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Multi-component conserved Allen—Cahn equations
Maurizio Grasselli and Andrea Poiatti

Abstract. We consider a multi-component version of the conserved Allen—Cahn equation proposed
by J. Rubinstein and P. Sternberg in 1992 as an alternative model for phase separation. In our
case, the free energy is characterized by a mixing entropy density which belongs to a large class
of physically relevant entropies like, for example, the Boltzmann—Gibbs entropy. We establish the
well-posedness of the Cauchy—Neumann problem with respect to a natural notion of (finite) energy
solution which is more regular under appropriate assumptions and is strictly separated from pure
phases if the initial datum is. We then prove that the energy solution becomes more regular and
strictly separated instantaneously. Also, we show that any finite energy solution converges to a
unique equilibrium. The validity of a dissipative inequality (identity for strong solutions) allows
us to analyze the problem within the theory of infinite-dimensional dissipative dynamical systems.
On account of the obtained results, we can associate to our problem a dissipative dynamical system
and we can prove that it has a global attractor as well as an exponential attractor.

1. Introduction

Phase separation—that is, the creation of two (or more) distinct phases from a single
homogeneous mixture—is an important phenomenon which characterizes many import-
ant processes. In particular, it has recently become a paradigm in cell biology (see, for
instance, [5, 6] and references therein). A well-known mathematical model of phase sep-
aration for binary alloys was proposed by J. W. Cahn and J. E. Hilliard [3, 4]. This
model leads to the so-called Cahn—Hilliard equation (see, for instance, [38] and references
therein). More precisely, indicating by ¢ the concentration of one species, phase separa-
tion can be modeled as a competition between the Boltzmann—Gibbs mixing entropy

S(@) =—¢plng—-(1-9¢)lng

and the demixing effects due to the reciprocal attraction of the molecules of the same
species which can be described, for instance, as follows:

D(p) = —¢(1 — ¢).
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Thus, the free energy density is given by the so-called Flory—Huggins potential (see, for
instance, [2] and references therein)

W(p) = —0S(¢p) + 0. D(p), (1.1)

where ® > 0 is the absolute temperature of the mixture and ®( > 0 is its critical tem-
perature (other constants are set equal to 1). If ® < ®,, then W has a double well shape
and phase separation takes place. Assuming that the mixture occupies a bounded domain
Q Cc R4, d = 2,3, the previous considerations lead to the following free energy func-
tional:

£ = [ Wiprdx+ % [ 1Voax,

where the penalization term allows the creation of diffuse interfaces between the two spe-
cies and also allows a convenient mathematical treatment of the phenomenon (see [20]).
Here y > 0 is related to the thickness of the diffuse interface. The Cahn—Hilliard equation
can be introduced as a conserved gradient flow generated by the gradient of the chemical

potential p defined by
SE

p=o = rhe + W),
¢

that is, taking constant mobility equal to a constant m > 0,
d;p = mAuW.

This equation, subject to no-flux (or periodic) boundary conditions, entails the conserva-
tion of the total mass [, ¢ (f)dx. An alternative model has been proposed by J. Rubinstein
and P. Sternberg [42] by modifying another well-known equation proposed by S. M. Allen
and J. W. Cahn [1] in order to ensure mass conservation. The equation has the form

drp = a(it — p), (1.2)

where o > 0 and ? is defined by

7=lal! /Q F()dx,

for any integrable f. Here |Q2|4 stands for the d-dimensional Lebesgue measure of €.
Equation (1.2) equipped with a homogeneous Neumann boundary condition preserves the
total mass. In [42] a (formal) asymptotic analysis was performed with respect to a specific
scaling in order to understand the motion of the separating interfaces (also see [8] for
an important application). More rigorous results can be found in [17] where the authors
show that, in a radially symmetric setting, the sharp interface problem of a suitable scaling
of (1.2) is a nonlocal motion by mean curvature. Moreover, they also prove that both (1.2)
and the Cahn-Hilliard equation can be seen as degenerate limits of the viscous Cahn—
Hilliard equation introduced in [41].
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The corresponding motion by mean curvature is also analyzed in [18] under more gen-
eral assumptions on the evolving surface. In the quoted contributions, the mixing entropy
is approximated, that is, the double well potential W is a fourth-order polynomial, also
called the regular (or smooth) potential. However, on account of the nonlocal constraint,
one cannot ensure that ¢ takes its values in the physical range [0, 1] (see, however, [31]
for an alternative model). Instead, if the mixing entropy is not approximated by a poly-
nomial, then the image of ¢ is always contained in [0, 1]. Well-posedness issues in the
case of a polynomial W are standard. However, if W is given by (1.1), then proving the
existence of sufficiently regular global solutions is less trivial because S’ is singular at the
endpoints and cannot be controlled by S like a polynomial. In this case, it would be nice
to show that ¢ stays uniformly away from 0 and 1, that is, if the strict separation property
holds, then S’ would be globally Lipschitz and the analysis would simplify a lot (see, for
instance, [25] and references therein for the Cahn—Hilliard equation in two dimensions;
see also [9] for the case of three dimensions). In the nonconserved case, the strict sep-
aration is trivial for regular potentials and a bit less straightforward for logarithmic-type
potentials like (1.1) (see [32, Theorem 2.3]). Concerning (1.2), its instantaneous valid-
ity in dimension two has been proven (see [30]), while in dimension three the proof was
given assuming that the initial datum is strictly separated (see [26]). Observe that the strict
separation property combined with the uniqueness of a solution ¢ allows us to view the
solution itself as the solution to a similar problem where S is replaced by a smooth approx-
imation, defined on the whole real line, which coincides with S on the interval [§, 1 — §]
and § € (0, 1) is such that ¢ € [§, 1 — §]. In other words, the validity of the strict sep-
aration can be interpreted as a rigorous justification of the entropy approximation with a
polynomial.

In this paper we want to reconsider these issues and say more for a multi-component
version of (1.2). In many applications, it is important to account for the presence of mul-
tiple interacting species (see, for instance, [11,12,15,16,29,33,34] and references therein;
see also [22,40] and their references for the motion by mean curvature in the nonconserved
case and [10] for the importance of the Flory—Huggins potential). Nevertheless, to our
knowledge, a comprehensive theoretical analysis of multi-component conserved Allen—
Cahn equations is missing. Nonetheless, it is worth recalling [23,43] and their references
for nonconserved stationary problems with regular potential. Moreover, we recall that a
rigorous solution to the so-called Keller—Rubinstein—Sternberg problem on the motion by
curvature has recently been given in [21] (see also its references). On the contrary, multi-
component Cahn—Hilliard equations were analyzed long ago in the pioneering paper [7]
(see also [27] and its references for further results and recent developments). As we shall
see, one of the advantages (and our main result) is the fact that any weak solution becomes
instantaneously strong and strictly separated also in dimension three, while this property
is known only in dimension two for the corresponding multi-component Cahn—Hilliard
equation. This regularization allows us to investigate the longtime behavior of solutions
in some details, that is, we prove the existence of a global and an exponential attractor.
Also, we can show that any weak solution converges to a single stationary state. The
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present analysis can also be viewed as a first step towards the analysis of multi-component
Navier—Stokes-Allen—Cahn systems (see, for instance, [14,45,46]; see also [30,37] and
references therein for binary fluids). We also believe that this contribution is a significant
addition to [35, Section 9].

In the multi-component case, we denote by u : Q x (0, 7) — RY the vector-valued
function of concentration species whose components must satisfy the constraint

Zui = 1. (1.3)

i=1

The free energy density takes the form

N
1
Y(u) = Z; ¥ (ui) — 5uTAu, (1.4)
where A is a constant symmetric N x N matrix with the largest eigenvalue A5, > O.
Concerning ¥, here we are mainly interested in the Boltzmann—Gibbs mixing entropy—
namely,

N N
Ul = GZuilnui = Zw(ui), (1.5)
i=1 i=1
where 6 > 0 is the absolute temperature of the mixture. However, our framework also
includes many other (physically relevant) entropy functions W' : [0, 1] — R, (see pa-
pers [25,27]). The free energy & is thus defined as

€(u) == W(u) + g/ﬂ IVul2dx,

where
W(u) = / W(u)dx.
Q
Setting
14
M?:—:\IJ,M,., i=1,...,N,
5u,~

the vector 0 is the chemical potential without capillarity and
w=—yAu+pu°

is the chemical potential.
Summing up, arguing as in [7] for the Cahn—Hilliard case, the goal of this work is to
study the following initial and boundary value problem:

ut+a(w—w)=0 in Q2 x (0,7),
w=Pu=—yAu+Pu® inQx(0,T7T), (L6)
Vu; -n=0 ondQ2 x (0,T), i =1,...,N, '

u(0) =ug in .
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The (constant) mobility matrix e is a symmetric, positive semidefinite N X N matrix such
that its kernel is given by span{¢} (where {; = 1, fori = 1,..., N). Here P is defined as
follows (see also the next section):

N
1
(Pv)l:Ul_ﬁmzzlvm» I=1,....N. (1.7)

Then, it is easy to check that, formally, a solution to the above problem with PAu = APu
in place of Au satisfies (1.3) if the initial datum does, using in (1.6); the property

N
> PV =0
=1

and the fact that (recalling that « is also symmetric) ZlAI:l a;j =0forany j =1,..., N.
Therefore, PAu = Au.

The plan of the paper goes as follows: In the next section we introduce the notation,
the functional setup, and some basic assumptions on the mobility matrix «. Also, we
discuss the basic assumptions on the potential (more general than (1.4)—(1.5)) and its
regularization. The main results are stated in Section 3 and the last subsection contains the
proof of the convergence to a single equilibrium. The proofs of the well-posedness and
regularity results, including the strict separation property, can be found in Section 4. The
existence of the global attractor and of an exponential attractor are proven in Sections 5
and 0, respectively.

2. The mathematical framework

The (real) Sobolev spaces are denoted as usual by wk.p (2), where k € N and 1 <
p < oo, with norm | - || yx.»(q)- The Hilbert space W*2(R) is denoted by H*(Q) with
norm || - || & (g)- Moreover, given a space X, we denote by X the space of vectors of three
components, each one belonging to X . We then denote by (-, -) the inner product in L2(£2)
and by || - || the induced norm. We indicate by (-,-)x and || - | x the canonical inner product
and its induced norm in a generic (real) Hilbert space X, respectively. Further, we intro-
duce the affine hyperplane

N

T = {c’e]R{N:chle},

i=1
the Gibbs simplex

N
G:= {c’eRN:chzl, />0, i =1,...,N},

i=1
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and the tangent space to X

s = {d/ e RV :id{ =0}.
i=1

We introduce the following notation:

f el?(Q): /fdx:Oandf(x)eTE fora.a.er},
Q

{f el?(Q): f(x) eTX foraa. x € Q},

{f cH'(Q) :/ fdx =0and f(x) € TS foraa x € sz}
Q

- {f €H!(Q): f(x)eTE foraa x e Q}

Notice that the spaces above are still Hilbert spaces with the same inner products given
in L2(2) for the first two, and H! (), for the others We also have (see [27]) the Hilbert
triplets Vo — Hy — V0 and VO s Ho s V0

Recalling (1.7), we now define rigorously the Euclidean projection P of R onto T'%,
whichis, for/ =1,..., N,

N

v = (v (5 ow)e) .

i=1

where ¢ := (1, 1,...,1). Notice that the projector P is also an orthogonal L? (Q)-projector,
being symmetric and idempotent. We now assume that « is positive definite over T'X.
This will constitute the main assumption on the mobility matrix in this contribution, since
it is enough to prove the existence of weak (and strong) solutions. Nevertheless, it is not
enough to show the validity of a continuous dependence estimate. Thus, we need a second
assumption (see assumption (M1)). More precisely, we assume that:

(MO0) there exists [o > 0 such that

an-n>loy-n, VneTX; 2.1)

(M1) a € RV*N has the structure

A B B
B A ... B
a=|_ |, (2.2)
B ... ... A
where A > 0and A + (N — 1)B = 0, so that B = — 4 < 0.

