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Multi-component conserved Allen–Cahn equations

Maurizio Grasselli and Andrea Poiatti

Abstract. We consider a multi-component version of the conserved Allen–Cahn equation proposed
by J. Rubinstein and P. Sternberg in 1992 as an alternative model for phase separation. In our
case, the free energy is characterized by a mixing entropy density which belongs to a large class
of physically relevant entropies like, for example, the Boltzmann–Gibbs entropy. We establish the
well-posedness of the Cauchy–Neumann problem with respect to a natural notion of (finite) energy
solution which is more regular under appropriate assumptions and is strictly separated from pure
phases if the initial datum is. We then prove that the energy solution becomes more regular and
strictly separated instantaneously. Also, we show that any finite energy solution converges to a
unique equilibrium. The validity of a dissipative inequality (identity for strong solutions) allows
us to analyze the problem within the theory of infinite-dimensional dissipative dynamical systems.
On account of the obtained results, we can associate to our problem a dissipative dynamical system
and we can prove that it has a global attractor as well as an exponential attractor.

1. Introduction

Phase separation—that is, the creation of two (or more) distinct phases from a single
homogeneous mixture—is an important phenomenon which characterizes many import-
ant processes. In particular, it has recently become a paradigm in cell biology (see, for
instance, [5, 6] and references therein). A well-known mathematical model of phase sep-
aration for binary alloys was proposed by J. W. Cahn and J. E. Hilliard [3, 4]. This
model leads to the so-called Cahn–Hilliard equation (see, for instance, [38] and references
therein). More precisely, indicating by ' the concentration of one species, phase separa-
tion can be modeled as a competition between the Boltzmann–Gibbs mixing entropy

S.'/ D �' ln' � .1 � '/ ln'

and the demixing effects due to the reciprocal attraction of the molecules of the same
species which can be described, for instance, as follows:

D.'/ D �'.1 � '/:
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Thus, the free energy density is given by the so-called Flory–Huggins potential (see, for
instance, [2] and references therein)

W.'/ D �‚S.'/C‚cD.'/; (1.1)

where ‚ > 0 is the absolute temperature of the mixture and ‚0 > 0 is its critical tem-
perature (other constants are set equal to 1). If ‚ < ‚c , then W has a double well shape
and phase separation takes place. Assuming that the mixture occupies a bounded domain
� � Rd , d D 2; 3, the previous considerations lead to the following free energy func-
tional:

E.'/ WD

Z
�

W.'/dx C


2

Z
�

jr'j2dx;

where the penalization term allows the creation of diffuse interfaces between the two spe-
cies and also allows a convenient mathematical treatment of the phenomenon (see [20]).
Here  > 0 is related to the thickness of the diffuse interface. The Cahn–Hilliard equation
can be introduced as a conserved gradient flow generated by the gradient of the chemical
potential � defined by

� D
ıE

ı'
D ��' CW 0.'/;

that is, taking constant mobility equal to a constant m > 0,

@t' D m��:

This equation, subject to no-flux (or periodic) boundary conditions, entails the conserva-
tion of the total mass

R
�
'.t/dx. An alternative model has been proposed by J. Rubinstein

and P. Sternberg [42] by modifying another well-known equation proposed by S. M. Allen
and J. W. Cahn [1] in order to ensure mass conservation. The equation has the form

@t' D ˛.� � �/; (1.2)

where ˛ > 0 and f is defined by

f WD j�j�1d

Z
�

f .x/dx;

for any integrable f . Here j�jd stands for the d -dimensional Lebesgue measure of �.
Equation (1.2) equipped with a homogeneous Neumann boundary condition preserves the
total mass. In [42] a (formal) asymptotic analysis was performed with respect to a specific
scaling in order to understand the motion of the separating interfaces (also see [8] for
an important application). More rigorous results can be found in [17] where the authors
show that, in a radially symmetric setting, the sharp interface problem of a suitable scaling
of (1.2) is a nonlocal motion by mean curvature. Moreover, they also prove that both (1.2)
and the Cahn–Hilliard equation can be seen as degenerate limits of the viscous Cahn–
Hilliard equation introduced in [41].
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The corresponding motion by mean curvature is also analyzed in [18] under more gen-
eral assumptions on the evolving surface. In the quoted contributions, the mixing entropy
is approximated, that is, the double well potential W is a fourth-order polynomial, also
called the regular (or smooth) potential. However, on account of the nonlocal constraint,
one cannot ensure that ' takes its values in the physical range Œ0; 1� (see, however, [31]
for an alternative model). Instead, if the mixing entropy is not approximated by a poly-
nomial, then the image of ' is always contained in Œ0; 1�. Well-posedness issues in the
case of a polynomial W are standard. However, if W is given by (1.1), then proving the
existence of sufficiently regular global solutions is less trivial because S 0 is singular at the
endpoints and cannot be controlled by S like a polynomial. In this case, it would be nice
to show that ' stays uniformly away from 0 and 1, that is, if the strict separation property
holds, then S 0 would be globally Lipschitz and the analysis would simplify a lot (see, for
instance, [25] and references therein for the Cahn–Hilliard equation in two dimensions;
see also [9] for the case of three dimensions). In the nonconserved case, the strict sep-
aration is trivial for regular potentials and a bit less straightforward for logarithmic-type
potentials like (1.1) (see [32, Theorem 2.3]). Concerning (1.2), its instantaneous valid-
ity in dimension two has been proven (see [30]), while in dimension three the proof was
given assuming that the initial datum is strictly separated (see [26]). Observe that the strict
separation property combined with the uniqueness of a solution ' allows us to view the
solution itself as the solution to a similar problem where S is replaced by a smooth approx-
imation, defined on the whole real line, which coincides with S on the interval Œı; 1 � ı�
and ı 2 .0; 1/ is such that ' 2 Œı; 1 � ı�. In other words, the validity of the strict sep-
aration can be interpreted as a rigorous justification of the entropy approximation with a
polynomial.

In this paper we want to reconsider these issues and say more for a multi-component
version of (1.2). In many applications, it is important to account for the presence of mul-
tiple interacting species (see, for instance, [11,12,15,16,29,33,34] and references therein;
see also [22,40] and their references for the motion by mean curvature in the nonconserved
case and [10] for the importance of the Flory–Huggins potential). Nevertheless, to our
knowledge, a comprehensive theoretical analysis of multi-component conserved Allen–
Cahn equations is missing. Nonetheless, it is worth recalling [23, 43] and their references
for nonconserved stationary problems with regular potential. Moreover, we recall that a
rigorous solution to the so-called Keller–Rubinstein–Sternberg problem on the motion by
curvature has recently been given in [21] (see also its references). On the contrary, multi-
component Cahn–Hilliard equations were analyzed long ago in the pioneering paper [7]
(see also [27] and its references for further results and recent developments). As we shall
see, one of the advantages (and our main result) is the fact that any weak solution becomes
instantaneously strong and strictly separated also in dimension three, while this property
is known only in dimension two for the corresponding multi-component Cahn–Hilliard
equation. This regularization allows us to investigate the longtime behavior of solutions
in some details, that is, we prove the existence of a global and an exponential attractor.
Also, we can show that any weak solution converges to a single stationary state. The
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present analysis can also be viewed as a first step towards the analysis of multi-component
Navier–Stokes-Allen–Cahn systems (see, for instance, [14, 45, 46]; see also [30, 37] and
references therein for binary fluids). We also believe that this contribution is a significant
addition to [35, Section 9].

In the multi-component case, we denote by u W � � .0; T /! RN the vector-valued
function of concentration species whose components must satisfy the constraint

NX
iD1

ui � 1: (1.3)

The free energy density takes the form

‰.u/ D
NX
iD1

 .ui / �
1

2
uTAu; (1.4)

where A is a constant symmetric N � N matrix with the largest eigenvalue �A > 0.
Concerning  , here we are mainly interested in the Boltzmann–Gibbs mixing entropy—
namely,

‰1.u/ WD �
NX
iD1

ui lnui D
NX
iD1

 .ui /; (1.5)

where � > 0 is the absolute temperature of the mixture. However, our framework also
includes many other (physically relevant) entropy functions ‰1 W Œ0; 1� ! RC (see pa-
pers [25, 27]). The free energy E is thus defined as

E.u/ WD W.u/C


2

Z
�

jruj2dx;

where
W.u/ D

Z
�

‰.u/dx:

Setting

�0i D
ıW

ıui
D ‰;ui ; i D 1; : : : ; N;

the vector �0 is the chemical potential without capillarity and

� D ��uC �0

is the chemical potential.
Summing up, arguing as in [7] for the Cahn–Hilliard case, the goal of this work is to

study the following initial and boundary value problem:8̂̂̂̂
<̂
ˆ̂̂:
@tuC ˛.w �w/ D 0 in � � .0; T /;

w D P� D ��uC P�0 in � � .0; T /;

rui � n D 0 on @� � .0; T /; i D 1; : : : ; N;

u.0/ D u0 in �:

(1.6)
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The (constant) mobility matrix ˛ is a symmetric, positive semidefiniteN �N matrix such
that its kernel is given by span¹�º (where �i D 1, for i D 1; : : : ; N ). Here P is defined as
follows (see also the next section):

.Pv/l D vl �
1

N

NX
mD1

vm; l D 1; : : : ; N: (1.7)

Then, it is easy to check that, formally, a solution to the above problem with P�uD �Pu
in place of �u satisfies (1.3) if the initial datum does, using in (1.6)1 the property

NX
lD1

.Pv/l D 0

and the fact that (recalling that ˛ is also symmetric)
PN
iD1 ˛ij D 0 for any j D 1; : : : ;N .

Therefore, P�u D �u.
The plan of the paper goes as follows: In the next section we introduce the notation,

the functional setup, and some basic assumptions on the mobility matrix ˛. Also, we
discuss the basic assumptions on the potential (more general than (1.4)–(1.5)) and its
regularization. The main results are stated in Section 3 and the last subsection contains the
proof of the convergence to a single equilibrium. The proofs of the well-posedness and
regularity results, including the strict separation property, can be found in Section 4. The
existence of the global attractor and of an exponential attractor are proven in Sections 5
and 6, respectively.

2. The mathematical framework

The (real) Sobolev spaces are denoted as usual by W k;p.�/, where k 2 N and 1 �
p � 1, with norm k � kW k;p.�/. The Hilbert space W k;2.�/ is denoted by H k.�/ with
norm k � kHk.�/. Moreover, given a space X , we denote by X the space of vectors of three
components, each one belonging toX . We then denote by .�; �/ the inner product inL2.�/
and by k � k the induced norm. We indicate by .�; �/X and k � kX the canonical inner product
and its induced norm in a generic (real) Hilbert space X , respectively. Further, we intro-
duce the affine hyperplane

† WD
°

c0 2 RN W
NX
iD1

c0i D 1
±
;

the Gibbs simplex

G WD
°

c0 2 RN W
NX
iD1

c0i D 1; c
0
i � 0; i D 1; : : : ; N

±
;
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and the tangent space to †

T† WD
°

d0 2 RN W
NX
iD1

d 0i D 0
±
:

We introduce the following notation:

H0 WD

°
f 2 L2.�/ W

Z
�

f dx D 0 and f .x/ 2 T† for a.a. x 2 �
±
;

zH 0 WD

°
f 2 L2.�/ W f .x/ 2 T† for a.a. x 2 �

±
;

V 0 WD
°
f 2 H1.�/ W

Z
�

f dx D 0 and f .x/ 2 T† for a.a. x 2 �
±
;

zV 0 WD
°
f 2 H1.�/ W f .x/ 2 T† for a.a. x 2 �

±
:

Notice that the spaces above are still Hilbert spaces with the same inner products given
in L2.�/ for the first two, and H1.�/, for the others. We also have (see [27]) the Hilbert
triplets V 0 ,! H 0 ,! V 00 and zV 0 ,! zH 0 ,! zV

0

0.
Recalling (1.7), we now define rigorously the Euclidean projection P of RN onto T†,

which is, for l D 1; : : : ; N ,

.Pv/l D
�

v �
� 1
N

NX
iD1

vi

�
�
�
l
;

where � WD .1;1; : : : ; 1/. Notice that the projector P is also an orthogonal L2.�/-projector,
being symmetric and idempotent. We now assume that ˛ is positive definite over T†.
This will constitute the main assumption on the mobility matrix in this contribution, since
it is enough to prove the existence of weak (and strong) solutions. Nevertheless, it is not
enough to show the validity of a continuous dependence estimate. Thus, we need a second
assumption (see assumption (M1)). More precisely, we assume that:

(M0) there exists l0 > 0 such that

˛� � � � l0� � �; 8� 2 T†I (2.1)

(M1) ˛ 2 RN�N has the structure

˛ D

26664
A B : : : B

B A : : : B
:::

:::
:::

:::

B : : : : : : A

37775 ; (2.2)

where A > 0 and AC .N � 1/B D 0, so that B D � A
N�1

< 0.
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Remark 2.1. Note that assumption (M1) can be also rewritten as follows: there exists
� > 0 such that

˛ D �

26664
N � 1 �1 : : : �1

�1 N � 1 : : : �1
:::

:::
:::

:::

�1 : : : : : : N � 1

37775 : (2.3)

A matrix of this kind is the natural extension to the caseN > 2 of the admissible matrix ˛
whenN D 2, which necessarily has the form in (2.3), as one can easily verify. Observe that
when � D 1, the matrix ˛ is simply the representative matrix of the projector P, that is, the
identity operator over the space T†. We also point out that ˛ is positive semidefinite and
satisfies (2.1), since it has a zero simple eigenvalue corresponding to the eigenspace T†?,
whereas on T† we see by Lemma 4.1 below (with C equal to the N �N identity matrix)
that ˛ is positive definite. In particular, one could show that the eigenvalues of ˛ are
�1 D 0 (corresponding to the eigenvector .1; 1; : : : ; 1/), and �i D �N , for i D 2; : : : ; N ,
whose eigenspace is clearly T†.

