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A phase-field version of the Faber–Krahn theorem

Paul Hüttl, Patrik Knopf, and Tim Laux

Abstract. We investigate a phase-field version of the Faber–Krahn theorem based on a phase-field
optimization problem introduced by Garcke et al. in their 2023 paper formulated for the principal
eigenvalue of the Dirichlet–Laplacian. The shape that is to be optimized is represented by a phase-
field function mapping into the interval Œ0; 1�. We show that any minimizer of our problem is a
radially symmetric-decreasing phase-field attaining values close to 0 and 1 except for a thin trans-
ition layer whose thickness is of order " > 0. Our proof relies on radially symmetric-decreasing
rearrangements and corresponding functional inequalities. Moreover, we provide a �-convergence
result which allows us to recover a variant of the Faber–Krahn theorem for sets of finite perimeter
in the sharp interface limit.

1. Introduction

The Faber–Krahn theorem states that the principal eigenvalue �.E/ > 0 of the eigenvalue
problem

��w D �w in E; (1.1a)

w D 0 on @E; (1.1b)

among all open sets E � Rn with jEj D 1, becomes minimal if E is a ball. In dimension
n D 2, this result was first conjectured by Lord Rayleigh [39] and proved independ-
ently (under suitable regularity assumptions on the boundary of E) by Faber [23] and
Krahn [31]. The result holds true in every dimension n � 2 for general open sets E (see,
e.g., [29, Section 3.2]). In other words, if B is an open ball in Rn, then the estimate

jBj
2
n�.B/ � jEj

2
n�.E/ (1.2)

holds for every open set E � Rn (cf. [25]). The latter result is referred to as the Faber–
Krahn inequality.

In this paper, we prove a diffuse interface version of this celebrated result where
the boundaries of such sets E are approximated by a thin interfacial layer. Phase-fields
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are natural candidates to relax such minimization problems for the purpose of numer-
ical implementation in shape and topology optimization. The diffuse interface relaxation
for eigenvalue optimization problems via phase-fields was introduced by Bogosel and
Oudet [7] and Garcke et al. [26].

In the following, we consider a fixed design domain � D BR.0/ that is an open ball
in Rn centered at the origin with a given finite radius R > 0. Instead of directly working
with open sets E � �, we replace any given set E by a function '"W� ! Œ0; 1�, the
so-called phase-field, such that the region where '" � 1 approximates E and the region
where '" � 0 approximates �nE. These regions are separated by a thin transition layer
whose width is related to the (usually small) interface parameter " > 0. For more details,
we refer to Section 3.

For any phase-field function ' W �! Œ0; 1�, we consider the eigenvalue problem

��w C b".'/w D �w in �; (1.3a)

w D 0 on @�; (1.3b)

where b" is a suitable coefficient function driving w to zero in the set ¹' D 0º (see Sec-
tion 2.2 and [26]). To optimize the principal eigenvalue �";'1 of this eigenvalue problem,
we want to minimize the cost functional

J "
 .'/ D �
";'
1 C 
E

".'/

(inspired by [7] and [26]) over a class of admissible functions '. The expression 
E".'/
is added as a regularization term in order to make the optimization problem well-posed.
Here, the surface tension 
 is a positive constant and E".'/ stands for the Ginzburg–
Landau energy associated with ' (see (3.5)). We point out that the Ginzburg–Landau
energy can be regarded as a diffuse interface approximation of the perimeter functional
(cf. [35, 36]). The idea of perimeter regularization in shape optimization was first intro-
duced in [3].

Our main results show that all minimizers '" of this optimization problem are radially
symmetric-decreasing functions which indeed exhibit a phase-field structure as described
above (see Theorems 3.7 and 3.8). This radial symmetry of the phase-fields is the natural
analogue to the radial symmetry of the balls in the Faber–Krahn inequality. Combining
our symmetry result with the �-convergence of Garcke et al. [26], which we extend to the
case of homogeneous Dirichlet boundary data for the phase-field variable by exploiting the
arguments of Bourdin and Chambolle [8], we recover a variant of the Faber–Krahn the-
orem in the framework of sets of finite perimeter (see Theorem 3.15 and Corollary 3.16)
in the sharp interface limit. However, our result states the stronger fact that the phase-field
approximation exactly captures the symmetry properties of the sharp interface limit at any
fixed scale " > 0; see also Theorem 3.5. To obtain the �-convergence in Theorem 3.17, we
shortly revisit the proof in [41] and adapt it to the case of general potentials, allowing for
a simultaneous treatment of smooth double-well and non-smooth double-obstacle poten-
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tials. As we consider homogeneous Dirichlet boundary data, we can construct a recovery
sequence in the spirit of Modica [35] and Sternberg [41] by using the profile resulting
from the aforementioned potential and cut it off as in [8].

