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A cogroupoid associated to preregular forms
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Abstract. We construct a family of cogroupoids associated to preregular forms and recover the
Morita–Takeuchi equivalence for Artin–Schelter regular algebras of dimension two, observed by
Raedschelders and Van den Bergh. Moreover, we study the 2-cocycle twists of pivotal analogues of
these cogroupoids, by developing a categorical description of preregularity in any tensor category
that has a pivotal structure.

1. Introduction

This paper examines superpotentials associated to Artin–Schelter (AS) regular algebras
and their universal quantum groups via the construction of certain bi-Galois objects using
the language of cogroupoids. Superpotentials, or their duals, preregular forms, can be asso-
ciated to anyN -Koszul AS-regular algebra [15] and play an important role in noncommu-
tative algebra, noncommutative algebraic geometry, and quantum groups, for example, via
the classification of algebras [9, 27, 28]. Quantum groups associated to these objects were
introduced independently by Dubois-Violette and Launer [16] and by Wang [38]. Later,
Bichon and Dubois-Violette [7] gave an explicit presentation of this quantum group by
generators and relations. By [11], when the superpotential algebra is N -Koszul and AS-
regular, this quantum group coincides with Manin’s universal quantum group (cf. [26]),
the Hopf algebra that universally coacts on the underlying algebra. These quantum groups
and their generalizations, which consist of a wide class of Hopf algebras, including the
coordinate rings O.GLn/ and their quantum analogues Oq.GLn/ (as in [10]), have recently
been studied in [11, 37].

Schauenburg showed in [34] that the categories of comodules over two Hopf alge-
bras H and L are monoidally equivalent, called Morita–Takeuchi equivalent, if and only
if there exists an H -L-bi-Galois object between them. Later, Bichon [6] introduced the
notion of a cogroupoid to provide a categorical context for Hopf-(bi)Galois objects. An
understanding of the structure of cogroupoids is useful since it enhances the classical the-
ory by allowing categorical arguments on Hopf-(bi)Galois objects. Other applications of
cogroupoids include explicit construction of new resolutions from old ones in homological
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algebra, invariant theory, monoidal equivalences between categories of Yetter–Drinfeld
modules with applications to bialgebra cohomology and Brauer groups [5, 6]. Here, we
construct a cogroupoid whose objects are determined by preregular forms.

Proposition A (Lemmas 3.1.3, 3.1.5, and Definition 3.1.6). For any integer m � 2, there
is a cogroupoid GLm, whose objects are given by all m-preregular forms. In particular,
for any m-preregular form f , the Hopf algebra GLm.f; f / is the universal quantum
group associated to f , as given in [11].

Since Dubois-Violette showed that any N -Koszul AS-regular algebra is a superpo-
tential algebra associated to some preregular form [15], our construction provides an
explicit way to establish the Morita–Takeuchi equivalence between Manin’s universal
quantum groups associated to N -Koszul AS-regular algebras. In particular, we recover
a special case of a result of Raedschelders and Van den Bergh from [31] stating the
Morita–Takeuchi equivalence between Manin’s universal quantum groups associated to
AS-regular algebras of the same dimension. Our method does not depend on the categor-
ical approach of the Tannaka–Krein formalism, but relies instead on the non-vanishing of
certain bi-Galois objects between any N -Koszul AS-regular algebras.

Theorem B (Theorem 3.2.2). Manin’s universal quantum groups associated to any two
AS-regular algebras of dimension two are Morita–Takeuchi equivalent.

Moreover, we study �Lm-type universal quantum groups under 2-cocycle twisting.
As a necessary condition, we introduce the notion of a preregular morphism, a gener-
alization of a preregular form, in any rigid tensor category that has a pivotal structure.
Pivotal (also called sovereign) categories have been important in topological quantum
field theory. The pivotal structure allows the definition of quantum dimension, which
can be used to produce numerical invariants of 3-manifolds and knots [20, 23]. When
the (co)representation category of a Hopf algebra is pivotal, the Hopf algebra is called
(co)pivotal (or (co)sovereign, as in [3]). In our paper, we employ the pivotal structure
to define a Hom-space operator Dm

V which resembles the cyclic permutation of tensor
products of vector spaces V ˝m. This enables us to define the notion of preregularity on
morphisms in a categorical context.

Definition C (Definition 4.1.1). Let C be a pivotal tensor category. For any integerm� 2
and V 2 ob.C/, a morphism f W V ˝m ! 1 is called preregular if

(1) f is non-degenerate; namely there is a surjection � W V ˝.m�1/ � �V for the right
dual object �V of V in C such that the diagram

V ˝m
f

// 1

V ˝ V ˝.m�1/
idV˝�

// V ˝ �V

ev

OO

commutes, and
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(2) Dm
V .f / D f , where the operator Dm

V W HomC .V
˝m; 1/ ! HomC .V

˝m; 1/ is
defined in (4.1).

We observe that the inverse duals of these Hom-space operators Dm
V are exactly those

EmV � , where V � denotes the dual of V , used to define generalized Frobenius–Schur indica-
tors in an arbitrary pivotal category [29, 30]. As a consequence, any preregular morphism
is an eigenvector of the above operator Dm

V satisfying some nondegeneracy conditions.
Moreover, the dual of a preregular morphism, which we refer to as a twisted superpoten-
tial, is invariant under the operator EmV � . We use this generalization to construct another
cogroupoid associated to preregular forms.

Proposition D (Definition 4.2.2 and Lemma 4.2.4). For any integer m � 2, there is a
cogroupoid �Lm, whose objects are given by all m-preregular forms. In particular, for
any m-preregular form f , the Hopf algebra

�Lm.f; f / D GLm.f; f /=.D � 1/

is the universal copivotal Hopf algebra associated to f , as given in [3, 7]. Here, D is the
quantum determinant of GLm.f; f /.

Using the cogroupoid �Lm, we obtain the following result on the 2-cocycle twists of
the universal quantum groups of preregular forms considered in [7], which are copivotal
Hopf algebras.

Theorem E (Theorem 4.2.9). Let m � 2 be an integer and V a finite-dimensional k-
vector space. Let f be an m-preregular form on V and � a left 2-cocycle on �Lm.f; f /.
Then the twisted map f� (see Definition 4.2.7) is also anm-preregular form on V and the
universal quantum groups

�Lm.f� ; f� / Š �Lm.f; f /
�

are isomorphic as Hopf algebras.

2. Preliminaries

Throughout the paper, let k be a base field with ˝ taken over k unless stated otherwise.
All categories are k-linear and all algebras are associative over k. We use the Sweedler
notation for the coproduct in a coalgebra B: �.h/ D

P
h1 ˝ h2 for any h 2 B . When a

Hopf algbera H (right) coacts on an algebra A, we denote the coaction � W A! A˝H

by a 7!
P
a0 ˝ a1. The category of all (resp. finite-dimensional) right B-comodules is

denoted by comod.B/ (resp. comodfd.B/).
In this section, we present some background on superpotential algebras associated

to preregular forms, cogroupoids, and 2-cocycle twists. In [15, Theorem 4.3], Dubois-
Violette proved that every N -Koszul AS-regular algebra of finite global dimension d ,
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generated by n elements in degree one, is a twisted superpotential algebra. In this paper,
AS-regular algebras will refer to Gorenstein algebras with finite global dimension; one
may view them as “nice” noncommutative analogues of polynomial rings. Note that we
do not require AS-regular algebras to have finite Gelfand–Kirillov dimension.

2.1. Superpotential algebras and Manin’s universal quantum groups

We use the definitions from [15] of an algebra associated to a preregular form.

Definition 2.1.1. Let 2 � N � m be integers and V an n-dimensional k-vector space.

(1) An m-linear form f on V is called preregular if it satisfies the following condi-
tions:

(a) f .v1; v2; : : : ; vm/ D 0 for any v2; : : : ; vm 2 V implies that v1 D 0, and

(b) there is some P 2 GL.V / so that

f .v1; : : : ; vm/ D f .P .vm/; v1; : : : ; vm�1/; for all v1; : : : ; vm 2 V:

Given a preregular form f on a vector space V with fixed basis ¹v1; : : : ; vnº, we
will typically denote by fi1���im D f .vi1 ; : : : ; vim/, for any 1 � i1; : : : ; im � n.