Next, we define the set

K WD
°
� 2 H1.�/ W

NX
iD1

�i D 1; �i � 0; 8i D 1; : : : ; N
±
:

For the sake of simplicity we will adopt the compact notation v � k, with v 2 RN and
k 2 R to indicate the relations vi � k, i D 1; : : : ; N .

Recalling (1.5), we now set

.�.u//i D �.ui / WD  0.ui /; i D 1; : : : ; N: (2.4)

In order to include a large admissible class of entropy functionals in (1.4), we suppose that

 2 C Œ0; 1� \ C 2.0; 1�

has the following properties:

(E0)  00.s/ � � > 0; for all s 2 .0; 1�I

(E1) lims!0C  
0.s/ D �1I

(E2) lims!0C. 
0.s � 2s2/ �  0.2s2// D C1.

As in [27], we also extend  .s/ D C1; for any s 2 .�1; 0/, and extend  for all
s 2 Œ1;1/ so that  is a C 2 function on .0;C1/ and assumption .E0/ holds for any
s > 0. In particular, we define

 .s/ WD As3 C Bs2 CDs for all s � 1;
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with 8̂̂<̂
:̂
A D  .1/ �  0.1/C 1

2
 00.1/;

B D �3 .1/C 3 0.1/ �  00.1/;

D D 3 .1/ � 2 0.1/C 1
2
 00.1/:

We refer the reader to [25, Section 6.3] for some other important classes of mixing
potentials that are singular at 0. Furthermore, following the general scheme developed
in [24, Section 3.1], by assumptions (E0)–(E1), we can define an approximation of the
potential  by means of a sequence ¹ "º">0 of everywhere-defined nonnegative func-
tions. More precisely, let

 ".s/ D
"

2
jT"sj

2
C  .J".s//; s 2 R; " > 0; (2.5)

where J" D .I C "A/�1 W R! .0;C1/ is the resolvent operator and T" D
1
"
.I � J"/ is

the Yosida approximation of T .s/ WD  0.s/; for all s 2D.T / D .0; 1�. According to the
general theory of maximal monotone operators, as already developed in [27, Section 2],
the following properties hold:

(i)  " is convex and  ".s/%  .s/, for all s 2 R, as " goes to 0C;

(ii)  0".s/ D A".s/ and �" WD  0" is globally Lipschitz with constant 1
"

;

(iii) j 0".s/j % j 
0.s/j for all s 2 .0; 1� and j 0".s/j % C1; for all s 2 .�1; 0�, as "

goes to 0C;

(iv) for any " 2 .0; 1�, it holds that

 00" .s/ �
�

1C �
for all s 2 RI

(v) for any compact subset M � .0; 1�,  0" converges uniformly to  0 on M ;

(vi) for any "0 > 0, there exists zK D zK."0/ > 0 such that

NX
iD1

 ".ri / �
1

4"0
jrj2 � zK; 8r 2 RN ; 8 0 < " < "0:

The final property directly follows from a simple adaptation of [24, Lemma 3.11],
which entails that for any "0 >0, there existsC DC."0/ > 0 such that ".s/� 1

4"0
s2 �C ,

for any s 2 R and any 0 < " < "0 (see also [27, Section 2]). Let us now introduce

‰".r/ WD
NX
iD1

 ".ri / �
1

2
rTAr D ‰1" .r/ �

1

2
rTAr;

where, as presented in the introduction, A is a symmetric N � N matrix with �A > 0 as
the largest eigenvalue. We thus have that for any "0 > 0 sufficiently small, there exist
K D K."0/ > 0 and C D C."0/ > 0, with C."0/%C1 as "0 ! 0C, such that

‰".r/ � C."0/jrj2 �K; 8r 2 RN ; 8" 2 .0; "0/:



Multi-component conserved Allen–Cahn equations 497

In particular, this comes from the fact that �1
2

r � Ar � ��A
2
jrj2 and "0 has to be small

enough so that, for example, C."0/ D 1
4"0
�
�A
2
> 0.

Remark 2.2. We point out that, differently from the standard assumptions on  (see,
e.g., [25, 30]), here we do not need the assumption

�0.s/ D  00.s/ � C eC j 
0.s/jˇ for all s 2 .0; 1�; ˇ 2 Œ1; 2/;

since to deduce the validity of the instantaneous strict separation property we will make
use only of assumptions (E0)–(E2). Clearly, the logarithmic potential in (1.4)–(1.5) satis-
fies assumptions (E0)–(E2) and is then included in our analysis. Indeed, assumption (E2)
also certainly holds for the logarithmic potential, since  0.s/ D �.ln.s/C 1/ and, thus,
 0.s � 2s2/ �  0.2s2/ D �.ln.s � 2s2/ � ln.2s2// D � ln. 1

2s
� 1/! C1 as s ! 0C.

Moreover, it seems that if we consider potentials exploding at infinity more slowly than
the logarithm, then assumption (E2) is not satisfied. Indeed, if, for instance, we con-
sider  0.s/ D � ln.j ln.s/j/, then we get  0.s � 2s2/ �  0.2s2/ D � ln.j ln.s � 2s2/j/C
ln.j ln.2s2/j/! ln.2/ as s ! 0C.

3. Main results

This section is divided into several subsections according to the nature of the results.

3.1. Well-posedness and regularity

We first deal with well-posedness and regularity (see [27] for the multi-component Cahn–
Hilliard system).

Theorem 3.1. The following three scenarios hold:

(1) Assume (M0) and (E0)–(E1), and let u0 2K . Suppose that

ı0 < u0; (3.1)

for some 0 < ı0 < 1
N

. Then, for any given T > 0, there exists a solution pair .u;w/
defined on Œ0; T �, called a finite energy solution to (1.6), which has the following
properties:

u 2 C.Œ0; T �IL2.�// \ L1.0; T IH1.�// \ L2.0; T IH2.�//;

@tu 2 L2.0; T IL2.�//;
w 2 L2.0; T IL2.�//;

�.ui / 2 L
2.0; T IL2.�//; i D 1; : : : ; N ;

and satisfies

u.�; t / 2K; u.�; t / � u0 for a.a. t 2 .0; T /; (3.2)

0 < u.x; t/ < 1 for a.a. .x; t/ 2 � � .0; T /; (3.3)
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@tuC ˛.w �w/ D 0 a.e. in � � .0; T /; (3.4)

w D P.�AuC �.u// � �u a.e. in � � .0; T /; (3.5)

@nu D 0 a.e. on @� � .0; T /; (3.6)

u.0/ D u0 a.e. in �: (3.7)

Moreover, the following energy inequality holds:

E.t/C

Z t

0

.˛̨̨.w.s/ �w.s//;w.s/ �w.s//ds � E.0/; 8 t 2 Œ0; T �: (3.8)

If, in addition, (M1) holds and u10 D u20, then two solutions u1, u2 are such that

ku1.t/ � u2.t/k � Cku10 � u20k; 8 t 2 Œ0; T �; (3.9)

for some C D C.T / > 0 and uniqueness follows.

(2) Assume (M0) and (E0)–(E1) and let u0 2 K \ H2.�/ be such that @nu0 D 0
almost everywhere on @�, and �.u0;i / 2 L2.�/ for any i D 1; : : : ; N . Then,
there is a finite energy solution pair .u;w/ such that

u 2 C.Œ0; T �IH1.�// \ L1.0; T IH2.�//;

@tu 2 L2.0; T IH1.�//; (3.10)

w 2 L1.0; T IL2.�// \ L2.0; T IH1.�//; (3.11)

�.ui / 2 L
1.0; T IL2.�//; i D 1; : : : ; N:

Moreover, u satisfies the energy identity

d

dt
E C .˛̨̨.w �w/;w �w/ D 0 for a.a. t 2 Œ0; T �: (3.12)

(3) Let all the above assumptions hold along with (E2) and suppose that u0 is strictly
separated, that is, there exists ı0 2 .0; 1N / such that ı0 < u0 everywhere in �.
Then, the (unique) strong solution u is strictly separated as well, that is, there
exists ı D ı.�; T / 2 .0; 1

N
� such that

ı � u.x; t/; 8.x; t/ 2 � � Œ0; T �: (3.13)

Remark 3.2. On account of (3.11), one could also prove that �.u/ 2 L2.0; T ILp.�//,
where � is defined in (2.4), and u 2 L2.0; T IW 2;p.�// where p D 6 if d D 3, while
p 2 Œ2;1/ if d D 2, by slightly adapting part of the proof of [27, Theorem 3.1] (which
is performed for the L1-in-time case). Again, the main issue is the presence of the pro-
jector P in the definition of w (cf. [13, Corollary 1] for the scalar case).

Remark 3.3. Notice that (3.1) implies that there exists � > 0 such that � < u0;i < 1 � �
for any i D 1; : : : ; N . Indeed, we have, for any i D 1; : : : ; N ,

ı0 < min
jD1;:::;N

u0;j � u0;i D 1 �
X
j 6Di

u0;j � 1 � .N � 1/ min
jD1;:::;N

u0;j < 1 � .N � 1/ı0;

and thus we can choose, for example, � D ı0, with N � 2.
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Remark 3.4. Arguing as in [7, Proposition 2.1], we easily obtain
PN
iD1 ui D 1 andPN

iD1 wiD 0. Moreover, by choosing ��� � �i , with �i being the i -th unit vector, we get
that the total mass of each component ui is preserved, that is,

u.t/ � u0; 8 t 2 Œ0; T �:

Remark 3.5. From Theorem 3.1 part (2), we deduce that rui � n 2 Cw.Œ0; T �IH
1
2 .@�//.

Thus, rui � nD 0 for any t 2 Œ0; T � almost everywhere on @�, for i D 1; : : : ;N . Further-
more, since we also have

kukL1.0;T IH2.�// � C.T /;

with ku.�/kH2.�/ lower semicontinuous, we get

ku.t/kH2.�/ � C.T /; 8 t 2 Œ0; T �: (3.14)

Remark 3.6. Recalling Theorem 3.1 part (3), observe that (1.3) and (3.13) imply the
existence of ı1 WD .N � 1/ı > 0 such that u � 1 � ı1 almost everywhere in � � Œ0; T �,
that is, each component is strictly separated from the pure phases 0 and 1. Moreover,
property (3.13) holds on�� Œ0; T �, since from its proof (see Section 4.1) we deduce that,
for any t 2 Œ0; T �,

u.t/ � ı a.e. in �:

Then, by Remark 3.5, we know that u.t/ 2 H2.�/ ,! C.�/ for any t 2 Œ0; T �, implying
that

u.x; t/ � ı; 8.x; t/ 2 � � Œ0; T �:

Remark 3.7. The quantity ı > 0 in the separation property only depends on the initial
data through the initial data energy E.0/, u0, ı0, and ku0kH2.�/. The same goes for all the
constants involved in the regularity estimates of part (2) of the Theorem 3.1, except ı0.

Remark 3.8. As will be clear from the proof (see also Remark 4.4), in the case N D 2
assumption (E2) is not needed to prove (3.13). This agrees with the result obtained in [26]
for binary mixtures.

On account of the dissipative nature of the system, we have the following uniform
control of the energy E:

Theorem 3.9. Let the assumptions of Theorem 3.1 part (1) hold. Then, the energy of
solution u satisfies the following inequality:

E.t/ � C1e
�!tE.0/C C2; 8t 2 Œ0; T �; (3.15)

where C1; C2 > 0 depend on �, ˛, ‰, and u0, while ! > 0 is a universal constant.

We can prove that any weak solution given by Theorem 3.1 instantaneously regular-
izes. Thanks to this, we can show the instantaneous strict separation property in dimen-
sions two and three. This means that, for any � > 0, there exists 0 < ı D ı.�/ < 1

N
such
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that ı � u almost everywhere in�� Œ�;C1/. Again, notice that this implies the existence
of ı1 WD .N � 1/ı > 0 such that u � 1 � ı1 almost everywhere in � � Œ�;C1/, that is,
each component is strictly separated from both the pure phases 0 and 1. More precisely,
the following result holds:

Theorem 3.10. Let the assumptions of Theorem 3.9 hold, together with (M1) and (E2).
Then, the energy solution .u;w/ is defined for all t � 0 and is such that, for any � > 0,

u 2 C.Œ�;1/IH1.�// \ L1.�;1IH2.�//; (3.16)

@tu 2 L2.t; t C 1IH1.�//; 8 t � �; (3.17)

w 2 L1.�;1IL2.�//; 8 t � �; (3.18)

�.ui / 2 L
1.�;1IL2.�//; i D 1; : : : ; N: (3.19)

Moreover, u and w are uniformly bounded in the above spaces by positive constants
depending only on �, ˛, ‰, u0, and E.0/. In particular, energy identity (3.12) holds for
almost any t � � . Moreover, there exists 0 < ı D ı.�/ � 1

N
such that

ı � u.x; t/; 8 .x; t/ 2 � � Œ�;C1/; (3.20)

that is, the instantaneous strict separation property holds.

Remark 3.11. It is straightforward to see that uı WD .u� ı/� 2 C.Œ�;1/IL2.�//. In the
proof of the strict separation property (see Section 4.3) we obtain

ı � u.x; t/ for a.a. .x; t/ 2 � � Œ�;C1/;

which then implies kuı.t/k � 0 for almost any t 2 Œ�;1/, and thus it holds for any
t 2 Œ�;1/, by continuity. This means that we have

ı � u.t/; 8 t 2 Œ�;C1/; a.e. in �: (3.21)

By (3.14) and its global nature ensured by Theorem 3.10, we have that u.t/ 2 H2.�/ for
any t 2 Œ�;C1/, entailing that (3.21) holds for any .x; t/ 2 � � Œ�;C1/.

Remark 3.12. We point out that, as observed in Remark 3.8, assumption (E2) is not
needed to prove (3.20) when N D 2 (i.e., for binary mixtures).

