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Approximate equivalence of representations of AH
algebras into semifinite von Neumann factors

Junhao Shen and Rui Shi

Abstract. In this paper, we prove a non-commutative version of the Weyl-von Neumann theorem
for representations of unital, separable AH algebras into countably decomposable, semifinite, prop-
erly infinite, von Neumann factors, where an AH algebra means an approximately homogeneous
C *-algebra. We also prove a result for approximate summands of representations of unital, separa-
ble AH algebras into finite von Neumann factors.

1. Introduction

1.1. Voiculescu’s theorem and ideas in its proof

The classical Weyl-von Neumann theorem states that, for each bounded linear self-adjoint
operator a on a separable Hilbert space J, there is a diagonal self-adjoint operator d
such that a — d is of arbitrarily small Hilbert—Schmidt norm, which was proved in 1909
by Weyl in [39] with respect to compact perturbation and later was improved by von
Neumann in [38] in 1935. This theorem provides important techniques in the perturbation
theory for bounded linear operators on J.

As a corollary of the main theorem in [37], Voiculescu proved that a normal oper-
ator is diagonalizable up to an arbitrarily small Hilbert—-Schmidt perturbation. In [37],
an important technique applied in the proof was Voiculescu’s non-commutative Weyl—
von Neumann theorem [36]. For convenience, we refer to this amazing theorem in [36]
as Voiculescu’s theorem in the current paper. Precisely, Voiculescu’s theorem is cited as
follows.

Voiculescu’s Theorem ([36]). Suppose that A is a separable unital C*-algebra and #
is a complex, separable Hilbert space. Let ¢ and  be unital x-representations of 4 into
B(H). The following statements are equivalent:

1) ¢ ~a ¥
(2) ¢ ~4 ¥ mod (K(H)).
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(3) kerg =keryr, ¢~ (K (H)) = v~ (K (JH)), and the non-zero parts of the restric-
tions | g1 (g (3ey) and V¥ |y -1(x(ge)) are unitarily equivalent.

In this theorem, by ¢ ~, 1, we mean the approximately unitary equivalence of ¢ and
¥; i.e., there exists a sequence of unitary operators {u, e, in B(JH) such that

lim Juyd(@)un — Y (@)l =0 Va €A,
n—>oo

where by ||-|| we denote the operator norm.

By ¢ ~4 ¥ mod (K (H)), we mean the approximately unitary equivalence of ¢ and
¥ relative to K (H); i.e., there exists a sequence of unitary operators {u, }or, in B(H)
such that, for each a in 4 and every n € N,

us(@nn — Y@ € X(I) and  lim [usd@u, — (@) =0.

This theorem is important in both operator theory and operator algebras. Its other
applications can be found in proving the eighth problem proposed by Halmos in [21], and
in the proof of the well-known Brown—Douglas—Fillmore theory (see [7, Chapter IX]).

By introducing quasi-central approximate units of C *-algebras, Arveson provided
another beautiful proof of Voiculescu’s theorem in [1]. Later, Hadwin [20] provided an
algebraic characterization of approximate equivalence of representation. As another im-
portant application of [36], The authors of [6] characterized properly infinite injective von
Neumann algebras and nuclear C *-algebras by the uniqueness theorem.

While results related to the Weyl-von Neumann theorem being developed in 8 (H),
several commutative versions of the Weyl-von Neumann theorem are proved in the setting
of semifinite von Neumann algebras [19, 24,25, 40]. Note that the class of semifinite von
Neumann algebras is quite a large family. By the type decomposition theorem [23, The-
orem 6.5.2], each semifinite von Neumann algebra can be written as a direct sum of von
Neumann algebras with no direct summands of type III. In this sense, B (H) being a type
I factor is a special semifinite von Neumann algebra. Thus, to consider the Weyl—von Neu-
mann theorem in the setting of semifinite von Neumann algebras, it is natural to ask, for
which class of C *-subalgebras, Voiculescu’s theorem is true.

One goal of the current paper is to set up the equivalence of (1) and (2) in Voiculescu’s
theorem for AH algebras in countably decomposable semifinite von Neumann algebras.
Note that a type Il factor is also a special semifinite von Neumann algebra, which is
quite different from a type I factor. It turns out that the proof of “(1)<(2)” in a type I
factor cannot be applied directly in a type Il factor to obtain the counterpart. This means
new techniques must be developed in semifinite von Neumann algebra. Before we explain
the reason to choose AH algebras, we briefly recall the proof of Voiculescu’s theorem in
B(H).

Since (2)=>(1) is trivial, it is sufficient to prove (1)=-(2) to obtain the equivalence.
Recall that the proof of (1)=(2) in B(H) involves two parts. Intuitively, to prepare for the
two parts of the proof, a unital separable C *-algebra 4 is cut into two C *-algebras. One,
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denoted by +Ay, contains a x-subalgebra of compact operators with the identity operator
1 4, of Ay satisfying
Iyw= '\ R,
acA NK(H)
where we denote by R(a) the range projection of a. The other one, denoted by 4., con-
tains no compact operators.
One part of the proof is to deal with

¢~a1ﬁ=>¢|m Zlﬂlm» (1.D

where the relation “¢|4, >~ ¥|4,” means that the two restrictions ¢|4, and V|4, are
unitarily equivalent. The proof of this part depends on properties of J(H). It is worth
noting that minimal projections in B () are compact, and they play an important role in
the part of the proof.

The other part of the proof is much harder to establish the absorption theorem for ..
A combination of the two parts will complete the proof of (1)=(2).

It is more difficult to set up Voiculescu’s theorem in type Il factors. In [8], the
authors mentioned that in some certain type 11 factor, there exists a C*-algebra which
is not nuclear such that (1.1) does not hold.

Recently, in type Il factors, we have proved the absorption theorem for separable
nuclear C *-algebras in [25, Theorem 5.3.1]. This corresponds to the part of the proof for
. mentioned above. Thus, it is natural to ask whether or not the following weak form of
(1.1) for Ay

¢ ~a V= ¢|A0 ~ o I//LAO mod (K (H)) (1.2)

can be proved for unital separable nuclear C *-algebras in type Il factors.

1.2. The reason to choose AH algebras

In the aspect of C*-algebras, we notice that a very rich results have been developed in
Elliott’s classification program during decades. It is proved that all simple separable stably
finite C *-algebras (with UCT) of finite nuclear dimension are ASH algebras (see [12, 17,
18,35] for unital case, and [11,14—16] for nonunital case). Thus, it seems reasonable to first
consider unital ASH algebras to generalize (1.2) in type Il factors. Besides, techniques
about inductive limits (see Section 2.2 later) and locally homogeneous algebras are very
helpful to our goal. After recalling several definitions, we explain that ASH algebras can
be further replaced with AH algebras to generalize (1.2) in type Il factors.

Definition 1.1. Let n be a positive integer. A C*-algebra # is n-homogeneous if every
irreducible representation of +4 is of dimension n. A is n-subhomogeneous if every irre-
ducible representation of + has dimension less than or equal to n. 4 is said to be homo-
geneous (resp., subhomogeneous) if it is n-homogeneous (resp., n-subhomogeneous) for
some n € N. A subhomogeneous C *-algebra is locally homogeneous if it is a (finite)
direct sum of homogeneous C *-algebra (see [2, Definition IV.1.4.1]).
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A (not necessarily unital) C*-algebra A is approximately homogeneous, or an AH
algebra, if it is isomorphic to an inductive limit of locally homogeneous C *-algebras. 4
is approximately subhomogeneous, or an ASH algebra, if it is isomorphic to an inductive
limit of subhomogeneous C *-algebras (see [2, Definition V.2.1.9]).

The standard example of an n-homogeneous C *-algebra is Co(X, M), where X is
locally compact and M, is the full matrix algebra of all (n x n)-dimensional matrices over
C. Also, it is worth noting that AH and ASH algebras are usually required to be separable.

The reasons we choose AH algebras instead of ASH algebras to prove Voiculescu’s
theorem in type Il factors are as follows:

(1) By [2, Proposition IV.1.4.6], a C *-algebra A is n-subhomogeneous if and only if
A** is a (finite) direct sum of Type I,, von Neumann algebras for m < n. Since a
locally homogeneous C *-algebra is n-subhomogeneous for some certain n € N,
its double dual is also a (finite) direct sum of Type I, von Neumann algebras for
m<n.

(2) We develop main techniques in a (finite) direct sum of Type I,,, von Neumann alge-
bras in the proofs. In this sense, this makes no difference between an AH algebra
and an ASH algebra, since the weak-operator-closure of a locally homogeneous
C*-algebra and that of a subhomogeneous C *-algebra are of the same class as
mentioned in item (1).

