since xj ¤ xk , one of the intervals
for which they are endpoints lies between them. That is,

jxj � xkj � min¹diam Qj1 ; diam Qj2 ; diam Qk1 ; diam Qk2º

�
1
8

min¹jxj � axj j; jxk � axk jº � .64p0/
�1
jxi � axi j:

Combining this with (5.3), we conclude that card.Vi / � 192L.8p0/2 DW n.
Define now a map cWN ! ¹1; : : : ; nº such that c.1/ D 1, and for each i � 2,

c.i/ WD min¹` 2 N W ` ¤ c.k/ for all k 2 Vi \ ¹1; : : : ; i � 1ºº:

It is clear that if i 2 Vj and i ¤ j , then c.i/ ¤ c.j /. For each i 2 ¹1; : : : ; nº, define
Ei WD ¹xj W c.j / D iº. Given xj ; xk 2 Ei , c.i/ D c.j /, so j … Vk (equivalently, k … Vj ).
Properties (F1) and (F2) follow.

We now turn to the proof of Proposition 5.2.

Proof of Proposition 5.2. Let n 2 N and E1; : : : ; En be the integer and the partition,
respectively, from Lemma 5.3. For each k 2 ¹1; : : : ; nº, define E.k/ D E1 [ � � � [Ek .

Let i 2 ¹1; : : : ; nº, x 2Ei , and x0 2 @B.f .ax/; jx � axj/. By the porosity of f .A/,
there exists a point Qx 2 X such that

B. Qx; .2p0/
�1
jx � axj/ � B

�
x0; 1

2
jx � axj

�
nf .A/:

Then

1
2
jx � axj � d. Qx; f .ax// �

3
2
jx � axj and(5.4)

dist. Qx; f .A// � .2p0/�1jx � axj:(5.5)

For any i 2 ¹1; : : : ; nº, and for any x; y 2 Ei , we will show that

(5.6) d. Qx; Qy/ � .8p0/
�1.jx � axj C jy � ay j/:

Fix such i , x, and y, and assume without loss of generality that jx � axj � jy � ay j.
If (F1) holds, then by (5.4),

d. Qx; Qy/ � d.f .ax/; f .ay// � d.f .ax/; Qx/ � d.f .ay/; Qy/

� L�1 jax � ay j �
3
2
.jx � axj C jy � ay j/ � L

�1
jx � yj � 6 jx � axj

> 6 jx � axj � 3.jx � axj C jy � ay j/:
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Assume now that (F2) holds and (F1) fails. By (5.4) and (5.5),

d. Qx; Qy/ � d. Qx; f .ay// � d.f .ay/; Qy/ � .2p0/
�1
jx � axj �

3
2
jy � ay j

� .8p0/
�1.jx � axj C jy � ay j/:

We define the map � on each E.k/ in an inductive manner. Define � WE1 ! X by
�.x/ D Qx. Properties (1)–(3) of the proposition for E1 follow from (5.4), (5.5), and (5.6)
with �1 D .8p0/�1.

Assume now that for some k 2 ¹1; : : : ; n � 1º we have defined a constant �k 2 .0; 1/
and a function � WE.k/ ! X such that, for all distinct x; y 2 E.k/,

1
4
jx � axj � d.�.x/; f .ax// � 4jx � axj;(5.7)

dist.�.x/; f .A// � .4p0/�1jx � axj; and(5.8)
d.�.x/; �.y// � �k.jx � axj C jy � ay j/:(5.9)

Fix x 2EkC1, and assume that there exist y1; : : : ; yN 2 E.k/ such that

(5.10) d. Qx; �.yj // < .8p0/
�1.jx � axj C jyj � ayj j/

for each j 2 ¹1; : : : ; N º. First, for each such j , by (5.7), (5.5), and (5.10),

jyj � ayj j �
1
4
d.�.yj /; f .ayj // �

1
4

�
d. Qx; f .ayj // � d. Qx; �.yj //

�
�

1
4

�
.2p0/

�1
jx � axj � .8p0/

�1.jx � axj C jyj � ayj j/
�
:

This gives

(5.11) jyj � ayj j � .12p0/
�1
jx � axj:

Next, for any j; ` 2 ¹1; : : : ; N º, (5.9) and (5.11) yield

(5.12) d.�.yj /; �.y`// � .12p0/
�1 �k jx � axj;

so ¹�.y1/; : : : ;�.yN /º is a ..12p0/�1�kjx�axj/-separated set. By (5.4), (5.8), and (5.10),
for any j 2 ¹1; : : : ; N º,

jx � axj �
2
3
d. Qx; f .ax// �

2
3

�
d.�.yj /; f .ax// � d. Qx; �.yj //

�
� .6p0/

�1
jyj � ayj j � .12p0/

�1.jx � axj C jyj � ayj j/:

Therefore,

(5.13) jyj � ayj j � 24p0 jx � axj:

By Ahlfors regularity, (5.10), (5.13), and (5.12), we obtain N .L;C1;Q �
�Q

k
.

