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On the realization of a class of SL.2 ; Z/ representations

Zhiqiang Yu

Abstract. Let p < q be odd primes and �1 and �2 be irreducible representations of SL.2;Zp/
and SL.2;Zq/ of dimensions pC12 and qC1

2 , respectively. We show that if �1 ˚ �2 can be realized
as a modular representation associated with a modular fusion category C , then q �pD 4. Moreover,
if C contains a non-trivial étale algebra, then C � C.Zp ; �/ Š Z.A/ as a braided fusion category,
where A is a near-group fusion category of type .Zp ; p/, which gives a partial answer to the con-
jecture of D. Evans and T. Gannon. We also show that there exists a non-trivial Z2-extension of A

that contains simple objects of Frobenius–Perron dimension
p
pC
p
q

2 .

1. Introduction

A braided spherical fusion category C is called modular if the S -matrix of C is non-
degenerate (see Section 2). Modular fusion category connects with conformal field theory,
quantum groups, representation theory, and mathematical physics, etc. [6, 9, 16, 17].
Combined with the T -matrix, which is defined by the ribbon structure � of C , these two
matrices .S; T / are called the modular data of C . The modular data enjoy many important
algebraic and arithmetic properties. The modular data provides a projective congruence
representation � of the modular group SL.2;Z/ of level N [6, 9, 18], where N D ord.T /.
Moreover, � can be lifted to a linear congruence representation of SL.2;Z/ of level n with
N j n j 12N , that is, it factors through SL.2;Z/! SL.2;Zn/, and the linear representation
satisfies the Galois symmetry [6].

Finite-dimensional representations of SL.2; Zn/ are classified completely in [21,
22]. Thus, one could construct (or reconstruct) modular fusion categories from finite-
dimensional congruence representations of SL.2; Z/; see [18, 20, 30] for applications.
In this paper, we are aimed to realize a class of finite-dimensional congruence representa-
tions of SL.2;Z/ as a modular representation associated with a modular fusion category.
Explicitly, let p be an odd prime, and let � be an irreducible pC1

2
-dimensional represen-

tation of SL.2;Zp/. It is well known that, up to isomorphism, there exist just two such
representations [21]. However, neither of these two representations can be isomorphic to a
modular representation associated with a modular fusion category [8]. Hence, we consider
the following question.
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Question 1.1. Let p < q be odd primes. Is there a modular fusion category C such that
the associated modular representation �C Š �1 ˚ �2, where �1 and �2 are irreducible
representations of dimension pC1

2
and qC1

2
, respectively?

When p D 3 and q D 7, the answer is positive [18, Lemma 4.7]. We give a necessary
condition on realizing the sum �1˚ �2 in Theorem 3.2, which states q �pD 4. Moreover,
we show that if such a modular fusion category C does exist, then it is connected with
a near-group fusion category A (see Section 3.2). We study the structure of C and the
related near-group fusion category A; and we also give a faithful Z2-extension of A,
which generalizes the fusion category V constructed by Ostrik in [4].

Since there exists a pointed modular fusion category C.Zp; �/ of Frobenius–Perron
dimension p such that C �C.Zp;�/ŠZ.A/ as a modular fusion category (Theorem 3.5),
which then can be viewed as evidence that [12, Conjecture 2] might be true; and the
modular data (of C ) obtained in this paper gives a partial solution to the modular data
described with unknown parameters in [12, Proposition 7].

This paper is organized as follows: In Section 2, we recall some basic notions
and notations of (modular) fusion categories, such as Frobenius–Perron dimension,
global dimension, modular data, and the congruence representations of the modular
group SL.2;Z/. In Section 3, we consider the realization of a direct sum �1 ˚ �2 of
two irreducible representations of dimensions pC1

2
and qC1

2
, respectively. We show in

Theorem 3.2 that if �1 ˚ �2 can be realized as a representation associated with a modular
fusion category C , then q � p D 4. Under the assumption that C contains a non-trivial
connected étale algebra A, we prove that C0A is a pointed modular fusion category and
CA is a near-group fusion category of type .Zp; p/ in Theorem 3.5 and Theorem 3.8.
At last, we construct a faithful Z2-extension M of CA, which contains simple objects
of Frobenius–Perron dimension

p
pC
p
q

2
, and we determine the fusion relations of M in

Corollary 3.13.

2. Preliminaries

In this section, we recall some of the most used definitions and properties of modular
fusion categories; we refer the reader to [7, 9–11, 17] for standard conclusions for fusion
categories and braided fusion categories.

2.1. Fusion category

A C-linear abelian category C over the complex number field C is called a fusion category
if C is a finite semisimple tensor category [9]. In the following, we use O.C/ and ˝ to
denote the set of isomorphism classes of simple objects of C and the tensor product on C ,
respectively.

Let C be a fusion category. Its Grothendieck ring is then a fusion ring with
ZC-basis O.C/ and the multiplication is induced by the tensor product ˝. There
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is a unique homomorphism FPdim.�/, called the Frobenius–Perron homomorphism,
from Gr.C/ to C such that FPdim.X/ is a positive algebraic integer for all non-zero
objects X [9, 10]. The sum

FPdim.C/ WD
X

X2O.C/

FPdim.X/2

is called the Frobenius–Perron dimension of C .
A fusion category C is pivotal if it admits a pivotal structure j , which is a natural

isomorphism from the identity functor id to the double dual functor .�/�� [9]. Then there
is a well-defined categorical trace Tr.�/ for all morphisms f 2 HomC .X; X/, where X
is an object of C . Fix a pivotal structure j on C , the categorical trace of idX is called the
categorical dimension of X and is denoted by dim.X/, and the sum

dim.C/ WD
X

X2O.C/

dim.X/ dim.X�/

is called the global (or quantum) dimension of C . Moreover, the categorical dimension
induces a homomorphism from the Grothendieck ring Gr.C/ to C [9, Proposition 4.7.12].
If dim.X/ D dim.X�/ for all objects X of C , then C is called spherical.

Recall that a fusion ringR is categorifiable if there exists a fusion category C such that
Gr.C/ D R as fusion ring [9, Definition 4.10.1], and C is called a categorification of R.
For example, for any finite group G, the pointed fusion category Vec!G , i.e., the category
of G-graded finite-dimensional vector spaces over C, is a categorification of the group
ring ZŒG�, where ! 2 Z3.G;C�/ is a normalized 3-cocycle on G and C� WD Cn¹0º.

2.2. Modular fusion category and modular representation

A braided fusion category C is a fusion category with a braiding c, which is a natural
isomorphism cX;Y W X ˝ Y

�
�! Y ˝X satisfying the hexagon equations [9]. In addition,

if C is spherical, then C is called a pre-modular (or ribbon) fusion category and we use �
to denote the ribbon structure of C .

