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Tube formulae for generalized von Koch fractals through
scaling functional equations

Will Hoffer

Abstract. In this work, we provide a treatment of scaling functional equations in a general set-
ting involving fractals arising from sufficiently nice self-similar systems in order to analyze the
tube functions, tube zeta functions, and complex dimensions of relative fractal drums. Namely,
we express the volume of a tubular neighborhood in terms of scaled copies of itself and a
remainder term and then solve this expression by means of the tube zeta functions.

We then apply our methods to analyze these generalized von Koch fractals, which are a
class of fractals that allow for different regular polygons and scaling ratios to be used in the
construction of the standard von Koch curve and snowflake. In particular, we describe the vol-
ume of an inner tubular neighborhoods and the possible complex dimensions of such fractal
snowflakes.

1. Introduction

In this work, we establish tube formulae for a class of fractals called generalized
von Koch snowflakes (see Definition 2.3) such as those depicted in Figure 1. We
construct and analyze scaling functional equations in a general setting where a set is
partitioned into finitely many scaled copies and a remainder term from the leftover
region. Using the theory of tube zeta functions and complex fractal dimensions, we
deduce the leading asymptotics of the tube function for such sets based on the order
of this remainder term.

Then, as an application of our main result, we deduce explicit tube formulae for
the generalized von Koch fractals studied herein. In doing so, we extend the results of
Lapidus and Pearse on computing a tube formula for the standard von Koch snowflake
in [15]. Additionally, our analysis of scaling functional equations with remainder
terms can be applied to many other types of fractals whose tubular neighborhoods
are not completely self-similar.
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Figure 1. The von Koch snowflake (left) and two of its generalizations, one with squares (mid-
dle) and the other with pentagons (right).

Our work is organized as follows. We begin with a background regarding the ori-
gins of these fractals, previous work that we build upon, and then a summary of our
main results in Section 1. Next, in Section 2, we introduce generalized von Koch frac-
tals that are the source of our examples and the main application of results, and then
we provide necessary background on tube functions, tube zeta functions, and complex
dimensions relevant to our work in Section 3. We state and prove our main results on
the analysis of scaling functional equations (with error terms) first in a general setting
(Section 4) and then specializing to tube and zeta functions in Section 5. Finally, we
apply our results to generalized von Koch fractals in Section 6.

1.1. Background

In 1904, Helge von Koch published his work on the construction of a planar curve
without tangent lines at any point, describing the curve that now bears his name [29,
30]. See the left curve in Figure 2 for a depiction. The union of three of these curves,
placed about the edges of an equilateral triangle, from what is now called a von Koch
snowflake' as seen in the leftmost shape in Figure 1. The other two fractals depicted
are what we call generalized von Koch fractals, and are the focus of this work.

A tube formula (see Definition 3.2) for the von Koch snowflake was established in
the work of Lapidus and Pearse. They computed that the volume of an inner epsilon
neighborhood of the von Koch snowflake takes the following form:

V(8) — Z¢n82—D—inP + Z wngz—inP’
nez nez

where D = log; 4 is the Minkowski dimension of the snowflake, P = 27/ log 3 is the
multiplicative period of the oscillations, and with ¥,, ¢, as constants depending only

!Interestingly, it may or may not have been von Koch himself who first made this combina-
tion of the curves leading to the snowflake shape. The earliest known reference to it appears as
an exercise in a book published in 1912; see [3] for the reference and discussion of the history.
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Figure 2. Two fractal curves are depicted, that studied by von Koch (left) and a curve created
from generalizing his construction (right).

on n [15]. As a consequence, they deduced the possible complex (fractal) dimensions
of the von Koch snowflake. These complex dimensions encode both the amplitude
and period of geometric oscillations in a fractal and are pivotal to establishing such
tube formulae in the work of Lapidus and collaborators; see [18, 19] and references
therein.

Our method of studying functional equations is closely related to the methods
developed in renewal theory. Feller established the renewal equation and methods
thereabout in his work in queuing theory [7], and now renewal theory has many
applications in fractal analysis such as in the work of Strichartz on self-similar mea-
sures [22-24], the work of Lapidus in [14], and the work of Kigami and Lapidus on
the Weyl problem [11]. Furthermore, the notion of a (scaling) functional equation
was employed by Deniz, Kogak, Ozdemir, and Ureyen in [4] to provide a new proof
of a tube formula for self-similar sprays in the work of Lapidus and Pearse [16, 17].
In regard to the same fractals studied herein, Michiel van den Berg and collabora-
tors have used techniques from renewal theory to study the heat equation on these
generalized von Koch fractals, such as in [26-28].