By Lemma 2.1, ¹�.y1/; : : : ; �.yN /º is pk-porous for some pk � 1 depending only
on C1, Q, L, and k. Hence, there exists a point �.x/ 2 B. Qx; .32p0/�1jx � axj/ such that

(5.14) B.�.x/; .32p0pk/
�1
jx � axj/ � X n¹�.y1/; : : : ; �.yN /º:

To complete the inductive step, we show that � defined on E.kC1/ satisfies proper-
ties (1)–(3) of the proposition for some appropriate �kC1 2 .0; 1/.
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For the first property, fix x 2EkC1. By (5.4),

d.�.x/; f .ax// � d.�.x/; Qx/C d.f .ax/; Qx/ � 2 jx � axj and

d.�.x/; f .ax// � d.f .ax/; Qx/ � d.�.x/; Qx/ �
1
4
jx � axj:

For the second property, fix x 2EkC1. By (5.5),

dist.�.x/; f .A// � dist. Qx; f .A// � d.�.x/; Qx/ � .4p0/�1jx � axj:

For the third property, fix distinct x; y 2 E.kC1/ and assume that x 2EkC1. If y 2
EkC1, then by (5.6),

d.�.x/; �.y// � d. Qx; Qy/ � d.�.x/; Qx/ � d.�.y/; Qy/ � .16p0/
�1.jx � axj C jy � ay j/:

Assume now that y 2E.k/. If

d. Qx; Qy/ � .8p0/
�1 .jx � axj C jy � ay j/;

then we work as in the preceding case. If

d. Qx; Qy/ < .8p0/
�1 .jx � axj C jy � ay j/;

then by (5.13) and (5.14),

d.�.x/; �.y// � .32p0pk/
�1
jx � axj � .2

93p20pk/
�1 .jx � axj C jy � ay j/:

After n steps, we have defined � WD �n and the map � WE ! X that satisfies proper-
ties (1)–(3) in the statement of the lemma.

To show that � is bi-Lipschitz, fix distinct x; y 2 E and assume without loss of gener-
ality that jx � axj � jy � ay j. By Lemma 5.1(iii), jx � axj � 4jx � yj. By property (3),

d.�.x/; �.y// � d.�.x/; f .ax//C d.f .ax/; f .ay//C d.�.y/; f .ay//

� 4jx � axj C L jax � ay j C 4jy � ay j � 41L jx � yj:

For the lower bound, suppose first that jax � ay j � 16L jx � axj. Then we have that
jx � yj � 2 jax � ay j, and by property (1),

d.�.x/;�.y//� d.f .ax/;f .ay//�d.�.x/;f .ax//�d.�.y/;f .ay//�.2L/
�1
jax�ay j:

Suppose now that jax � ay j � 16L jx � axj. Then, jx � yj � .2C 16L/jx � axj and
by property (3), d.�.x/; �.y// � � jx � axj.

For (5.2), fix a Whitney interval Qi D Œx; y� and assume, without loss of generality,
that jx � axj � jy � ay j. There are two cases to consider. Assume first that ax D ay . By
property (1),

d.�.x/; �.y// � 4jx � axj C 4jy � axj � 8jx � axj C 4 diam Qi � 36 diam Qi :

Assume now that ax ¤ ay . Then

jy � ay j � jy � axj � jx � yj C jx � axj � 5 diam Qi ;

which yields that jax � ay j � 11 diam Qi . By property (1),

d.�.x/; �.y// � 4jx � axj C d.f .ax/; f .ay//C 4jy � ay j

� d.f .ax/; f .ay//C 40 diam Qi

� Ljax � ay j C 40 diam Qi � 51L diam Qi :
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5.2. The middle third of each Whitney interval

The goal of this subsection is to extend f to the union of the middle-thirds of all Whitney
intervals ¹Qiºi 2N in a bi-Lipschitz way. From here on, for each Whitney interval Qi , we
denote by OQi the middle third interval of Qi . Recall the constants � 2 .0; 1/ and QL from
Proposition 5.2, depending only on L, C1, and Q.

Proposition 5.4. There exists a constant OL � 1 depending only on p, C , C1, L, and Q,
and there exists an OL-bi-Lipschitz extension of f ,

g W A [
[
i2N

OQi ! X;

such that for each i 2 N, if Qi D Œw; z� and OQi D Œ Ow; Oz�, then

(1) d.g. Ow/; �.w// � .28 QL/�1� diam Qi ,

(2) d.g. Oz/; �.z// � .28 QL/�1� diam Qi , and

(3) g. OQi / � B.�.w/; 4Ri / \ B.�.z/; 4Ri /, where Ri D d.�.w/; �.z//.

Recall that, since f is bi-Lipschitz, the set f .A/ is 1-homogeneous in X .