(2) Let f be an m-preregular form on V and ¹v1; : : : ; vnº a fixed basis of V . The
superpotential algebra associated to f , denoted by A.f; N /, is the k-algebra
generated by n generators x1; : : : ; xn subject to the relationsX

1�j1;:::;jN�n

fi1���im�N j1���jN xj1 � � � xjN D 0

for every possible 1 � i1; : : : ; im�N � n.

For any m-preregular form f on V , it is straightforward to check that there is an
associated P 2 GLn.k/ D GL.V / satisfyingX

1�i�n

Pi imfi i1���im�1 D fi1���im ;
X
1�i�n

.P�1/i i1fi2���imi D fi1���im (2.1)

for every possible 1 � i1; : : : ; im � n. Henceforth, an algebra A will be called a super-
potential algebra if there are some choice of integers m and N with 2 � N � m, and
an m-preregular form f so that A Š A.f; N /. Here, any superpotential algebra can be
considered as a graded algebra by assigning degree 1 to its generators.

Remark 2.1.2. Using the notation from Definition 2.1.1, let c W V ˝m ! V ˝m be the
linear map defined by

c.v1 ˝ � � � ˝ vm/ WD vm ˝ v1 ˝ � � � ˝ vm�1; for any vi 2 V :

An element s 2 V ˝m is a twisted superpotential if there is some P 2 GL.V / so that�
P ˝ id˝.m�1/

�
c.s/ D s:
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Given a twisted superpotential s 2 V ˝m, the superpotential algebra associated to s is
defined as

A.s;N / WD T V=@m�N .ks/;

where T V is the tensor algebra on V ,

@.ks/ D
®�
� ˝ id˝.m�1/

�
.˛s/ j � 2 V �; ˛ 2 k

¯
;

@iC1.ks/ D @
�
@i .ks/

�
; for all i � 0:

By identifying V ˝m Š ..V �/˝m/�, where .�/� denotes the k-dual, there is a one-to-one
correspondence between m-preregular forms on V � and twisted superpotentials in V ˝m:

¹m-preregular forms on V �º
1W1
 ! ¹twisted superpotentials in V ˝mº:

Furthermore, the associated algebras A.f; N / and A.s; N / are isomorphic for f associ-
ated to s under the above correspondence [11, Lemma 2.4].

Next, we review Manin’s construction of the universal quantum group aut.A/ associ-
ated to any superpotential algebraADA.f;N / as described in [26]. Note that the original
definition was only given under the assumption that A is a quadratic algebra, but it can be
generalized to any graded algebra.

Definition 2.1.3. Let A be a Z-graded algebra.

(1) We say a Hopf algebra H left coacts on A preserving the grading of A via � W
A! H ˝ A if each homogeneous component of A is a left H -comodule via �
and � is an algebra map. In this case, we say A is a left graded comodule algebra
over H .

(2) Manin’s left universal quantum group autl .A/ associated to A is the Hopf algebra
that left coacts on A preserving the grading of A via � W A! autl .A/˝ A satis-
fying the following universal property: if H is any Hopf algebra that left coacts
on A preserving the grading of A via � W A!H ˝A, then there is a unique Hopf
algebra map f W autl .A/! H such that the diagram

A
�
//

�
$$

autl .A/˝ A

f˝id
��

H ˝ A

commutes. Similarly, we can define autr .A/ by using the universal right coaction
on A preserving the grading of A.

By [1, Example 4.8 (1)–(2)], we know autl .A/ always exists if A is locally finite,
namely, when dimkAi <1 for all i 2 Z. In particular, when A D A.f;N / is a superpo-
tential algebra, autl .A/ and autr .A/ always exist.
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Example 2.1.4 ([32, Section 3.2]). Manin’s left universal quantum group autl .A/ associ-
ated to the polynomial algebra A D kŒx; y� is generated by the entries of the 2 � 2 matrix

M D

�
a b

c d

�
together with the formal inverse of the determinant ı D ad � cb, subject to the following
relations:

ac � ca D 0 D bd � db;

aı�1d � bı�1c D 1 D dı�1a � cı�1b;

bı�1a � aı�1b D 0 D cı�1d � dı�1c:

The bialgebra structure of autl .A/ is given by

�.M/ DM ˝M; ".M/ D

�
1 0

0 1

�
:

The antipode is determined by

S.M/ D

�
ı�1a �ı�1b

�ı�1c ı�1d

�
:

As a consequence, ı is a group-like element in autl .A/.

2.2. Cogroupoids

We now discuss Morita–Takeuchi equivalence in the context of the universal quantum
groups associated to preregular forms using the language of cogroupoids introduced by
Bichon [6]. These provide a categorical framework for bi-Galois objects discussed by
Schauenburg [34].

Definition 2.2.1. A k-cocategory C consists of the following:

(1) a set of objects ob.C/;

(2) for any X; Y 2 ob.C/, a k-algebra C.X; Y /;

(3) for any X; Y;Z 2 ob.C/, k-algebra homomorphisms

�ZXY W C.X; Y /! C.X;Z/˝ C.Z; Y /; "X W C.X;X/! k

such that for any X; Y;Z; T 2 ob.C/, the diagrams

C.X; Y /
�ZX;Y

//

�TX;Y
��

C.X;Z/˝ C.Z; Y /

�TX;Z
��

C.X; T /˝ C.T; Y /
id˝�ZT;Y

// C.X; T /˝ C.T;Z/˝ C.Z; Y /;
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C.X; Y /

�YX;Y
��

C.X; Y /˝ C.Y; Y /
id˝"Y // C.X; Y /;

C.X; Y /

�XX;Y
��

C.X;X/˝ C.X; Y /
"X˝id

// C.X; Y /

commute.

For aX;Y 2 C.X; Y /, we use Sweedler’s notation to write

�ZX;Y .a
X;Y / D

X
a
X;Z
1 ˝ a

Z;Y
2 :

From its definition, a cocategory with one object is just a bialgebra. In particular, C.X;X/

is a bialgebra for any X 2 ob.C/. A cocategory C is said to be connected if C.X; Y / is a
nonzero algebra for any X; Y 2 ob.C/.

Definition 2.2.2. A k-cogroupoid C consists of a k-cocategory C together with linear
maps

SX;Y W C.X; Y / �! C.Y;X/;

for any X; Y 2 ob.C/, such that the diagram

C.Y;X/ k
uoo C.X;X/

�YX;X
��

"X //
"Xoo k

u // C.X; Y /

C.Y;X/˝ C.Y;X/

m

OO

C.X; Y /˝ C.Y;X/
id˝SY;X

//
SX;Y˝id
oo C.X; Y /˝ C.X; Y /

m

OO

commutes.

The following proposition describes properties of the “antipodes” in cogroupoids. For
other properties of cogroupoids, we refer the reader to [6]. In a cogroupoid C , the bialgebra
C.X;X/ is a Hopf algebra for anyX 2 ob.C/, with the antipode map SX;X described here.

Proposition 2.2.3 ([6, Proposition 2.13]). Let C be a cogroupoid andX;Y 2 ob.C/. Then
the following hold.

(1) SY;X W C.Y;X/! C.X; Y /op is an algebra homomorphism.

(2) For any Z 2 ob.C/ and aY;X 2 C.Y;X/,

�ZX;Y
�
SY;X .a

Y;X /
�
D

X
SZ;X .a

Z;X
2 /˝ SY;Z.a

Y;Z
1 /:

The following is Bichon’s reformulation of Schauenburg’s result [34] about bi-Galois
objects for Morita–Takeuchi equivalences in terms of cogroupoids.

Theorem 2.2.4 ([6, Theorem 2.10]). LetH andL be Hopf algebras. The following asser-
tions are equivalent.

