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Deformation spaces, rescaled bundles, and the generalized
Kirillov formula

Maxim Braverman and Ahmad Reza Haj Saeedi Sadegh

Abstract. In this paper, we construct a smooth vector bundle over the deformation to the normal
cone DNC.V;M/ through a rescaling of a vector bundleE! V , which generalizes the construction
of the spinor rescaled bundle over the tangent groupoid by Nigel Higson and Zelin Yi. We also
provide an equivariant version of their construction. As the main application, we recover the Kirillov
character formula for the equivariant index of Dirac-type operators. As another application, we get
an equivariant generalization of the description of the Witten and the Novikov deformations of the
de Rham–Dirac operator using the deformation to the normal cone obtained recently by O. Mohsen.

1. Introduction

In the coadjoint orbit method of Kirillov, every character of a compact Lie group is given
as an integral over some orbits of the coadjoint action of G on g�. This is known as the
Kirillov character formula. Berline and Vergne [3] (see also [2, Chapter 8]) extended this
formula to a delocalized equivariant index theorem for a general equivariant Dirac-type
operator on a closed manifold M . In this version of the index theorem, also known as
the generalized Kirillov formula, the equivariant index is expressed as an integral of an
equivariant differential form over the whole manifold. Applying the localization formula
for the integral of an equivariant form to the Kirillov formula, one recovers Atiyah–Segal
fixed-point formula for the index [1].

In [2, Chapter 8], a local version of the Kirillov formula is proven by adopting Bis-
mut’s generalization of the Getzler rescaling technique (see [4]). In this paper, we give a
coordinate-free version of the proof in [2] by using the tangent groupoid TM . This gives
an equivariant generalization of the method of Higson and Yi [20].

We also study the deformation to the normal cone DNC.V; M/ for an embedding
M ,! V (see Section 4.1, or [10,15,18]) and generalize the rescaled bundle construction
of [20] to this deformation space. In some sense, this generalization makes the exposition
clearer and more conceptual since it makes it evident which structures are needed for the
construction to work. We also describe an equivariant version of this construction. As
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one of the applications, we provide an equivariant generalization of the description of the
Witten deformation via the deformation to the normal cone, obtained in a recent paper
by Mohsen [24], cf. Section 7.2. We also generalize this construction to the Novikov
deformation [5, 6, 25].

We now give a slightly more detailed review of this construction.
To an embedding of smooth manifoldsM ,! V one may associate the deformation to

the normal cone, denoted DNC.V;M/, as a set is given by the disjoint union

N � ¹0º
G
t¤0

V � ¹tº;

where N is normal bundle of the embedding. There is a smooth structure on DNC.V;M/

which can be given by an explicit atlas [10] or can be given using an algebraic point of
view (see Section 4.1 or [18]).

One important example of the deformation to the normal cone is the tangent groupoid.
Associated with the diagonal embeddingM ,!M �M , the deformation space DNC.M�
M;M/, also denoted by TM , is called the tangent groupoid of M . As a set, it is given by
the disjoint union

TM � ¹0º
G
t¤0

M �M � ¹tº:

In [12], Connes used the tangent groupoid whose K-theory carries the analytical index of
elliptic operators. In [27], van Erp and Yuncken used the tangent groupoid to completely
characterize the algebra of pseudodifferential operators. See also the preceding work by
Debord and Skandalis [13] on the characterization of classical pseudodifferential operators
using the action of R�C on the tangent groupoid.

In [20], Higson and Yi introduced a coordinate-free approach to Getzler’s rescaling
method. This was achieved by introducing the rescaled spinor bundle over the tangent
groupoid of a spin manifold. So, for a spin manifold M , with the spinor bundle S !M ,
Higson and Yi [20] constructed a vector bundle S! TM over the tangent groupoid. This
bundle is given in the following diagram:

��ƒ�T �M S � S�

TM � ¹0º
F
t¤0 M �M � ¹tº:

Here,� denotes the exterior tensor product of vector bundles.
In this paper, we generalized the construction of the rescaled bundle in [20] to defor-

mation to the normal cones and gave some examples of the rescaled bundles. As an
application, we give a proof of the Kirillov formula by introducing a family of rescaled
bundles over the tangent groupoid of a manifold M that carries a G-equivariant Clifford
module.

The paper is organized as follows: in Section 2, we give a quick overview of Cartan’s
model of the equivariant cohomology and equivariant characteristic classes.
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In Section 3, we state the (generalized) Kirillov formula and give an overview of the
heat kernel proof of this formula. In particular, we introduce the Bismut Laplacian and
explain its role in the proof.

In Section 4, we introduce the deformation to the normal cone DNC.V;M/ associated
with an embedding of manifolds M ,! V . We define the notion of scaling bundle .E;r/
consisting of a vector bundle E ! V and a connection along with filtration structures on
the restriction EjM and on the endomorphism bundle End.E/ with some compatibility
conditions. These data will give a vector bundle E! DNC.V;M/. In the construction of
the deformation to the normal cone and the bundle over it, we follow an algebraic method
introduced in [18] and [20].

In Section 5, we give an example of the rescaled bundle over the tangent groupoid
TM , where M carries a G-equivariant Clifford module structure. We give a family of
rescaled bundles EJ ! TM indexed by J 2 N.

In Section 6, we study the asymptotics of the heat kernel associated with the Bismut
Laplacian and its relation to the rescaled bundles, and then we give a proof of Kirillov’s
character formula for the equivariant index of the Dirac operator.

In Section 7, we gave two extra applications of the rescaled bundles in the study of the
Witten and Novikov deformations and the equivariant index formula.

2. The equivariant cohomology

In this section, we recall the Cartan module for equivariant cohomology and the con-
struction of the equivariant characteristic classes. In our exposition, we roughly follow
[2, Section 7.1].

2.1. The polynomial algebra

Consider the space of polynomials CŒg� that comes with the grading

CŒg� D
M
k

Ck Œg�

with Ck Œg� consists of homogeneous polynomials of degree k. We also consider the cor-
responding filtration

C D C0Œg� � C1Œg� � � � � � CŒg�:

Denote by CŒg�.J / the quotient of CŒg� by the ideal of polynomials of order J C 1. Every
element a 2 CŒg�.J / has a unique polynomial representative of the form

P
˛ a˛X

˛ , and
hence, the algebra CŒg�.J / inherits a grading (by the degree of the polynomials).

The polynomial algebra appears in the Kirillov formula context as

CŒg�˝ƒV;
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where V is a finite-dimensional vector space. This tensor space has a grading given by

deg.P ˝ a/ D 2 deg.P /C degƒ.a/; (2.1)

where P 2 CŒg� and a 2 ƒV . Similar grading will descend to tensor spaces

CŒg�.J / ˝ƒV:

2.2. G -equivariant differential forms

Assume G is a Lie group acting on the smooth manifold M . For X 2 g, we denote by
XM or just X the vector field on M corresponding to the infinitesimal action on C1.M/

Xf .m/ WD
d

dt

ˇ̌̌̌
tD0

f .exp.�tX/m/:

Let CŒg� be the algebra of polynomial functions on g and consider the algebra

CŒg�˝A.M/;

which carries a left action of G: For ˛ 2 CŒg�˝A.M/ and g 2 G, we have

.g � ˛/.X/ D g �
�
˛.Adg�1X/

�
:

This algebra has a grading for ˛ 2 CŒg� ˝ A.M/ and g 2 G given by the equivariant
degree

o.˛/ D oext.˛/C 2opoly.˛/;

where oext is the exterior degree of differential forms and opoly is the polynomial degree.
We define the equivariant differential dg on CŒg�˝A.M/ given by the formula

.dg˛/.X/ D d.˛.X// � �.X
M /˛.X/:

Note that the contraction �.XM / reduces the differential degree by 1 and increases the
polynomial degree by 1, and hence, it increases the equivariant degree by 1. Hence, dg

increases the equivariant degree by 1. Note that d2g ¤ 0, indeed, we have

.d2g˛/.X/ D �L.X/˛.X/:

However, the square of the equivariant differential vanishes on the Cartan subalgebra

AG.M/ D .CŒg�˝A.M//G

of invariant elements or equivariant differential forms. Indeed, the following hold.