Lemma 5.5. There exist constants ˇ0; `0; ı0 > 0, depending only on p, C , C1, L, andQ,
with the following property. Let Qi D Œw; z� be a Whitney interval and let �i be the col-
lection of curves ”W Œ0; 1�! X such that

(1) ”.Œ0; 1�/ � B.�.w/; 3Ri / \ B.�.z/; 3Ri /, where Ri D d.�.w/; �.z//,

(2) max¹d.”.0/; �.w//; d.”.1/; �.z//º < .28 QL/�1� diam Qi ,

(3) length.”/ � `0 diam Qi ,

(4) dist.”.t/; f .A// � ı0 diam Qi for all t 2 Œ0; 1�.

Then,
Modp.�i / � ˇ0.diam Qi /

Q�p:

Proof. Since B.�.w/; 2Ri / � B.�.w/; 3Ri /\B.�.z/; 3Ri /, we may apply Lemma 3.1,
Proposition 5.2(3), and (5.2) to conclude that the family �.1/i of curves

” W Œ0; 1�! B.�.w/; 3Ri / \ B.�.z/; 3Ri /

such that ”.0/ lies in the closed ball B.�.w/; .28 QL/�1 � diam Qi / and ”.1/ lies in the
closed ball B.�.z/; .28 QL/�1 � diam Qi / has p-modulus

Modp.�
.1/
i / � ˛.diam Qi /

Q�p;

where ˛ > 0 is some constant depending only on p, C , C1, Q, and L.
By Lemma 3.2, there exists `0 > 0, depending only on p, C , C1, Q, and L, such that

the subfamily
�
.2/
i WD

®
” 2 �

.1/
i W length.”/ � `0 diam Qi

¯
satisfies

Modp.�
.2/
i / � 1

2
˛.diam Qi /

Q�p:
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By Lemma 3.3, there exists ı0 > 0, depending only on Q, p, C , C1, and L, such that the
subfamily

�i WD
®
” 2 �

.2/
i W dist.”.t/; f .A// � ı0 diam Qi for each t 2 Œ0; 1�

¯
satisfies

Modp.�i / � 1
4
˛.diam Qi /

Q�p:

We now need a filtration of the Whitney decomposition, in the vein of the follow-
ing result of David and Semmes. The proof of the lemma is almost identical to that of
Lemma 5.3, and is left to the reader.

Lemma 5.6 (Proposition 17.4 in [6]). There exists an integer N depending only on L,
C1, and Q, and there exists a partition of N into sets ¹I1; : : : ; IN º such that for any
k 2 ¹1; : : : ; N º and for any i; j 2 Ik ,

(i) either dist.Qi ;Qj / > 800L
2 max¹diam Qi ; diam Qj º,

(ii) or max¹diam Qi ; diam Qj º > 800Lı
�1
0 min¹diam Qi ; diam Qj º.

We are now ready to prove Proposition 5.4.

Proof of Proposition 5.4. The construction is in an inductive fashion. LetN be the integer
and let I1; : : : ; IN be the sets of indices from Lemma 5.6. Denote A0 WD A, and for each
k 2 ¹1; : : : ; N º, denote

Ak WD A0 [

k[
jD1

[
i 2 Ij

OQi :

For each k 2 ¹0; : : : ;N º, we find some Lk � 1, depending only on p, C , C1, L,Q, and k,
and we find an Lk-bi-Lipschitz embedding fk W Ak ! X such that for all k 2 ¹1; : : : ;N º,
fkjAk�1 D fk�1 and such that, if i 2 Ik , Qi D Œw; z�, and OQi D Œ Ow; Oz�, then

(a) d.fk. Ow/; �.w// � .28 QL/�1� diam Qi ,
(b) d.fk. Oz/; �.z// � .28 QL/�1� diam Qi ,
(c) fk. OQi / � B.�.w/; 4Ri / \ B.�.z/; 4Ri /, where Ri D d.�.w/; �.z//.

The map g of Proposition 5.4 will then be the map fN .
For k D 0, set L0 D L and f0 D f . Properties (a)–(c) are vacuous.
Assume now that, for some k 2 ¹0; : : : ; N � 1º, there exist a constant Lk and an

Lk-bi-Lipschitz map fk WAk ! X satisfying (a)–(c).
Fix i 2 IkC1 and write Qi D Œw; z� and OQi D Œ Ow; Oz�. Recall the family of curves �i

from Lemma 5.5. By Lemma 3.3, there exists ıkC1 2 .0; �/, depending only on Q, p,
C , C1, L, and k (in particular, on the homogeneity constant of f .Ak/), such that the
subfamily

� 0k;i WD ¹” 2 �i W dist.”.t/; fk.Ak// � ıkC1 diam Qi for each t 2 Œ0; 1�º

satisfies
Modp.� 0k;i / �

1
2
ˇ0.diam Qi /

Q�p > 0:
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In particular, � 0
k;i

is non-empty, so we can pick a curve �i 2� 0k;i . Applying Lemma 4.1
to �i with a suitable reparameterization, we find a constant L0

kC1
, depending only on

Q, p, C , C1, L, and k, and we find an L0
kC1

-bi-Lipschitz curve ”i W OQi ! X such that
”i . Ow/ D �i .0/, ”i . Oz/ D �i .1/, and the inductive hypothesis (c) for fk gives

”i . OQi / � B.�i .Œ0; 1�/;
1
2
ıkC1 diam Qi /(5.15)

� B.�.w/; 3Ri C
1
2
ıkC1 diam Qi / \ B.�.z/; 3Ri C

1
2
ıkC1 diam Qi /

� B.�.w/; 4Ri / \ B.�.z/; 4Ri /:

In particular, we have that dist.”i . OQi /; fk.Ak// �
1
2
ıkC1 diam Qi .

