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Bi-Lipschitz arcs in metric spaces
with controlled geometry

Jacob Honeycutt, Vyron Vellis and Scott Zimmerman

Abstract. In this paper, we generalize a bi-Lipschitz extension result of David and
Semmes from Euclidean spaces to complete metric measure spaces with controlled
geometry (Ahlfors regularity and supporting a Poincaré inequality). In particular, we
find sharp conditions on metric measure spaces X so that any bi-Lipschitz embed-
ding of a subset of the real line into X extends to a bi-Lipschitz embedding of the
whole line. Along the way, we prove that if the complement of an open subset Y
of X has small Assouad dimension, then it is a uniform domain. Finally, we prove a
quantitative approximation of continua in X by bi-Lipschitz curves.

1. Introduction

Given metric spaces (X, dy) and (Y,dy),amap f: X — Y is said to be an L-bi-Lipschitz
embedding (or simply L-bi-Lipschitz, or just bi-Lipschitz) if there is a constant L > 1 such
that

L7V dx (x1,x2) < dy (f(x1), f(x2)) < Ldx(x1,x2)

for all x1,x, € X. A bi-Lipschitz arc in a metric space X is the image of an interval in the
real line R under a bi-Lipschitz map.

We will consider the following question: given a set £ C X which is the image of a
subset of R under a bi-Lipschitz map, is E contained in a bi-Lipschitz arc? If E is any
finite subset of R”, the answer is trivially “yes”. For general sets £ C R”, the question
was answered in the positive when n > 3 by the following extension theorem of David
and Semmes [6].

Theorem 1.1 (Proposition 17.1 in [6]). Let n > 3 be an integer; let A C R, and let the
function f: A — R" be a bi-Lipschitz embedding. Then there exists a bi-Lipschitz exten-
sion F:R — R”".

MacManus [24] extended the result of David and Semmes to the case n = 2, which
is much more difficult since intersecting lines in R3 may be easily modified so that they
no longer intersect, but this is not the case in R2. One may view these extension results as
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rougher versions of the classical Whitney extension theorem [35]; while the maps consid-
ered here are analytically weaker (as they are bi-Lipschitz rather than differentiable), they
are metrically and topologically stronger.

Theorem 1.1 is a special case of a more general result in [6], where A C R4 and
n > 2d + 1. The main motivation behind that result was to establish the equivalence of
the boundedness of certain singular operators on R” via quantitative rectifiability. More
precisely, Theorem 1.1 was used in [6] to show that, when n > 3, every Ahlfors 1-regular
set A C R” (see (2.1) for the definition of Ahlfors regularity) which admits a corona
decomposition (roughly speaking, A can be decomposed into a collection of subsets which
are well-approximated by Lipschitz graphs and a collection of subsets which are not, and
both of these collections have controlled measure) contains “big pieces” of bi-Lipschitz
arcs, i.e., for any ¢ > 0, there exists an M > 0 such that, for any x € A and any R > 0,
there is an M -bi-Lipschitz embedding p: R — R” such that

|E N (B(x.R)\ p(R))| < ¢R.

Another application of Theorem 1.1 is in the problem of the bi-Lipschitz rectifiability
of sets in Euclidean spaces. In other words, one hopes to classify those subsets of R”
that are contained in a bi-Lipschitz arc. While the classical characterization of the Lips-
chitz rectifiability of sets in Euclidean spaces has been completely resolved [17,27], the
problem of bi-Lipschitz rectifiability remains open mainly due to topological constraints.
Theorem 1.1 can be used to show that, if a set £ C R” has Assouad dimension less
than 1, then E is bi-Lipschitz rectifiable; see Corollary 3.5 in [1] for a different approach.
See Section 2 for the definition of the Assouad dimension.

In this article, we generalize Theorem 1.1 to the setting in which Euclidean spaces R”
are replaced by a large class of metric measure spaces. There are two main difficulties
in this generalization. Firstly, the target metric space X must contain many of rectifiable
curves, and this notion of “many” must be understood quantitatively. A notable example
(and, in fact, the initial motivation for this project) is the Heisenberg group H, in which the
classical Whitney extension theorem for curves has been well-studied recently; see [28,30,
36,37]. We will not define the Heisenberg group here, but only recall that it is a geodesic
space homeomorphic to R3, and there exists a distribution H:R3 — Gr(2, R3) such
that if a curve y: [0, 1] — H is rectifiable, then it is differentiable almost everywhere and
v (t) € Hy () for almost every ¢. This fact implies that there must be many fewer rectifiable
curves in H than in R3. Secondly, the proof in the Euclidean case relies on the existence
of differentiable bump functions ¢: R — R” with controlled derivatives, and we cannot
hope to recover this idea in a general metric space.

The class of metric measure spaces to which the bi-Lipschitz extension result will be
generalized will have two properties. The first is Ahlfors regularity: we say that a metric
measure space (X, d, i) is Ahlfors Q-regular (or simply Q-regular) if the measure of any
ball of radius 7 is comparable to 2. The second property is the existence of a Poincaré
inequality. Such an inequality roughly states that, if we use up to denote the average
value of a function u: X — R on a ball B, then the average of the variation |u — upg]| is
controlled by the average of a “weak derivative” of u on B. See Section 2 for all relevant
definitions. It is known that Ahlfors regular spaces supporting a Poincaré inequality must
contain quantitatively many rectifiable curves. Moreover, such spaces admit a notion of
differentiation [5].
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The following is the main result of this paper.

Theorem 1.2. Let (X, d, jt) be a Q-regular, complete metric measure space supporting a
p-Poincaré inequality for some 1 < p < Q —1.If ACRand f: A— X is a bi-Lipschitz
embedding, then f extends to a bi-Lipschitz embedding F: 1 — X, where I is the smallest
closed interval containing A.

In Theorem 6.1, we prove a stronger quantitative version of this result in the sense that
the bi-Lipschitz constant of F' depends only the bi-Lipschitz constant of f and on the data
of Ahlfors Q-regularity and the Poincaré inequality. Moreover, if X is unbounded, then
we can choose I = R.

A large variety of metric spaces satisfy the assumptions of Theorem 1.2, including
orientable, n-regular, linearly locally contractible n-manifolds with n > 3 ([29]), Carnot
groups ([16, 34]) (which include Euclidean spaces and the Heisenberg group), certain
hyperbolic buildings [3], Laakso spaces ([20]), and certain Menger sponges ([8,23]).

The assumptions of the theorem are sharp in that neither Ahlfors regularity nor the
Poincaré inequality can be removed from the statement. For Ahlfors regularity, let X =
S? x R, with the length metric and the induced Hausdorff 3-measure. Then X is com-
plete, has Ricci curvature bounded from below so it satisfies the 1-Poincaré inequality
(see Chapter VL5 of [4]), but is not Ahlfors regular. Define f:{2":n € N} — X by
f(2") = (po. (=2)"), where py € S2. The map f is bi-Lipschitz, and if F: R — X is
any homeomorphic extension of f, then for any n € N, F([2",2"*!]) intersects with
(S? x {0}), so F cannot be bi-Lipschitz.

Since the Poincaré inequality is an open ended condition [19], we may assume that
p < Q — 1 for the proof of the theorem. However, the bound Q — 1 is sharp. To see this,
let n > 2, let P; and P, be two n-dimensional planes in R?*~! intersecting on a line £,
and let po € £. The metric space X = (P; U P,) \ B(po, 1) with the induced Euclidean
metric and n-dimensional Lebesgue measure is complete, n-regular, and satisfies the p-
Poincaré inequality for all p > n — 1, see Theorem 6.15 in [10]. Let f: (—oo0, —1] U
{—=1/2,1/2} U[1,00) — X be amap such that f(—1/2) € P; \ ({ U B(po, 1)), f(1/2) €
P>\ (£ U B(pg, 1)), and f maps R \ (—1, 1) isometrically onto £ \ B(po, 1). Then f is
bi-Lipschitz but admits no homeomorphic (let alone bi-Lipschitz) extension F: R — X.

1.1. Related results

The first corollary of Theorem 1.2 gives a sufficient condition for bi-Lipschitz rectifiability
in Ahlfors regular spaces satisfying a Poincaré inequality.

Corollary 1.3. Let X be a complete Q-regular metric measure space which supports a
p-Poincaré inequality for some 1 < p < Q — 1. If E C X has Assouad dimension less
than 1, then E is bi-Lipschitz rectifiable.

The proof of the corollary follows the same ideas as in the Euclidean case. Since
the Assouad dimension of E is less than 1, Lemma 15.2 in [7] implies that £ must be
uniformly disconnected, and hence it is bi-Lipschitz equivalent to an ultrametric space Z
of Assouad dimension less than 1, see Proposition 15.7 in [7]. By Theorem 3.8 in [21],
there exists a bi-Lipschitz embedding g: E — R, and, by Theorem 1.2, there exist a closed
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interval / and a bi-Lipschitz extension f:1 — X of the map g~ !: g(E) — X. Thus
E C f(I),so E is contained in a bi-Lipschitz arc.

The proof of Theorem 1.2 has two main ingredients. The first is the construction of
short curves in X\ f(A) that stay quantitatively far from f(A). To build such curves,
we will use the notion of the uniformity of a set. Given a set U C X, we say that U is
c-uniform if, for every x, y € U, there exists a path y: [0, 1] — U joining x to y such that

(1) the length of y is at most cd(x, y), and
(2) dist(y(z), X \U) > ¢~V dist(y(?), {x, y}) forall t € [0, 1].