The proof of the main result presented in Theorem 3.7 relies on a symmetrization
technique where the phase-fields and the corresponding eigenfunctions of (1.3) are com-
pared with their radially symmetric-decreasing rearrangements (which are also referred
to as Schwarz rearrangements in the literature). These rearrangements are at the heart
of the proofs [23, 31] and have led to breakthrough results such as the quantitative iso-
perimetric inequality [24]. In our diffuse interface setting, we show that the principal
eigenvalue �";'1 and the Ginzburg–Landau energy E".'/, which constitute the cost func-
tional, are non-increasing under radially symmetric-decreasing rearrangements. This can
be used to establish our phase-field version of the Faber–Krahn theorem. As a byproduct,
we also obtain a phase-field version of the Euclidean isoperimetric problem, which states
that among all measurable sets of fixed volume, the ball has minimal perimeter (cf. [33]).

Variants of the Faber–Krahn theorem for other types of boundary conditions have also
been studied from a large variety of different viewpoints. An interesting approach from
the perspective of free boundary problems is given in the alternative proof of the classical
Faber–Krahn inequality by Bucur and Freitas [14]. Therein, methods developed by Alt and
Caffarelli [2] (see also [18] for a comprehensive overview) are exploited to analyze the free
boundary @¹w > 0º, wherew is an eigenfunction to the principal eigenvalue of the Dirich-
let Laplacian. Furthermore, the authors do not rely on symmetric rearrangements but rather
on reflection arguments to prove the radial symmetry of optimal shapes. For Robin-type
boundary conditions, Daners [20] established the Faber–Krahn inequality via a level-set
characterization of the cost functional. This result was further generalized by Bucur and
Daners [13] for the p-Laplacian subject to a Robin boundary condition. In order to avoid
Lipschitz regularity in the class of admissible sets, Bucur and Giacomini [15] interpret
the Faber–Krahn inequality for the Robin Laplacian as a free discontinuity problem in the
space SBV .

The study of shape optimization problems for Neumann eigenvalues, on the other
hand, dates back to the pioneering works by Szegő [42] and Weinberger [43], who proved
the analogon of inequality (1.2) for the maximization of the first non-trivial Neumann
eigenvalue, which thus is often referred to as the Szegő–Weinberger inequality; see
also [29]. Working solely with Neumann boundary conditions induces severe instabilit-
ies for general domain perturbations, setting it apart from the more classical Dirichlet-
and Robin-type shape optimization problems; see [11]. Nevertheless, the maximization
of Neumann eigenvalues shows very recent progress. Bucur and Henrot [16] proved the
natural extension of the Szegő–Weinberger inequality for the second non-trivial Neumann
eigenvalue, where now the maximum is precisely attained by the union of two disjoint
equal balls. The method used there, in order to overcome the non-applicability of classical

 -convergence and lack of compactness, consists in using a relaxed notion of Neumann
eigenvalues in the framework of so-called degenerate densities. In this framework, Bucur
et al. [17] proved existence results for relaxed Neumann eigenvalues. We believe that our
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phase-field approach linked with the ideas used there is a promising way to also tackle
optimization of Neumann eigenvalues in the context of sharp interface �-limits in the
future.

An interesting open question is a quantitative version of our result, that is, the sta-
bility of the phase-field version of the Faber–Krahn inequality. In the sharp interface
case, this question has been settled by Brasco, De Philippis, and Velichkov [9], who show
that the deficit in (1.2) can be bounded from below by the squared Fraenkel asymmetry.
This optimal result is achieved by generalizing the selection principle of Cicalese and
Leonardi [19] from the context of isoperimetric problems to the case of eigenvalues. It
should be expected that the symmetrization procedure applied in our work would result in
a (suboptimal) quantitative version of our inequality, just as in the case of the sharp inter-
face by Fusco, Maggi, and Pratelli [25], who rely on symmetrization and their quantitative
isoperimetric inequality [24].