• For every g 2 G,
.g � ˛/.X/ D ˛.AdgX/;

or equivalently.
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• For every X 2 g,
L.X/˛.X/ D 0:

Since .AG.M/;dg/ is a complex, we can define its cohomology, the equivariant coho-
mology of M , denoted by

HG.M/:

This is known as the Cartan model of equivariant cohomology [11]. When M is compact
and oriented, we define the integration mapZ

M

W CŒg�˝A.M/! CŒg�

by integrating only terms with the top differential degree part. This map restricts toZ
M

W AG.M/! CŒg�G ;

where the image is the algebra of invariant polynomials. This map indeed descends to the
cohomology level Z

M

W HG.M/! CŒg�G :

2.3. The equivariant structure

Let M be compact oriented Riemannian manifold of M . Assume a Lie group G acts by
positively oriented isometries on M . Assume E! M is a G-equivariant vector bundle
with a connection rE that commutes with the G-action. We define the moment �E 2

A2
G.M;End.E// of the connection rE by the formula

�E.X/ WD LE.X/ � rE
X ;

where LE.X/ is the Lie derivative of X 2 g. In particular, when E D TM with the Levi–
Civita connection r, we obtain the Riemannian moment

�M 2
�
�.M; so.TM//˝ g�

�G
so that, for X 2 g and � 2 �.TM/, we have

�M .X/� D ŒX; �� � rX�

D �r�X:

Another example of a moment map is the Kosmann formula for the spinor bundle E D S ,
when M is spin shown in the following proposition.

Proposition 2.1 ([21]). If M is spin, and E D S is the spinor bundle, then

�S .X/ D �
1

4
c.d�X /:
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Assume E! M is a G-equivariant Clifford module whose Clifford action and Her-
mitian metric are compatible with the G-action. Locally, such vector bundle is given as
S ˝E, where S is the local spinor bundle and E is an equivariant auxiliary vector bundle
with G-compatible connection rE such that rE D rS ˝ 1C 1˝ rE . Then, we define
the twisting moment map (locally) as the moment of the auxiliary bundle E or, equiva-
lently, the difference

�E=S
WD �E

� �S :

So, we have

�E=S
D �E

C
1

4
c.d�X /;

and moreover, we have
�E=S

2 A2
G.M;EndCl.E//

(see [2]). Here, EndCl denotes the space of endomorphisms that commute with the Clifford
action.

The equivariant curvature of M is defined by

Rg WD RC �
M
2 A2

G.M; so.TM//;

where R is the Riemannian curvature tensor. The equivariant yA-genus is the closed equiv-
ariant differential form

yAg.X;M/ WD
1=2

det
�

Rg=2

sinh.Rg=2/

�
2 AG.M/:

Using this, we obtain the equivariant twisting curvature of E given by

F E=S
g .X/ D F E=S

C �E=S
2 A2

G.M;EndCl.E//:

The equivariant relative Chern character of E is then defined as

Chg.X;E=S/ D StrE=S
�

exp.�F E=S
g .X//

�
2 A2

G.M/:

3. The equivariant index and the Kirillov formula

In this section, we formulate our main result—the Kirillov formula for the index of the
equivariant Dirac-type operator. Then, we give an overview of the heat kernel proof of this
formula [2, Chapter 8]. In particular, we define the Bismut Laplacian [4] and explain its
role in the proof.

3.1. The settings

Let G be a compact Lie Group acting by positively oriented isometries on a compact ori-
ented even-dimensional Riemannian manifold M n. Consider a Z2-graded Clifford mod-
ule E!M , which carries an action of G that commutes with the grading, the Hermitian
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product, and the Clifford action. We fix a Clifford a G-equivariant connection rE on E

and consider the Dirac-type operator

D W �.M;E/
rE

��! �.M;E˝ƒ1T �M/
c
�! �.M;E/:

Then, D commutes with the action of G. Any g 2 G takes ker.D˙/ to themselves. The
equivariant index ind.g;D/ of D is defined as the supertrace

ind.g;D/ WD tr.g; ker.DC// � tr.g; ker.D�//:

Theorem 3.1 (Kirillov formula). For g D e�X , with X 2 g sufficiently small,

ind.e�X ;D/ D .2�i/�n=2
Z
M

yAg.X;M/Chg.X;E=S/:

In the rest of this section, we give a brief overview of the heat kernel proof of this
theorem.

3.2. The modified McKean–Singer formula

The equivariant index ofD can be related to the heat kernel ofD via the McKean–Singer-
type theorem

ind.g;D/ D str.ge�tD
2

/ (3.1)

for t > 0. However, it turns out that the asymptotic equation of the heat kernel in the right-
hand side of this formula is complicated, and the Getzler’s rescaling method does not go
through well for it. The calculation becomes easier if we slightly modify the operator D.
In fact, the following generalization of (3.1) is true: fix X 2 g and for u 2 C define the
deformed Dirac operator

Du D D C uc.X/:

Note that this is the Dirac operator associated with the connection

r
E;�uX

WD r
E
C u�X ;

where �X 2 A1.M/ is the one-form dual to the vector field XM

�X .�/ D .X
M ; �/;

in other words,

Du W �.M;E/
rE;�uX

�����! �.M;E˝ƒ1T �M/
c
�! �.M;E/:

Proposition 3.2. For every t > 0 and u 2 C, we have

ind.e�X ;D/ D str.e�Xe�tD
2
u/:
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Note that since D commutes with the infinitesimal action of g, we can write

e�Xe�tD
2
u D e�L.X/e�tD

2
u D e�tD

2
u�L.X/:

We denote the generalized Laplacian operator that appears in the exponent of the right-
hand side, for t D 1, by

Hu.X/ D D
2
u C LE.X/:

Therefore, the equivariant index corresponding to e�X 2 G is given by

ind.e�X ;D/ D str.e�Hu.X//:

3.3. The Lichnerowicz formula

We now compute the operator Hu.

Lemma 3.3 ([2, Proposition 3.45]). If � 2 A1.M/ is dual to the vector field X 2 X.M/,
then

ŒD; c.d�/� D �2rE
X C c.d�/C d

��:

Proposition 3.4. We have a Lichnerowicz-type formula for Hu.X/:

Hu.X/ D .r
E;uX /�rE;uX

C
1

4
�M C c.F

E=S /C �E.X/C uc.d�X /C .1 � 4u/r
E
X :

With respect to a local orthonormal frame ¹eiº,

.rE;uX /�rE;uX
D �

X
i

.rE;uX
ei

/2 � r
E;uX
rei ei

:

Note that when u D 1
4

, using the equality

�E=S
D �E

C
1

4
c.d�X /;

we obtain

H1=4.X/ D .r
E; 14X /�rE; 14X C

1

4
�M C c.F

E=S /C �E=S .X/:

Proof. Note that since the Du is the Dirac operator associated to the connection rE;�uX ,
and

r
E;�uX

D r
E
C u�X

is a Clifford connection, then we have the Lichnerowicz formula

D2
u D .r

E;�uX /�rE;�uX
C
1

4
�M C c.F

E=S;�u/

D .rE;�uX /�rE;�uX
C
1

4
�M C c.F

E=S /C uc.d�X /:
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We may write a similar formula for D2
�u, and by subtracting, we have

D2
u �D

2
�u D .r

E;�uX /�rE;�uX
� .rE;uX /�rE;uX

C 2uc.d�X /;

we also have

D2
u �D

2
�u D 2uŒD; c.�X /� D �4ur

E
X C 2uc.d�X /C 2ud

��X ;

where we used Lemma 3.3 in the second equality. Note that d��X D tr.�M .X// D 0.
Combining these formulas, we find

Hu.X/ D D
2
u C LE.X/

D .rE;uX /�rE;uX
C
1

4
�M CCc.F

E=S /C uc.d�X / � 4ur
E
X C LE.X/:

Using the equality LE.X/ D rE
X C �

E.X/, we then achieve the result.