In other words, U is uniform if, for any x, y € U, there exists a curve connecting them
which is short compared to d(x, y) and stays far from X \ U quantitatively. If U satisfies
only property (1) in this definition, then we say that U is c-quasiconvex.

It is an open problem to classify the closed sets ¥ C X for which X \ Y is quasiconvex
or uniform. Hakobyan and Herron [9] showed that, if ¥ C R” has Hausdorff (n — 1)-
measure #"~1(Y) = 0, then R” \ Y is quasiconvex. Moreover, this assumption is sharp.
Herron, Lukyanenko, and Tyson [14] proved the same result in the Heisenberg group H
where, in this setting, it is assumed that # 3(Y) = 0. The dimension 3 is natural as H
is 4-regular, while R” is n-regular. It is unknown if a similar result exists in all Carnot
groups.

The question of whether X \ Y is uniform has been studied in terms of uniform dis-
connectedness of Y, [25], and quasihyperbolicity of X and Y, [12, 13, 15]. Viisila [33]
showed that, if R” \ Y is uniform, then the topological dimension of Y is at most n — 2.
The following proposition, which we prove in Section 3, works in the opposite direction:
if X is Ahlfors regular and supports a Poincaré inequality, and if the Assouad dimension
of Y is small, then X \ Y is uniform.

Proposition 1.4. Let (X, d, ) be a complete Q-Ahlfors regular metric measure space
supporting a p-Poincaré inequality for some 1 < p < Q. If Y C X is a closed set with
Assouad dimension less than Q — p, then X \'Y is a uniform domain.

Note that if ¥ C X and has Assouad dimension less than Q — p, then #2~7(Y) = 0.
The assumption on the Assouad dimension is sharp. For example, let X = R”, let P be an
(n — 1)-dimensional hyperplane in R”, and let ¥ be a maximal 1-separated subset of P.
Then it is easy to see that dimy(Y) =n — 1, #"~1(Y) = 0, and R"\ Y is not uniform.

The second ingredient in the proof of Theorem 1.2 is a standard “straightening” argu-
ment for paths. In particular, Lytchak and Wenger (Lemma 4.2 in [22]) proved that, given
any topological arc in a geodesic space, there exists a bi-Lipschitz arc with the same end-
points that is close to the original one; see also Lemma 4.2 in [26] for a similar result for
topological circles. In Section 4, we prove a quantitative version of their result. Moreover,
under the additional assumptions of Q-regularity and a Poincaré inequality, we show as a
corollary of Theorem 1.2 that every continuum (i.e., every compact connected set) can be
approximated by a bi-Lipschitz curve in the Hausdorff distance.

Proposition 1.5. Ler (X,d, ) be a complete Q-regular metric measure space supporting
a p-Poincaré inequality for some 1 < p < Q — 1, let K C X be a continuum, and let
e €(0,1). Forany x,y € K with d(x, y) > ediam K, there exists a curve y: [0, 1] - X
with y(0) = x and y(1) = y, and there exists a constant L > 1 depending only on ¢, the
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constants of Q-regularity, and the data of the Poincaré inequality, such that
1
T |s —t|diam K < d(y(t),y(s)) < L|s —t]diam K

forall s, t € [0, 1], and the Hausdorff distance distg (K, y([0, 1])) < ediam K.

In particular, we have that every compact Ahlfors regular metric measure space sup-
porting a Poincaré inequality contains “almost space-filling” bi-Lipschitz curves.

1.2. Outline of the proof of Theorem 1.2

We start with two simple reductions. First, since bi-Lipschitz maps extend on the comple-
tion of their domain, we may assume that A4 is a closed set. Second, it is well known that
the Poincaré inequality, completeness, and Ahlfors regularity imply that X is quasiconvex
(Theorem 17.1 in [5]). Every complete quasiconvex space is bi-Lipschitz equivalent to a
geodesic metric space and since the properties of Ahlfors Q-regularity and the p-Poincaré
inequality are preserved under bi-Lipschitz mappings (Lemma 8.3.18 in [11]), we may
assume for the rest that X is geodesic.

For the proof of Theorem 1.2, similar to the proof of Theorem 1.1 and the Whitney
extension theorem, we construct a Whitney decomposition {@;};en of I\ A, i.e., a col-
lection of closed intervals in / \ A with mutually disjoint interiors such that their union
is I \ A and the length of each interval is comparable to its distance from A.

In Section 5, we define two auxiliary embeddings. Specifically, in Section 5.1 we
construct a bi-Lipschitz embedding = of E into X, where E is the set of endpoints of
the Whitney intervals @;. The final map F will map elements of E very close to their
image under 7. In Section 5.2, we use the results of Sections 3 and 4 to define a second
bi-Lipschitz embedding

g:AU )& —x
ieN
of f.Here, (321 denotes the middle third closed interval in @;. If we write @; = [x, y], then
the image g(@;) is a bi-Lipschitz curve that has endpoints very close to 7 (x) and 7 (y).
In Section 6, we describe a method to modify and extend the map g near the points

7(x) to build a curve on the entire interval /, and we verify that this curve is indeed
bi-Lipschitz to complete the proof of Theorem 1.2.

2. Preliminaries

Given quantities x, y > 0 and constants ay, ...,a, > 0, we write x Zg,,.. 4, ¥ if there
exists a constant C depending at moston ay, ..., a, such that x < Cy. If C is universal,
we write x Sy. Wewrite x ~g4, 4, Vifx Sq,. a,vand y Sq,.. a, X.
Given a metric space (X, d) and two points x, y € X, we say that y is a path joining x
with y if there exists some continuous y: [0, 1] = X with y(0) = x and y(1) = y.
GivenasetY C X and r > 0, we write B(Y,r) :={x e X :dist(x,Y) < r}.
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2.1. Porosity and regularity

For a constant C > 1, a metric space X is called C -doubling if every ball of radius r can be
covered by at most C balls of radii at most /2. Given another constant &« > 0, X is called
(C, @)-homogeneous if every ball of radius R can be covered by at most C(R/r)® balls of
radii at most r. We will occasionally refer to such a metric space as a-homogeneous when
the constant C is not important. Clearly, a (C, «)-homogeneous space is (C 2%)-doubling.
Conversely, given C > 0, there exist C’ > 0 and o > 0 such that a C-doubling space is
(C’, @)-homogeneous.

The Assouad dimension of a metric space X (denoted dimy4 (X)) is the infimum of all
o > 0 such that X is #-homogeneous.

A metric measure space (X, d, u) is said to be Q-Ahlfors regular (or Q-regular) for
Q > 0if there exists C > 1 such that, for all x € X and all r € (0, diam X),

(2.1 C 2 < u(B(x,r)) < Cr2.

It is easy to see that if the space (X, d, u) is Q-regular, then X is Q-homogeneous and
dimy (X) = Q. If we want to emphasize the constant C in (2.1), then we say that (X, d, i)
is (C, Q)-regular.

Given Y C X, we say that Y is p-porous for some p > 1 if, for all y € Y and all
r € (0, diam X), there exists some x € B(y, r) such that B(x,r/p) C B(y,r)\ Y. In other
words, Y contains relatively large “holes” near every point.

Lemma 2.1 (Lemma 3.12 in [2]). Let (X, d, #2) be (C, Q)-regular, where 2 is the
Q-dimensional Hausdorff measure. A set Y C X is p-porous for some p > 1 if and only
if dimg(Y) < Q — ¢ for some € > 0. Here, € and p depend only on each other, Q, and C.

2.2. Poincaré inequality

Given a locally Lipschitz function u defined on a metric space (X, d), we say that a
function g: X — [0, 00) is an upper gradient of u if

)~ < [ gas
Y
for all x, y € X and all paths y in X joining x with y.

We say that a metric measure space (X, d, i) supports a (1, p)-Poincaré inequality
(or simply a p-Poincaré inequality) for some 1 < p < oo if there exist A > 1 and C > 1
with the following property: if u: X — R is locally Lipschitz and g: X — [0, co0) is an
upper gradient of u, then, for all x € X and r > 0,

. 1/p
0> f  -usepldn = CiamBean) (£ eran)”
B(x,r)

B(x,Ar)

where

][fd ! /fd d f d
W= — w o and  Up) = udpu.
A w(A) Ja D Taen

It follows from Holder’s inequality that if 1 < p < g and (X, d, u) satisfies a p-Poincaré
inequality, then it satisfies a g-Poincaré inequality. Moreover, if the space is geodesic and
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doubling, then one can choose A = 1; see for example Remark 9.1.19 in [11]. Henceforth,
given a geodesic doubling space X that satisfies the p-Poincaré inequality, we will assume
that A = 1in (2.2), and the constant C will be called the data of the Poincaré inequality.

For a detailed exposition on the Poincaré inequality on metric measure spaces, the
reader is referred to [11].

2.3. Modulus of curve families

The basic tool in the proof of Theorem 1.2 and Proposition 1.4 is the notion of the modulus
of curves. In a sense, the modulus is a measurement of “how many” rectifiable curves are
contained in a curve family.