Besides, there is one more thing about AH algebras to be mentioned here:

(3) The reader familiar with the classification program of C *-algebras might doubt if
a slow-dimension-growth condition on AH algebras is needed here. We would like
to make it clear that we do not use the slow-dimension-growth condition on AH
algebras in the current paper, since main techniques are developed in their weak-
operator closures, i.e., finite direct sums of Type I, von Neumann algebras. About
the importance of AH algebras in the classification program of C*-algebras, the
reader is referred to [9, 10, 13,26-28, 30].

Above all, the first goal in the current paper is to choose AH algebras to general-
ize (1.2) in type Il factors.

1.3. Concepts in von Neumann algebras and main results

In the aspect of von Neumann algebras, we briefly recall several concepts. A von Neumann
algebra is a x-algebra of bounded linear operators on a Hilbert space which is closed in
the weak operator topology and contains the identity. A factor (or von Neumann factor)
is a von Neumann algebra with trivial center. Factors are classified by Murray and von
Neumann [29] into three types, i.e., type I, type II, and type III factors. A factor is called
semifinite if it is of type I or II. This is equivalent to say that a factor equipped with a
faithful, normal, semifinite, tracial weight is semifinite (see [23, Definition 7.5.1] for a
weight on a C*-algebra). A factor is called (properly) infinite if the identity is an infinite
projection. The reader is referred to [2, 22, 23, 33, 34] for the theory of von Neumann
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algebras. Throughout this paper, let # be a complex, separable Hilbert space, and B (H)
be the set of all the bounded linear operators on J. By definition, B(J) is a factor
of type 1. Since Voiculescu’s theorem is proved for every separable C*-algebra in type
I factors, the proof of an analog of Voiculescu’s theorem for AH algebras in type Il
factors implies that a generalized Voiculescu’s theorem is true for AH algebras in properly
infinite, semifinite factors.

Note that, in [20], Hadwin also proved the following result in type I factors.

Hadwin’s Theorem ([20, Lemma 2.3]). Suppose that # is a separable unital C*-algebra,
Ho and H1 are Hilbert spaces. Let ¢ : A —B(Ho) and W : A —B(H1) be unital rep-
resentations. The following are equivalent:

(1) There is a representation y : A — B(H>) for some Hilbert space Ho such that

¢®V~a¢~

(2) Forevery A € A,
rank( (A)) < rank(¢(A)).

In [8], the authors extended some results of [20] to the case where B (Hy) is replaced
with a von Neumann algebra.

Inspired by the preceding interesting results, we focus on analogs of Voiculescu’s the-
orem and Hadwin’s theorem in the setting of semifinite factors.

This paper is organized as follows. Since factors of type II contain no minimal projec-
tions, they are quite different from factors of type I. Thus, to prove the main theorems in
the current paper, we need to prepare related notation, definitions, and technical lemmas
in Section 2. In particular, we introduce the strongly-approximately-unitarily equivalent
*-homomorphisms which was first defined in [25] to extend the concept of approximately-
unitarily equivalence of x-homomorphisms relative to K (#) in the setting of B(H). In
addition, we also cite properties of AH algebras from [2,31] in Section 2.

In Section 3, we prove an extended Voiculescu’s theorem for AH algebras in semifi-
nite, (properly) infinite von Neumann factors.

Theorem 3.11. Let M be a countably decomposable, properly infinite, semifinite factor
with a faithful, normal, semifinite, tracial weight t. Suppose that 4 is a separable AH
subalgebra of M with an identity I 4.

If ¢ and ¥ are unital x-homomorphisms of A into M, then the following statements
are equivalent:

D P~a Y inM;

(i) ¢~ ¥ mod (K(M. 1)),

The reader is referred to Definition 2.5 in Section 2 for the notation ¢ ~ 4 ¥ mod (K
(M, 7)). This notation is a special case of ¢ ~4 ¥ mod (K¢ (M, 7)) which was first intro-

duced in [25, Definition 2.2.9], where by ® we denote ||-||-dominating, unitarily invariant
norms.
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In Section 4, we prove the following theorem for AH algebras in II; factors. Recall
that, for an operator x in a von Neumann algebra M, we denote by R(x) the range pro-
jection of x.

Theorem 4.7. Let A be a unital separable AH subalgebra in a type 11y factor (N, t) with
separable predual. Let p be a projection in (N, t). Suppose that & : A — N is a unital
x-homomorphism and p : A — pN p is a unital *x-homomorphism such that

t(R(p(a))) < t(R(w(a))) VaeA.
Then, there exists a unital *-homomorphismy : A — p+N p* such that
POy ~gm inN.

At the end of this section, we raise the following question, inspired by [25, Theorem
5.3.1] and Theorem 3.11 in the current paper.

Problem 1.2. For which class of C *-subalgebras in a type I, factor with separable pred-
ual the above Theorem 3.11 is true? Is it the class of separable amenable C *-subalgebras?

2. Preliminary

2.1. Two-sided |:||-norm closed ideals of semifinite von Neumann algebras

Recall that throughout the current paper we denote by |-|| the operator norm. In B(H),
the ideal ¥ () of finite rank operators and the [|-||-norm closed two-sided ideal K (#) of
compact operators are both important ingredients of Voiculescu’s theorem. In the follow-
ing, we define analogs of ¥ () and KX (#) in semifinite von Neumann algebras. These
definitions will be frequently mentioned in this paper.

Definition 2.1. Let (M, 7) be a von Neumann algebra with a faithful, normal, semifinite,
tracial weight t.
Define
PFM.t)={p:p=p*=p*ec Mand1(p) < oo} 2.1

to be the set of finite trace projections in (M, 7). In terms of F (M, ), define F (M, 1)
to be the set in the form

F(M.t)={xpy:pePF(M,t)andx,y € M}.

Each element in ¥ (M, 7) is said to be of (M, t)-finite-rank. When no confusion can
arise, elements in & (M, 7) are called finite-rank operators. If M is a factor of type I on a
Hilbert space J, then ¥ (M, T) coincides with F (H).

Define K (M, 7) to be the ||-||-norm closure of ¥ (M, 7) in M. Each element in
K (M, 7) is said to be compact in M.
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Remark 2.2. Recall that, for an operator x in a von Neumann algebra M, denote by
R(x) the range projection of x. From [23, Proposition 6.1.6], an operator @ in M is of
(M, t)-finite-rank if and only if

7(R(a)) < oo.

By [23, Theorem 6.8.3], K (M, 7) is a ||-||-norm closed two-sided ideal in M. On the
other hand, we denote by JK (M) the ||-||-norm closed ideal generated by finite projections
in M. Notice that K (M) is usually called the Breuer ideal in M (see [3,4] for references
about the Breuer ideal).

In general, K (M, 7) is a subset of J (M). That is because a finite projection might not
be a (M, t)-finite-rank projection. However, if M is a countably decomposable, semifinite
factor, then [23, Proposition 8.5.2] entails that

KM, 1) = K(M)
for a faithful, normal, semifinite tracial weight 7.

To introduce strongly-approximately-unitarily equivalence of two unital x-homomor-
phisms of a separable C *-algebra # into M (relative to K (M, 7)), we need to develop the
following notation and definitions. These were first introduced in [25] with ||-||-dominating,
unitarily invariant norms ®. The reader is referred to [25, Section 2] for more details. In
the current paper, we only need the |-||-norm instead of unitarily invariant norms.

Suppose that {e;,j }{; _ is a system of matrix units for B(/ 2). For a countably decom-
posable, properly infinite von Neumann algebra M with a faithful normal semifinite tracial
weight 7, there exists a sequence {v; }72, of partial isometries in M such that

(o)
v =Ty, Y vivi=1Iy. vjv; =0 wheni #j. (2.2)
i=1
Definition 2.3. Forall x € M andall ) ;7 _, x; j ® e;,; € M ® B(I?), define
p:M—>MRB(* and ¥ : MR B(*) - M
by
o0 o0 o
¢(x) = > (nixv))®e;; and I,/f( > xi ®€i,j) = > vfixi, v,
ij=1 ij=1 ij=1

where {v;}72, is a sequence of partial isometries in M as in (2.2) and {e;,;}75_, is a
system of matrix units for B8(/?) such that > ;2 , e; ; equals the identity of B(/?).
We further define a mapping 7 : (M ® B(I%))+ — [0, 00] to be

() =t () Yye (M B(1%)4.