Let C be a pre-modular fusion category. For any simple objects X; Y of C , let
SX;Y WD Tr.cY;XcX;Y /, then

S D .SX;Y /; T D .ıX;Y �X /

is called the modular data of C . If the S -matrix S is non-degenerate, then C is said to
be a modular fusion category [7, 17]. For example, pointed modular fusion categories are
in bijective correspondence with metric groups [7, Proposition 2.41]. We use C.G; �/ to
denote the modular fusion category determined by the metric group .G; �/, where G is a
finite abelian group and � W G! C� is a non-degenerate quadratic form, the modular data
of C.G; �/ is

Sg;h D
�.gh/

�.g/�.h/
; �g D �.g/;8g; h 2 G:
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The S -matrix of a modular fusion category C also satisfies the Verlinde formula [9], which
states that for any objects X; Y;Z 2 O.C/,

NZ
X;Y WD dimC.HomC .X ˝ Y;Z// D

1

dim.C/

X
W 2O.C/

SX;W SY;W SZ�;W

dim.W /
:

Recall that the modular group SL.2;Z/ is generated by s D
�

0 1
�1 0

�
and t D

�
1 1
0 1

�
with relations s4 D 1 and .st/3 D s2. The modular data of a modular fusion category C

determines a projective congruence representation � of the modular group SL.2;Z/ of
level N D ord.T / [2, 6, 9, 18], that is, ker.�/ kills a congruence subgroup of level N , and

� W s 7!
1p

dim.C/
S; t 7! T;

where
p

dim.C/ is the positive square root of dim.C/. Moreover, the projective represen-
tation � can be lifted to a linear congruence representation �C of level n and N j n by
[6, Theorem II], where n D ord.�C .t//. If ord.T / is odd, then there is a lifting �0 of �
such that ord.�0.t// D ord.T / [6, Lemma 2.2].

Let � be an arbitrary irreducible finite-dimensional congruence representation of
SL.2; Z/ of level n, where n is a positive integer. Then it follows from the Chinese
remainder theorem that � factors through the finite groups

SL.2;Zn/ Š SL.2;Z
p
n1
1
/ � � � � � SL.2;Zpnrr /

and � Š
Nr
jD1�pj , where n D

Qr
jD1 p

nj
j and pj are distinct primes, and �pj are finite-

dimensional representations of subgroups SL.2; Z
p
nj
j

/. Finite-dimensional irreducible

representations of the group SL.2;Zpm/ are completely classified and constructed explic-
itly in [21, 22].

Hence, one could try to reconstruct modular fusion categories from finite-dimensional
congruence representations of SL.2;Z/; see [2, 8, 18, 20, 30] and the references therein
for details. For example, many important properties of modular representations are sum-
marized and characterized in [18]; as an application, modular fusion categories with six
simple objects (up to isomorphism) are classified by considering the type of the associated
modular representation of C [18]. A representation � of SL.2;Z/ is called realizable if
there exists a modular fusion category C such that �C Š �.

3. Realization and extension

In this section, we consider the realization of �1 ˚ �2 as a modular representation associ-
ated with a modular fusion category. Under the assumption that �1 ˚ �2 can be realized
as a representation of a modular fusion category C , we study the structure of C and show
it is related to a certain near-group fusion category A. At last, we construct a faithful
Z2-extension of A.
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3.1. Realization

Let p be an odd prime. Let � be a pC1
2

-dimensional irreducible representation of
SL.2;Zp/. Then [8, (4.11)] says

�.s/ D p̌

0BBBB@
1
p
2 � � �

p
2

p
2
::: 2 cos

�
4�ajk
p

�
p
2

1CCCCA D
�

p̌ BT

B D

�
; �.t/ D diag.1; T1/;

where BT WD .
p
2 p̌; : : : ;

p
2 p̌/ is a p�1

2
-dimensional vector over C, and

D WD

�
2 p̌ cos

�
4�ajk

p

��
and T1 WD diag

�
�ap ; : : : ; �

a�
�
p�1
2

�2
p

�
are square matrices of order p�1

2
, 1 � j; k � p�1

2
, p̌ WD

�
a
p

�q�
�1
p

�
1
p

, where a is an
integer coprime to p and

�
a
p

�
is the classical Legendre symbol. Notice that � is non-

degenerate, i.e., the eigenvalues of �.t/ are multiplicity-free. Given an odd prime p, up to
isomorphism, it is well known that there are exactly two such irreducible representations
[21], depending on the value

�
a
p

�
.

It was proved in [8] that � cannot be realized by a rational conformal field theory
(equivalently, it cannot be realized as a modular representation associated with a modular
fusion category), as the corresponding fusion rings obtained from the Verlinde formula
are not integer-valued fusion rings. However, it was also noted in [8] that one can obtain
an integer-valued fusion ring from a direct sum of two such representations for different
primes p; q such that q � p D 4.

Hence, one would like to answer the following question naturally.

Question 3.1. Let p < q be odd primes. Furthermore, let �1 and �2 be irreducible rep-
resentations of SL.2;Zp/ and SL.2;Zq/ such that dim.�1/ D pC1

2
and dim.�2/ D qC1

2
,

respectively. Is �1 ˚ �2 realizable?

When p D 3 and q D 7, the answer is positive; and C is a Galois conjugate of the
modular fusion category C.g2; 3/ [18, Lemma 4.7]. We refer the reader to [1] for con-
struction of the modular fusion category C.g; k/, where g is a simple Lie algebra. Notice
that if p D 1 (of course, it is not a prime), and let �0 be the trivial representation, then
�0 ˚ �2 is realizable for all primes q � 5; moreover, the associated modular fusion cate-
gory C is Grothendieck equivalent to C.sl2; 2.q � 1//

0
A [30, Theorem 3.12], where A is

the non-trivial étale algebra of Rep.Z2/ � C.sl2; 2.q � 1// and C.sl2; 2.q � 1//
0
A is the

core of C.sl2; 2.q � 1//; see [5, 7, 16] for details.
In the following theorem, we give a necessary condition to realize �1 ˚ �2 as modular

representation associated with a modular fusion category.
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Theorem 3.2. If there is a modular fusion category C such that �C Š �1 ˚ �2, then
q � p D 4.

