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The Artin component and simultaneous resolution via
reconstruction algebras of type A

Brian Makonzi

Abstract. This paper uses noncommutative resolutions of non-Gorenstein singularities to construct
classical deformation spaces by recovering the Artin component of the deformation space of a cyclic
surface singularity using only the quiver of the corresponding reconstruction algebra. The relations
of the reconstruction algebra are then deformed, and the deformed relations together with vari-
ation of the GIT quotient achieve the simultaneous resolution. This extends the work of Brieskorn,
Kronheimer, Grothendieck, Cassens–Slodowy, and Crawley-Boevey–Holland into the setting of sin-
gularities C2=H with H � GL.2;C/ and furthermore gives a prediction for what is true more
generally.

1. Introduction

Noncommutative resolutions control many geometric processes, especially for Calabi–
Yau (CY) geometry in dimension three [8, 19]. This paper restricts to dimension two
but considers the much more general setting of rational surface singularities. These need
not be CY. In the case of cyclic quotients, it extracts from a noncommutative resolution,
namely, the reconstruction algebra, a classical invariant, called the Artin component. Fur-
thermore, by introducing a deformed version of the reconstruction algebra, simultaneous
resolution is achieved.

1.1. Motivation and background

WhenH � SL.2;C/, the quotient singularities C2=H are exactly the Kleinian singularit-
ies (equivalently, rational double points), and these all have embedding dimension e D 3.
Grothendieck and Brieskorn [3, 4] construct the deformation space for these singularities
and relate it to the Weyl group W of the corresponding simple simply connected complex
Lie group. The versal deformationD! hC=W of a rational double point was constructed
in [4], and after base change via the action of the Weyl group as in the following diagram,
the resulting space Art resolves simultaneously [4]:

Art D

hC hC=W
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Kronheimer [10] and Cassens–Slodowy [6, Section 3] use the McKay quiver to con-
struct the semiuniversal deformation of Kleinian singularities and their simultaneous res-
olutions of types An, Dn, E6, E7, and E8. This was later reinterpreted by Crawley-
Boevey–Holland [7] in terms of the deformed preprojective algebra.

The deformation theory of surface quotient singularities which are not Gorenstein,
namely, those C2=H for small finite groups H � GL.2;C/ that are not inside SL.2;C/,
is more complicated. Artin [1] constructed a particular component (the Artin component)
which is irreducible and admits a simultaneous resolution, again after a finite base change
by some appropriate Weyl group W .

Art D

H1
C H1

C=W

Riemenschneider [14] computed the Artin component Art for cyclic quotient singu-
larities; then later in [17, Section 5] he used the McKay quiver and special representations
as described by Wunram [21] to give an alternative description. The Artin component can
be described as a factor of a polynomial ring CŒz�with respect to some quasideterminantal
relations QDet.z/, but Riemenschneider’s method recovers this only after ignoring a very
large number of variables. Simultaneous resolution is also not obtained using the McKay
quiver perspective.

In this paper, we use the reconstruction algebra of [20], which is strictly smaller than
the McKay quiver, to both construct the Artin component on the nose and extract its
simultaneous resolution.

1.2. Main results

For any cyclic group 1
r
.1; a/, the quiver of the corresponding reconstruction algebra is

recalled in Section 2.1 and will be written as Q. With dimension vector • D .1; : : : ; 1/,
consider the coordinate ring of the representation variety CŒRep.CQ; •/�, which carries a
natural action of G WD

Q
q2Q0

C�. As shown in Section 3.2, RG is generated by cycles.
These generate a C-algebra CŒz�, and they further satisfy quasideterminantal relations
(recalled in Section 4.1) which we will denote as QDet.z/. The following is our first main
result.

Theorem 1.1 (Theorem 4.29). For any group 1
r
.1; a/, there is an isomorphism

RG
Š

CŒz�
QDet.z/

:

In particular, RG , which is constructed using only the quiver of the reconstruction
algebra, precisely gives the Artin component of 1

r
.1; a/. Since the reconstruction algebra

exists for any rational surface singularity, this gives a prediction for what can be expected
much more generally.
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Simultaneous resolution is then achieved by introducing the deformed reconstruction
algebra (see Section 5.1), which generalises the work of Crawley-Boevey–Holland [7] on
deformed preprojective algebras. In Section 5.3, we construct a map

 WRG
! �;

where � is an affine space defined in (5.A). The following is our second main result,
where ª is a particular choice of stability condition explained in Section 5.2.

Theorem 1.2 (Theorem 5.12). For any cyclic group 1
r
.1; a/, the diagram

Rep.CQ; •/==ª GL RG

�

¥
 

is a simultaneous resolution of singularities in the sense that the morphism ¥ is smooth,
and   is flat.

The smoothness of the fibres is achieved using moduli spaces of the deformed recon-
struction algebra Ar;a;�. These are introduced in Section 5.1 and may be of independent
interest. As a final remark, we note in Remark 5.13 that in general the particular choice
of ª in Theorem 5.12 is important and cannot be generalised to arbitrary generic stability
parameters.

This paper is organised as follows. Section 2 recalls both the reconstruction algebra
associated to any cyclic subgroup of GL.2;C/, and the quasideterminantal form. Sec-
tion 3 proves that the invariant representation variety associated to the quiver of this
reconstruction algebra is generated by certain cycles zi;j . In Section 4, the Artin com-
ponent is obtained. Section 5 introduces the deformed reconstruction algebra and uses
this to achieve simultaneous resolution.

Conventions

Throughout we work over the complex numbers C. For quivers, ab denotes a followed
by b.

2. Preliminaries

This section recalls the reconstruction algebra of type A and introduces some combinat-
orics that will be used later.
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2.1. The reconstruction algebra of type A

Consider, for positive integers ’i � 2, the following labelled Dynkin diagram of type An:

� � : : : � �

�’n �’n�1 �’2 �’1

We call the vertex corresponding to ’i the i -th vertex. To this picture we associate the
double quiver of the extended Dynkin quiver, with the extended vertex called the 0-th
vertex

� � : : : � �

�

Denote this quiver as Q0, and we remark that for n D 1 Q0 is

� �

In the case that some ’i > 2, add an additional ’i � 2 arrows from the i -th vertex to the
0-th vertex. The resulting quiver is denoted by Q, and we label its arrows as follows:
For n D 1, we write

• c1, c2 for the two arrows from 0 to 1 in Q0,

• a1, a2 for the two arrows from 1 to 0 in Q0,

• k1; : : : ; k’1�2 for the extra arrows if ’1 > 2.

For n � 2, we write the

• clockwise arrow in Q0 from i to i � 1 as ci i�1 (and c0n),

• anticlockwise arrow in Q0 from i to i C 1 as ai iC1 (and an0),

• extra arrows as k1; : : : ; k
P

.’i�2/, reading from right to left (see Examples below).

The notation a12 is read “anticlockwise from 1 to 2”. Below, we furthermore write Aij for
the composition of anticlockwise paths a from vertex i to j and Cij as the composition
of clockwise paths. Note that by convention Ci i (resp., Ai i ) is not an empty path at vertex
i but rather the path from i to i round each of the clockwise (resp., anticlockwise) arrows
precisely once. Lastly, for convenience, write

c10 WD k0 and an0 WD k1C
P

.’i�2/:
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Example 2.1. For Œ’1; ’2; ’3� D Œ3; 2; 2�, the labelled quiver Q is

23

0 1

c21

k0Dc10

c03

c32

k1

a23

k2Da30

a01

a12

Example 2.2. For Œ’1; ’2; ’3; ’4; ’5; ’6; ’7� D Œ2; 3; 2; 4; 3; 2; 2�, the labelled quiver Q
is

45

6

7

0 1

2

3

c76

c65

c54

c43

c32

c21

k0Dc10

c07

k4

k1

k3 k2

a45

a56

a67

k5Da70

a01

a12

a23

a34

2.2. Cyclic groups and combinatorics

A reconstruction algebra can be associated to any cyclic subgroup of GL.2;C/.

Definition 2.3. For r; a 2 N with .r; a/ D 1 and r > a, the group 1
r
.1; a/ is defined to be

1

r
.1; a/ WD

�
— WD

�
© 0

0 ©a

� �
� GL.2;C/;

where © is a primitive r-th root of unity. The Hirzebruch–Jung continued fraction expan-
sion of r

a
is then denoted as

r

a
D ’1 �

1

’2 �
1

’3�
1

.��� /

WD Œ’1; : : : ; ’n�

with each ’i � 2. For r
r�a

, the Hirzebruch–Jung expansion is written as

r

r � a
D “1 �

1

“2 �
1

“3�
1

.��� /

WD Œ“1; : : : ; “m�: (2.A)
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Write e for the embedding dimension of the singularity CŒx; y�
1
r .1;a/. Then, by [15,

Section 3], there is an equality e D mC 2 D 3C
P
.’i � 2/.