By [25, Lemma 2.2.2], both ¢ and i are normal x-homomorphisms satisfying

Yop =idy and ¢°1/f:idM®£(12)-
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The following statements are proved in [25, Lemma 2.2.4]:
(i) 7 is a faithful, normal, semifinite tracial weight of M ® B(I?).
(1)

)

oo oo
%( Z Xij ® ei,j) = Zr(x,-,i) for all Z Xij ®ei; € (M®B(I?))+.
i,j=1 i=1 i,j=1
(iii)
PF(M@ B(?).7) = ¢(PF (M. 7).

F(M® B(1?).7) = ¢(F (M, 1)),
KM B(1?),7) = ¢p(K(M,1)).

Remark 2.4. Note that T is a natural extension of 7 from M to M ® B(/?). If no con-
fusion arises, T will be also denoted by t. By [25, Proposition 2.2.9], the ideal K (M &
B(I?), 7) is independent of the choice of the system of matrix units {e; ; }?,Oj=1 of B(/?)
and the choice of the family {v; }72, of partial isometries in M.

Now, we are ready to introduce the definition of approximate equivalence of x-homo-
morphisms of a separable C *-algebra into M relative to K (M, 7).
Let 4 be a separable C*-subalgebra of M with an identity /4. Suppose that p is
a positive mapping from # into M such that p(/4) is a projection in M. Then, for all
0 < x € A, we have
0 < p(x) < [lx[lp(14).

Therefore, it follows that

p(x)p(I4) = p(Ia)p(x) = p(x)

for all positive x € +4. In other words, ¥ (I 4) can be viewed as an identity of ¥ (). Or,

V(A) S YT MY (14).

The following definition is a special case of [25, Definition 2.3.1] when the norm is
fixed to be the operator norm ||-||.

Definition 2.5. Let 4 be a separable C *-subalgebra of M with an identity /4 and B
a *-subalgebra of # such that /4 € B. Suppose that {e; ;}; j>1 is a system of matrix
units for B(/?). Let M, N € N U {oo}. Suppose that 1, ..., ¥a and ¢y, ..., ¢y are
positive mappings from »4 into M such that Y11 (1 4), ..., Yar(I4), P1({4), ..., O (L 4)
are projections in M.

(a) Let ¥ C «A be a finite subset and ¢ > 0. Then, we say that ¢y & --- & V¥
is (¥, e)-strongly-approximately-unitarily-equivalent to ¢ & --- @ ¢n over B,
denoted by

VIOV @ BYm~9 ) p D ® - ®py mod K(M, 1)
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if there exists a partial isometry v in M ® B(/?) such that

® Y N
v¥u :Zwi(IA)®ei’i and vv* =Z¢i(lo4>)®ei,i;
i=1 i=1
(i1)
M N
ZW:‘(X)@&'J_U*(Z¢i(x)®ei,i)vEK(M®£(12)777) for all x€8;
i=1 i=1
(iii)

<g¢ forallx € ¥.

M N
Z Yi(x) ® e — v*(Zqﬁi X)) ® ei,i)v
i=1

i=1

(b) We say that ¥y @ --- @ Yy is strongly-approximately-unitarily-equivalent to
¢1 @ -+ @ ¢y over B, denoted by

VIi®V2 D DYy~ P2 ®--- Dy mod K (M, 1)

if, for any finite subset ¥ € B and ¢ > 0,

VIOV @ BYm~5 ) p1 D@ By  mod K(M,1).

By virtue of the preceding definitions, assume that M = B(H) for a complex, sepa-
rable, infinite dimensional, Hilbert space #. Let ¢ and ¥ be unital x-homomorphisms of
A into M. It follows that ¢p and i are strongly-approximately-unitarily equivalent over -
if and only if ¢ and v are approximately-unitarily equivalent relative to K (F).

2.2. The inductive limit of C *-algebras and properties of AH algebras

In the following, we recall the definitions of the inductive limit of C *-algebras, AH alge-
bras and certain useful properties.

Remark 2.6. By [31, Proposition 6.2.4], every inductive sequence of C *-algebras
Ay By B

has an inductive limit (A, {¢y }»>1) which is also a C *-algebra such that
(1) the diagram

An LAn-H

wnl / 2.3)
@n+1

A

commutes for each n in N, where ¢,,’s and ¢,,’s are *-homomorphisms;
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(2) the C*-algebra 4 equals the norm-closure of the union of @, (#4,); i.e.,

—l
A= U Pn (An)

n>1

Note that the diagram in (2.3) implies that {¢,(4A,)}n>1 forms a monotone increasing
sequence of C*-algebras.

If this inductive limit C *-algebra +4 is a subalgebra of (M, ) and K (M, 1) is as
in (2.1), then [7, Lemma 3.4.1] entails that

AN KM, 7) = (A 0 I(M, o

n>1

We recall AH and ASH algebras in Definition 1.1. By Sakai’s Theorem (see [5, The-
orem 1.4.1]), the double dual A** of a C *-algebra #4 is always viewed as the enveloping
von Neumann algebra of +. In addition, we cite a useful proposition in the following.

Proposition 2.7 ([2, Proposition I11.5.2.10]). If ¢ : A — B is a bounded linear mapping
between C *-algebra, then by general considerations ¢** : A** — B** is a normal linear
mapping of the same norm as @. In addition, ¢** is a x-homomorphism if and only if ¢ is
a *-homomorphism.

As a quick application, if ¢ is a unital x-homomorphism of a unital locally homoge-
neous C *-algebra +4 into another unital C *-algebra 8, then ¢ (+4) is also locally homo-
geneous.

For more details about inductive limit, the reader is referred to [34, Chapter XIV]
and [31, Chapter 6]. It is convenient to assume that ¢,’s are injective *x-homomorphisms
and {#A, },>1 is an increasing sequence of C *-subalgebras of +4 whose union is |-||-norm
dense in .

3. Representations of AH algebras to semifinite, properly infinite
factors

Let (M, 7) be a countably decomposable von Neumann factor with a faithful, normal,
semifinite, tracial weight t. Recall that ¥ (M, 1) is the set of all (M, t)-finite-rank oper-
ators in M and J (M, 1) is the |-||-norm closure of ¥ (M, t), where |-|| denotes the
operator norm. See Definition 2.1 in Section 2 for details.

Let +4 be a separable AH subalgebra of M with an identity /4. Let ¢ and ¥ be unital
*-homomorphisms of # into M. The main goal of this section is to prove the equivalence
of the following statements:

(1) ¢ ~4 ¥ in M, i.e., ¢ and Y are approximately unitarily equivalent in M
2) ¢ ~4 ¥ mod (K (M, 7)) (see Definition 2.5).
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In Section 1.1, we briefly recall the techniques in the proof of the equivalence of the
above two statements in the setting of B(H). Based on [25, Theorem 5.3.1] in type Il
factors, the remaining difficulty to obtain “(1)=-(2)” is to generalize relation (1.2).

In this section, we prove a generalization of (1.2) in Theorem 3.9. Then, we prove
“(1)=(2)” in Theorem 3.11. In the following, we prepare several lemmas.

Notice that not each *-isomorphism between C *-algebras can be extended to a WOT-
WOT continuous *-isomorphism between the weak-operator closures of the C *-algebras.
In the following, we prove a sufficient condition for x-isomorphisms which can be extend-
ed to WOT-WOT continuous ones.

Lemma 3.1. Fori = 1,2, let M; be a von Neumann algebra with a faithful, normal,
semifinite, tracial weight t;. Let ¥ (M;, t;) be the set of all (M;, t;)-finite-rank operators
in (M,‘ s ‘L’,').

Assume that 4A; is a *-subalgebra of ¥ (M;, t;) such that A; is weak™-dense in M;,
fori =1,2.

If p : A1 — Aj is a x-isomorphism such that

n(p(x)) = 11(x) Vx € Ay,
then p extends uniquely to a normal x-isomorphism p’ : My — M, satisfying that
72(p(x)) = t1(x) for each positive operator x € M.
Proof. Since t; is a faithful, normal, semifinite tracial weight on M; fori = 1,2, then
(a,b) :=1;(b*a) 3.1

defines a definite inner product on #4;. Let J(; be the completion of +#4; relative to the
norm associated with the inner product defined in (3.1). From the fact that each #A; is
weak*-dense in M;, it follows that J; = L?(M;, 7;), where L2(<M,- , T;) is the completion
of {x : x € M;, 7;(x*x) < oo} relative to the norm associated with the inner product
in (3.1). By applying [23, Theorem 7.5.3], the faithful, normal tracial weight ; induces a
faithful, normal representation ; of M; on J; fori =1, 2.