Define now fkC1WAkC1 ! X by setting fkC1jAk D fk and fkC1j OQi D ”i for each
i 2 IkC1. By (5.2), we have for all i 2 IkC1,

(5.16) diamfkC1. OQi / � 9Ri � 414L diam.Qi /:

Clearly, fkC1jAk D fk . Properties (a)–(c) are clear from the design of fkC1 and
Lemma 5.5. To complete the inductive step, we claim that fkC1 is LkC1-bi-Lipschitz
for some LkC1 � 1 depending only on Q, p, C , C1, L, and k. Fix x; y 2 AkC1.

Firstly, if x; y 2Ak , then the claim follows by the fact that fkC1jAk D fk and the
inductive hypothesis that fk is Lk-bi-Lipschitz.

Secondly, assume that x 2 OQi for some i 2 IkC1 and y 2 A. Let w be the endpoint
of Qi closest to A, let Ow be the endpoint of OQi between x and w, and note that jw � xj �
jx � aw j � jx � yj. By (5.16), Proposition 5.2(1), the fact diam Qi � jw � aw j, and
properties (a) and (b) for fkC1,

d.fkC1.x/; fkC1.y//

� d.fkC1.x/; fkC1. Ow//C d.fkC1. Ow/; �.w//C d.�.w/; f .aw//Cd.f .aw/; f .y//

� .414LC 5/jw � aw j C L jaw � yj � .414LC 5/jx � aw j C L jaw � yj

� .416LC 5/jx � yj:

For the lower bound, we have by Lemma 5.5(4) and the design of ”i ,

d.fkC1.x/; fkC1.y// � dist.fkC1.x/; f .A// � 1
2
ı0 diam Qi �

1
8
ı0 jw � aw j;

and, by (5.16), property (c) for fkC1, and Proposition 5.2(2),

d.fkC1.x/; f .aw// � d.fkC1.x/; fkC1. Ow//C d.fkC1. Ow/; �.w//C d.f .aw/; �.w//

� 414L diam QiC.2
8 QL/�1� diam QiC4 jw�aw j�419L jw�aw j:

Therefore, since jx � aw j � 2 jw � aw j,

jx � yj � jx � aw j C jaw � yj

� 2 jw � aw j C LŒd.f .aw/; fkC1.x//C d.fkC1.x/; f .y//�

� 419L2 jw � aw j C Ld.fkC1.x/; f .y//

� 3352L2 ı�10 d.fkC1.x/; fkC1.y//:
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Thirdly, assume that x 2 OQi and y 2 OQj , for some i; j 2 I1 [ � � � [ IkC1. Assume that
diam Qi � diam Qj . For the upper bound, note that

(5.17) jx � yj � dist. OQi ; OQj / � diam OQi C diam OQj D 1
3
.diam Qi C diam Qj /:

Let ai be the closest point of A to Qi , let aj be the closest point of A to Qj , let ei be
the endpoint of Qi that lies between x and ai , and let ej be the endpoint of Qj that lies
between y and aj . By Proposition 5.2(1), (5.15), (5.2), Lemma 5.1(iii), and (5.17),

d.fkC1.x/; fkC1.y// � d.fkC1.x/; �.ei //C d.�.ei /; f .ai //C d.f .ai /; f .aj //

C d.f .aj /; �.ej //C d.�.ej /; fkC1.y//

� .16C184L/.diam QiC diam Qj /C L jai � aj j

� .16C189L/.diam QiC diam Qj /C L jx � yj � 616L jx � yj

since jx � ai j � diam Qi C jei � ai j � 5 diam Qi and, similarly, jy � aj j � 5 diam Qj .
For the lower bound, there are two cases to consider.
Case 1: dist.Qi ;Qj / > 800L

2 diam Qi .
By Proposition 5.2(1), (5.15), and Lemma 5.1(iii),

d.fkC1.x/; fkC1.y// � d.f .ai /; f .aj // � d.f .ai /; �.ei // � d.�.ei /; fkC1.x//

� d.f .aj /; �.ej // � d.�.ej /; fkC1.y//

� L�1 jai � aj j � .184LC 16/.diam Qi C diam Qj /

� L�1 jx � yj � L�1.jx � ai j C jaj � yj/ � 400L diam Qi

� L�1 jx � yj � .10L�1 C 400L/ diam Qi

> L�1 jx � yj � 410L.800L2/�1 dist.Qi ;Qj / � .3L/
�1
jx � yj:

Case 2: dist.Qi ;Qj / � 800L
2 diam Qi .