Finally, let us also mention another interesting variant of the Faber–Krahn inequality—
namely, the Pólya–Szegő conjecture (see [38, p. 159]), which states that among all planar
polygons of fixed enclosed area, the regular polygon minimizes the first Dirichlet–Laplace
eigenvalue. Only recently, some significant progress has been achieved by Bogosel and
Bucur [6], which indicates that also here, the most symmetric configuration yields the
smallest eigenvalue. This approach might lead to a computer-assisted proof of the conjec-
ture, at least for n-gons with moderately small n.

Our paper is structured as follows: First, we fix our notation and gather some prelim-
inary results in Section 2. In Section 3, we precisely formulate the problem and state our
main results. Finally, in Section 4, we provide the proofs of our results.

2. Preliminaries and important tools

2.1. Notation

We write RC0 D Œ0;1/ to denote the interval of non-negative real numbers. The inter-
val Œ0;C1� is to be understood as a subset of the extended real numbers RDR[ ¹˙1º,
on which we use the standard convention˙1 � 0 D 0. For any n 2 N, Ln stands for the
n-dimensional Lebesgue measure and Hn denotes the n-dimensional Hausdorff measure.

2.2. Assumptions

Note that in the upcoming analysis we will always choose the design domain�D BR.0/,
that is, the open ball in Rn with radius R > 0 centered at the origin. Furthermore, the
following assumptions on the potential  W R! R [ ¹C1º and the coefficients b" are
supposed to hold throughout this paper:

(A1)  2 C 2.Œ0; 1�/,  .0/ D  .1/ D 0, and  > 0 in .0; 1/.

(A2) The minima of  at 0 and 1 are non-degenerate in the sense that for x 2 ¹0; 1º,
we either have  0.x/ ¤ 0 or  0.x/ D 0 <  00.x/.
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Figure 1. Sketch of a possible choice for the coefficient functions b" and b0 (left) and the potential 
(right).

(A3) For any " > 0, the coefficient b" is a function

b" W Œ0; 1�! Œ0; ˇ"�

for some real number ˇ" > 0. We demand that b" is continuous, strictly decreas-
ing, and surjective onto Œ0; ˇ"�.

(A4) The numbers ˇ" D b".0/ satisfy

lim
"&0

ˇ" D C1 and ˇ" D o."��/ with

´
� 2 .0; 1/ if n D 2;

� D 2
n

if n � 3:

Moreover, there exists a limit function

b0 W Œ0; 1�! Œ0;C1�

satisfying

• b0
�
1
2

�
< C1,

• b" ! b0 pointwise in Œ0; 1� as "! 0,

• bı � b" on Œ0; 1� for all 0 � ı � ".

Remark 2.1. The two classical choices we have in mind for the potential  are either
the smooth quartic double-well potential  .x/ D 1

4
.1 � x/2x2 (which satisfies  0.x/

D 0 <  00.x/ for x 2 ¹0; 1º) or the non-smooth double-obstacle potential

 .x/ D

´
1
2
.1 � x/x if x 2 Œ0; 1�;

C1 else
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(which satisfies  0.x/ ¤ 0 for x 2 ¹0; 1º). However, assumptions (A1) and (A2) allow
for very general potentials. In particular, asymmetric potentials satisfying  0.0/ ¤ 0 and
 0.1/ D 0 <  00.1/ (or vice versa) can also be included.

Note that in the case of a smooth potential as studied in [35, 41], in contrast to their
theory, we do not need a growth condition as in [35, Proposition 3(b)] or [41, Propos-
ition 3], since we additionally incorporate the box constraint ' 2 Œ0; 1� in our set of
admissible phase-fields. Therefore, depending on the choice of  , one of the results [35,
Proposition 3(a)], [41, Remark (1.35)], and [5, Theorem 3.7] can be applied and yields
compactness of the Ginzburg–Landau energy.

The assumptions on  in [41, Theorem 1] differ from (A1) only in the fact that global
continuity is assumed. However, due to the box constraint ' 2 Œ0; 1�, our phase-fields may
not leave the interval Œ0; 1� and, thus, such an assumption is not necessary.