Given a family I" of rectifiable curves in a metric measure space (X, d, i), we say that
a Borel function p: X — [0, 00) is admissible for T" if

/,odszl forally e T.
Y

For p > 1, we define the p-modulus of I" by
Mod, (I') := inf{/ o? du : p is admissible for F}.
b'¢

It is well known that Mod,, is an outer measure on the space of all curve families in X.

The next lemma relates the modulus of curve families with the locally Lipschitz capac-
ity between compact sets. Given two sets £ and F in a metric space, we say that a curve y
joins E with F if there are points x € E and y € F such that y joins x with y.

Lemma 2.2 (Theorem 1.1 in [18]). Suppose that (X, d, ) is a geodesic metric measure
space equipped with a doubling measure |1 and supporting a p-Poincaré inequality with
p > 1, and suppose that 2 is a domain in X. Let E and F be disjoint, compact, non-
empty subsets of 2, and let I be the collection of curves in 2 that join E with F. Then
the p-modulus of T is equal to the p-capacity of E and F:

Mod,(I") = Cap,(E, F) := inf/ gPdu;
Q

the infimum is taken over all Borel functions g: Q — [0, 00) such that each g is an upper
gradient of some locally Lipschitz function u: Q@ — R satisfying u|g > 1 and u|r < 0.

3. Uniformity in metric measure spaces

The goal of this section is the proof of Proposition 1.4. The next lemmas are the crux of
the proof.

Lemma 3.1. Ler (X, d, i) be a (Cy, Q)-Ahlfors regular geodesic metric measure space
supporting a p-Poincaré inequality with data C, for some C,C1 > 1, and 1 < p < Q. Let
x,y € X, letr € (0,d(x, y)/3), and let T be the collection of paths in B(x,2d(x, y))
that connect B(x,r) with B(y,r). Then

Mod, (T') 2p.c.ci,0 (d(x. )27 (@)_Qp-
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Proof. Set D = d(x,y).Letu: B(x,2D) — R be alocally Lipschitz function satisfying
u|px,ry = 1 and u|p(y ) < 0. Letalso g: B(x,2D) — [0, o) be an upper gradient of u.
By the p-Poincaré inequality,
/ gl du
B(x,2D)
- p(B(x,2D)) (/ | d )P
u—u
= Crldiam(B(x,2D) p(B(x.2DDP \pgeopy PPN
>5.C.C1.0 DQ*P*QF(/
B
D )—QP

= D07 minu(B(x, ). w(B. ) Zpc, DO (2

p
[u — uB(x,2D)l du)
(x,r)UB(y,r)

Denote by T the collection of curves joining B(x, ) with B(y,r). By Lemma 2.2,

D)—Qp. i

Mod, (') Zp,c.c1,0 Do~ (7

Lemma 3.2. Let (X,d, i) be a (Cy, Q)-Ahlfors regular metric measure space, let R > 0,
let £ > 0, and let T be the collection of paths in B(x, R) that have length at least {R.
Then,

Mod, (') <S¢, £PRC77.

Proof. Note that the function p = (€R) ™! xp(x,r) is admissible for I'. Therefore,
Mod, (") < / pP du < C{~PROP. [
X

Lemma 3.3. Let (X,d, ) be a (Cy, Q)-Ahlfors regular metric measure space, let Y C X
be a (Ca, a)-homogeneous set, let R > 0, let § > 0, and let T be the collection of paths in
B(x, R) with an endpoint outside of B(Y,28R) and which intersect B(Y,§R). Then

Mod, (I') <o.c1,c, §9-P—@RO-P,
Proof. Define the function
p = (8R)™' xB(¥.28R)NB(x.R)

and note that p is admissible for I". Indeed, if y € T, then the total length of the part of y
that is inside B(Y, 26R) must be at least §R.
If Vis a (6R)-net of Y N B(x, R), then

B(Y.28R) N B(x. R) C | J B(v.36R).
veV

and, by the homogeneity of Y, it follows that card(V') <c, 6~*. Therefore

Mod,(I") < / pPdu <o.c1.c §CPaRO-P, ]
X
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Corollary 3.4. Let (X, d, n) be a (Cy, Q)-regular, geodesic metric measure space sup-
porting a p-Poincaré inequality with 1 < p < Q and data C. Let Y C X be a (C3, )-
homogeneous set with0 < a < Q — p. Given x,y € X \Y, there exists a path y: [0, 1] —
X \Y such that y(0) = x, y(1) = y,
(1) y([0,1]) € B(x,2d(x, y)).
2) d(x.y) 0
X,y
engthy) Spe.cr dr.yym {1, (D))
ength(y) Sp.c.ci0 dv yymax {1, (e
(3) for all z in the image of v,

. _ dist({x, y}, Y)\ o525~
dist(z,Y) Zp.e.0,c,C1,C, d(x, y) min {1, (%) 0-p }
Proof. Set D := d(x, y) and

1
ri= 7 min{D, dist({x, y},Y)}.

Let I'; be the collection of all curves in B(x,2D) that join B(x,r) to B(y,r). Let Iy
be the collection of all curves in B(x,2D) that have length at least 2D{. Let I'y be the
collection of all curves in B(x,2D) that intersect a (2D §)-neighborhood of Y and have
length at least 2D§.

By Lemma 3.1, Lemma 3.2, and Lemma 3.3, there exist

D\ @2 r\ 0—p—a
L =p,C,C1,0 (7) and § ~p,a,0,C,C1,Ca (B> ?

such that
Mod, (I'\ (I'; U Fg)) > 0.

It follows that I"\ (T'; U T§) is non-empty. Fix now y € I"\ (I'; U T) and concatenate y
with geodesic segments [x,y(0)] and [y(1), y]. The resulting curve satisfies the conclu-
sions of the corollary. ]

Proof of Proposition 1.4. By Lemma 2.1, the regularity of X, and the homogeneity of Y,
there exists po > 1 such that Y is pg-porous.

Fix now x,y € X \ Y and denote r := d(x, y). There exists zg € B(x,r)\ (B(x,271r)
UB(y,27'r)) such that

B(z0,27'r/po) C B(x, r)\[(B(x,Z_lr) UB(.,27'r)u Y)]
by applying porosity of Y to a ball of radius 2~ contained in
B(x, D\[(B(x,27'r) U B(y,27'r))].

Moreover, for each n € N, there exist points z, € B(x,27"r)\ B(x,2™" 'r) and z_, €
B(y,27"r)\ B(y,27""!r) such that

B(zn, 27" Y/ po) C B(x,27"r)\(B(x, 27" lr) U Y),
B(z—n.27""'r/po) C B(y.27"r)\(B(y.27""'r)UY),

again by applying the porosity of Y to balls in the annuli B(x,27"r)\ B(x,27" 'r) and
B(y,27"r)\ B(y, 27" 1r).
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Applying Corollary 3.4, there exists ¢ > 1 depending only on pg, p, @, C, and C;
such that, for each n € Z, there exists a path y,: [0, 1] — X\ Y with

(1) vu(0) = zu, yu(1) = zp41,
(2) length(y,) < c¢d(zn, zn41) < 23 cr, and
(3) forallz € [0, 1], dist(y,(r).Y) > ¢~ 12727l

Concatenating all the paths {y, },ez and adding the points x and y, we obtain a path
v:[0,1] = X'\ Y. Note that

length(y) = Zlength(yn) < Z 237l er = 24cr = 24cd(x, y).
nez nez
Let now z € y([0, 1]). If z is either of x or y, then there is nothing to show. Otherwise,
there exists n € Z such that z is in the image of y,. Assume as we may that n > 0. Then

d(x,z) <d(zy,x) +d(zn,z) < B¢+ 1)27"r < 4c(8c + 1)dist(z,Y),

which completes the proof. ]

4. Bi-Lipschitz approximation of curves

In this section, we show how paths in geodesic spaces can be approximated by bi-Lipschitz
arcs with the same endpoints. The main goal will be the proof of Proposition 1.5.

The next lemma is important in the proof of Theorem 1.2, and is almost identical to
Lemma 4.2 in [22]. The difference here is the quantitative control on the bi-Lipschitz
constant L.

Lemma 4.1. Given C > 1 and ¢ > 0, there exists L = L(C, &) > 1 with the following
property. Let (X, d) be a C-doubling geodesic metric space, and let o:[0,1] — X be
a curve with a(0) # o(1). There exists a curve y:[0, 1] — X such that y(0) = o(0),
vy(1) =o0(1), forall s,t €[0,1],

s = t]diamo (0. 1]) = d(y(s). v(0)) = Lls 1] diamo (0. 1)),

and
dist(y(), o ([0, 1])) < ediamo ([0, 1]).

The doubling property is not necessary to guarantee the existence of the bi-Lipschitz
map y; see Lemma 4.2 in [22]. It is, however, necessary to control the constant L. For
example, let X = {5, let e1, €5, ... be an orthonormal basis of £,, and let n € N. Define
0:[0,1] = €2 sothat0(0) = ep :=0,0(i/n) =e; fori € {1,...,n}, and o|[(Gi—1)/n,i/n]
is linear for each i € {1, ...,n}. Note that diam o ([0, 1]) = +/2. It is easy to see that, if
& < 1/6, then foreach i € {1,...,n — 1}, the set

B(o([0,1]), v/2¢) \ B(o(i/n),3+/2¢)

is disconnected. Therefore, if y is a path in £, joining 0 with e, and satisfying y([0, 1]) C
B(o ([0, 1]), v/2¢), then y([0, 1]) must intersect each ball B(c (i /n),3~/2¢) fori =1,...,n.
In particular, the length of vy is at least a fixed multiple of n, while |y(0) —y(1)| = 1. It
follows that, if y is L-bi-Lipschitz, then L must depend on n and not just on &.
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For the proof of Lemma 4.1, we require a simple lemma. Here and for the rest of this
section, all geodesic curves are parameterized by arc-length.