To be consistent with [20, Lemma 3.5], consider the i- and j-series of (2.A), which is
defined to be

i0 D r; i1 D r � a; it D “t�1it�1 � it�2 for 2 � t � mC 1;

j0 D 0; j1 D 1; jt D “t�1jt�1 � jt�2 for 2 � t � mC 1:
(2.B)

It is well known that the collection xityjt for all t such that 0 � t � mC 1 generate the
invariant ring [16, Satz 1].

Definition 2.4 ([20, Section 2]). The reconstruction algebra Ar;a associated to the group
1
r
.1; a/ is the path algebra of the quiver Q in Section 2.1 associated to the Hirzebruch–

Jung continued fraction expansion of r
a

, subject to the relations given in Definition 5.1
with all �’s equal to zero.

For our purposes, we will not require the relations until Section 5, and so, we defer
introducing them until then.

Example 2.5. Since 7
3
D Œ3; 2; 2�, the quiver of the reconstruction algebra A7;3 associated

to the group 1
7
.1; 3/ is precisely the quiver in Example 2.1. The relations can be found in

Example 5.3, after setting all �’s equal to zero.

Example 2.6. Since 165
104
D Œ2; 3; 2; 4; 3; 2; 2�, the quiver of the reconstruction algebra

A165;104 associated to the group 1
165
.1; 104/ is precisely the quiver in Example 2.2. The

relations can be found in Example 5.4, after setting all �’s equal to zero.

2.3. Quasideterminantal form

Consider a 2 � n matrix  
a1 a2 � � � an

b1 b2 � � � bn

!
together with n� 1 further entriesW1; : : : ;Wn�1. We then write these entries in the middle
row as follows:

X D

0@a1 a2 � � � an

W1 W2 Wn�1

b1 b2 � � � bn

1A :
Following Riemenschneider [17, Section 5], consider the 2 � 2 quasiminors of this

2 � n quasimatrix, which for all i < j are defined to be

ai � bj � bi

 
j�1Y
tDi

Wt

!
aj :

Write QDet.X/ for the set of all 2 � 2 quasiminors of X .
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Example 2.7. If

X D

0@a1 a2 a3

W1 W2

b1 b2 b3

1A ;
then

QDet.X/ D ¹a1b2 � b1W1a2; a1b3 � b1W1W2a3; a2b3 � b2W2a3º:

3. The representation variety

This section considers the invariant representation variety associated to the quiver of any
reconstruction algebra of type A and finds its generators in terms of cycles.

3.1. Generalities

Consider the dimension vector • D .1; : : : ; 1/ and the representation variety Rep.CQ; •/,
where Q is an arbitrary (finite) quiver. Here, Rep.CQ; •/ is just an affine space, and we
write R WD CŒRep.CQ;•/� for its coordinate ring, which we identify with the polynomial
ring in the number of arrow variables. The coordinate ring carries a natural action of
G WD

Q
q2Q0

C�, whereQ0 denotes the set of vertices ofQ. The action is via conjugation;
namely, � 2 G D C� � � � � �C� acts on an arrow p 2 R as

� � p D ��1
t.p/p�h.p/:

Below, we say that arrows p1; : : : ; pn are composable if h.pi / D t .piC1/ for all i D
1; : : : ; n � 1.

Lemma 3.1. If Q is an arbitrary (finite) quiver, then RG is generated by cycles in Q.

Proof. Choose a monomial p D p1 � � �pn 2 R, where pi ’s are arrows. We claim that

� � p D p for all �, p

is a cycle. First, observe that � � p D .�t.p1/ � � ��t.pn//
�1p.�h.p1/ � � ��h.pn//.

(() If p is a cycle, in particular, it is composable. Thus, for all � 2 G,

� � p D ��1
t.p1/p1�h.p1/�

�1
t.p2/p2�h.p2/ � � ��

�1
t.pn/pn�h.pn/

D ��1
t.p1/�h.pn/p1p2 � � �pn

D ��1
t.p1/�h.pn/p

D p: (since t .p1/ D h.pn/)

Hence, p 2 RG .
()) Suppose that p 2 RG such that � � p D p for all �. Then, �h.p1/ must cancel

some ��1
t.pi /

for some i , so h.p1/D t .pi /. Now, consider �h.pi /. It must cancel ��1
t.pj /

for
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some j , so h.pi / D t .pj /. Continuing like this, we can assume that p D p1pipj � � �pm,
where p1pipj � � �pm is composable. But then, � � p D ��1

t.p1/
� p � �h.pm/, and so, since

� � p D p, t .p1/ D h.pm/, and p is a cycle.

3.2. Reconstruction algebras

We now specialise to the case where Q is the quiver of the reconstruction algebra of
Section 2.1. By Lemma 3.1, RG is generated by cycles, and this subsection finds a finite
generating set.

To set notation, for h such that 0 � h � 1C
P
.’i � 2/, write lh for the number of the

vertex associated to the tail of the arrow kh. In Example 2.2 above, l2 D 4, l3 D 4, and
l4 D 5 are associated to the tail of the arrows k2, k3, and k4, respectively.

Consider

z0;0 D C00

for 1 � i � e � 2

8̂̂<̂
:̂
zi;0 D C0li

ki

zi;j D cli�.j�1/;li�jali�j;li�.j�1/ 81 � j � li � li�1

zi;li�li�1C1 D A0li�1
ki�1

ze�1;0 D A00:

(3.A)

Proposition 3.2. For any group 1
r
.1; a/; RG is generated as a C-algebra by the set

S D ¹z0;0; zi;j ; ze�1;0 j i 2 Œ1; e � 2�; j 2 Œ0; li � li�1 C 1�º:

Before proving the proposition, we illustrate the set S in the two running examples.

Example 3.3. The quiver of the reconstruction algebra associated to 1
7
.1; 3/ is given in

Example 2.1. The set S is

z0;0

z1;0 z1;1

z2;0 z2;1 z2;2 z2;3
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z3;0

Example 3.4. The quiver of the reconstruction algebra associated to 1
165
.1; 104/ is given

in Example 2.2. The set S is

z0;0

z1;0 z1;1 z1;2

z2;0 z2;1 z2;2 z2;3

z3;0 z3;1

z4;0 z4;1 z4;2
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z5;0 z5;1 z5;2 z5;3

z6;0

With the above notation set, the proof of Proposition 3.2 is a relatively simple induc-
tion. In what follows, for two paths p; q 2 CQ, we write p � q if p D q in R WD

CŒRep.CQ; •/�, where • D .1; : : : ; 1/.

Proof. By Lemma 3.1, RG is generated by cycles. Hence, consider a cycle p; then the
proof is complete if we show that p is generated by elements in S . We induct on the
lengths of cycles, since all cycles of length two (the ac’s) are already in the generating set.

For any vertex v, consider a non-trivial cycle p; then it must leave the vertex. Accord-
ing to the quiver, there are three options.

Case 1. The path p starts with a k arrow (p D ktp
0). Since p is a cycle, then p0 W 0! v,

so we have the following subcases:

(a) p0 starts clockwise. If p0 moves in the clockwise direction indefinitely to vertex
v (p0 D C0vp

00), then p D ktC0vp
00 � zp00, and by induction, p 2 hSi. Hence,

we can assume that, at some stage, p0 stops travelling clockwise before vertex v.
At that stage, either we continue anticlockwise, so

p D ktC0wawwC1p
00

D ktC0wC1 cwC1wawwC1„ ƒ‚ …
z

p00 � z.cycles of length smaller than p/;

or we continue via some kj , so

p D ktC0wkjp
00
D kt C0wkj„ƒ‚…

z

p00 � z.cycles of length smaller than p/:

In either case, by induction, p 2 hSi.

(b) p0 starts anticlockwise. This subcase is similar to (a), interchanging the clockwise
paths and the anticlockwise paths.
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Case 2. The path p starts with a clockwise arrow, so pD cvv�1p
0. Since p is a cycle, then

p0W v � 1! v. If p0 continues clockwise indefinitely, then we can write p D Cvvp
00 �

z0;0p
00, and by induction, we are done. Otherwise, at some stage, p0 stops travelling clock-

wise and we can write p D Cvwp
0 for some p0 W w ! v. According to the quiver, there

are two options.