Let {a;}sea be a bounded net in »4; such that ) converges to a € M in the weak™
topology. Note that, for each b in 41, the equality

(m1(ax)b. b) = T1(b*azb) = 12(p(b*azb)) = (m2(p(ax))p(d). p(b))

entails that 75 (p(ay)) converges to an operator x in 772 (M5) in the weak operator topol-
ogy. Note that 7, is a normal *-isomorphism between von Neumann algebras M, and
72(M). Tt follows that p(a,) converges to 75 !(x) in the weak operator topology. For
a, the weak™ limit of a,, in My, define p'(a) := n;l(x). It is easily verified that p’ is
well-defined. In this way, p extends uniquely to a normal *-isomorphism p’ : My — M>.
Combining with the fact that each t; is normal, we can further conclude that

72(p’(x)) = 71(x) for each positive operator x € M.

This completes the proof. ]
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By Lemma 3.1, we can consider the normal-extensions of *-isomorphisms approxi-
mately equivalent to the identity mapping id.

Lemma 3.2. Let M be a von Neumann algebra with a faithful, normal, semifinite, tracial
weight t. Suppose that A is a x-subalgebra of ¥ (M, ) and write A+ as the set of positive
operators in .

If p is a x-isomorphism of A into M such that p and the identity mapping id of A are
approximately equivalent in M, written as

id~g p inM,

then p extends uniquely to a normal *-isomorphism p' of the WOT-closure of A into M
such that

(0’ (a)) = t(a) for each positive operator a in the WOT-closure of A.

Proof. We will apply Lemma 3.1 to extend p uniquely to a von Neumann algebra isomor-
phism of the WOT-closure of 4 to the WOT-closure of p(+4) with the desired property. It
is sufficient to prove the following equality:

t(a) =t(p(a)) VaeA;t. (3.2)

Recall that P F (M, 1) is the set of projections p in M with t(p) < co. Leta > 0 be
a (M, 7)-finite-rank operator in 4. Note that

t(a) = sup{z(ap) : p € PF (M, 1)}.

We claim that 7(p(a) p) < t(a) for each finite trace projection p in M.
Since p and the identity mapping id are approximately equivalent in .M, there exists a
sequence of unitary operators {u }r>1 in M such that

lim [|p(a) — uzaug| = 0.
k—o00

Let p be a finite trace projection in M. Recall that ||x|; = =(|x]|) for every x in F (M, 7).
In terms of the Holder inequality, we have

I7((p(@) — ufau)p)| < llp(@) — ufaue|[|plly -0 ask — oo.
This implies that
lt(p(@)p)| = lim |t((uiaur)p)| = lugaurlilpll = ©(a).
k—o00

This completes the proof of the claim.
Since

t(p(a)) = sup{z(p(a)p) : p € PF (M. D)},
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it follows that
t(p(a)) = t(a).
Similarly, we have
t(a) < t(p(a)).
Thus, we have
t(a) = t(p(a)).
This completes the proof of equality (3.2). Thus, by virtue of Lemma 3.1, p can be

extended uniquely to a von Neumann algebra isomorphism p’ of the WOT-closure of 4 to
the WOT-closure of p(+) with the desired property. |

Remark 3.3. Let M be a von Neumann algebra with a faithful, normal, semifinite, tracial
weight 7. Let 4 be a (separable) AH subalgebra of (M, 7). It is convenient to assume that
there exists an increasing sequence {#, },>1 of locally homogeneous C *-algebras, as in
Remark 2.6, such that

M-
A=A - (3.3)

n>1

By applying [7, Lemma 3.4.1], we have

ANKM 1) = | (A 0 K (M) '
n>1
Let M be a von Neumann algebra with a faithful, normal, semifinite, tracial weight t.
For a separable, unital C *-subalgebra #4 in (M, ), the reader is referred to [19, Lemma
3.1] and [19, Lemma 3.2] for several useful properties for operators in K (M, 7). By
a routine continuous function calculus and [19, Lemma 3.1], there exists a sequence of
(M, t)-finite-rank operators ||-||-norm dense in A4 N K (M, 7).
Define a projection
Pran =\  RX). (34
x€ANK (M,T)
In the following lemma, we prove that the projection pj(4,7) can be constructed by a
sequence of positive operators in 44 N F (M, 7). Furthermore, pg (4,r) reduces +. By
definition, it is worth noting that the projection pj(,r) is unique in the sense that

AN (M, ‘L’) - pJ((!A,J)A and (I — pj(‘(A’r)):A N JC(M, T) = {0}

Lemma 3.4. Let (M, t) be a von Neumann algebra with a faithful, normal, semifinite,
tracial weight t. Suppose that A is a separable C*-subalgebra of M. Let {x,}5> | be a
sequence of positive, (M, T)-finite-rank operators in the unit ball of A4+ N F (M, T) such
that {x,}02 is ||-||-dense in the unit ball of A N K (M, T), where ||-|| is the operator

norm. Then, the following statements are true:
() pxc(ar) = Vis1 R(xXn), where pyca,v) is defined as in (3.4);
(@) Px(ADX = XPH (A VX € A
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Proof. Assume that A N K (M, ) # 0 and the von Neumann algebra M acts on a Hilbert
space J.

Let p be the union of the range projections R(x,) of all these positive, finite-rank
operators x,’s. For each element x in the unit ball of A N K (M, 7), let x = |x*|v be the
polar decomposition of x (see [23, Theorem 6.1.2]). For every ¢ > 0, there is a positive,
finite-rank operator x, such that |||x*| — x,|| < &. Thus, for each unit vector & in #, it
follows that

1x§ — xn &l < Ix7] = xall <&

Since px,vé = x,vé€, it follows, eventually, that px = x holds for every x in 4 N
K (M, 7). Thus, we have that
P = DX (A,0)-

In the following, assume contrarily that there exists an operator a in +4 such that
papt # 0. Then, there exists a positive, (M, 7)-finite-rank operator a; in the unit ball
of A4 N F (M, 1) such that R(a;)apt # 0.

Since the restriction of each bounded linear positive operator on the closure of its
range is injective, the equality

ker(ay) = ker(ai/z)
entails that
R(a}/z)apL = R(a;)apt #0 and ai/zapL = a}/zR(a}/z)apl £ 0.

Thus, pta*ajapt # 0 implies pa*a,a # a*a;a.

Note that the inequality t(R(a*aia)) < oo ensures that a*aja is a positive, (M, 7)-
finite-rank operator. Then, the fact that pa*aya # a*a;a contradicts the definition of p.
It follows that p reduces #. This completes the proof. ]

Let M be a von Neumann algebra and +4 a C *-subalgebra of M. Recall that by W* ()
we denote the WOT-closure of #, which is also the von Neumann algebra generated by 4.
Note that W* () C M. But, in general, W*(4) does not contain [ 4 the identity of M.

As mentioned in Remark 3.3, a separable AH algebra is an inductive limit of locally
homogeneous C *-algebras. The following three lemmas are developed with respect to
locally homogeneous C *-algebras in (M, 7), which are prepared for Theorem 3.9.

Lemma 3.5. Let M be a von Neumann algebra with a faithful, normal, semifinite, tracial
weight t. Suppose that A is a (separable) locally homogeneous C*-subalgebra of M.

Let a be a non-zero positive (M, t)-finite-rank operator in A N F (M, t). Then, there
exists a central projection e of W* (), the WOT-closure of A in M such that

(1) e € F(M, 1)
(2) R(a) <e;
(3) W*(A)e C W* (AN F (M, 1)).
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Proof. By [2, Definition IV.1.4.1], a C *-algebra # is locally homogeneous, if it is a finite
direct sum of homogeneous C *-algebras. For the sake of simplicity, we assume 4 to be
n-homogeneous.

Claim 3.5.1. If A is n-homogeneous, then W*(+4) is a type I,, von Neumann algebra.

Letid : A — 4 be the identity mapping of +. Recall that the double dual A** of 4 can
be viewed as the enveloping von Neumann algebra of 4 by Sakai’s Theorem ([5, Theorem
1.4.1]). Furthermore, by [2, Proposition IV.1.4.6], the double dual A** of 4 is a type I,
von Neumann algebra.

By applying [32, Proposition 1.21.13], the identity mapping id extends uniquely to a
o (A**, A*)-WOT continuous *-homomorphism id of A** onto W* () as in the follow-
ing commuting diagram:

It follows that W *(.A) is a type I,, von Neumann algebra. This completes the proof of this
claim.