3.4. The Bismut–Laplacian

As we see, for u D 1=4, we obtain a simpler Lichnerowicz formula. The operator

H1=4 D D
2
1=4 C LE.X/ (3.2)

is called the Bismut Laplacian. From now on, we drop the 1=4 from the Bismut Laplacian
notation and denote it by H.X/ WD H1=4.X/. Following [2], we replace D2 with H1=4 in
(3.1).

3.5. The heat kernel in normal coordinates

The proof of the Kirillov formula (Theorem 3.1), is done through rescaling of the smooth-
ing kernel of the (a conjugate of the) heat operator e�tH.X/ in normal coordinates. Roughly
one needs to trivialize the bundle E ! M over a small neighborhood using the nor-
mal coordinates x ! expm.x/ through parallel transport along radial geodesics. Here,
x belongs to a small neighborhood of the origin in TmM .

The Bismut Laplacian H.X/ is associated to the perturbed connection rE; 14X D

rE �
1
4
�X . So, it is natural to use the parallel transport of this connection to define the

trivialization of E. However, it is more convenient to do a “two-step” trivialization: first,
trivialize the bundle using the connection rE and compute the heat kernel e�tH.X/ in this
trivialization and then consider the conjugated kernel � 1

4X
.x/e�tH.X/� 1

4X
.x/�1, where

� 1
4X
.x/ is the parallel transport map on the trivial line bundle along the radial geodesics

with respect to the connection d � 1
4
�X (see (5.4)). In this approach, in particular, the

dependence of the result on X is more explicit.

4. Rescaled bundles

In this paper, we achieve the rescaling calculus through a coordinate-free method, i.e.,
through tangent groupoid of the manifold M . It is, however, more general and arguably
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more natural to consider a more general deformation space DNC.V;M/. So, in this and
in the next sections, we introduce a setup that gives vector bundles over the deformation
space DNC.V;M/, generalizing the rescaled bundle of [20]. Specifying the case of the
tangent groupoid, we recover the Getzler symbol calculus.

4.1. Deformation to the normal cone

Assume i W M ,! V is an embedding of smooth manifolds. The normal bundle of this
embedding is the quotient bundle N D T V jM=TM . As a set the deformation space
DNC.V;M/ is given by the disjoint union

DNC.V;M/ WD N � ¹0º
G
t¤0

V � ¹tº:

To obtain a smooth structure, fix a Riemannian metric g on V and identify N with TM?

the orthogonal complement of TM in T V jM . Then, we have Expg WW!U , the Rieman-
nian exponential map, from a neighborhood map W of 0-section of N to a neighborhood
U ofM in V . The smooth structure on DNC.V;M/ away from the normal bundle is given
by the product manifoldM �R¤0. To obtain the manifold structure in a neighborhood of
N we require the following map to be a diffeomorphism (cf. [14]):

W �R! DNC.V;M/;

.x;X; t/ 7!

´
.Expgx .tX/; t/; t ¤ 0;

.x;X; 0/; t D 0:

One may obtain local coordinates for this deformation space explicitly; see [10, 18].
For the construction of the rescaled bundle, we will use an algebraic approach to the

deformation to the normal cone, following [18]. This is inspired by the algebraic geometric
definition of the deformation to the normal cone as the prime spectrum of the Rees algebra
(see, for example, [16, Chapter 5] and [19]).

Let IM � C1.V / be the vanishing ideal ofM . Consider the Rees algebra A.V;M/�

C1.V /Œt; t�1� given by

A.V;M/ D

1M
pD�1

I
p
M t
�p:

Therefore, the Rees algebra consists of the Laurent polynomialsX
p

fpt
�p;

where fp vanishes to pth order along M .

Definition 4.1. For a C-algebra A, the character spectrum, Spec.A/, is the space of all
algebra homomorphisms

� W A! C

with the weak topology of pointwise convergence.
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It turns out the spectrum of the algebra A.V;M/ consists of the following characters.

(1) For every .v; �/ 2 V �R¤0,

".v;�/ W A.V;M/! C;X
p

fpt
�p
7!

X
p

fp.v/�
�p:

(2) For Xm 2 Nm D TmV=TmM ,

"Xm W A.V;M/! C;X
p

fpt
�p
7!

X
p

1

pŠ
Xpfp.m/; (4.1)

where X 2 X.V / is a vector field that represents Xm 2 Nm at m 2M .

Hence, there is a one-to-one correspondence:

Spec.A.V;M// ! N � ¹0º
G
t¤0

V � ¹tº:

This spectrum is indeed a manifold.

Theorem 4.2 ([18]). The spectrum Spec.A.V;M// is a smooth manifold of dimension
dim.V /C 1 that has a canonical submersion to R. This manifold is called the deformation
to the normal cone and is denoted by DNC.V;M/. As a set, it is given by a disjoint union
of fibers over R as follows:

N � ¹0º
G
t¤0

V � ¹tº:

To gain insight into this theorem, it is useful to see algebra A.V;M/ for DNC.V;M/

as a “homogeneous coordinate ring” for a variety. Note that the vanishing order along the
submanifold M gives a filtration

C1.V / D I0 � I1 � � � � ;

where IpDI
p
M is the ideal of functions vanishing to orderp alongM . Denote by A0.V;M/

the quotient algebra A.V;M/=tA.V;M/ which is naturally isomorphic to the associated
graded algebra

A0.V;M/
'
�!

M
pD0

Ip=IpC1;X
p

fpt
�p
7!

X
q�0

hfpip:

We have the inclusion C1.M/ ,! A0.V;M/ as the zero-degree part. This corresponds
to the following fact.
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Lemma 4.3. The character spectrum of A0.V;M/ is the normal bundle N ! M . The
quotient A0;m.V; M/ of the algebra A0.V; M/ by the ideal of functions vanishing at
m 2M is isomorphic to the polynomial algebra over the normal space NmX

p

fpt
�p
7!

�
Xm 7!

X
p

1

pŠ
Xp � fpjm

�
for Xm 2 Nm.

One important example of the deformation to the normal cone is the tangent groupoid.

Example 4.4. Let M be a smooth manifold. The deformation to the normal cone asso-
ciated to the diagonal embedding M ,! M �M is called the tangent groupoid and is
denoted by

TM WD DNC.M �M;M/:

As a set, it is given by the disjoint union

M �M �R¤0
G
TM � ¹0º;

which is naturally fibered over R.
The tangent groupoid is indeed a smooth groupoid, TM � M �R. The source and

target maps are given so that for t ¤ 0, they restrict to pair groupoid

M �M � ¹tº�M � ¹tº;

and for t D 0, the source and target map are the same as the projection map of the vector
bundle

TM � ¹0º !M � ¹0º:

4.2. An Alternative formula for "Xm

We now describe Higson and Yi’s alternative presentation of the formula (4.1), (see [20]),
which justifies many formulas in the upcoming subsections and sections. For every vector
field X 2 X.V / we have the derivation map

tX W A.V;M/! A.V;M/;X
p

fpt
�p
7!

X
p

X:fpt
�pC1;

which descends to the quotient algebra

tX W A0.V;M/! A0.V;M/:

The action of tX on A0.V;M/ is locally nilpotent, in the sense that for each f 2A0.V;M/

there exists an integer n D n.f / such that .tX/nf D 0. Hence, we may define the expo-
nential homomorphism

exp.tX/ W A0.V;M/! A0.V;M/
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as the finite sum

exp.tX/f WD
X
j

.tX/jf

j Š
; f 2 A0.V;M/:

Now, we may rewrite formula (4.1) as the composition

"Xm D "m ı exp.tX/;

where
"m D "0m W A0.V;M/! C;

X
p

fpt
�p
7! f0.m/

is the evaluation map at Xm D 0.