(a) p0 starts with an anticlockwise arrow (p0 D ap00), so then

p D CvwawwC1p
00

D CvwC1 .cwC1wawwC1/„ ƒ‚ …
z

p00 � z.cycles of length smaller than p/I

thus, by induction, p 2 hSi.

(b) p0 starts with a k arrow (p0 D kp00), and we repeat a similar procedure as in Case
1 applied to p0. By induction, p 2 hSi.

Case 3. The path p starts with an anticlockwise arrow. This is very similar to Case 2, after
interchanging the clockwise and the anticlockwise arrows.

4. The Artin component

This section recovers the Artin component directly from the quiver of the reconstruction
algebras, using the representation variety.

4.1. QDet and first properties

By Riemenschneider duality (see, e.g., [20, Lemma 2.11]), for all t such that 1 � t � m,
there is an equality “t D lt � lt�1 C 2. Set

st D

´
“t � 1 if 1 � t � m;

0 if t D mC 1:

Recalling the notation in Section 2.3, consider the description of the Artin component of
1
r
.1; a/ due to Riemenschneider [17], which in its quasideterminantal form is as follows:0B@ z0;0 z1;0 z2;0 � � � zm;0

z1;s1�1 � : : : � z1;1 z2;s2�1 � : : : � z2;1 zm;sm�1 � : : : � zm;1

z1;s1 z2;s2 z3;s3 � � � zmC1;smC1

1CA :
As in Section 2.3, QDet.z/ is defined to be the set of all quasiminors of the above matrix.

Example 4.1. The Artin component of the group 1
7
.1; 3/ in Example 3.3 has the quaside-

terminantal form 0@z0;0 z1;0 z2;0

z2;2z2;1

z1;1 z2;3 z3;0

1A I
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thus, QDet.z/ is the set

¹z0;0z2;3 � z1;0z1;1; z0;0z3;0 � z2;0z2;1z2;2z1;1; z1;0z3;0 � z2;0z2;1z2;2z2;3º:

Example 4.2. The Artin component of the group 1
165
.1; 104/ in Example 3.4 has the

quasideterminantal form0B@z0;0 z1;0 z2;0 z3;0 z4;0 z5;0

z1;1 z2;2z2;1 z4;1 z5;2z5;1

z1;2 z2;3 z3;1 z4;2 z5;3 z6;0

1CA ;
and in this case, QDet.z/ consists of 15 relations.

For the group 1
r
.1; a/, recall from Section 3.2 that RG is constructed only from the

quiver of the reconstruction algebra. Consider the polynomial ring CŒz� which has as vari-
ables elements in the set S of Proposition 3.2. There is a natural homomorphism

CŒz�
'
�! RG ;

defined by sending zi;j to the corresponding cycle in (3.A).

Proposition 4.3. For any group 1
r
.1; a/, the homomorphism 'WCŒz�! RG is surjective,

and QDet.z/ belongs to the kernel.

Proof. Surjectivity follows from Proposition 3.2. We just need to show that the quasim-
inors are sent to zero. An arbitrary quasiminor is determined as follows:

• First, choose zi;0; 0 � i � m � 1.

• Then, choose zj;sj
; i C 2 � j � mC 1.

With these choices,

'.zi;0zj;sj
/ D C0li

ki � A0liC1
kiC1

D C0liC1
.cliC1liC1�1 � � � cliC1li

/ki � A0li
.ali liC1 � � � aliC1�1liC1

/kiC1

(since elements in CŒz� commute)

D A0li
ki � .cliC1liC1�1aliC1�1liC1

� � � cliC1li
ali liC1/ � C0liC1

kiC1

D A0li
ki

 
liC1�liY

pD1

cliC1�.p�1/liC1�paliC1�pliC1�.p�1/

!
C0liC1

kiC1

D '

 
ziC1;siC1

 
j�1Y

kDiC1

zk;1 � � � zk;sk�1

!
zj�1;0

!

D '

 
ziC1;siC1

 
j�1Y

kDiC1

zk;sk�1 � � � zk;1

!
zj�1;0

!
:
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This shows that the quasiminor relation

zi;0zj;sj
D ziC1;siC1

 
j�1Y

kDiC1

zk;sk�1 � � � zk;1

!
zj�1;0

belongs to the kernel of ', as required.

The remainder of this section will prove that QDet.z/ generates the kernel, but this
involves significant work.

4.2. Toric ideals generalities

To compute the kernel of the homomorphism ' in Proposition 4.3, we will rely on its
description as a toric ideal of CŒz�, as explained in [18, Section 4].

Let A D ¹a1; a2; : : : ; anº � Zdn¹0º, where each ai is considered as a column vector,
and consider the Laurent polynomial ring

kŒt˙1� WD kŒt1; : : : ; td ; t
�1
1 ; : : : ; t�1

d �:

Set AD Œa1a2 � � �an� 2 Zd�n to be the corresponding d � nmatrix, and consider the map

kŒx�! kŒt˙1�

xi 7! tai :

The toric ideal of A, denoted by IA, is by definition the kernel. It is possible to com-
pute this using an elimination method; however, this is computationally hard in general.
A more efficient algorithm to compute IA is given in [18, Algorithm 12.3] and proceeds
as follows:

(1) Find any lattice spanning set L for ker.A/Z.

(2) Consider the ideal IL WD .x
uC � xu� j u 2 L/, and compute the saturation of IL,

.IL W .x1x2 � � � xn/
1/ with respect to the indeterminates x1; : : : ; xn. Then,

.IL W .x1 � � � xn/
1/ D IA:

Part .2/ is the most difficult step.

4.3. Step 1: Lattice spanning set

This section explains how to view the homomorphism 'WCŒz�! RG in the toric language
of the previous section; then in Corollary 4.12 a lattice spanning set for the kernel is
computed.

Example 4.4. For the group 1
3
.1; 1/, the homomorphism

'WCŒz� � RG
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sends z0;0 7! c1a1, z3;0 7! c2k1, and

z1;0 7! c1a2; z2;0 7! c1k1;

z1;1 7! c2a1; z2;1 7! c2a2:

Each of z0;0, z1;0, z1;1, z2;0, z2;1, and z3;0 gives rise to a column vector, where the entries
in the column corresponding to zi;j record the exponents of the variables k1, a2, a1, c1,
and c2 that appear in the (monomial) image of zi;j under the map '. Hence,

M D

k1

a2

a1

c1

c2

0BBBBBB@
1

0

0

0

1

0

1

0

0

1

0

0

1

0

1

0

0

1

1

0

0

1

0

1

0

1

0

0

1

0

1CCCCCCA

z3;0 z2;1 z1;1 z0;0 z1;0 z2;0

:

The kernel of the map ' is, by construction, the toric ideal of the matrix M .

Notation 4.5. In the case 1
r
.1; 1/, in a similar way to Example 4.4, each zi;j gets mapped

under ' to a monomial in the arrows, and thus we can build a matrixM where the columns
record the exponents. Doing this requires us to fix an order on the columns and rows,
which we do now. Consider the following diagram:

z0;0 z1;0 � � � zm�1;0 zm;0

z1;1 z2;1 � � � zm;1 zmC1;0

Following the arrow, we label the columns 1; : : : ; 2r of the matrix M by

zmC1;0; zm;1; : : : ; z1;1; z0;0; : : : ; zm�1;0; zm;0;

and the rows of M by k`; : : : ; k1; a2; a1; c1; c2. With this ordering,

2r

M D r Idr Id�r

0

1

0

1

1

0

1

0

where Idr is the r � r identity matrix, and Id�r is the anti-diagonal identity matrix.
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For the general case 1
r
.1; a/ with a ¤ 1, there is also a matrix M whose entries are

similarly the powers of the variables. Describing the matrixM requires us to set notation,
which we do now.

Notation 4.6. Consider the following diagram:0BBBB@
z0;0 z1;0 z2;0 zm�1;0 zm;0

z1;s1�1 � � � z1;1 z2;s2�1 � � � z2;1 � � � zm;sm�1 � � � zm;1

z1;s1 z2;s2 z3;s3 zm;sm zmC1;smC1

1

2

3

4
1CCCCA

Following the above arrows as numbered, we label the columns 1; : : : ; `C nC 1 ofM by

zm;sm ; : : : ; z1;s1 ; z1;s1�1; : : : ; z1;1; z2;s2�1; : : : ; z2;1; : : : ; zm;sm�1; : : : ; zm;1; zm;0:

Then, column `CnC2will be labelled z0;0, column `C nC 3will be labelled zmC1;smC1 ,
and columns `C nC 4; : : : ; 2`C nC 3 will be labelled z1;0; : : : ; zm�1;0.