(1) There exists a k-linear equivalence of monoidal categories

comod.H/
˝

Š comod.L/:

(2) There exists a connected cogroupoid C and two objects X; Y 2 ob.C/ such that
H D C.X;X/ and L D C.Y; Y /.
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2.3. Pivotal tensor categories

We now recall some concepts and notation from the theory of tensor categories. We use
.C ;˝; ˆ; 1; r; `/ to denote a k-linear tensor category, with a bifunctor ˝ W C � C ! C

called the tensor product, a natural isomorphismˆX;Y;Z W .X ˝ Y /˝Z
�
�!X ˝ .Y ˝Z/

called the associativity constraint, a unit object 1 together with natural isomorphisms
rX W X ˝ 1

�
�! X and `X W 1˝ X

�
�! X called the right and left unit constraints for all

X; Y; Z 2 ob.C/. These structure maps are subject to the pentagon and triangle axioms
[22, Definition XI.2.1]. If two objects X; Y 2 ob.C/ are obtained by tensoring together
the same sequence of objects with two different arrangements of parentheses, one can
then construct a natural isomorphism between them by composing several instances of
the tensor products of ˆ;ˆ�1 and the identity. Any above isomorphism is unique by Mac
Lane’s coherence theorem [25], and will be denoted by ˆ‹ W X ! Y . By [35], we may
always assume that the unit object 1 of C is strict; namely X ˝ 1 D X D 1˝ X and the
left and right unit constraints `X and rX are just the identity maps for every X 2 ob.C/.

Let C and D be two tensor categories. Any tensor functor .F ; �/ W C !D consists of
a functor F W C!D and a natural isomorphism �X;Y W F .X/˝F .Y /

�
�! F .X ˝ Y / for

anyX;Y 2 ob.C/ satisfying the monoidal structure axiom (see, e.g., [17, Definition 2.4.1]
and [22, Definition XI.4.1]). Along with the strictness of 1, we also assume that F .1/D 1
with �1;X D �X;1 D idF .X/ [17, Remark 2.4.6].

A left dual of an object V 2 ob.C/ is an object V � together with two morphisms
ev W V � ˝ V ! 1 and coev W 1! V ˝ V � such that

idV D
�
V

coev˝idV
������! .V ˝ V �/˝ V

ˆ
�! V ˝ .V � ˝ V /

idV˝ev
����! V

�
;

idV � D
�
V �

idV �˝coev
������! V � ˝ .V ˝ V �/

ˆ
�! .V � ˝ V /˝ V �

ev˝idV �
�����! V �

�
:

We say that C is left rigid if every object of C admits a left dual. A right dual of an object
and right rigidity can be defined similarly for C . Suppose that C is left rigid. Then .�/�

is a contravariant monoidal functor together with a monoidal structure

� W Y � ˝X�
�
�! .X ˝ Y /�:

As a consequence, the double left dual .�/�� W C ! C is a monoidal functor.

Definition 2.3.1. A k-linear left rigid tensor category .C ;˝; ˆ; 1; r; `/ is called pivotal
if there is a natural isomorphism j W idC ! .�/�� of monoidal functors. In this case, j is
called a pivotal structure of C .

If C and D are two pivotal categories, and .F ; �/ W C !D is a monoidal functor, we
say that F preserves the pivotal structure if the diagram

F .V / F .V ��/

F .V /�� F .V �/�

F .j /

jF .V / z�

z��
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commutes, where the natural isomorphism z�V W F .V �/ ! F .V /�, called the duality
transformation, is uniquely determined by .F ; �/ (see [29, Section 1]). A strict pivotal
category is a strict monoidal category with a pivotal structure in which both the monoidal
functor structure � of .�/� and the pivotal structure j are identities. By [29, Theorem 2.2],
every pivotal category is equivalent, as a pivotal category, to a strict one.

2.4. 2-cocycle twists

Schauenburg proved in [34] that Morita–Takeuchi equivalences for Hopf algebras are in
bijection with bi-Galois objects. A subset of these equivalences correspond to 2-cocycle
twists, which were introduced by Doi and Takeuchi [13,14] (in fact, when the Hopf algebra
is finite-dimensional, every Morita–Takeuchi equivalence arises from a 2-cocycle). In this
section, we give a brief overview of 2-cocycle twists, and in Section 4 we discuss 2-
cocycle twists of preregular forms and their associated universal pivotal cogroupoids.

Definition 2.4.1. LetH be a Hopf algebra over a field k. A 2-cocycle onH is a convolu-
tion invertible linear map � W H ˝H ! k satisfyingX

�.x1; y1/ �.x2y2; z/ D
X

�.y1; z1/ �.x; y2z2/;

�.x; 1/ D �.1; x/ D ".x/;

for all x; y; z 2 H . The convolution inverse of � is usually denoted by ��1.

Given a 2-cocycle � WH ˝H ! k, letH � denote the coalgebraH endowed with the
original unit and deformed product

x �� y WD
X

�.x1; y1/ x2y2 �
�1.x3; y3/

for any x; y 2 H . In fact, H � is a Hopf algebra with the deformed antipode S� given in
[13, Theorem 1.6]. We call H � the 2-cocycle twist of H by � . It is well known that two
Hopf algebras are 2-cocycle twists of each other if and only if there exists a bicleft object
between them (e.g., see [34]).

Now, suppose that � W H ˝H ! k is a left 2-cocycle on H . It is well known that
there is a monoidal equivalence between the category of comodules of H and that of H �

given by
.F; �/ W comod.H/

�
! comod.H � /;

where F is the identity functor on objects together with the monoidal functor structure

�U;V W F.U ˝ V /! F.U /˝� F.V /

u˝ v 7!
X

�.u1; v1/ u0 ˝ v0;

for any u 2 U and v 2 V , with inverse

��1U;V W u˝ v 7!
X

��1.u1; v1/u0 ˝ v0:
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Moreover, the set of all left 2-cocycles on a Hopf algebra H gives rise to an associated
2-cocycle cogroupoid H as follows.

Example 2.4.2 ([6, Definition 3.14]). Let H be any Hopf algebra. Then the 2-cocycle
cogroupoid of H , denoted by H , is defined as follows:

(1) ob.H/ D Z2.H/, which is the set of all left 2-cocycles on H ;

(2) for any �; � 2 Z2.H/, the algebra H.�; �/ is defined such that H.�; �/ D H
as vector spaces with the new multiplication

x � y D
X

�.x1; y1/ x2y2�
�1.x3; y3/;

for any x; y 2 H.�; �/;

(3) the structural maps���;�, "� and S�;� are given as follows: for any �;�;! 2Z2.H/,

�!�;� D � W H.�; �/! H.�; !/˝H.!; �/

x 7!
X

x1 ˝ x2;

"� D " W H.�; �/! k;

S�;� W H.�; �/! H.�; �/

x 7!
X

�
�
x1; S.x2/

�
S.x3/�

�1
�
S.x4/; x5

�
:

Example 2.4.3. As in Example 2.4.2, let H be any Hopf algebra. Take HZ to be the full
subcogroupoid ofH , where the objects correspond to those 2-cocycles arising from twist-
ing pairs (using the language of [21]). In this case, for a 2-cocyle � onH , the Hopf algebra
HZ.�; �/ is equal to a twist (in the sense of [2,40]) of H by a graded automorphism (see
[8, Remark 2.9] or [21, Theorem E]).

3. The cogroupoids associated to preregular forms

In this section, we introduce a family of cogroupoids associated to preregular forms and
discuss their properties. In Theorem 3.2.2, using the language of cogroupoids, we show
the Morita–Takeuchi equivalence for AS-regular algebras of dimension two.