N—-1
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Remark 2.1. Note that assumption (M1) can be also rewritten as follows: there exists
& > 0 such that
N —1 —1 oo =1
—1 N-1 ... -1
a=§ . : : - (2.3)
-1 e ... N—-1
A matrix of this kind is the natural extension to the case N > 2 of the admissible matrix o
when N = 2, which necessarily has the form in (2.3), as one can easily verify. Observe that
when £ = 1, the matrix « is simply the representative matrix of the projector P, that is, the
identity operator over the space T X. We also point out that « is positive semidefinite and
satisfies (2.1), since it has a zero simple eigenvalue corresponding to the eigenspace T X+,
whereas on T'Y we see by Lemma 4.1 below (with C equal to the N x N identity matrix)
that & is positive definite. In particular, one could show that the eigenvalues of o« are
A1 = 0 (corresponding to the eigenvector (1,1,...,1)),and A; = éN, fori =2,..., N,
whose eigenspace is clearly T'X.

Next, we define the set

N
Kﬁ:{neH%QME:mzﬂ,sz,W::L“”N}

i=1

For the sake of simplicity we will adopt the compact notation v > k, with v € RY and
k € R to indicate the relations v; > k,i =1,..., N.
Recalling (1.5), we now set

(@) = (i) =y (wi), i=1....N. (2.4)
In order to include a large admissible class of entropy functionals in (1.4), we suppose that
Vv € C[0,1] N C2(0,1]

has the following properties:
(E0) ¢ (s) = ¢ >0, forall s € (0, 1];
(ED) limg_,o+ ¥'(s) = —oc;
(E2) limy_ o+ (Y (s — 25%) — ¥/(252)) = +o0.
As in [27], we also extend ¥ (s) = 400, for any s € (—o0, 0), and extend ¥ for all

s € [1, 00) so that ¥ is a C? function on (0, +00) and assumption (E0) holds for any
s > 0. In particular, we define

v(s) = As® + Bs?> + Ds foralls > 1,
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with

A=y =y’ () + Ly,
B = =3y(1) + 3y/(1) - " (1),
D =3y(1) —29/(1) + 1y7(1).

We refer the reader to [25, Section 6.3] for some other important classes of mixing
potentials that are singular at 0. Furthermore, following the general scheme developed
in [24, Section 3.1], by assumptions (EQ0)—(E1), we can define an approximation of the
potential ¢ by means of a sequence {Y,}.~o of everywhere-defined nonnegative func-
tions. More precisely, let

Yels) = 5[ Tes + Y (Je(s)), s €R.e>0, 2.5)

where J; = (I +eA)™! : R — (0, +00) is the resolvent operator and Ty = %(1 —Jg)is
the Yosida approximation of T (s) := v/(s), for all s € D(T) = (0, 1]. According to the
general theory of maximal monotone operators, as already developed in [27, Section 2],
the following properties hold:

(i) Ve is convex and Y (s) 7 ¥(s), forall s € R, as € goes to 07
(i) v.(s) = Ag(s) and ¢ := ¥/ is globally Lipschitz with constant %;
@ii) |yi(s)| /" |¥/(s)| forall s € (0,1] and |¥.(s)| /" +o0, forall s € (—00,0], as &
goes to 07;
(iv) for any ¢ € (0, 1], it holds that
¢
1+¢
(v) for any compact subset M C (0, 1], ¥, converges uniformly to ¥" on M ;

(s) > forall s € R;

(vi) for any &g > 0, there exists K=K (20) > 0 such that

Zws(rl) > —|1r|2 K, VreRY, V0<e<e.
i=1
The final property directly follows from a simple adaptation of [24, Lemma 3.11],
which entails that for any &g > 0, there exists C = C(gg) > 0 such that ¥ (s) > —s2 C,
forany s € R and any 0 < ¢ < g¢ (see also [27, Section 2]). Let us now 1ntr0duce

N
W, (r) := Z Ye(ry) — %rTAr = \Ilel(r) —

i=1
where, as presented in the introduction, A is a symmetric N x N matrix with A5 > 0 as

the largest eigenvalue. We thus have that for any g9 > O sufficiently small, there exist
K = K(g9) > 0and C = C(gop) > 0, with C(g9) /" +00 as g — 0T, such that

W, (r) > C(so)r|> = K, VreRY, Ve e (0,¢).
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In particular, this comes from the fact that —%r - Ar > —%Alr|2 and go has to be small

enough so that, for example, C(gg) = ﬁ - % > 0.

Remark 2.2. We point out that, differently from the standard assumptions on  (see,
e.g., [25,30]), here we do not need the assumption

¢'(s) = ¥ (s) < CeCVOP  foralls € (0,1], B €l,2),

since to deduce the validity of the instantaneous strict separation property we will make
use only of assumptions (EQ)—(E2). Clearly, the logarithmic potential in (1.4)—(1.5) satis-
fies assumptions (E0)—(E2) and is then included in our analysis. Indeed, assumption (E2)
also certainly holds for the logarithmic potential, since ¥'(s) = 6(In(s) + 1) and, thus,
Y/ (s — 25%) — ¥/(2s?) = O(In(s — 2s%) — In(2s?)) = OIn(5; — 1) > oo as s — OF.
Moreover, it seems that if we consider potentials exploding at infinity more slowly than
the logarithm, then assumption (E2) is not satisfied. Indeed, if, for instance, we con-
sider ¥/(s) = —In(| In(s)|), then we get V(s — 252) — ¥’ (252) = —In(| In(s — 25?)|) +
In(|In(2s?)|) — In(2) as s — 0.

3. Main results
This section is divided into several subsections according to the nature of the results.

3.1. Well-posedness and regularity

We first deal with well-posedness and regularity (see [27] for the multi-component Cahn—
Hilliard system).
Theorem 3.1. The following three scenarios hold:

(1) Assume (MO0) and (E0)—(E1), and let ug € K. Suppose that

80 <ﬁ0, (31)

for some 0 < §y < % Then, for any given T > 0, there exists a solution pair (0, w)
defined on [0, T, called a finite energy solution to (1.6), which has the following
properties:
ue C([0, TI;L*(R)) N L™®(0, T;HY(Q)) N L*(0, T; H*(Q)),
du € L*(0, T;L*(Q)),
w e L%(0, T;L?*(RQ)).
¢(ui) € L*(0,T;L*(R)), i=1,...,N,

and satisfies

u(-,t) e X, u(,t)=1p foraa.t € (0,T), (3.2)
0<u(x,t)<1 fora.a. (x,t) € Q x(0,T), 3.3
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dru+a(w—w) =0 ae in2x(0,T), 3.4)
w=P(—-Au+¢(u)—yAu ae inQx(0,T), 3.5
d,u=20 a.e.ond2 x(0,7T), 3.6)
u(0) = ug a.e. in 2. 3.7

Moreover, the following energy inequality holds:
t
&(t) + / (@(w(s) —w(s)),w(s) —w(s)ds <&0O), Vrel0,T]. (3.8
0

If, in addition, (M1) holds and ﬁ(l, = ﬁ%, then two solutions uy, uy are such that
luy (1) —wz (1) < Cllug —ugll. Viel[0,T], (3.9)

for some C = C(T) > 0 and uniqueness follows.

(2) Assume (MO) and (E0)—(E1) and let ug € X N H?*(Q) be such that d,uy = 0
almost everywhere on 92, and ¢(uo;) € L*(Q) for any i = 1,..., N. Then,
there is a finite energy solution pair (u, w) such that

ue C(0.T):H' () N L*(0, T:H*(Q)).
d;ue L20, T;HY(Q)), (3.10)
w e L2, T;L*(Q)) N L%0, T; H(Q)), (3.11)
¢(u;) € L0, T:L*(Q)), i=1,....N.

Moreover, u satisfies the energy identity

%8 4+ (@(w—w),w—w)=0 foraa te€l0,T] (3.12)

(3) Let all the above assumptions hold along with (E2) and suppose that uy is strictly
separated, that is, there exists 8y € (0, %) such that 8o < ug everywhere in Q.
Then, the (unique) strong solution u is strictly separated as well, that is, there
exists § = 8(z, T) € (0, %] such that

§ <wu(x,t), V(x,t)eQx][0,T]. (3.13)

Remark 3.2. On account of (3.11), one could also prove that ¢(u) € L2(0, T; L?()),
where ¢ is defined in (2.4), and u € L2(0, T; W>P()) where p = 6 if d = 3, while
p € [2,00) if d = 2, by slightly adapting part of the proof of [27, Theorem 3.1] (which
is performed for the L°°-in-time case). Again, the main issue is the presence of the pro-
jector P in the definition of w (cf. [13, Corollary 1] for the scalar case).

Remark 3.3. Notice that (3.1) implies that there exists p > O such that p < ug; <1 —p

foranyi = 1,..., N.Indeed, we have, foranyi = 1,..., N,

So < min o, =Woi=1- ;w < 1= (N =1 min T <1=(N =1,
VE:L

and thus we can choose, for example, p = 8y, with N > 2.
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Remark 3.4. Arguing as in [7, Proposition 2.1], we easily obtain Zf\’:l u; = 1 and
ZZN=1 w; = 0. Moreover, by choosing n = 7;, with n; being the i-th unit vector, we get
that the total mass of each component u; is preserved, that is,

)=ty Vitel0,T]

Remark 3.5. From Theorem 3.1 part (2), we deduce that Vu; -m € Cy, ([0, T]; H 2 (02)).
Thus, Vu; -n = 0 for any ¢ € [0, T] almost everywhere on 02, fori = 1,..., N. Further-
more, since we also have

[ullLooco, 3020y < C(T),

with [[u()[[g2(q) lower semicontinuous, we get
lu@®)llpz@) < C(T), VYtel0,T] (3.14)

Remark 3.6. Recalling Theorem 3.1 part (3), observe that (1.3) and (3.13) imply the
existence of §; := (N — 1)§ > 0 such that u < 1 — §; almost everywhere in Q x [0, T7],
that is, each component is strictly separated from the pure phases O and 1. Moreover,
property (3.13) holds on € x [0, T'], since from its proof (see Section 4.1) we deduce that,
forany ¢ € [0, T],

u(t) >4§ ae.in Q.

Then, by Remark 3.5, we know that u(¢) € H?>(Q) < C(Q) for any ¢ € [0, T], implying
that
u(x,t) >4, V(x,t)e€ Q x [0,T].

Remark 3.7. The quantity § > 0 in the separation property only depends on the initial
data through the initial data energy & (0), W, 8o, and |[ug || g2 (q)- The same goes for all the
constants involved in the regularity estimates of part (2) of the Theorem 3.1, except §o.

Remark 3.8. As will be clear from the proof (see also Remark 4.4), in the case N = 2
assumption (E2) is not needed to prove (3.13). This agrees with the result obtained in [26]
for binary mixtures.

On account of the dissipative nature of the system, we have the following uniform
control of the energy &:

Theorem 3.9. Let the assumptions of Theorem 3.1 part (1) hold. Then, the energy of
solution u satisfies the following inequality:

E(t) < Cie @ &)+ Cy, Vtel0,T], (3.15)
where C1, Cy > 0 depend on 2, a, ¥, and Uy, while w > 0 is a universal constant.