3.2. Existence of the regular global attractor

We now define a complete metric space which will be the phase space of the dissipative
dynamical system (see, for instance, [44]) associated with (1.6). For a given M 2 † such
that Mi 2 .0; 1/; for any i D 1; : : : ; N , we set

VM WD
°

u 2 H1.�/ W 0 � u.x/ � 1; for a.a. x 2 �; u DM;

NX
iD1

ui D 1
±
;
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endowed with the H1-topology. In particular, we consider the one induced by the equival-
ent norm kukVM D kruk C juj. This is a complete metric space. Thus, under the same
assumptions of Theorem 3.10, we can define a dynamical system .VM; S.t// where

S.t/ W VM ! VM; S.t/u0 D u.t/; 8 t � 0:

Observe that S.t/ satisfies the following properties:

• S.0/ D IdVM ;

• S.t C �/ D S.t/S.�/, for every u0 2 VM;

• t 7! S.t/u0 2 C..0;1/IVM/, for every u0 2 VM;

• u0 7! S.t/u0 2 C.VMIVM/, for any t 2 Œ0;C1/.

In particular, t 7! S.t/u0 2 C..0;1/IVM/ comes from the instantaneous regularization
so that for any � > 0, u 2 C.Œ�;1/I VM/, whereas the last property can be proved as
follows: from (3.9) together with the H2-regularity (for any t > 0) and the interpolation
estimate

k � kH1.�/ � Ck � k
1
2

H2.�/k � k
1
2 ;

we deduce that u0 7! S.t/u0 2 C.VMIVM/, for any t 2 .0;1/. This is indeed a con-
sequence of (3.16), since u 2 L1.�;1IH2.�// for any � > 0 entails that, given two
initial data u0;1;u0;2 2 VM, for any t > 0,

kS.t/u0;1 � S.t/u0;2kH1.�/ � CkS.t/u0;1 � S.t/u0;2k
1
2

H2.�/kS.t/u0;1 � S.t/u0;2k
1
2

� C.t/kS.t/u0;1 � S.t/u0;2k
1
2 � C.t/ku0;1 � u0;2k

1
2 ;

where in the last step we also used (3.9). The case t D 0 is trivial.
Furthermore, we recall that the global attractor is the unique compact set A � VM

such that

• A is fully invariant, that is, S.t/A D A for every t � 0;

• A is attracting for the semigroup, that is,

lim
t!C1

ŒdistVM.S.t/B;A/� D 0

for every bounded set B � VM. Here distVM stands for the Hausdorff semidistance.

The dissipative inequality given by (3.15) and the instantaneous regularization of the
energy solution allow us to prove the next theorem.

Theorem 3.13. Let the assumptions of Theorem 3.10 hold. Then, the dynamical sys-
tem .VM; S.t// admits a (unique) connected global attractor A � VM which is bounded
in H2.�/.

Remark 3.14. The proof of this result is based on showing that the dynamical sys-
tem .VM; S.t// admits a compact absorbing set B0 (see Section 5 below).
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3.3. Existence of an exponential attractor

Thanks to the validity of the strict separation property in dimensions two and three, we can
prove the existence of an exponential attractor in dimensions two and three. We first recall
(see, e.g., [39]) that a compact set M � VM is an exponential attractor for .VM; S.t// if

• M is positively invariant, that is, S.t/M �M for every t � 0;

• M is exponentially attracting, that is, there exists ! > 0 such that

distVM.S.t/B;M/ � Q.kBkVM/e
�!t

for every bounded B �VM, where Q.�/ denotes a generic increasing positive function;

• M has finite fractal dimension in VM, where the fractal dimension is defined as

dimVM.M/ D lim sup
�!0C

logN.�/
� log �

;

and N.�/ is the minimum number of �-balls of VM necessary to cover M.

Observe that the exponential attractor is not unique and that, by definition, A�M, so that
from the existence result of an exponential attractor we deduce that the global attractor A

is of finite fractal dimension. We thus have the following:

Theorem 3.15. Let the assumptions of Theorem 3.10 hold. Moreover, assume that  
2 C 3.0; 1�. Then, the dynamical system .VM; S.t// possesses an exponential attractor M

which is bounded in H2.�/. Besides, A �M has finite fractal dimension in VM.

3.4. Convergence to equilibrium

In this section we discuss the convergence of any weak solution to a single equilibrium.
We have all the ingredients to state and prove the result.

We consider the phase space VM as in the previous section. Under the assumptions of
Theorem 3.10, we define the !-limit set !.u0/ of a given u0 2 VM

!.u0/ D
®
z 2 H2r .�/ \ VM W 9 tn %C1 s.t. u.tn/! z in H2r .�/

¯
;

where r 2 Œ1
2
; 1/. In particular, we fix r 2 .d

4
; 1/. We thus have the following:

Theorem 3.16. Let the assumptions of Theorem 3.10 hold and suppose, in addition,
that  is (real) analytic in .0; 1/. Then, for any u0 2 VM, it holds that !.u0/ D ¹u1º,
where u1 2 VM is a solution to8̂̂<̂

:̂
��u1 C P‰1;u.u1/ D fff a.e. in �;

@nu1 D 0 a.e. on @�;PN
iD1 u1;i D 1 in �;

with fff D PAu1 C P‰;u.u1/. Moreover, u1 DM; there exists ı > 0 so that

ı < u1.x/; 8 x 2 �I
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and the (unique) weak solution u.t/ is such that

u.t/ D S.t/u0 !
t!C1

u1 in H2r .�/; 8 r 2 .0; 1/:

Proof. The proof of this theorem is exactly the same as the one of [27, Theorem 3.16].
Indeed, the only difference is in the energy estimate given by the application of
Łojasiewicz–Simon inequality (see [27, Section 7.3]), in which we need to substitute rw
withw�w (basically, we do not need to apply Poincaré’s inequality, but we keep kw�wk
in the inequality for E 0).

Theorem 3.16 is still valid without assumption (E2). Indeed, in the proof we do not
need the instantaneous strict separation property, for which that assumption is essential.
It is also worth noticing that, without assuming (E2), by the same proof of [27, The-
orem 3.13], we can show that the asymptotic strict separation property holds, that is, the
next theorem holds.

Theorem 3.17. Let the assumptions of Theorem 3.10 hold except for (E2). Then, for any
M 2 .0; 1/, M 2 †, and for any initial datum u0 2 VM, there exist ı > 0 and t� D t�.u0/
such that the corresponding (unique) solution u satisfies

ı < u.x; t/; for any .x; t/ 2 � � .t�;C1/:

4. Proofs of Section 3.1

Here we collect the proofs of Theorems 3.1, 3.9, and 3.10.

4.1. Proof of Theorem 3.1

This proof is divided into three parts. We first prove (3.9), which seems to require assump-
tion (M1). The reason is related to the next lemma.

Lemma 4.1. Let (M1) hold. Then, there exists N > 0 such that, given any matrix C D
diag.c1; : : : ; cN /, with ci � 0 for any i D 1; : : : ; N ,

�T .C˛/� � N . min
iD1;:::;N; ci˛i i>0

ci˛i i /j�j
2
� 0; (4.1)

for any � 2 T†. In particular, for any N � 2, considering the equivalent structure given
by (2.3), we have

N WD
N

N � 1
:

Remark 4.2. Notice that, since ˛ is positive semidefinite, ˛i i � 0 for any i D 1; : : : ; N .

Remark 4.3. What is needed to prove (3.9) is actually (4.1). Nevertheless, the matrix
structure given by (2.2) is the only example case we know that implies (4.1).
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Proof. Note that, for � 2 T†, we have �N D �
PN�1
iD1 �i . Thus, exploiting form (2.3) of

the matrix ˛,

�TC˛� D �
h
�1; : : : ;�

N�1X
iD1

�i

i
266666664

c1.�1.N � 1/ �
PN�1
j 6D1 �j C

PN�1
jD1 �j /

:::

ci .�i .N � 1/ �
PN�1
j 6Di �j C

PN�1
jD1 �j /

:::

cN .�
PN�1
jD1 �j � .N � 1/

PN�1
jD1 �j /

377777775

D �
h
�1; : : : ;�

N�1X
iD1

�i

i
266666664

c1N�1
:::

ciN�i
:::

�cNN
PN�1
jD1 �j

377777775
D N�

N�1X
iD1

ci j�i j
2
C �NcN

ˇ̌̌N�1X
jD1

�j

ˇ̌̌2
� �N. min

iD1;:::;N; ci>0
ci /j�j

2
� N . min

iD1;:::;N;ci˛i i>0
ci˛i i /j�j

2

with N D N
N�1

. Thus, (4.1) holds.

Continuous dependence estimate. We can now prove (3.9). Let us consider two solu-
tions u1 and u2 and take the difference between the equations they solve. Taking
u D u1 � u2 as a test function in the resulting equation and recalling, by mass con-
servation, that u � 0, we deduce (note that ˛P‰1;u.uk/ D ˛‰1;u.uk/ for k D 1; 2, since
˛. 1

N

PN
iD1  

0.uki /�/ D .
1
N

PN
iD1  

0.uki //˛� D 0, where � D .1; : : : ; 1/) that

1

2

d

dt
kuk2 C .ru;˛ru/C

NX
i;jD1

.˛ij . 
0.u1j / �  

0.u2j //; ui / D .˛Au;u/: (4.2)

Notice that w1 �w2 does not appear in (4.2), since we have

.˛..w1 �w2/ � .w1 �w2//;u/ D .˛..w1 �w2/ � .w1 �w2//;u � u/
D .˛.w1 �w2/;u � u/ D .˛.w1 �w2/;u/;

recalling in the last equality that u � 0. Lemma 4.1 then entails

.ru;˛ru/ � 0:

Then, by the Cauchy–Schwarz inequality,

.˛Au;u/ � Ckuk2:
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In conclusion, we have

NX
i;jD1

.˛ij . 
0.u1j / �  

0.u2j //; ui / D

NX
i;jD1

Z
�

Z 1

0

˛ij 
00.su1j C .1 � s/u

2
j /ujuidsdx

D

Z
�

uT˛Cudx;

where

C D diag.c1; : : : ; cN /

WD diag
�Z 1

0

 00.su11 C .1 � s/u
2
1/ds; : : : ;

Z 1

0

 00.su1N C .1 � s/u
2
N /ds

�
;

so that ci � 0, for any i D 1; : : : ; N , by assumption (E0). Observing now that u.x; t/
2 T† for almost any .x; t/ 2 � � .0; T / and (by symmetry) uT˛Cu D uTC˛u, thanks
to Lemma 4.1, for almost any .x; t/ 2 � � .0; T /, we have

uT˛Cu � 0;

so that

NX
i;jD1

.˛ij . 
0.u1j / �  

0.u2j //; ui / D

Z
�

uT˛Cudx � 0 a.e. in .0; T /:

Therefore, from (4.2), we infer

1

2

d

dt
ku.t/k2 � Cku.t/k2; for a.a. t 2 .0; T /;

and the Gronwall lemma gives (3.9).

Existence of a solution. We consider approximation (2.5). In particular, for each " > 0

sufficiently small, we set

�".y/ D ‰
1
";y.y/ D ¹ 

0
".yi /ºiD1;:::;N ; 8 y 2 RN :

We then fix 0 < " < "0 and first define the Galerkin approximation of the problem.
We consider the complete system of N -dimensional eigenfunctions ¹eiºi of the problem
��ei D �iei , with homogeneous Neumann boundary conditions @nei D 0 on @� (�i is
the eigenvalue corresponding to ei ), subject to the constraints ei D 0 and

PN
jD1.ei /j � 0.

The family ¹eiºi can be tuned to form an orthogonal basis in V 0, orthonormal inH 0 (see
also [27, Appendix 8.1]). We then setm WD u0 and introduce the finite-dimensional spaces

Vn WD span
®
ei ; i D 1; : : : ; n

¯
; 8n � 1;



M. Grasselli and A. Poiatti 506

and look for a function un;" 2 Vn of the form

un;".t/ D
nX
iD1

y̨i .t/ei 2 Vn;

and for wn;" 2 zV 0 such that

wn;".t/ �wn;".t/ D

nX
iD1

ıi .t/ei 2 Vn;

solving the equations

.@tun;"; v/C .˛.wn;" �wn;"/; v/ D 0; (4.3)

.wn;" �wn;"; v/ D .run;";rv/C .P.�".un;" Cm/ � A.un;" Cm//

� P.�".un;" Cm/ � A.un;" Cm//; v/; (4.4)

wn;" D P.�".un;" Cm/ � A.un;" Cm//; (4.5)

un;".0/ D un;0; (4.6)

for any v 2 Vn and for any t 2 Œ0; T � where un;0 is the L2.�/-projection on Vn of the
vector u0 �m 2 H 0.

Let us first notice that the quantity wn;" must be specified, since any test function
v 2 Vn has zero integral mean. Moreover, by construction,

un;" � 0; Pun;" D un;"; Pwn;" D wn;":

In the rest of the paper, we will denote by C a generic positive constant independent of n.
Any other dependence is explicitly pointed out if necessary.