In the study of fractals with multiple scaling ratios, there is a lattice/non-lattice
dichotomy in behavior depending on whether or not the ratios are arithmetically
related or not. This dichotomy has also been called the arithmetic/non-arithmetic
dichotomy, and has been discussed in the work of Lalley in [12, 13] and his paper
in [2], in the work of Lapidus and collaborators (such as in [14, 16—-19]), and for
the generalized von Koch snowflakes by van den Berg and collaborators in their
aforementioned work on heat content. See [5] and the references therein for more
information about this dichotomy in fractal geometry.

1.2. Main results

Our main results consist of establishing scaling functional equations and analyzing
their solutions first in a general setting (Section 4) and then specifically with relative
tube and zeta functions (Section 5). We conclude by applying our work to generalized
von Koch fractals (introduced in Section 2 and analyzed in Section 6).
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Firstly, Theorems 4.8 and 4.9 represent our treatment of scaling functional equa-
tions of the following form:

f(x) = Za f(x/Xi) + R(x).

i=1

where we include a remainder term R. Additionally, our treatment of the solution is
through multiplicative means, using restricted Mellin transforms, rather than convert-
ing to an additive variable and using renewal theory directly. Letting M? denote the
restricted Mellin transform (cf. Definition 4.1), we show that

8 _ ; §
MILLN6) = s (EO) + MORIS))

where
m

E(s) =Y aidi M3/ M [ £1(s)
i=1
is an entire function and where M®[R](s) is holomorphic in the right half plane Hg,
when R(¢) = O(t79°). The function f may be recovered by Mellin inversion and
computation (or estimation) of the integrals appearing E; see Theorem 4.9 and the
discussion after its proof.

Secondly, in the context of fractal geometry, we describe relative fractal drums
(X, ) that arise from self-similar iterated function systems ® obeying the open set
condition. We introduce a notion of the set 2 “osculating” X under iteration by ® so
that points in ¢ (£2) remain closest to ¢(X) for each ¢ € ® (see the fifth condition
in Definition 5.2). For any such relative fractal drums, we establish in Theorem 5.3 a
scaling functional equations satisfied by the tube function Vx g = | X, N 2|, namely,

m
Vxa(©) =Y air) Vxa(e/hi) + Va r(e),
i=1

where
Vi r(t) = OtV ™)

and where the set {A;} is the set of distinct scaling ratios of maps in ® and a; is
the multiplicity of each scaling ratio. We then deduce Theorem 5.3 that the tube zeta
function {y q (see Definition 3.4) takes the form

txals) = h(s),

1
1= aik
where /(s) is holomorphic in the right half plane H, (compare with equation (5.4)).
Consequently, the complex dimensions of X with real part strictly larger than o are
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exactly the solutions w to the complexified Moran equation

m
1= Zaik?),
i=1
where also 2(w) # 0; see Theorem 5.5 and Corollary 5.6.

We conclude by returning to the main class of examples in this work, generalized
von Koch snowflakes. These are described in Section 2 and see Figure 1 for some
examples. One way to construct such fractals is to begin with a regular n-gon. Then,
for each edge between vertices, replace the middle rth portion with the n — 1 edges
of a smaller regular n-gon to construct the first prefractal approximation. Repeat-
ing this process yields the fractal K, , though to be precise, we define these fractals
through iterated function systems. We deduce in Theorem 6.2 that the possible com-
plex dimensions of K, , (with positive real part) are solutions w to the equation

1= 2(1%)60 + @ —=1Dre.

Furthermore, we show that the kth antiderivative V1[<];] .0 of the tube zeta functions
of K, , relative to the interior region €2 takes the form

t2—s+k B B
VI[(];],’A,Q([) = Z Res (m;Knr,Q(s78)vw) + 0(12 a+k)’
w€Dky, r.2(Ho)

where we refer the reader to Theorem 6.4 and Section 6 for the appropriate definitions
and constraints. If the poles of the function (g, . o (s;d) are simple, then this formula
takes the form

k] 5 w2—s+k ) f
Vel o= Y Res((, ,.a(5:8):0) g + O —th).
w€Dk, .0 Ho)

In both of these formulae, (s)g is the Pochhammer symbol defined by
=T +k)/T)=sG+D(s+2)---(s+k—1)

and @ > 0 is any (small) positive alteration to the exponent.