In this case, we have

jx � yj � diam Qi C dist.Qi ;Qj /C diam Qj � 802L
2 diam Qi :

Case 2 splits now into two subcases.
Case 2.1: i 2 IkC1 and j 2 I1 [ � � � [ Ik . According to the line following (5.15),

d.fkC1.x/; fkC1.y// � d.fkC1.x/; fk.Ak// �
1
2
ıkC1 diam Qi

� ıkC1.1604L
2/�1jx � yj:

Case 2.2: i; j 2 IkC1. By Lemma 5.6, we have that diam Qi > 800Lı
�1
0 diam Qj . By

Lemma 5.5(4), the design of ”i , Proposition 5.2(1), and (5.15),

d.fkC1.x/; fkC1.y// � dist.fkC1. OQi /; fkC1.y//

� dist.fkC1. OQi /; f .aj // � d.�.ej /; f .aj // � d.�.ej /; fkC1.y//

�
1
2
ı0 diam Qi � .16C184L/ diam Qj �

1
4
ı0 diam Qi �

1
4
ı0.802L

2/�1jx�yj:
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6. Proof of Theorem 1.2

In this section, we will give the proof of the following quantitative version of Theorem 1.2.

Theorem 6.1. Given C;C1 > 0, Q > 2, p 2 .1;Q � 1/, and L � 1, there exists L0 � 1
with the following property.

Let .X; d; �/ be a complete geodesic .C1; Q/-Ahlfors regular metric measure space
supporting a p-Poincaré inequality with data C . Let A � R be a closed set, let I be
the smallest closed interval of R containing A, and let f WA! X be an L-bi-Lipschitz
embedding. Then there exists an L0-bi-Lipschitz extension F W I ! X of f .

Moreover, if .x; y/ is a component of I n A, then

(6.1) diamF.Œx; y�/ � 75max¹jx � yj; d.f .x/; f .y//º:

The remainder of this section is devoted to the proof of this theorem. Let ¹Qiºi2N be
the Whitney decomposition of I nA from Lemma 5.1, and let

OA WD A [
[
i2N

OQi :

Recall that OQi denotes the middle third of the Whitney interval Qi and that E denotes the
set of endpoints of Whitney intervals ¹Qiºi2N .

There is a map � WE ! X satisfying the properties of Proposition 5.2, there exists a
constant OL � 1 depending only on C , C1,Q, p, and L, and there exists an OL-bi-Lipschitz
extension of f ,

g W OA! X;

satisfying the properties outlined in Proposition 5.4. In particular, if .x; y/ is a component
of I nA, if Qi�.x; y/, and if x is the closest point of A to Qi , then by (5.2) and (5.15),

(6.2) max
z2 OQi

d.f .x/; g.z// � 2d.f .x/; f .y//C 73 diam Qi :

We introduce several pieces of notation. Given x2E, we denote by Lx (respectively, Rx)
the Whitney interval for which x is the right (respectively, left) endpoint. As above, OLx

and ORx are the middle thirds of intervals Lx and Rx . By (5.1), for any x 2E we have

1
4

diam Lx � diam Rx � 4 diam Lx :

Further, for any x 2E we write

Lx D ŒxL; x�; OLx D Œ�
1
x ; �

2
x �; Rx D Œx; xR� and ORx D Œ�

3
x ; �

4
x �:

Since g is OL-bi-Lipschitz, there exists C2 > 0 depending only on C , C1, Q, p, and L
such that the set g. OA/ (and each of its subsets) is .C2; 1/-homogeneous.
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6.1. Local modifications around points in E

We divide E into two sets, E 0 and E 00, such that for any two points in E 0, there exists a
point in E 00 between them and vice-versa. That is, for any x 2E 0 we have xL; xR 2 E 00,
and for any x 2E 00 we have xL; xR 2 E 0.

We perform local modifications around points in E starting with points in E 0.

6.1.1. Local modifications around points in E 0. Fix a point x 2E 0. By the .C2; 1/-
homogeneity of g. OA n . OLx [

ORx//, by Corollary 3.4 and Proposition 5.4 (1), (2), there
exists a constant C 0 � 1, depending only on C , C1, Q, p, L, and there exists a curve
�x W Œ0; 1�! X such that

(1) �x.0/ D g.�2x /, �x.1/ D g.�
3
x /;

(2) �x.Œ0; 1�/ � B.g.�2x /; 2d.g.�
2
x /; g.�

3
x ///, so for each t 2 Œ0; 1�,

d.�x.t/; �.x// � 2d.g.�
2
x /; g.�

3
x //C d.g.�

x
2 /; �.x//

� 5.28 QL/�1 � max¹diam Lx ; diam RxºI

(3) length.�x/ � C 0max¹diam Lx ; diam Rxº;
(4) dist.�x.Œ0; 1�/; g. OA n . OLx [

ORx/// � .C
0/�1 min¹diam Lx ; diam Rxº.