Recalling that  0" is at least C 1.R/, we can locally solve the above Cauchy prob-
lem given by (4.3)–(4.4), (4.6) in the unknowns ¹y̨iºi and find a unique maximal solu-
tion y̨.n/ 2 C 1.Œ0; tn;"�IRn/, from which we also obtain by comparison a unique ı.n/ 2
C 1.Œ0; tn;"�I Rn/. Then, by substitution in (4.5), we immediately obtain the complete
quantity wn;". It is now standard to test (4.3) by v D wn;" � wn;" 2 Vn and obtain the
energy identity

d

dt
En;" C .˛.wn;" �wn;"/;wn;" �wn;"/ D 0; (4.7)

where
En;" WD



2
krun;"k2 C

Z
�

‰".un;"Cm/dx:

Let us observe that, since  0" is Lipschitz (see (2.5)), and recalling that ‰".u0/ � ‰.u0/,
we obtainZ

�

‰".un;".0/Cm/dx D
Z
�

.‰".un;0Cm/ �‰".u0//dx C
Z
�

‰".u0/dx

� C"kun;0Cm � u0k C
Z
�

‰.u0/dx: (4.8)
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Therefore, since clearly kun;0Cm � u0k ! 0 as n!1, for any " > 0, there exists an
n D n."/ such that Z

�

‰".un;".0/Cm/dx � C; 8n > n: (4.9)

An application of Gronwall’s lemma then gives, thanks to (4.9) and krun;0k � kru0k,

En;".t/C

Z t

0

.˛.wn;".s/ �wn;".s//;wn;".s/ �wn;".s//ds � C; 8n > n:

Now, recalling property (vi) of  ", it is immediate to see that for any " < "0,Z
�

‰".un;".t/Cm/dx � �K

for some K > 0, so that we can conclude, for any " < "0,

kun;"kL1.0;T IH1.�// C k‰".un;"Cm/kL1.0;T IL1.�// C kwn;" �wn;"kL2.0;T IL2.�// � C;

8n > n."/;

where we also exploited (2.1). Clearly, C does not depend on ". From this we can easily
deduce that local maximal time tn;" isC1. Moreover, from these estimates we can clearly
derive, by comparison, that

k@tun;"kL2.0;T IL2.�// � C; 8n > n:

These estimates, together with the fact that  0" is Lipschitz, give from (4.5) that

kwn;"kL1.0;T / � C"; 8n > n:

Here C" could depend on ". The obtained bounds are enough to pass to the limit as n!1
by standard compactness arguments. However, since we also need to prove the existence
of strong solutions, we now assume u0 2 H2.�/ such that @nu0 D 0 almost everywhere
on @�, together with �.u0;i / 2 L2.�/, for any i D 1; : : : ; N , and find a higher-order
estimate, before passing to the limit. In particular, we test (4.3) with v D @t .wn;" �wn;"/
2 Vn. Recalling that P is selfadjoint and @tun;" � 0 by construction, we obtain

1

2

d

dt
.˛.wn;" �wn;"/;wn;" �wn;"/C .@tun;"; @twn;"/ D 0: (4.10)

Using (4.4), since @tun;" 2 Vn, we find

.@tun;"; @twn;"/ D
NX
iD1

Z
�

�0".un;";i Cm/j@tun;"j
2dx

� .@tun;";A@tun;"/C kr@tun;"k2:
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Since �0" � 0 by property (iv) of  ", we have only to treat the term related to the matrix A.
This is readily done by comparison with (4.3): indeed, since v D @tun;" 2 Vn, we get, by
the Cauchy–Schwarz, Young, and Poincaré inequalities,

j.@tun;"; @tun;"/j � Ck@tun;"k2 � C j.˛.wn;" �wn;"/; @tun;"/j

�


2
kr@tun;"k2 C Ckwn;" �wn;"k2:

Putting everything together in (4.10) and recalling (2.1), we end up with

1

2

d

dt
.˛.wn;" �wn;"/;wn;" �wn;"/C



2
kr@tun;"k2

� C.˛.wn;" �wn;"/;wn;" �wn;"/: (4.11)

Observe now that, from (4.4),

k.˛.wn;".0/ �wn;".0//;wn;".0/ �wn;".0//k

� C
�
k�un;0k2 C kAun;0k2 C

NX
iD1

k�".un;0;iCm/k
2
�
:

On the other hand, by the properties of the eigenfunctions, we have

k�un;0k2 C kAun;0k2 � C.jmj2 C k�u0k2 C ku0k2/ � Cku0k2H2.�/:

Thus, recalling properties (ii)–(iii) of  ", we get

NX
iD1

k�".un;0;iCm/k
2
� 2

NX
iD1

k�".un;0;iCm/ � �".u0;i /k
2
C 2

NX
iD1

k�".u0;i /k
2

�
2

"2
kun;0Cm � u0k2 C 2

NX
iD1

k�.u0;i /k
2:

Therefore, since kun;0Cm� u0k ! 0 as n!1, and by the stronger assumptions on the
initial data, we deduce that for any " < "0, there exists n D n."/ > 0 such that

NX
iD1

k�".un;0;iCm/k
2
� C C 2

NX
iD1

k�.u0;i /k
2; 8n > n:

We can thus conclude that, for any n > n0."/ D max¹n; nº, owing to Gronwall’s lemma
and (2.1), it holds that

kwn;" �wn;"kL1.0;T IL2.�// C k@tun;"kL2.0;T IH1.�// � C.T /; 8n > n0;

where C.T / does not depend on ". Furthermore, by comparison (choosing v D @tun;"
in (4.3)) it also holds that

k@tun;"kL1.0;T IL2.�// � C.T /; 8n > n0:
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We can now pass to the limit in n for both of the situations (according to the regularity of
the initial data), to deduce, by standard compactness arguments, the following statement:
for any " < "0, there exists a pair .u";w"/ defined on Œ0;C1/, withw".t/ 2 zV 0 for almost
any t � 0, such that (in the case of less regularity on u0) for each T > 0,

u" 2 L1.0; T IH1.�//;

@tu" 2 L2.0; T IL2.�//;
w" 2 L

2.0; T IL2.�//:

and

ku"kL1.0;T IH1.�// C k@tu"kL2.0;T IL2.�// C kw" �w"kL2.0;T IL2.�// � C.T /; (4.12)

for some C.T / > 0 independent of ", whereas there exists C" > 0 such that

kw"kL1.0;T / � C":

If the stronger assumptions hold (see Theorem 3.1 part (2)), then there exists a constant
C > 0, depending on the initial datum and on T , but independent of ", such that

kw" �w"kL1.0;T IL2.�///\L2.0;T IH1.�/// C k@tu"kL2.0;T IH1.�//
C k@tu"kL1.0;T IL2.�// � C; (4.13)

where the L2.0; T IH1.�// control on the chemical potential differences is obtained by
comparison in (4.14) below. It is then standard to show that .u";w"/ satisfies

@tu" C ˛.w" �w"/ D 0; a.e. in � � .0; T /; (4.14)

.w";�/ D .ru";r�/C .P.�Au" C �".u"//;�/;
8� 2 H1.�/; a.e. in .0; T /; (4.15)

u".0/ D u0; a.e. in �:

Notice that, to be precise, we find that un;" converges in suitable norms to a function
zu".t/ 2 V 0 (for almost any t � 0) as n!1. We then define u" WD zu" Cm to obtain the
results above. Then, by elliptic regularity, since �" is Lipschitz, from (4.15) we deduce its
strong version—namely, u" 2 L2.0; T IH2.�// and

w" D ��u" C P.�Au" C �".u"//; a.e. in � � .0; T /; (4.16)

@nu" D 0; a.e. in @� � .0; T /: (4.17)

By standard computations (see also [7] for similar results), we then have

• Conservation of mass:
u".t/ D u0; 8 t � 0:
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• Conservation of total mass:

NX
iD1

u";i .x; t/ D 1; for a.a. x 2 � and for all t 2 Œ0; T �: (4.18)

• Conservation of chemical potential differences

NX
iD1

w";i D 0; for a.a. x 2 � and a.a. t 2 .0; T /:

• From (4.7)–(4.8), by standard arguments, the following energy inequality holds:

E".t/C

Z t

0

.˛.w" �w"/;w" �w"/ � E".0/;

for any t 2 Œ0; T �, where

E" WD


2
kru"k2 C

Z
�

‰".u"/dx:

At this point, we can argue as in the proof of [27, Theorem 3.1] (which is based on [28]),
in order to control w".t/, which then allows us to control kw".t/k. Following the proof of
[28, Lemma 3.3], we define

w";0 WD w" � �";

where, on account of the boundary conditions,

�" WD w" D P.�Au" C �".u"//:

Taking advantage of (4.15), we have,

.w";0 C �";�/ D .ru";r�/C .P.�Au" C �".u"//;�/;
8� 2 H1.�/; a.e. in .0; T /: (4.19)

Exploiting the convexity of ‰1" , for any k 2 G (G being the Gibbs simplex), because
k � u" 2 T† almost everywhere in � � .0; T /, we find

C �

Z
�

‰1" .k/dx �
Z
�

‰1" .u"/dx C
Z
�

‰1";u.u"/ � .k � u"/dx

D

Z
�

‰1" .u"/dx C
Z
�

P�".u"/ � .k � u"/dx; (4.20)

where we used (see property (i) of  ")Z
�

‰1" .k/dx �
Z
�

‰1.k/dx � max
s2Œ0;1�

j‰1.s/j D C:
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Here and in what follows, C > 0 stands for a generic constant independent of ". Recalling
that‰1";u.u"/D¹�".u";i /ºiD1;:::;N and choosing �D k� u" in (4.19), on account of (4.20),
we deduce that

C �

Z
�

‰1" .k/dx

�

Z
�

‰1" .u"/dx C .P.Au"/;k � u"/dx

C kru"k2 C .w";0;k � u"/C .�";k � u"/;

for almost all t 2 .0; T /. On the other hand, we have (k 2 G, and thus, 0 � k � 1)Z
�

NX
iD1

k2i dx �

Z
�

� NX
iD1

ki

�2
dx D j�jd :

Then, using Cauchy–Schwarz’s and Young’s inequalities and recalling property (vi) of ",
we obtain

.�";k � u"/C kru"k2 �K � .�";k � u"/C kru"k2 C
Z
�

‰1" .u"/dx

� C � .P.Au"/;k � u"/ � .w";0;k � u"/
� C.1C ku"k C ku"k2 C kw";0k.1C ku"k// � C.1C kw";0k/; (4.21)

where in the last estimate we have exploited (4.12). By the conservation of mass and
Remark 3.3, we also deduce that for all i D 1; : : : ; N and all t 2 Œ0; T �,

0 < ı0 < u";i .t/ < 1 � .N � 1/ı0 < 1 � ı0:

Therefore, for any fixed k; l D 1; : : : ; N , we choose

k D u" C ı0 sign.�";k � �";l /.���k � ���l / 2 G

in (4.21), where
���j WD .0; : : : ; 1„ƒ‚…

j

; : : : ; 0/:

Thus, from (4.21) we get that

j.�";k � �";l /.t/j �
C

ı0j�jd
.1C kw";0k/: (4.22)

Integrating j.�";k � �";l /.t/j2 over .0; T / and using the identity

�" D
1

N

� NX
lD1

.�";k � �";l /
�
kD1;:::;N

;
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we find, owing to (4.12), Z T

0

j�".t/j
2dt � C:

This, using again (4.12), gives

kw"kL2.0;T IL2.�// � C: (4.23)

As a consequence, we deduce from (4.22) that

j�".t/j
2
� C.1C kw".t/ �w".t/k

2/;

for almost any t 2 .0;T /. Therefore, in the case of a more regular initial datum (see (4.13)),
we have

kw"kL1.0;T IL2.�// C kw"kL2.0;T IH1.�// � C: (4.24)

We are now left with some estimates related to �".u";i /. We follow again the proof of
[27, Theorem 3.1]. Since �0" is bounded for a fixed " 2 .0; "0/, we have that

r�".u";i / D �
0
".u";i /ru";i 2 L2.�/;

for almost any t 2 .0; T /. Thus, we can test (4.15) with � D �".u".t// to get

NX
iD1

.w";i ; �".u";i // D

NX
iD1

..ru";i ; �
0
".u";i /ru";i //

C .P.�Au" C �".u"//;�".u"//: (4.25)

Observe that

.P.�".u"//;�".u"// D
NX
kD1

Z
�

.�".u";k/ �
1

N

NX
lD1

�".u";l //�".u";k/dx;

and
NX
kD1

.�".u";k/ �
1

N

NX
lD1

�".u";l //�".u";k/

D
1

N

NX
k;lD1

.�".u";k/ � �".u";l //�".u";k/

D
1

N

NX
k<l

.�".u";k/ � �".u";l //�".u";k/C
1

N

NX
k>l

.�".u";k/ � �".u";l //�".u";k/

D
1

N

NX
k<l

.�".u";k/ � �".u";l //.�".u";k/ � �".u";l //

D
1

N

NX
k<l

.�".u";k/ � �".u";l //
2:
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Thanks to (4.18), we have

u";m WD min
iD1;:::;N

u";i �
1

N
� max
iD1;:::;N

u";i DW u";M ;

so that, �" being monotone, we infer

1

N

NX
k<l

.�".u";k/ � �".u";l //
2
�
1

N
.�".u";m/ � �".u";M //

2

�
1

N
max

iD1;:::;N

�
�".u";i / � �"

� 1
N

��2
�
1

N
max

iD1;:::;N

�1
2
�".u";i /

2
� �"

� 1
N

�2�
�

1

2N
max

iD1;:::;N
�".u";i /

2
� C;

owing to the inequality .a � b/2 � 1
2
a2 � b2. Notice that C is independent of " provided

that we choose " sufficiently small. Indeed, since we have the pointwise convergence
�".