Of note, in the case of generalized von Koch fractals, we see the appearance of the
lattice/non-lattice dichotomy: the geometry of the fractal is fundamentally different
depending on the arithmetic properties of the scaling ratios. In studying this problem
through the lens of fractal zeta functions, we are able to understand this behavior by
way of the structure of the complex dimensions of the fractal. See, for example, Fig-
ure 9, where the standard von Koch snowflake is arithmetic while the “squareflake”
and “pentaflake” fractals depicted are non-arithmetic. For the former, the tube func-
tion will have an oscillatory leading term, but for the other two the tube formula will
have a monotone leading order term and oscillatory effects at lower orders.
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2. Generalized von Koch fractals

What we will dub generalized von Koch fractals (abbr. GKFs) are fractals in which
regular polygons other than triangles are used in the construction of the snowflake
and/or those in which the scaling ratio chosen is a factor other than one third. This
provides a two-parameter family of fractal curves, where n > 3 is the number of sides
of the regular polygon and r € (0, 1) is the scaling ratio for the middle segments.

2.1. Generalized von Koch fractal curves

To define an (n, r)-von Koch curve, we will employ the notion of an iterated func-
tion system, which were introduced by Hutchinson in [9]. Hutchinson, in particular,
proved that iterated function systems induce a contraction on the space of nonempty,
compact subsets of RY equipped with the Hausdorff metric, whence by the Picard—
Banach fixed point theorem there is a unique fixed point of the system (which is
nonempty and compact). This fixed point, or equivalently the attractor of the system,
is a convenient way to define many fractals [1,6].

We will actually use a slightly more restrictive type of iterated function system,
namely, a self-similar system, whose definition we provide below.

Definition 2.1 (Self-similar system). A self-similar system ® on a complete metric
space (X, d) is a finite set of contractive similitudes

O :={gr: X - X},
where, foreach k = 1,...,m and for every x,y € X,

d($r(x), () = red(x, y).

where 1 € (0, 1) is the scaling ratio of ¢.

Note that an equivalent phrasing of the above statement is that a self-similar sys-
tem is an iterated function system where each contraction mapping is, a fortiori, a
similitude.

Similitudes in Euclidean spaces are compositions of translations, rotations, reflec-
tions, and homotheties. In order to explicitly write self-similar systems in what fol-
lows, we introduce the following translation, rotation, and homothety/scaling trans-
formations of R?:

Tap(x.y):=(x+a.y+b), (a,b)eR>
Ry(x,y) := (xcosf — ysinf,xsinf + ycosf), 6 eR, 2.1)
Si(x,y) = (Ax,Ay), A eRT.
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Figure 3. A depiction of the central angle 6, = 27/n and the interior angle o, = 7w — 27 /n
of a regular n-gon, illustrated on a hexagon where n = 6.

Note that the scaling ratio of S is A, and that translations and rotations are isometries,
thus their scaling ratios are equal to one.

Lastly, we will also need some angles related to a regular n-gon. Let us define
On = 27” to be the exterior angle (or equivalently the central angle) and o, = 7w — 27”
to be the interior angle of a regular n-gon. See Figure 3 for a depiction of these angles
on a hexagon.

With all of this geometric information, we may now explicitly write a self-similar
system whose attractor will be an (7, 7)-von Koch curve. We will also allow for sets
which are isometric to such an attractor to be considered generalized von Koch curves

as well.

Definition 2.2 ((n, r)-von Koch curve). Let n > 3 be an integer, let r € R satisfy
O0<r<l,andletf = 12;’

A set C,’l’r C R? is said to be an (n, r)-von Koch curve if it is isometric to the
set Cy.» C R? which is the unique, nonempty, compact fixed point associated to the

following self-similar system on R?2:

O, =L, or Vi :RZ >R k=1,...,n—1},
éL = Sy,
éR = T(t+r,0) © Se,
V1 = T,0) © Ray, © Sr,
Vi =Ty, 11,00 © Rayy—k—1)6, © Sr. k> 1.
Note that T(4 ), Si, and Ry are transformations of R? as defined in equation (2.1)

and 0, and o, are, respectively, the central and interior angles of a regular n-gon such
as those depicted in Figure 3 for n = 6.
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In other words, we may write that

Crr=Cor= | ¢lCurl.