We next specify the labelling of the rows of M . The first ` rows will be k`; : : : ; k1,
then the next rows will be labelled a01; : : : ; an0; then the next rows will be con; : : : ; c10.

Example 4.7. For the group 1
7
.1; 2/, the homomorphism 'WCŒz� � RG sends z0;0 7!

c02c21c10, z4;0 7! a01a12a20, and

z1;0 7! c02c21k1; z2;0 7! c02c21k2; z3;0 7! c02a20;

z1;1 7! c10a01; z2;1 7! a01k1; z3;1 7! c21a12;

z3;2 7! a01k2:

The exponents of z0;0, z1;0, z1;1, z2;0, z2;1, z3;0, z3;1, z3;2, and z4;0 lead to the column
vectors with each entry of any corresponding column vector being the power of the vari-
ables k2, k1, a01, a12, a20, c02, c21, and c10, respectively. Hence,

M D

k2

k1

a01

a12

a20

c02

c21

c10

0BBBBBBBBBBBBB@

1

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

1

1

0

0

1

1

1

0

0

0

0

1

0

0

0

1

1

0

1

0

0

0

0

1

1

0

1CCCCCCCCCCCCCA

z3;2 z2;1 z1;1 z3;1 z3;0 z0;0 z4;0 z1;0 z2;0

:

With the above ordering of the columns and rows, we now give a general block decom-
position of M which explains the boxes in Example 4.7.
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Lemma 4.8. With the ordering on rows and columns as in Notation 4.6,

`

` Id`

M D nC1 A

nC1 0

nC1

0

IdnC1

Id�nC1

00

00

10

10

01

01

`

Id�`

0

B

Proof. In the z’s, the k’s only appear as illustrated below

z0;0 z1;0 z2;0 zm�1;0 zm;0

z1;s1�1 � � � z1;1 z2;s2�1 � � � z2;1 � � � zm;sm�1 � � � zm;1

z1;s1 z2;s2 z3;s3 zm;sm zmC1;smC1

k`k2k1

Due to the ordering on rows and columns, the first l rows of M are thus

`

` Id`

nC1

0

00

00

`

Id�`

where Id` is the ` � ` identity matrix, and Id�` is the anti-diagonal identity matrix. Simil-
arly, in the z’s, the a’s only appear in the following region:

z0;0 z1;0 z2;0 zm�1;0 zm;0

z1;s1�1 � � � z1;1 z2;s2�1 � � � z2;1 � � � zm;sm�1 � � � zm;1

z1;s1 z2;s2 z3;s3 zm;sm zmC1;smC1

Furthermore, along the green arrow, out of all the a’s, the first z1;s1 contains only a01, the
second entry z1;1 contains only a12, etc., until the last entry zm;0 on the green line, which
contains only an0. It follows that the next nC 1 rows of M are

`

nC1 A

nC1

IdnC1

10

10

0

`

for some matrix A (see Remark 4.9 below).
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Lastly, in a very similar way, the only place where the c’s exist in the z’s is in the
following region:

z0;0 z1;0 z2;0 zm�1;0 zm;0

z1;s1�1 � � � z1;1 z2;s2�1 � � � z2;1 � � � zm;sm�1 � � � zm;1

z1;s1 z2;s2 z3;s3 zm;sm zmC1;smC1

where, again following the green line, among all the c’s, the first zm;0 contains only c0n,
the second entry contains only cnn�1, etc., until the last entry z1;s1 on the green line, which
contains only c10. It follows that the next nC 1 rows of M are

nC1 0

` nC1

Id�nC1

01

01

`

B

for some matrix B . The result follows.

Remark 4.9. Although not required, it is possible to explicitly describe both the matrices
A and B . For A, there are “1 � 1; “2 � 2; “3 � 2; : : : ; “m�1 � 2; “m � 1 rows, each
containing

¹1; 1; : : : ; 1; 1; 1º; ¹1; 1; : : : ; 1; 1; 0º; ¹1; 1; : : : ; 1; 0; 0º; : : : ; ¹0; 0; : : : ; 0; 0; 0º;

respectively.
For B , there are “m � 1; “m�1 � 2; “m�2 � 2; : : : ; “2 � 2; “1 � 1 rows, each con-

taining

¹1; 1; : : : ; 1; 1; 1º; ¹1; 1; : : : ; 1; 1; 0º; ¹1; 1; : : : ; 1; 0; 0º; : : : ; ¹0; 0; : : : ; 0; 0; 0º;

respectively.

Now, consider the 2C
P
“i D 2`C nC 3 square matrix

`CnC2

Q D `CnC2 Id`CnC2

`C1 0

`C1

2`CnC3K
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where K is the .2`C nC 3/ � .`C 1/ matrix

`

K D nC1

`

0

0

�1

�1

1�1 �1

1

0

0 0

0

`

� Id�`

V

Id`

and the matrix V has “1 � 1; “2 � 2; “3 � 2; : : : ; “m�1 � 2; “m � 1 rows, each containing
¹1; 1; : : : ; 1; 1; 1º; ¹0; 1; : : : ; 1; 1; 1º; ¹0; 0; 1; : : : ; 1; 1º; : : : ; ¹0; 0; : : : ; 0; 0; 0º, respectively.
The matrix K encodes the QDet relations starting from z00; namely,

z0;0zmC1;smC1 D z1;s1 � z1;s1�1 � � � z1;1 � z2;s2�1 � � � z2;1 � � � zm;sm�1 � � � zm;1 � zm;0;

z0;0z2;s2 D z1;s1 � z1;s1�1 � � � z1;1 � z1;0;

z0;0z3;s3 D z1;s1 � z1;s1�1 � � � z1;1 � z2;s2�1 � � � z2;1 � z2;0;

:::

z0;0zm;sm D z1;s1 �z1;s1�1 � � � z1;1 �z2;s2�1 � � � z2;1 � � � zm�1;sm�1�1 � � � zm�1;1 � zm�1;0:

Example 4.10. Continuing Example 4.7, here “1 D 2, “2 D 2, and “3 D 3, so the associ-
ated matrix K is

K D

0BBBBBBBBBBBBBBBB@

0 0 �1

0 �1 0

�1 1 1

�1 0 0

�1 0 0

1 �1 �1

1 0 0

0 1 0

0 0 1

1CCCCCCCCCCCCCCCCA
:
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Lemma 4.11. Q is invertible, and further

`

` Id`

MQ D nC1 A

nC1 0

nC1

0

IdnC1

Id�nC1

00

00

00

00

01

01

`

0

0

0

Proof. Q is invertible since any unitriangular matrix has determinant one. For the second
statement, since QDet � KerZ, it follows that

MK D 0:

This justifies the last `C 1 columns above. The first `C nC 2 columns are clear, since
multiplyingM on the right by the unit matrix Id`CnC2 with zero underneath picks out the
first `C nC 2 columns of M only. Thus, the first `C nC 2 columns of M are the first
`C nC 2 columns above.

Corollary 4.12. KerZ is generated by the columns of K.

Proof. By the form ofMQ in Lemma 4.11, it is clear that it is possible to obtain the Smith
normal form from MQ using only row operations. This gives an invertible matrix R for
which

`CnC2

RMQ D `CnC2 Id`CnC2

n 0

`C1

0

It follows from the Smith normal form that KerZ is generated by the last `C 1 columns
of Q, which are precisely the columns of K.
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Remark 4.13. In the case a D 1, equivalently for the groups 1
r
.1; 1/, consider the matrix

Q defined as

r

r Idr

Q D

r 0

r�1

K

0

0

�1

1

0

0

r�1

r�1Id�r�1

with K D
1

�1

1

�1

r�1Idr�1

This gives the Smith normal form, in a similar way to Lemma 4.11, with

2r

rC2MQ D IdrC1 0

1 �11

In particular, this shows that Corollary 4.12 also holds for a D 1.