Lemma 4.2. Let X be a geodesic metric space, leta > b > 0, let :[0,a] — X be L-bi-
Lipschitz, let p € X, and suppose f(b) is the closest point in f([0,a]) to p, i.e.,

¢ := dist(f ([0, a]), p) = d(f (D), p).

If g:[b,b + c] — X is the geodesic from f(b) to p, then the concatenation of f |[0,p]
and g is (2L)-bi-Lipschitz.

Proof. Let h:[0,b + ¢] — X be the concatenation of f'|jo ] and g. Clearly, h|jo p] is
L-bi-Lipschitz and h|[p pc] is 1-bi-Lipschitz. Fix now s € [0,b] and ¢ € [b, c]. Then

d(h(s).h(1)) = d(f(s). f(b)) +d(g(b).g(t)) = L(b—s)+1—b =< L(t—s).

For the lower bound, we claim that d(h(z), h(s)) > d(h(t), h(b)). Indeed, if this were
not the case, then

dist(f([0. b1). p) < d(h(s). h(t)) + d(h(t). p) < d(h(b). h(1)) + d(h(1). p)
= d(f(b), p) = dist(f([0,]), p),

which is impossible. Similarly, d(h(s), h(t)) = d(h(s), h(b)). Therefore,

d(h(s),h(1)) = 3 d(h(s), h(b)) + 5 d(h(t). h(b)) = L) |s —b| + 3|b —1|
> QL) s —1|. [

We are now ready to show Lemma 4.1.

Proof of Lemma 4.1. Without loss of generality, assume that diam o ([0, 1]) = 1. Since X
is doubling, it is (C’, «)-homogeneous for some C’ > 0 and o > 0.

Fix ¢ > 0. If d(0(0),0(1)) < 2¢, then we can simply define y to be the geodesic
from ¢ (0) to o (1) which is 1-bi-Lipschitz. Assume now that d (o (0), (1)) > 2e.

Let Y C o(]0, 1]) be a maximal (¢/4)-separated set that contains o (0) and o (1). Since
o ([0, 1]) is connected, there exists a finite sequence of distinct points xg, ..., X, in Y
such that xo = 0(0), x, = 0(1), and d(x;—1, x;) < &/2 for all i € {1,...,n}. By the
homogeneity of X, we have that n < C’(g/4)™%.

We define a curve y inductively. Let y1: [0, s;] — X be a geodesic with y;(0) = a(0)
and y;(s;) = xy. Clearly, y; is 1-bi-Lipschitz, and for all ¢ € [0, s1],

dist(y1(2), 0([0,1]) < length(yy) < /2.
Suppose that for some k € {1,...,n — 1} we have defined s; > 0 and a 25~ -bi-Lipschitz
curve yk: [0, s,] — X, parameterized by arc-length, such that v« (0) = 0(0), v (sx) = Xk,
and v ([0, sx]) € B(0([0, 1]), &/2). Let r¢ € [0, s] be such that

cx = dist(yg ([0, s]), Xk +1) = d (v (rk)s Xk +1)-
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Define sy 11 = r¢ + ¢ and let yg41:[0, sg41] — X be the concatenation of yi|[o,r,] With
a geodesic joining yg (r¢) to xg4+1 € 0 ([0, 1]). Note that

d(ye(re), Xk+1) < d(Xk, Xp+1) < €/2,

so for each ¢ € [0, sg41], we have

diSt(yk+l(l)vO([O’ 1])) < 8/2

Moreover, by Lemma 4.2, the curve g1 is 2X-bi-Lipschitz.
By induction, we have defined a number 0 < s, < n(e/2) and a 2"~ !-bi-Lipschitz
curve vy : [0, s,] = X such that y,(0) = ¢ (0), v, (sn) = o(1), and

Vn([0.54]) C B(a([0.1]). &).

The desired curve y: [0, 1] — X is the reparameterization y(t) = v, (syt). |

4.1. Proof of Propesition 1.5

The proof of Proposition 1.5 will rely on the quantitative version of Theorem 1.2; see
Theorem 6.1.

We first review some elementary notions from graph theory. A (combinatorial) graph
is a pair G = (V, E) of a finite vertex set V' and an edge set E, which contains elements
of the form {v, v'}, where v,v’ € V and v # v'. A graph G’ = (V', E') is a subgraph
of G=W,E)ifV'CV,E CE,and E' CV'xV’'. A simple path joining x,y € V
in G is asety = {vg,...,, vy} C V of distinct points such that vy = x, v, = y, and
{vi—1,v;} € E foralli € {1,...,n}. A graph G is connected if any two distinct vertices
can be joined by a simple path in G.

Lemma 4.3. Given a graph G = (V, E) and two distinct v,v' € V, there exists a finite
sequence (v,-)lN=1 inV suchthat {vy,...,vy,} =V, v =0, v, =, we have {v;,vi4+1} € E
foreachi € {l,...,n— 1}, and for each e € E, there exist at mosttwoi € {1,...,n— 1}
such that e = {v;, vi41}.

Proof. We will use the fact that every connected graph admits a 2-to-1 Euler tour along its
edges, that is, for each vertex z, there exists a finite sequence (z; );"=1 of vertices in G such
that zy = z,» = z, {z;, zj 41} is an edge for all j, and for each edge e there exists exactly
two j such that e = {z;, z;41}. See, e.g., the Euler tour technique introduced in [32].

Now let G, v and v’ be as in the statement. Deleting some edges from E, we may
assume that G is a (combinatorial) tree, that is, for any two distinct vertices, there exists
a unique simple path in G that connects them. Let V = {vy, ..., vz} be the unique such
path with vy = v and vy = v'. Foreachi € {1,...,k}, let G; = (V;, E;) be the maximal
subgraph of G with the property that any simple path connecting a vertex of G; with a
vertex of ¥V must contain v;. Since G is connected, it follows that each G; is connected.
Moreover, since G is a tree, for any i # j the graphs G; and G; are trees with mutually
disjoint vertices (and hence edges).

The construction of the finite sequence (v;); is as follows. Firstly, do a 2-to-1 tour
of G starting and ending on v;. Then proceed to v, and do a 2-to-1 tour of G, starting
and ending on v,. Continue in this way until reaching v, where we do a 2-to-1 tour of G
starting and ending on vy. ]
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Proof of Proposition 1.5. 1f diam K = 0, then there is nothing to prove. Assume now that
diam K > 0 and, rescaling, we may further assume that diam K = 1.

Let Y be a maximal (¢/4)-separated subset of K that contains x and y. By the reg-
ularity of X, the cardinality of Y is at most C’s~€ for some C’ > 0 depending only on
the constants of Q-regularity. Define a graph G with vertex set ¥ such that two points
z,z" € G are connected by an edge if and only if d(z, z’) < &/2. Since K is connected, it
follows that G is connected. By Lemma 4.3, there exists a tour x = vy, ..., v, = y of the
vertices Y such that each edge is visited at most twice.

For each z € Y, denote by m, the number of indices i such that v; = z. There exists
C” > 0, depending only on the constants of Q-regularity, such that each vertex of G
is contained in at most C” edges. Therefore, for each z € Y, m, < C”, and it follows
that n < C”"C’s~2. Moreover, there exists ¢ > 4, depending only on the constants of
Q-regularity, such that for each z € Y there exist points vz 1,...,Vzm, € B(z,&/16)
such that

d(zi,vz,;) > cle, forallzeVYandi # j.

We may also assume that vy ; = x and vy,,;n, = y.
Giveni €{0,...,n},let j(i) be the number of indices [ € {0,...,i} such that v; = v;.

Define now v; = vy, j(;). Note that the new sequence vy, .. ., U, satisfies
(1) 9o = x, U =,
(2) for each distinct i, j€{0,...,n} we have d(3;,7;) > ¢ e,

(3) foreach z € K there exists i €{0,...,n} such that d(z,v;) < ¢/2,
(4) foreachi €{0,...,n},dist(v;, K) < ¢g/16.

Define a map f:{ie:i =0,...,n} > X by f(ie) = ¥;, and note that f is L’-
bi-Lipschitz, with L” = max{nc, 2/¢}. Indeed, for any distinct i and j, we have that
e<lie— je| <neandc e < d(f(ie), f(je)) <1+2c e <2.

By Theorem 6.1, there exists a constant L, depending on ¢, the constants of Q-

regularity and the data of the Poincaré inequality, and there exists a L-bi-Lipschitz arc
F:[0,ne] — X that extends f and

disty (K, F([0,n¢])) < e.

The arc y: [0, 1] — X in question is obtained by reparameterizing F'. ]

5. Whitney intervals and a preliminary extension

Here and for the rest of this section, we assume that X is a complete geodesic (Cy, Q)-
Ahlfors regular metric measure space supporting a p-Poincaré inequality with data C,
where p € (1, Q — 1) and Cy,C > 1. We also assume that A C R is a closed set, and that
f: A — X is an L-bi-Lipschitz embedding.