€D,

If we denote by F : R? — R? the isometry that sends C,, , to C},

. r» then we may write

a self-similar system for C,’,,r using
Fod,, ={Fo¢:¢pecd,,}.

Note that there can be more than one iterated function system that generates the same
set Cy,r or C, ..

An algorithmic approach to constructing the curve is given by iterating the system
®,, » on the unit interval [0, 1] x {0}. The first step removes the middle rth piece of the
interval on the x-axis and adjoins the n — 1 other sides of a regular n-gon with length
r. BEach successive step repeats this process on every line segment, again removing the
middle rth portion of the line and adjoining the edges of a polygon whose side length
is r times that of the line segment’s length. The regular polygon is always added with
the same orientation with respect to the line segment.

Given n total (1, r)-von Koch curves, a generalized von Koch snowflake is simply
the union of these curves placed about the edges of a regular n-gon (of side length
one).

Definition 2.3 ((n, r)-von Koch snowflake). Let n > 3 be an integer, let r € R with
0 <r <1, andlet C, , be an (n, r)-von Koch curve with endpoints (0, 0) and (1, 0).
Aset K, . C R? is an (n, r)-von Koch snowflake if it is isometric to the set

n
Kn,r = U Uk[Cn,r]’
k=1

where Uy := Rg, o T(1,0) and Uy := Ryg, o Ty, _,(1,0) for k > 1. Note that T, p)
and Ry are transformations of R? defined in equation (2.1).

Note that (3, %)-von Koch snowflake is the “ordinary” von Koch snowflake, de-
picted in Figure 1. Additionally, we have depicted a “squareflake” and a “pentaflake”,
which are generalized snowflake fractals with fourfold and fivefold symmetry, respec-
tively. Figure 4 depicts a prefractal approximation of the pentaflake K 5.1 with two
extra levels of zoom onto one of the fringes, which can be seen to be pentagons.

Additionally, it is of note that we are identifying these von Koch snowflakes as
unions of curves. One might instead define a snowflake to be the region(s) enclosed
by the union of (n, r)-von Koch curves, in which case what we call the snowflakes
here would be the boundary of this set. In this setting, it would be suitable to call K, ,
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Figure 4. A depiction of Ky 1 (at the fourth stage of the prefractal approximation) together
with two zoomed-in images of the pentagonal frills.

IO

1
6
tively, from left to right. The fractal curve is topologically simple if r < 1 — %, such as with
the rightmost figure. For the other two fractals, depicted in the middle and on the left, the curves

Figure 5. Three (6, r)-von Koch snowflakes, with values of r equal to 0.3 and 0.1, respec-

are self-intersecting.

an (n, r)-von Koch snowflake boundary or a snowflake curve to be unambiguous. In
this work, the distinction will not be necessary.

The author first encountered these in the work of M. van den Berg and his col-
laborators on asymptotics of heat content of GKFs, such as in [27]. These have been
studied by other authors, such as Paquette and Keleti [10], who, in particular, describe
when such GKFs are topologically simple curves or not. They established the condi-
tion stated in Proposition 2.4 for self-avoidance of the curve. Figure 5 depicts three
(6, r)-von Koch snowflakes with decreasing values of r; the boundary of the curve
may intersect if r is large but cannot when r is sufficiently small.

Proposition 2.4 (Self-avoidance of GKFs [10]). An (n, r)-von Koch curve is non-
self-intersecting if the scaling ratio r > 0 satisfies the following:

sin?(7r/n)
cos?(m/n) + 1
r < 1—cos(w/n) ifnis odd.

if n is even,
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The boundary of the corresponding (n, r)-von Koch snowflake K, , is topologically
simple under these conditions.

In particular, this proposition implies that for each n > 3, there is an interval of
admissible scaling ratios, namely (0, ro). The condition in Proposition 2.4 is sufficient
but not necessary, as the fractals can interleave for certain values of n and r. We refer
the interested reader to Keleti and Paquette’s paper [10] for more information. Of
note, n = 6 is the first value for which 1/n exceeds the value of rqy provided in the
proposition. See Figure 5 for a depiction of K, 6.1

3. Tubular neighborhoods and zeta functions

Tube zeta functions were introduced in [18] to study fractals in higher dimensions
and to extend the theory of complex dimensions (see Definition 3.5) to such fractals.
These tube zeta functions are constructed from tube functions, which are the volumes
of tubular neighborhoods of the given set. The tube zeta functions are essentially
restricted Mellin transforms of this volume function, and thus, they possess important
scaling properties (cf. Lemma 3.6).