Returning to the notation of Section 4.2, write L for a spanning set for the kernel of
'Z, which by Corollary 4.12 can be taken to be the columns of the above matrix K. As
calibration, and again in the notation of Section 4.2, the associated IL in Example 4.10 is

IL D .z0;0z4;0 � z1;1z3;1z3;0; z0;0z2;1 � z1;0z1;1; z0;0z3;2 � z2;0z1;1/:

Now, we saturate the ideal IL in general.

4.4. Step 2: Saturation

According to [2, Section 1], IL can be saturated by first introducing a new indeterminate t ,
then calculating a Gröbner basis of

H WD IL C .tx1x2 � � � xn � 1/;

and then afterwards eliminating the variable t . However, this approach makes the ideal
inhomogeneous. Instead, following [2, Section 1], we introduce a homogeneous variable
u whose degree is equal to the sum of the degrees of the variables x1; : : : ; xn and then
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calculate the Gröbner basis of the ideal H WD IL C .x1x2 � � � xn � u/ using the graded
reverse lexicographic order.

Most importantly, the two main benefits of this approach are as follows:

(a) If J is an ideal such that IL � J � IM , then, instead of saturating IL, we may
saturate J since .IL W .x1 � � �xn/

1/D IM D .J W .x1 � � �xn/
1/; see [2, Section 1].

(b) Often, we do not need to saturate ideals with respect to all the indeterminates; in
our case, we will find a much smaller subset.

Lemma 4.14. IL � QDet.z/ � IM .

Proof. Since IL are some of the QDet.z/ relations starting with z0;0 only, then IL �

QDet.z/. By Proposition 4.3, QDet.z/ � IM .

We will therefore saturate QDet.z/ instead of IL, writing this as .QDet W P1/, where
P is the product of all the zij variables. The ideal .QDet W P1/ will be obtained by
calculating the DegRevLex–Gröbner basis of the ideal

H 0 D QDet.z/C .P � u/:

The set of the monomials N in CŒz� is a basis of CŒz�, considered as a vector space
over C. So, any nonzero polynomial f 2 CŒz� is given as the linear combination f DP

m2S �mm of monomials, where S � N , S is finite, and �m are all nonzero constants.
Set xa WD x

a1
1 � � � x

an
n and xb WD x

b1
1 � � � x

bn
n with a D .a1; : : : ; an/, b D .b1; : : : ; bn/.

Definition 4.15 ([12, Section 1]). A term order � on S is a total order on the monomials
of S such that

(1) xa � xb implies that xaxc � xbxc for all c 2 Nn;

(2) xa � x0 D 1 for all a 2 Nnn¹0º.

There are various different term orders on S , with respect to a fixed ordering of the
variables, such as x1 � x2 � � � � � xn. In the lexicographic (lex) order, xa � xb if and
only if the first nonzero entry in the vector a � b is positive.

Example 4.16. If x � y � z, then, with respect to lexicographic order,

x4
� x2y2

� x2yz � xy3:

Further, if the polynomial ring CŒx1; : : : ; xn� is graded, there are additional term order-
ings. Suppose that CŒx1; : : : ; xn� is graded by .d1; : : : ; dn/, where deg.xi / D di . Set
jaj WD

P
aidi and jbj WD

P
bidi . In the graded reverse lexicographic order, xa � xb if

and only if either jaj > jbj or jaj D jbj and the last nonzero entry in the vector a � b is
negative.

Example 4.17. If x � y � z � w and .1; 1; 1; 1/ is the weighting vector, with respect to
the graded reverse lexicographic order, then

x2y2z3w � x2y2z2w2
� xz4

� x3:
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The total degree comes first, and the lower power of w breaks the tie between the two
monomials of degree 8.

When a monomial order � has been chosen, the leading monomial of

f D
X
m2S

�mm

is the largest m 2 S with respect to �. The leading coefficient is the corresponding �m,
and the leading term is �mm.

Example 4.18. For the polynomial ring CŒt; a; b1; b2; c1; c2; c3; d � with the weighting
vector (13, 5, 4, 4, 3, 3, 3, 5), consider the polynomial ac3 � b1b2. Since it is homogen-
eous, we look for the lower power of c3 to break the tie; thus, b1b2 � ac3, and therefore
�b1b2 is the leading term.

Recall that QDet.z/ consists of the quasiminors of the matrix0B@ z0;0 z1;0 z2;0 � � � zm;0

z1;1 � : : : � z1;s1�1 z2;1 � : : : � z2;s2�1 zm;1 � : : : � zm;sm�1

z1;s1 z2;s2 z3;s3 � � � zmC1;smC1

1CA ;
and we are aiming to compute a Gröbner basis of the ideal .QDet W P1/, where P is the
product of all the zij variables. The next lemma allows to replace the full product P with
a smaller product.

Lemma 4.19. .QDet W P1/ D .QDet W E1/, where E D z0;0z2;s2z3;s3 � � � zmC1;smC1 .

Proof. Since E contains only some of the variables zi;j and P contains them all, write
P D EG. The claim is that .QDet W .EG/1/ D .QDet W E1/. But this follows from
[2, Corollary 2.6 (1)] provided that we can show that G is invertible in the localisation

.CŒz�=QDet/E D CŒz�E=QDetE : (4.A)

By definition, G contains all the zi;j ’s which are not in E. Now, for the quasiminors
in QDet.z/, if we invert E, we invert all variables z0;0; z2;s2 ; z3;s3 ; : : : ; zmC1;smC1 in E;
this implies that all variables in the left-hand side monomials of the quasiminor relations
starting from z0;0, namely,

z0;0z2;s2 D z1;s1 � z1;s1�1 � � � z1;1 � z1;0;

z0;0z3;s3 D z1;s1 � z1;s1�1 � � � z1;1 � z2;s2�1 � � � z2;1 � z2;0;

:::

z0;0zm;sm D z1;s1 � z1;s1�1 � � � z1;1 � z2;s2�1 � � � z2;1 � � � zm�1;sm�1�1 � � � zm�1;1 �zm�1;0;

z0;0zmC1;smC1 D z1;s1 � z1;s1�1 � � � z1;1 � z2;s2�1 � � � z2;1 � � � zm;sm�1 � � � zm;1 � zm;0

are invertible modulo QDet.z/. But this implies that all the variables in the right-hand side
monomials become invertible in (4.A). But the monomials in the right-hand side contain
all variables; hence, G is invertible in (4.A), as required.
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Example 4.20. For the group 1
7
.1; 2/, QDet.z/ consists of the quasiminors of the matrix0@z0;0 z1;0 z2;0 z3;0

z3;1

z1;1 z2;1 z3;2 z4;0

1A :
We saturate QDet.z/ with respect to E D z0;0z2;1z3;2z4;0, which is only the coloured z’s.

The kernel of ', which is the toric ideal IM , is thus obtained from the saturation
.QDet W P1/ D .QDet W E1/ of Lemma 4.19, which in turn will be obtained by elimin-
ating u in the Gröbner basis of the ideal H D QDetC.E � u/.

Definition 4.21. Let f; g 2 CŒz� be nonzero polynomials.

(1) Write LM.f /, LM.g/ for the leading monomials of f and g, respectively, and
LT.f /, LT.g/ for the leading terms (i.e., with coefficients). Define ”DLCM.f;g/
to be the least common multiple of the monomials LM.f / and LM.g/.

(2) The S -polynomial of f and g is the combination

S.f; g/ D

�
”

LT.f /

�
f �

�
”

LT.g/

�
g:

Recall that H D QDetC.E � u/ is generated by the quasiminors fij , together with
f WD E � u. We next grade the polynomial ring CŒu; z�. Recalling the i- and j-series
in (2.B), for any i such that 0 � i � mC 1, we declare

deg.zi;j / WD ii C ji ;

which does not depend on j . The variable u is graded so that the equation E � u is
homogeneous; thus,

deg.u/ WD i0 C j0 C

mC1X
tD2

.it C jt /:

Example 4.22. Consider 1
7
.1; 2/, and

f12 WD z0;0z2;1 � z1;0z1;1;

f34 WD z2;0z4;0 � z3;0z3;1z3;2:

We calculate S.f12; f34/ with respect to DegRevLex order to calibrate the reader. The
degree of both terms in f12 is twelve, so the leading term is thus �z1;0z1;1 since the last
nonzero entry in

.0; 1; 1; 0; 0; 0; 0; 0; 0/ � .1; 0; 0; 1; 0; 0; 0; 0; 0/

is negative. Similarly, the leading term of f34 is �z3;0z3;1z3;2 since the degree of both
terms in f34 is twelve, and the last nonzero entry in

.0; 0; 0; 0; 0; 1; 1; 1; 0/ � .0; 0; 0; 1; 0; 0; 0; 0; 1/
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is negative. Thus, S.f12; f34/ equals
z1;0z1;1z3;0z3;1z3;2

�z1;0z1;1

f12 �
z1;0z1;1z3;0z3;1z3;2

�z3;0z3;1z3;2

f34

D �z3;0z3;1z3;2.z0;0z2;1 � z1;0z1;1/C z1;0z1;1.z2;0z4;0 � z3;0z3;1z3;2/

D �z3;0z3;1z3;2z0;0z2;1 C z1;0z1;1z2;0z4;0:

To ease notation in the following proposition, as in Section 2.3, write0B@ z0;0 z1;0 z2;0 � � � zm;0

z1;1 � : : : � z1;s1�1 z2;1 � : : : � z2;s2�1 zm;1 � : : : � zm;sm�1

z1;s1 z2;s2 z3;s3 � � � zmC1;smC1

1CA
as 0@a1 a2 � � � amC1

W1 W2 Wm

b1 b2 � � � bmC1

1A :
Further, for any i < j , set mŒi;j � WD

Qj
tDi Wt , where as above Wt D zt;1 � : : : � zt;st�1.