We can prove that any weak solution given by Theorem 3.1 instantaneously regular-
izes. Thanks to this, we can show the instantaneous strict separation property in dimen-
sions two and three. This means that, for any 7 > 0, there exists 0 < § = §(7) < % such
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that § < u almost everywhere in Q x [z, +00). Again, notice that this implies the existence
of §; := (N — 1)§ > 0 such that u > 1 — §; almost everywhere in Q x [, +00), that is,
each component is strictly separated from both the pure phases 0 and 1. More precisely,
the following result holds:

Theorem 3.10. Let the assumptions of Theorem 3.9 hold, together with (M1) and (E2).
Then, the energy solution (u, w) is defined for all t > 0 and is such that, for any t > 0,

u € C([r,00); HY(Q)) N L®°(7, 00; H3(Q)), (3.16)
due L%(t,t + 1;H(Q)), Vit>r, (3.17)
w € L®(z, 00; L2(Q)). Vit >, (3.18)

¢ (u;) € L=(t,00; L3(Q)), i=1,...,N. (3.19)

Moreover, u and w are uniformly bounded in the above spaces by positive constants
depending only on 2, a, V, Uy, and &(0). In particular, energy identity (3.12) holds for
almost any t > ©. Moreover, there exists 0 < § = §(1) < % such that

§<u(x,t), V(x,t)eQx [T, +00), (3.20)
that is, the instantaneous strict separation property holds.

Remark 3.11. It is straightforward to see that us := (u — 8)~ € C([r, 00); L?(R)). In the
proof of the strict separation property (see Section 4.3) we obtain

8 <u(x,t) foraa. (x,t) € Q x[r,+00),

which then implies ||ug(¢)|| = 0 for almost any ¢ € [, c0), and thus it holds for any
t € [t, 00), by continuity. This means that we have

§<u(t), Vte][r,+00), ae. in Q. (3.21)

By (3.14) and its global nature ensured by Theorem 3.10, we have that u(z) € H?(R2) for
any ¢ € [r, +00), entailing that (3.21) holds for any (x,7) € Q x [z, +00).

Remark 3.12. We point out that, as observed in Remark 3.8, assumption (E2) is not
needed to prove (3.20) when N = 2 (i.e., for binary mixtures).

3.2. Existence of the regular global attractor

We now define a complete metric space which will be the phase space of the dissipative
dynamical system (see, for instance, [44]) associated with (1.6). For a given M € ¥ such
that M; € (0,1), foranyi = 1,..., N, we set

N
VM = {ueHl(Q): 0<u(x) <1, foraa.xeQ, u=M, Zui = 1},

i=1
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endowed with the H!-topology. In particular, we consider the one induced by the equival-
ent norm |[ul|y,, = ||Vul| + |ul. This is a complete metric space. Thus, under the same
assumptions of Theorem 3.10, we can define a dynamical system (Va, S(¢)) where

SO :Vm—> VY, SOug=u(t), Vr=>0.

Observe that S(7) satisfies the following properties:

.« S0) = Idy;

e St+1)=S@1)S(v), foreveryug € Vu;

ot S(H)ug € C((0,00); Vm), for every ug € Vy;
e ugt> S(t)ug € C(Vm; V), for any ¢ € [0, +00).

In particular, t — S(¢)ug € C((0, 00); V) comes from the instantaneous regularization
so that for any © > 0, u € C([r, 00); Vm), wWhereas the last property can be proved as
follows: from (3.9) together with the H2-regularity (for any ¢ > 0) and the interpolation
estimate

1 1
|-ty < Cll- a1

we deduce that uy — S(¢#)ug € C(Vm; VM), for any ¢ € (0, 0o). This is indeed a con-
sequence of (3.16), since u € L*°(t, oo; H?(Q)) for any t > 0 entails that, given two
initial data wg,1, wp,2 € Vm, for any ¢ > 0,

1 1
IS @01 — SO0 2]l @) = ClISE0,1 — S(O)o2]l g2 ) 1S ()o,1 — S(1)uo 2|2
1 1
< COIS@)ug,1 — S(Huo2[|2 < C(2)|luo,1 —uo,2| 2,
where in the last step we also used (3.9). The case ¢t = 0 is trivial.

Furthermore, we recall that the global attractor is the unique compact set A4 C Vi
such that

* A is fully invariant, that is, S(¢)A = # for every t > 0;

* 4 is attracting for the semigroup, that is,
lim [disty, (S(t)B,A)] =0
,Jim_ [disty, (S(t) B, A)]

for every bounded set B C V. Here disty,, stands for the Hausdorff semidistance.

The dissipative inequality given by (3.15) and the instantaneous regularization of the
energy solution allow us to prove the next theorem.

Theorem 3.13. Let the assumptions of Theorem 3.10 hold. Then, the dynamical sys-
tem (V. S(t)) admits a (unique) connected global attractor A C Vy which is bounded
in H2(Q).

Remark 3.14. The proof of this result is based on showing that the dynamical sys-
tem (Va, S(¢)) admits a compact absorbing set By (see Section 5 below).
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3.3. Existence of an exponential attractor

Thanks to the validity of the strict separation property in dimensions two and three, we can
prove the existence of an exponential attractor in dimensions two and three. We first recall
(see, e.g., [39]) that a compact set M C Vyp is an exponential attractor for (Vyy, S(2)) if

e M is positively invariant, that is, S(¢) M C M for every t > 0;

* M is exponentially attracting, that is, there exists @ > 0 such that
distyy (S(1)B, M) < Q([|B[lvy)e ™
for every bounded 8 C V1, where @ (-) denotes a generic increasing positive function;
* M has finite fractal dimension in Vg, where the fractal dimension is defined as

log N
dimey,, (M) = lim sup 22
eso+ —loge

and N (e) is the minimum number of e€-balls of Vy; necessary to cover M.

Observe that the exponential attractor is not unique and that, by definition, 4 C M, so that
from the existence result of an exponential attractor we deduce that the global attractor 4
is of finite fractal dimension. We thus have the following:

Theorem 3.15. Let the assumptions of Theorem 3.10 hold. Moreover, assume that
€ C3(0,1]. Then, the dynamical system (Vy, S(t)) possesses an exponential attractor M
which is bounded in H?(Q). Besides, A C M has finite fractal dimension in Vy;.

3.4. Convergence to equilibrium

In this section we discuss the convergence of any weak solution to a single equilibrium.
We have all the ingredients to state and prove the result.

We consider the phase space Vy as in the previous section. Under the assumptions of
Theorem 3.10, we define the w-limit set w(ug) of a given uy € Vi

w() = {z € H'(Q) N Vy : 31, / +oos.tu(ty) — zin H'(Q)},
where r € [%, 1). In particular, we fix r € (%, 1). We thus have the following:

Theorem 3.16. Let the assumptions of Theorem 3.10 hold and suppose, in addition,
that  is (real) analytic in (0, 1). Then, for any uy € Vy, it holds that w(uy) = {Ueo},
where Us, € Vi is a solution to

—YAUs 4+ PW) (us0) = f a.e.inQ,
Opeo =0 a.e. on 02,
Zf-vzl Uooi = 1 inQ,
with f = PAus, + PV y(ueo). Moreover, Uso = M; there exists § > 0 so that

§ <ux(x), VxeQ;
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and the (unique) weak solution u(t) is such that
uit) =S(tuy — u, nH”(Q), Vre(01).
t—>4o00

Proof. The proof of this theorem is exactly the same as the one of [27, Theorem 3.16].
Indeed, the only difference is in the energy estimate given by the application of
Lojasiewicz—Simon inequality (see [27, Section 7.3]), in which we need to substitute Vw
with w — w (basically, we do not need to apply Poincaré’s inequality, but we keep ||w — w]||
in the inequality for &). [

Theorem 3.16 is still valid without assumption (E2). Indeed, in the proof we do not
need the instantaneous strict separation property, for which that assumption is essential.
It is also worth noticing that, without assuming (E2), by the same proof of [27, The-
orem 3.13], we can show that the asymptotic strict separation property holds, that is, the
next theorem holds.

Theorem 3.17. Let the assumptions of Theorem 3.10 hold except for (E2). Then, for any
M € (0, 1), M € X, and for any initial datum ug € Vyy, there exist § > 0 and t* = t*(ug)
such that the corresponding (unique) solution u satisfies

§ <wu(x,t), forany(x,t) € Qx (t*, +00).

4. Proofs of Section 3.1

Here we collect the proofs of Theorems 3.1, 3.9, and 3.10.

4.1. Proof of Theorem 3.1

This proof is divided into three parts. We first prove (3.9), which seems to require assump-
tion (M1). The reason is related to the next lemma.

Lemma 4.1. Let (M1) hold. Then, there exists yy > 0 such that, given any matrix C =
diag(cy,...,cn), withc; > Oforanyi =1,...,N,

§T(Ca)s = yn(_ min ci)|5] =0, “.1)

=1,...N, cjet;; >

forany § € TX. In particular, for any N > 2, considering the equivalent structure given
by (2.3), we have

Remark 4.2. Notice that, since « is positive semidefinite, &;; > 0 foranyi =1,..., N.

Remark 4.3. What is needed to prove (3.9) is actually (4.1). Nevertheless, the matrix
structure given by (2.2) is the only example case we know that implies (4.1).
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Proof. Note that, for § € TX, we have { y = — ZlN_ll ;- Thus, exploiting form (2.3) of
the matrix o,

(1§ (N — 1) — Zﬁél &+ X5 )]

N-1

§7Cat = [ = Y 4] ci(ci(zv—l)—zﬁé, &+ e)

i=1

| CN( Z/—l 1) Z/—l
[ aaN&,
N-1 :
a3 | AL
i=1
| —cnN 21_1

—Nsch |2+SNcN\Z;,)

i=1

ZEN(_ min el zyn(_ min coen)lE]

1,...,N, ¢;>0 1,...,N,ciotj; >
with yy = 2. Thus, (4.1) holds. "

Continuous dependence estimate. We can now prove (3.9). Let us consider two solu-
tions u' and u? and take the difference between the equations they solve. Taking
u = u' —u? as a test function in the resulting equation and recalling, by mass con-
servation, that u = 0, we deduce (note that aPlIJ}u(uk) = a\ll,lu(uk) for k = 1, 2, since

(LN v @) = (& TN v @F)et =0, where & = (1,..., 1)) that

1d N
Sl + v (Vw eV + ) (e (0 @)) =9 @), ui) = (@Au,w). (42)
i,j=1

Notice that w; — w, does not appear in (4.2), since we have

(e((wg —wz) — (wy —wz)),u) = (¢((w; — wz) — (W] — wz)),u—u)

= (¢(w; —wz),u—u) = (¢(w; —wz),u),
recalling in the last equality that U = 0. Lemma 4.1 then entails
y(Vu,aVu) > 0.
Then, by the Cauchy—Schwarz inequality,

(@Au,u) < Cu|.
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In conclusion, we have

N N 1
> @) =) = 3 [ [ ayul + - uduuidsax
Q=1 QJo

ij=1
= / uTocCudx,
Q
where
C = diag(cy,...,cN)

1 1
= diag(/o v (sul + (1 —s)u?)ds, ... ,/0 v (suy + (1— s)u%,)ds),

so that ¢; > 0, for any i = 1,..., N, by assumption (E0). Observing now that u(x, t)
€ T for almost any (x,7) € Q x (0, T) and (by symmetry) u” «Cu = u” Cau, thanks
to Lemma 4.1, for almost any (x,?) € Q x (0, T), we have

u’«Cu >0,
so that
N
Z (o (W' (u)) — ¥ (u3)), ui) = /S;uTocCudx >0 ae.in(0,7).
i,j=1

Therefore, from (4.2), we infer

1d
——Ju()|* < Cllu@®)|?>, foraa.te (0,T),
2dt

and the Gronwall lemma gives (3.9).

Existence of a solution. We consider approximation (2.5). In particular, for each ¢ > 0
sufficiently small, we set

¢.(y) =Vl () = {(Y,0)}i=1...n. VyeRV.