3.1. Tube functions and their properties

Let N denote a given Euclidean dimension. Given a set X C RV let X . denote an
epsilon neighborhood of X, that is,

XE::{yeRN:EIxeX, |y—x|<e}.

Note that even if X itself is not Lebesgue measurable, X, is necessarily measurable
as it is open. For example, it may be written as a union of open sets B.(x) for x € X,
where B.(x) is an open ball of radius ¢ centered at x.

In what follows, we will be considering these tubular neighborhoods relative to
some other set Q CR¥ . To that end, we recall the notion of a relative fractal drum [18].

Definition 3.1 (Relative fractal drum). Let X, Q@ C RY and suppose further that  is
open, has finite Lebesgue measure, and has the property that 3§ > 0 such that Q5 D X.
Then, the pair (X, 2) is called a relative fractal drum, or RFD for short.

The tube function of an RFD (X, ©2) will be the volume of the tubular neighbor-
hood of X contained within the set 2. Notably, such tube functions may be defined
for any subset of RY so long as the set 2 relative to which the volume is computed is
Lebesgue measurable.
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Definition 3.2 (Relative tube function of a set). Let X ¢ RY, let Q ¢ RN be a
Lebesgue measurable set, and denote by m the N-dimensional Lebesgue measure.
The tube function Vy g of X relative to Q2 is the function Vy q(g) := m(X, N Q),
defined for ¢ > 0.

When the set Q is clear from context or is all of R, we may suppress it in the
notation. Any such function Vy q is continuous and non-decreasing on its domain,
and it is finite when X or €2 is a bounded set.

Note that the Lebesgue measure m has the scaling property that, for any A € R,
m(AX) = AN m(X). When a tubular neighborhood X, is scaled, the parameter &
defining the new scaled neighborhood will scale linearly. In other words, A - (X,) =
(AX))e. Combining these properties, we may deduce how tube functions change
under scaling. In the simplest case, where Q2 = RY and we omit it, we have that
Vix (Ae) = AN Vx (). We state and prove the following property for relative tube
functions.

Lemma 3.3 (Scaling property of relative tube functions). Ler X C RY and let Q C
RY be measurable. For any ¢ > 0 and A > 0, we have that

Vixaa(e) = AN Vx a(e/A).

More generally, if ¢ : RN — R¥ is a similitude with scaling ratio A, then we have
the analogous identity

Vo.e@ () = AN Vx a(e/A).

Proof. Let ¢ = & o ¢y oy, where ', {5 are compositions of rotations, reflections,
and translations and where ¢, is a scaling transformation, viz. ¢, (x) = Ax. Any
similitude of scaling ratio A, by definition, may be written this way. Note that the
first identity is a special case of the second property; merely, set 1; = ¢’ = Id. For
convenience, let us denote U’ = ¥/(U) in what follows, and note that AU = ¢, (U).

The maps in question have lots of nice properties. First, we note that ¥’ and ¥
are isometries, which is to say that m(U’) = m(U) and m(y(U)) = m(U) for any
U c RV, Since J Y¥', ¢,., and their composition ¢ are injective, they each have the
property that the intersection of the images of two sets is the image of the intersection
of those sets. The same property is true (unconditionally) for the union of images
being the image of the union.

This lattermost fact is one way to see that ¥ (X,) = (¥ (X))e. One may write
the neighborhood X, as a union of &-balls, and then apply the preservation of unions
under images to see that this set is exactly the neighborhood of the transformed set

v (X).
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Using this fact and the above properties, we find that the tube functions are unaf-
fected by an injective isometry, such as v:

Vioxnioan @ =m@ (X)) Ny(Q")
=mP[AX)e NAQ]) = Vaxr a0 (e).