3.1. Construction of the cogroupoid GLm

Let V be a k-dimensional vector space and let W be an l-dimensional vector space over
k with fixed bases ¹v1; : : : ; vkº of V and ¹w1; : : : ;wlº ofW , respectively. For any integer
m � 2, let e be an m-linear preregular form on V and f an m-linear preregular form
on W . Recall that we write

e.vi1 ; : : : ; vim/ D ei1���im 2 k; f .wi1 ; : : : ; wim/ D fi1���im 2 k;

respectively.
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Definition 3.1.1. We define GLm.e; f / to be the k-algebra with .2kl C 2/ generators

A D .aij /1�i�k
1�j�l

; B D .bij / 1�i�l
1�j�k

; D˙1;

subject to the relationsX
1�i1;:::;im�k

ei1���imai1j1 � � � aimjm D fj1���jmD; for any 1 � j1; : : : ; jm � l;X
1�i1;:::;im�l

fi1���imbimjm � � � bi1j1 D ej1���jmD
�1; for any 1 � j1; : : : ; jm � k;

DD�1 D D�1D D 1;

AB D Ik�k :

9>>>>>>>>=>>>>>>>>;
(3.1)

We denote the generators of GLm.e; f / by ae;fij , be;fij , and .De;f /˙1 when multiple
preregular forms are involved, and omit the superscripts when the context is clear. In
particular, if W D V and f D e, then we simply write GLm.e/ D GLm.e; e/.

Remark 3.1.2. We note that GLm.e/ is the algebra H .e/ associated to a preregular
form e, as defined in [11, Definition 5.1]. It is a Hopf algebra with the Hopf structure
given in [11, Proposition 5.8]. When the superpotential algebra A.e; N / is N -Koszul
and Gorenstein, GLm.e/ is Manin’s universal quantum group coacting on A.e; N / (see
[11, Theorem 5.33]).

Lemma 3.1.3. For any integer m � 2, GLm forms a k-cocategory, where the objects
are m-linear preregular forms on k-vector spaces. In particular, for any vector spaces
U;V;W with dimU D p; dimV D q; and dimW D r , for anym-linear preregular forms
e on U , f on V , and g on W , there exist algebra maps

� D �fe;g W GLm.e; g/! GLm.e; f /˝ GLm.f; g/;

such that

�.a
e;g
ij / D

qX
kD1

a
e;f

ik
˝ a

f;g

kj
; for 1 � i � p; 1 � j � r;

�.b
e;g
j i / D

qX
kD1

b
e;f

ki
˝ b

f;g

jk
; for 1 � i � p; 1 � j � r;

�
�
.De;g/˙1

�
D .De;f /˙1 ˝ .Df;g/˙1;

and
"e W GLm.e/! k

such that "e.a
e;e
ij / D "e.b

e;e
j i / D ıij , for 1 � i; j � p, and "e..De;e/˙1/ D 1.
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Proof. Since � D �fe;g is already defined on the generators of GLm.e; g/, it suffices to
verify that it preserves all relations:

�
� X
1�i1;:::;im�p

ei1���imai1j1 � � � aimjm

�
D

X
1�i1;:::;im�p
1�k1;:::;km�q

.ei1���imai1k1 � � � aimkm/˝ ak1j1 � � � akmjm

D

X
1�k1;:::;km�q

fk1���kmD ˝ ak1j1 � � � akmjm

D

X
1�k1;:::;km�q

D ˝ .fk1���kmak1j1 � � � akmjm/

D D ˝ gj1���jmD D �.gj1���jmD/:

Similarly, we may also show that

�
� X
1�i1;:::;im�r

gi1���imbimjm � � � bi1j1

�
D �.ej1:::jmD

�1/:

On the other hand, one can check that

�.DD�1/ D �.D/�.D�1/ D 1˝ 1 D �.1/ D �.D�1/�.D/ D �.D�1D/

and

�
� X
1�k�r

aikbkj

�
D

X
1�k�r

X
1�s;t�q

aisbtj ˝ askbkt

D

X
1�s;t�q

aisbtj ˝
� X
1�k�r

askbkt

�
D

X
1�s;t�q

ıstaisbtj ˝ 1

D

X
1�s�q

aisbsj ˝ 1

D ıij 1˝ 1

D �.ıij 1/:

Hence
�fe;g W GLm.e; g/! GLm.e; f /˝ GLm.f; g/

is a well-defined algebra map. Note that " W GLm.e/! k is a well-defined algebra map
since GLm.e/ is a Hopf algebra [11, Proposition 5.8]. It remains to show that the diagrams
in Definition 2.2.1 commute, which is straightforward on the generators.



A cogroupoid associated to preregular forms 1465

The following result is similar to [11, Lemma 5.6] in the context of cogroupoids, and
we leave its proof to the reader.

Lemma 3.1.4. Let V andW be k-vector spaces of dimensions k and l , respectively. Con-
sider two m-preregular forms e and f on V and W , respectively, together with invertible
matrices P 2 GLk.k/D GL.V / and Q 2 GLl .k/D GL.W / as in (2.1). Then the follow-
ing equalities hold in GLm.e; f /:

D�1QTATP�TDBT D BA D Il�l ;

BTD�1QTATP�TD D AB D Ik�k :

Lemma 3.1.5. For any integer m � 2, the cocategory GLm forms a cogroupoid, with �
and " defined as in Lemma 3.1.3, and the algebra map

Se;f W GLm.e; f /! GLm.f; e/
op

is defined by the formulas

Se;f .A
e;f / D Bf;e;

Se;f .B
e;f / D .Df;e/�1 Q�1 Af;e P Df;e;

Se;f
�
.De;f /˙1

�
D .Df;e/�1:

Proof. Set dimV D k and dimW D l . We first show that

Se;f W GLm.e; f /! GLm.f; e/
op

preserves the relations in GLm.e; f / and hence it is a well-defined algebra map. One can
see that

Se;f

� X
1�i1;:::;im�k

ei1���imai1j1 � � � aimjm

�
D

X
1�i1;:::;im�k

ei1���imSe;f .aimjm/ � � �Se;f .ai1j1/

D

X
1�i1;:::;im�k

ei1���imbimjm � � � bi1j1

D fj1���jmD
�1

D Se;f .fj1:::jmD/;

and similarly,

Se;f

� X
1�i1;:::;im�l

fi1���imaimjm � � � ai1j1

�
D Se;f .ej1:::jmD

�1/:
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Moreover, it is clear that Se;f preserves the relation

DD�1 D D�1D D 1

and

Se;f

� X
1�p�l

aipbpj

�
D

X
1�p�l

S.bpj /S.aip/

D

X
1�p�l

.D�1Q�1APD/pjBip

D

X
1�p�l

.D�1P TATQ�TD/jpBTpi

D .D�1PTATQ�TDBT /ij D ıij :

The last equality holds in GLm.f; e/ by Lemma 3.1.4. It remains to show the commu-
tativity of the two diagrams in Definition 2.2.2, which is straightforward to check on the
generators.

We summarize the discussion above in the following definition/theorem, which fol-
lows similarly to [6, Definitions 2.1 and 2.4].

Definition 3.1.6. For any integer m � 2, the cogroupoid GLm is defined as follows:

(1) ob.GLm/ D ¹e W V
˝m ! k j e is a preregular form on some finite-dimensional

vector space V º;

(2) for e; f 2 ob.GLm/, GLm.e; f / is the algebra defined in Definition 3.1.1;

(3) the structural maps ���;�, "�, S�;� are given in Lemmas 3.1.3 and 3.1.5.

3.2. Connectivity of GL2

It is proved in [31, Theorem 7.2.3] that the universal quantum groups of any two Koszul
AS-regular algebras are Morita–Takeuchi equivalent as long as the two algebras share
the same global dimension. We present an alternate criterion for the Morita–Takeuchi
equivalence of universal quantum groups, using the language of cogroupoids.

Proposition 3.2.1. Let 2 � N; N 0 � m be three integers and let V; W be two finite-
dimensional k-vector spaces. Let e and f be twom-preregular forms on V andW , respec-
tively, such that the associated superpotential algebras A D A.e; N / and B D A.f;N 0/
are twoN andN 0-Koszul AS-regular algebras, respectively. If the algebra GLm.e;f /¤0,
then the universal quantum groups autl .A/ and autl .B/ are Morita–Takeuchi equivalent.

Proof. By [11, Theorem 5.33], we have

autl
�
A.e;N /

�
Š GLm.e/; autl

�
A.f;N 0/

�
Š GLm.f /:

The result follows from [6, Theorems 2.10, 2.12] and the cogroupoid construction in Def-
inition 3.1.6.
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In the following, we give an application of Proposition 3.2.1 for the case when m D 2
and e W V ˝2 ! k and f W W ˝2 ! k are two preregular forms. As a consequence, it
provides another proof of a special case of [31, Theorem 7.2.3] for AS-regular algebras of
dimension two. Recall that in the classification of AS-regular algebras of dimension two
[41, Theorem 0.1], being AS-regular is equivalent to being a superpotential algebra.