1
N
/! �. 1

N
/ as "! 0C, there exists C > 0, independent of ", such that j�". 1N /j � C

for any " 2 .0; "0/, with "0 > 0 sufficiently small. Then, we get

NX
iD1

.w";i ; �".u";i // �

NX
iD1

kw";ikk�".u";i /k � Ckw"k
2
C

1

8N

Z
�

max
iD1;:::;N

�".u";i /
2dx;

and (see (4.12))

j.P.�Au";�".u"//j � Cku"k
2
C

1

8N

Z
�

max
iD1;:::;N

�".u";i /
2dx

� C C
1

8N

Z
�

max
iD1;:::;N

�".u";i /
2dx:

Therefore, on account of the above inequalities and recalling that �0" � 0, we deduce
from (4.25) that

1

4N

Z
�

max
iD1;:::;N

�".u";i /
2dx � C.1C kw"k

2/; (4.26)

which yields (see (4.23))

k�".u"/kL2.0;T IL2.�// � C.T /: (4.27)

From this result, together with (4.12) and (4.23), by elliptic regularity, we infer from
(4.16)–(4.17) that

ku"kL2.0;T IH2.�// � C.T /:

Moreover, from (4.26), assuming a more regular initial datum, we infer (see (4.24))

k�".u"/kL1.0;T IL2.�// � C.T /;
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as well as
ku"kL1.0;T IH2.�// � C.T /:

We have obtained all the bounds we need to pass to the limit as "! 0C. Being this step
standard (see, e.g., [28]), we only present a sketch of the argument. By compactness we
immediately deduce that, up to subsequences,

u" * u weakly* in L1.0; T IH1.�//;

u" * u weakly in L2.0; T IH2.�//;

@tu" * @tu weakly in L2.0; T IL2.�//;
u" ! u strongly in L2.0; T IL2.�//;

u" ! u a.e. in � � .0; T /;

w" * w weakly in L2.0; T IL2.�//:

Then, arguing as in [28, Section 6] and exploiting (4.27), we infer that

�".u";k/! �.uk/ a.e. in � � .0; T /;

�".u";k/ * �.uk/ weakly in L2.0; T IL2.�//;

for any k D 1; : : : ; N . Thus, the pair .u;w/ satisfies (3.2)–(3.7). Energy inequality (3.12)
is then retrieved by standard lower semicontinuity arguments. If the initial datum is more
regular, then, up to subsequences, we also have the convergences

u" * u weakly* in L1.0; T IH2.�//;

u" * u weakly in L2.0; T IH2.�//;

@tu" * @tu weakly* in L1.0; T IL2.�/ and weakly in L2.0; T IH1.�//;

w" * w weakly* in L1.0; T IL2.�// and weakly in L2.0; T IH1.�//;

�".u";k/ * �.uk/ weakly* in L1.0; T IL2.�//; 8k D 1; : : : ; N;

which ensure the regularity of Theorem 3.1 part (2). Energy identity (3.12) can be recov-
ered, since t 7! kru.t/k2 is absolutely continuous in Œ0; T � and because of ‰1.u/ 2
H 1.0; T IL1.�// entailing that the function t 7!

R
�
‰.u.t//dx is absolutely continu-

ous in Œ0; T � as well. Indeed, k@t‰1.u/kL1.�/ � k‰
1
;'''.u/kk@tuk � C , from the regularity

above. This concludes the proof of the existence part of Theorem 3.1.

Strict separation property of strong solutions. We recall that (M1) is in force. Let us now
introduce the following notation: we define P s

� , with s D 1; : : : ; N � 1 and � 2 N, as
any possible subset of s (nonrepeated) indices from 1; : : : ; N . Note that � indicates the
choice of the subset, and � D 1; : : : ;

�
N
s

�
: In case s D N � 1, we define the only index not

belonging to PN�1
� by j� .
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Step 1: Case N � 1. Let us then start from s D N � 1, having fixed � . We consider
the vector eN�1� as, for i D 1; : : : ; N ,

.eN�1� /i D

´
1 if i 2 PN�1

� ;

0 if i 62 PN�1
� :

Then, we take � D �eN�1� , for � 2 H 1.�/, in (3.4). This gives�
@t

� X
i2PN�1

�

ui

�
; �
�
C

� X
i2PN�1

�

NX
jD1

˛ij .wj � wj /; �
�
D 0;

for almost any t 2 Œ0; T �. We now fix ı > 0 (to be chosen later on) and consider uN�1
�;ı
D

.
P
i2PN�1

�
ui � ı/

�. Setting � D �uN�1
�;ı

and integrating by parts, we find

1

2

d

dt
kuN�1�;ı k

2
�

X
i2PN�1

�

NX
jD1

Z
�

˛ij 
0.uj /u

N�1
�;ı dx

� 
X

i2PN�1
�

NX
jD1

Z
�

˛ijruj � ru
N�1
�;ı dx

D �

X
i2PN�1

�

NX
j;kD1

Z
�

˛ijAjkukuN�1�;ı dx �
X

i2PN�1
�

NX
jD1

Z
�

˛ijwju
N�1
�;ı dx; (4.28)

where we used the property that, given any vector � 2 RN , ˛P� D ˛�. Now notice that,
being ˛i i D A > 0 for any i D 1; : : : ; N , we have

�

X
i2PN�1

�

NX
jD1

Z
�

˛ijruj � ru
N�1
�;ı dx

D �

X
i2PN�1

�

Z
�

.˛i irui � ru
N�1
�;ı /dx �

X
i2PN�1

�

NX
j 6Di;jD1

Z
�

˛ijruj � ru
N�1
�;ı dx

D

Z
�

.AruN�1�;ı � ru
N�1
�;ı /dx �

X
i2PN�1

�

� NX
j 6Di;jD1

Z
�

˛ijruj � ru
N�1
�;ı dx

�
:

Since ˛ij D B < 0 for any i 6D j (clearly we have AC .N � 1/B D 0), we see that the
second summand becomes

�

X
i2PN�1

�

� NX
j 6Di;jD1

Z
�

˛ijruj � ru
N�1
�;ı dx

�
D �B

X
i2PN�1

�

X
j 6Di;j2PN�1

�

Z
�

ruj � ru
N�1
�;ı dx



M. Grasselli and A. Poiatti 516

� B
X

i2PN�1
�

X
j 62PN�1

�

Z
�

ruj � ru
N�1
�;ı dx

D �B.N � 2/
X

j2PN�1
�

Z
�

ruj � ru
N�1
�;ı dx � B.N � 1/

Z
�

ruj� � ru
N�1
�;ı dx

D B.N � 2/

Z
�

ruN�1�;ı � ru
N�1
�;ı dx � B.N � 1/

Z
�

ruj� � ru
N�1
�;ı dx:

Notice also that, recalling uj� D 1 �
P
j2PN�1

�
uj and that A D �B.N � 1/, it holds

�B.N � 1/

Z
�

ruj� � ru
N�1
�;ı dx D �B.N � 1/

Z
�

ruN�1�;ı � ru
N�1
�;ı dx

D A

Z
�

ruN�1�;ı � ru
N�1
�;ı dx;

where we used the fact that, when uN�1
�;ı
� ı, it holds that

ruj� D �r
X

j2PN�1
�

uj D �r
� X
j2PN�1

�

uj � ı
�

D �r

� X
j2PN�1

�

uj � ı
�C
Cr

� X
j2PN�1

�

uj � ı
��
D r

� X
j2PN�1

�

uj � ı
��
:

Therefore, in the end we get

�

X
i2PN�1

�

NX
jD1

Z
�

˛ijruj � ru
N�1
�;ı dx D .2AC B.N � 2//

Z
�

jruN�1�;ı j
2dx � 0;

recalling that 2AC B.N � 2/ D A � B � 0.
Concerning the terms related to  0.uj /, we can write, on account of (2.2) (which

entails, in particular,
P
i2PN�1

�
˛ij D � j̨�j , for any j D 1; : : : ; N )

�

X
i2PN�1

�

NX
jD1

Z
�

˛ij 
0.uj /u

N�1
�;ı dx

D �

X
i2PN�1

�

X
j2PN�1

�

Z
�

˛ij 
0.uj /u

N�1
�;ı dx �

X
i2PN�1

�

X
j 62PN�1

�

Z
�

˛ij 
0.uj /u

N�1
�;ı dx

D

X
j2PN�1

�

j̨�j

Z
EN�1.t/

 0.uj /u
N�1
�;ı dx C j̨�j�

Z
EN�1.t/

 0.uj� /u
N�1
�;ı dx;

where
EN�1.t/ D

°
x 2 � W

X
i2PN�1

�

ui .x; t/ � ı
±
:
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Observe that, in EN�1.t/, it holds

1 �
X

j 62PN�1
�

uj .t/ D uj� .t/ D 1 �
X

i2PN�1
�

ui .t/ > 1 � ı:

Thus, for ı � 1
2

, we deduce

j 0.uj� /j � max
°ˇ̌̌
 0
�1
2

�ˇ̌̌
; j 0.1/j

±
� C; (4.29)

since  0 is monotonically increasing. Moreover, in EN�1.t/ it also holds, being j̨�j D

B D �jBj for j 2 PN�1
� (recall that B � 0),

�jBj 0.uj .t//u
N�1
�;ı .t/ � �jBj 0.ı/uN�1�;ı .t/; 8j 2 PN�1

� ;

since we have 0 � ui .t/ � ı for any i 2 PN�1
� and

� 0.uj / � � 
0.ı/; 8j 2 PN�1

� :

Concerning the other terms in (4.28), we have, clearly, being 0� uk � 1 for k D 1; : : : ;N ,
that

�

X
i2PN�1

�

NX
j;kD1

Z
�

˛ijAjkukuN�1�;ı dx � C

Z
�

uN�1�;ı dx;

and observing that (see (3.11)) w 2 L1.0; T /, we have, similarly,

�

X
i2PN�1

�

NX
jD1

Z
�

˛ijwju
N�1
�;ı dx � C.T /

Z
�

uN�1�;ı dx:

Coming back to (4.28) and collecting all these results we end up with

1

2

d

dt
kuN�1�;ı k

2
C .A � B/

Z
�

jruN�1�;ı j
2dx � .N � 1/jBj 0.ı/

Z
�

uN�1�;ı dx

� C.T /

Z
�

uN�1�;ı dx � j̨�j�

Z
EN�1.t/

 0.uj� /u
N�1
�;ı dx

� C.T /

Z
�

uN�1�;ı dx;

so that, assuming ı sufficiently small to satisfy (see assumption (E1))

�.N � 1/jBj 0.ı/ � C.T / � 0;

we get, for almost any t 2 Œ0; T �,

1

2

d

dt
kuN�1�;ı k

2
� 0:
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Hence, having assumed the initial datum strictly separated, that is, there exists 0 < ı0 � 1
N

such that
ui;0 � ı0; 8i D 1; : : : ; N; (4.30)

we can choose ı � ı0 in such a way that uN�1
�;ı

.0/ � 0 and Gronwall’s lemma yields

kuN�1�;ı .t/k � 0; 8 t 2 Œ0; T �:

Notice now that the choice of the set PN�1
� is completely arbitrary, thus we infer that there

exists ıN�1 such that ı0 � ıN�1 > 0 and, for any possible PN�1
� , with � D 1; : : : ; N ,X

i2PN�1
�

ui .t/ � ı > 0 in �; 8 t 2 Œ0; T �; 8 ı 2 .0; ıN�1/: (4.31)

Remark 4.4. We point out that in the case N D 2, the proof is finished. This means that
assumption (E2) is not necessary in this case, which is consistent with [26, Theorem 3.5].

Step 2: Case N � 2. If N D 2, we are done. Otherwise, we need to consider the
sets PN�2

� , � D 1; : : : ; N.N�1/
2

. Let us fix � and 0 < ı � ıN�1 (to be chosen later on).
Then, we set

uN�2�;ı D

� X
i2PN�2

�

ui � 2ı
2
��

and define, for i D 1; : : : ; N , the vector eN�2� as

.eN�2� /i D

´
1 if i 2 PN�2

� ;

0 if i 62 PN�2
� :

We make a crucial observation: in the set

EN�2.t/ D
°
x 2 � W

X
i2PN�2

�

ui .x; t/ � 2ı
2
±
;

we infer from (4.31) that

uj .t/ � ı � 2ı
2; 8j 62 PN�2

� : (4.32)

Recall that ı < 1
2

and 0 < 2ı2 < ı � ıN�1 < 1. Then, we take in (3.4), as in Step 1, the
test function � D �eN�2� for � 2 H 1.�/, and we get

�
@t

� X
i2PN�2

�

ui

�
; �
�
C

� X
i2PN�2

�

NX
jD1

˛ij .wj � wj /; �
�
D 0:
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Choosing in the equation above � D �uN�2
�;ı

and integrating by parts, we find

1

2

d

dt
kuN�2�;ı k

2
�

X
i2PN�2

�

NX
jD1

Z
�

˛ij 
0.uj /u

N�2
�;ı dx

� 
X

i2PN�2
�

NX
jD1

Z
�

˛ijruj � ru
N�2
�;ı dx

D �

X
i2PN�2

�

NX
j;kD1

Z
�

˛ijAjkukuN�2�;ı dx �
X

i2PN�2
�

NX
jD1

Z
�

˛ijwju
N�2
�;ı dx: (4.33)

Recalling once more that ˛i i D A > 0 for any i D 1; : : : ; N , and arguing exactly as in
Step 1, we find

�

X
i2PN�2

�

NX
jD1

Z
�

˛ijruj � ru
N�2
�;ı dx

D �

X
i2PN�2

�

Z
�

.˛i irui � ru
N�2
�;ı /dx �

X
i2PN�2

�

NX
j 6Di;jD1

Z
�

˛ijruj � ru
N�2
�;ı dx

D

Z
�

.AruN�2�;ı � ru
N�2
�;ı /dx �

X
i2PN�2

�

� NX
j 6Di;jD1

Z
�

˛ijruj � ru
N�2
�;ı dx

�
:

Since ˛ij D B < 0 for any i 6D j , the second summand becomes

�

X
i2PN�2

�

� NX
j 6Di;jD1

Z
�

˛ijruj � ru
N�2
�;ı dx

�
D �B

X
i2PN�2

�

X
j 6Di;j2PN�2

�

Z
�

ruj � ru
N�2
�;ı dx � B

X
i2PN�2

�

X
j 62PN�2

�

Z
�

ruj � ru
N�2
�;ı dx

D �B.N � 3/
X

j2PN�2
�

Z
�

ruj � ru
N�2
�;ı dx � B.N � 2/

X
j 62PN�2

�

Z
�

ruj � ru
N�2
�;ı dx

D B.N � 3/

Z
�

ruN�2�;ı � ru
N�2
�;ı dx � B.N � 2/

X
j 62PN�2

�

Z
�

ruj � ru
N�2
�;ı dx:

Recall now that
P
j 62PN�2

�
uj D 1 �

P
i2PN�2

�
ui and A D �B.N � 1/. Then, we have

�B.N � 2/
X

j 62PN�2
�

Z
�

ruj � ru
N�2
�;ı dx D �B.N � 2/

Z
�

ruN�2�;ı � ru
N�2
�;ı dx

D .AC B/

Z
�

ruN�2�;ı � ru
N�2
�;ı dx:
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This entails

�

X
i2PN�2

�

NX
jD1

Z
�

˛ijruj � ru
N�2
�;ı dx D .AC B.N � 3/C AC B/

Z
�

jruN�2�;ı j
2dx � 0;

since AC B.N � 3/C AC B D A � B � 0.
The terms  0.uj / can be handled as above. Indeed, observing thatX

i2PN�2
�

˛ij D �
X

l 62PN�2
�

˛lj D �2B � 0; 8 j 2 PN�2
� ;

we obtain

�

X
i2PN�2

�

NX
jD1

Z
�

˛ij 
0.uj /u

N�2
�;ı dx

D �

X
i2PN�2

�

X
j2PN�2

�

Z
�

˛ij 
0.uj /u

N�2
�;ı dx �

X
i2PN�2

�

X
j 62PN�2

�

Z
�

˛ij 
0.uj /u

N�2
�;ı dx

D

X
l 62PN�2

�

X
j2PN�2

�

˛lj

Z
EN�2.t/

 0.uj /u
N�2
�;ı dx

� B
X

i2PN�2
�

X
j 62PN�2

�

Z
EN�2.t/

 0.uj /u
N�2
�;ı dx:

Thanks to (4.32), we know that in EN�2.t/, for ı sufficiently small, we have

j 0.uj /j � � 
0.ı � 2ı2/; 8j 62 PN�2

� ;

since  0 is monotonically increasing. This entails that

B
X

i2PN�2
�

X
j 62PN�2

�

Z
EN�2.t/

 0.uj /u
N�2
�;ı dx

� �jBj
X

i2PN�2
�

X
j 62PN�2

�

Z
EN�2.t/

 0.ı � 2ı2/uN�2�;ı dx

� �2jBj.N � 2/

Z
�

 0.ı � 2ı2/uN�2�;ı dx:

Moreover, in EN�2.t/ it also holds that, since 0 � B D �jBj and uN�2
�;ı
� 0,X

l 62PN�2
�

X
j2PN�2

�

˛lj 
0.uj /u

N�2
�;ı .t/ D �jBj

X
l 62PN�2

�

X
j2PN�2

�

 0.uj /u
N�2
�;ı .t/

� �2.N � 2/jBj 0.2ı2/uN�2�;ı .t/;
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since 0 � ui .t/ � 2ı2 for any i 2 PN�2
� , and thus

� 0.uj / � � 
0.2ı2/; 8j 2 PN�2

� :

Concerning the other terms in (4.28), we have (recall that 0 � uk � 1 for k D 1; : : : ; N )

�

X
i2PN�2

�

NX
j;kD1

Z
�

˛ijAjkukuN�2�;ı dx � C

Z
�

uN�2�;ı dx;

and, arguing similarly (see (3.11)), we find

�

X
i2PN�2

�

NX
jD1

Z
�

˛ijwju
N�2
�;ı dx � C.T /

Z
�

uN�2�;ı dx:

Combining (4.33) with the obtained estimates, we end up with

1

2

d

dt
kuN�2�;ı k

2
C .A � B/

Z
�

jruN�1�;ı j
2dx � 2jBj.N � 2/ 0.2ı2/

Z
�

uN�1�;ı dx

� C.T /

Z
�

uN�1�;ı dx � 2jBj.N � 2/

Z
EN�2.t/

 0.ı � 2ı2/uN�1�;ı dx;

that is,

1

2

d

dt
kuN�2�;ı k

2
C .A � B/

Z
�

jruN�1�;ı j
2dx

C Œ2jBj.N � 2/.� 0.2ı2/C  0.ı � 2ı2// � C.T /�

Z
�

uN�1�;ı dx � 0:

Therefore, on account of assumption (E2), for 0 < ı � ıN�1 � ı0 � 1
N

and ı sufficiently
small, we can ensure that

2jBj.N � 2/.� 0.ı2/C  0.ı � ı2// � C.T / � 0:

Recalling that A � B � 0, we deduce, for almost any t 2 Œ0; T �,

1

2

d

dt
kuN�2�;ı k

2
� 0:

Then, thanks to (4.30) and to the choice ı � ıN�1 (entailing also 2ı2 � ıN�1), we get
uN�2
�;ı

.0/ � 0. Therefore, by Gronwall’s lemma, we get

kuN�2�;ı .t/k � 0; 8t 2 Œ0; T �:

Again the choice of the set PN�2
� is completely arbitrary, meaning that there exists a

0 < ıN�2 � ıN�1 such that, for any possible PN�2
� , with � D 1; : : : ; N.N�1/

2
,X

i2PN�2
�

ui .t/ � ı > 0 in �; 8t 2 Œ0; T �; 80 < ı � ıN�2: (4.34)
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Step 3: Iterative procedure and conclusion. If N D 3, we are done. Otherwise, we
consider the sets PN�3

� , � D 1; : : : ;
�
N
N�3

�
. Let us fix � and ı � ıN�2 (to be chosen later

on), introduce as before
uN�3�;ı D

� X
i2PN�3

�

ui � 2ı
2
��
;

and define the vector eN�3� as

.eN�3� /i D

´
1 if i 2 PN�3

� ;

0 if i 62 PN�3
� ;

for i D 1; : : : ; N . The essential observation is again the following: in the set

EN�3.t/ D
°
x 2 � W

X
i2PN�3

�

ui .x; t/ � 2ı
2
±

from (4.34), since 0 < 2ı2 < ı � ıN�2 � 1
N

, we deduce that

uj .t/ � ı � 2ı
2; 8j 62 PN�3

� :

This implies that in EN�3.t/, for ı > 0 sufficiently small, we have

j 0.uj .t//j � � 
0.ı � 2ı2/; 8 j 62 PN�3

� ;

and
� 0.ui .t// � � 

0.2ı2/; 8 i 2 PN�3
� :

We can now argue as in Step 2 and conclude that there exists a ıN�3 2 .0; ıN�2� such
that, for any possible PN�3

� , with � D 1; : : : ;
�
N
N�3

�
,X

i2PN�3
�

ui .t/ � ı > 0 in �; 8 t 2 Œ0; T �; 8 ı 2 .0; ıN�3�:

Applying these arguments iteratively, we reach a generic step m and we find ıN�m 2
.0; ıN�mC1� such that, for any PN�m

� with � D 1; : : : ;
�
N

N�m

�
, we haveX

i2PN�m
�

ui .t/ � ı > 0 in �; 8 t 2 Œ0; T �; 8 ı 2 .0; ıN�m�:

Therefore, we can continue the procedure until N �m D 1, which entails in the end
that there exists a 0 < ı � ı0 � 1

N
such that, for any i D 1; : : : ; N ,

ui .t/ � ı > 0 in �; 8 t 2 Œ0; T �;

that is, the strict separation property holds. This concludes the proof of Theorem 3.1.
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4.2. Proof of Theorem 3.9

Let us take � D u.t/ � u.t/ in equation (3.5). This gives

.P���.u/;u � u/C kruk2 D .w �w;u � u/C .Au;u � u/: (4.35)

Moreover, by the convexity of ‰1 (recall that u � u 2 T†), we have

.P���.u/;u � u/ D .���.u/;u � u/ �
Z
�

‰1.u/dx �
Z
�

‰1.u/dx;

but, since u � u0, it holds that
j‰1.u/j � C;

where C > 0 depends on u0. Applying standard inequalities, from (4.35) we infer thatZ
�

‰1.u/dx C kruk2 � C C Ckrukkw �wk C .Au;u/ � .u;Au/;

and using (2.1), we getZ
�

‰1.u/dx �
1

2
.Au;u/C



4
kruk2

� C.˛̨̨.w �w/;w �w/C
1

2
.Au;u/ � .u;Au/

� C.1C .˛̨̨.w �w/;w �w//C Ckuk2

� C.1C .˛̨̨.w �w/;w �w//C
1

2

Z
�

‰.u/dx;

where in the last step we applied property (vi) of the potential  " (recall that these estim-
ates must be obtained in an approximating scheme, so for " sufficiently small, see above).
Therefore, we obtain



4
kruk2 C

1

2

Z
�

‰.u/dx � C.1C .˛̨̨.w �w/;w �w//: (4.36)

Combining (3.8) with (4.36) (multiplied by the sufficiently small � > 0), we end up with

d

dt
E.t/C

�

2
E.t/ �

d

dt
E.t/C

�

2
E.t/C .1 � �C /.˛̨̨.w �w/;w �w/ � C;

and the result follows from Gronwall’s lemma.

4.3. Proof of Theorem 3.10

Proof. Instantaneous regularization of weak solutions. Thanks to part (1) of Theorem 3.1,
for any � > 0, we can find z� � � such that u.z�/ 2 H2.�/ and @nu.z�/ D 0 on @� such
that the solution starting from z� is more regular. Having assumed (M1), this solution coin-
cides with the weak one (generated from u0) and it can be easily extended to Œz�;C1/,
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by uniqueness, whence its instantaneous regularization and the validity of properties
(3.16)–(3.19). Concerning the global bounds, for the sake of brevity, here we simply show
the formal estimates. A rigorous argument can be formulated within an approximation
scheme like the previous one. First, we observe that (3.8) entails

kukL1.0;1IH1.�// C kw �wkL2.t;tC1IL2.�// � C; 8 t � 0: (4.37)

Notice that the constant C > 0 only depends on the initial energy E.0/. Then, arguing as
in (4.11), we obtain

1

2

d

dt
.˛.w �w/;w �w/C



2
kr@tuk2 � C.˛.w �w/;w �w/:

Due to (4.37), we can apply the uniform Gronwall’s lemma (see, e.g., [44] by choosing,
e.g., r D �

2
) to deduce, for any given � > 0,

kw �wkL1.�;1IL2.�// C kr@tukL2.t;tC1IL2.�// � C; 8 t � �:

From now on, we can argue as in the proof of Theorem 3.1 to get

kwkL1.�;1IL2.�// � C; 8 t � �;

where C > 0, now and in the rest of the paper, stands for a generic constant depending
on �, ˛, ‰, u0, and E.0/. This allows us to deduce

k�.u/kL1.�;1IL2.�// C ku"kL1.�;1IH2.�// � C; 8 t � �: (4.38)

Also, by comparison in (3.7), we find

kwkL2.t;tC1IH1.�// � C; 8 t � �:

The proof is finished.

Instantaneous strict separation. We are in the case ku0kL1.�/ � 1, that is, u0 is not
necessarily strictly separated like in Section 4.1. Therefore, we need to adapt the proof
we performed in Section 4.1. In order to do that, we perform a De Giorgi-type iterative
scheme at each step.

The basic tool is the next lemma.

Lemma 4.5. Let ¹ynºn2N[¹0º � RC satisfy the recursive inequalities

ynC1 � Cb
ny1C"n ; 8n � 0;

for some C > 0, b > 1, and " > 0. If

y0 � � WD C
� 1" b

� 1

"2 ;

then
yn � �b

� n" ; 8n � 0;

and consequently, yn ! 0 for n!1.
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Lemma 4.5 can be found, for example, in [19, Ch. I, Lemma 4.1] (see also [36, Ch.2,
Lemma 5.6]) and can be easily proven by induction (see, e.g., [9, Lemma 3.8]). Since the
iterative argument in which we sum up some components of u (in decreasing number at
each step) is exactly the same as in the case treated in Section 4.1, we directly assume
to be at Step m > 1 and show the differences with respect to estimate (4.28) (Step 1 is
even easier, as we have seen in Section 4.1 thanks to relation (4.29), thus it can be easily
adapted following the analysis of the other steps). We assume to know, for an arbitrary
� > 0, that there exists 0 < ıN�mC1 � 1

N
such that, for any � ,X

i2PN�mC1
�

ui � ı; in � �
h�
2
C
m�

2N
;C1

�
; 8ı � ıN�mC1; (4.39)

with the same notation as in Section 4.1. Notice that the upper bound ıN�mC1 � 1
N

is set,
since clearly in the end the necessary condition for the separation will be that ı � 1

N
. We

aim at showing that (4.39) also holds at Stepm. We now consider the set of indices PN�m
�

for a certain � . Then, for i D 1; : : : ; N , we set

.eN�m� /i D

´
1 if i 2 PN�m

� ;

0 if i 62 PN�m
� :

We can now perform De Giorgi’s scheme. Let us set ı sufficiently small such that
ı � ıN�mC1 and fix z� such that

2z� C
�

2
C
m�

2N
D
�

2
C
.mC 1/�

2N
; (4.40)

that is, z� D �
4N

. Choose now T > 0 such that T � 3z� D �
2
C

m�
2N
�

�
2

, that is, T D
�
2
C

3C2m
4N

� . Notice that condition (4.40) implies

T � z� D
�

2
C
.mC 1/�

2N
: (4.41)

Let us define the sequence

kn D ı
2
C
ı2

2n
; 8n � 0;

where
ı2 < knC1 < kn < 2ı

2; 8n � 1; kn ! ı2 as n!1

and the sequence of times ´
t�1 D T � 3z�;

tn D tn�1 C
z�
2n
; n � 0;

which satisfies
t�1 < tn < tnC1 < T � z�; 8n � 0:
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Then, introduce a cutoff function �n 2 C 1.R/ by setting

�n.t/ WD

´
0; t � tn�1;