As mentioned before, we have that ¢ (X)) = (AX) ;.. Writing € = A¢, we obtain that
Vixiag (A1) = m(ga(X; N Q) = AV Vyr (1),

where the last step is the scaling property of the Lebesgue measure. We have already
shown that for an injective isometry like ¥, Vy/(x),y/ (@) = Vx,@. Thus, the result
follows by writing t = ¢/A and combining these equalities. ]

3.2. Tube zeta functions and complex dimensions

Tube zeta functions were introduced in [18] to study fractals in higher dimensions.
They are defined as a restricted Mellin transform of the tube function of the corre-
sponding set, introducing a cutoff value of § > 0 to the upper bound of the usual
Mellin transform.

Definition 3.4 (Relative tube zeta function). Let (X, 2) be a relative fractal drum and
let § > 0. The relative tube zeta function {x,q of X relative to 2 is given by

5 5
{x,(s;6) 32/ 5N vy (1) dt
0

for s € C with sufficiently large real part.

As with the tube functions, when the set €2 is clear from context, we will some-
times write
x =lxq
and omit the relative set. We will also denote by Ex,g the maximal meromorphic

extension of the holomorphic function defined by the integral.
Next, we observe that for any two 6, > §; > 0, we have that

- - 82
Gralsit) ~ Erabion = [ e ar G.1)
1
Of note, this difference is a holomorphic function which possesses an entire analytic
continuation [18]. As such, the poles of a tube zeta function are not dependent on the
choice of 6.
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These poles of a tube zeta function are of importance to the geometry of the frac-
tal. They are called complex (fractal) dimensions of the set X . Typically, one specifies
a subset of the complex plane, or a “window,” which is usually the domain of mero-
morphicity of the function in C or a half-plane contained therein.

Definition 3.5 (Complex dimensions of a set). Let (X, 2) be a relative fractal drum
and let E x,q be the relative tube zeta function of X.

If W C C, then the complex dimensions of X relative to 2 contained in the win-
dow W, denoted by Dx (W), are the poles of 2:’ x,q contained within W.

The complex dimensions control the exponents and the form of the tube formula
for the set [18, 19]. See especially chapter five in [18].

Tube zeta functions are well suited to studying self-similar or nearly self-similar
objects due to their scaling properties. These follow from the nature of the zeta func-
tion as a (restricted) Mellin transform on the space of positive scaling factors. The
scaling relation is complicated only slightly by the truncation of the integral, as the
cutoff value will change with the scaling.

Lemma 3.6 (Scaling property of E x.Q). Let (X, ) be a relative fractal drum in RN
and let & > 0. Then, for all s in its domain, the tube zeta function of X relative to Q
satisfies the following:

Lixaa(s:8) = A lx.a(s:8/A).

Moreover, if ¢ : RN — RN is a similitude of scaling ratio A > 0, then similarly we
have that

Eox0),0(2)(5:8) = A Lx.a(s:8/2).
We note that this result is essentially just Proposition 4.6.11 in [18], where the

only change is that we draw explicit attention to the usage of similitudes. We include
a proof since this result may be seen as a corollary of Lemma 3.3.

Proof. Using Lemma 3.3 and a change of variables, we compute that

z b NN di

{opx)p@(s:8) = | 7774 Vx,sz(t//\)T
0

8/A dt B
= / (At)S—NAN Vm(z)T = AStx.a(s:8/A). "
0
Now, from Lemma 3.6 and equation (3.1), we obtain the functional relation

N - /A
Erxan(s:8) = M rals:8) + 2° /8 SN e di. ()

We will introduce notation for this “partial” tube zeta function, as it encapsulates the
effects the truncation on the scaling property of the tube zeta function.
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Definition 3.7 (Partial tube zeta function). Let (X, 2) be a relative fractal drum in
RY, Vx,q its relative tube function, and 0 < §; < §». We define a partial tube zeta
function to be the following:

8>

Erals:81.8,) = / SNy o (1)
81

for all s € C with sufficiently large real part.

These partial tube zeta functions will appear in scaling functional equations such
as equation (3.2), and thus, we will need to estimate them. We note the following.
Letting o = N (s), we have that

80’—N_80'—N
VX,Q(82)2Uf]vls o #N7

|Ex.0(5:81.82)] <
Vx,@(82)log(62/81), o =N.

3.3)

Note that these bounds are enough to deduce that EX’Q extends to an entire function
in the complex variable s € C, whence follows the result of Lapidus, Radunovi¢, and
Zubrini¢ on the independence of the poles of 2 x.© on the parameter § in [18]. We
conclude by stating this as a lemma.