4.3. The scaling order

Let E ! V be a vector bundle with a connection r.

Definition 4.5. We call .E;r/ a scaling bundle if there is an algebra filtration on End.E/
and a filtration on the restriction bundle F WD EjM :

End.E/0 � End.E/1 � � � � � End.E/q
0

D End.E/

and
M D F �1 � F 0 � F 1 � � � � � F q D F

such that the following hold.

• The two filtration are compatible in the following sense:

A W F � ! F �Ck for A 2 End.E/k : (4.2)

• The induced connection i�r has filtration order zero:

i�r W �.F j /! �.F j /˝�1.M/; j D 1; : : : ; q:

• The curvature K of r has filtration order at most 2:

K 2 �.End.E/2/˝�2.V /: (4.3)

• The induced connection rEnd.E/ has filtration order 0:

r
End.E/

W �.End.E/j /! �.End.E/j /˝�1.V /:

The space of sections �.End.E// is filtered by the algebra filtration of End.E/. We
use the notation og.�/ for the order of � 2 �.End.E// in this filtration. By definition, we
have

og.�1�2/ � o
g.�1/C o

g.�2/: (4.4)
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The filtration F � induces a filtration on End.EjM /, which might differ from the filtration
induced from End.E/. For a section � 2 �.End.EjM //, we denote by of .�/ the order of
this filtration order induced from F �. From (4.2) it then follows that

of .�/ � og.�/:

Note, however, that the order function of fails to satisfy the property (4.4), in general.

Definition 4.6. A differential operator D acting on �.E/ is of Getzler order at most p if
locally it can be written as the sums of terms of the form

�rX1 � � � rXl ;

where � 2 �.End.E// and X1; : : : ; Xl 2 X.M/, where og.�/C l � p. We denote the
Getzler order of D by og.D/.

We had to use the filtration order og , rather than of , on �.End.E// in the definition
of Getzler order to obtain the following lemma.

Lemma 4.7. For two differential operator D1;D2 acting on �.E/, we have

og.D1D2/ � o
g.D1/C o

g.D2/:

The space of sections �.E/ has natural filtration obtained by restricting to the sub-
manifold M . We denote the corresponding filtration order by of .�/ for � 2 �.E/ (if
� D 0 we set of .�/ D �1).

We need yet another filtration on �.E/, defined by the scaling order

osc.�/ D min
D
¹og.D/ � of .D�/º:

Remark 4.8. The definition of the scaling order might seem unnatural at first. But it is
modeled on the following formula for the vanishing order of a function.

For f 2 C1.V /, define oval .f / to be 0 if f jM is not the zero function; otherwise,
define oval .f / D �1. One easily sees that the vanishing order of f along the submani-
fold M , ovan.f /, is given by the equality

ovan.f / D min
D
¹o.D/ � oval .Df /º;

where o.D/ is the ordinary differential order and the minimum is taken over all differential
operators on V .

It follows from the definition of the scaling order the following lemma.

Lemma 4.9. For a differential operatorD acting on �.E/with og.D/� q and � 2�.E/,
we have

osc.D�/ � osc.�/ � q:
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4.4. The Taylor order

In this subsection, we obtain a formula for the scaling order in local coordinates.

Definition 4.10. LetM be an embedded submanifold of a manifold V . A vector field R 2

X.V / is called Euler-like for the embedding M ! V , if for every function f 2 C1.V /
vanishing to pth order along M ,

Rf D pf C g;

where g 2 C1.V / vanishes to order p C 1 along M .

The Euler-like vector fields can be used to obtain tubular neighborhood embeddings.

Theorem 4.11 ([9,18]). There is a bijection between the germs of Euler-like vector fields
and germs of tubular neighborhood embeddings.

The correspondence given by this theorem can be described as follows: given a tubular
neighborhood embedding, we can choose local coordinates

.x1; � � � ; xl ; y1; : : : ; yk/ W N ! Rl �Rk (4.5)

near a point ofM , where xi ’s form local coordinates onM and yj ’s are the linear coordi-
nates for the fibers of the normal bundle. Under the correspondence in Theorem 4.11, the
associated Euler-like vector field in the trivializing neighborhood is given by

R D
X
j

yj @yj :

Using the trivialization (4.5), we call a vector field horizontal if it is a linear combina-
tion of coordinate vector fields @xi ’s and vertical if it is a linear combination of coordinate
vector fields @yj ’s. In particular, the Euler-like vector field is a vertical vector field.

Definition 4.12. A section in � 2 �.E/ is called R-synchronous if

rR� D 0

in a neighborhood of M .

Using this concept, we define the Taylor expansion of a section � 2 �.E/ in the trivial-
izing neighborhood. The formal sum

P
I �Iy

I is a Taylor expansion for � if the following
hold.

• �I 2 �.E/ is an R-synchronous section.

• For every N � 0, the difference

� �
X
jI j<N

�Iy
I

vanishes to N th order.
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Definition 4.13. For a section � 2 �.E/ with support in the trivializing neighborhood,
with Taylor expansion

P
I �Iy

I we define the Taylor order by the formula

ot .�/ WD min
jI j

®
jI j � of .�I /

¯
:

We will show that the Taylor order equals the scaling order. To prove this, we need the
following lemma.

Lemma 4.14. Let � 2 �.E/ be an R-synchronous section.

• If Y is a vertical vector field, then we have the Taylor expansion

rY � '
X
jI j>0

!I .�/y
I ;

where !I ’s are endomorphisms of the vector bundle E of order at most 2.

• If X is a horizontal vector field, then we have the following Taylor expansion:

rX� ' �0 C
X
jI j>0

�I .�/y
I ;

where �I ’s are endomorphisms of the vector bundleE of order at most 2 and of .�0/�
of .�/.

Proof. For the first bullet point, without loss of generality, we may assume Y D @i , where
we have ŒR; Y � D �Y . Consider the equation

rRrY � � rYrR� � rŒR;Y �� D K.R; Y /�:

Since rR� D 0, we obtain

rRrY � CrY � D K.R; Y /�: (4.6)

Let
P
I �Iy

I be the Taylor expansion for rY � , and letX
jI j>0

!Iy
I

be the Taylor expansion of the endomorphism K.R; Y /, where !I ’s are endomorphisms
of E where rR!I D 0. Now, by writing the Taylor expansion of both sides of (4.6), we
obtain X

I

.1C jI j/�Iy
I
D

X
jI j>0

!I .�/y
I

from which the statement follows.
The argument for the second bullet point is quite similar, except for the inequality

of .�0/ � o
f .�/, where it follows from the compatibility of the connection with filtration

of the restricted bundle EjM .
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Corollary 4.15. If � 2�.E/ is an R-synchronous section andD is a differential operator
of Getzler order k. Then, for the Taylor expansion

D� �
X
I

yI�I ;

we have
of .�I / � o

f .�/C jI j C k:

So, in particular,
of .D�/ � of .�/C k:

Proof. IfD is an endomorphism of the bundleE! V , the statement is obvious. Consider
a vector field X on V . We will prove the statement for D D rX , and by induction on the
differential order, the full generality follows.

We can write X D Xh C Xv, where Xh and Xv are the horizontal and vertical com-
ponents of X . Now, from Lemma 4.14, the corollary follows.

Recall that the Taylor order was defined in Definition 4.13.