We then fix 0 < ¢ < gy and first define the Galerkin approximation of the problem.
We consider the complete system of N -dimensional eigenfunctions {e;}; of the problem
—Ae; = A;e;, with homogeneous Neumann boundary conditions d,e; = 0 on 92 (A; is
the eigenvalue corresponding to e;), subject to the constraints €; = 0 and Z,I'V=1 (e;); =0.
The family {e; }; can be tuned to form an orthogonal basis in V ¢, orthonormal in H ¢ (see
also [27, Appendix 8.1]). We then set m := U, and introduce the finite-dimensional spaces

V, :=span{e;,i =1,....n}, Vn=>1,
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and look for a function u, ¢ € V, of the form

n
U o(t) = ) Qit)e; € Vi,

i=1

and for w, , € 170 such that

wn,s(t) _wn,s(t) = Z(gi([)ei € Vy,

i=1
solving the equations
@rUne. V) + (@(Wne — Wne), V) = 0, 4.3)
(Wne = Wne. V) = y(Viane, VV) + (P(@.(un e + m) — A(u, ¢ + m))
—P@ (e +m)— A, e +m)).v),  (44)
Wn,e = PP (un,c +m) — Aup e +m)), (4.5)
up,6(0) = w0, (4.6)

for any v € V,, and for any ¢ € [0, T] where uy o is the L?(2)-projection on V,, of the
vectorug —m € Hy.

Let us first notice that the quantity w, . must be specified, since any test function
v € V,, has zero integral mean. Moreover, by construction,

ﬁn,s =0, Pun,s = Uy, Pwn,s = Wp,e.

In the rest of the paper, we will denote by C a generic positive constant independent of 7.
Any other dependence is explicitly pointed out if necessary.

Recalling that ¥/ is at least C!(R), we can locally solve the above Cauchy prob-
lem given by (4.3)-(4.4), (4.6) in the unknowns {&;}; and find a unique maximal solu-
tion @™ e C([0, tn.e]; R™), from which we also obtain by comparison a unique § ") ¢
c (o, tne]; R™). Then, by substitution in (4.5), we immediately obtain the complete
quantity wy . It is now standard to test (4.3) by v = w, ¢ — Wy € V, and obtain the

energy identity

d _ _
Egn,e + ((Wy,e — Wy e), Wye — Wy ) =0, 4.7

where
Y
Ene = E||Vu,,,€||2 +/ W, (u, . +m)dx.
Q

Let us observe that, since v} is Lipschitz (see (2.5)), and recalling that ¥, (ug) < ¥(uo),
we obtain

/WNW@HWM=/NMMMM—%@mW+/Wmmﬂ
Q Q Q

sawmwmmw+/wmwx 48)
Q
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Therefore, since clearly ||u, o+m —uy|| — 0 as n — oo, for any & > 0, there exists an
n = 7(e) such that

/ V. (u,:(0) + m)dx <C, Vn>n. 4.9)
Q

An application of Gronwall’s lemma then gives, thanks to (4.9) and || Vu, o] < ||Vuo|],

8}1,8(t) + /(;t(a(wn,e(s) _En,e(s))’ wn,s(s) _wn,s(s))ds = C» Vn > 7.

Now, recalling property (vi) of V., it is immediate to see that for any ¢ < &g,

/ Wy Uy o (1) +m)dx = —K
Q
for some K > 0, so that we can conclude, for any ¢ < &,

[unelloo, a1 @) + 1We(@netm) || Looo oLt (@) T 1 Wne — WnellL20,7:2(0)) < C,

Vn > n(e),

where we also exploited (2.1). Clearly, C does not depend on €. From this we can easily
deduce that local maximal time #, ¢ is +00. Moreover, from these estimates we can clearly
derive, by comparison, that

10:uncllL20.m02(@) < C. VYn>n.
These estimates, together with the fact that v/ is Lipschitz, give from (4.5) that
|wnellLoo,1) < Ce,  VYn >,

Here C, could depend on ¢. The obtained bounds are enough to pass to the limit as n — co
by standard compactness arguments. However, since we also need to prove the existence
of strong solutions, we now assume Uy € H?(R2) such that d,uy = 0 almost everywhere
on 052, together with ¢ (ug,;) € L?(R), for any i = 1,..., N, and find a higher-order
estimate, before passing to the limit. In particular, we test (4.3) with v = 0;(Wp s — Wy ¢)
€ V,,. Recalling that P is selfadjoint and m = ( by construction, we obtain

1d _ _
EE(“(wn,e - wn,a)s Wpe — wn,s) + (atun,ea atwn,a) =0. (4.10)

Using (4.4), since d,u, . € V,, we find

N
(8tun,87 8twn,s) = Z/ ¢(/9(un,£,i + m)|8tun,s|2dx
i=1"9

— (0rup 6, ADsuy ¢) + V”vatun,snz-
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Since ¢, > 0 by property (iv) of ¥, we have only to treat the term related to the matrix A.
This is readily done by comparison with (4.3): indeed, since v = d,u, . € V,, we get, by
the Cauchy—Schwarz, Young, and Poincaré inequalities,

|(atun,s» 8tun,e)| = C”atun,zs”z =< C|(a(wn,s _wn,a)7 atun,5)|

14 _
= Euvat“n,snz + Cllwn,e — w,,,g||2.

Putting everything together in (4.10) and recalling (2.1), we end up with

1d _ o y
zE(a(wn,e —Wpe), Wpe — Wpe) + Envat“n,s”z

S Cla(Wpe —Wyye), Wy — Whye). (4.11)

Observe now that, from (4.4),

”(“(wn,e(o) —Wy,e(0)), wy £(0) — wn,e(o))”

N
= C(I1Aun 0l + AU 0l% + Y g (atn,0-+m)]2).

i=1
On the other hand, by the properties of the eigenfunctions, we have
1A 01 + AU o[ < C(Im|* + | Auo|* + [[uo]l?) = ClluollFe g

Thus, recalling properties (ii)—(iii) of ., we get

N N N
D e unoi+m)|* <2 llge(ttn0i+m) — o> +2 > llpe (o)
i=1

i=1 i=1
N
lwn0+m —uol* + 2> ¢ (o)l

i=1

| 0o

=

N

&

Therefore, since ||u, o+m —ug| — 0 as n — oo, and by the stronger assumptions on the
initial data, we deduce that for any ¢ < g¢, there exists 7 = n(¢) > 0 such that

N N
D lpeunoi+m)|> < C+2  llpwo)|>, Vn >0
i=1 i=1

We can thus conclude that, for any n > ng(¢) = max{n, %}, owing to Gronwall’s lemma
and (2.1), it holds that

lwne —WnellLoo,ra2@) + 10l @) < C(T), Vn > no,

where C(T") does not depend on ¢. Furthermore, by comparison (choosing v = d,uy, .
in (4.3)) it also holds that

||8,un,8||Loo(0,T;Lz(Q)) < C(T), Vn > nyg.
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We can now pass to the limit in 7 for both of the situations (according to the regularity of
the initial data), to deduce, by standard compactness arguments, the following statement:
for any ¢ < &9, there exists a pair (u,, w,) defined on [0, +00), with w.(¢) € V ¢ for almost
any ¢ > 0, such that (in the case of less regularity on ug) for each 7 > 0,

u; € L0, T; H(Q)),
du, € L2(0, T; L2(Q)),
we € L2(0, T;L3()).

and
el mimt @)) + 1010|2200, 7:02(0)) + [We — WellL2(0,7502(02)) < C(T).  (4.12)
for some C(7T) > 0 independent of &, whereas there exists C¢ > 0 such that
[WellLx(.1) < Ce.

If the stronger assumptions hold (see Theorem 3.1 part (2)), then there exists a constant
C > 0, depending on the initial datum and on 7', but independent of ¢, such that

we —Well oo, 712 @))NL20,7:01 @) T 1908l L2(0,7:01 (@)
+ ||8tu£||Lw(0,T;Lz(m) <C, 4.13)

where the L2(0, T; H'(R)) control on the chemical potential differences is obtained by
comparison in (4.14) below. It is then standard to show that (u,, w,) satisfies

du + x(wg, —wg) =0, ae. inQx(0,7), 4.14)
(we, ) = y(Vue, Vi) + (P(—Aue + ¢, (up)), n),
vy e H(Q), ae.in (0, T), (4.15)

u.(0) =uy, a.e.in.

Notice that, to be precise, we find that u,  converges in suitable norms to a function
u.(t) € Vo (for almost any ¢ > 0) as n — oo. We then define u, := U, + m to obtain the
results above. Then, by elliptic regularity, since ¢, is Lipschitz, from (4.15) we deduce its
strong version—namely, u, € L2(0, 7; H?(R)) and

w, = —yAu, + P(—Au; + ¢,.(ug)), ae. inQ x(0,7), (4.16)
dpu, = 0, a.e.in dQ2 x (0, 7). 4.17)

By standard computations (see also [7] for similar results), we then have

* Conservation of mass:
u.(t) =4y, Vt=>0.
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e Conservation of total mass:
N
Zua,i(x,t) =1, fora.a. xe€ Qandforallz €[0,T]. (4.18)
i=1
* Conservation of chemical potential differences

N
Z we; =0, foraa xeQandaa.re(0,7).

i=1

* From (4.7)—(4.8), by standard arguments, the following energy inequality holds:

t
& (1) + / ((we —we), we —w,) < &(0),
0
for any ¢ € [0, T'], where

& = LiIvuel? + / W, (u,)dx.
Q

At this point, we can argue as in the proof of [27, Theorem 3.1] (which is based on [28]),
in order to control w,(¢), which then allows us to control [|w,(?)|. Following the proof of
[28, Lemma 3.3], we define

Weo := Wy — Ag,

where, on account of the boundary conditions,

Ae i=w, = P(—Au, + ¢, (u;)).
Taking advantage of (4.15), we have,

(We,0 + A, ) = y(Vue, Vi) + (P(—Au; + ¢, (ue)). 1),
Ve HY(Q), ae.in (0,7). (4.19)

Exploiting the convexity of W}, for any k € G (G being the Gibbs simplex), because
k —u, € T X almost everywhere in 2 x (0, T'), we find

C > f Ul (k)dx > / Ul(up)dx + / W, L (ug) - (k—ug)dx
Q Q Q
= / Ul (up)dx + / Po, (u,) - (k —ug)dx, (4.20)
Q Q
where we used (see property (i) of ¥¢)

/ W, (K)dx 5/ Ul(k)dx < max |¥!(s)| = C.
Q Q s€l0,1]
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Here and in what follows, C > 0 stands for a generic constant independent of . Recalling
that \Ilgl,u(ug) = {¢e(Us,i)}i=1,..,n and choosing § =k —u, in (4.19), on account of (4.20),
we deduce that

C > / ! (k)dx
Q
> /Q Ul(up)dx + (P(Aug), k — up)dx
+ 71 Vus]? + (e0. Kk —ue) + (Ae k —up),
for almost all # € (0, T'). On the other hand, we have (k € G, and thus, 0 <k < 1)
N , N )
/QZki dx < /Q(Zk,-) dx = |24

i=1 i=1

Then, using Cauchy—Schwarz’s and Young’s inequalities and recalling property (vi) of ¥,
we obtain

Aok — )+ 7IVUel? = K < (e k —ue) + ¥ Vus | + /Q ! (u)dx
< C — (P(Aug), k —ug) — (wg 0,k —uy)
< O+ ue] + usl? + weoll(1+ uel)) < C(1L+ Jwsol).  @21)

where in the last estimate we have exploited (4.12). By the conservation of mass and
Remark 3.3, we also deduce that foralli = 1,..., N and allt € [0, T],