Proof. It follows from [18, Theorem 3.23] that

�C .s/ D V

0B@ A C T1 C T2

C1 D1 0
C2 0 D2

1CAV; �C .t/ D

0@E2 T1
T2

1A;
where V is a signed diagonal orthogonal matrix, T1 D diag

�
�
a1
p ; : : : ; �

a1�
�
p�1
2

�2
p

�
and

T2 D diag
�
�
a2
q ; : : : ; �

a2�
�
q�1
2

�2
q

�
, and

A D U

�
p̌

ˇq

�
U T D

1

2

�
p̌ C ˇq �. p̌ � ˇq/

�. p̌ � ˇq/ p̌ C ˇq

�

with U D
�

1p
2

��p
2

�p
2

1p
2

�
and �2 D 1,

C1 D .B1; 0/U
T
D p̌

0B@ 1 �
:::

:::

1 �

1CA; C2 D .0; B2/U T D ˇq
0B@�� 1

::: 1
�� 1

1CA:
Let V D diag

�
1; �1; : : : ; � pCq

2

�
where �j 2 ¹˙1º for all 1 � j � pCq

2
; hence, we see

�C .s/ D V

0B@ A C T1 C T2

C1 D1 0
C2 0 D2

1CAV

D V

0BBBBBBBBBBBBBBBB@

1
2
. p̌ C ˇq/

�
2
. p̌ � ˇq/ p̌ � � � p̌ ��ˇq � � � ��ˇq

�
2
. p̌ � ˇq/

1
2
. p̌ C ˇq/ p̌� � � � p̌� ˇq � � � ˇq

p̌ p̌�
:::

:::

p̌ p̌� D1 0

��ˇq ˇq
:::

::: 0 D2
��ˇq ˇq

1CCCCCCCCCCCCCCCCA
V
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D

0BBBBBBBBBBBBBBBB@

1
2
. p̌ C ˇq/

��1
2
. p̌ � ˇq/ �2 p̌ � � � � pC1

2
p̌ �� pC3

2
�ˇq � � � �� pCq

2
�ˇq

��1
2
. p̌ � ˇq/

1
2
. p̌ C ˇq/ �1�2 p̌� � � � �1� pC1

2
p̌� �1� pC3

2
ˇq � � � �1� pCq

2
ˇq

�2 p̌ �1�2 p̌�
:::

:::

� pC1
2

p̌ �1� pC1
2

p̌� V1D1V1 0

�� pC3
2
�ˇq �1� pC3

2
ˇq

:::
::: 0 V2D2V2

�� pCq
2
�ˇq �1� pCq

2
ˇq

1CCCCCCCCCCCCCCCCA
;

where

V D

0BB@
1

�1
V1

V2

1CCA; V1 D
0BB@
�2

: : :

� pC1
2

1CCA; V2 D
0BB@
� pC3

2

: : :

� pCq
2

1CCA:
Since the categorical dimensions of the simple objects are always non-zero, either the

elements in the first or the second row are dimensions (multiplied with a non-zero scalar
necessarily) of simple objects of C , depending on which vector represents the unit object.

We know p̌ D
�p
p
p

and ˇq D
�q
p
q

, where �p D
�
a1
p

�q�
�1
p

�
and �q D

�
a2
q

�q�
�1
q

�
are 4th

roots of unity. A classical theorem about Legendre symbols says
�
a1
p

�
� a

p�1
2

1 mod p, so

�p D

�
a1

p

�s�
�1

p

�
D

8<:
�
a1
p

�
; if p D 4k C 1;�

a1
p

�
�4; if p D 4k C 3.

;

where �4 is a 4th primitive root of unity. Notice that

j p̌ C ˇqj
2
D
.�p
p
q C �q

p
p/.x�p

p
q C x�q

p
p/

pq

D
.p C q/C .x�p�q C x�q�p/

p
pq

pq
:

We claim x�p�q C x�q�p D 2Re.x�p�q/ D ˙2. In fact, x�p�q C x�q�p ¤ 0, otherwise

dim.C/ D
4

j p̌ C ˇqj2
D

4pq

p C q
;

thenpCq must contain a prime factor, which is coprime topq. However, ord.�C.t//Dpq;
it violates the Cauchy theorem of spherical fusion categories [2, Theorem 3.9]. Mean-
while, x�p�q is a 4th root of unit, so 2Re.x�p�q/ D ˙2, as claimed. Therefore,

dim.C/ D
4

j p̌ C ˇqj2
D pq

pCq
2
˙
p
pq

2
;
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depending on the value of Re.x�p�q/. Then

N.dim.C// D p2q2N
� pCq

2
˙
p
pq

2

�
D p2q2

.p � q/2

16
;

where N.dim.C// and N
� pCq

2 ˙
p
pq

2

�
are the norms of dim.C/ and

pCq
2 ˙
p
pq

2
over

Q.
p
pq/, respectively. Again, the Cauchy theorem of spherical fusion categories [2,

Theorem 3.9] implies that
pCq
2 ˙
p
pq

2
must be an algebraic unit in Q.

p
pq/, that is,

q � p D 4, as desired.

Below we calculate the dimensions of the simple objects of C , denoted by "pq WD
p
pC
p
q

2
, then dim.C/ D pq"˙2pq . Since q � p D 4, we have x�p�q D

�
a1
p

��
a2
q

�
D ˙1.

That is, if a1 and a2 are both square residues or both non-square residues modulo p and q,
respectively, then dim.C/ D pq"�2pq ; otherwise, dim.C/ D pq"2pq .

We list the categorical dimensions in both cases explicitly. After identifying O.C/

with the standard basis ¹e1; : : : ; epC2º of the vector space CpC2, the S -matrix of C can
be written as

S D

0BBBBBBBBBBBBBBBBBBBBBBBBB@

1
��1. p̌�ˇq/

p̌Cˇq

2�2 p̌

p̌Cˇq
� � �

2� pC1
2

p̌

p̌Cˇq

�2� pC3
2
�ˇq

p̌Cˇq
� � �

�2� pCq
2
�ˇq

p̌Cˇq

��1. p̌�ˇq/

p̌Cˇq
1

2�1�2 p̌�

p̌Cˇq
� � �

2�1� pC1
2

p̌�

p̌Cˇq

2�1� pC3
2
ˇq

p̌Cˇq
� � �

2�1� pCq
2
ˇq

p̌Cˇq

2�2 p̌

p̌Cˇq

2�1�2 p̌�

p̌Cˇq
:::

:::
2� pC1

2
p̌

p̌Cˇq

2�1� pC1
2

p̌�

p̌Cˇq

2

p̌Cˇq
V1D1V1 0

�2� pC3
2
�ˇq

p̌Cˇq

2�1� pC3
2
ˇq

p̌Cˇq
:::

::: 0 2

p̌Cˇq
V2D2V2

�2� pCq
2
�ˇq

p̌Cˇq

2�1� pCq
2
ˇq

p̌Cˇq

1CCCCCCCCCCCCCCCCCCCCCCCCCA

:

Case (1): x�p�q D 1. We can assume that a1 and a2 are both residues modulo p and q,
respectively, the other case is same. Let a1 D a2 D 1. Then p̌ D

1p
p

and ˇq D 1p
q

;
if p D 4k C 1, p̌ D

�4p
p

and ˇq D
�4p
q

if p D 4k C 3, then dim.C/ D pq"�2pq . Let

d1 WD
p
q"�1pq D

p
q.
p
q �
p
p/

2
; d 01 WD d1"

2
pq D

p
q"pq D

p
q.
p
q C
p
p/

2
;

d2 WD
p
p"�1pq D

p
p.
p
q �
p
p/

2
; d 02 WD d2"

2
pq D

p
p"pq D

p
p.
p
q C
p
p/

2
:
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Then the first row of the S -matrix is�
1; ��1"