Theorem 4.16. For a section � 2 �.E/ with support in the trivializing neighborhood
(4.5), we have

osc.�/ D ot .�/:

Proof. Choose I D .˛1; � � � ; ˛k/ with smallest jI j such that

ot .�/ D j˛j � of .�I /;

and define the differential operator D D r˛1
@y1
� � � r

˛n
@yn

. We claim that

of .D�/ D of .�˛/:

For any J ¤ I with jJ j � jI j, we have

D.yJ�J /jM D 0:

If jJ j < jI j, by the choice of I , we have

jJ j � of .�J / > jI j � o
f .�I /:

Also, by Corollary 4.15, we have

of .DyJ�J / � o
f .�J /C jI j � jJ j

and combining this with the previous inequality gives

of .DyJ�J / < o
f .�I /
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from which our claim follows. Therefore,

osc.�/ � ot .�/:

Now, we prove the opposite inequality. From Corollary 4.15, we have

ot .D�/ � ot .�/ � of .D/:

By definition, we have
ot .D�/ � �of .D�/;

and consequently,
osc.�/ � ot .�/:

4.5. Rescaled module

We are ready to define a module over the algebra A.V; M/ associated with a scaling
bundle .E;r/, which will be later shown to be a module of sections of a certain vector
bundle—the rescaled bundle—over the deformation space.

The space of Laurent polynomials �.V;E/Œt; t�1� is a module over the algebra A.V;

M/, and hence, can be viewed as a sheaf over the deformation space DNC.V;M/. We are
interested in the following submodule of �.V;E/Œt; t�1�.

Definition 4.17. The subspace �.E;r/ � �.V; E/Œt; t�1� of the space of Laurent poly-
nomials, consisting of the sections of the form

s D
X
p

spt
�p; with osc.sp/ � p;

is called the rescaled module.

The rescaled module is also a sheaf over DNC.V;M/. In order to show that �.E;r/

is isomorphic to a subspace of a space of section of a smooth bundle over DNC.V;M/,
we need to study the restriction

�0.E;r/ WD �.E;r/=t�.E;r/

of �.E;r/ to the zero fiber of DNC.V; M/. We denote by �0;m.E;r/ the quotient of
�0.E;r/ by the ideal of functions vanishing at m 2M .

Let P .N / � �.N ;
Lq
pD1 F

p=F p�1/ denote the space of sections whose restriction
to each fiber Nm of N are vector-valued polynomial functions Nm !

Lq
pD1 F

p
m=F

p�1
m .

Lemma 4.18. Let Ip.E/ � �.V;E/ denote the submodule of sections with scaling order
at least p. There is a canonical isomorphism

�0.E;r/
'
�!

M
p

Ip.E/=IpC1.E/;
X
p

spt
�p
7!

X
p�0

hspip:
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Further, the map X
p

spt
�p
7!

�
Xm 7!

X
p

1

pŠ
hr

p
X spjmip

�
;

where h:ip denotes the corresponding class in the quotient space F pm=F
p�1
m , defines an

isomorphism between �0;m.E;r/ and the space of vector-valued polynomial functions
P .N /.

4.6. The construction of the rescaled bundle

We now give a rundown of how to obtain a smooth vector bundle for which a “big” sub-
space of the space of sections is isomorphic to �.E;r/.

As a set, this bundle is given by the union

E D

 
qM

pD1

F p=F p�1 � ¹0º

!G
t¤0

�
E � ¹tº

�
:

To identify the elements of �.E;r/ with sections of E, we define for each element
� 2 DNC.V;M/ an evaluation map "� W �.E;r/! E. Then, the fiber E� of E over �
is given by

E� D

8̂̂̂<̂
ˆ̂:
Ev if � D .v; t/ 2 V �R¤0;

qM
pD0

F pm=F
p�1
m if � D .Xm; 0/ 2 N � ¹0º:

For .v; �/, v 2 V , � ¤ 0, the evaluation map is simply

".v;�/ W �.E;r/! Ev;X
p

spt
�p
7!

X
p

sp.v/�
�p:

This map will be the evaluation map on the nonzero fiber element .v; t/ 2 DNC.V;M/.
To define the evaluation over the zero fiber, we need a bit more work. First, note that

for a vector field X 2 X.V / we have a well-defined map

trX W �.E;r/! �.E;r/:

This map descends to the quotient space �0.E;r/ as a locally nilpotent map:

trX W �0.E;r/! �0.E;r/;

cf. Section 4.2. Hence, we have a well-defined module homomorphism

exp.trX / W �0.E;r/! �0.E;r/:
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For m 2M define the map

"m W �.E;r/!

qM
pD1

F pm=F
p�1
m ;X

p

spt
�p
7!

X
p�0

hsp.m/ip;

and finally, for Xm 2 N define the map

"Xm W �0.E;r/!

qM
pD1

F pm=F
p�1
m ;

"Xms D "m
�

exp.trX /s
�
;

whereX is an arbitrary extension ofXm. The map "Xm is the evaluation map over the zero
fiber.

4.7. The smooth structure on E

We now define a smooth structure on E by constructing a locally free sheaf on DNC.M;V /
generated by �.E;r/. This sheaf is the sheaf of smooth functions on E.

Definition 4.19. Define the sheaf E on DNC.V;M/ that consists of maps

DNC.V;M/! …�2DNC.V;M/E�;

� 7! �.�/

such that for some fi 2 C1.DNC.V;M// and si 2 �.E;r/

�.�/ D

NX
iD1

fi .�/"�.si /

for every � 2 DNC.V;M/.

Theorem 4.20. The sheaf E is a locally free sheaf of constant rank of modules over alge-
bra C1.DNC.V; M//. Its rank is equal to the rank of the vector bundle E ! V . The
evaluation map of the previous subsections defines a smooth structure on E and identifies
E with the space of smooth sections of E. This gives E the structure of a smooth bundle
over DNC.V;M/. Fiber-wise E is given as follows:

��gr.F / E

N � ¹0º
F
t¤0 V � ¹tº:
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Proof. In some neighborhood of every � 2 DNC.V;M/, we show that the sheaf is locally
free of constant rank. Fix a trivializing neighborhood (4.5) aroundm2M and consider the
associated Euler-like vector field R. Take a local frame ¹eiº

rank.E/
iD1 for the restricted bundle

EjM !M such that each ei gives a local homogeneous section of degree qi D of .ei / of
the associated graded bundle

gr.F / WD
qM

pD0

F p=F p�1:

There are unique local R-synchronous sections Qei of E so that Qei jM D ei . We show that
the set ¹ Qei tqi º

rank.E/
iD1 generates the sheaf locally. Clearly, in a neighborhood � D .m; t/ 2

DNC.V;M/, these sections generate the sheaf. For � D Xm 2 Nm, we have

"Xm. Qei t
qi / D "m exp.trX / Qei tqi

D "m
X
k

tqiCk

kŠ
r
k
X Qei

D hei iqi C higher � degree terms:

Hence, the sheaf is locally free of constant-rank equal rank.E/.
Now, it remains to show the same for �D .v; t/ 2 DNC.V;M/, with v …M . We may

take a family of sections ¹siºi of E forming a frame near v and with supports away from
M . In this case, the sections si have scaling order �1. So, the set ¹siºi generates the
sheaf near .v; t/.

Definition 4.21. The smooth vector bundle E! DNC.V;M/ is called the rescaled bun-
dle.

4.8. Example: the spinor rescaled bundle

The spinor rescaled bundle of Higson and Yi [20] was the main inspiration for this paper.
We explain their setup briefly here.

Assume V D M �M and M ,! M �M is the diagonal embedding. If E! M is
a Clifford module with a Clifford connection r, then E D E� E� carries the connection
rE D r � 1C 1� r. Note that EjM is isomorphic to

Cl.TM/˝ EndCl.E/; (4.7)

and it carries the Clifford filtration, which is compatible with the connection rE . Thus,
we are in the situation of Section 4.3, where the filtration is given by the Clifford filtration
on the first factor of (4.7) (see Section 5 for more details on different filtrations in this
case).