Theorem 3.2.2. Let A and B be any two AS-regular algebras of dimension two. Then
autl .A/ and autl .B/ are Morita–Takeuchi equivalent.

Proof. By the classification of AS-regular algebras of dimension 2 in [41, Theorem 0.1],
A and B can be presented as superpotential algebras A D A.e; 2/ and B D A.f; 2/,
respectively, for some 2-preregular forms e and f . Hence, by Remark 3.1.2 and Propo-
sition 3.2.1, it suffices to show that the bi-Galois object GL2.e; f / between autl .A/ D
GL2.e/ and autl .B/ D GL2.f / is nonzero.

Suppose that e and f are preregular forms on vector spaces V andW , respectively, of
dimensions k and l . We fix a basis ¹v1; : : : ; vkº for V and write e as a matrix E 2Mk.k/
such that Eij D e.vi ; vj / for 1 � i; j � k. It is easy to check that e is a preregular form
if and only if E 2 GL.V / D GLk.k/; in this case, the twisting matrix for e is given by
P D E�TE. Similarly, we denote the matrix F 2 GL.W / D GLl .k/ associated to the
preregular form f , and the twisting matrix for f is given by Q D F�T F .

By (3.1), the k-algebra GL2.e; f / is presented by .2kl C 2/ generators

A D .aij /1�i�k
1�j�l

; B D .bij / 1�i�l
1�j�k

; D˙1;

subject to the relations

ATEA D FD; BT FTB D ETD�1; AB D Ik�k ; DD�1 D D�1D D 1: (3.2)

By Lemma 3.1.4, we also have BA D Il�l . Hence

ETD�1A D .BT FTB/A D BT FT .BA/ D BT FT :

This implies that BT D D�1 ET A F�T , and so B D D�1 F�1 AT E. Hence GL2.e; f /

is the quotient of the free algebra khA;D˙1i by the relations

ATEA D FD; AD�1F�1AT D E�1; DD�1 D D�1D D 1:

Recall the algebra B.E;F/ defined in [4, Definition 3.1]. One checks directly that

GL2.e; f /=.D � 1/ Š B.E;F/:

For arbitrary F 2 GL.W / with corresponding preregular form f , let k D 2 and

E D Eq WD

�
0 1

�q�1 0

�
2 GL2.k/
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such that q2Ctr.FT F�1/C1D0. Denote eq as the preregular form corresponding to Eq .
Then GL2.eq; f / ¤ 0 by [4, Proposition 3.4].

Now in view of [6, Proposition 2.15], to show that GL2.e; f / ¤ 0 it suffices to show
that

GL2.eq; eq0/ ¤ 0 for q; q0 2 k�;

which follows from the lemma below.

Lemma 3.2.3. Let e and f be two 2-preregular forms on the same vector space V . Then
GL2.e; f / ¤ 0.

Proof. Use the notation from the previous proof. Note that from the presentation given
above, by setting the degree of each aij to be 1, the degree of each bij to be �1, and the
degree of D˙1 to be ˙2, GL2.e; f / is a Z-graded algebra. Let M 2 GL.V / D GLk.k/.
We construct a nonzero graded representation U for GL2.e; f / based on the matrix M in
the following way.

(1) As a vector space, set U WD
L
d2Z Ud , where each Ud is defined to be the 1-

dimensional vector space k.

(2) Set M0 WDM and inductively define´
MdC1 WD E�TM�T

d
FT ; for d � 0;

Md�1 WD E�1M�T
d

F ; for d � 0:

(3) Define the action of A on each graded component Ud to be given by scalar multi-
plication Ud ! UdC1, according to the matrix Md . Similarly, define the action of
B on the graded component Ud to be given by scalar multiplication Ud ! Ud�1,
given by the matrix M�1

d�1
. This gives the following diagram, where the action of

A moves to the right, and the action of B moves to the left:

� � �

##

Udbb

Md

))

UdC1

MdC1

))

M�1
d

hh UdC2

M�1
dC1

ii

""
� � �

ee

(4) The action of D˙1 on Ud will be defined as the multiplication by 1 from Ud !

Ud˙2.

By the equalities

MT
dC1EMd D F ; M�Td�1F

TM�1d D ET ; MdM�1d D Ik�k ;

for all d 2Z, these actions respect the relations (3.2). HenceU is a nonzero representation
for GL2.e; f /, and so this algebra is itself nonzero.

The following result is a straightforward consequence of the proof of Theorem 3.2.2.
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Corollary 3.2.4. The cogroupoid GL2 is connected.

Example 3.2.5. Let E and F be identity matrices on k- and l-dimensional vector spaces
V andW , respectively, with l and k � 2. In this case, it can be checked that the following
collection of relations forms a noncommutative Gröbner basis (see, e.g., [33, Section 1.4])
for the ideal of relations for GL2.e; f /, under the graded lexicographic ordering with the
variables ordered a11 > a12 > � � � > a21 > � � � > b11 > b12 > � � � > blk > D >D�1 (and
where ıhi in all formulas represents the Kronecker delta function):

AB D Ik�k ; BA D Il�l ; D�1A D BT ;

DB D AT ; DD�1 D 1; D�1D D 1;

BTB D D�1Ik�k ; ATA D DIl�l I

for all triples 1 � h; i; j � k, the relationsX
l�m>1

.ahmbmib1j � ah1bmibmj / D ıhib1j � ıijah1D
�1;

X
l�m>1

.bmhbmib1j � b1hbmibmj / D ıhiD
�1b1j � ıij b1hD

�1
I

and for all triples 1 � h; i; j � l , the relationsX
k�m>1

.bhmamia1j � bh1amiamj / D ıhia1j � ıij bh1D;X
k�m>1

.amhamia1j � a1hamiamj / D ıhiDa1j � ıija1hD:

It follows that there exists a basis for the algebra GL2.e; f / consisting of all monomials
in the variables A;B; D, and D�1 which do not contain any leading term in the above
list of relations. In particular, we can observe concretely that this algebra is nonzero. This
calculation follows similarly to the argument given by Cohn in [12, Section 5] for the
related algebra with generators A and B and relations AB D Ik�k , BA D Il�l , which
was originally constructed by Leavitt [24]. Note, however, that the additional relations for
GL2.e; f / lead to a more complicated normal form.

4. Preregular forms in pivotal tensor category and their 2-cocycle
twists

In this section, we introduce categorical descriptions of superpotentials and preregular
forms in pivotal tensor categories. We also study their realization in comodule categories
over copivotal Hopf algebras. We refer the reader to Section 2.3 for some background on
such categories.
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4.1. Twisted superpotentials and preregular forms in pivotal tensor categories

Consider a k-linear Hom-finite tensor category .C ;˝; ˆ; 1; r; `/ with pivotal structure

j W idC ! .�/��:

For any V 2 ob.C/, we denote by V ˝n the n-fold tensor product of V with rightmost
parentheses. This means that V ˝0 D 1 and V ˝.nC1/ D V ˝ V ˝n. Following the notation
in [29], there is a unique isomorphism

ˆ.n/ W V ˝.n�1/ ˝ V ! V ˝n

that is inductively defined by ˆ.1/ W V ! V as the identity, and for n � 1,

ˆ.nC1/D
�
.V ˝V ˝.n�1//˝V

ˆ
�! V ˝.V ˝.n�1/˝V /

idV˝ˆ.n/
������! V ˝V ˝nDV ˝.nC1/

�
:

We now generalize the notion of a preregular form to its categorical analogue.

Definition 4.1.1. Let C be a tensor category with pivotal structure j . For any integer
m � 2 and object V in C , we define the following.

(1) A morphism f W V ˝m ! 1 is called non-degenerate if there is a surjection � W
V ˝.m�1/ � �V for the right dual �V such that the diagram

V ˝m
f

// 1

V ˝ V ˝.m�1/
idV˝�

// V ˝ �V

ev

OO

commutes.