Let I be the smallest closed interval with A C I (possibly R). We need a Whitney
decomposition of I \ A as in Whitney’s classical proof of his extension theorem [35]. We
may assume that A is not a closed interval itself, as then there is no extension to be made.

Lemma 5.1 (Theorem VI.1.1 and Proposition VI.1.1 in [31]). There exists a collection of
closed intervals {@;}; e N such that
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i UL @ =1\4,
(ii) the intervals {@;} have disjoint interiors, and
(iii) diam @; < dist(@;, A) < 4diam Q; foralli € N.

Moreover, if the intervals @Q; and Q; share an endpoint, then
(5.1) 7 diam @; < diam @; < 4diam Q;.

Henceforth, the intervals {@Q; }; e y Will be called Whitney intervals.

5.1. Reference points

Let E denote the collection of endpoints of {@; };en. For each x € E, fix a point a, € A
that is a closest point of A4 to x, that is, |x — a,| = dist(x, 4).

Proposition 5.2. There exist § € (0, 1) and L > 1, depending only on L, Cy, and Q, and
there exists an L-bi-Lipschitz map w: E — X such that, for all distinct x,y € E,

(1) 31x —ax| < d(m(x), f(ax)) < 4|x —ax],

(2) dist((x), f(A4) = §lx —axl,

(3) d(z(x), m(y)) = £(|x —ax| + [y —ayl).
Moreover, if @; =[x, V], then

(5.2) d(m(x),7(y)) <d(f(ax), f(ay)) + 36diam @Q; < 46 L diam @Q;.

We start with a result that allows us to partition E into a finite number of subsets such
that elements of the same subset are far apart quantitatively. Recall that, by Lemma 2.1,
there exists pg > 1, depending only on L, C; and Q, such that f(A) is pg-porous.

Lemma 5.3. There exists n € N depending only on L, C; and Q, and there exists a
partition of E into mutually disjoint sets E1, ..., E, such that, foranyi € {1,...,n} and
forany x,y € E;,

(F1) either |x —y| > (12L) max{|x — ax/|, |y —ay|},

(F2) ormax{lx — axl. [y = ay1} > (8po) min{|x — axl. |y — a, |}
Proof. Enumerate E = {x1,x3,...}, and for each i € N, define V; be the set of all indices

j € N such that
i — ] < (12L) max{lx; — a, |, [x; —ax, |}

and
(8po)'xi —ax;| < |xj —ax;| < (8po)|xi — ax|.

Note that i € V; if and only if j € V;.
We claim that there exists n € N, depending only on L, C; and Q, such that card(V;) <
n for each i € N. To this end, fix i € N and note that for any j, k € V; with j # k,

(5.3) |xj — xk| < 24L) max{|x; —ax; |, [Xk —ax |, [xi —ax;|} < (192 po L) |x; —ax,|.
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Moreover, let j, k € V; with j # k, let @;, and @;, be the two Whitney intervals
which share the endpoint x;, and let @, and @, be the two Whitney intervals which
share the endpoint xz. We have

dist(@j,, 4) > |x; — ax;| —diam @, > |x; — ay; | — dist(@;,, A),
S0 |x; —ay;| < 2dist(€;,, A). By Lemma 5.1(iii),
diam@;, > }Tdist((fljl,A) > %|xj —axj|,

and a similar estimate holds for @;,, @y, , and @f,. Since x; 7# Xk, one of the intervals
for which they are endpoints lies between them. That is,

|x; — x| > min{diam @}, , diam @}, diam @, , diam @y, }
z % min{|x; — ax; |, [xg —ax, |} = (64 po) ™" |xi — ax; .

Combining this with (5.3), we conclude that card(V;) < 192L(8pg)? =: n.
Define now amap ¢:N — {1,...,n} such that ¢(1) = 1, and for each i > 2,

c(i):=min{f e N: £ #c(k)forallk e V;N{l,...,i —1}}.

It is clear that if i € V; and i # j, then c(i) # c(j). For each i € {1, ..., n}, define
E; :={x; :c(j)=1i}.Given x;,xx € E;, c(i) = c(j),so j ¢ Vi (equivalently, k ¢ V;).
Properties (F1) and (F2) follow. ]

We now turn to the proof of Proposition 5.2.

Proof of Proposition 5.2. Let n € N and Ey, ..., E, be the integer and the partition,
respectively, from Lemma 5.3. For each k € {1,...,n}, define E® = E; U... U Ej.

Letie€{l,...,n}, x € E;, and x’ € dB(f(ayx), |x — ax|). By the porosity of f(A),
there exists a point X € X such that

B(%, (2po) tx —ayx|) C B(x’,% x —ax|)\ f(A).

Then
(5.4) 3Ix —ax| <d(X. f(ax)) < 3|x —a,| and
(5.5) dist(%, f(A)) = (2po)~"x — axl.

Foranyi €{l,...,n}, and for any x, y € E;, we will show that
(5.6) d(%,7) = (8po) ' (|x —ax| + |y —ay).

Fix such i, x, and y, and assume without loss of generality that [x —ax| > |y — a,|.
If (F1) holds, then by (5.4),

d(x,y) = d(f(ax), f(ay)) —d(f(ax),X) —d(f(ay),y)
> L7 ax —ayl — 3(|x —ax| + [y —ay|) = L™" |x — y| — 6]x —ax
>6|x —ax| = 3(x —ax| + |y —ay)).
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Assume now that (F2) holds and (F1) fails. By (5.4) and (5.5),

d(x,5) 2 d(X, f(ay)) —d(f(ay). 5) = 2po)~'|x —ax| = 5|y — ay|
> (8po) ™ (Ix —ax| + |y —ay)).

We define the map 7 on each E® in an inductive manner. Define 7: E; — X by
7 (x) = X. Properties (1)—(3) of the proposition for E; follow from (5.4), (5.5), and (5.6)
with £ = (8po)~".

Assume now that for some k € {1,...,n — 1} we have defined a constant & € (0, 1)
and a function 7: E®) — X such that, for all distinct x, yekE k)

(5.7) 1lx —ax| < d(m(x), flax)) < 4lx — ayxl,
(5.8) dist((x). f(A)) = (4po)~'|x —ax|, and
(5.9) d(mw(x), () = & (Ix —ax| + |y —ayl).

Fix x € Ey41, and assume that there exist yy,..., yy € E® such that
(5.10) d(%,7(y))) < 8po) " (Ix —ax| + |yj —ay; )

for each j € {1,..., N}. First, for each such j, by (5.7), (5.5), and (5.10),

vj —ay| = 3d(@(y)), f(ay) = 3 (d(F, flay,) — d(F,7(y))))
> 1 (2po)7Hx —ax| = 8po) T (Ix — ax| + |y; — ay, ).
This gives
(5.11) |yj —ay| = (12po) ™" x — ax.
Next, forany j, £ € {1,..., N}, (5.9) and (5.11) yield
(5.12) d(m(yj). 7(ye)) = (12po) " &k |x — axl.

so{m(y1),....w(yn)}isa (12po) ' £x|x —ax|)-separated set. By (5.4), (5.8), and (5.10),
forany j € {1,..., N},

Ix —ax| = d(F, f(ax) = 3 (d(x(y)), flax)) — d(&, 7(y;)))
> (6p0) ' y; —ay;| — (12po) ' (Ix — ax| + |y; — ay,|).
Therefore,
(5.13) lyj —ay;| <24po|x —axl.
By Ahlfors regularity, (5.10), (5.13), and (5.12), we obtain N <y, c,,0 ‘g‘;Q.

By Lemma 2.1, {7 (y1), ..., w(yn)} is pg-porous for some p; > 1 depending only
on C1, O, L, and k. Hence, there exists a point 7(x) € B(X, (32po)~!|x — ax|) such that

(5.14) B(n(x), 32popi) ' Ix —ax|) € X \{zx(y1).... . w(yn)}-

To complete the inductive step, we show that 7 defined on E*+1 satisfies proper-
ties (1)—(3) of the proposition for some appropriate & 11 € (0, 1).
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For the first property, fix x € Ex4+1. By (5.4),
d(w(x), flax)) < d(m(x), %) + d(f(ax).X) < 2|x —ax| and
d(z(x), f(ax)) = d(f(ax), %) —d(w(x), %) = z|x — ax].

For the second property, fix x € Ex4+1. By (5.5),
dist(rr(x), f(A)) = dist(%, f(4)) = d(w(x), ) = (4po) " |x — ax|.

For the third property, fix distinct x, y € E**1 and assume that x € Ex 4. If y €
Ej 41, then by (5.0),

d(m(x),7(y)) = d(F,§) = d(w(x), %) = d(x(y), 7) = (16po) ™" (Ix —ax| + [y — ayl).
Assume now that y € E®)_If
d(x.5) = 8po) ™" (Ix —ax| + |y — ay|).
then we work as in the preceding case. If
d(%,7) < (8po) " (|x — ax| + [y —ay)),
then by (5.13) and (5.14),
d(m(x), 7(y)) = 32popi) ™" Ix —ax| = (2°3pg pr) ™' (Ix —ax| + |y — ay]).
After n steps, we have defined & := £, and the map 7: E — X that satisfies proper-
ties (1)—(3) in the statement of the lemma.