By Lemma 4.1, there exists L� > 1, depending only on C , C1,Q, p, and L, and there
exists an L�-bi-Lipschitz map

”x W Œ�
2
x ; �

3
x �! B

�
�.x/; 6.28 QL/�1 � max¹diam Lx ; diam Rxº

�
such that ”x.�2x / D �x.0/ D g.�

2
x /, ”x.�

3
x / D �x.1/ D g.�

3
x /, and for all t 2 Œ�2x ; �

3
x �,

dist.”x.t/; �x.Œ0; 1�// � .211C 0 QL/�1 � max¹diam Lx ; diam Rxº:

In particular,

(6.3) dist
�
”x.Œ�

2
x ; �

3
x �/; g.

OA n .Lx [Rx//
�
� .2C 0/�1 max¹diam Lx ; diam Rxº:

Set " D .250 QL OLL�C 0/�2 �. Define

t1x D min¹t 2 Œ�1x ; �
2
x � W dist.g.t/; ”x.Œ�2x ; �

3
x �// D ".diam Lx C diam Rx/º;

t2x D max¹t 2 Œ�2x ; �
3
x � W d.g.t

1
x /; ”x.t// D ".diam Lx C diam Rx/º:

By (5.1), Proposition 5.2 (3), and Proposition 5.4 (1), (2),

d.g.�1x /; g.�
2
x // � d.�.xL/; �.x//�d.�.xL/; g.�

1
x //�d.�.x/; g.�

2
x // �

1
2
� diam Lx ;

so we have that

d.g.t1x /; g.�
1
x //(6.4)

� d.g.�1x /; g.�
2
x // � max

t2Œ�2x ;�
3
x �
d.”x.t/; g.�

2
x // � dist.g.t1x /; ”x.Œ�

2
x ; �

3
x �//

�
1
2
� diam Lx � max

t2Œ0;1�
d.�x.t/; g.�

2
x //

� .211C 0 QL/�1� max¹diam Lx ; diam Rxº � ".diam Lx C diam Rx/

�
�
1
2
� � 2�5 � � 2�9 � � 5"

�
diam Lx �

1
4
� diam Lx
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and

d.g.t1x /; g.�
2
x // � dist.g.t1x /; ”x.Œ�

2
x ; �

3
x �// D ".diam Lx C diam Rx/:(6.5)

Moreover,

d.”x.t
2
x /; ”x.�

3
x // � dist.g.�3x /; g.Œ�

1
x ; �

2
x �// � dist.”x.t2x /; g.Œ�

1
x ; �

2
x �//

�
1
3
OL�1.diam Lx C diam Rx/ � ".diam Lx C diam Rx/

�
1
4
OL�1.diam Lx C diam Rx/:

Define now

t4x D max
®
t 2 Œ�3x ; �

4
x � W d.g.t/; ”x.Œ�

2
x ; �

3
x �// D ".diam Lx C diam Rx/

¯
t3x D min

®
t 2 Œt2x ; �

3
x � W d.”x.t/; g.t

4
x // D ".diam Lx C diam Rx/

¯
:

As in (6.4), we have that

(6.6) d.g.t4x /; g.�
4
x // �

1
4
� diam Rx

and
d.g.t4x /; g.�

3
x // � ".diam Lx C diam Rx/:

Moreover, if t 2 Œ�2x ; �
3
x � satisfies d.”x.t/; g.t4x // D ".diam Lx C diam Rx/, then

d.”x.t
2
x /; ”x.t// � dist.g.Œ�1x ; �

2
x �/; g.Œ�

3
x ; �

4
x �// � 2".diam Lx C diam Rx/

� .1
3
OL�1 � 2"/.diam Lx C diam Rx/ �

1
4
OL�1.diam Lx C diam Rx/:

Therefore, t3x is well defined and

(6.7) t3x � t
2
x � .4

OLL�/�1.diam Lx C diam Rx/:

6.1.2. Local modifications around points in E 00. Fix x 2E 00. We proceed to define ”x
and points t1x ; : : : ; t

4
x as in Section 6.1.1. The only difference is that we take into account

the modifications done for points in xL; xR 2 E 0. In particular, we define

t1x D min¹t 2 Œt4xL ; �
2
x � W dist.g.t/; ”x.Œ�2x ; �

3
x �// D ".diam Lx C diam Rx/º;

t2x D max¹t 2 Œ�2x ; �
3
x � W d.g.t

1
x /; ”x.t// D ".diam Lx C diam Rx/º;

t4x D max¹t 2 Œ�3x ; t
1
xR
� W d.g.t/; ”x.Œ�

2
x ; �

3
x �// D ".diam Lx C diam Rx/º;

t3x D min¹t 2 Œt2x ; �
3
x � W d.”x.t/; g.t

4
x // D ".diam Lx C diam Rx/º:

Equations (6.4), (6.6), (6.7) are still valid for x 2E 00 as well.
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Furthermore, suppose that x < y are consecutive points in E; that is, x D yL (or
equivalently, y D xR). Then,

d.g.t4x /; g.t
1
y //(6.8)