0<dp<ui(t) <1—(N—-1)8 <1—25p.
Therefore, for any fixed k,/ = 1,..., N, we choose
k=1, + dosign(Aex —Ae )k — &) € G

in (4.21), where
¢ = (0,...,_1ﬂ,...,0).
J
Thus, from (4.21) we get that

|(Ae,k - As,l)(t)| =<

1 . 4.22
80|Q|d( + ”we,O”) ( )

Integrating |(Ae x — Aes)(2)|? over (0, T) and using the identity

.....
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we find, owing to (4.12),
[ aorasc
This, using again (4.12), gives ’
lwell20,7512(2)) = C- (4.23)
As a consequence, we deduce from (4.22) that
Ae(O] = C(1+ [lwe(t) =B ()]|),

for almost any ¢ € (0, T'). Therefore, in the case of a more regular initial datum (see (4.13)),
we have

lwellLooo,7512(2)) + lwellL20,75m1(2)) = C- (4.24)
We are now left with some estimates related to ¢.(us;). We follow again the proof of
[27, Theorem 3.1]. Since gbé is bounded for a fixed € € (0, &9), we have that
Ve (uei) = ¢¢/-:(us,i)vus,i € LZ(Q)y
for almost any ¢ € (0, T'). Thus, we can test (4.15) with n = ¢, (u.(?)) to get

N

N
D Weis pe(ue)) = (¥ (Vitesi, $ltei) Viie,))

i=1 i=1
+ (P(—Aug + ¢ (u;)), . (us)). (4.25)

Observe that
N 1 N
(P (0). 80 = 3 [ @ulie) = 37 D pelue ) luesd
k=1"% I=1
and

N 1 N
D (@eltteie) = = > beuen)bete )
=1

k=1

1 N
N Z (¢s(us,k) - ¢8(u8,l))¢8(u8,k)

k,l=1

1 & 1 g
N Z(¢6(us,k) - ¢a(ue,l))¢6(us,k) + N Z(¢£(”5,k) - ¢8(ua,l))¢€(us,k)

k<l k>1

N
% Z(¢8(u8,k) - ¢s(”s,1))(¢s(us,k) - ¢s(us,l))

k<l

1 N
~ 2Bl k) = Ge(us))*.

k<l
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Thanks to (4.18), we have

so that, ¢ being monotone, we infer

1 & 1
5 2 Beluek) = De(ue))® = - (Be(ttem) = Petem))’

k<l
(9t = 0e())

v

> %z_nll,ax, ( ¢s(usz) ( : )2>
= %l_ ’ax’ ¢s(“st)

owing to the inequality (a — b)? > %az — b2, Notice that C is independent of & provided
that we choose ¢ sufficiently small. Indeed, since we have the pointwise convergence
$s(%;) = P(+) as e > 0T, there exists C > 0, independent of &, such that |¢s(+)| < C
for any ¢ € (0, &9), with g9 > 0 sufficiently small. Then, we get

N N
1
2 2
D (e oCue) < 3 e ligetaren) | < Clwell® + gz | max g,

i=1 = T TRere ey

and (see (4.12))

1
(PAue, ¢, (0))] = Cllucl + g | max geue)d
1
<C+ W maXN ¢s(ug,i)2dx.

Therefore, on account of the above inequalities and recalling that ¢, > 0, we deduce
from (4.25) that

4N_/ maX ¢8(u81)2 x=C(1+ ”ws” ), (4.26)

.....

which yields (see (4.23))

o)l L200,7:12(0)) = C(T). (4.27)

From this result, together with (4.12) and (4.23), by elliptic regularity, we infer from
(4.16)—(4.17) that

lucllz20,7m2(0)) < C(T).

Moreover, from (4.26), assuming a more regular initial datum, we infer (see (4.24))

||¢g(u8) ||L°°(0,T;L2(Q)) < C(T),
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as well as
gl Lo 0, 7:m2(2)) = C(T).
We have obtained all the bounds we need to pass to the limit as & — 0. Being this step

standard (see, e.g., [28]), we only present a sketch of the argument. By compactness we
immediately deduce that, up to subsequences,

u, —u weakly* in L>°(0, T; H (Q)),

u —u weakly in L2(0, T; H*(Q)),
d;u, — d;u  weakly in L2(0, T; L*(R)),

u —u strongly in L2(0, T; L*(R)),

u, —u ae.in Q2 x(0,7),

w, — w  weakly in L2(0, T; L*(Q)).

Then, arguing as in [28, Section 6] and exploiting (4.27), we infer that

Ge(Ugr) = d(ug) ae.inQ x(0,7),
pe(Ue ) = ¢(ux) weakly in L*(0, T; L*(R)),

forany k = 1,..., N. Thus, the pair (u, w) satisfies (3.2)—(3.7). Energy inequality (3.12)
is then retrieved by standard lower semicontinuity arguments. If the initial datum is more
regular, then, up to subsequences, we also have the convergences

u —u weakly* in L>(0, T; H3(Q)),
u, —u weakly in L2(0, T; H3(Q)),

d;uy — 0;u weakly* in L>°(0, T; L?(R) and weakly in L>(0, T; H' (Q)),
we — W weakly* in L>°(0, T; L?(R)) and weakly in L2(0, T; H (Q)),

Ge(Uer) = d(ug) weakly*in L°(0,T; L*(Q)), Vk=1,...,N,

which ensure the regularity of Theorem 3.1 part (2). Energy identity (3.12) can be recov-
ered, since ¢ > ||Vu(t)||? is absolutely continuous in [0, 7] and because of ¥!(u) €
H'(0,T; L'(RQ)) entailing that the function ¢ fQ W(u(t))dx is absolutely continu-
ous in [0, T] as well. Indeed, [|3, W' (w)]| 11 (q) < ¥, (W||[|3,ul| < C, from the regularity
above. This concludes the proof of the existence part of Theorem 3.1.

Strict separation property of strong solutions. We recall that (M1) is in force. Let us now

introduce the following notation: we define 7, withs =1,..., N —1 and 0 € N, as
any possible subset of s (nonrepeated) indices from 1,..., N. Note that ¢ indicates the
choice of the subset,ando =1, ..., (1;’ ) Incase s = N — 1, we define the only index not

belonging to LY~ by j,.
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Step 1: Case N — 1. Let us then start from s = N — 1, having fixed 0. We consider

thevectoreffvf1 as,fori =1,..., N,

if i PN-—1
i = {1 lfl ) :/;;V—l’
0 ifigPy .

Then, we take n = nel =1, for n € H'(Q), in (3.4). This gives
N
G )+ (5 e -md) -
iepN-! iepN—1i=1

for almost any ¢ € [0, T']. We now fix § > 0 (to be chosen later on) and consider ufrv 8_1 =

(Xicpy—1ui —8)”. Setting n = —uévs_l and integrating by parts, we find
ld, ~n_1,2 al / N-1
EE”MWS - - Z Z o ' (ujuy s dx
iepy-1j=1"%

N
-y Z Z/aijVuj-Vufbeldx
Q

iepf-1j=1
N N
= Z Z/aijAjk”k”fXa_ldx_ Z Z[Olijw_jué\jg_ldx, (4.28)
iEﬂjévilj’k=1 Q@ iej)é\’*lj:] Q

where we used the property that, given any vector ¢ € RV, aP¢ = a£. Now notice that,
beingoj; = A >O0foranyi = 1,..., N, we have

N
- Z Z/Qoz,-jVuj-Vufxgldx

iepN-1j=1
N
= — Z /(a,-iVui -Vufxs_l)dx— Z Z / a;iVu; -Vufxa_ldx
T iepN 1 j#ij=1"

N
=/Q(AVqu8_1-Vu(1;]’gl)dx— Z ( Z [ro,-jVuj-Vug]’gldx)

iePN-1 j#i.j=1

Since o;; = B < 0 forany i # j (clearly we have A 4+ (N — 1) B = 0), we see that the
second summand becomes

N
- Z ( Z /ozijVuj-Vqu&_ldx>
i1 =17

=—-B Z Z /Vuj-Vquledx

Q
iePN 1 j#i,jepd !
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—B Z Z /;ZVuj-Vugs_ldx

ieP 1 jgpd

=—B(N -2) Z /;Zvuj .Vu(JT\fs—ldx — B(N — 1)/;2Vuja . Vué‘{a—ldx

jepN-1

= B(N — 2)/ Vullst vulNstdx — B(N — 1)/ Vuj, - VulNstdx.
Notice also that, recalling u;, =1 — Zjej;é\/—l uj and that A = —B(N — 1), it holds
—B(N — 1)[ Vu;, -Vuévgldx = —B(N — l)f Vuévg_l . Vuévs_ldx
= A/ Vufrvs_l . Vuévg_ldx,
Q , ,
where we used the fact that, when ué\f 8_1 < §, it holds that

Vuj, = -V Z uj = — ( Z uj—8>

jepd—1 jepN-1
SS( T ) () ()
jery! jePd! jepd-1

Therefore, in the end we get

N
— Z Z/Qa,]Vu] .Vué\js—ldx = (2A + B(N —2))/;2 |qu}Y8_1|2dx > 07

iepN-1j=1

recalling that 24 + B(N —2) = A— B > 0.
Concerning the terms related to ¥'(u;), we can write, on account of (2.2) (which
entails, in particular, Ziefé\/—l a;j = —aj,j,forany j =1,...,N)

N
- Z/Qai,w’(u,-)uf}fg‘dx

jepp1j=1
N-1 N-1
= _ Z Z /a,-jl//’(uj)uw dx — Z Z /aijW’(uj)uo,b» dx
et jeph-17 R iepd 1 jgpl—1 Y
N-1 N-1
= Z (ngj/ v (uj)ug s dx+aj0j0/ U (uj,)ug s dx,
. En—_1(2) En_1(t)

jePh-1

where

En_i(t) = {x c@: Y winn) < 5}.

jepN-1
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Observe that, in Ey_; (), it holds

1= > wiO=u,)=1- Y w(t)>1-34.

L iePs !

Thus, for § < %, we deduce

)l = maxd [y ()] vl < . @29)

since ¥’ is monotonically increasing. Moreover, in Ex_;(?) it also holds, being «j, ; =
B = —|B|for j € PN~ (recall that B < 0),
—|BIY ()l s (1) = =Bl Ouls' ()., VjePN

o
since we have 0 < u;(t) < § foranyi € !Pév_l and
—y () = =y’ (), Vjepy "
Concerning the other terms in (4.28), we have, clearly, being 0 <u; <1fork =1,...,N,
that
N
— Z Z / ot,-jAjkukqu&_ldx < C/ ufxs_ldx,
iepPN-1jk=1 @ &
and observing that (see (3.11)) w € L°°(0, T'), we have, similarly,
N
- Z Z[ Olijwjug{(;ldx < C(T)/ ufxbfldx.
iepN-1j=1 Q@ &

Coming back to (4.28) and collecting all these results we end up with

sar s I+ (4~ B)fﬂ Va5 2dx — (N = DIBIy(6) /Q W5 dx

<o) [ ultax e, [ vyt
Q En_1(0)
< C(T)/ ulVsldx,
q o
so that, assuming § sufficiently small to satisfy (see assumption (E1))
—(N = DIBJy/(8) - C(T) = 0,

we get, for almost any ¢ € [0, T,

1d _
EE”ué\]’S > <o.
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Hence, having assumed the initial datum strictly separated, that is, there exists 0 < §o < %
such that
uio>38, Yi=1,...,N, (4.30)

we can choose 8 < 8 in such a way that u2Y 5! (0) = 0 and Gronwall’s lemma yields
5 @) =0, Vielo.T).