�2
pq ; �2d1; : : : ; � pC1

2
d1;��� pC3

2
d2; : : : ;��� pCq

2
d2
�
;

and the second row of the S -matrix is�
��1"

�2
pq ; 1; �1�2�d1; : : : ; �1� pC1

2
�d1; �1� pC3

2
d2; : : : ; �1� pCq

2
d2
�
:

If the first rows are the categorical dimensions of the simple objects, that is, the first
basis element e1 is the unit object of C , notice that

dim.C/ < �.dim.C// D pq"2pq � FPdim.C/;

where h�iDGal.Q.
p
pq/=Q/. Then the second row must be the Frobenius–Perron dimen-

sions of the simple objects of C multiplied by the scalar ��1"�2pq . Since FPdim.X/ > 0,
X 2 O.C/,

��1 D �� pC3
2
D � � � D �� pCq

2
D 1; �2 D � � � D � pC1

2
D 1;

consequently, we obtain FPdim.C/ D pq"2pq and

FPdim.X/ 2
®
1; "2pq; d

0
1; d
0
2

¯
; dim.X/ 2

®
1; "�2pq ; d1;�d2

¯
;8X 2 O.C/:

It is easy to see that the other formal codegrees of C are either dim.C/
d21
D p or dim.C/

d22
D q,

which cannot be the Frobenius–Perron dimension of C since C is not pointed; hence C is a
Galois conjugate of a pseudo-unitary fusion category. Moreover, the modular data of C is

S D

0BBBBBBBBBBBBBBBB@

1 "�2pq d1 � � � d1 �d2 � � � �d2

"�2pq 1 d1 � � � d1 d2 � � � d2

d1 d1
:::

::: 2d1 cos
�
4�j1k1
p

�
0

d1 d1

�d2 d2
:::

::: 0 2d2 cos
�
4�j2k2
q

�
�d2 d2

1CCCCCCCCCCCCCCCCA
;

T D diag
�
1; 1; �p; : : : ; �

�
p�1
2

�2
p ; �q; : : : ; �

�
q�1
2

�2
q

�
;

where 1 � j1; k1 � p�1
2

and 1 � j2; k2 � q�1
2

.
If the second row are the categorical dimensions of the simple objects, then e2 is the

unit object of C and the elements in the first row are the Frobenius–Perron dimensions of
the simple objects multiplied by the scalar ��1"�2pq , similarly,

��1 D ��� pC3
2
D � � � D ��� pCq

2
D 1; �2 D � � � D � pC1

2
D 1;
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again we obtain

FPdim.X/ 2
®
1; "2pq; d

0
1; d
0
2

¯
; dim.X/ 2

®
1; "�2pq ; d1;�d2

¯
;8X 2 O.C/:

Hence, FPdim.C/ D pq"2pq . By using the same argument, we see that C is a Galois con-
jugate of a pseudo-unitary fusion category.

Case (2): x�p�q D �1. We can assume a1 D 1 and a2 is a non-square residue modulo q;
the other case is the same. Then p̌ D

1p
p

and ˇq D �1p
q

if p D 4k C 1, p̌ D
�4p
p

and

ˇq D
��4p
q

if p D 4k C 3; moreover, dim.C/ D pq"2pq . The first row of S is�
1; ��1"

2
pq; �2d

0
1; : : : ; � pC1

2
d 01;��� pC3

2
d 02; : : : ;��� pCq

2
d 02
�
;

and the second row of S is�
��1"

2
pq; 1; �1�2�d

0
1; : : : ; ��1� pC1

2
d 01; �1� pC3

2
d 02; : : : ; �1� pCq

2
d 02
�
:

Notice that dim.C/ D pq"2pq , dim.C/ has a Galois conjugate pq"�2pq < dim.C/ and that
the other formal codegrees of C are either p or q; hence FPdim.X/ D dim.X/ for all
simple objects X of C . Without loss of generality, we can take the elements in the first
row to be the Frobenius–Perron dimensions of the simple objects of C , then

��� pC3
2
D � � � D ��� pCq

2
D 1; ��1 D �2 D � � � D � pC1

2
D 1;

and FPdim.X/ 2
®
1; "2pq; d

0
1; d

0
2

¯
; 8X 2 O.C/. In addition, up to isomorphism, we

know that C contains p�1
2

simple objects of Frobenius–Perron dimension d 01 and q�1
2

simple objects of Frobenius–Perron dimension d 02, and a unique simple object X with
FPdim.X/ D "2pq . Notice that the modular data of C is

S D

0BBBBBBBBBBBBBBBB@

1 "2pq d 01 � � � d 01 d 02 � � � d 02

"2pq 1 d 01 � � � d 01 �d 02 � � � �d 02

d 01 d 01
:::

::: 2d 01 cos
�
4�j1k1
p

�
0

d 01 d 01

d 02 �d 02
:::

::: 0 �2d 02 cos
�
4�a2j2k2

q

�
d 02 �d 02

1CCCCCCCCCCCCCCCCA
;

T D diag
�
1; 1; �p; : : : ; �

�
p�1
2

�2
p ; �a2q ; : : : ; �

a2

�
q�1
2

�2
q

�
;

where 1 � j1; k1 � p�1
2

and 1 � j2; k2 � q�1
2

.

Corollary 3.3. Let C be a modular fusion category such that �C Š �1˚ �2; then either C

is a Galois conjugate of a pseudo-unitary fusion category or dim.Y / D FPdim.Y / for all
simple objects Y of C .
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Proposition 3.4. Let C be a modular fusion category such that �C Š �1 ˚ �2; then C

must be a simple modular fusion category.

Proof. On the contrary, assume that C contains a non-trivial fusion subcategory D , which
must be modular as C does not contain non-trivial simple objects of integer dimensions,
hence C Š D �D 0

C
by [9, Theorem 8.21.4], where D 0

C
is the centralizer of D in C .

In particular,
rank.C/ D p C 3 D rank.D/rank.D 0C /:

If dim.D/ cannot be divided by p or q, then [26, Theorem 4.4] says that D is a non-
trivial transitive subcategory in the sense of [20]. Assume rank.D/ D p�1

2
with p � 5,

so rank.D 0
C
/ D 2 C 8

p�1
, it is an integer if and only if p D 5; it is impossible as 9

is not a prime. Hence, both dim.D/ and dim.D 0
C
/ are divided by some primes. Obvi-

ously, p or q cannot divide both dim.D/ and dim.D 0
C
/, and we can assume p j dim.D/

and q j dim.D 0
C
/; then dim.D/ D pu1 and dim.D 0

C
/ D qu2, where uj are non-trivial

algebraic units. Therefore, rank.D/ D pC3
2

and dim.D 0
C
/ D qC3

2
by [30, Theorem 3.13],

which is a contradiction.