The crucial difference between [41] and [5] is that in [41], the potentials need to
satisfy (A2) with  0.x/ D 0 <  00.x/ for x 2 ¹0; 1º, whereas [5] only covers the case
 0.x/ ¤ 0 for x 2 ¹0; 1º. However, we will see that also the mixed case  0.0/ ¤ 0 and
 0.1/ D 0 <  00.1/ (or vice versa) can be handled by combining the proofs of [41, The-
orem 1] and [5, Proposition 3.11]. This is possible since their construction of a recovery
sequence remains practicable as the ODE

�0.t/ D
p
2 .�.t//; (2.1)

which is used to define the profile at the diffuse interface, possesses a global solution
that is strictly increasing as long as �.t/ 2 .0; 1/. In [41], any solution of (2.1) satisfies
�.t/ 2 .0; 1/ for all t 2 R, whereas in [5], there exist t0; t1 2 R with t0 < t1 such that

�.t/

8̂̂<̂
:̂
D 0 if t 2 .�1; t0�;

2 .0; 1/ if t 2 .t0; t1/;

D 1 if t 2 Œt1;1/:

(2.2)

In our �-convergence proof, we will take care of both cases simultaneously. Therefore,
proceeding as in [41], we interpolate the solution � of (2.1) in such a way that the interpol-
ated solution exhibits the behavior described in (2.2). The solvability of (2.1) and further
properties of solutions to this ODE will be analyzed in depth in the proof of Theorem 3.17.

2.3. Symmetric-decreasing rearrangements

For functions f W Rn! RC0 vanishing at infinity (i.e., the level sets ¹x 2 Rn j f .x/ > tº
have finite Lebesgue-measure for all t > 0), a definition of their radially symmetric-
decreasing rearrangement can be found in [32, Section 3.3]. We can easily adapt this defin-
ition to functions f W�!RC0 where�D BR.0/ is an open ball in Rn with radiusR > 0
centered at the origin.

Definition 2.2. Let � D BR.0/ be an open ball in Rn centered at the origin with a given
radius R > 0.
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(a) A measurable function f W �! R is called (radially) symmetric-decreasing if
any fixed representative of the equivalence class of f satisfies the properties´

f .x/ D f .y/ if jxj D jyj;

f .x/ � f .y/ if jxj � jyj
(2.3)

for almost all x; y 2 �. If additionally

f .x/ > f .y/ if jxj < jyj

for almost all x; y 2 �, then f is called strictly (radially) symmetric-de-
creasing.

(b) For any measurable set A � � with Ln.A/ <1, its (radially) symmetric rear-
rangement A� is defined to be the open ball centered at the origin whose volume
is equal to that of A. This means that

A� D
®
x 2 � j jxj < r

¯
where r � 0 satisfies Ln.Bn/ rn D Ln.A/:

Here, Bn denotes the n-dimensional unit ball.

(c) Let f W � ! RC0 be any measurable function. Then, its (radially) symmetric-
decreasing rearrangement f � is defined as

f �.x/ D

ˆ 1
0

1¹f >tº�.x/ dt

for all x 2 �.

Remark 2.3. Let � D BR.0/ be an open ball in Rn centered at the origin with a given
radius R > 0.

(a) It obviously holds that �� D �, and for any measurable function f W �! RC0 ,
we have f ��D f �. In particular, this motivates the particular choice�DBR.0/.

(b) For any measurable function f W �! RC0 , its trivial extension f0 W Rn ! RC0
with f0j� D f and f0jRnn� D 0 is measurable and naturally vanishes at infinity.
In particular, we have f �0 j� D f

�, where the symmetric-decreasing rearrange-
ment f �0 of the extension f0 is defined as in [32, Section 3.3].