(2) A non-degenerate morphism f W V ˝m ! 1 is called m-preregular of character-
istic q if Dm

V .f / D qf , for some q 2 k�. Here, the operator

Dm
V W HomC .V

˝m; 1/! HomC .V
˝m; 1/

is defined as

Dm
V .f / WD

�
V ˝m

coev˝id
�����! .�V ˝ V /˝ V ˝m

id˝.ˆ.m//�1
��������! .�V ˝ V /˝ .V ˝.m�1/ ˝ V /

ˆ‹

��!
�V ˝ .V ˝m ˝ V /

id˝.f˝id/
�������!

�V ˝ V

j�V˝id
�����! V � ˝ V

ev
��! 1

�
;

(4.1)

for any f 2 HomC .V
˝m; 1/. See Section 2.3 for the definition of ˆ‹.

We simply say that f W V ˝m ! 1 is preregular if f is preregular of characteristic q D 1.
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Example 4.1.2. Let C be the tensor category Veck of all finite-dimensional k-vector
spaces. It is clear that Veck is pivotal with the pivotal structure given by the natural iden-
tification V Š V �� for any finite-dimensional vector space V over k. Remark that the
operator Dm

V on Homk.V
˝m;k/ defined in Definition 2.1.1 (2) is given by

Dm
V .f /.v1; : : : ; vm/ D f .vm; v1; : : : ; vm�1/

for any k-linear map f W V ˝m! k and v1; : : : ; vm 2 V . Moreover, f is anm-preregular
form of character q on V if and only if it is an m-preregular form in the sense of Defini-
tion 2.1.1 with the matrix P 2 GL.V / given by P D diag.q; : : : ; q/.

To connect the generalization of a preregular form from Definition 4.1.1 to the notion
of superpotential, we recall some Hom-space operators used in the definition of higher
Frobenius–Schur indicators, which play the same role as the cyclic condition in Defi-
nition 2.1.1 (1) (b) of a preregular form. Remark that superpotentials in the categorical
context are slightly different from the formal dual of preregular forms.

Definition 4.1.3 ([29, Definition 3.1]). Let C be a tensor category with pivotal structure
j and V;W 2 ob.C/.

(1) Define TV;W W HomC .V
�; W /! HomC .W

�; V / via

TV;W .f / D
�
W �

f �

��! V ��
jV
�1

���! V
�
:

(2) Define AV;W W HomC .1; V ˝W /! HomC .V
�; W / via

AV;W .h/ D
�
V �

idV �˝h
�����! V � ˝ .V ˝W /

ˆ�1

��! .V � ˝ V /˝W
ev˝idW
�����! W

�
with inverse

A�1V;W .g/ D
�
1

coev
��! V ˝ V �

idV˝g
����! V ˝W

�
:

(3) For any n � 1, define

E
.n/
V D

�
HomC .1; V ˝n/

A
V;V˝.n�1/

�������! HomC .V
�; V ˝.n�1//

T
V;V˝.n�1/

�������! HomC

�
.V ˝.n�1//�; V

�
A�1
V˝.n�1/;V

�������! HomC .1; V ˝.n�1/ ˝ V /
HomC .1;ˆ.n//
���������! HomC .1; V ˝n/

�
:

We now define a superpotential in a categorical context by making use of the above
Hom-space operators.

Definition 4.1.4. Let C be a tensor category with pivotal structure j . Let m � 2 be an
integer and V 2 ob.C/.
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(1) A morphism s W 1! V ˝m is called non-degenerate if the right dual module �V is
a subobject of V ˝.m�1/ with embedding � W �V ,! V ˝.m�1/ such that the diagram

1 s //

coev

��

V ˝m

�V ˝ V
�˝idV

// V ˝.m�1/ ˝ V

ˆ.m/

OO

commutes.

(2) A non-degenerate morphism s W 1 ! V ˝m is called a twisted-superpotential if
there exists some q 2 k� such that E.m/V .s/ D qs. In particular, s is said to be a
superpotential if s is non-degenerate and q D 1.

Remark that the above definition extends our earlier notion of superpotential in the
category of finite-dimensional vector spaces Veck: let V be an n-dimensional k-vector
space and let s W k! V ˝m be a superpotential as in Remark 2.1.2. This is a superpotential
in the sense of Definition 4.1.4.

Lemma 4.1.5. Let C and D be any two pivotal tensor categories. For any pivotal equiv-
alence F W C ! D , we have the following commutative diagram:

HomC .V
˝m; 1/

Dm
V //

F

��

HomC .V
˝m; 1/

F

��

HomD.F .V
˝m/; 1/

HomD .�
�1

V˝m
; 1/
��

HomD..V
˝m/; 1/

HomD .�
�1

V˝m
; 1/

��

HomD.F .V /
˝m; 1/

Dm
F .V /

// HomD.F .V /
˝m; 1/:

In particular, pivotal equivalence preserves preregular forms of the same characteristic.

Proof. Note that the operator Dm
V can be interpreted as follows: for any V;W 2 ob.C/,

we define
DV;W W HomC .V ˝W; 1/! HomC .W ˝ V; 1/

such that

DV;W .f / WD
�
W ˝ V

coev˝id
�����! .�V ˝ V /˝ .W ˝ V /

ˆ‹

�!
�V ˝ .V ˝W /˝ V

id˝.f˝id/
�������!

�V ˝ V
j�V˝id
�����! V � ˝ V

ev
�! 1

�
;

for any f 2 HomC .V ˝W; 1/. We recall the operator

EV;W W HomC .1; V ˝W /! HomC .1; W ˝ V /
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given in [29, Definition 3.1] such that

EV;W .f / WD
�
1

coev˝coev
������! .W ˝W �/˝ .V � ˝ V ��/

ˆ‹

��!
�
W ˝ .W � ˝ V �/

�
˝ V ��

id˝.f˝id/
�������!

�
W ˝ .W � ˝ V �/

�
˝ .V ˝W /˝ V ��

ˆ‹

��! W ˝
�
.W � ˝ V �/˝ .V ˝W /

�
˝ V ��

id˝ev˝id
������! W ˝ V ��

id˝j�1V
����! W ˝ V

�
:

A straightforward computation shows that the diagram

HomC .V ˝W; 1/
DV;W

//

Š

��

HomC .W ˝ V; 1/

Š

��

HomC

�
1; .V ˝W /�

�
Š

��

HomC

�
1; .W ˝ V /�

�
Š

��

HomC .1; W � ˝ V �/
E�1
V �;W �

// HomC .1; V � ˝W �/

(4.2)

commutes. Moreover, one sees that Dm
V D DV;W and E.m/V D EV;W (see [29, Defini-

tion 3.1]) with W D V ˝.m�1/. So our result follows from [29, Proposition 4.3] and the
commutativity of (4.2).

By Lemma 4.1.5, for the remainder of the paper we assume that the categories we
consider are strict.

4.2. Preregular forms in comodule categories over copivotal Hopf algebras

In this subsection, we discuss preregular forms in an arbitrary comodule category that
admits a pivotal structure [19, 39] and 2-cocycle twists of such preregular forms.

Let .H;ˆ/ be a copivotal Hopf algebra with character ˆ. It follows that the antipode
S ofH is bijective with inverse S�1 D ˆ � S �ˆ�1. Moreover, by [3, Proposition 3.10],
the category comodfd.H/ admits a pivotal structure ' W �.�/

�
�! .�/�. Here ' is an iso-

morphism of monoidal functors between the right and left duality functors. For any finite-
dimensional right H -comodule V , the linear map 'V W �V ! V � is defined as follows:
'V D .id˝ˆ�1/ ı ��V (we use the fact that �V D V � as vector spaces). To describe 'V
explicitly, let ¹v1; : : : ; vnº be a basis of V with �V .vi / D

Pn
iD1 vj ˝ hj i for hj i 2 H .