End of the proof of Lemma 3.5. Without loss of generality, we assume that {e;; }{ ;_, isa
system of matrix units for W* (). Let

n

e .= \/ R(ejja). 3.5)

ij=1

We can verify directly that ¢;;e = ee;je forall 1 <i, j < n.Thus, e is a central projection
of W*(A). Since a € ¥ (M, 1), the definition of e in (3.5) entails e € F (M, 7). Asa =
>, eiia, we have that R(a) < e. From the fact that each e;ja belongs to W*(A N
F (M, 1)), we further conclude that W*(A)e C W*(A N F (M, 1)). L]

In the following lemma, we recall a well-known characterization for unitarily equiva-
lent x-homomorphisms on M, (C). For completeness, we sketch its proof.

Lemma 3.6. Let M be a von Neumann factor with a faithful, normal, semifinite, tracial
weight t. Suppose that A is a C*-algebra x-isomorphic to M, (C). Let ¢ and  be *-
homomorphisms of A into M such that

(@) =t(Y(a)) Vaceh
Then, there exists a partial isometry v in M such that
¢(a) =v*y¥(a)v VYa e A (3.6)

Moreover, if t(¢p(a)) = t(¥(a)) < oo, for each a € A+, then there is a unitary operator
u in M such that ¢(a) = u*yr(a)u, for every a € sA.
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Proof. Let {e;j}1<i,j<n be a system of matrix units for 4 satisfying
€)) e;"j = ej; foreachi, j € N;
(2) ejjex; = Sjke;; foreachi, j k, I € N;
(3) Yr_ eii = I
Then, {¢(eij)}1<i,j<n is a system of matrix units for ¢(4). So is {Y(e;;)}1<i,j<n for

v (A).
Note that

T(p(eii) = t(Y(ei;)) Y1<i=<n.
Since M is a factor and

t(p(e11) = t(¥(er1)).

there exists a partial isometry v; in M such that

#d(e11) =vivy and  VY(err) = vyvy.

Let v be defined as
vi= Z p(ein)vy ¥ (ens).
1<i<n
Then, it is routine to verify that
(1) v*v =y (1s) and v* = $(L4);
(2) ¢(e;j)v =vy(ey)foralll <i,j <n.
This completes the proof of (3.6).

Furthermore, if t(¢(a)) = 1(Y¥(a)) < oo, for each a € A, then there exists a partial
isometry w in M such that

w*w=1—-vy{y4) and ww* =1—¢(4).
Define u = v + w. It follows that u is a unitary operator in M as desired. ]

The following technical lemma will be used in Theorem 3.9 to cut an operator into
(M, t)-finite-rank direct summands. Then, each summand is replaced with a finite direct
sum of matrices up to an arbitrarily small perturbation.

Lemma 3.7. Let M be a von Neumann factor with a faithful, normal, semifinite, tracial
weight t. Suppose that A is a (separable) locally homogeneous C*-subalgebra of (M, 7).
Let & be a finite subset of A and e be a projection in W*(A) satisfying ae = ea for each
ain¥.

For each & > 0, there is a finite dimensional von Neumann subalgebra B of W*(A)
with e being the identity such that for each a in &, there exists an element b in B satisfying

|lae — b < e.

Proof. First, we prove a claim in type I, von Neumann algebras. Then, we apply the claim
to prove the lemma.
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Claim 3.7.1. Suppose that M, is a type I, von Neumann algebra. For x € M,, and ¢ > 0,
there is a finite dimensional von Neumann subalgebra 8; of M, and an operator y € B;
such that | x — y|| < e.

Let {pij }1<i,j<n be a system of matrix units for M,. Write  to be the von Neumann
subalgebra generated by {p;; }1<i,j<n. Thus, & is *-isomorphic to M, (C). Define N :=
P’ N M,,. Note that N is the center of M,,. It follows that M, = W*($ U N) and M,
is x-isomorphic to the von Neumann algebra tensor product & N .

For each x in My, there exist {x;; }1<i,j<n C N suchthatx =}, _; ., xi; pij. Note

that each x;; is normal. For every ¢ > 0, there exist A7 ,..., A} inCandel,...,e/ in
. . 1] 1]
N satisfying
ij _
> e =1
lflfkjj
such that
o .
xijpij— Y. Aelpij| <e/n’. 3.7
lglgkij

With respect to {efj }<i,j<n; 1<I<k;;» there exists a finer central partition of /, denoted by
{fi}1<1<m (satisfying 3, ;. fi = [ and f; € N forall 1 <[ < m) such that

flef;jzfl or ﬁeijzo V1<i,j<n 1=2t=kg.

For a fixed f;, if f;eij = f1, then we rewrite )L’;j as /17.
By using (3.7), we have

x—= Y > A fivy

1<il<m 1<i,j<n

e (3.8)

Note that the von Neumann algebra generated by { f; pi; }1<i, j<n 18 & f7, which is also
*-isomorphic to Ml (C). Since 3, ; ; <, A/ fi pij is an element in  f;, we can identify
it as an n X n matrix in M, (C). Write

Bi=Pfi®®Pfn and y= > > A fipy.

1<l<m 1<i,j<n
Therefore, we complete the proof of the claim by (3.8).

End of the proof of Lemma 3.7. By definition, # is a direct sum of finitely many homo-
geneous C *-algebras. By Claim 3.5.1, W*(+A) is a direct sum of finitely many type I,
von Neumann algebras, where these finitely many type I, von Neumann algebras are dif-
ferent in general. Thus, the projection e can be written as e = e; + -+ + e such that
ejW*(#A)e; is a type I,; von Neumann algebra for j = 1,..., k. In fact, each ¢; is the
product of e and some certain central projection of W* ().

Since ae = ea for each a in ¥, each ae; belongs to e; W*(A)e;. Since F is a finite
set, by applying Claim 3.7.1 repeatedly for finitely many times, in each e; W*(4)e;, there
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is a finite dimensional von Neumann subalgebra 8; and an element b; € B, correspond-
ing to each a € ¥ such that
lae; —bj|l < e/k.

Write B = B1 @ ---® Br and b = by & --- D bi. Thus, we obtain ||ae — b| < & for
each a € ¥. This completes the proof. ]

Definition 3.8. Let M be a von Neumann algebra with a faithful, normal, semifinite,
tracial weight 7. Suppose that +4 is a separable C *-subalgebra of M.
By virtue of Lemma 3.4, the projection pg(4,) reduces ». Define

ido(a) == apxa,r) and ide(a):= apjcm’r) Va e A.

Then, idg and id, are well-defined *-homomorphisms of 4 into A p s (4,r) and A pj‘c (A7)
respectively.
Let p be a unital x-isomorphism of «# into M. Define

po(a) :=ido(p(a)) and pc(a) :=ide(p(a)) Va € A.

Then, pg and p, are well-defined *-homomorphisms of A into p(A) p g (p(4),7) and p(A)
pj((p( A7) respectively.

Theorem 3.9. Let M be a countably decomposable, properly infinite, semifinite von Neu-
mann factor with a faithful normal semifinite tracial weight t. Suppose that A is a sep-
arable AH subalgebra of (M, ). Let id and p be unital *-homomorphisms of A into M
such that id and p are approximately-unitarily equivalent.

Then, idg and py, as in Definition 3.8, are strongly-approximately-unitarily-equivalent
over A, as in Definition 2.5; i.e.,

idg ~4 po mod (K (M, 1)). 3.9

Proof. Since 4 is AH, as in Remark 3.3, it is convenient to assume that there is a mono-
tone increasing sequence of locally homogeneous C *-subalgebras {#A,},>1 of (M, 1)
such that

A=A .

n>1

We assume that 4 N K (M, ) # 0.

Let {x,}»>1 be a sequence of positive, (M, 7)-finite-rank operators in the unit ball
of |, n, which is ||-||-norm dense in the unit ball of A N K (M, 7). Define two
project_ions p and g as follows:

p:=\ Rxn) and q:=\/ R(p(xn)). (3.10)

n>1 n>1

Then, by virtue of Lemmas 3.2 and 3.4, we obtain that

P =DPxA and g = px(pA)q)-
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Note that, by applying Lemma 3.2, the unital x-homomorphism p extends uniquely to
a normal *-isomorphism p’ of the WOT-closure of #4 N ¥ (M, 7) into M such that

t(p'(a)) =t(a@) VaeW*(ANF (M, r))+.
By the WOT-continuity of p’ and (3.10), we obtain that

o'(p) =q. (3.11)

Next, we cut p with respect to {x, },>1. Let ¥ € F, C --- be a monotone increasing
sequence of finite subsets of the unit ball of | J,., #, such that | J,., % is [|-]|-norm
dense in the unit ball of #A. - -

In the following, we construct at most countably many, mutually orthogonal, (M, 7)-
finite-rank projections in W*(+) with nice properties.