Proposition 4.23. With respect to the DegRevLex order on CŒu; z�,

S.fij ; fk`/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�bkmŒk;`�1�a`aibj C bimŒi;j�1�ajakb` if i < j < k < `;

�bkmŒj;`�1�a`aibj C bimŒi;k�1�akb`aj if i < k � j < `;

�mŒj;`�1�a`akbj C ajakb` if i D k < j < `;

bimŒi;k�1�akb` � bkaib` if i < k < j D `;

bimŒi;k�1�mŒ`;j�1�ajakb` � bka`aibj if i < k < ` < j:

Furthermore, for any i , j ,

S.fij ; f / D �uaibj C bimŒi;j�1�ajE:

Proof. In the case i < j < k < `, the S -polynomial S.fij ; fk`/ equals

bimŒi;j�1�aj � bkmŒk;`�1�a`

�bimŒi;j�1�aj

fij �
bimŒi;j�1�aj � bkmŒk;`�1�a`

�bkmŒk;`�1�a`

fk`

D �bkmŒk;`�1�a`fij C bimŒi;j�1�ajfk`

D �bkmŒk;`�1�a`.aibj � bimŒi;j�`�aj /C bimŒi;j�1�aj .akb` � bkmŒk;`�1�a`/

D �bkmŒk;`�1�a`aibj C bimŒi;j�1�ajakb`:

All other cases are similar. For the final claim, the S -polynomial S.fij ; f / equals

ubimŒi;j�1�aj

�bimŒi;j�1�aj

fij �
ubimŒi;j�1�aj

�u
f

D �ufij C bimŒi;j�1�ajf

D �u.aibj � bimŒi;j�1�aj /C bimŒi;j�1�aj .E � u/

D �uaibj C bimŒi;j�1�ajE:
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Definition 4.24. A polynomial f is reducible by g to r , written as f
g
�! r , if LM.g/

divides some monomial m in f and

r D f �
�mm

LT.g/
� g:

We say this is lead reducible if LM.g/ j LM.f /, and

r D f �
LT.f /
LT.g/

� g:

Definition 4.25. A polynomial f is reducible or lead reducible by a setG D ¹g1; : : : ; gsº,

denoted by f
G
�! r , if

f D f1

gi1
��! f2

gi2
��! � � �

gim
��! fm D r;

and if r cannot be reduced any further, then we call r the normal form or remainder of f
modulo G.

For multivariate polynomials, the remainder is not unique, and this leads us to the
Gröbner basis theory. We will compute the Gröbner basis of

H D QDetC.E � u/

using Buchberger’s algorithm. Write S for the set of generators of QDet given by all the
quasiminors fij , together with f D E � u.

Example 4.26. For the group 1
7
.1; 2/, with matrix0@z0;0 z1;0 z2;0 z3;0

z3;1

z1;1 z2;1 z3;2 z4;0

1A ;
the ideal H D QDetC.E � u/ is generated by

f12 WD z0;0z2;1 � z1;1z1;0; f24 WD z1;0z4;0 � z2;1z3;1z3;0;

f13 WD z0;0z3;2 � z1;1z2;0; f34 WD z2;0z4;0 � z3;2z3;1z3;0;

f14 WD z0;0z4;0 � z1;1z3;1z3;0; f WD z0;0z2;1z3;2z4;0 � u;

f23 WD z1;0z3;2 � z2;1z2;0;

and so, S D ¹f12; f13; f14; f23; f24; f34; f º.

Corollary 4.27. The S-polynomials in Proposition 4.23 are reduced to zero by the set S.

Proof. In the case i < j <k < `, by Proposition 4.23, S.fij ;fk`/D�bkmŒk;`�1�a`aibjC

bimŒi;j�1�ajakb`, which has leading term �bkmŒk;`�1�a`aibj . This leading term is divis-
ible by LT.fk`/, so

S.fij ; fk`/
fk`
��! S.fij ; fk`/ � .aibj /fk` D bimŒi;j�1�ajakb` � aibjakb`:
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The leading term of the right-hand side is bimŒi;j�1�ajakb`, which is divisible by LT.fij /,
and thus,

S.fij ; fk`/
fk`
��! bimŒi;j�1�ajakb` � aibjakb`

fij

��! 0:

The next four cases in Proposition 4.23 are very similar and are summarised as

S.fij ; fk`/
fj`

��! bimŒi;k�1�ajakb` � aj b`aibk

fik
��! 0 if i < k � j < `;

S.fij ; fk`/
fj`

��! 0 if i D k < j < `;

S.fij ; fk`/
fik
��! 0 if i < k < j D `;

S.fij ; fk`/
fik
��! �a`bjaibk C aibkb`mŒ`;j�1�aj

f j̀

��! 0 if i < k < ` < j:

Furthermore, the final case

S.fij ; f / D �uaibj C bimŒi;j�1�ajE

has leading term �uaibj . This is divisible by LT.f /, and so,

S.fij ; f /
f
�! S.fij ; f / � .aibj /f D bimŒi;j�1�ajE � aibjE:

The leading term of the right-hand side is bimŒi;j�1�ajE, which is divisible by LT.fij /,
and thus,

S.fij ; f /
f
�! bimŒi;j�1�ajE � aibjE

fij

��! 0:

Corollary 4.28. S is a Gröbner basis for QDetC.E � u/.

Proof. Since by Corollary 4.27 all the S -polynomials between elements of S reduce to 0
modulo S, this follows as an immediate consequence of Buchberger’s criterion [5, Sec-
tion 2].

4.5. Recovering the Artin component

For any group 1
r
.1; a/, the quiver of the reconstruction algebra is denoted by Q. Recall

from Section 3 that • D .1; : : : ; 1/, and further, R WD CŒRep.CQ; •/� carries a natural
action ofG WD

Q
q2Q0

C�. The following shows that RG , which is constructed using only
the quiver of the reconstruction algebra, is precisely the Artin component of 1

r
.1; a/.

Theorem 4.29. For any group 1
r
.1; a/, there is an isomorphism RG Š

CŒz�
QDet.z/ .

Proof. By Proposition 4.3, there is a surjective homomorphism CŒz�
'
�! RG . By [18, Sec-

tion 4], the kernel of ' is a toric ideal IM of CŒz�. By Corollary 4.12, the columns
of K are a spanning set L for the kernel 'Z, so IM D .IL W P

1/. By Lemma 4.14,



The Artin component and simultaneous resolution 1255

.IL W P
1/ D .QDet W P1/, and further, .QDet W P1/ D .QDet W E1/ by Lemma 4.19.

As explained above in Definition 4.21, the toric ideal IM is thus obtained from eliminating
u from a Gröbner basis of QDetC.E � u/ and thus by Corollary 4.28 by eliminating u
from S. Therefore,

IM D .QDet W E1/ D S \CŒz� D QDet.z/:

5. Simultaneous resolution

In this section, the deformed reconstruction algebra is introduced and is used to achieve
simultaneous resolution.

5.1. The deformed reconstruction algebra

In what follows, write l} for the number of the vertex associated to the tail of the arrow
k} , and set d} D l} � l}�1: Recall that by convention k0 D c10 and ke�2 D an0.