To show that 7 is bi-Lipschitz, fix distinct x, y € E and assume without loss of gener-
ality that |x —ax| > |y —a,|. By Lemma 5.1 (iii), |x — ax| < 4|x — y|. By property (3),
d(m(x),7n(y)) = d(@(x), flax)) +d(f(ax). f(ay)) + d(@(y), f(ay))

<4|x —ax|+ Ll|ax —ay|+ 4|y —ay| <41L|x —y|.

For the lower bound, suppose first that |ay — ay| > 16L |x — ay|. Then we have that
|x — y| = 2lax — ay|, and by property (1),
d(r(x), () = d(f(ax), fay) =d(x(x), f(ax) =d (@ (y), f(ay)) = QL) ax —ay|.

Suppose now that |ay —ay| < 16L|x —ax/|. Then, |[x — y| < (24 16L)|x — a,| and
by property (3), d(m(x), 7(y)) = & |x — ax|.

For (5.2), fix a Whitney interval @; = [x, y] and assume, without loss of generality,
that |x — ax| < |y — a,|. There are two cases to consider. Assume first that a, = a,. By

property (1),
dm(x),7(y)) <4|x —ax| + 4|y —ax| < 8|x —ay| + 4diam @; < 36diam @;.
Assume now that a, 7# ay. Then
ly —ay| < |y —ax| < [x —y| + [x —ax| < 5diam Q;,
which yields that |ay — a,| < 11 diam @;. By property (1),
d(m(x), () < 4|x —ax| + d(f(ax), f(ay)) + 4|y — ay|
= d(f(ax), f(ay)) + 40 diam @;
< Ll|ay —ay|+40diam @; < 51 L diam @;. [ ]
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5.2. The middle third of each Whitney interval

The goal of this subsection is to extend f to the union of the middle-thirds of all Whitney
intervals {€; }; en in a bi-Lipschitz way. From here on, for each Whitney interval @;, we
denote by @; the middle third interval of @;. Recall the constants £ €(0,1) and L from
Proposition 5.2, depending only on L, Cy, and Q.

Proposition 5.4. T}Eere exists a constant L. > 1 depending only on p, C, Cy, L, and Q,
and there exists an L-bi-Lipschitz extension of f,

g: AU U (fl,- — X,
ieN

such that for each i € N, if @; = [w, z] and Q; = [W, 2], then

(1) d(g(), m(w)) < (28L)7' & diam @;,

(2) d(g(2),n(2)) < (28L)" '€ diam Q;, and

3) 2(Q;) C B(w(w),4R;) N B(x(2), 4R;), where R; = d(rw(w), 7(2)).

Recall that, since f is bi-Lipschitz, the set f(A) is 1-homogeneous in X .

Lemma 5.5. There exist constants o, £y, 5o > 0, depending only on p, C, Cy, L, and Q,

with the following property. Let Q; = [w, z] be a Whitney interval and let T'; be the col-
lection of curves v: [0, 1] — X such that

(1) y([0,1]) € B(w(w),3R;) N B(w(2),3R;), where R; = d(n(w), 7(2)),

(2) max{d(y(0), w(w)). d(y(1), 7(2))} < (28L)"'§ diam @;,

(3) length(y) < £o diam @;,

(4) dist(y(?), f(A)) = 8o diam @; forallt € [0, 1].
Then,

Mod, (I;) > Bo(diam @;)27.

Proof. Since B(w(w),2R;) C B(w(w),3R;) N B(x(z),3R;), we may apply Lemma 3.1,
Proposition 5.2 (3), and (5.2) to conclude that the family Fi(l) of curves

vy : [0, 1] = B(w(w),3R;) N B(x(z),3R;)

such that y(0) lies in the closed ball B(x(w), (28L)~! & diam @;) and y(1) lies in the
closed ball B(r(z), (28L)~' £ diam @;) has p-modulus
Mod, (T'") > a(diam @;)277,

where o > 0 is some constant depending only on p, C, Cy, O, and L.

By Lemma 3.2, there exists £, > 0, depending only on p, C, Cy, Q, and L, such that
the subfamily

F(z) {y € F( ). : length(y) < £ diam @; }

satisfies

Mod, ([?) > 1 a(diam @;)2~7.
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By Lemma 3.3, there exists 69 > 0, depending only on Q, p, C, Cy, and L, such that the
subfamily

I = {y € l"i(z) dist(y(z), f(A)) > 8o diam @; for each t € [0, 1]}

satisfies
Mod,(I;) > 1 a(diam @;)277. "

We now need a filtration of the Whitney decomposition, in the vein of the follow-
ing result of David and Semmes. The proof of the lemma is almost identical to that of
Lemma 5.3, and is left to the reader.

Lemma 5.6 (Proposition 17.4 in [6]). There exists an integer N depending only on L,
Cy, and Q, and there exists a partition of N into sets {J1,...,In} such that for any
ke{l,...,N}andforanyi,j € I,
(i) either dist(Q;, @;) > 800L? max{diam @;, diam @, },
(ii) or max{diam @;,diam @;} > 800 L §;! min{diam @;, diam @, }.
We are now ready to prove Proposition 5.4.

Proof of Proposition 5.4. The construction is in an inductive fashion. Let N be the integer
and let Jy, ..., N be the sets of indices from Lemma 5.6. Denote Ay := A, and for each
ke{l,..., N}, denote

k
Ar=A0J | &
j=1li€J;

Foreach k € {0,..., N}, we find some L; > 1, depending only on p, C, Cy, L, Q,and k,
and we find an Lg-bi-Lipschitz embedding fy : Ax — X such that forallk € {1,..., N},
Jila,_, = fi—1 and such that, if i € Iy, @; = [w, z], and @; = [0, Z], then

@) d(fi(®),7(w)) < (2°L)~'& diam @,

() d(fi(2).7(2)) < (28L)7'£ diam @;,

(c) fk(é?li) C B(w(w),4R;) N B(x(z2),4R;), where R; = d(w(w), 7(2)).
The map g of Proposition 5.4 will then be the map fi.

For k = 0,set Ly = L and fp = f. Properties (a)—(c) are vacuous.

Assume now that, for some k € {0, ..., N — 1}, there exist a constant L; and an
Lj-bi-Lipschitz map fi: Ay — X satisfying (a)—(c).

Fix i € Jx4+1 and write @; = [w, z] and @; = [W, Z]. Recall the family of curves T
from Lemma 5.5. By Lemma 3.3, there exists 84+ € (0, £), depending only on Q, p,
C, Cy, L, and k (in particular, on the homogeneity constant of f(Ag)), such that the
subfamily

F,’(’i = {y € I : dist(y(t), fx(Ax)) = Og41 diam @; foreach ¢ € [0, 1]}

satisfies
Mod, (T ;) = 3 Bo(diam @;)2~7 > 0.
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In particular, I'; ; is non-empty, so we can pick a curve 0; € I'; ;. Applying Lemma 4.1

to 0; with a suitable reparameterization, we find a constant L;c i1

0, p, C,(Cq, L, and k, and we find an L}cH—bi—Lipschitz curve y;: @; — X such that

vi () = 0;(0), yi (£) = 0;(1), and the inductive hypothesis (c) for f; gives

depending only on

(5.15) vi(Qi) C B(0;([0. 1), } 6141 diam @)
C B(m(w),3R; + 3 8k+1 diam @;) N B((2), 3R; + 3 Sg+1 diam @;)
C B(w(w),4R;) N B(n(z),4R;).

In particular, we have that dist(y,-((fli), fi(Ax)) = 168,41 diam @;.
Define now fr4+1: Ax+1 — X by setting fr+1|Ax = fr and fk+1|(32,- = y; for each
i € Jg41-By(5.2), we have foralli € Jgq,

(5.16) diam fr41(@Q;) < 9R; < 414 L diam(@;).

Clearly, fr41|Ax = fx. Properties (a)—(c) are clear from the design of fr,; and
Lemma 5.5. To complete the inductive step, we claim that fi4; is Lgy1-bi-Lipschitz
for some L;4; > 1 depending only on Q, p, C,Cy, L,and k. Fix x,y € Ag41.

Firstly, if x, y € Ak, then the claim follows by the fact that fr11|Ax = fi and the
inductive hypothesis that f; is Lj-bi-Lipschitz.

Secondly, assume that x € (,?2,- for some i € Jp4; and y € A. Let w be the endpoint
of @; closest to A, let W be the endpoint of (fli between x and w, and note that |w — x| <
|x —ay| < |x — y|. By (5.16), Proposition 5.2(1), the fact diam @; < |w — ay|, and
properties (a) and (b) for fj1,

d(fr+1(X), fet1(0))
< d(fk41(%), fer1 (@) + d(fi41(0), 7 (w)) + d(w(w), faw))+d(f(aw), f(¥))
< @14L +5)|w—ay|+ Llay —y| < (414 L + 5)|x —ay| + Ll|ay — y|
< (416L +5)|x —y|.