The curvature of this connection satisfies

KE D c ı q ı .R/� 1C 1� c� ı q ı .R/C F E=S � 1C 1� F E�=S :
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Here, R is the curvature of Levi–Civita connection,  W so.E/
'
�! ƒ2E is the canonical

isomorphism [23, Section 2.2.10], q W ƒ�TM ! Cl.TM/ is the quantization [2, Proposi-
tion 3.5] map, c W Cl.TM/! End.E/ is the Clifford action and c� W Cl.TM/! End.E�/
is the dual action. Thus, the first summand in the above formula has Clifford filtration
of order 2, and, hence, when viewed as a differential operator, has Getzler filtration of
order 2. Also, F E=S and F E�=S are twisting curvatures of the Clifford modules E and E�,
respectively, cf. [2, Proposition 3.43]. Recall that the twisting curvatures commute with
Clifford actions on E and E�. So, as a differential operator of order 0, it has Getzler fil-
tration of order 0. We conclude that KE has Getzler filtration of order 2. Therefore, we
obtain the rescaled bundle.

E! DNC.M �M;M/ D TM:

This rescaled bundle recovers the Getzler symbol calculus [20]. This construction also
recovers the local index formula, cf. [17, 22]

The next section is dedicated to a generalization of the spinor-rescaled bundle to the
equivariant setting, from which we recover the Kirillov formula for the equivariant index.

5. Equivariant rescaled bundles

Let G be a compact Lie group acting on an oriented smooth manifold M by orientation-
preserving isometries. Consider a Z=2-graded Clifford module E!M , which carries an
even action of G. Let rE be a G-equivariant connection on E.

5.1. The equivariant version of E � E�

As an equivariant version of the bundle E� E� of Section 4.8, one would like to consider
the bundle E� E� ˝CŒg�. However, since this bundle has infinite dimensions, we prefer
to work with its approximation:

E D E� E� ˝CŒg�.J /;

where CŒg�.J / is defined in Section 2.1. This bundle is endowed with a natural connection

r WD r
E � 1˝ 1C 1� rE�

˝ 1C 1� 1˝ d;

where d is the trivial connection on the trivial bundle CŒg�.J / �M !M . The restricted
bundle F D EjM is isomorphic to

F ' Cl.TM/˝ EndCl.E/˝CŒg�.J /:

It carries the filtration F 1 � F 2 � � � � � F q defined by

F p WD
[
r�p=2

Clp�2r .TM/˝ EndCl.E/˝CŒg�r.J /:
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The reason for this choice of filtration is that its associated graded space is isomorphic to

gr.F / ' ƒ.T �M/˝ EndCl.E/˝CŒg�.J /

with the grading as in (2.1).
The bundle of endomorphisms

End.E/ ' End.E/� End.E�/˝ End.CŒg�.J //

is filtered as follows:

End.E/p D
[

rCsC2uDp

End.E/r � End.E�/s ˝ End.CŒg�.J //uI

here we used Clifford filtrations on End.E/ and End.E�/, and the filtration on End.CŒg�.J //
is induced from the filtration on CŒg�.J /.

Clearly, .E;r/ is a scaling bundle. Hence, by Theorem 4.20, we obtain a rescaled
bundle

EJ ! TM:

5.2. Operators on the rescaled bundles

Let D be a differential operator of Getzler order p (cf. Definition 4.6) acting on E !
M �M . Then, we have the induced map

tpD W �.E;r/! �.E;r/

on the rescaled modules, which gives a smooth differential operator on the rescaled bundle

D Õ �.EJ /:

Definition 5.1. We define the Getzler symbol of D, denoted by �g.D/, as the restriction
of the operator D to the t D 0 fiber of the tangent groupoid

�g.D/Õ �.TM;��ƒ.T �M/˝ EndCl.E/˝CŒg�.J //;

where � W TM !M .

Example 5.2. (1) For a vector field � 2X.M/, consider the differential operatorD DrE
�

acting on �.M �M; E/ by differentiating along the first component of M �M . This
operator has Getzler order 1.

(2) For a vector field � 2X.M/, consider the operatorDD c.�/ acting on �.E/ acting
by left Clifford multiplication. This operator is of Getzler order 1.

(3) For a polynomial p.X/ 2CŒg� of degree k, the differential operatorD D p.X/Õ
�.E/ defined by multiplication by p.x/, has Getzler order 2k.
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5.3. A calculation of Getzler symbols of some operators

We now calculate the symbols of these operators. We need to fix some conventions for the
curvatures involved. There is a Lie algebra isomorphism

 W so.E/
'
�! ƒ2E;

T 7!
1

4

X
i

T .ei / ^ ei ;

where the formula is given with respect to an orthonormal basis ¹eiº (see [23, Section
2.2.10]). The curvature of the bundle E satisfies

KE
D c ı q ı .R/C F E=S ;

where q W ƒ�TM ! Cl.TM/ is the quantization (see [2, Proposition 3.5]) map and c W
Cl.TM/! End.E/ is the Clifford action. We will use the notation

K D .R/C FE=S 2 A2.M;ƒ2E/;

where FE=S WD q�1 ı c�1.F E=S /.

Proposition 5.3. For � 2 X.M/ and p.X/ 2 CJ of order k � J , we have

• the symbol �g.rE
�
/ is given by

s 7!

�
� 7! @�s.�/C

1

2
K.�; �/ ^ s.�/

�
;

• the symbol �g.c.�// is given by

s 7! Œ� 7! � ^ s.�/�;

• the symbol �g.p.X// is given by

s 7! Œ� 7! p.X/ � s.�/�:

Here, these symbols are considered as operators acting on

�.TmM;ƒT
�
mM ˝ EndCl.Em/˝CŒg�.J // for m 2M:

Proof. The first bullet point is quite verbatim as the proof of [20, Lemma 3.6.3]. The
second bullet point has the same proof as [20, Lemma 3.6.2].

To see the third bullet point, note that the operators rE
Y and p.X/ commute; therefore,

exp
�
trE
Y

�
t2kp.X/ D t2kp.X/ exp

�
trE
Y

�
;

and hence,
"Ym

�
t2kp.X/s

�
D t2kp.X/".Xm;0/.s/;

from which the statement follows.
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5.4. A conjugate connection

By Proposition 3.4, up to lower-order terms, the Bismut Laplacian H.X/ equals�
r

E; 14X
��
r

E; 14X :

Thus, it is related to the connection rE; 14X . But the rescaled bundle was defined using the
connection

r
E
D r

E; 14X �
1

4
�X :

In particular, the computations of Proposition 5.3 help to compute the symbol of operators
expressed in terms of the connection rE. Thus, it is convenient to express H.X/ in terms
of this connection. In other words, we want to express it in a coordinate system obtained
by local trivializing E using the parallel transport of rE along geodesics (while naturally,
it is expressed in trivialization obtained by parallel transport along rE; 14X ). One way of
doing it is by conjugating H.X/ with the bundle map � W E! E which intertwines those
two trivializations. This bundle map is given by the parallel transport along geodesics of
the trivial line bundle with respect to the connection d � 1

4
�X . This parallel transform

formula is given as � D e˛ , where ˛ W M �M ! g� is a smooth map on M �M with
values in g�.

Specifically, consider a smooth function ˛ W M �M ! g� � CŒg� defined on the
neighborhood of the diagonal �M ,!M �M by the formula

˛X .expm.�/;m/ D �
1

4

Z 1

0

.�.R/�X /
�

exp.t�/
�
t�1dt;

where R is the local Euler-like vector field on M �M defined by

R.expm.�/;m/ D
d

dt
jtD1.expm.t�/;m/: (5.1)

Away from a neighborhood of the diagonal, we can extend the function by zero using
a cut-off function, we have

R � ˛X .expm.�/;m/ D �
1

4
�X .R.expm.�/;m//:

Consider
!X WD �ds˛X �

1

4
�X 2 �

�
ƒ1T �s .M �M/

�
˝ g�;

which is a source-wise one-form and depends on X linearly, and ds is the source-wise de
Rham differential. We have the following equality:

• !X j�M D 0,

• in a neighborhood of the diagonal

�.R/!X D 0: (5.2)
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From (5.2), we obtain

L.R/!X D �
1

4
�.R/d�X ;

which means the first-order terms of Taylor expansion of ! are the same as �1
4
�.R/d�X .