Let C be a braided fusion category. Recall that a commutative algebra A in C is said
to be a connected étale algebra if the category CA of right A-modules in C is semisimple
and HomC .I;A/D C [5, Definition 3.1]. Let .M;�M / 2 CA, where �M WM ˝ A!M

is the right A-module morphism of M . Then M is a local (or dyslectic) module if
�M D �M ı .cA;M cM;A/ [5,16], where c is the braiding of C . The category of local mod-
ules over a connected étale algebra A is a braided fusion category, which will be denoted
by C0A below.

Theorem 3.5. Let C be a modular fusion category such that �C Š �1˚ �2. If C contains
a non-trivial connected étale algebra A, then C0A is a pointed modular fusion category of
dimension p. In particular, C cannot be braided equivalent to the Drinfeld center of a
fusion category.

Proof. As we noticed in Corollary 3.3, we have dim.Y / D FPdim.Y / for all objects Y
of C or C is a Galois conjugate of a pseudo-unitary fusion category. After replacing C by
its Galois conjugate (if necessary), we know that the Frobenius–Perron dimensions of the
objects coincide with the categorical dimensions of the objects.

Let A be a non-trivial connected étale algebra of C . In a pseudo-unitary fusion cat-
egory, we know that any connected étale algebra has trivial twist [25, Lemma 2.2.4].
Meanwhile, the modular fusion category C contains only two simple objects ¹I;Xº (up to
isomorphism) with trivial twisting, and the categorical dimension of X is "2pq . Therefore,
AD I ˚ nX for some n � 1. Since dim.C/D pq"2pq and dim.A/D 1C n"2pq , so dim.C/

dim.A/2

is an algebraic integer. Notice that

N

�
dim.C/
dim.A/2

�
D

p2q2�
n2 C 1C npCq

2

�2 ;
hence 1C n2C npCq

2
D q as pCq

2
>p. Then n� 1; otherwise npCq

2
� q; it is impossible.
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Thus, A D I ˚ X , and [5, Remark 3.4] states that it is a C -rigid algebra in the sense
of [16]. Then it follows from [16, Theorem 4.5] that C0A is a modular fusion category and

dim.C0A/ D
dim.C/
dim.A/2

D
pq"2pq

.1C "2pq/
2
D p;

which must be pointed by [26, Theorem 5.12]. Moreover,

C � .C0A/
rev
Š Z.CA/

as modular fusion categories [5, Corollary 3.30], where .C0A/
rev D C0A as a fusion cate-

gory but with reverse braiding [9]. Thus [5, Lemma 5.9] says that C is Witt equivalent to
C.Zp;�/, whose Witt equivalence class is non-trivial, so C cannot be braided tensor equiv-
alent to the Drinfeld center of any spherical fusion category by [5, Proposition 5.8].

Remark 3.6. As we all know, there is a conformal embeddingG2;3 �E6;1 [5, Appendix],
so the modular fusion category C.g2; 3/ contains a non-trivial étale algebra A such that
there is a braided equivalence C.g2; 3/

0
A Š C.e6; 1/, which is braided equivalent to

C.Z3; �/ [4, Proposition A.4.1]. Note dim.A/ D 7C
p
21

2
D 1C "221; hence A D I ˚ X

by Theorem 3.5.
However, when p > 3, we do not know currently whether there always exists an étale

algebra structure on the object I ˚X . We believe the answer is positive.

Remark 3.7. Let 	 W CA ! Z.CA/ be the right adjoint functor to the forgetful func-
tor F W Z.CA/ ! CA. Then all simple direct summands of 	.I / have trivial twists
by [19, Theorem 4.1]. Let Zj (1 � j � p�1

2
) be the simple objects of C such that

FPdim.Zj / D
p
q.
p
pC
p
q/

2
, then �Zj are primitive p-th roots of unity. Let g be a gen-

erator of Zp . Then
��1Zj D �gkj D �g�kj

for a unique kj with 1 � kj � p�1
2

. Hence, up to isomorphism, Z.CA/D C � .C0A/
rev has

exactly p C 1 simple objects with trivial twists, which are²
I � I;X � I;Zj � gkj ; Zj � g�kj

ˇ̌̌̌
1 � j �

p � 1

2

³
:

Indeed, in the next subsection, we will show that the Grothendieck ring Gr.CA/ is commu-
tative (see Theorem 3.8); therefore, 	.I /must be multiplicity-free by [23, Corollary 2.16],
and these objects are exactly the direct summands of 	.I /.

3.2. The structure of the fusion category CA

In this subsection, we show that the category CA obtained in Theorem 3.5 is a near-group
fusion category of type .Zp; p/.

Let G be a finite group, ZC WD Z�0 and n 2 ZC. Recall that a fusion ring R with
ZC-basis ¹g jg 2 Gº [ ¹Xº is called a near-group fusion ring of type .G; n/ [28] if

gX D Xg D X; XX D
X
g2G

g C nX:
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When n D 0, it is well known that R is categorifiable if and only if G is an abelian group,
the corresponding fusion categories are called Tambara–Yamagami fusion categories,
which are completely classified in [29]. We denote these fusion categories by T Y.G;�;�/,
where � is a non-degenerate bi-character on G and � is a square root of jGj�1.

Theorem 3.8. CA is a near-group fusion category of type .Zp; p/.

Proof. As we have a braided tensor equivalence C � .C0A/
rev Š Z.CA/ by Theorem 3.5,

then dim.CA/ D p
p
q"pq D

p.
p
pqCq/

2
, whose Galois conjugate is p.�

p
pqCq/

2
. It was

proved that fusion category CA is faithfully graded by the following Galois group

Gal.Q.FPdim.Y / W Y 2 O.CA//=Q.FPdim.CA///;

which is an elementary abelian 2-group [13, Proposition 1.8], so the order of the Galois
group is a factor of FPdim.CA/ by [9, Theorem 3.5.2]. Since 2 − FPdim.CA/, we see

Q.FPdim.Y / W Y 2 O.CA// D Q.
p
pq/ D Q."2pq/:

Notice that [10, Proposition 8.15] says the ratio FPdim.CA/
FPdim..CA/int/

is an algebraic integer, where
.CA/int is the maximal integral fusion subcategory of CA, so the only prime factor of
FPdim..CA/int/ is p, as C0A is pointed by Theorem 3.5. Hence, .CA/int D C0A.

Let Z be an arbitrary non-invertible simple object of CA such that FPdim.Z/ D
aCb
p
pq

2
, which is an algebraic integer, where a and b are rational with b ¤ 0. Then

the minimal polynomial of FPdim.X/ is

x2 � .FPdim.Z/C �.FPdim.Z///x C FPdim.Z/�.FPdim.Z//;

where �.
p
pq/ D �

p
pq. Note that FPdim.Z/ C �.FPdim.Z// D a 2 Q, so a is an

integer. Furthermore, m WD FPdim.Z/�.FPdim.Z// D a2�b2pq
4

is also an integer, then
b2pq D a2 � 4m 2 Z. Assume b D r

s
where .r; s/D 1, notice that .pq; s/D 1; otherwise

p or q is a factor of .r; s/; it is a contradiction. So b 2 Z.