Lemma 3.8 (Partial tube functions are entire). Let gx,g(s; 81, 82) be a partial tube
zeta function of the relative fractal drum (X, Q), with fixed positive parameters 81, 6.
Then, £x q extends to an entire function in the variable s.

4. General scaling functional equations

In this section, we study scaling functional equations in a general setting. In partic-
ular, we show how they may be solved by means of (truncated) Mellin transforms.
The approach is similar in spirit to solving functional equations by means of renewal
theory, except in this case we use the Mellin transform which is natural for studying
for the positive real line as a group with multiplication. We will illustrate the ideas
up through the use of the transform to create nicely solvable functional equations into
the Mellin inversion theorem. Notably, we use a truncation of the Mellin transform as
opposed to the standard Mellin transform. This is primarily because in the application
to tube functions in Section 5, these are preferred.

The positive real line R (as a group with multiplication) may be thought of as the
space of scaling factors, and its associated Haar measure %
to scaling transformations. We will first treat scaling functional equations of functions

is invariant with respect

on this space and, in the next section, specialize to tube and zeta functions.



Tube formulae for generalized von Koch fractals through scaling functional equations 15

4.1. Truncated Mellin transforms

Let C°(R™) denote the space of continuous functions f : Rt — R. The standard
Mellin transform of f is the integral M[f](s) = f0°° x5~ f(x)dx. A truncated or
restricted Mellin transform is simply an integral of the same integrand but over an
interval which is a subset of (0, 00).

Definition 4.1 (Truncated Mellin transform). Let f € C°(R*,R) and fix o, B > 0.
The truncated Mellin transform of f, denoted by Mg [f], is given by

P d
W6 = [ e r0f

o
for all s € C for which the integral is convergent. If « = 0, we write MP for the
truncated transform, and if additionally B = oo, then M = M{° is the standard Mellin
transform.

Note that we may equivalently define Mg [f] to be the Mellin transform of f
times the characteristic function of the interval (&, 8), viz.

ME[f] = M[f L p1]-

This allows us to compare the convergence of the two directly, and it shows that the
truncated transform inherits the properties of its counterpart, most notably linearity.

First, to discuss the convergence of such transforms, we note an immediate corol-
lary of the alternate definition is that a restricted transform converges automatically
if the Mellin transform converges. It is known (see, for example, [8, Chapter 6]) that
M| f](s) is holomorphic in the vertical strip o_ < Ji(s) < o4, where

o_:=inf{o: f(x) = 0(x%,x —> O+)},

o4 :=supf{o: f(x) = O(x™%,x > o0)}.

Wheno < B <00, f-1jq,g = 0asx — oo, whence o4 = oo. Similarly, if 0 < <
B then f -1, 5 =0as x — 0", whence 60— = —o0. So, if 0 < & < B < o0, the
restricted transform is automatically entire, i.e., holomorphicin C. If 0 =« < f < 00
and f = O(x°), then MP[f](s) is holomorphic in the half plane H_,, i.e., when
NR(s) > —ayp.

Notably, the restricted transform may converge even if the full Mellin transform
integral diverges. Perhaps, the most important class of functions for which this occurs
is that of polynomials: if f(¢) = t* and N (s) > —k, MP[f](s) converges whilst
M| f](s) is divergent for all s € C. Thus, for a general polynomial

n
p() =Y at*,
k=0
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we have that

MP[pl(s) = Z Sj_—kkﬂﬁ_k, N(s) > max{—k : a; # O}.
k=0

Negative powers become admissable if the lower bound « of the truncation is positive.

4.2. Scaling operators and associated zeta functions

Next, we define scaling operators which act on C%(R¥). To borrow terminology from
statistical mechanics, we will define pure and mixed scaling operators. A pure scaling
operator My, where A € R™, will act by precomposition by a scaling operator in the
following fashion:

M;[f1(x) == f(x/A),

where this convention of inverting the scaling factor will be convenient for our appli-
cations. A mixed scaling operator will be a linear combination of such scaling oper-
ators. If we have that L = Y/~ a; M, is a (mixed) scaling operator, then it acts
by

m
LA = Y ai f(x/h).
i=1
We will not require the combination to be convex; later, the only constraint we will
add is that the multiplicities be positive and integral. For now, each a; € R.

Given such a scaling operator L, we define an associated scaling zeta function.
This function will play a key role in describing