Choose n; > 1 such that 1 U {x1} C Ay,,. Since Ay, is locally homogeneous, by
virtue of Lemma 3.5, there is a central projection p; in W* (4, ) such that

(1) pj belongs to ¥ (M, 7);
(2) R(x1) < p1in M;
B) W*(An)p1 S W*(Ay, N F (M, 1)).

Define y; := x;. If p; = p, then we complete the construction. Otherwise, suppose
k > 2, and we obtain yi, ..., yx in {Xp}x>1 and p1,..., px in F (M, 1) satisfying

(1) yi41 is the first element after y; in {x, },>; such that (p — p;)yi41 # Ofor 1 <
i <k-1;

2) Fir1 Ui, ..., Yit1) C oy, foralll <i <k —1;

B Firr Ui, Vit P1, - Diy CWH(Ay;,,) and n; <njyq foralll <i <

k—1;
(4) piy1 is a central projection in W* (A, ,) such that

pi vV R(yit1) S piv1, 1=Zi<k-—-1

If pr = p, then we complete the construction. Otherwise, let y;; be the first element
after yg in {xp}n>1 such that (p — pg)yr+1 7# 0. Choose ng4; > nyg such that

Frr1 Uyt Yt} C Angy,
Note that the projections py,. .., pi are alsoin W*(#Ay,_ ). In terms of Lemma 3.5, there
is a central projection pg4q of W*(Ay,, . ) such that
(1) pi+1 belongs to F (M, 1);
(") Pk NV R(Yk+1) < pr+1in W*(Aq);
(3) W*(Anpo ) D1 © W (ohno, N F (M, 7).

k41

Nk+1
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Define
€1 = p1,
€k+1 = Pk+1 — Pk

for each k > 1. Let %, := %7. It follows that
ae; = e;d

foreachain ¥;,andi = j +1,...,k + 1, where j > 0.
Recursively, we obtain a sequence of at most countably many, mutually orthogonal,
(M, 7)-finite-rank projections {e; }1<; <y in F (M, 7) such that

SOT- >~ e = p.
1<i<N

where N € N U {o0}.
By applying (3.11) and the preceding arguments, we have

SOT- > pl(ei) =q¢.
1<i<N

And, for each projection e in W*(A,,) p;, we have

7(e) = 1(p'(e)) < o0.

Fix € > 0. For each i > 1, in terms of Lemma 3.7, there exists a finite dimensional
von Neumann algebra B; containing e; as its identity in W* (4, ) p; such that, for each
a € F;_1, there is an operator a; € B; satisfying

&
laei —aill < 57

Then, by virtue of Lemma 3.6, we obtain a partial isometry u; in M for 1 <i < N such
that
e, =uu;, p'(e;) =wuuf, ubuf =p'(b) VbeB.

It follows that, foreacha € ;1 andi > 1,
&
lui(ae)uj — p'(ae)|| < llui(ae; —ai)uj| + l1p'(a; —ae;)|| < Th (3.12)

Define

u = E u;

1<i<N

in M. It follows that
u*u=p and g =uu®. (3.13)
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Note that, for each a in Uizl Fi,
ido(a) = SOT- ) " ae;,
1<i<N

po(a) =SOT- 3 pl(aer).

1<i<N

By (3.12) and (3.13), we have

(1) for every a in ¥y, we have ae; = e;a for each e;, and

[wido(@)u™ — po(@)| = ( > ui)ido(a)( > ui) — pola)

1<i<N 1<i<N

= Z Mleiaeiu]t — po(a)

1<i,k, /<N
= Z (uieiaeiu; — p'(ae;)) H
1<i<N
< Z Huwmem? —p/(aei)” <e.
1<i<N

(2) forevery ain| ;- Fi, thereis anig > 1 such thata € %, and ae; = e;a for each
i > ip. Thus, a similar computation implies that

luido(a)u™ — po(@)|| < oo and wuide(a)u™ — po(a) € K(M,1).
For each j > 1, define
1€ = Fitj-1}iz1 and &g := &;.

We can iterate the preceding arguments to construct a partial isometry v; in M with
{&i}i>0 in place of {F;};>¢ such that

(1) for every a in Uizl Fiand j > 1,
vy ido(@)} — po@)]l < 00 and v ide(@)v — po(a) € (M, 7);
(2) for eacha in %;,
Iy ido(a@)o] — po(@]l < 5.

Note that | ;5 #; is [|-|-norm dense in the unit ball of ,A. Thus, for each a in 4, we

obtain that
lim ||v} idg(a)vj — po(a)|l = 0.
J—>00

This completes the proof of (3.9). ]
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We cite [25, Theorem 5.3.1] as another important tool. Note that, in the remainder, the
symbol “~ 4 follows from Definition 2.5.

Theorem 3.10. Let M be a countably decomposable, properly infinite, semifinite factor
with a faithful, normal, semifinite, tracial weight t. Let K (M, t) be the set of compact
operators in (M, 7). Suppose that A is a separable nuclear C*-subalgebra of M with an
identity I 4. If p : A — M is a x-homomorphism satisfying

p(A N K (M, 7)) =0,

then
idg ~u4 idg ®p mod (K (M, 1)).

The following theorem is the main result in this section.

Theorem 3.11. Let M be a countably decomposable, infinite, semifinite factor with a
faithful normal semifinite tracial weight t. Suppose that A is a separable AH subalgebra
of M with an identity 1 4.

If ¢ and ¥ are unital x-homomorphisms of A into M, then the following statements
are equivalent:

®  pr~ayinM;
(i) ¢ ~u4 ¥ mod K(M,7T).

Proof. Note that the implication (ii)=>(i) is easy by Definition 2.5. Thus, we only need to
prove the implication (i)=>(ii).

The assumption ¢ ~, ¥ in M entails that ¢ and ¥ have the same kernel. It follows
that the mapping

P p(A) = Y(A),
defined by
p(b) ==y (@71 (b)) Vb ep(A),

is a well-defined *-isomorphism of ¢ (+4) onto V¥ (+). Moreover, the following are equiv-
alent:

(1) ¢ ~4 ¥ mod (K (M, 1));

(2) idg(A) ~g(a) p mod (K(M, 7).

In terms of Lemma 3.2, the restriction of p on ¢(A) N F (M, 7) extends uniquely to
a normal *-isomorphism of the WOT-closure of ¢ (4A) N F (M, 7) into M. Furthermore,

Lemmas 3.2 and 3.4 guarantee that there exists a sequence {x,},>1 of positive, (M, 7)-
finite-rank operators in the unit ball of ¢ (4)4+ N F (M, T) such that the projections

pi=\/ R(xn),

n>1

q:=\/ R(p(xn))

n>1
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reduce ¢ () and ¥ (A), respectively. Moreover, we have that
px =x, qp(x) =p(x) VxedA)NKMr7).
Thus, the identity mapping id on ¢(+) can be expressed in the form
id = ido ® ide, (3.14)

where idy is the compression of id(-) p on ran p, and id, is the compression of id(-) p* on
ran p~. We also write that

ido(¢(A)) = ¢o(A) and  ide(¢(A)) = Pe(A).

It follows that ide (¢ (A) N K (M, 7)) = 0.
Likewise, the x-isomorphism p of ¢(+) can be expressed in the form

P = Po D Pe. (3.15)

where p9(A4) = p(A)q|rang and p.(A4) = o(A)gt lrang L fOr every a in ¢ (). We also write
that

po(P(A)) = Yo(A) and (P (A)) = Ye(A).
It follows that
Pe(P(A) N K (M, 1)) =0.

By virtue of Theorem 3.9, there exists a partial isometry w in M such that
p=w'w and ¢ =ww*.

It is worth noting that, in general, many operators in ¢o(+4) do not belong to ¢ (+4) N
K (M, 7). This is a motivation to develop Theorem 3.9.

By virtue of (3.3), there exists a monotone increasing sequence 7 C ¥, C - - - of finite
subsets of the unit ball of | J; .., #x such that | J;., Fx is ||-||-norm dense in the unit ball
of 4. Likewise, the union Uk;l ¢ (Fr) (resp., Uk_zl ¥ (F%)) is ||-||-norm dense in the unit
ball of ¢(A) (resp., ¥ (4A)). Similarly, (s ¢o(Fi) (resp., Ugs1 ¥o(Fr)) is [|-[|-norm
dense in the unit ball of ¢ (A) (resp., Yo(A)).