Then FPdim.Z/2 D
a2Cb2pq

2 Cab
p
pq

2
, while

FPdim.CA/ D
p.q C

p
pq/

2
D

X
Y2O.CA/

FPdim.Y /2 � FPdim.C0A/C FPdim.Z/2;

so FPdim.Z/2 D
a2Cb2pq

2 Cab
p
pq

2
�

p.q�2/Cp
p
pq

2
, by comparing the rational and irra-

tional parts, we obtain that b2 � 1; consequently b D 1 (b ¤ �1, otherwise FPdim.Z/
has a Galois conjugate whose absolute value is strictly larger than FPdim.X/, which is
impossible [9, Theorem 3.2.1]). Therefore, up to isomorphism, CA has exactly one non-
invertible simple object Z. Since

FPdim.CA/ D p
p
q"pq D p C

�
p C
p
pq

2

�2
;
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FPdim.Z/ D pC
p
pq

2
. By comparing the Frobenius–Perron dimensions of the simple

objects, we see
Z ˝Z D

M
g2Zp

g ˚ pZ;

i.e., C is a near-group fusion category of type .Zp; p/.

Remark 3.9. It is worth noting that the categorifications of near-group fusion rings were
characterized with complicated linear and non-linear equations by using Cuntz algebra
theory; see [15] and the references therein for details. Conclusions from [12, 15] suggest
that there may exist an infinite family of near-group fusion categories of type .G; jGj/,
where G is an abelian group. However, in order to show that such a near-group fusion
category exists, one needs to solve these equations, which is a non-trivial task; see [15,
Appendix A] for solutions for groups of small orders. With the help of computers, when
jGj � 13, the answer is affirmative [12, Proposition 6], and recently this result is improved
for cyclic groups of order less than 31 in [3].

Moreover, for an arbitrary abelian group G of odd order, let A be a near-group fusion
category of type .G; jGj/; it was conjectured in [12, Conjecture 2] that

Z.A/ Š C � C.G; �1/

as a modular fusion category, we refer the reader to [12, Proposition 7] and [15,
Theorem 6.8] for a detailed description of the modular data of C .

Notice that A contains a unique non-trivial fusion subcategory VecZp , so 	.I / con-
tains a unique non-trivial étale subalgebra A such that Z.A/0A Š Z.VecZp / as a braided
fusion category and FPdim.A/ D dim.A/

p
D
p
q"pq by [5, Theorem 4.10]. By compar-

ing the Frobenius–Perron dimensions of the simple objects, we know A D I ˚ X , see
Remark 3.6.

It was also conjectured in [12] that the modular data of Z.A/ is determined by metric
groups .G; �1/ and .H; �2/, where H is an abelian group of order jGj C 4. Indeed, if we
require ˛ D ˇ D 1, where ˛ and ˇ are the parameters in [12, Proposition 7], it is easy
to see that the modular data MDG;H .�1; �2/ of [12] is exactly that of C in the pseudo-
unitary situation. Hence, under the assumption that C contains a non-trivial étale algebra,
Theorem 3.5 gives a partial positive answer to [12, Conjecture 2] and provides solutions
to the conjectured modular data of C , and our result suggests that the conjecture might
be true.

Based on conclusions of the categorification of near-group fusion rings, we propose
the following conjecture, and we believe there is an affirmative answer.

Conjecture 3.10. Let p, q, �1, and �2 be the notations as before. Then there exists a
modular fusion category C such that �C Š �1 ˚ �2 if and only if q � p D 4.
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3.3. A faithful Z2-extension of CA

In this subsection, we provide a faithful Z2-extension M of the near-group fusion cat-
egory CA. In particular, we prove that M contains simple objects of Frobenius–Perron
dimension

p
pC
p
q

2
. In the last part of this subsection, we construct a class of non-

commutative fusion rings that are non-trivial Z2-extensions of near-group fusion rings
of type .Zn; n/ for all n � 1.

For any odd prime p, note that there is a modular fusion category of Frobenius–Perron
dimension 4p, which is braided tensor equivalent to a Z2-equivariantization of a Tambara–
Yamagami fusion category T Y.Zp; �;�/ [14, Proposition 5.1]. We refer the reader to [7,9]
for the definition and properties of equivariantization and de-equivariantization of fusion
categories by finite groups. Moreover, the modular data of T Y.Zp; �; �/Z2 is given in
[14, Example 5D] explicitly. In particular, D contains a Tannakian fusion subcategory
Rep.Z2/ and two simple objects of Frobenius–Perron dimension

p
p.

Let �0 be a three-dimensional irreducible congruence representation of SL.2;Z/ of
level 4 with

�0.s/ D �p

0BBB@
0 1p

2

1p
2

1p
2

�1
2

1
2

1p
2

1
2

�1
2

1CCCA; �0.t/ D diag.1; �1;��1/;

where p̌ D �p
1p
p

, �1 is a square root of the central charge � (or ��) of C.Zp; �/ [14].

Proposition 3.11. Let p � 3 be an odd prime, and let �1 be an irreducible representation
of dimension pC1

2
of SL.2;Zp/. If �C Š �1 ˚ �

0, then C is braided equivalent to a Z2-
equivariantization of T Y.Zp; �; �/.

Proof (sketched). Since �1 and �0 are non-degenerate, it follows from [18, Theorem 3.23]
(see also Theorem 3.2) that

�C .s/ D

0BBBBBBBBBBBBBBBBBB@

1
2 p̌

��1
2 p̌ �2 p̌ � � � � pC1

2
p̌ �� pC3

2

��p
2
�� pC5

2

��p
2

��1
2 p̌

1
2 p̌ �1�2 p̌� � � � �1� pC1

2
p̌� �1� pC3

2

��p
2

�1� pC5
2

��p
2

�2 p̌ �1�2 p̌�
:::

:::

� pC1
2

p̌ �1� pC1
2

p̌� V1D1V1 0

� pC1
2
� p̌ �1� pC1

2
� p̌

�� pC3
2

��p
2

�1� pC3
2

��p
2

0 V2D3V2

�� pC5
2

��p
2

�1� pC5
2

��p
2

1CCCCCCCCCCCCCCCCCCA

;

�C .t/ D diag
�
1; 1; �ap ; : : : ; �

a
�
p�1
2

�2
p ; �1;��1

�
;
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where �; �1; : : : ; � pC5
2
2 ¹˙1º, and

V1 D

0BB@
�2

: : :

� pC1
2

1CCA; V2 D
 
� pC3

2

� pC5
2

!
;D3 D �p

0@�12 1
2

1
2

�1
2

1A:
In the same way as Theorem 3.2, if we identify the O.C/ with the standard basis of the
vector space, then