Definition 5.1. Given r; a 2 N with r > a > 1 such that .r; a/ D 1 and scalars � 2
C˚“1 ˚ � � � ˚ C˚“e�2 , write � D .�1;�2; : : : ;�e�2/ with �i D .�i“i�1; : : : ; �i1; �i0/.
Then, the deformed reconstruction algebra Ar;a;� is defined to be the path algebra of the
quiverQ associated to the Hirzebruch–Jung continued fraction expansion of r

a
, subject to

the following relations (which below, we refer to as the step i relations) for all i such that
1 � i � e � 2:

• If di D 0, then

kiC0li
� ki�1A0li�1

D �i;1;

A0li�1
ki�1 � C0li

ki D �i;0:

• If di > 0, then

kiC0li
� cli li�1ali�1li

D �i;“i�1;

ali�1li
cli li�1 � cli�1li�2ali�2li�1 D �i;“i�2;

:::

ali�1li�1C1cli�1C1li�1
� ki�1A0li�1

D �i;1;

A0li�1
ki�1 � C0li

ki D �i;0:

To simplify, write

� WD

´
� 2 C˚“1 ˚ � � � ˚C˚“e�2 j

“i�1X
jD0

�i;j D 0; 8 i D 1; : : : ; e � 2

µ
: (5.A)

Below we will be most interested in the case where the parameters � in Definition 5.1
belong to �. This will correspond to the case � � • D 0 in [7], equivalently to the case
t D 0 in symplectic reflection algebras [9].
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Remark 5.2. Let r > 1, and a D 1, and consider scalars � 2 .C˚2/˚e�2. Then, the
deformed reconstruction algebra Ar;1;� is defined to be the path algebra of the quiver Q
for n D 1, ’1 D r in Section 2.1, subject to the following relations:

a2c1 � a1c2 D �1;1 and c1a2 � c2a1 D �1;0;

k1c1 � a2c2 D �2;1 and c1k1 � c2a2 D �2;0;

ki�1c1 � ki�2c2 D �i;1 and c1ki�1 � c2ki�2 D �i;0 83 � i � e � 2:

Example 5.3. In the case � 2 �, the reconstruction algebra of type A7;3;� associated to
Œ3; 2; 2� is the path algebra of the quiver in Example 2.1 subject to the relations

k1C01 D c10a01 C �11; a30c03 D c32a23 C �23;

C01k1 D a01c10 � �11; a23c32 D c21a12 C �22;

a12c21 D k1a01 C �21;

a01k1 D c03a30 �

3X
jD1

�2;j :

Example 5.4. In the case � 2 �, the reconstruction algebra of type A165;107;� associated
to Œ2; 3; 2; 4; 3; 2; 2� is the path algebra of the quiver in Example 2.2 subject to the relations

k1C02 D c21a12 C �12; k3C04 D k2A04 C �31; a70c07 D c76a67 C �53;

a12c21 D c10a01 C �11; A04k2 D C04k3 � �31; a67c76 D c65a56 C �52;

a01c10 D C02k1 �

2X
jD1

�1;j ; a56c65 D k4A05 C �51;

k4C05 D c54a45 C �42; A05k4Dc07a70�

3X
jD1

�5;j ;

k2C04 D c43a34 C �23; a45c54 D k3A04 C �41;

a34c43 D c32a23 C �22; A04k3 D C05k4 �

2X
jD1

�4;j ;

a23c32 D k1A02 C �21;

A02k1 D C04k2 �

3X
jD1

�2;j :

5.2. Moduli of deformed reconstruction algebras

With respect to the ordering of the vertices as in Section 2, fix for the rest of this paper the
dimension vector

• D .1; 1; : : : ; 1/;
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and fix the generic King stability condition ª D .�n; 1; : : : ; 1/. Recall that

Rep.Ar;a;�; •/==ª GL WD Proj
�M

n�0

CŒRep.Ar;a;�; •/�
G;ªn

�
:

Remark 5.5. If� …�, then Rep.Ar;a;�; •/D;. Indeed, given� …�, some
P“i�1

jD0 �i;j ¤

0. Now, if M 2 Rep.Ar;a;�; •/, then its linear maps between vertices are scalars, which
have to satisfy the relations for Ar;a;�. Now, scalars commute, and thus summing the step
i relations gives

P“i�1
jD0 �i;j D 0, which is a contradiction. This is why below we always

assume that � 2 �.

Definition 5.6. Let � 2 �, and a > 1. Then for any t such that 0 � t � n, we define the
open set Wt in Rep.Ar;a;�; •/==ª GL as follows: W0 is defined by the condition C01 ¤ 0,
Wn by the condition A0n ¤ 0, and for 1 � t � n � 1, Wt is defined by the conditions
C0tC1 ¤ 0 and A0t ¤ 0. In the degenerate case when a D 1, define the open set W1 by
the condition c1 ¤ 0 and W2 by the condition c2 ¤ 0.

As in [20, Lemma 4.3], ¹Wt j 0� l � nº forms an open cover of Rep.Ar;a;�; •/==ª GL.

Proposition 5.7. For any Ar;a;� with a > 1 and � 2 �, the following statements hold:

(1) Each representation in W0 is determined by .c10; a01/ 2 C2.

(2) Each representation in Wt is determined by .ctC1t ; at tC1/ 2 C2.

(3) Each representation in Wn is determined by .c0n; an0/ 2 C2.

Thus, every open set Wt in the cover is just affine space A2.

Proof. (1) As in [20, Lemma 4.3], we can set c0nD cnn�1D � � � D c21D 1. First, consider
the Step 1 relations.

If d1 D 0, then the relations become

k1 � c10a01 D �1;1;

a01c10 � k1 D ��1;1:

Since a01; c10; k1 are scalars, the bottom follows from the top and k1 is in terms of
.c10; a01/ with no further relations between c10 and a01. If d1 > 0, then

k1 � al1�1l1
D �1;“1�1;

al1�1l1
� al1�2l1�1 D �1;“1�2;

:::

a12 � c10a01 D �1;1;

a10c10 � k1 D �

“1�1X
jD1

�1;j :
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The last relation follows by summing the other relations. It is furthermore clear that k1

and all the anticlockwise arrows between vertex 1 and l1 are determined by .c10; a01/.
By induction, we can assume that all the anticlockwise arrows between vertex 0 and li

are determined by .c10; a01/, as are k1; : : : ; ki , and furthermore, the Step 1; : : : ; i relations
hold with no further relations between c10 and a01.

We next establish the induction step by considering the Step i C 1 relations. If diC1 D

0, then the Step i C 1 relations become

kiC1 � kiA0li
D �iC1;1;

A0li
ki � kiC1 D ��iC1;1:

The bottom comes from the top and kiC1 is in terms of A0li
and ki , which by induction

are determined by .c10; a01/. If diC1 > 0, then

kiC1 � aliC1�1liC1
D �iC1;“iC1�1;

aliC1�1liC1
� aliC1�2liC1�1 D �iC1;“iC1�2;

:::

ali ;liC1 � kiA0li
D �iC1;1;

A0li
ki � kiC1 D �

“iC1�1X
jD1

�iC1;j :

The last relation follows by summing the other relations. It is furthermore clear that kiC1

and all the anticlockwise arrows between vertex li and liC1 are determined by .c10; a01/.
Thus, by induction, all arrows are determined by .c10; a01/ 2 C2.

(2) As in [20, Lemma 4.3], we can set c0n D � � � D ctC2tC1 D 1 D a01 D � � � D at�1t

and show that all the arrows are determined by .ctC1t ;at tC1/. Let s� 1 WDmax¹j j lj � tº,
and s WD min¹j j lj � t C 1º. We start with the anticlockwise direction from vertex ls to
vertex 0 and then clockwise from vertex ls�1 to vertex 0 in the diagram below.

ls

0

ls�1

1

1

ctC1t

ks�1
ks

at tC1

1

1
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First, consider the Step s relations. We claim that ks�1; ks and all the arrows in
between ls�1 and ls are determined by .ctC1t ; at tC1/. Since ds > 0, the relations become

ks � als�1ls
D �s;“s�1;

als�1ls
� als�2ls�1 D �s;“s�2;

:::

atC1tC2 � ctC1tat tC1 D �s;.tC1/�ls�1C1;

at tC1ctC1t � ct t�1 D �s;.tC1/�ls�1
;

:::

cls�1C2ls�1C1 � cls�1C1ls�1
D �s;2;

cls�1C1ls�1
� ks�1 D �s;1;

ks�1 � ks D �

“s�1X
jD1

�s;j :

The last relation follows by summing the other relations. It is furthermore clear that
ks; ks�1 with all the anticlockwise and clockwise arrows between vertex ls and ls�1

are determined by .ctC1t ; at tC1/, and there are no additional relations between ctC1t and
at tC1.