By applying Theorem 3.9, for every k > 1, there exists a partial isometry vg in (M, 7)
such that the inequality

1
lvrpo(@)vy — Yola)| < o

holds for every a in Fy.
Furthermore, for every a in A, we have that vi¢o(a)v; — Yo(a) belongs to the ideal
K (M, 7). Therefore, there exists a sequence {vg }x>1 of partial isometries in M such that
(1) limg o [[vxdo(@)vy — Yo(a)| = O for every a in A;
(2) vrgo(a)vy — Yo(a) belongs to K (M, 7) for every a in +4 and k > 1.



J. Shen and R. Shi 1338

Notice that
ide (¢ (A) N K (M, 7)) = pe(Pp(A) N K (M, 7)) = 0.

Thus, by applying Theorems 3.10 and 3.9 and the decompositions in (3.14) and (3.15), it
follows that
¢ = (idg o) @ (ide o) ~ 4 (ido 09) ® (ide 0p) B (pe © P) mod (K (M, 7))
= ¢o D de ® Ve
~A Vo ® Ve ® de mod (K (M, 7))
= (po 0 P) ® (pe © $) ® (id, oP)
= (po @) ® (ide 0p) ~4 (po¢) =¥ mod (K(M, 1))

This completes the proof. u

4. Representations of AH algebras to type II; factors

In this section, we always assume that (N, 7) is a type II; factor with separable predual,
where 7 is the faithful, normal, tracial state on N . For two *-homomorphisms p and 7 of
a unital C *-algebra + into N, if there is a unitary operator u in N such that the equality

u*pla)u = m(a)

holds for every a in #, then p and & are unitarily equivalent (denoted by p >~ 7 in N).
Let A denote the set of positive elements of A.

It is worth noting that, in the setting of finite factors, Voiculescu’s theorem is auto-
matically true. The reason is that, for a finite factor (M, 7), M = K (M, t). Thus, for a
separable C *-subalgebra + of M and two unital *-homomorphisms ¢ and y of 4 into
M, the following relation is naturally true:

P ~a Y = ¢ ~4 ¥ mod(K(M,1)).
Furthermore, suppose that ¢ is tracially weaker than ¥ which means

r(R(¢(a))) < r(R(Iﬂ(a))) Vae aA. 4.1

It is interesting to ask can Y be approximately decomposed with respect to ¢ which means

DY ~a ¥, 4.2)

where y is another *-homomorphism of #4 into M.

In Theorem 4.7 of the current paper, we prove that (4.2) is true for x-homomorphisms
satisfying (4.1) of AH algebras into a type II; factor (N, 7).

The following Lemmas 4.1 and 4.2 are prepared for Lemma 4.3, where we extend &
and p such that the inequality (4.1) holds for each projection in A** the double dual of .
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Lemma 4.1. Let C(X) be a unital, separable, abelian C*-algebra with X a compact
metric space. Suppose that p is a projection in a type 11; factor (N, 7).

If w: C(X) — N is a unital x-homomorphism and p : C(X) — pN p is a unital
sx-homomorphism such that

T(R(p(f)) < t(R(=(f)) V feCX), (4.3)

then, for every positive function h in C(X),

t(p(h)) < (7 (h)). (4.4)

Proof. By applying [7, Theorem IL.2.5], there are regular Borel measures 1, and p, on
X such that p (resp., ) extends to a weak*-WOT continuous *-isomorphism g (resp., 77)
of L>(up) (resp., L>(pz)) onto p(C(X))” (resp., w(C(X))").

Let A be a Borel subset of X and ya be the characteristic function on A. Note that,
for each regular Borel measure ;1 on X, every pu-measurable set is a disjoint union of a
Borel set and a set of p-measure 0. Thus, we only need to concentrate on y for every
Borel subset A of X instead of considering measurable subsets.

If A is a non-empty open subset of X, then there exists a positive function f in C(X)y
such that f(1) # 0for A € A and f(A) = 0 for A € X\ A. The weak™-WOT continuity
of p entails that

. 1 R | ~
R(p(f)) = WOT- lim p(f)» = WOT- lim p(f ") = p(xa).
n—00 n—oo
Thus, the hypothesis in (4.3) implies that the inequality

t(p(xa)) = t(@(xa)) 4.5

holds for each open subset A of X.
If A is a Borel subset of X, then all the open subsets O,’s of X with A C Oy, form a
net with respect to each regular Borel measure u; i.e.,

1(A) = lim p(Oq).

Let x, be the characteristic function on Oy. It follows that y, converges to ya in the
weak™ topology. Thus, the inequality in (4.5) holds for every Borel subset A of X .

Given ¢ > 0 and a positive function /2 in C (X)), there exist positive numbers A1, ..., A,
and a Borel partition Ay, ..., A, of X such that

m
Hh =Y hixan| <e
k=1
It follows the inequality in (4.4). This completes the proof. ]

A lemma from [33] is prepared as follows.
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Lemma 4.2 ([33, Lemma 2.2]). Let A be a C*-algebra and {r, K} be a representation
of 4. Then, there is a unique linear mapping 7 of the second conjugate space A** of A

onto w(A)" such that
1

A T> T[(ch)N

(1) the diagram

is commutative, where i is the canonical imbedding of A into A**.

(2) the mapping 7 is continuous with respect to the o (A**, A*)-topology and the
weak operator topology of w(A)".

By virtue of Lemmas 4.1 and 4.2, we are ready for the following lemma.

Lemma 4.3. Let A be a unital, separable C*-algebra and let (N, T) be a type 111 factor.
Let p be a projection in (N, t). Suppose that w : A — N is a unital x-homomorphism
and p : A — pN p is a unital x-homomorphism such that

t(R(p(a))) < t(R(w(a))) Va € .

Let 77 : A — w(A) and p : A** — p(A)" be the weak™-WOT continuous *-homomo-
rphisms extended by 7 and p, respectively. Then, for every projection e in A**,

t(p(e)) = t(7(e)).
Proof. As an application of Lemma 4.2, we have the following commutative diagram:

A**

N

p(A)" —— A —— m(A)"

where i is the canonical imbedding of #4 into A™**.

Given a projection e in A**, by virtue of [22, Theorem 1.6.5] and Kaplansky’s Density
Theorem ([22, Corollary 5.3.6]), there exists a sequence {a, },>1 of positive operators in
the unit ball of 4 such that i (a,) is SOT-convergent to e. Then, [23, Lemma 7.1.14] entails
that p(a,) = p o i(a,) is SOT-convergent to p(e) in p(A)". Likewise, 7 (a,) = 7 o i(ay)
is SOT-convergent to 77 (e) in 7w (+A)”.

In terms of Lemma 4.1, we have that

t(p(an)) < t(n(an)) Vn=1.

Since 7 is a normal mapping, it follows that the inequality

t(p(e)) = t(7(e))

holds for every projection e in 4 **. This completes the proof. ]
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Lemma 4.3 and the following Lemma 4.4 are prepared for Lemma 4.6. Note that the
following Lemma 4.4 is a special case of Lemma 3.6. For convenience, we list it here.

Lemma 4.4. Let (N, t) be a type 11y factor with tracial state t. Suppose that A is a
unital C*-algebra, x-isomorphic to M, (C), with an identity I 4. Let ¢ and  be *-
homomorphisms of A into N such that

t(¢(@) =t(¥(a)) Vacedah
Then, there exists a partial isometry v in N such that
¢(a) =v*Y(a)v VYa e A

Recall that a locally homogeneous C *-algebra is a (finite) direct sum of homogeneous
C*-algebra. A C*-algebra is homogeneous if it is n-homogeneous for some n. A C*-
algebra # is n-homogeneous if every irreducible representation of 4 is of dimension 7.
The reader is referred to [2, Definition I1V.1.4.1] for the definition.

Remark 4.5. It follows from [2, Proposition IV.1.4.6] that if a C *-algebra is n-homoge-
neous, then its double dual is a type I, von Neumann algebra. In the following lemmas, we
will frequently mention type I,, von Neumann algebras. Thus, the following facts about
type I, von Neumann algebras are useful.

Let #4 be a type I, von Neumann algebra on a Hilbert space # . Then, there exists a
system of matrix units {e;; }1<;,j<n for +. Let R, be the von Neumann algebra generated
by {eij}1<i,j<n. Then, R, is x-isomorphic to M, (C). Define £ = R, N . Since 4 is
a type I, von Neumann algebra, it follows that & is abelian and

A= (P UR,)".