S D

0BBBBBBBBBBBBBB@

1 ��1 2�2 � � � 2� pC1
2

�� pC3
2
�
p
p �� pC5

2
�
p
p

��1 1 2�1�2� � � � 2�1� pC1
2
� �1� pC3

2
�
p
p �1� pC5

2
�
p
p

2�2 2�1�2�
:::

::: 4�j �k cos
�
4�ajk
p

�
0

2� pC1
2

2�1� pC1
2
�

�� pC3
2
�
p
p �1� pC3

2
�
p
p �

p
p � pC3

2
� pC5

2

p
p

�� pC5
2
�
p
p �1� pC5

2
�
p
p 0 � pC3

2
� pC5

2

p
p �

p
p

1CCCCCCCCCCCCCCA
;

we know dim.C/ D FPdim.C/ D 4p, so C is pseudo-unitary. If the first row are
Frobenius–Perron dimensions of the simple objects, then

� pC3
2
D � pC5

2
D �1; � D �1 D �2 D � � � D � pC1

2
D 1I

if the second row are Frobenius–Perron dimensions of the simple objects, then

� D �1 D �2 D � � � D � pC3
2
D � pC5

2
D 1:

From both cases, we know that C always contains a non-trivial Tannakian fusion
subcategory Rep.Z2/; hence its core C0Z2 is a pointed modular fusion category of
Frobenius–Perron dimension p [5, Corollary 3.32]. Since C is not integral, CZ2 must be a
Tambara–Yamagami fusion category T Y.Zp; �; �/; hence C Š T Y.Zp; �; �/Z2 [7, 14],
as desired.

We note that there exists a modular fusion category C , which is also obtained from
Z2-equivariantization of a Tambara–Yamagami fusion category of dimension 2p, but
�C © �1 ˚ �

0; when p D 5, see [18, Theorem 4.15] for details.

Theorem 3.12. There is a fusion category M, which is a faithful Z2-extension of CA and
a non-degenerate fusion category D such that C �D Š Z.M/; moreover, M contains
exactly p simple objects of Frobenius–Perron dimension "pq .

Proof. Indeed, let D D T Y.Zp; �; �/Z2 such that

D0
Z2
Š C.Zp; �

�1/ Š C.Zp; �/
rev;
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where ��1.g/ WD �.g/�1 for all g 2 Zp . Consequently, we have braided equivalences

.C �D/0Z2 Š C �D0
Z2
Š C � C.Zp; �

�1/ Š Z.CA/;

by Theorem 3.5, so C �D ŠZ.M/with fusion category M being a faithful Z2-extension
of the near-group fusion category CA by [11, Theorem 1.3].

Let M D
L
h2Z2

Mh with Me D CA. Since Z.M/ contains a simple object of
Frobenius–Perron dimension

p
p, M contains an object M of Frobenius–Perron dimen-

sion
p
p. We claim that M 2Mh. Indeed, assume M D M1 ˚M2 with M1 2Me and

M2 2 Mh, respectively, then FPdim.Mi / 2 Q.
p
p/ by [13, Lemma 1.1]. Meanwhile,

FPdim.Z/ 2 Q.
p
pq/ for all simple objects Z of CA, so FPdim.M1/ must be an integer

and FPdim.M2/ D
p
p � FPdim.M1/. If M1 is a non-zero object, then FPdim.M1/ � 1,

which implies FPdim.M2/ admits a Galois conjugate whose absolute value is strictly
larger than FPdim.M2/, it is impossible by [9, Theorem 3.2.1]. Hence, M D M2 2Mh,
as claimed.

Since M is Z2-graded, M ˝M 2 Me . Notice that M ˝M must be a direct sum
of integral simple objects of Me , so M ˝M D

L
g2Zp

g. Hence, M is simple and self-
dual. Let B and Mint be the maximal weakly integral and integral fusion subcategories
of M, respectively, then B is faithfully graded by an elementary abelian 2-group G with
Mint being the trivial component [9, Proposition 3.5.7]. Therefore, FPdim.B/ D pjGj

by [9, Theorem 3.5.2], and FPdim.B/ is a factor of FPdim.M/ [10, Proposition 8.15],
so G D Z2. In particular, M has a unique simple object M of Frobenius–Perron dimen-
sion
p
p.

Let Y 2 O.Mh/ be an arbitrary simple object satisfying Y ©M , then M ˝ Y 2Me .
Obviously, g cannot be a direct summand of M ˝ Y for all invertible objects g of Me .
Therefore, there exists a positive integer nY such that M ˝ Y D nYX , then

FPdim.Y / D
nY FPdim.X/
FPdim.M/

D
nY
p
p"pq
p
p

D nY "pq :

Notice that Y ˝ Y � 2Me , so Y ˝ Y � is a direct sum of simple objects of Me . If

Y ˝ Y � D
M
g2Zp

g ˚mYX

for some positive integer mY , as q D p C 4, then

FPdim.Y /2 D n2Y "
2
pq D

.p C 2/n2Y C n
2
Y

p
pq

2

D p CmY
p
p"pq D

.2CmY /p CmY
p
pq

2
:

By comparing the rational and irrational parts of the above equation, we obtain n2Y D mY
and p D n2Y , which is absurd. Therefore, Y ˝ Y � D I ˚mYX ; then the previous argu-
ment also implies mY D nY D 1. In particular, for any non-trivial invertible object g, we
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have g˝ Y © Y ; hence the Z2-grading of M induces a transitive action of Zp on O.Mh/.
Up to isomorphism, Mh contains at least p non-isomorphic simple objects ¹Yj º

p
jD1 of

Frobenius–Perron dimension "pq and a unique simple object of Frobenius–Perron dimen-
sion
p
p. Then

FPdim.Me/ D FPdim.Mh/ � pFPdim.Yj /2 C FPdim.M/2

D p"2pq C p D FPdim.Me/;

thus O.Mh/ D ¹M º [ ¹Yj j 1 � j � pº.

Corollary 3.13. Let M be the Z2-extension of CA, and let Y be an arbitrary simple object
of Frobenius–Perron dimension "pq . Then the fusion rules of M are given by the following
relations

X ˝X D
M
g2Zp

g ˚ pX; gi ˝ gj D giCj ; g ˝X D X ˝ g D X;

M ˝M D
M
g2Zp

g; gjY WD gj ˝ Y D Y ˝ gp�j ;M ˝ gjY D X D gjY ˝M;

X ˝M DM ˝X D

pM
jD1

gjY;X ˝ gjY D gjY ˝X DM ˚

pM
jD1

gjY;

gjY ˝ gkY D gjCp�k ˚X:

In particular, non-invertible simple objects of M are self-dual.

Proof. Let Y be a simple object of M of Frobenius–Perron dimension "pq . As O.Mh/

contains p simple objects of same Frobenius–Perron dimension, without loss of generality,
we can choose Y to be self-dual, and it follows from Theorem 3.12 that Y ˝ Y D I ˚X .