Notice now that the choice of the set J’év ~1is completely arbitrary, thus we infer that there

exists §—1 such that §o > y—1 > 0 and, for any possible ?(fv_‘, witho =1,..., N,
Z ui(t) >8>0 inQ, Vrel0,T], Ve (0,8n_1). (4.31)
iepN-1

Remark 4.4. We point out that in the case N = 2, the proof is finished. This means that
assumption (E2) is not necessary in this case, which is consistent with [26, Theorem 3.5].

Step 2: Case N —2. If N = 2, we are done. Otherwise, we need to consider the

sets 3);\/—2’ oco=1,..., %_1) Let us fix 0 and 0 < § < §y_1 (to be chosen later on).
Then, we set B
ufy?=( 2 w25
iepN-2
and define, fori = 1, ..., N, the vector eév_z as
o DON-2
(ef,v_z),- _ 1 lfl GJ(;V ,
0 ifi g PN2

We make a crucial observation: in the set

En—s(t) = {x €Q: Z u;i(x,t) < 252},

iepN—2
we infer from (4.31) that
ui(t) >8—28% VjgpPN2 (4.32)

Recall that § < % and 0 < 282 < 8 < 8y_; < 1. Then, we take in (3.4), as in Step 1, the
test function n = nely =2 for n € H'(R), and we get

(8’( > ”i)”’)+( > iaij(w/—wj),n)=0.

iepd 2 iepH2j=1
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Choosing in the equation above n = —ufyv 8_2 and integrating by parts, we find
1d al
N—22 N—2
S = 5 3 [ aywulas
iepN-2j=1
N
N—-2
-y Z Z/ o Vuj - Vugs=dx
iepN-2j=1 Q@
N N
N—2 = N-2
= - Z Z / o AjkUukUy s dx — Z Z/ Wity g dx. (4.33)
iePN-2j k=1 @ iepN-2j=1 &
Recalling once more that o;; = A > 0 forany i = 1,..., N, and arguing exactly as in

Step 1, we find

N
- Z Z/QaijVuj'VufZg_de

iepN-2j=1
N
= - Z /(a,-,-Vu,--Vué\fgz)dx— Z Z /aijVuj-Vué\fé_zdx
iepl-279 iepl-2j#ij=1"%

N
=/Q(AVu£52-Vué\f8_2)dx— Z ( Z /Qa,-jVuj-Vué\fs_zdx).

iepN-2 j#ij=1
Since ojj = B < 0 foranyi # j, the second summand becomes

_ Z ( i /QaijVuj.Vué\;g—de)

iePN=2 j#ij=1

=-B Z Z /QVuj-Vufxs_zdx—B Z Z /QVuj-Vufxs_zdx

iePN-2 j£i jepN 2 iePN=2 jg PN 2
=—B(N -3) Z / Vu; -Vufxg_zdx — B(N =2) Z / Vu; - Vufxg_zdx
jeph-2"9 jepN=27%

= B(N_3)/ Vuli? vuli?dx—B(N -2) ) Vuj - Vuli?dx.

JgP
Recall now that 3 yonv—2u; =1 =3 pn-2u; and A = —B(N — 1). Then, we have
—B(N —2) Z [ Vu; -Vué\;;_zdx = —B(N - 2)/ Vufxs_2 . Vufxs_zdx
jepd—27 8 ¢

=(A+ B)/Q Vuls? vulPdx.
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This entails
N

-3 Z/ @i Vuj - Vul 2dx = (A+ B(N —3) + A + B)/ |VulNs22dx > 0,
iepN-2j=1

since A+ B(N-3)+A+B=A—-B>0.
The terms ¥/ (u;) can be handled as above. Indeed, observing that

Y aj=— Y a;=-2B=0. Vjep}
ieplN2 1¢pN =2
we obtain
N
-2
- 33 v
iepy-2j=1"%
N-2 N=2
=_ Z Z /oz,-jl//(uj)uo’g dx — Z Z /a,-,-gﬁ’(uj)ug’s dx
icpl2jeph-2"% iepl 2 jgpp 2"t

= Z Z ozlj/E Ip/(uj)ufxs_zdx

o (2
1¢PN-2 jepN—2 N—2()

- B Z Z /E w’(uj)uév,s_zdx.

iepN-2 jgpN—2 Y EN—2(0)
Thanks to (4.32), we know that in Ex_, (), for § sufficiently small, we have
W () < —y'(6 —28%), Vj ¢ PN,

since ¥’ is monotonically increasing. This entails that

B> ¥ /; v ()l 2dx

(7
iepN-2 jgpN-2 EN-2(1)

<-Bl ) Z/ Y/ (8 —26%)ul s 2dx
E

(2
icPN-2 jgpN-2 N—2()

< —2|B|(N — 2)/ ¥/ (8 —28%)ul2dx.
o ,

Moreover, in En_5(t) it also holds that, since 0 > B = —|B| and uévgz >0,
oY el =—Bl Y DY v wpulito
1¢PY 2 jepl—2 1¢PY 2 jepl—2

> —2(N —2)|B|y' (28%)ul52 ).
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since 0 < u;(t) <282 foranyi € J’évfz, and thus
—y'(uj) = —y'(26%), VjePN2
Concerning the other terms in (4.28), we have (recall that 0 < uy < 1 fork =1,...,N)
N
— Z Z / OlijAijkaXB_zdx < C/ uff\fs_zdx,
iepd-2jk=1"% @
and, arguing similarly (see (3.11)), we find
N
— Z Z/ ai_/wiuﬁxgza’x < C(T)/ ufxa_zdx.
ieplN—2j=1 @ @

Combining (4.33) with the obtained estimates, we end up with

1d N _ _
5d—||u552||2+y(A—B)/ |Vuls! 2dx—2|B|(N—2)1//’(282)/ ullstdx
! Q Q
< C(T)/ ul1dx —2|B|(N - 2) v’ (8 —28Hulsdx,
Q EN_2(f) ’
that is,
1d N—-22 N—-12
S es I+ y(A=B) | [Vugg [Fdx
t Q

+ 2|B|(N —2)(—¢'(26%) + ¢/ (8 — 26%)) — C(T)] /Q ully'dx <0.

Therefore, on account of assumption (E2), for0 < § < dy_1 <y < % and ¢ sufficiently
small, we can ensure that

2|B|(N —2)(—=¢/(8%) + ¥/(§ — §%)) — C(T) = 0.
Recalling that A — B > 0, we deduce, for almost any ¢ € [0, T'],

1d _
EEWZSZHZ <0.

Then, thanks to (4.30) and to the choice § < §y_1 (entailing also 262 < §y_1), we get
uév 3_2(0) = 0. Therefore, by Gronwall’s lemma, we get

2@l =0, Vielo.T].

Again the choice of the set ﬂ’év ~2 is completely arbitrary, meaning that there exists a
0 < 6y—2 < 8n—1 such that, for any possible {Pcﬁv_z, witho =1,..., w,

> ui(t)=8>0 inQ, Vie[0.T]. VO <8<y a. (4.34)

iepN-2
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Step 3: Iterative procedure and conclusion. If N = 3, we are done. Otherwise, we

consider the sets :7);\’73, o=1,..., (lea)' Let us fix o and § < §ny_» (to be chosen later
on), introduce as before 3
— 2
uf,\jfz(z u,-—28),
jeplN-3
and define the vector e =3 as
£ DN-3
(eN_3)l~= 1 ifi € Py,
7 0 ifi g PN73,

fori =1,..., N. The essential observation is again the following: in the set

En_s(@) = {x €EQ: Z ui(x,t) < 282}
ieplN=3
from (4.34), since 0 < 26%2 < § < 8y_p < %, we deduce that
uj(t) >8—28% VjgpPN3
This implies that in Ey_3(t), for § > 0 sufficiently small, we have

[/ (uj (1) < —y'(8 —28%), V)¢ PN73,

and
¥ (u; (1)) = —y'(26%), Vie PN

We can now argue as in Step 2 and conclude that there exists a §y—3 € (0, 8y—2] such
that, for any possible V=3, witho = 1,..., (les)’

> ui()=8>0 inQ, Vie[0.T], V8 e (0.8y3]

jeplN-3

Applying these arguments iteratively, we reach a generic step m and we find §y—,, €
(0, 8N —m-1] such that, for any PN~ witho = 1,..., (Njfm), we have

Y wi()=8>0 inQ, Yie[0.T]. V5e (0.6yml-

jiepN-m

Therefore, we can continue the procedure until N — m = 1, which entails in the end
that there exists a0 < § < §p < % such that, foranyi = 1,..., N,

u;(t)>86>0 inQ, Vrtel0,T],

that is, the strict separation property holds. This concludes the proof of Theorem 3.1.
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4.2. Proof of Theorem 3.9
Let us take = u(¢) — u(?) in equation (3.5). This gives

(Po(u),u—1u) + y||Vu||®> = (w —w,u —1u) + (Au,u — ). (4.35)
Moreover, by the convexity of W! (recall thatu —u € T'X), we have

(Ph(w).u—1) = (Bu).u—1) > /Q W (u)dx — /Q v @,

but, since u = up, it holds that
v @) < C,

where C > 0 depends on uy. Applying standard inequalities, from (4.35) we infer that
/ U (w)dx + y|[Vul’ < € + C||Vulllw — @] + (Au, u) — (&, Au),
Q

and using (2.1), we get

1 1 4 2

U (u)dx — =(Au,u) + = || Vu||
Q 2 4
1
<Cl(w-w),w—w)+ E(Au, u) — (u, Au)
< C(1 + (@(w —w), w —w)) + C|u|?

< C(1 + (@w —B). w—)) + %[ W(u)dx,
Q

where in the last step we applied property (vi) of the potential ¥/, (recall that these estim-
ates must be obtained in an approximating scheme, so for ¢ sufficiently small, see above).
Therefore, we obtain

1
£||Vu||2 + 5/ Y(u)dx < C(1 + (@(w —w), w — W)). (4.36)
Q
Combining (3.8) with (4.36) (multiplied by the sufficiently small € > 0), we end up with

d € d €

— — < — — 1— — — <

dtg(t) + 28(t) < dté-?(l) + 28(1) +(1-€eC)a(w—-—w),w—w) <C,
and the result follows from Gronwall’s lemma.

4.3. Proof of Theorem 3.10

Proof. Instantaneous regularization of weak solutions. Thanks to part (1) of Theorem 3.1,
for any 7 > 0, we can find T < t such that u(7) € H?>(Q) and d,u(7) = 0 on 9 such
that the solution starting from 7 is more regular. Having assumed (M1), this solution coin-
cides with the weak one (generated from ug) and it can be easily extended to [T, +00),
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by uniqueness, whence its instantaneous regularization and the validity of properties
(3.16)—(3.19). Concerning the global bounds, for the sake of brevity, here we simply show
the formal estimates. A rigorous argument can be formulated within an approximation
scheme like the previous one. First, we observe that (3.8) entails

ullzoo,00mt @) + 1w = Wllr2¢ 415020 <C. Vi=>0. (4.37)

Notice that the constant C > 0 only depends on the initial energy &(0). Then, arguing as
in (4.11), we obtain

1d _ .y 2 _ _
Ea(a(w —w),w—w)+ §||V3tu|| <C(a(w—w), w—w).

Due to (4.37), we can apply the uniform Gronwall’s lemma (see, e.g., [44] by choosing,
e.g., 7 = 3) to deduce, for any given r > 0,

[w—W|Loor,002)) T YIVOullL2¢ 1022 <€, Vi=1
From now on, we can argue as in the proof of Theorem 3.1 to get
[wlreoonz@y =C. Vi=r,

where C > 0, now and in the rest of the paper, stands for a generic constant depending
on Q, &, ¥, Uy, and & (0). This allows us to deduce

||¢(“)||Loo(r,oo;[,2(g)) + el poo(r,00m2@)) <C, V=T (4.38)
Also, by comparison in (3.7), we find
lwl2irrm@y <€ Vi=r
The proof is finished. ]
Instantaneous strict separation. We are in the case |[ug||Leo(@) < 1, that is, ug is not
necessarily strictly separated like in Section 4.1. Therefore, we need to adapt the proof
we performed in Section 4.1. In order to do that, we perform a De Giorgi-type iterative

scheme at each step.
The basic tool is the next lemma.