� d.�.x/; �.y// � d.�.x/; g.t4x // � d.�.y/; g.t
1
y //

� � diam Ly � ".diam Lx C diam Rx/ � 6.2
8 QL/�1 �.diam Lx C diam Rx/

� ".diam Ly C diam Ry/ � 6.2
8 QL/�1 �.diam Ly C diam Ry/

� .� � 10" � 60.28 QL/�1 �/ diam Ly �
1
2
� diam Ly :

6.2. Definition of the extension F and proof of Theorem 6.1

Set
QA D OA n

[
x 2E

Œt1x ; t
4
x �:

Define the map F W I ! X so that
(1) F j QA D gj QA,
(2) for each x 2E, F jŒt2x ; t

3
x � D ”xjŒt

2
x ; t

3
x �,

(3) for each x 2E, F jŒt1x ; t
2
x � is the geodesic from g.t1x / to ”x.t2x / of constant speed,

(4) for each x 2E, F jŒt3x ; t
4
x � is the geodesic from ”x.t

3
x / to g.t4x / of constant speed.

Clearly, F is an extension of f . In view of (6.2), the following proposition completes
the proof of Theorem 6.1.

Proposition 6.1. The map F is an L0-bi-Lipschitz embedding for some L0 � 1 depending
only on C , C1, Q, p, and L.

Proof. Fix s; t 2I with s < t . We may assume that one of s or t is in Œt1x ; t
4
x � for some x2E,

since otherwise F D g, which is OL-bi-Lipschitz. Assume without loss of generality that
t 2 Œt1x ; t

4
x � for some x 2E. The proof is a case study.

Case 1. Assume that s 2 Œt1x ; t
4
x �. There are a few subcases to consider.

Case 1.1. Assume that s; t 2 Œt1x ; t
2
x � or s; t 2 Œt3x ; t

4
x �. Without loss of generality, assume

the former. In this case, F.s/ and F.t/ lie on a geodesic of unit speed joining g.t1x / and
”x.t

2
x /, and by (6.5),

OL�1".diam Lx C diam Rx/ � jt
1
x � �

2
x j � jt

1
x � t

2
x j � diam Lx C diam Rx ;

so
d.F.s/; F.t//

js � t j
D
d.g.t1x /; ”x.t

2
x //

jt1x � t
2
x j

2 Œ"; OL�:

Case 1.2. Assume that s; t 2 Œt2x ; t
3
x �. Here F jŒt2x ; t

3
x � D ”xjŒt

2
x ; t

3
x �, and ”x is L�-bi-

Lipschitz.
Case 1.3. Assume that s 2 Œt1x ; t

2
x � and t 2 Œt2x ; t

3
x � or s 2 Œt2x ; t

3
x � and t 2 Œt3x ; t

4
x �. Without

loss of generality, we assume the former. Then F.s/ lies on a geodesic of unit speed
joining g.t1x / and ”x.t2x /, and F.t/ D ”x.t/. Since ”x.t2x / is a closest point of ”x.Œt2x ; t

3
x �/
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to g.t1x /, Lemma 4.2 implies that the gluing F.Œt1x ; t
3
x �/ D g.Œt

1
x ; t

2
x �/ [ ”x.Œt

2
x ; t

3
x �/ is bi-

Lipschitz with a constant depending only on that of ”x , which itself depends only on C ,
C1, Q, p, and L.

Case 1.4. Assume that s 2 Œt1x ; t
2
x � and t 2 Œt3x ; t

4
x �. By (6.7),

.4 OLL�/�1.diam Lx C diam Rx/ � jt
2
x � t

3
x j � js � t j � diam Lx C diam Rx :

On one hand, using the fact that F.s/ and F.t2x /, and F.t3x / and F.t/ lie on unit speed
geodesics joining g.t1x / to ”x.t2x / and ”x.t3x / to g.t4x / respectively, we get

d.F.s/; F.t// � d.F.s/; F.t2x //C d.”x.t
2
x /; ”x.t

3
x //C d.F.t

3
x /; F .t//

� d.g.t1x /; ”x.t
2
x //C d.”x.t

2
x /; ”x.t

3
x //C d.”x.t

3
x /; g.t

4
x //

� .2"C 12.28 QL/�1 �/ .diam Lx C diam Rx/:

On the other hand, arguing similarly gives

d.F.s/; F.t// � d.”x.t
2
x /; ”x.t

3
x // � d.F.s/; F.t

2
x // � d.F.t/; F .t

3
x //

� .L�/�1 jt2x � t
3
x j � 2".diam Lx C diam Rx/

� ..4 OL.L�/2/�1 � 2"/.diam Lx C diam Rx/

� .8 OL.L�/2/�1.diam Lx C diam Rx/:

Case 2. Assume that s 2 Œt1y ; t
4
y � for some y 2 E with y < x. First, using (6.8),

.10 OL/�1 �.diam Ry C diam Lx/ � jt
4
y � t

1
x j � js � t j:

As with Case 1.4,

d.F.s/; F.t4y // � d.F.t
1
y /; F .t

2
y //C d.”y.t

2
y /; ”y.t

3
y //C d.F.t

3
y /; F .t

4
y //

� .2"C 12.28 QL/�1 �/.diam Ly C diam Ry/;

and similarly,

d.F.t1x /; F .t// � .2"C 12.2
8 QL/�1 �/.diam Lx C diam Rx/:

Thus

d.F.s/; F.t// � d.F.s/; F.t4y //C d.g.t
4
y /; g.t

1
x //C d.F.t

1
x /; F .t//

� 5.2"C 1/.diam Ry C diam Lx/C OL jt
4
y � t

1
x j � 51

OL��1.2"C 1/js � t j:

For the lower bound, if y D xL, then js � t j � 9 jx � yj, and (6.8) gives

d.F.s/; F.t// � d.g.t4y /; g.t
1
x // � d.F.s/; F.t

4
y // � d.F.t

1
x /; F .t//

�
1
2
� diam Lx � 10.2"C 12.2

8 QL/�1 �/ diam Lx

�
1
50
� diam Lx �

1
450
js � t j:
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If instead y < xL, then

d.F.s/; F.t// � d.�.x/; �.y// � d.�.y/; F.s// � d.�.x/; F.t//

� QL�1 jx � yj � 5.12.28 QL/�1 � C 2"/.diam Ry C diam Lx/

� . QL�1 � 10.12.28 QL/�1 � C 2"// jx � yj � .18 QL/�1js � t j:

Case 3. Assume that s 2 QA. Then, y 2 Œt4yL ; t
1
y � for some y 2E. There are two subcases

to consider.
Case 3.1. Assume that y D x. There are further subcases here.
Case 3.1.1. Assume first that t 2 Œt1x ; t

2
x �. As in Case 1.3, g.t1x / is a closest point of

g.Œt4xL ; t
1
x �/ to ”x.t2x /, so Lemma 4.2 tells us thatF.Œt4xL ; t

1
x �/ is bi-Lipschitz with a constant

depending only on C , C1, Q, p, and L.
Case 3.1.2. Assume now that t 2 Œt2x ; t

3
x �. By (6.5),

" OL�1.diam Lx C diam Rx/ � jt
1
x � �

2
x j � js � t j � diam Lx C diam Rx ;

so our desired bounds come from

d.F.s/; F.t// � dist.g.Œ�1x ; t
1
x �/; ”x.Œt

2
x ; t

3
x �// D ".diam Lx C diam Rx/ and

d.F.s/; F.t// � diamg. OLx/C diam ”x.Œ�2; �3�/

� . OLC 12.28 QL/�1 �/.diam Lx C diam Rx/:

Case 3.1.3. Finally, assume that t 2 Œt3x ; t
4
x �. By (6.7),

.4 OLL�/�1.diam Lx C diam Rx/ � jt
2
x � t

3
x j � jt � sj � diam Lx C diam Rx :

Now, on one hand,

d.F.s/; F.t// � diamg. OLx/C diam ”x.Œ�
2
x ; �

3
x �/C diamg. ORx/

� . OLC 12.28 QL/�1 �/.diam Lx C diam Rx/:

On the other hand,

d.F.s/; F.t// � dist.g. OLx/; g.t
4
x // � diamF.Œt3x ; t

4
x �/

� ..3 OL/�1 � "/.diam Lx C diam Rx/:

Case 3.2. Assume that y < x. Then

3�1.diam Ry C diam Lx/ � j�
2
y � �

1
x j � js � t j:

As in Case 2, we have

d.F.s/; F.t// � d.g.s/; g.t1y //C d.g.t
1
y /; g.t

1
x //C d.F.t

1
x /; F .t//

� OL js � t1y j C
OL jt1y � t

1
x j C .2"C 12.2

8 QL/�1 �/.diam Lx C diam Rx/

� 3. OLC L� C 2"C 1/ js � t j:
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For the lower bound, set M WD .2" C 6.28 QL/�1 �/. If js � t j � M diam Lx , then the
desired bound is a result of the following application of (6.3):

d.F.s/; F.t// � dist
�
F.Œt1x ; t

4
x �/; g.

OA n .Lx [Rx//
�

� ..2C 0/�1 � 4"/max¹diam Lx ; diam Rxº � .16C
0/�1 diam Lx :

If js � t j > Mdiam Lx , then

d.F.s/; F.t// � d.g.s/; g.t1x // � d.F.t
1
x /; F .t// �

OL�1 js � t1x j � diamF.Œt1x ; t
4
x �/

�
1
16
OL�1 js � t j � .2"C 6.28 QL/�1 �/.diam Lx C diam Rx/

�
1
16
OL�1 js � t j � 5.2"C 6.28 QL/�1 �/ diam Lx �

1
32
OL�1 js � t j:

6.3. The unbounded case

Assuming that X is unbounded, one can replace I in Theorem 6.1 by R. The difference
here is that we consider a Whitney decomposition of R n A. The unboundedness of X
guarantees the existence of function � WE!X as in Proposition 5.2. The rest of the proof
is verbatim.
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