Let g be a non-invertible simple object. Then there exists a unique 1� k � p � 1 such
that g ˝ Y Š Y ˝ gk . Consequently,

C D HomM.g ˝ Y; Y ˝ g
k/ Š HomM.g; Y ˝ g

k
˝ Y /

Š HomM.g; Y ˝ Y ˝ g
k2/ D HomM.g; g

k2/;

which means k2 � 1 mod p; then k D 1; p � 1.
If g˝ Y D Y ˝ g, then gjY WD gj ˝ Y D Y ˝ gj for all 1� j �p. AsX ˝ gj DX ,

HomM.X ˝ g
jY; gkY / Š HomM.X ˝ Y; g

kY /

Š Hom.X; gkY ˝ Y /

Š HomM.X; g
k
˚X/ D C

for all 1� j; k � p, we see
Lp

kD1
gkY �X ˝ gjY . By computing the Frobenius–Perron

dimension of X ˝ gjY and its simple summands, we obtain

X ˝ gjY DM ˚

pM
kD1

gkY;
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which also implies the following relations

M ˝X D

pM
jD1

gjY; M ˝ gjY D X:

Similarly, we have M ˝ X D X ˝ X and M ˝ gjY D gjY ˝M . Particularly, Gr.M/

is commutative. However, it follows from [18, Theorem 3.23 (iii)] and [14] that both C

and D are self-dual modular fusion categories. Then the algebra homomorphism

Gr.Z.M//˝Z Q! Gr.M/˝Z Q

is surjective by [9, Lemma 9.3.10], so simple objects of M are self-dual, which is a contra-
diction. Hence, Gr.M/ cannot be commutative, so g ˝ Y Š Y ˝ gp�1; more generally,
gj ˝ Y Š Y ˝ gp�j for all 1 � j � p � 1. Thus, for all 1 � j; k � p � 1, we obtain

.gj ˝ Y /˝ .gk ˝ Y / D gj ˝ gp�k ˝ Y ˝ Y D gjCp�k ˚X:

In particular, gjY is self-dual for all 1 � j � p. Note that we still have

HomM.X ˝ g
jY; gkY / Š HomM.X ˝ Y; g

kY / Š HomM.X; g
kC1
˚X/ D C

for all 1 � j; k � p; then the fusion relations can be obtained in the same way.

Remark 3.14. When p D 3 and q D 7, the fusion category M is exactly the fusion cate-
gory V constructed by Ostrik in [4, Proposition A.6.1].

It is easy to see that one can construct a fusion ring that is a Z2-extension of an arbi-
trary near-group fusion ring of type .G; kjGj/, where G is abelian and k is a non-negative
integer. However, for some non-cyclic abelian groups G, the corresponding near-group
fusion rings of type .G; jGj/ are not categorifiable; one can take G D Z2 � Z2 � Z2
[15, Proposition A.1] and [27, Theorem 1.1], for example, in these cases it is meaning-
less to consider the categorification of their extensions.

Hence, in the following definition, we only list the corresponding fusion ring, which
contains a near-group fusion ring of type .Zn; n/.

Definition 3.15. Let R0 be a near-group fusion ring of type .Zn; n/ determined by the
cyclic group Zn D hgi and relations

gjgl D gjCl ; gjX D Xgj D X; XX D
X
g2Zn

g C nX:

Let R � R0 be a fusion ring with ZC-basis ¹Yj ; gj j 1 � j � nº [ ¹M; Xº and the
following fusion relations:

MM D

nX
jD1

gj ; YjYl D g
jCn�l

CX; giYj D Yk D Yjg
n�i .where i C j � k mod n/;

YjX D XYj DM C

nX
lD1

Yl ;MYj D YjM D X;MX D XM D

nX
jD1

Yj :
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A direct computation shows

FPdim.X/ D
nC
p
n2 C 4n

2
; FPdim.M/ D

p
n; FPdim.Yj / D

p
nC
p
nC 4

2
;

for all 1 � j � n. Then we obtain

FPdim.R0/ D
n2 C 4nC n

p
n2 C 4n

2
;FPdim.R/ D n2 C 4nC n

p
n2 C 4n:

Hence [9, Proposition 3.5.3] says that R is a faithful Z2-extension of R0. Also notice
that R contains a fusion ring (generated byM ) of Frobenius–Perron dimension 2n, which
is categorified as a Tambara–Yamagami fusion category T Y.Zn; �; �/.

In addition, we have the following proposition.

Proposition 3.16. When n� 3,R is categorifiable. Moreover, there exists a braided fusion
category C such that Gr.C/ D R if and only if n D 1.

Proof. If n D 1, then FPdim.M/ D 1, and it is easy to see that

Gr.C.Z2; �/� C.sl2; 3/ad/ D R;

where C.sl2; 3/ad is the adjoint fusion subcategory of C.sl2; 3/ [1,9]. If n D 3, then R is
the Grothendieck ring of the fusion category V [4, Proposition A.6.1]. When n � 3, R is
non-commutative, obviously it cannot be categorified as a braided fusion category.

If n D 2, then FPdim.R/ D 12 C 4
p
3. We claim that it can be categorified by

C.sl2; 10/A, whereA is a non-trivial connected étale algebra and FPdim.A/D 3C
p
3 by

[16, Theorem 6.5]. Indeed, a direct computation shows that the Frobenius–Perron dimen-
sions of the simple objects of C.sl2; 10/A belong to

®
1;
p
2; 1 C

p
3;
p
2C
p
3
¯
, andp

2C
p
3D

p
2C
p
6

2
. Since C.sl2; 10/A contains a unique simple objectX of Frobenius–

Perron dimension 1C
p
3 and two invertible objects I; g, we obtain

g ˝X D X D X ˝ g; X ˝X D I ˚ g ˚ 2X;

i.e.,X generates a near-group fusion categoryA. Since 2FPdim.A/D FPdim.C.sl2;10/A/,
C.sl2; 10/A admits a faithful Z2-grading with the trivial component being A [9, Propo-
sition 3.5.3], then the rest of the fusion relations follow from the principal diagram
[16, Theorem 6.5].

However, when n D 2, we claim that R cannot be categorified as a braided fusion
category even if it is commutative. On the contrary, assume that there is a braided fusion
category B such that Gr.B/DR. Since C always contains an Ising category 	 as a fusion
subcategory, which is modular by [7, Corollary B.12], B Š 	 �D as a braided fusion
category [7, Theorem 3.13], where D is a braided fusion subcategory of B such that
dim.D/ D 3C

p
3 by [7, Theorem 3.14]. So there exists a Galois conjugate of D whose

global dimension is 3�
p
3, which contradicts the conclusion of [24, Theorem 1.1.2].
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We end this section by proposing the following question.

Question 3.17. Assume that there is a near-group fusion categoryA such that Gr.A/DR0.
Is R categorifiable when n � 4?

Indeed, R is categorifiable when n is odd and A exists and Z.A/ Š C.Zn; �/� C by
the construction of M in Theorem 3.12.
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