For the lower bound, we have by Lemma 5.5(4) and the design of y;,

d(fier1(X). fier1(1) = dist( fir1(x), £(4)) = 580 diam @; > g 8o [w — awl,

and, by (5.16), property (c) for f 1, and Proposition 5.2(2),
d(fe+1(x), flaw)) = d(fi1(%), fer1 () + d(fr41(0), () + d(f(aw), w(w))
< 414 L diam Q; + (28 L) 7' & diam Q; +4 | w—ay | <419 L |w—ay|.
Therefore, since |x — ay| < 2|w — ay],
Ix =yl =[x —aw| + |aw — ¥l

=2[w —aw| + L[d(f(aw), fi+1(x)) + d(fit1(x), F(¥))]

<419L% |w —ay| + Ld(fit1(x), f())

<3352L255 1 d( ferr1 (%), fier1 (1))
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Thirdly, assume that x € (:‘Zl- and y € éj, forsomei,j € J; U--- U Jg4q. Assume that
diam @; > diam @;. For the upper bound, note that

(5.17)  |x —y| > dist(@;, @;) > diam @; + diam @; = 1 (diam @; + diam @;).

Let a; be the closest point of 4 to @;, let a; be the closest point of A to @;, let e; be
the endpoint of @; that lies between x and a;, and let e; be the endpoint of @; that lies
between y and a;. By Proposition 5.2(1), (5.15), (5.2), Lemma 5.1 (iii), and (5.17),

d(fre+1(X), fe+1(0) < d(fr+1(x), 7w(er)) +d(w(er), f(ai) +d(f(ai), f(a)))
+d(f(aj).m(e;)) + d(n(e;). fe+1(»))
< (16+184L)(diam @; + diam @Q;) + L |a; — a;|
< (16+189L)(diam @; + diam @;) + L |x — y| < 616 L |x — y|
since |x —a;| < diam @; + |e; —a;| < 5diam @; and, similarly, |y —a;| < 5diam @;.
For the lower bound, there are two cases to consider.
Case 1: dist(Q;, @;) > 800L? diam Q; .
By Proposition 5.2(1), (5.15), and Lemma 5.1 (iii),

d(fie+1(x), fe+1(y)) = d(f(ai), f(a;)) —d(f(ai), w(e;)) — d(m(ei), fi+1(x))
—d(f(aj),m(ej)) —d(m(e)), fe+1(¥))
> L7 a; —a;| — (184 L + 16) (diam @; + diam @;)
> L7 x —y| = L7Y(|x —a;| + |a; — y|) — 400 L diam @;
> L7V x —y| — (10L7" + 400 L) diam @;
> L7 x — y| —410L(800 L%) ! dist(Q;, @;) > BL) '|x — y|.
Case 2: dist(Q;, @;) < 800L? diam Q; .
In this case, we have

|x — y| < diam @; + dist(Q;, @;) + diam @; < 802 L7 diam ;.

Case 2 splits now into two subcases.
Case?2.1:i €Jgy1and j € Iy U--- U Jg. According to the line following (5.15),

d(fe1(0). fer1(0) = d(fer1(x), fi(Ax)) > 1841 diam @;
> 8+1(1604L%) 7 x — y|.

Case2.2:i,j € Jx41. By Lemma 5.6, we have that diam @; > 800 L8, ! diam @;. By
Lemma 5.5(4), the design of y;, Proposition 5.2(1), and (5.15),
d(fer1 (), fer1 (1) 2 dist( fer1(@), fer1 (1))

> dist( fi1(Qs). f(ay) — d(m(e)), f(ay)) — d(m(e;). fir1(»))
> 18pdiam @; — (16+ 184 L) diam @; > 18y diam @; > 160(802L%) ' [x—y|. m
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6. Proof of Theorem 1.2

In this section, we will give the proof of the following quantitative version of Theorem 1.2.

Theorem 6.1. Given C,C; >0, Q0 >2, pe (1,0 — 1), and L > 1, there exists L' > 1
with the following property.

Let (X, d, ) be a complete geodesic (C1, Q)-Ahlfors regular metric measure space
supporting a p-Poincaré inequality with data C. Let A C R be a closed set, let I be
the smallest closed interval of R containing A, and let f: A — X be an L-bi-Lipschitz
embedding. Then there exists an L'-bi-Lipschitz extension F: I — X of f.

Moreover, if (x,y) is a component of I \ A, then

(6.1) diam F([x, y]) = 75max{|x — y|.d(f(x), f(y))}.

The remainder of this section is devoted to the proof of this theorem. Let {@; };en be
the Whitney decomposition of 7 \ A from Lemma 5.1, and let

A:=AU Ué‘
ieN

Recall that (,‘AZ,- denotes the middle third of the Whitney interval @; and that E denotes the
set of endpoints of Whitney intervals {@; };eN-

There is a map w: E — X satisfying the properties of Proposition 5.2, there exists a
constant 7, > 1 depending only on C, Cy, Q, p, and L, and there exists an I:—bi—Lipschitz
extension of f,

g: A X ,
satisfying the properties outlined in Proposition 5.4. In particular, if (x, y) is a component
of I'\ A,if @; C(x,y), and if x is the closest point of A to @;, then by (5.2) and (5.15),

(6.2) max d(f(x).g(z)) = 2d(f(x), f(y)) + 73diam Q;.

ZG(Q,‘

We introduce several pieces of notation. Given x € E, we denote by £ (respectively, Ry)
the Whitney interval for which x is the right (respectively, left) endpoint. As above, £
and R, are the middle thirds of intervals &£, and Ry. By (5.1), for any x € E we have

jdiam £, < diam Ry < 4diam £.
Further, for any x € E we write

fre=[xr.x]. Lr=[r}.12. Ry=[x.xg] and R, =[c.7}

x> "x1I
L, R,
T N TR
*r— @ P
ﬁ, 7%':1:

Since g is ﬁ—bi-I:ipschitz, there exists C, > 0 depending only on C, Cy, O, p,and L
such that the set g(A) (and each of its subsets) is (C,, 1)-homogeneous.
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6.1. Local modifications around points in £

We divide E into two sets, E’ and E”, such that for any two points in E’, there exists a
point in E” between them and vice-versa. That is, for any x € E’ we have x;,xg € E”,
and for any x € E” we have x;,xg € E’.

We perform local modifications around points in E starting with points in E’.

6.1.1. Local modifications around points in E’. Fix a point x € E’. By the (Cz, 1)-
homogeneity of g(/f \ (£x U Ry)), by Corollary 3.4 and Proposition 5.4 (1), (2), there
exists a constant C’ > 1, depending only on C, C1, Q, p, L, and there exists a curve
0x:[0,1] = X such that

(1) 0x(0) = g(z3), 0x(1) = g(3);
(2) 0x([0,1]) C B(g(7),2d(g(z3), g(z3))), so for each r € [0, 1],
d(ox(1), 7(x)) < 2d(g(x3), g(x)) + d(g(z3), 7(x))
< 58L)"' £ max{diam £, diam R };
(3) length(oy) < C’ max{diam £, diam R, };
(@) dist(ox ([0, 1]), g(A \ (£x U Ry))) = (C’)~! min{diam £, diam R }.

By Lemma 4.1, there exists L* > 1, depending only on C, Cy, Q, p, and L, and there
exists an L*-bi-Lipschitz map

Vx : [t2, 7] = B(w(x),6(2° L)' & max{diam £, diam R })
such that yx (t2) = 0x(0) = g(12), yx(zd) = 0x(1) = g(z), and forall 7 € [t2,]],
dist(yx (1), 0x ([0, 1])) < 21 C'L)~' & max{diam £, diam R, }.
In particular,
6.3)  dist (vx([t2,23]), g(A \ (£x U Ry))) = (2C") ™" max{diam £, diam Ry}.
Sete = (250££L*C’)_2$. Define

1 = min{t € [r;, rﬁ] : dist(g(t),yx([ri, 22])) = e(diam £, + diam Ry)},

t2 = max{t € [t2, rg] 2d(g(ty),vx(t)) = e(diam £, + diam Ry)}.

t

By (5.1), Proposition 5.2 (3), and Proposition 5.4 (1), (2),
d(g(ty). g(r7)) = d(m(xr), m(x)) —d(m(xL), g(r3)) —d(w(x), g(x7)) = 5 & diam £,

so we have that

(64)  d(g(1;). g(zy))
2 d(g(ry). 8(r) = max d(yx(0). g(r) = dist(g (1) va (2. 7))

Tx>Tx
> % & diam £, — max d(o.(1), g(rﬁ))
tefo,1]
— (2"'C’L)7'¢ max{diam £, diam R} — & (diam £, + diam R)
> (16—27°6—27%¢ —5¢)diam £, > 1€ diam £,
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and
6.5  d(g(ty). g(t) = dist(g(ty), vx([t2. 7)) = e(diam £ + diam Ry).
Moreover,

d(yx(13), yx(13)) = dist(g(z). g ([ry, T3]) — dist(yx (13). g [y, T3])
> % I:_l(diam £Lx + diam Ry ) — e(diam £, + diam R )
> % i_l(diamix + diam Ry).

Define now

g =max {t € [t} 5] : d(g(t), vx([t7. 7)) = e(diam £ + diam R,)}

X

3 = min {t e[t?, 3] d(yx(t),g(t;‘)) = ¢(diam £ + diamﬁx)}.

X X’ "X

1 2 " R .~
T Ta TI- T 7 7 TR

00— 00— OO0
2

4 1 2 3
R 3t Ly

Ty @ x x @ T

As in (6.4), we have that
(6.6) d(g(t}), g(x})) = £ diam R,
and
d(g(t;),g(rf)) > g(diam £, + diam Ry).
Moreover, if 1 € [t2, T3] satisfies d(yx (t), g(t§)) = e(diam £ + diam Ry), then
d(yx(t3), vx (1)) = dist(g([z3. 7)), (53, 7)) — 2¢(diam £ + diam Ry)
> (%]:_1 — 2¢)(diam £ + diam Ry) > %ﬁ_l(diaméﬁx + diam R).