Lemma 5.4. For �; � 2 X.M/, we have

d�X .�; �/ D �2.�
M .X/�; �/:

So, in particular, �1
4
�.R/d�X is the one-form dual to the vector field 1

2
�.X/R.

So, we have

!X D
1

4

X
j

.�.X/R; @j /dx
j
CO.2/; (5.3)

where O.2/ is a linear in X .

Lemma 5.5. For � 2 X.M/ and � 2 �.M �M;E� E�/˝CŒg�.J /, we have

osc.!X .�/�/ � o
sc.�/ � 1:

Proof. Since !X vanishes along the diagonal�M ,!M �M , the scaling order increases
by at least 1, and since it is linear in X , it increases the polynomial order by at most 1.
So, the equivariant scaling (scaling order minus two times the polynomial order) order
decreases by at most 1.

Therefore, t!X .�/ acts on the rescaled bundle, and it gives corresponding operators
on the quotient module and the rescaled bundle:

!X .�/ W �J;0.E;r/! �J;0.E;r/

and
!X .�/ W �.TM;EJ /! �.TM;EJ /:

Lemma 5.6. As an operator on �J;0.E/, we have

!X .�/� D
1

4
.�.X/R; �/ � �:

Proof. This follows immediately from (5.3).

Consider the map
� WM �M ! C1.g/ (5.4)

and
�X .m1; m2/ D e

˛X .m1;m2/:

Define the conjugate connection
�Xr

E;X��1X ;
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and denote it by
yr
X :

Note that
yr
X
D r

E
C !X :

By Lemma 5.6, the scaled operator t yrX� acts on the rescaled module and hence on the
rescaled bundle. From Proposition 5.3, it follows the following proposition.

Proposition 5.7. The Getzler’s symbol of yrX
�

is given for m 2M by

�g.yrX� /Õ �.TmM;ƒT
�
mM ˝ EndCl.Em/˝CŒg�.J //;

s 7!

�
� 7! @�s.�/C

1

2
K.�; �/ ^ s.�/C

1

4
.�.X/�; �/s.�/

�
:

Denote by yH.X/ the conjugate operator �XH.X/��1X . From Propositions 3.4 and 5.7
it follows that the Getzler symbol of the operator yH.X/, in a local orthonormal frame
¹eiºi , is given by the formula

�g. yH.X// D �
X
i

�
@i �

1

4

X
j

�
Rij C �

M
ij .X/

�
xj
�2
C F E=S

C �E=S .X/; (5.5)

whereRij D .R@i ; @j /. We will use the notation yH .X/ WD �g. yH.X// for the symbol. So,
in particular, the family of operators t2 yH.X/ acting on the rescaled bundle �.EJ / over
the t -fibers of the tangent groupoid along with the operator yH .X/ acting on the rescaled
bundle over the 0-fibers give a smooth differential operator acting on �.EJ /.

The operator (5.5) is a generalized harmonic oscillator operator (cf. [2, Definition
4.11]) and the Mehler kernel associated to the heat operator e�� yH.X/, � > 0, is given by
the formula

K
yH
� .X; �/ D .4��/

�n=2
1=2

det
�

�.RC �M .X//=2

sinh �.RC �M .X//=2

�
exp

�
� �.F E=S

C �E=S .X//
�

� exp
�
�
1

4�
h�j�.RC �M .X//=2 coth �.RC �M .X//=2j�i

�
;

which can be written in terms of equivariant curvature terms as follows:

.4��/�n=2
1=2

det
�

�Rg.X/=2

sinh �Rg.X/=2

�
� exp

�
�
1

4�
h�j�Rg=2 coth �Rg=2j�i

�
exp

�
� F E=S

g .X/
�
: (5.6)

6. The heat kernel asymptotics and proof of the Kirillov formula

We denote byK� .x;y;X/ 2 �.M �M;E� E�/ the heat kernel of e�� yH.X/ where yH.X/
is the conjugate operator �XH.X/��1X andH.X/DH 1

4
.X/ is the Bismut Laplacian (3.2).
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Lemma 6.1 ([26, Theorem 7.15]). Fix X 2 g. For J � 0, there exists an asymptotic
expansion

K� .x; y;X/ � .4�t/
�n=2 exp

�
�
d2.x; y/

4t

�X
j�0

�j ĵ;J .x; y;X/;

where ĵ;J .x; y; X/ 2 �.M �M;E� E�/. In a neighborhood of the diagonal, we have
the recurrence relations (cf. [26, equation (7.17)])

.rR C j CrR logg1=4/ ĵ;J D � yH.X/ ĵ�1;J ; (6.1)

where R is the Euler-like vector filed (5.1),ˆ0;J .x;y;X/ W Ey ! Ex is the parallel trans-
port along the geodesic between x and y with respect to the connection rE. Furthermore,

g D det.gij /

where gij .x;y/ are functions defined in a neighborhood of the diagonal onM �M whose
restriction to the source fibers M � ¹yº are the components of the metric in the normal
coordinate at y.

Remark 6.2. From the recurrence relations (6.1), it follows that the coefficients ĵ;J .x;

y;X/ are polynomials in variable X . Hence, we have

ĵ;J .x; y;X/ 2 �.M �M;E� E� ˝CŒg�.J //:

For every N � 0, we will denote by

KN� WD .4��/
�n=2e�

d2.x;y/
4�

NX
j�0

�j ĵ;J .x; y;X/

the approximate heat kernel. Consider the rescaled heat kernel

�N� .x; y;X/ WD t
n .d.x; y//KN

t2�
;

where  W R! R�0 is the cut-off functions such that  jŒ�r=2;r=2� D 1 and  vanishes
outside Œ�r; r� where r is the injectivity radius of M .

Proposition 6.3. For every j � 0, we have

osc. ĵ;J / � �2j:

Proof. We use induction on j . Note that for j D 0 the case is clear by Remark 6.2 and
Theorem 4.16, since ˆ0;J is the parallel transport map and hence synchronous. We show
for j > 0

osc. ĵ;J / D o
sc�.rR C j CrR logg1=4/ ĵ;J

�
; (6.2)
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from which we then deduce

osc. ĵ;J / � o
sc.� yH.X/ ĵ�1;J / � �2.j � 1/ � 2 D �2j:

So, we just need to prove (6.2). Using Theorem 4.16, we only need to show the equality
in a trivializing neighborhood associated with the Euler-like vector field R. So if the
Taylor expansion of ˆi;J is given by

ĵ;J �

X
I

yI�I ;

then we have the Taylor expansion

.rR C j / ĵ;J �

X
I

.jI j C j /yI�I ;

which has the same scaling order (i.e., Taylor order) as ĵ;J . The Euler-like vector field
R vanishes along the diagonal; hence so does rR log g1=4. Thus, this term has no effect
on the scaling order, and therefore, the equality (6.2) follows.

Note that for � > 0 the we may consider  .d.x; y//e�
d2.x;y/

4� t2 as a smooth function on
TM . By Proposition 6.3, we have

NX
j�0

�j t2j ĵ;J 2 �J .E;r/;

and hence, �N� .x; y;X/ 2 �.TM;EJ /.
The following lemma is a generalization of [22, Lemma 2.8]. Consider a section s 2

�.M �M �R;E� E�/ and the natural projection � W TM !M �M �R.

Lemma 6.4. For N � n, the section tNC1s, after composing with � W TM !M �M �

R, may be considered as a smooth section of the rescaled bundle EJ !TM that vanishes
to order 2N � nC 1 on the zero fiber of the tangent groupoid.