Then

'V .v
i / D

nX
jD1

ˆ.hij / v
j (4.3)

with dual basis ¹v1; : : : ; vnº of �V and V �. We now generalize the notion of a copivotal
(or cosovereign) Hopf algebra to a cogroupoid.
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Definition 4.2.1. A cogroupoid C is called copivotal if for any X 2 ob.C/, there exists
some character ˆX W C.X;X/! k such that for any X; Y 2 ob.C/,

SY;X ı SX;Y D ˆ
�1
X � id �ˆY ;

where the right-hand side is defined as

ˆ�1X � id �ˆY WD
�
C.X; Y /

�XX;Y
���! C.X;X/˝ C.X; Y /

id˝�YX;Y
�����! C.X;X/˝ C.X; Y /˝ C.Y; Y /

ˆ�1X ˝id˝ˆY
��������! C.X; Y /

�
;

and ˆ�1X D ˆX ı SX;X is the convolution inverse of ˆX .

Note that if the cogroupoid C only has one object X , then C is copivotal if and
only if the Hopf algebra C.X; X/ is a copivotal Hopf algebra (cf. [3, Definition 3.7 and
Remark 3.8]).

Definition 4.2.2. For any integer m � 2, we define the cogroupoid �Lm as follows:

(1) ob.�Lm/ D ob.GLm/;

(2) for any two m-preregular forms e and f , �Lm.e; f / D GLm.e; f /=.D � 1/ as
in (3.1);

(3) the structural maps ���;�, "�, S�;� are all induced from those of GLm in Defini-
tion 3.1.6.

We simply write �Lm.e/ D �Lm.e; e/.

Example 4.2.3. Note that when m D 2, �L2 coincides with the cogroupoid B.E; F /

considered in [4]. While GL2 is connected by Corollary 3.2.4, a straightforward calcu-
lation shows that for e and f as in Example 3.2.5, where l D 2 and k D 3, we have
�L2.e; f / D 0, and so �L2 is not connected.

Let V be a finite-dimensional k-vector space with a fixed basis ¹v1; : : : ; vnº and let
e W V ˝m ! k be an m-preregular form with associated matrix P 2 GLn.k/ subject to
(2.1). We point out that our �Lm.e/ is the universal Hopf algebra H .e/ described in
[7, Section 5]. Recall that �Lm.e/ is generated over k by A D .aij /1�i;j�n and B D
.bij /1�i;j�n subject to relations:X

1�i1;:::;im�n

ei1���imai1j1 � � � aimjm D ej1���jm ; for any 1 � j1; : : : ; jm � n;X
1�i1;:::;im�n

ei1���imbimjm � � � bi1j1 D ej1���jm ; for any 1 � j1; : : : ; jm � n;

AB D In�n;
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with Hopf algebra structure

�.aij / D
X
1�k�n

aik ˝ akj ; �.bj i / D
X
1�k�n

bki ˝ bjk ;

".aij / D ı.bj i / D ıij for 1 � i; j � n;

S.A/ D B; S.B/ D P�1AP :

In particular, we know that �Lm.e/ is copivotal with character ˆe W �Lm.e/! k such
that ˆe.A/ D P and ˆe.B/ D P�1. We view V as a right �Lm.e/-comodule via � W
V ! V ˝ �Lm.e/ with �.vi / D

P
1�j�n vj ˝ aj i . Thus the �Lm.e/-comodule map

e W V ˝m ! k has the following universal property.

Lemma 4.2.4 ([7, Theorem 5]). Let H be any Hopf algebra that right coacts on V via
�H W V ! V ˝H such that e W V ˝m ! k is H -colinear. Then there is a unique Hopf
algebra map � W �Lm.e/! H such that the following diagram commutes:

V

�H
%%

�
// V ˝ �Lm.e/

id˝�
��

V ˝H:

Lemma 4.2.5. The cogroupoid �Lm is copivotal, with characters ˆe W �Lm.e/ ! k
given by ˆe.A/ D P and ˆe.B/ D P�1; that is,

Sf;e ı Se;f D ˆ
�1
e � id � f̂

in �Lm.e; f /, for any two m-preregular forms e W V ˝m ! k and f W W ˝m ! k with
associated invertible matrices P and Q, respectively.

Proof. It is straightforward to show that �Lm is a well-defined cogroupoid. Next, we
verify that ˆe is a well-defined character on �Lm.e/ D �Lm.e; e/. Suppose that V is of
dimension k. By (3.1), in �Lm.e/ we have

ˆe

� X
1�i1;:::;im�k

ei1���imai1j1 � � � aimjm

�
D

X
1�i1;:::;im�k

ei1���imPi1j1 � � �Pimjm D ej1���jm ;

ˆe

� X
1�i1;:::;im�k

ei1���imbimjm � � � bi1j1

�
D

X
1�i1;:::;im�k

ei1���imP�1imjm � � �P
�1
i1j1
D ej1���jm ;

ˆe.AB/ D PP�1 D Ik�k :

Finally, by Lemma 3.1.5, in �Lm.e; f / we have

Sf;e ı Se;f .A
e;f / D P�1Ae;f Q D .ˆ�1e ˝ id˝ f̂ /.id˝�

f

e;f
/.�ee;f ˝ id/.Ae;f /

D .ˆ�1e � id � f̂ /.A
e;f /;
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Sf;e ı Se;f .B
e;f / D P�1Be;f Q D .ˆ�1e ˝ id˝ f̂ /.id˝�

f

e;f
/.�ee;f ˝ id/.Be;f /

D .ˆ�1e � id � f̂ /.B
e;f /:

It follows that the cogroupoid �Lm is copivotal.

Lemma 4.2.6. Let e be an m-preregular form on some n-dimensional k-vector space V .
In the pivotal tensor category comodfd.�Lm.e//, the �Lm.e/-comodule map e W V ˝m!
k is preregular.

Proof. We show that e satisfies both conditions in Definition 4.1.1 to be preregular.
For (1): we define the H -comodule map � W V ˝.m�1/ ! �V to be

� WD
�
V ˝.m�1/

coev˝id
�����! .�V ˝ V /˝ V ˝.m�1/

Š
�!
�V ˝ .V ˝m/

id˝e
���!

�V
�

or �.vi1 ˝ � � � ˝ � � � vim�1/.vi / D e.vi ˝ vi1 ˝ � � � ˝ vim�1/. By Definition 2.1.1 (1), one
sees that � is surjective. SetW D Ker.�/, which is anH -subcomodule of V ˝.m�1/. Thus
e factors through V ˝ .V ˝.m�1/=W / via Ne W V ˝.V ˝.m�1/=W /!k. Note that � induces
an isomorphism ofH -comodules x� W V ˝.m�1/=W

�
�! V �. Set QeD Ne ı .idV ˝ x��1/. Then

we obtain a commutative diagram:

V ˝m
e //

����

k

V ˝ .V ˝.m�1/=W /
idV˝x�// //

Ne

66

V ˝ �V:

Qe

OO

It is clear that the H -colinear map Qe W V ˝ �V ! k is nondegenerate.
For (2): let P be the invertible matrix associated to e. By definition, we have

Dm
V .e/.vi1 ˝ � � � ˝ vim/

D .ev/ ı .'V ˝ id/ ı .id˝ e ˝ id/ ı .coev˝ id/.vi1 ˝ � � � ˝ vim/

D .ev/ ı .'V ˝ id/ ı .id˝ e ˝ id/
� X
1�i�n

vi ˝ vi ˝ vi1 ˝ � � � ˝ vim

�
D .ev/ ı .'V ˝ id/

� X
1�i�n

e.vi ˝ vi1 ˝ � � � vim�1/v
i
˝ vim

�
(4.3)
D .ev/

� X
1�i;j�n

e.vi ˝ vi1 ˝ � � � vim�1/ˆe.hij /v
j
˝ vim

�
D

X
1�i;j�n

e.vi ˝ vi1 ˝ � � � vim�1/ˆe.hij /ıj im

D

X
1�i�n

ei i1���im�1Pi im

(2.1)
D ei1���im

D e.vi1 ˝ � � � ˝ vim/;

for any 1 � i1; : : : ; im � n. Hence, e W V ˝m ! k is preregular.
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We point out from the above proof that if an H -comodule map e W V ˝m ! k is pre-
regular in comodfd.H/, then it is an m-preregular form on V with matrix P 2 GLn.k/
given by

'V W
�V ! V � W vi 7!