1; t � tn
and j�0n.t/j �

2nC1

z�
;

on account of the above definition of ¹tnºn, and set

u
N�m;n
�;ı

.x; t/ WD
� X
i2PN�m

�

ui � kn

��
:

Also, for any n � 0, let us introduce the interval In D Œtn�1; T � and the set

An.t/ WD
°
x 2 � W

X
i2PN�m

�

ui .x; t/ � kn � 0
±
; 8t 2 In;

so that on An.t/ it holds that (see (4.39)), since 0 < 2ı2 < ı � ıN�mC1 � 1
N

,

uj .t/ � ı � 2ı
2; 8j 62 PN�m

� :

This means that, on An.t/ and for ı > 0 sufficiently small, we have

j 0.uj .t//j � � 
0.ı � 2ı2/; 8j 62 PN�m

� ; (4.42)

and
� 0.ui .t// � � 

0.2ı2/; 8i 2 PN�m
� : (4.43)

Observe now that

InC1 � In; 8n � 0;

AnC1.t/ � An.t/; 8n � 0; 8t 2 InC1;

and set
yn D

Z
In

Z
An.s/

1dxds; 8n � 0:

For any n � 0, we take the test function � D �eN�m� u
N�m;n
�;ı

�2n in (3.4) and integrate
over Œtn�1; t �, tn � t � T . After an integration by parts, we get

1

2
�2n.t/ku

N�m;n
�;ı

.t/k2�
X

i2PN�m
�

NX
jD1

Z t

tn�1

Z
�

˛ij 
0.uj /u

N�m;n
�;ı

�2ndxds„ ƒ‚ …
I1

�
X

i2PN�m
�

NX
jD1

Z t

tn�1

Z
�

˛ijruj � ru
N�m;n
�;ı

�2ndxds„ ƒ‚ …
I2
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D �

X
i2PN�m

�

NX
j;kD1

Z t

tn�1

Z
�

˛ijAjkuku
N�m;n
�;ı

�2ndxds„ ƒ‚ …
I3

�

X
i2PN�m

�

NX
jD1

Z t

tn�1

Z
�

˛ijwju
N�m;n
�;ı

�2ndxds„ ƒ‚ …
I4

C

Z t

tn�1

@t�n�nku
N�m;n
�;ı

k
2ds„ ƒ‚ …

I5

;

where we used

1

2
�2n.t/ku

N�m;n
�;ı

.t/k2 D

Z t

tn�1

< @tu
N�m;n
�;ı

; u
N�m;n
�;ı

�2nds

�

Z t

tn�1

@t�n�nku
N�m;n
�;ı

k
2ds:

As in Section 4.1, recalling that ˛i i D A > 0 for any i D 1; : : : ; N , we obtain

I2 D �
X

i2PN�m
�

NX
jD1

Z t

tn�1

Z
�

˛ijruj � ru
N�m;n
�;ı

�2ndxds

D �
X

i2PN�m
�

Z t

tn�1

Z
�

.˛i irui � ru
N�m;n
�;ı

/�2ndxds

� 
X

i2PN�m
�

NX
j 6Di;jD1

Z t

tn�1

Z
�

˛ijruj � ru
N�m;n
�;ı

�2ndxds

D 

Z t

tn�1

Z
�

.Aru
N�m;n
�;ı

� ru
N�m;n
�;ı

/�2ndxds

� 
X

i2PN�m
�

� NX
j 6Di;jD1

Z t

tn�1

Z
�

˛ijruj � ru
N�m;n
�;ı

�2ndxds
�
:

Since ˛ij D B < 0 for any i 6D j , the second summand becomes

�

X
i2PN�m

�

� NX
j 6Di;jD1

Z
�

˛ijruj � ru
N�m;n
�;ı

dx
�

D �B
X

i2PN�m
�

X
j 6Di;j2PN�m

�

Z
�

ruj � ru
N�m;n
�;ı

dx
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� B
X

i2PN�m
�

X
j 62PN�2

�

Z
�

ruj � ru
N�m
�;ı dx

D B.N �m � 1/
X

j2PN�m
�

Z
�

ruj � ru
N�m;n
�;ı

dx

� B.N �m/
X

j 62PN�m
�

Z
�

ruj � ru
N�m;n
�;ı

dx:

On the other hand, observe that
P
j 62PN�m

�
uj D 1 �

P
i2PN�m

�
ui . Hence, we get

�B.N �m/
X

j 62PN�m
�

Z
�

ruj � ru
N�m;n
�;ı

dx D �B.N �m/

Z
�

ru
N�m;n
�;ı

� ru
N�m;n
�;ı

dx:

This entails (recall that A D �B.N � 1/)

I2 D .AC B.N �m � 1/ � B.N �m//

Z t

tn�1

Z
�

jruN�2�;ı j
2�2ndxds

D N jBj

Z t

tn�1

Z
�

jru
N�m;n
�;ı

j
2�2ndxds;

since AC B.N �m � 1/ � B.N �m/ D A � B D N jBj > 0.
Concerning I1, recall that for any j 2 PN�m

� ,
P
i2PN�m

�
˛ij D �

P
l 62PN�m

�
˛lj , we

can write

�

X
i2PN�m

�

NX
jD1

Z
�

˛ij 
0.uj /u

N�m;n
�;ı

dx

D �

X
i2PN�m

�

X
j2PN�m

�

Z
�

˛ij 
0.uj /u

N�m;n
�;ı

dx

�

X
i2PN�m

�

X
j 62PN�m

�

Z
�

˛ij 
0.uj /u

N�m;n
�;ı

dx

D

X
l 62PN�m

�

X
j2PN�m

�

˛lj

Z
An.t/

 0.uj /u
N�m;n
�;ı

dx

� B
X

i2PN�m
�

X
j 62PN�m

�

Z
An.t/

 0.uj /u
N�m;n
�;ı

dx:

Thus, by (4.42), we deduce

B
X

i2PN�m
�

X
j 62PN�m

�

Z
An.t/

 0.uj /u
N�m;n
�;ı

dx

� �jBj
X

i2PN�m
�

X
j 62PN�m

�

Z
An.t/

 0.ı � 2ı2/u
N�m;n
�;ı

dx
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� �mjBj.N �m/

Z
�

 0.ı � 2ı2/u
N�m;n
�;ı

dx:

Moreover, since 0 � B D �jBj and thanks to (4.43), in An.t/ it also holds thatX
l 62PN�m

�

X
j2PN�m

�

˛lj 
0.uj /u

N�m;n
�;ı

D �jBj
X

l 62PN�m
�

X
j2PN�m

�

 0.uj /u
N�m;n
�;ı

� �m.N �m/jBj 0.2ı2/u
N�m;n
�;ı

:

About the other terms in (4.28), recalling that 0 � uk � 1 for k D 1; : : : ; N , we clearly
have

I3 D �
X

i2PN�m
�

NX
j;kD1

Z t

tn�1

Z
�

˛ijAjkuku
N�m;n
�;ı

�2ndxds � C

Z t

tn�1

Z
�

u
N�m;n
�;ı

�2ndxds;

and by (3.18) on . �
2
;C1/ we have, similarly,

I4 D �
X

i2PN�m
�

NX
jD1

Z t

tn�1

Z
�

˛ijwju
N�m;n
�;ı

�2ndxds � C

Z t

tn�1

Z
�

u
N�m;n
�;ı

�2ndxds:

We are left with I5, which is not present when u0 is strictly separated. Note that, sincePN
iD1 ui D 1 and 0 � ui � 1 almost everywhere in � � Œ0;C1/, for any i D 1; : : : ; N ,

we have
0 �

X
i2PN�m

�

ui a.e. in � � Œ0;C1/;

and thus
0 � u

N�m;n
�;ı

� 2ı2 a.e. in � � Œ0;C1/:

Then, thanks to the above inequality, we infer

I5 D

Z t

tn�1

ku
N�m;n
�;ı

.s/k2�n@t�nds D

Z t

tn�1

Z
�

.u
N�m;n
�;ı

.s//2�n@t�ndxds

D

Z t

tn�1

Z
An.s/

.u
N�m;n
�;ı

.s//2�n@t�ndxds �

Z t

tn�1

Z
An.s/

4ı4
2nC1

z�
dxds

�
2nC3ı4

z�
yn:

Therefore, collecting all the above results, we end up with

1

2
�2n.t/ku

N�m;n
�;ı

.t/k2 �m.N �m/jBj 0.2ı2/

Z t

tn�1

Z
�

u
N�m;n
�;ı

�2ndxds

C N jBj

Z t

tn�1

Z
�

jru
N�m;n
�;ı

j
2�2ndxds

� .C �mjBj.N �m/ 0.ı � 2ı2//

Z t

tn�1

Z
�

u
N�m;n
�;ı

�2ndxds C
2nC3ı4

z�
yn;
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for any t 2 Œtn; T �, that is,

1

2
�2n.t/ku

N�m;n
�;ı

.t/k2

C Œm.N �m/jBj.� 0.2ı2/C  0.ı � 2ı2// � C �

Z t

tn�1

Z
�

u
N�m;n
�;ı

�2ndxds

C N jBj

Z t

tn�1

Z
�

jru
N�m;n
�;ı

j
2�2ndxds �

2nC3ı4

z�
yn:

We now recall assumption (E2) and see that

 0.ı � 2ı2/ �  0.2ı2/!C1 as ı ! 0C:

Therefore, for 0 < ı � ıN�mC1 sufficiently small, we have

mjBj.N �m/.� 0.2ı2/C  0.ı � 2ı2// � C � 0:

This entails

max
t2InC1

ku
N�m;n
�;ı

.t/k2 � Xn; 2N jBj

Z
InC1

kru
N�m;n
�;ı

k
2ds � Xn; (4.44)

where

Xn WD
2nC4ı4

z�
yn:

On the other hand, for any t 2 InC1 and for almost any x 2 AnC1.t/, we get

u
N�m;n
�;ı

.x; t/ D ı2 C
ı2

2n
�

X
i2PN�m

�

ui .x; t/

D �

X
i2PN�m

�

ui .x; t/C
h
ı2 C

ı2

2nC1

i
„ ƒ‚ …

u
N�m;nC1
�;ı

.x;t/�0

Cı2
h 1
2n
�

1

2nC1

i
�

ı2

2nC1
;

which implies Z
InC1

Z
�

ju
N�m;n
�;ı

j
3dxds �

Z
InC1

Z
AnC1.s/

ju
N�m;n
�;ı

j
3dxds

�

� ı2

2nC1

�3 Z
InC1

Z
AnC1.s/

dxds

D

� ı2

2nC1

�3
ynC1:

Then, for d D 2; 3, we find� ı2

2nC1

�3
ynC1 �

Z
InC1

Z
�

ju
N�m;n
�;ı

j
3dxds
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D

Z
InC1

Z
An.s/

ju
N�m;n
�;ı

j
3dxds

�

�Z
InC1

Z
�

ju
N�m;n
�;ı

j
2dC4
d dxds

� 3d
2dC4

�Z
InC1

Z
An.s/

dxds
� 4�d
2dC4

:

(4.45)

Thanks to the Sobolev–Gagliardo–Nirenberg inequality and Poincaré’s inequality, we
have

kuk
L
2dC4
d .�/

� zC.ku � uk
2

dC2 kruk
d
dC2 C juj/; 8u 2 H 1.�/;

so we get Z
InC1

Z
�

ju
N�m;n
�;ı

j
2dC4
d dxds

� zC

Z
InC1

.ku
N�m;n
�;ı

k
4dC8
d.dC2/ kru

N�m;n
�;ı

k
2
C ju

N�m;n
�;ı

j
2dC4
d /ds

� yC

Z
InC1

.ku
N�m;n
�;ı

k
4dC8
d.dC2/ kru

N�m;n
�;ı

k
2
C ku

N�m;n
�;ı

k
2dC4
d /ds:

On the other hand, by (4.44), we obtain

yC

Z
InC1

kru
N�m;n
�;ı

k
2
ku
N�m;n
�;ı

k
4dC8
d.dC2/ ds

� yC max
t2InC1

ku
N�m;n
�;ı

.t/k
4dC8
d.dC2/

Z
InC1

kru
N�m;n
�;ı

k
2ds

�
yC

2N jBj
X

2dC4
d.dC2/
n 2N jBj

Z
InC1

kru
N�m;n
�;ı

k
2ds

�
yC

2N jBj
X

dC2
d

n �
yC

2N jBj

2
dC2
d
nC

4.dC2/
d ı

4.dC2/
d

z�
dC2
d

y
dC2
d

n :

Similarly, using (4.44) once more, we have

yC

Z
InC1

ku
N�m;n
�;ı

k
2dC4
d ds � 2 yC z�X

dC2
d

n D yC
2
dC2
d
nC 5dC8

d ı
4dC8
d

z�
2
d

y
dC2
d

n :

Therefore, we infer from (4.45) that

.
ı2

2nC1
/3ynC1 �

�Z
InC1

Z
�

ju
N�m;n
�;ı

j
2dC4
d dxds

� 3d
2dC4

�Z
InC1

Z
An.s/

dxds
� 4�d
2dC4

� ı6
2
3
2nC6 yC

3d
2dC4

z�
3
2

� 1

2N jBj
C 2z�

� 3d
2dC4

y
5Cd
2Cd
n :

In conclusion, we end up with

ynC1 �
2
9
2nC9 yC

3d
2dC4

z�
3
2

� 1

2N jBj
C 2z�

� 3d
2dC4

y
5Cd
2Cd
n ; 8n � 0:
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Thus, we can apply Lemma 4.5. In particular, we have

b D 2
9
2 > 1; C D

26 yC
3d
2dC4

z�
3
2

� 1

2N jBj
C 2z�

� 3d
2dC4

> 0; " D
3

d C 2
;

to get that yn ! 0, as long as

y0 � C
�
dC2
3 b�

.dC2/2

9 ;

that is,

y0 �
2�Œ2.dC2/�

.dC2/2

2 �z�
dC2
2

yC
d
2

�
1

2N jBj
C 2z�

� d
2

: (4.46)

On the other hand, owing to (3.19), we know that k 0.uj /kL1. �2 ;1IL1.�// � C.�/ for any
j D 1; : : : ;N and 0 is monotone in a neighborhood of 0C. Then, we get, for ı sufficiently
small,

y0 D

Z
I0

Z
A0.s/

1dxds �

Z
I0

Z
¹x2�W

P
i2PN�m

�
ui .x;t/�2ı2º

1dxds

�

Z
I0

Z
A0.s/

1

N �m

X
i2PN�m

�

j 0.ui /j

� 0.2ı2/
dxds � �

3C.�/z�

 0.2ı2/.N �m/
:

Hence, if we ensure that

�
3C.�/z�

 0.2ı2/.N �m/
�
2�Œ2.dC2/�

.dC2/2

2 �z�
dC2
2

yC
d
2

�
1

2N jBj
C 2z�

� d
2

;

then (4.46) holds. This is equivalent to

3C.�/2Œ2.dC2/�
.dC2/2

2 � yC
d
2

�
1

2N jBj
C 2z�

� d
2

z�
d
2 .N �m/

� � 0.2ı2/:

Having fixed z� such that (4.40) holds, we obtain the result by choosing ı sufficiently small,
since � 0.2ı2/!C1 as ı ! 0 by assumption (E1). Notice that ı > 0 is fixed and not
infinitesimal.