Proof. Since the function, t W TM ! R is the canonical projection. This projection, as a
function, vanishes on the zero fiber. Since we may write

t2NC1s D t2N�n � tnC1s;

it is enough to show that tns gives a smooth section of the rescaled bundle that vanishes
along the zero fiber. Note that we may find sections �1; � � � ; �p 2 �.M �M;E� E�/ and
functions f1; � � � ; fp 2 C1.M �M �R;E� E�/ such that

s D

pX
jD1

fj .x; y; t/�j .x; y/:
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Since tnC1�j is an element of the rescaled module that gives zero values on the zero
fiber of the tangent groupoid and fi ı � 2 C1.TM/, we obtain a smooth section of the
rescaled bundle of the form

pX
jDj

fi ı � � t
nC1�j

that vanishes along the zero fiber of TM .

From Lemma 6.1, we have

K� t2 � �
N
� D O.t2NC1/;

where O.t2NC1/ 2 �.M �M � R; E � E�/ and if N > n=2, by Lemma 6.4, it gives
a smooth section of the rescaled bundle vanishing over the zero fiber of the tangent
groupoid. In particular, we have the following theorem.

Theorem 6.5. The rescaled heat kernel K � WDK� t2 gives a smooth section of the rescaled
bundle EJ ! TM , which over the zero fiber of the tangent groupoid agrees with values
of sections �N� for N > n=2.

The section K � 2 �.TM;EJ / satisfies the heat equation

.@� C yH .X//K � D 0;

where yH .X/ is the smooth extension of the operator t2 yH.X/ to zero fiber of the tangent
groupoid. Note that on zero fiber of the tangent groupoid, yH .X/ acts as the harmonic
oscillator operator yH .X/ given in (5.5). Therefore, we have

.@� C yH .X//.K � jtD0/ D 0:

The uniqueness property of the Mehler kernel then proves

K jtD0 D K
yH
� ; (6.3)

where K yH� is as in (5.6).

6.1. Supertraces on the rescaled bundle

Let M �R ,! TM denote the embedding of the unit space of the tangent groupoid.

Lemma 6.6. The following map is well defined:

s W �.TM;EJ /! C1.M �R;CŒg�.J //;

� 7!

´
.m; t/ 7! t�n str .�.m;m; t//; t ¤ 0;

.m; 0/ 7! str .�.0m; 0//; t D 0:

Here, C1.M �R;CŒg�.J // denotes the CŒg�.J /-valued smooth functions onM �R. The
supertrace str.�.m; m; t// is induced by the supertrace on E ˝ E� and the supertrace
str.�.0m; 0// is given by the Berezin integral .cf. [2, page 40]/.
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Proof. Since every � 2 �.TM;S/ can be written as a sum

� D
X
k

fk�k ;

where fk 2 C1.TM/ and �k 2 �J .E; r/, it is enough to prove the lemma for � 2
�J .E;r/. So, assume � D

P
k skt

�k , where sk 2 �.M �M; E� E� ˝ CŒg�.J // is of
scaling order k or more. We claim str.sk.m;m// D 0 for k > �n. To see why, note that
by definition

osc.sk/ � �o
f.sk/:

So, when k > �n,
of.sk/ < n;

and therefore, str.sk.m;m//D 0. Also, for k <�n, t�nstr.sk/.x;x/t�k extends smoothly
to zero at t D 0, since k � n> 0. For kD�n, the function t�nstr.s�n.m;m//tn is constant
in t . Therefore,

t�nstr.�.m;m; t//

extends smoothly to
str.s�n.m;m//

at t D 0 which equals str.�.0m; 0//.

Using Lemma 6.6, we define a family of functionals on �.TM;EJ /

Strt W �.TM;EJ /! C

given as

Strt .�/ D
Z
M

s.�/.m; t/dm; (6.4)

and obviously, Strt .�/! Str0.�/.

Theorem 6.7 (McKean–Singer). For t ¤ 0 and � > 0, we have

Strt .K � /

is independent of t; � and by Proposition 3.2 equals the equivariant index

ind.e�X ; =D/:

Since the supertraces Strt (6.4) are defined for every t , Theorem 6.7 also applies for
t D 0. So, by evaluating at � D 1 and t D 0 and using (6.3), we obtain

Theorem 6.8 (Kirillov formula). The equivariant index is given by the integral of equiv-
ariant differential forms as follows:

ind.e�X ; =D/ D .2�i/�n=2
Z
M

yAg.X;M/Chg.X;E=S/:
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7. The other examples of the rescaled bundles

We conclude with several more examples and applications of our construction of the
rescaled bundle in different geometric situations.

7.1. The case with no filtration

Consider an embedding M ,! V . For every vector bundle E ! V with trivial filtrations
on EjM and End.E/ and for every connection r on E ! V , the pair .E;r/ is a scaling
bundle. Hence, we obtain a rescaled bundle

E! DNC.V;M/:

Since, in this case, the scaling order coincides with the vanishing order, this bundle is inde-
pendent of the choice of the connection r. Indeed, the rescaled bundle E is isomorphic to
the pullback bundle ��VE, where �V W DNC.V;M/! V is the canonical projection.

One important case of this situation is the description of the Witten deformation via
the deformation to normal cone construction, recently obtained by Omar Mohsen [24]. In
this case,

E D ƒ�T �V ! V:

In the next subsection, we discuss an equivariant generalization of Mohsen’s construction.

7.2. The equivariant Witten and Novikov deformations

Let G be a compact Lie group action on a closed manifold M . Then, ƒ�T �M ! M is
a G-equivariant bundle induced with the Levi–Civita connection rLC . As in Section 5.1,
we consider the equivariant version of this bundle:

E WD ƒ�T �M ˝CŒg�.J /

and endow it with the connection

r WD r
LC
˝ 1C 1˝ d:

Let f WM !R be aG-equivariant Morse–Bott function, with the critical submanifold
Z ,! M . We consider the filtrations on EjZ and on E defined by the trivial filtrations
on ƒ�T �M jZ and ƒ�T �M and the filtration by 2 deg P on CŒg�.J /. (Note that this
is different from the filtration (2.1), where we also consider a non-trivial filtration on
ƒ�T �M .) This gives a scaling bundle .E;r/, and thus, one obtains a rescaled bundle
E ! DNC.M; Z/. The arguments of [24] extend naturally to the equivariant case and
show that the “rescaled Witten deformation” of the de Rham–Dirac operator

t
�
e
1

t2
f
de
� 1

t2
f
C e
� 1

t2
f
d�e

1

t2
f �
D t

�
d C d� C

1

t2
c.df /

�
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acts on the rescaled module �.E;r/ and hence extends to a smooth G-equivariant differ-
ential operator acting on the section of the rescaled bundle �.E/. One can also generalize
it to the Novikov deformation, defined by a closed differential form !:

t

�
d C d� C

1

t2
c.!/

�
;

cf. [5, 8, 25] for the non-equivariant case and [6, 7] for the equivariant case.

7.3. The fixed-point formula for the equivariant index

Another example of the rescaled bundle arises in the context of the equivariant index
formula, which will appear in a joint paper of the second author with Yiannis Loizides,
Jesus Sanchez, and Shiqi Liu.

Consider a compact Lie group G acting isometrically on M . For an element g 2 G,
denoted by M g the fixed submanifold under the action of g. Associated to the diagonal
embedding M g ,! M �M , the deformation space DNC.M �M;M g/ is called the
relative tangent groupoid and denoted by TgM .

Assume E!M is aG-equivariant Clifford module that carries aG-invariant connec-
tion r. The bundle

E D E� E� !M �M

carries the induced connection rE . Using a similar argument as in Example 4.8, one
obtains the scaling bundle .E;rE / and the rescaled bundle

Eg ! TgM:

Using this vector bundle, one recovers the fixed-point index formula for equivariant Dirac
operators.
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