X
1�j�n

Pij v
j ;

where ¹v1; : : : ; vnº is the dual basis of ¹v1; : : : ; vnº of V .
Let H be an arbitrary Hopf algebra and � a left 2-cocycle on H . We denote by

F W comodfd.H/
�
�! comodfd.H

� /

the monoidal equivalence between the categories of finite-dimensional right comodules
over H and H � , respectively. Suppose that comodfd.H/ has a pivotal structure

' W �.�/
�
�! .�/�:

Thus ' induces a pivotal structure '� on comodfd.H
� / via the monoidal equivalence F ,

which is uniquely determined by the commutative diagram

�F.V /

.'� /F.V /

��

rV // F.�V /

F.'V /

��

F.V /�
lV // F.V �/

(4.4)

for any finite-dimensional right H -comodule V . Here

r W �F.�/
�
�! F

�
�.�/

�
; l W F.�/�

�
�! F

�
.�/�

�
are isomorphisms of monoidal functors described in [3, (2.8.4)].

The following definition introduces the notion of twisting of a preregular form via the
monoidal equivalence between comodule categories.

Definition 4.2.7. Letm � 2 be an integer and V a finite-dimensional right comodule over
a Hopf algebraH . For anyH -comodule map f W V ˝m! k, we define anH � -comodule
map f� W F.V /˝�m ! k via

f� WD
�
F.V /˝�m

��1
V˝m

���! F.V ˝m/
F.f /
���! F.k/ D k

�
:

Proposition 4.2.8. Denote C D comodfd.H/ and D D comodfd.H
� / together with piv-

otal '� satisfying (4.4). If f W V ˝m ! k is preregular in C , then

f� W F.V /
˝�m ! k

is preregular in D .
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Proof. To show that f� is nondegenerate, we consider the commutative diagram

F.V /˝�m
f� //

Š

��

��1
V˝m

))

k

F.V ˝m/
F.f /

//

����

k

D

77

F.V ˝ V ˝.m�1//
F.idV ˝�/ // //

�
V;V˝.m�1/

��

F.V ˝ �V /

F. zf /

OO

F.V /˝� F.V
˝.m�1//

idF.V /˝F.�/
// //

idF.V /˝�V˝m

uu

F.V /˝� F.
�V /

��1
V;�V

OO

F.V /˝� F.V /
˝� .m�1/

idF.V /˝
�
l�1
V
ıF.�/ı��1

V˝.m�1/

�
// F.V /˝�

�F.V /

rV

gg

zf�

OO

where zf� WD F. zf / ı ��1V;�V ı rV . It is clear that

r�1V ı F.�/ ı �
�1
V ˝.m�1/

W F.V /˝� .m�1/ ! �F.V /

is surjective. Since zf W V ˝ �V ! k is a nondegenerate pairing in C , we have a morphism
g W k! �V ˝ V such that

. zf ˝ idV / ı .idV ˝ g/ D idV ; .id�V ˝ zf / ı .g ˝ id�V / D id�V :

By [36, Lemma 1.5], we know that zf� is again a nondegenerate pairing in D together
with morphism

k
F.g/
���! F.�V ˝ V /

��V;V
���! F.�V /˝� F.V /

r�1V ˝idF.V /
�������!

�F.V /˝� F.V /:

Moreover, we have Dm
F.V /

.f� / D f� from Lemma 4.1.5 since Dm
V .f / D f . This proves

our result.

We now state our main result in this section to describe how a preregular form and its
associated cogroupoid behave under 2-cocycle twists.

Theorem 4.2.9. Let m � 2 be an integer and V a finite-dimensional k-vector space. Let
e be an m-preregular form on V and � a left 2-cocycle on �Lm.e/. Then e� is also an
m-preregular form on V and

�Lm.e� / Š �Lm.e/
�

as Hopf algebras.

To prove the above theorem, we first state some results, without proof, for 2-cocycle
twists. Parts (3) and (4) appear in the dual context of Drinfeld twists in [18, Lemma 2.7].
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Lemma 4.2.10. Let H and K be two arbitrary Hopf algebras with a Hopf algebra map
˛ W H ! K. Let � be a left 2-cocycle on K and B a right K-comodule algebra via
� W B ! B ˝K.

(1) We have a left 2-cocycle on H , which is denoted by

˛�� WD .H ˝H
˛˝˛
���! K ˝K

�
�! k/

with convolution inverse ˛���1.

(2) The Hopf algebra map ˛ WH !K induces a Hopf algebra map ˛� WH˛�� !K�

for the 2-cocycle twists of the corresponding Hopf algebras, where ˛ D ˛� as
linear maps.

(3) ��1 is a left 2-cocycle on K� with .K� /�
�1
D K. Similarly, ˛���1 is a left 2-

cocycle on H˛�� with .H˛�� /˛
���1 D H . In particular, we have .˛� /�

�1
D ˛ W

H ! K.

(4) B��1 is a rightK� -comodule algebra via �� WB��1!B��1 ˝K
� , where �� D �

as linear maps. In particular, .B��1/� D B and .�� /�
�1
D �.

(5) Suppose that B is also a rightH -comodule algebra via � W B! B ˝H such that
the diagram

B

�

{{

�

##

B ˝H
id˝˛

// B ˝K

commutes. Then B��1 is also a right H˛�� -comodule algebra via �� W B��1 !
B��1 ˝H

˛�� satisfying �� D .id˝ ˛� / ı �� , where �� D � as linear maps.

Proof of Theorem 4.2.9. By Lemma 4.2.6 and Proposition 4.2.8 with H D �Lm.e/, we
know that e and e� are preregular in comodfd.H/ and in comodfd.H

� /, respectively. Then
e� is anm-preregular form on F.V /D V . Recalling Lemma 4.2.4, we write the universal
right Hopf coactions of �Lm.e/ and �Lm.e� / on V and F.V / as

� W V ! V ˝ �Lm.e/; � W F.V /! F.V /˝ �Lm.e� /;

such that e WV ˝m!k and e� WF.V /˝�m!k are colinear with respect to the correspond-
ing coactions. Since �L.e/� left coacts on F.V / via �� W F.V /! F.V /˝� �Lm.e/

�

and e� is �Lm.e/
� -colinear, we have a unique Hopf algebra map

h W �Lm.e� /! �Lm.e/
�

such that
.idF.V / ˝ h/ ı � D �� :

It follows from Lemma 4.2.10 that ��1 is a left 2-cocycle on �Lm.e/
� which induces

a left 2-cocycle h���1 on �Lm.e� /. Furthermore, one checks that �Lm.e� /
h���1 left
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coacts on V via �h
���1 W V!V˝�Lm.e

�1
� /h

���1 while preserving the map e W V ˝m!k.
So we get another unique Hopf algebra map g W �Lm.e/! �Lm.e� /

h���1 such that

.idV ˝ g/ ı � D �h
���1 :

We denote by h�
�1
W �Lm.e� /

h���1 ! �Lm.e/ the Hopf algebra map induced by

h W �Lm.e� /! �Lm.e/
� :

Thus, the commutative diagram

V
�

uu

�

))

�h
���1

��

V ˝ �Lm.e/ id˝g
// V ˝ �Lm.e� /

h���1

id˝h�
�1

// V ˝ �Lm.e/

implies that
h�
�1

ı g D id on �Lm.e/:

Similarly, we have that .h�
�1
/�� D h�� is a left 2-cocycle on �Lm.e� /

h���1 . Note that
g�.h�

�1
/�� D .h�

�1
ı g/�� D � on �Lm.e/. Therefore, we have a Hopf algebra map

g.h
��1 /��

W �Lm.e/
�
! �Lm.e� /;

making the diagram

V
�

uu

�

))

��

��

F.V /˝ �Lm.e� /
id˝h

// V ˝ �Lm.e/
�

id˝g.h
��1 /��

// F.V /˝ �Lm.e� /

commute. This implies that

g.h
��1 /��

ı h D id on �Lm.e� /:

Finally, it is routine to check that h and g.h
��1 /�� are inverse to each other.
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