In the end, passing to the limit in yn as n!1, we have obtained that� X
i2PN�m

�

ui � ı
2
��

L1.��.T�z�;T //
D 0;

by uniqueness of the limit, since as n!1,

yn !
ˇ̌̌°
.x; t/ 2 � � ŒT � z�; T � W

X
i2PN�m

�

ui � ı
2
±ˇ̌̌
d
I
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and, on the other hand, yn ! 0. Notice that, due to the choice of T , we have (see (4.41))
T � z� D �

2
C

.mC1/�
2N

� � , therefore we can repeat the same procedure on the interval
.T; T C z�/ (the new starting time will be t�1 D T � 2z� � �

2
) and so on, thus eventually

reaching the entire interval Œ �
2
C

.mC1/�
2N

;C1/. Clearly ı and z� do not change, since the
estimates are independent of T . Therefore, since � D 1; : : : ;

�
N

N�m

�
is arbitrary, we have

obtained that there exists a 0 < ıN�m � ıN�mC1 � 1
N

such that, for any possible PN�m
� ,

with � D 1; : : : ;
�
N

N�m

�
,X

i2PN�m
�

ui .t/ � ı > 0 a.e. in � �
h�
2
C
.mC 1/�

2N
;C1

�
; 8 ı 2 .0; ıN�m�: (4.47)

Recalling Remark 3.11, we can deduce that (4.47) actually holds everywhere in

� �
h�
2
C
.mC 1/�

2N
;C1

�
:

We can thus repeat the procedure, increasing m for a finite number of times, until each
set P� is a singleton (as in the case discussed in Section 4.1). This entails that there exists
0 < ı � 1

N
such that, for any i D 1 : : : ; N ,

ui � ı > 0 a.e. in � � Œ�;C1/; (4.48)

thus concluding the proof. Notice that the quantity ı depends on the initial datum only
through the initial energy E.0/ and u0, since all the estimates involved in this proof are
the ones mentioned in Theorem 3.10.

5. Proof of Theorem 3.13

Proof of Theorem 3.13. By Remark 3.14, we only need to show the existence of a compact
absorbing set. From Theorem 3.9, we deduce that for any u0 2 VM, there exist constants
C3; C4 > 0 such that

kS.t/u0k2VM
� C3e

�!t
ku0k2VM

C C4; 8t � 0:

Indeed, since ‰ is bounded on Œ0; 1� and 0 � u0 � 1, it holds that

1

2
ku0k2VM

� C � E.0/ �
1

2
ku0k2VM

C C;

for some C > 0 independent of the initial datum u0. This means that the set

zB0 WD

°
u 2 VM W kukVM �

r
C3

2
C C4 WD R0

±
is an absorbing set, that is, for any bounded set B � VM, there exists te > 0 depending on
supu02B ku0kVM such that S.t/B � zB0 for any t � te .



M. Grasselli and A. Poiatti 534

On account of (4.38) and (4.48), we can find ı D ı.R0/ > 0 and a bounded set

B0 WD
®
u 2 zB0 W kukH2.�/ � C0; u � ı in �; @nu D 0 a.e. on @�

¯
; (5.1)

for some C0 D C0.R0/ > 0 and a time tR0 , depending only onR0, such that S.t/ zB0 �B0

for any t � tR0 . Note that we can state this for any t � tR0 instead of for almost any t (see
Remark 3.11). This clearly implies that B0 is a compact absorbing set, and thus the proof
is complete.

6. Proof of Theorem 3.15

We need some preliminary lemmas. First, recalling (5.1), we know that there exists zt D
zt .R0;M/ > 0 (with M fixed) such that S.t/B0 � B0, for any t � zt . We then introduce
the set

B WD
[
t�zt

S.t/B0

VM

;

which is compact, positively invariant, and absorbing. Let us prove the next lemma.

Lemma 6.1. For any T � 0, there exists C D C.T / > 0 such that, given u0;1; u0;2 2 B,
we have

kS.t/u0;1 � S.t/u0;2k2VM
C

Z t

0

k@sS.s/u0;1 � @sS.s/u0;2k2ds

� C.T /ku0;1 � u0;2k2VM
; 8t 2 Œ0; T �; (6.1)

and

kS.t/u0;1 � S.t/u0;2k2H2.�/ �
C.T /.1C t2/

t2
ku0;1 � u0;2k2VM

; 8t 2 .0; T �: (6.2)

Proof. The following computations are formal, but they can be performed within a suit-
able approximating scheme, like the one used in the proof of Theorem 3.1. In particular,
leaning on the strict separation property, which holds uniformly (depending only R0
and M, this last one being fixed; see Remark 3.7) if the initial data belong to B (see
Theorem 3.1), then we are able to interpret, by uniqueness, the solutions to problem (1.6)
as the solutions to a similar problem where  is replaced by a suitable regular potential
(i.e., obtained by extending  outside Œı; 1 � .N � 1/ı� in a smooth way).

We start by observing that there exists ı > 0 (possibly smaller than the one in the
definition of B) such that (see (3.13) and (3.20))

S.t/u0 � ı in �; 8 t � 0; 8u0 2 B: (6.3)
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Now set ui D S.t/u0;i , with u0;i 2 B, i D 1; 2. Then, taking the difference between the
equations satisfied by u1 and u2, multiplying it by @tu, where uD u1 � u2, and integrating
over �, after an integration by parts, we get



2

d

dt
.˛ru;ru/ �

NX
i;jD1

.˛ij . 
0.u1j / �  

0.u2j //; @tui /

C

NX
i;jD1

.˛ij .Au/j ; @tui /C k@tuk2 D 0;

where we exploited the following facts: @tu � 0, P.@tu/ D @tu, and the property
˛.P�/ D ˛� for any � 2 RN .

Thanks to (6.3), we have k 00.su1j C .1 � s/u
2
j /kL1.�/ � C for any j D 1; : : : ; N ,

so that, by standard inequalities,

NX
i;jD1

.˛ij . 
0.u1j / �  

0.u2j //; @tui /

D

NX
i;jD1

Z
�

Z 1

0

 00.su1j C .1 � s/u
2
j /.u

1
j � u

2
j /˛ij @tuidsdx

� Ckukk@tuk � Ckuk2 C
1

4
k@tuk2 � Ckruk2 C

1

4
k@tuk2: (6.4)

Then, similarly,
NX

i;jD1

.˛ij .Au/j ; @tui / � Ckuk2 C
1

4
k@tuk2;

so that, owing to Poincaré’s inequality, we obtain



2

d

dt
.˛ru;ru/C

1

4
k@tuk2 � C.˛ru;ru/; for a.a. t 2 Œ0; T �; (6.5)

where we exploited the fact that (f;k WD @xkf )

.˛ru;ru/ D
dX
kD1

NX
i;jD1

.˛ijui;k ; uj;k/ D

dX
kD1

.˛u;k ;u;k/ � Ckruk2;

by (2.1) (recall that Pu;k D u;k). Thus, (6.1) follows from (6.5) owing to Gronwall’s
lemma and Poincaré’s inequality. Notice that the constant C , thanks to (6.3), does not
depend on the specific u0;i 2 B.

Concerning (6.2), we write (3.4) for the difference (defined as u) between u1 and u2

and we differentiate the resulting equation with respect to time. Then, we multiply it
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by @tu and integrate over �. This gives, after an integration by parts, the identity

1

2

d

dt
k@tuk2 C

NX
i;jD1

.˛ij . 
00.u1j /@tu

1
j �  

00.u2j /@tu
2
j /; @tui /

�

NX
i;jD1

.˛ij .A@tu/j ; @tui /C .˛r@tu;r@tu/ D 0;

where we exploited @tu � 0, P@tu D @tu, and the properties of ˛. Using now (6.3) once
more and standard inequalities, and on account of assumption  2 C 3.0; 1�, we get

ˇ̌̌ NX
i;jD1

.˛ij . 
00.u1j /@tu

1
j �  

00.u2j /@tu
2
j /; @tui /

ˇ̌̌
D

ˇ̌̌ NX
i;jD1

.˛ij . 
00.u1j / �  

00.u2j //@tu
1
j /; @tui /

ˇ̌̌
C

ˇ̌̌ NX
i;jD1

.˛ij 
00.u2j /.@tu

1
j � @tu

2
j /; @tui /

ˇ̌̌
�

ˇ̌̌ NX
i;jD1

Z
�

Z 1

0

˛ij 
000.su1j C .1 � s/u

2
j /.u

1
j � u

2
j /@tu

1
j @tuidsdx

ˇ̌̌
C Ck@tuk2

� CkukL4.�/k@tu1kk@tukL4.�/ C Ck@tuk2

� CkukVMkr@tuk C k@tuk
2
� C.kuk2VM

C k@tuk2/C


2
.˛r@tu;r@tu/;

where we exploited the embedding H1.�/ ,!L4.�/, the bound k@tu1kL1.0;T IL2.�//�C
with C depending only on R0 (see part (2) of Theorem 3.1, Theorem 3.10, and (5.1)),
Poincaré’s inequality, and the fact that .˛r@tu;r@tu/ � Ckr@tuk2. This last estimate
comes from (2.1), since we have

.˛r@tu;r@tu/ D
dX
kD1

NX
i;jD1

.˛ij @tui;k ; @tuj;k/ D

dX
kD1

.˛@tu;k ; @tu;k/ � Ckr@tuk2;

with P@tu;k D @tu;k . In conclusion, we have

ˇ̌̌ NX
i;jD1

.˛ij .A@tu/j ; @tui /
ˇ̌̌
� Ck@tuk2:

We thus end up with

1

2

d

dt
k@tuk2 C



2
.˛r@tu;r@tu/ � C.kuk2VM

C k@tuk2/;
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and, multiplying both sides by s2 2 Œ0; T 2�, we obtain

1

2

d

dt
s2k@tuk2 C 

s2

2
.˛r@tu;r@tu/ � C.s2kuk2VM

C .s2 C s/k@tuk2/:

Integrating over .0; t/, recalling (6.1), and dividing by t2, we deduce

k@tu.t/k �
C.T /

t
ku0;1 � u0;2kVM ; 8t 2 .0; T �: (6.6)

We now multiply the equation for u by ��u and integrate over �. We get

�.@tu; �u/C .˛�u; �u/ �
NX

i;jD1

.˛ij . 
0.u1i / �  

0.u2i //;�uj /

C

NX
i;jD1

.˛ij .Au/j ; �uj / D 0; (6.7)

where we used�uD 0 and the properties of ˛. Now, since P�uD�u, we have (see (2.1))

.˛�u; �u/ � Ck�uk2:

Moreover, like with (6.4), we haveˇ̌̌ NX
i;jD1

.˛ij . 
0.u1i / �  

0.u2i //;�uj /
ˇ̌̌
� Ckuk2 C



4
.˛�u; �u/;

and the Cauchy–Schwarz inequality and Young’s inequality yieldˇ̌̌ NX
i;jD1

.˛ij .Au/j ; �uj /
ˇ̌̌
� Ckuk2 C



4
.˛�u; �u/:

Therefore, from (6.7) and Poincaré’s inequality, we deduce

Ck�uk2 � Ckruk2 C Ck@tuk2;

and combining it with (6.1) and (6.6), we infer (6.2).

We can now continue the proof of Theorem 3.15, following [39]. By (3.10), given
u.t/ D S.t/u0, with u0 2 B we have, for any given T > 0,

ku.t/ � u.s/kVM

�

Z t

s

k@tu.�/kVMd� � jt � sj
1
2

�Z t

s

k@tu.�/k2VM
d�
� 1
2
� C.T /jt � sj

1
2 (6.8)

for any s; t 2 Œ0; T �, that is, t 7! S.t/u0 is 1
2

-Hölder continuous in Œ0; T �, with C.T /
depending only on R0. Let us now fix t� > 0. Thanks to smoothing property (6.2), valid
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at t D t� > 0, the discrete dynamical system generated by the iterations of S.t�/ possesses
an exponential attractor M� � B (see, e.g., [39, Theorem 3.7]). Moreover, (6.1) and (6.8)
entail

S W Œ0; t�� � B! B; S.t;u0/ WD S.t/u0

is Hölder continuous, when B is endowed with the VM topology. Therefore, we can define

M WD
[

t2Œ0;t��

S.t/M� � B;

and, following [39], show that M is an exponential attractor for S.t/ on B. Since B is
also a compact absorbing set, the basin of exponential attraction of M is the whole phase
space VM. This means that M is an exponential attractor on VM. The proof is finished.
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