Lemma 4.5. Let {yn}nenuioy C R satisfy the recursive inequalities
Ynt1 < CH"y e, ¥n >0,
for some C > 0,b > 1,and e > 0. If
Yo <6:=CTEbE,

then
yn < 0b7F, Vn >0,

and consequently, y, — 0 for n — oo.
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Lemma 4.5 can be found, for example, in [19, Ch. I, Lemma 4.1] (see also [36, Ch.2,
Lemma 5.6]) and can be easily proven by induction (see, e.g., [9, Lemma 3.8]). Since the
iterative argument in which we sum up some components of u (in decreasing number at
each step) is exactly the same as in the case treated in Section 4.1, we directly assume
to be at Step m > 1 and show the differences with respect to estimate (4.28) (Step 1 is
even easier, as we have seen in Section 4.1 thanks to relation (4.29), thus it can be easily
adapted following the analysis of the other steps). We assume to know, for an arbitrary

T > 0, that there exists 0 < §y—m+1 < % such that, for any o,

Y owizé inQx |3+ I 400). V8= nomin, (439)
iepN—mtl

with the same notation as in Section 4.1. Notice that the upper bound §y 41 < % is set,

since clearly in the end the necessary condition for the separation will be that § < % We
aim at showing that (4.39) also holds at Step m. We now consider the set of indices P~

for a certain 0. Then, fori = 1,..., N, we set
Nem 1 ifi e PN-™,
(eg ™) = e o Nem
0 ifi Py .

We can now perform De Giorgi’s scheme. Let us set § sufficiently small such that
8 < 8N-—m+1 and fix T such that

-~ 1t mt 1t (Mm+Dr

2r+§+ﬁ:2+T, (4.40)
that is, T = ﬁ. Choose now T > 0 such that 7 — 37 = % + ;"—T > % that is, T =
% + 31‘%{. Notice that condition (4.40) implies

- T m+ 1)t
T—‘L’=§+%. (4.41)
Let us define the sequence
52
k,,=82—|—2—n, Vn >0,
where
82<kn+1<kn<282, Vn > 1, kn — 8% asn — oo

and the sequence of times
t_1 =T -137,
tn:tn—l‘i‘zin, n =0,

which satisfies
t 1<ty <tht1<T -7, VYn=>0.
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Then, introduce a cutoff function 1, € C(R) by setting

0, t<ty_1, ontl
N () :={ g and  |n, (1) < —=,
I, t>1, T

on account of the above definition of {t,},, and set

N m"(x 1) —( Z u,-—kn>_.

iepN-—m
Also, for any n > 0, let us introduce the interval I,, = [t,—1, T] and the set

A,,(t)::{er: 3 ui(x,t)—k,,fo}, Vi € I,

iepN-m

so that on s, () it holds that (see (4.39)), since 0 < 262 < § < Sy_ma1 <

2|~

ui(t) >8—28% VjgpNm
This means that, on 4, (¢) and for § > 0 sufficiently small, we have
V' ()] < —y'(6—28), VjgPNT,

and

' (ui (1)) > —y'(26%), Vi e PN

Observe now that

Iny1 C 1y, Vn >0,
€A’n-ﬁ-l(t) - :Am(t)a Vn>0,Vtel,,

526

(4.42)

(4.43)

and set
= / [ ldxds, ¥Yn > 0.
I, n(s)
For any n > 0, we take the test function n = —eX _muévgm” n2 in (3.4) and integrate

over [ty—1,t],t, <t < T. After an integration by parts, we get

SRORS O Y Z/ |l s

iepN-mj=1

I,

N-—m,
—y Z Z/ /aleuj Vg ™" npdxds

iepN-mj=1

I
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Z Z/ /a,] ]kukuog nzdxds

iepPN-mjk=1

Z Z/ /al,w ufrv(sm" dxds

iepN-mj=1

n

t
+/ Dennna ™ |2ds,
th—-1

Is

where we used

t
N— 2 N— N—-m,n_2
RO OF = [ <oy ulim2ds
th—1

t
- / Dennmaley ™" |2ds.
th—1

As in Section 4.1, recalling that ;; = A > Oforanyi = 1,..., N, we obtain
L=-y Y Z/ /al]Vu] Vufxs_m’"nﬁdxds
zE!PN m j=1
=y Z / /(a”Vul Vuz(;m’")nﬁdxds
iepN-m

—y Z Z / /(xl]Vuj VuNsm"nﬁdxds

iepy—mj#i,j=1

= / /(AVuN mn VuN "Mn2dxds

—y Z Z / /a,,Vu, VuNgm" dxds).

iepN-m j#i,j=1

Since ojj = B < 0 foranyi # j, the second summand becomes

Z /a,,Vu, VuN mndx)

tEﬂ’N m /#l,j_l

=-B Z Z / Vu; -Vufxs_m’"dx

Q
iePNm ji, jepN ™

527
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- B Z Z ];ZVuj-VquS_mdx

iePy " jEP
=B(N-m—1) Z Vu;j -Vufyvs_m’"dx
jeplN-—m
— B(N —m) Z Vu; -Vufrvg_m’"dx.
jEgry

On the other hand, observe that Z”m,‘;vfm uj =1-— Zief%vfm u;. Hence, we get

—B(N —m) E / Vu; -Vufyvs_m’"dx = —B(N —m)/ Vufyvé,_m’" -Vufyvg_m’"dx,
JEPs

This entails (recall that A = —B(N — 1))

t
I =y(A+ BN —m—1)— B(N — m))/ / |Vufz(;2|2n§dxds
th—1 JQ

t
:yN|B|/ /Qwuﬁg’"’"ﬁnﬁdxds,
th—1

since A+ B(N —m—1)—B(N —m)=A— B = N|B| > 0.
Concerning /1, recall that for any j € PN, DiepN-m Uij = =D jgpN-m Qlj, WE
can write

N
— Z ZL ozijl//'(uj)uz&_m’"dx

iepd—mj=1

= — Z Z fgaijw/(uj)ufxa_m’"dx

iepN—m jepdN-m

— Z Z /Qaijl//’(uj)uév,gm’"dx

iepym jg P

> X [ vl
Hn (1)

IgPN—™m jepy—m

-B Y Z/ W (ujul s ™" dx.

S
iepN—m jgpN-—m n ()

Thus, by (4.42), we deduce

B2 X L

iepN=m jgpN-m

<-1B] ) ZA ' (8 — 282l dx

t
iepN-m jgpN-m n ()



Multi-component conserved Allen—Cahn equations 529

< —m|B|(N —m)[ ¥ (8 — 28l " dx.
o :

Moreover, since 0 > B = —|B| and thanks to (4.43), in +4,, () it also holds that
DD ey upuly™ " =—Bl Y > Y™
IgPN-m jepN-m 1¢PN=m jepN—m
> —m(N —m)| Bl 28%)ul7™".

About the other terms in (4.28), recalling that 0 < uy < 1fork =1,..., N, we clearly
have

Z Z/ /oelj Jkukugs dxds<Cf / Nomnp2 dxds,

iepN-mjk=1

and by (3.18) on (%, +00) we have, similarly,

Z Z/ /aleJ 05"”" 2a’xals<C/ / N—=m,n n2dxds.

jiepN-mj=1

We are left with /5, which is not present when uy is strictly separated. Note that, since
Z,N=1 u; = land 0 < u; < 1 almost everywhere in 2 x [0, 400), foranyi = 1,..., N,
we have
0=< Z u; ae.in Q x [0, +00),
iepN-m
and thus
0< ufrvs_m” <28% ae.in Q x [0, +00).

Then, thanks to the above inequality, we infer

t
Is = f a5 (5) 2 0Byl = f / W5 ()8 madxds

o+l
/ [ (uN " ($))2 0 npdxds </ / dxds
th—1 n (5) n (5) T

2n+384

< = Vn-
T

Therefore, collecting all the above results, we end up with
N—m,n 2 2 N—m,n
SO WP = m(N —m) Bl (23 >/ [y axas
+)/N|B|/ [ |VuN " 2n2dxds

< (C —m|B|(N —m)y'(§ — 282))/ / up 5" nrdxds +

2n+384

Yn,
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for any ¢ € [t,, T], that is,

—nnmnuN ()]
+ [m(N —m)|B|(—v'(26%) + ¥/ (8§ — 282))—C]/ / N2 dxds

N on+3 g4
+yN|B|/ /|Vu S Pn2dxds <

We now recall assumption (E2) and see that
V(8 —26%) — ' (26°) - +o0  as§ — 0.

Yn-

Therefore, for 0 < § < §y—_m+1 sufficiently small, we have

m|B|(N —m)(—y'(26%) + ¥/ (§ —28%)) — C > 0.

This entails
mlax ||uN O < X, 2)/N|B|/ |VuN M 2ds < X, (4.44)
te

where
on+4 g4

n = = Jn-
T

On the other hand, for any ¢ € I,,+; and for almost any x € A, +1(f), we get

2

m.,n 8
uN (x.1) =8%+ o Z u;(x,t)

iepN-m
8 1 1 5
- § : . 2 2l _—
- u,(x,l)+[5 +2n+1]+ [2n 2n+1]Z on+1’

jiepN-—m

(17\’8 m, n+1(x’l)20

which implies
N—-m,n 3 N —m,n
|u dxds >/ / 5 IPdxds
/I;M /SZ 0,8 1n+1 e>4>n+1(S) Yo

dxds
2n+1 /In+1 An#—l(”

8% \3
= (W) Yn+1.

Then, for d = 2, 3, we find

82 3 N—m,n
i) i < [ /|u Pdxds
(2n+1) n Tnss
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[ / ul ™" Pdxds
Iyt n(s)
S3d 4—d
/ / |uN ™ 4abca’s) B (/ / dxds) B
1n+1 In+1 n(s)

(4.45)
Thanks to the Sobolev—Gagliardo—Nirenberg inequality and Poincaré’s inequality, we

have
||u|| Clu—ul| @ | Vul 7% +[ul), VYue H\(Q),

(SZ)
So we get

/ /| N-— mn
Iny1

G dxds

~ TN g, 2d+4
EC/ (a5 |75 |V 7|2 g w7 8 s
In+1
N2 a2 Y ds.