Therefore, ¢ is well defined and

(6.7) 12— 12> (4LL*) ' (diam £ + diam R,,).

P X

6.1.2. Local modifications around points in E”. Fix x € E”. We proceed to define v,
and points t;, el t;‘ as in Section 6.1.1. The only difference is that we take into account
the modifications done for points in x7, xg € E’. In particular, we define

t! = min{r € [t::L, rﬁ] : dist(g(t),yx([rf, r;])) = ¢(diam £, + diam R)},
12 = max{t € [r?, ri] : d(g(t;),yx(t)) = g(diam £, + diam Ry)},
t4 = max{r € [rg,t;R] : d(g(t),yx([rf, t;:’])) = g(diam £ + diam Ry)},

t2 =min{t € [t2, 73] : d(yx(1), g(t2)) = e(diam £ + diam Ry)}.

Equations (6.4), (6.6), (6.7) are still valid for x € E” as well.
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Furthermore, suppose that x < y are consecutive points in E; that is, x = yr (or
equivalently, y = xg). Then,

(6.8) d(g(t}). g(t}))
> d(w(x), 7m(y)) —d(m(x), g(15)) — d(m(y). g(1,))
> £diam £, — e(diam £ + diam R,) — 6(28 L)~ £(diam £, + diam Ry)
— e(diam £, + diam R,) — 6 (28 L)~ £(diam &£, + diam R,)
> (E— 106 —60(28L) ' €) diam £, > 1 £ diam &,

6.2. Definition of the extension F and proof of Theorem 6.1
Set

A=A\ ..
x€E
Define the map F: I — X so that
(1) FlA = gl|A,
(2) foreach x € E, F|[t2,13] = y«|[t2, 13
(3) foreach x € E, F|[t},12] is the geodesm from g(z}) to yx (¢2) of constant speed,
(4) foreach x € E, F|[t3,1}] is the geodesic from y (z;) to g(z¢) of constant speed.

Clearly, F is an extension of f. In view of (6.2), the following proposition completes
the proof of Theorem 6.1.

Proposition 6.1. The map F is an L'-bi-Lipschitz embedding for some L' > 1 depending
onlyonC, Cy, Q, p,and L.

Proof. Fixs,tel withs <t. We may assume thatone of s or  isin [}, 73] for some x € E,

since otherwise F' = g, which is L-bi- -Lipschitz. Assume without loss of generality that
¢ € [tl, 1] for some x € E. The proof is a case study.

Case 1. Assume that s € [t],7#]. There are a few subcases to consider.

Case 1.1. Assume that s, € [t} 2] or s, € [t3,1}]. Without loss of generality, assume
the former. In this case, F(s) and F(¢) lie on a geodesic of unit speed joining g(7!) and
Vx(12), and by (6.5),

i_ls(diaméﬁx + diam Ry) < |t; — r§| < |t; —t£| < diam &£, + diam R,

SO
d(FG). F@0) _ dlg(te).v<t2) (4,
ls —¢] B |t} — 22| o

Case 1.2. Assume that 5,7 € [t2,13]. Here F|[12,13] = y«|[t2,12], and vy is L*-bi-
Lipschitz.

Case 1.3. Assume that s € [t},72] and € [t2,13] ors € [12,t2] and ¢ € [¢2,1}]. Without
loss of generality, we assume the former. Then F(s) lies on a geodesic of unit speed
joining g(z1) and yx (t2), and F(¢) = yx(¢). Since yx (12) is a closest point of v ([t2,23])
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to g(t}), Lemma 4.2 implies that the gluing F([z},73]) = g([tL, 2]) U yx([t2,3]) is bi-
Lipschitz with a constant depending only on that of y,, which itself depends only on C,
Ci1, Q, p,and L.

Case 1.4. Assume that s € [t},t2] and 1 € [12,1}]. By (6.7),
(4LL*)7'(diam £ 4 diam Ry) < |12 — 13| < |s — | < diam £, + diam R,,.

On one hand, using the fact that F(s) and F(¢2), and F(z3) and F(¢) lie on unit speed
geodesics joining g(71) to yx(¢2) and yx (13) to g(t}) respectively, we get

d(F(s), F(t)) < d(F(s), F(t2)) + d(yx(t2), vx(t2)) + d(F(t}), F (1))
< d(g(td).yx (D) + d(yx (1), vx (1)) + d (v« (). g (1)
< (2e+12(28L)7'¢) (diam £ + diam R).

On the other hand, arguing similarly gives

d(F(s), F(1)) = d(vx(13), vx(t3)) — d(F(s), F(t2)) — d(F(1), F(1}))
> (L*)7Mt2 — 12| — 2e(diam £, + diam R,)
> (AL(L*)?) " — 2¢) (diam £ + diam Ry)
> (8L(L*)*) "' (diam £, + diam Ry).

Case 2. Assume that s € [}, 1;] for some y € E with y < x. First, using (6.8),
(10L) ™ &(diam Ry, + diam L) < |t — 11| < |s —1].
As with Case 1.4,
d(F(s), F(ty)) < d(F(ty), F(t;)) + d(yy (15), vy (1)) + d(F (1), F (1))
< e+ 12(28L)7'£) (diam £, + diam R,),
and similarly,
d(F(th), F(t)) < 2e + 12(28 L)1 £) (diam £, + diam R,).
Thus
d(F(s). F(1)) = d(F(s), F(t})) + d(g(1}). (1)) + d(F(1), F(t))
<5(2e + 1)(diam Ry + diam &) + LIty —t}| < S1LE (2 + 1)]s —t].
For the lower bound, if y = x, then |s — | < 9|x — y|, and (6.8) gives

d(F(s), F(t)) = d(g(t}). g(ty)) — d(F(s). F(t})) — d(F (1), F (1))
> LEdiam £, — 10(2e + 12(28L) 7' §) diam £«

> s Ediam £y > s |s — 1]
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If instead y < xr, then
d(F(s), F(t)) = d(m(x),7(y)) — d(w(y), F(s)) — d(m(x), F(1))
> L7 x — y| = 51228 L) ' £ 4 2¢) (diam R, + diam £)
> (L7'=10(12%L) ' +2¢)) |x — y| = (I8L) ' |s —1].

Case 3. Assume that s € A. Then, y € [t;‘L tyl] for some y € E. There are two subcases
to consider.

Case 3.1. Assume that y = x. There are further subcases here.
Case 3.1.1. Assume first that 7 € [¢!,72]. As in Case 1.3, g(z}) is a closest point of

XX

g([td ,1}]) o yx(t2), so Lemma 4.2 tells us that F([¢} ,¢1]) is bi-Lipschitz with a constant

xr'x xrtx

depending only on C, Cy, Q, p, and L.
Case 3.1.2. Assume now that 7 € [t2,13]. By (6.5),

el:_l(diaméﬁx + diam Ry) < |t; — r§| <|s —t] < diam £, + diam Ry,
so our desired bounds come from

d(F(s), F(t)) > dist(g([t ]) yx([tx, x])) = ¢(diam £, + diam R,) and
d(F(s), F(t)) < diamg(ix) + diam vy ([72, 13])
< (L +12(28L)"'€) (diam £ + diam Ry).

Case 3.1.3. Finally, assume that ¢ € [t3,7¢]. By (6.7),
(4LL*)7'(diam £, 4 diam Ry) < |12 — 13| < |t — 5| < diam £, + diam R,,.
Now, on one hand,

d(F(s), F(t)) < diamg(cfx) + diamy, ([z2, 72]) + dlamg(ﬂx)
< (L +12(%L)""¢) (diam £ + diam R,).

On the other hand,

d(F(s), F(1)) > dist(g(£x), g(t})) — diam F([t2, £}])
> ((3L)7! — &) (diam £, + diam R,).

Case 3.2. Assume that y < x. Then
37! (diam Ry +diam L) < |ry2 — r;| <|s—t|.
As in Case 2, we have

d(F(s), F(1)) < d(g(s). (1)) + d(g(ty). g(13)) + d(F (1)), F(1))
<Lls—t}|+ LIty —tl] + (e + 12(2° L)' £) (diam £ + diam Ry)
<3(L4L*+2e+1)|s—1|.
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For the lower bound, set M := (2¢ + 6(28L)'€). If |s — 1| < M diam £, then the
desired bound is a result of the following application of (6.3):

d(F(s), F(1)) = dist (F([t5, £]), g (A \ (£x U Ry)))
> ((2€")7! — 4¢) max{diam £, diam R,} > (16C’)~! diam L.
If |s — ¢t| > Mdiam £, then
d(F(s), F(1)) = d(g(s), g(t)) — d(F(ty), F(t)) = L™ |s — ;| — diam F([z}, £{])
> L L7 s —t] — (26 + 6(2° L)' €) (diam L + diam R,,)
> L L s —t|-52e +6Q%L) ') diam Ly > L L7 s —1|. m

6.3. The unbounded case

Assuming that X is unbounded, one can replace / in Theorem 6.1 by R. The difference
here is that we consider a Whitney decomposition of R \ A. The unboundedness of X
guarantees the existence of function 7: £ — X as in Proposition 5.2. The rest of the proof
is verbatim.
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