Anticlockwise. Hence, by induction, we can assume that all the anticlockwise arrows
between vertex ls and lp are determined by .ctC1t ; at tC1/, as are ks; : : : ; kp , and fur-
thermore, the Step s; : : : ; p relations hold with no further relations between ctC1t and
at tC1.

We next establish the induction step by considering the Step pC 1 relations. If dpC1D

0, then the relations become

kpC1 � kpA0lp D �pC1;1;

A0lpkp � kpC1 D ��pC1;1;

and therefore, kpC1 can be determined by .ctC1t ; at tC1/. If dpC1 > 0, then

kpC1 � alpC1�1lpC1
D �pC1;“pC1�1;

alpC1�1lpC1
� alpC1�2lpC1�1 D �pC1;“pC1�2;

:::

alplpC1 � kpA0lp D �pC1;1;

A0lpkp � kpC1 D �

“pC1�1X
jD1

�pC1;j :
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The last relation follows by summing the other relations. It is furthermore clear that
kpC1 and all the anticlockwise arrows between vertices lp and lpC1 are determined by
.ctC1t ; at tC1/, and there are no additional relations between ctC1t and at tC1.

Clockwise. Similar to the above, we can assume by induction that all the clockwise arrows
between vertices ls�1 and lq�1 are again determined by .ctC1t ; at tC1/, as are ks�1; : : : ;

kq�1, and furthermore, the Step q; : : : ; s relations hold with no further relations between
ctC1t and at tC1.

We then establish the induction step by considering the Step q � 1 relations. If dq�1 D

0, then the relations become

kq�1C0lq�1
� kq�2 D �q�1;1;

kq�2 � C0lq�1
kq�1 D ��q�1;1;

and therefore, kq�2 can be determined by .ctC1t ; at tC1/. If dq�1 > 0, then

kq�1C0lq�1
� clq�1lq�1�1 D �q�1;“q�1�1;

clq�1lq�1�1 � clq�1�1lq�1�2 D �q�1;“q�1�2;

:::

clq�2C1lq�2
� kq�2 D �q�1;1;

kq�2 � C0lq�1
kq�1 D �

“q�1�1X
jD1

�q�1;j :

The last relation follows by summing the other relations. It is furthermore clear that
kq�2 and all the clockwise arrows between vertices lq�1 and lq�2 are determined by
.ctC1t ; at tC1/.

(3) The proof forWn is very similar toW0 but instead starts at the Step e � 2 relations
and works backwards to the Step 1 relations. Thus, by induction, all arrows are determined
by .ctC1t ; at tC1/ 2 C2.

Remark 5.8. In the degenerate case when aD 1, a similar proof of Proposition 5.7 shows
that each representation in W1 is determined by .c2; a1/ 2 C2, whilst each representation
in W2 is determined by .c1; a1/ 2 C2. Again, even in the degenerate case a D 1, each
open set Wi in the open cover is just affine space A2.

Corollary 5.9. For any Ar;a;�, for the fixed ª D .�n; 1; : : : ; 1/,

Rep.Ar;a;�; •/==ª GL! Rep.Ar;a;�; •/==GL

is a resolution of singularities.

Proof. The morphism is projective birational by construction, and the fact that the variety
Rep.Ar;a;�; •/==ª GL is regular follows from Proposition 5.7 since each chart Wt in the
open cover is regular.
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5.3. Simultaneous resolution

Write .’0;0; ’1;0; : : : ; ’1;“1�1; : : : ; ’e�1;0/ for the point in Spec . CŒz�
QDet.z/ / corresponding

to the maximal ideal .z0;0 � ’0;0; : : : ; ze�1;0 � ’e�1;0/. Let Q be the quiver of the recon-
struction algebra, and consider the map

 WRep.CQ; •/==GL D
CŒz�

QDet.z/
! �;

defined by taking

.’0;0; ’1;0; : : : ; ’1;“1�1; : : : ; ’e�1;0/

.’i;0 � ’i;1; ’i;1 � ’i;2; : : : ; ’i;“i�1 � ’i;0/
e�2
iD1:

Example 5.10. For the group 1
7
.1; 3/ as in Examples 2.1 and 3.3, the morphism

Rep.CQ; •/==GL! �

is given by

.’0;0; ’1;0; ’1;1; ’2;0; ’2;1; ’2;2; ’2;3; ’3;0/

..’1;0 � ’1;1; ’1;1 � ’1;0/; .’2;0 � ’2;1; ’2;1 � ’2;2; ’2;2 � ’2;3; ’2;3 � ’2;0//:

The fibre above ..�1;1; �1;0/; .�2;3; �2;2; �2;1; �2;0// 2 � is the zero locus of

z1;0 � z1;1 D �1;1; z2;0 � z2;1 D �23;

z1;1 � z1;0 D �1;0 D ��1;1; z2;1 � z2;2 D �22;

z2;2 � z2;3 D �21;

z2;3 � z2;0 D �20 D ��21 � �22 � �23;

which is Rep.A7;3;�; •/==GL.

Remark 5.11. The fibre above a point � 2 � is precisely Rep.Ar;a;�; •/==GL. Indeed,
the fibre above � 2 � is the zero locus of

zi;0 � zi;1 D �i;“i�1;

zi;1 � zi;2 D �i;“i�2;

:::

zi;“i�1 � zi;0 D �

“i�1X
jD1

�i;j
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for all i such that 1 � i � e � 2. By (3.A) and Definition 5.1, this equals

Rep.Ar;a;�; •/==GL:

Theorem 5.12. The diagram

Rep.CQ; •/==ª GL Rep.CQ; •/==GL

�

¥
 

is a simultaneous resolution of singularities in the sense that the morphism ¥ is smooth,
and   is flat.

Proof. Write ¥ for the composition

Y D Rep.CQ; •/==ª GL! Rep.CQ; •/==GL! �:

We first claim that ¥ is flat. Since .1/ � is regular, .2/ Y is regular (so Cohen–Macaulay)
since CQ is free, so the analogue of the open charts Wt in Definition 5.6 are clearly all
affine spaces, .3/ C is algebraically closed so ¥ takes closed points of Y to closed points
of �, and .4/ for every closed point � 2 �, for the same reason as in Remark 5.11, the
fibre ¥�1.�/ is Rep.Ar;a;�; •/==ª GL which is always two dimensional by Proposition 5.7,
it follows from [13, Corollary 23.1] that ¥ is flat.

Now, as in [11, Definition 3.35] to show that ¥ is smooth, we just require smoothness
(equivalently regularity, as we are working over C) at closed points of fibres above closed
points � 2�. But as above, ¥�1.�/ is Rep.Ar;a;�; •/==ª GL, which is regular at all closed
points by Proposition 5.7. Thus, ¥ is a smooth morphism, as required.

Finally, the above can be adapted to show that   is flat. We have that

 �1.�/ D Rep.Ar;a;�; •/==GL;

which is always two dimensional as a consequence of the resolution of its singularities
computed in Proposition 5.7. Thus, we can still appeal to [13, Corollary 23.1].

Remark 5.13. The choice of ªD .�n;1; : : : ; 1/ is important. For Kleinian singularities, it
is possible to use any generic stability [6]. In the more general setting here, other stability
parameters do not give simultaneous resolution on the nose, as the following example
demonstrates.

Example 5.14. Consider the group 1
3
.1; 1/, with the generic stability condition

ª2 D .1;�1/
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and the dimension vector .1; 1/. Then, Rep.Ar;a;0; •/==ª2
GL is covered by three affine

charts, namely,

U0 D .a1 ¤ 0/; U1 D .a2 ¤ 0/; and U2 D .k1 ¤ 0/:

If we consider the first chart U0, we can base change such that a1 D 1, which gives

C C

c1
c2

1
a2

k1

subject to relations
c1a2 D c2; a2c1 D c2;

c1k1 D c2a2; k1c1 D a2c2:

This chart is parameterised by the variables c1; a2; k1, subject to the relation c1k1D c1a
2
2;

i.e., c1.k1 � a
2
2/ D 0, which is singular. Thus, the fibre Rep.CQ; •/==ª2

GL above the
origin of the corresponding ¥ is singular, and so, it is not a simultaneous resolution.
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