Moreover, ¢ is *-isomorphic to the von Neumann tensor product  ® M, (C).
The following observation is useful in the sequel. For each element a in + and ¢ > 0,

there are projections p1, ..., Py in P with
lp = Z Pi
1<i<m
and matrices ay, . .., d, in R, such that
a— Z piai| <e. 4.6)
1<i<m

For Theorem 4.7, we prepare the following lemma.

Lemma 4.6. Let A be a unital, separable, locally homogeneous C*-algebra and let
(N, T) be a type 11 factor. Let p be a projection in (N, t). Suppose that w : A — N
is a unital x-homomorphism and p : A — pN p is a unital x-homomorphism such that

T(R(p(a))) = 1(R((a))) Va € A
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Let 7 (resp., p) be the weak™-WOT continuous *-homomorphism of A** onto w(A)”
(resp., p(A)") extended by the x-homomorphism w (resp., p).

For a finite subset ¥ of A™* and ¢ > 0, there exists a finite dimensional von Neumann
subalgebra B in A** such that

(1) for each a in ¥, there is an element b in B satisfying
la — bl <e:
(2) there is a unital x-homomorphism y : 8 — p*+N p* satisfying
plg®y x7lg inN.
Moreover, if y' : B — pL N pL is another unital x-homomorphism satisfying
Pla®y =7lg inN,
then y' ~ y in p*N p*.

Proof. We first assume that 4 is n-homogeneous. It follows from Remark 4.5 that the
double dual A** of 4 can be expressed as A** = (P U R,)” on some Hilbert space
H, where R, is *-isomorphic to M, (C) and L = R} N A** is an abelian von Neu-

mann subalgebra. Let ¥ = {aq, ..., ax} be a finite subset of /. Since +4 is isometrically
imbedded into A**, we can also view a; as an element in A™* foreach 1 <i < k.

For each ¢ > 0, by (4.6) in Remark 4.5, there are finitely many projections p1,..., pm
in  with Ip = lejsm p; and there are matrices a;1, ..., i, in R, for 1 <i <k
such that

a; — Z pjaij|| <é€.
1<j<m

Note that each p; is in the center of A** and I is the identity of A**. Define a finite
dimensional von Neumann subalgebra 8 in A** as follows:

m
B:=) pjRa.
j=1

Thus, by Lemma 4.3, there is a finite dimensional von Neumann subalgebra M of p~ N p*
in the form

such that
(1) foreach 1 < j < m, M; is *-isomorphic to M, (C);
(2) the identity g; of M satisfies
pt= Y ¢ and t(q) =t(7(p))—T(B(p;)) forl<j<m.

1<j<m
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Since each M; is *-isomorphic to M,(C), we obtain that B is *-isomorphic to M. In
terms of Lemma 4.4, we can define a unital *-isomorphism y of B into M satisfying
v(p;j) =q; foreach 1 < j < m, and

pla®y ~7|lg inN.

Moreover, y is unique up to unitary equivalence.
If 4 is a unital, separable, locally homogeneous C *-subalgebra of N, then + can be
expressed as 4 = > ;' 4y such that

(1) foreach 1 <k < m, Ay is ng-homogeneous for some n; € N;
(2) the identities 14, of /) are mutually orthogonal.

By composing the preceding arguments for each 4y, we can complete the proof. ]

The following theorem is the main result of this section. For a unital, separable C*-
subalgebra 4 of N and two unital *-homomorphisms ¢ and ¥ of # into N, recall that
¢ ~q ¥ in N means the approximately unitary equivalence of ¢ and v in N; i.e., there
exists a sequence of unitary operators {u,}5>; in N such that

lim |uy¢p(a)u, —nw(@)| =0 Vace k.
n—>oo

Theorem 4.7. Let A be a unital, separable AH algebra and let (N, T) be a type 11, factor.
Let p be a projection in (N, t). Suppose that w : A — N is a unital *-homomorphism
and p : A — pN p is a unital x-homomorphism such that

t(R(p(a) = t1(R(n(a))) Vac A
Then, there exists a unital x-homomorphism y : A — p+N pL such that
POy ~gm inN.

Proof. As in Remark 2.6, we can assume that

A=A .

n>1

where {4, },>1 is a monotone increasing sequence of unital, locally homogeneous C*-
algebras.

Since + is separable, let 1 € ¥, C --- be a monotone increasing sequence of finite
subsets in | J,,..; #5 such that | J;.; ¥; is ||-||-dense in +, where |- is the operator norm.
By dropping toa subsequence, we can assume that %; C A, for each i in N. We further
require that 1 4 € F7.

In terms of [2, Proposition I11.5.2.10], for each n € N, we have that

Ap C Anp1 S A = A C AT C A
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In the following, we identify + as a unital, separable C *-subalgebra of A**. Note that
each A’* is a direct sum of finitely many type I,, von Neumann algebra for m less than a
certain 71.
As an application of Lemma 4.6, there is a finite dimensional von Neumann subalgebra
B of A* corresponding to 7 such that, for each a in F7, there is an a; in B; satisfying
1
la —all < 5.
Applying Lemma 4.6 once more for #; and the system of matrix units of B, there exists
a finite dimensional von Neumann subalgebra 8B, of 43* such that
(1) B> 2 By;
(2) for each a in ¥,, there is an a, in B, satisfying
la —az]|| < 5
By induction, there is a finite dimensional von Neumann subalgebra B; of #4* corre-
sponding to each ¥; such that
(1) B; D B;j—q foreachi > 2;

(2) for each a in ¥;, there is an a; in B; satisfying

lla —aill < 2i+1" 4.7)
Moreover, there is a unital s-homomorphism ¢; : B; — pLN pL such that
plg, ®di ~7|g, inN. (4.8)

Note that B; 4, 2 B; implies that
ols; ® di+1ls = pls, ®¢i ~ 7|y, inN.

Thus, we have

ditils, ~ ¢i inptNpT.

Define y; := ¢;. Let u, be the unitary operator in p-.N pL such that us (P2l 8 )uz =
y1 and define

y2() i= uz 2 (Yuz.
Likewise, let u; 1 be the unitary operator in p~.N pL such that ui 1 (Pit1ls)ui+1 = yi
and define
Yie1() == uj 1 Pip1 (i 4.9)
With respect to the choice of the family {B;}{2, of finite dimensional von Neumann
algebras, we construct a sequence of x-homomorphisms {y; };>1 such that the equality

Yi+k (b) = yi(b) (4.10)
holds for every b in B; and eachi > 1,k > 1.
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By virtue of (4.7), for every a in ¥;, there is a sequence {a : ar € Bk }r>1 such that

1
ap =0 fork <i and ||a—ak||<ﬁ fork > i. (4.11)

It follows that {ax g, is a Cauchy sequence in the operator norm topology. Moreover,
we assert that {yx (ax)}g=, is a Cauchy sequence in the operator norm topology. Notice
that, for k > i and each p > 1, (4.10) and (4.11) imply that

1
1Vk+p(@r+p) = Vi@l = [ Vk+p@r+p) = Virpla)ll < llax+p —axll < 2

This guarantees that {yx (ax)}x>1 is also a Cauchy sequence in the operator norm topol-

ogy.
Note that, for each fixed a in ¥;, if there is another sequence {a; : a; € By} satisfying

1
a, =0 fork <i and ||a—a}<||<ﬁ fork > i,

then both {a; }72 | and {yx (a;)}?2, are Cauchy sequences in the operator norm topology.
Furthermore, the limit limg oo [|ax — a; || = 0 entails that the equality

lim ye(ay) = lim ye(ax)
k—o00 k—00
holds in the operator norm topology. Since ||yx || < 1 for each k € N, the mapping

| )7 = ptapt, = i
y:UF = pt Nt v = lim pear)

i>1

extends to a well-defined unital s-homomorphism of # into p~N p=.

Note that, for each i > 1, (4.8) and (4.9) entail that there is a unitary operator v; in N
such that v/ (p; @ y;)v; = m;, where p; (resp., ;) is the restriction of p (resp., ) on B;.
Thus, for each a € ¥;, it follows that

(@) — v/ (p(a) & y(@)vill
1
= @) = mi(ai)ll + llpi(ai) & yi(ai) — pla) & y(@)l| < .
Since | ;5 Fi is ||-[-dense in +, we obtain that
lim || (a) — v/ (p(a) ® y(@)vill =0 Va € A.
1—>00
This completes the proof. ]
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