Int

On the other hand, by (4.44), we obtain

4d+8
¢ / 192 2 N S

~ _ 4d+8
<€ max [uly™n () 46 [ IV 2 s
1€l ’ Inty

2d+4
< Xd(d+2)2 N|B| ||VMN mn||2ds
2yN|B| j
6 % 6 2%n+4(dd+2) 84(dd+2) %
S——Xp¢ = 5 In
2yN|B| 2yN|B| T

Similarly, using (4.44) once more, we have

A _ d ~_ . d+2 ~
C/ | ds < 267X, = €
n+1

Therefore, we infer from (4.45) that

8 N—-m,n
(-0 Py < [ / Vo
2n+1 " In+1

2d+4 % %
d dxds) " (/ / dxds) *
Iyt n ()

3 S3d d

< 8622”6?2“4 (g +27) Kt s
72 2yN|B|
In conclusion, we end up with
9 ~ _3d
230 +9(C 2d+a 1 sods s4d
< 2~) 2 yp >0
Yn+1 = :E% (2)/N|B| T Yn n
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Thus, we can apply Lemma 4.5. In particular, we have

h=2>>1 C=

to get that y, — 0, as long as

d+2  _ (d+2)?
9

Yo<C™ 3D ,

that is,

H

2

)—2(d+2)- @52 ) =4

Yo = (4.46)

DR

Ad 1 ~
C:2 (m + 27,')
On the other hand, owing to (3.19), we know that ||/ (u;) ||Loo(%’oo;Ll(Q)) < C(t) for any

j =1,...,N and v is monotone in a neighborhood of 0*. Then, we get, for § sufficiently
small,

Yo =[ / 1dXdSS/ f ldxds
Iy J Ao (s) Iy J{xeQ: Z,.EJ,_)N_mui(x,t)§252}

| /o) e
< fl /,A,Om Nom 2 e = T e

jiepN-m

Hence, if we ensure that

3C()T 2-@+2)- 01z
<

_wl(252)(N—m) - A%( 1\1’\B| +2%,)
2y

DR D)

a

then (4.46) holds. This is equivalent to

[N

_d+? i~ d ~
3C(1)22@+9—5 ICz(m +2z)

< ! 2
TN —m) =TV
Having fixed T such that (4.40) holds, we obtain the result by choosing § sufficiently small,
since —y’(28%) — 400 as § — 0 by assumption (E1). Notice that § > 0 is fixed and not
infinitesimal.
In the end, passing to the limit in y, as 7 — oo, we have obtained that

H (iePXN:—m i 82) HLOO(SZX(T—%’,T)) =0

by uniqueness of the limit, since as n — oo,

)

o lwneaxr-rr: Y w =)

jepN-m
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and, on the other hand, y, — 0. Notice that, due to the choice of T', we have (see (4.41))
T-7=75+ % < 7, therefore we can repeat the same procedure on the interval
(T, T 4 7) (the new starting time willbe z_; = T — 27 > %) and so on, thus eventually

reaching the entire interval [5 + (m2+Nl)t, +00). Clearly § and T do not change, since the

estimates are independent of 7. Therefore, since o =1, ..., ( NIX m) is arbitrary, we have
obtained that there exists a0 < Sy —; < SN—m+1 < % such that, for any possible ng" -m
witho =1,..., ("),

1
Y uit)=5>0 a.e.ian[%+%,+oo), V8 € (0,8N_m]. (447)

jepN-—m

Recalling Remark 3.11, we can deduce that (4.47) actually holds everywhere in

Q x [% + %,—i—oo).

We can thus repeat the procedure, increasing m for a finite number of times, until each
set Py is a singleton (as in the case discussed in Section 4.1). This entails that there exists
0<é< % such that, foranyi =1..., N,

u; >8>0 ae. in Q x [, +00), (4.48)
thus concluding the proof. Notice that the quantity § depends on the initial datum only
through the initial energy &(0) and up, since all the estimates involved in this proof are
the ones mentioned in Theorem 3.10.

5. Proof of Theorem 3.13

Proof of Theorem 3.13. By Remark 3.14, we only need to show the existence of a compact
absorbing set. From Theorem 3.9, we deduce that for any ug € Vy, there exist constants
C3, C4 > 0 such that

IS@uol3y, < Cse™ lluol3y, + Ca. Vi = 0.
Indeed, since W is bounded on [0, 1] and 0 < ugy < 1, it holds that
1 2 1 2
§||“0||vM —C<€(0) =< §||uo||vM +C,

for some C > 0 independent of the initial datum ug. This means that the set

- c
By = {u €Va: Jullyy < ,/73 Gy = RO}

is an absorbing set, that is, for any bounded set B C Vi, there exists #, > 0 depending on
SUpy,ep [Wollvy such that S(z) B C By for any 7 > ¢,.
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On account of (4.38) and (4.48), we can find § = §(Rg) > 0 and a bounded set
Bo:={ueBo:|ulgg < Co u=8inQ, du=0 ae. ondQ}, (5.1)

for some Cyp = Cp(Rp) > 0 and a time g, depending only on Ry, such that S(l)ﬁo C By
for any ¢ > tg,. Note that we can state this for any t > tg, instead of for almost any t (see
Remark 3.11). This clearly implies that 8y is a compact absorbing set, and thus the proof
is complete. ]

6. Proof of Theorem 3.15

We need some preliminary lemmas. First, recalling (5.1), we know that there exists 7 =
7(Ro, M) > 0 (with M fixed) such that S(1)8By C By, for any ¢ > 7. We then introduce
the set
— Ym
B:=J)S0)By .
t>1

which is compact, positively invariant, and absorbing. Let us prove the next lemma.

Lemma 6.1. For any T > O, there exists C = C(T') > 0 such that, given ug,1,u92 € B,
we have

t
1S()u0.1 — S, + / 195 S(5)0.1 — 35S ()02 | ds
0
< C(T)lluo,1 —uo2ll3,,. Vz€[0.T], (6.1)

and

B C(T)(12+ 12)

IS (t)ug,1 — S(f)u0,2||1212(9) =< ; luo,1 — “0,2”2VM’ Vi€ (0,T]. (6.2)

Proof. The following computations are formal, but they can be performed within a suit-
able approximating scheme, like the one used in the proof of Theorem 3.1. In particular,
leaning on the strict separation property, which holds uniformly (depending only Ry
and M, this last one being fixed; see Remark 3.7) if the initial data belong to B (see
Theorem 3.1), then we are able to interpret, by uniqueness, the solutions to problem (1.6)
as the solutions to a similar problem where v is replaced by a suitable regular potential
(i.e., obtained by extending v outside [§, 1 — (N — 1)4] in a smooth way).

We start by observing that there exists 6 > 0 (possibly smaller than the one in the
definition of B) such that (see (3.13) and (3.20))

S(tug>8 inQ, Vt=>0, YugeB. (6.3)
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Now setu’ = § (t)ug,;, withug; € B, i = 1,2. Then, taking the difference between the
equations satisfied by u' and u?, multiplying it by d,u, where u = u! —u?, and integrating
over €2, after an integration by parts, we get

N
d
%a(wu, V) = 3 (e (U () — ' (). d,ui)
i,j=1
N
+ Z (0 (Aw)j, 0,u;) + ||3tu||2 =0,
i,j=1

where we exploited the following facts: d,u = 0, P(d;u) = d;u, and the property
o(P&) = af forany £ € RV,

Thanks to (6.3), we have ||w”(su} +(1- s)uf)||Lw(Q) <C forany j =1,...,N,
so that, by standard inequalities,

N
D (e (W ) — ¥ (})), Beui)

i,j=1
N 1
— Z / / w”(sujl- + (1 —s)ujz-)(u} —ujz-)aijatu,-dsdx
—~— JaJo
i,j=1
1 1
< Clulll|3;u]] < C|ul*> + Z||3tll||2 < C|Vu|* + Z||3tu||2~ (6.4)

Then, similarly,

N
1
> (@ij(Aw);, 3,u;) < Clul® + leazUIlz,

Lj=1

so that, owing to Poincaré’s inequality, we obtain
y d 1 >
EE(aVu, Vu) + Z||3,u|| < C(aVu,Vu), foraa.tel0,T], (6.5)

where we exploited the fact that (fx := 0x, f)

d

N d
(@Vu, Vu) = > > (aijuie. ujn) = Y _(aug.ug) = C||Vul?,

k=1i,j=1 k=1

by (2.1) (recall that Pu; = uy). Thus, (6.1) follows from (6.5) owing to Gronwall’s
lemma and Poincaré’s inequality. Notice that the constant C, thanks to (6.3), does not
depend on the specific ug; € B.

Concerning (6.2), we write (3.4) for the difference (defined as u) between u! and u?
and we differentiate the resulting equation with respect to time. Then, we multiply it
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by d;u and integrate over 2. This gives, after an integration by parts, the identity

N
1d
~—[eul® + Y (i (W ))dou) — " w)d,u?). 0ru;)

2dt £
i,j=1
N
— ) (ij (Ad,w);. 9,u;) + y(@V,u, Vou) =0,
i,j=1

where we exploited 8,_u = 0, Pd,u = 9,u, and the properties of e. Using now (6.3) once
more and standard inequalities, and on account of assumption ¥ € C3(0, 1], we get

N
| > (@ @hal -y @ad). a0

ij=1

N
= | 7 Gy 0" w)) = " @) deu)). i)

ij=1

N
| 32 (v @) @} — 0, )|

i,j=1

N 1
1 2v(y,1 2 1 2
=< ‘ Z /;2/0 a,'jw”/(suj + (1 —s)uj)(u; —uj)ou;0;u;dsdx| + C||dul

i,j=1
< Cllullps@ll9:u'[[[8,ully (@) + C0,ul?
< CllufwyIVo.ull + |9:u]* < C(|[ull3,, + [19,ul*) + %(avaru, Vo,u),

where we exploited the embedding H' () < L*(Q), the bound ||0,u! oo, 122 <C
with C depending only on R (see part (2) of Theorem 3.1, Theorem 3.10, and (5.1)),
Poincaré’s inequality, and the fact that (€ Vd,u, Vd,u) > C|Vd,ul|?. This last estimate
comes from (2.1), since we have

d

N d
(@Vou, Vou) = > Y (aijdruik. 0ujp) = Y _(€dug, dug) = C||Voul?,
k=1i,j=1 k=1

with Pd;u ; = d;u . In conclusion, we have

N
| (@ Adw);, du)| = Clo,ul.

i,j=1
We thus end up with

1d
Ezllatull2 + g(dvatu» Vo) < C(ull3,, + 13:ul?),
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and, multiplying both sides by s2 € [0, T2], we obtain

1d 52
EESZIIZ%HII2 + V?(‘Watu, Vau) < C(s|ull3,, + (s> + 5)[|9:u]?).

Integrating over (0, 7), recalling (6.1), and dividing by 72, we deduce
C(T)

l0:u(@)] < o1 —woz2flvy, V2 € (0,T]. (6.6)

We now multiply the equation for u by —Au and integrate over 2. We get

N
—(0;u, Au) + y(aAu, Au) — Z (oij (V' (u]) = ¥’ (})). Auj)
ij=1
N

+ Z (i (Au)j, Auj) =0, 6.7)

i,j=1
where we used Au = 0 and the properties of . Now, since PAu = Au, we have (see (2.1))
(aAu, Au) > C| Aul?.
Moreover, like with (6.4), we have
N
101 ) 2., Y
| @y =9 @), Aup)| = Clul + L @du, sw),
i,j=1
and the Cauchy—Schwarz inequality and Young’s inequality yield
Y |4
‘ > (ij(Au);, Auj)‘ < Clul*+ Z(OtAll, Au).

ij=1

£

Therefore, from (6.7) and Poincaré’s inequality, we deduce
Cllau|? < C||Vul® + C||3,ulf?,
and combining it with (6.1) and (6.6), we infer (6.2). [

We can now continue the proof of Theorem 3.15, following [39]. By (3.10), given
u(t) = S(t)ug, with uyg € B we have, for any given 7 > 0,

[u(@) —uls) vy

t t
< [ @ iwdr <le=st} ([ low@lhydr)’ < cmii-stt - 68)

for any s,¢ € [0, T'], that is, t — S(¢)uy is %-Hélder continuous in [0, T'], with C(T)
depending only on Ry. Let us now fix t* > 0. Thanks to smoothing property (6.2), valid
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att =t* > 0, the discrete dynamical system generated by the iterations of S(z*) possesses
an exponential attractor M* C B (see, e.g., [39, Theorem 3.7]). Moreover, (6.1) and (6.8)
entail

S:[0,t*]xB—B, St ug):= S)ug

is Holder continuous, when B is endowed with the V) topology. Therefore, we can define

M= | S@OM* CB,

t€[0,t*]

and, following [39], show that M is an exponential attractor for S(¢) on B. Since B is
also a compact absorbing set, the basin of exponential attraction of M is the whole phase
space V. This means that M is an exponential attractor on Vyy. The proof is finished.
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