Some important properties of the symmetric-decreasing rearrangement are collected
in the following lemma:

Lemma 2.4. Let � D BR.0/ be an open ball in Rn centered at the origin with a given
radius R > 0, and let f; g W �! RC0 be arbitrary measurable functions. Then, the fol-
lowing statements hold:

(a) f � is measurable and symmetric-decreasing. Moreover, f � is defined every-
where in �. In particular, condition (2.3) is satisfied everywhere in �.
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(b) The level sets of f � are the rearrangements of the level sets of f , meaning that®
x 2 � j f �.x/ > t

¯
D
®
x 2 � j f .x/ > t

¯�
up to a Lebesgue null set in Rn. In particular, if f 2 Lp.�/ for some p 2 Œ1;1�,
it holds that f � 2 Lp.�/ with

kf �kLp.�/ D kf kLp.�/:

(c) Let ˆ W RC0 ! RC0 be a non-decreasing, lower semicontinuous function. Then, it
holds that

.ˆ ı f /� D ˆ ı f � a.e. in �:

(d) Let‰ 2 C 1.Œ0; 1�/ with‰.0/D 0. If 0 � f � 1 almost everywhere in�, it holds
that ˆ

�

‰ ı f � dLn
D

ˆ
�

‰ ı f dLn: (2.4)

(e) Hardy–Littlewood inequality: It holds that
ˆ
�

f g dLn
�

ˆ
�

f � g� dLn

with the convention that when the left-hand side is infinite, the right-hand side is
also infinite.

(f) Non-expansivity of the rearrangement: Let F W R ! RC0 be a convex function
such that F.0/ D 0. Then,

ˆ
�

F ı .f � � g�/ dLn
�

ˆ
�

F ı .f � g/ dLn:

(g) Pólya–Szegő inequality: Suppose that f 2H 1
0 .�IR

C
0 /. Then, f � 2H 1

0 .�IR
C
0 /

with ˆ
�

jrf �j2 dLn
�

ˆ
�

jrf j2 dLn: (2.5)

Moreover, if f > 0 almost everywhere in � and

Ln
�®
x 2 � j rf �.x/ D 0

¯�
D 0; (2.6)

then equality in (2.5) holds if and only if f D f � almost everywhere in �.

The proof is deferred to Section 4.

Remark 2.5. We point out that the condition that f has a vanishing trace on @� is actu-
ally a necessary assumption for the Pólya–Szegő inequality (Lemma 2.4(g)). In general,
as the following example shows, there exist functions f 2H 1.�IRC0 / such that f � does
not even belong to H 1.�IRC0 /:
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Counterexample to the Pólya–Szegő inequality for functions in H 1.�IRC0 /.
Let � D B1.0/ be the open unit ball in R2. We consider the function

f W �! RC0 ; x 7! jxj;

which obviously belongs toH 1.�IRC0 / but not toH 1
0 .�IR

C
0 /. Its symmetric-decreasing

rearrangement f � is given by

f � W �! RC0 ; x 7!
p
1 � jxj2:

Hence, f � is weakly differentiable with

rf �.x/ D
�xp
1 � jxj2

for all x 2 �n¹0º.

However, it is easy to see that the blow-up at jxj D 1 causes
ˆ
�

jrf �j2 dL2
D C1:

This means that f � … H 1.�IRC0 / and, in particular, the Pólya–Szegő inequality stated
in (2.5) does not hold.

2.4. Properties of functions of bounded variation

We recall some basic facts of functions of bounded variation and sets of finite perimeter
that will be used in the course of this paper. We refer to [4, 22, 33] for more details.

The space of functions of bounded variation in � with values in R, also referred to
as BV functions, is defined as

BV.�/ WD
®
u 2 L1.�/ j V.u;�/ <1

¯
:

Here, V.u;�/ denotes the variation of a function u 2 L1loc.�/, defined as

V.u;�/ WD sup
°ˆ
�

u div � dLn
j � 2 C 10 .�;R

n/; k�kL1.�/ � 1
±
:

Endowed with the norm

kukBV.�/ WD kukL1.�/ C V.u;�/;

the space BV.�/ is a Banach space. However, for practical purposes, the topology in-
duced by this norm is too strong. For this reason, the concept of strict convergence is
commonly used. We say that a sequence uk 2 BV.�/ strictly converges to u 2 BV.�/ if

uk ! u in L1.�/ and V.uk ; �/! V.u;�/

as k !1.
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One of the fine properties of BV functions is that they allow for a well-defined trace.
Due to [4, Theorem 3.87], any u 2 BV.�/ possesses a trace

uj@� 2 L
1..@�;Hn�1 @�/IR/;

which is defined via the limit

lim
�&0

��n
ˆ
�\B�.x/

ju.y/ � uj@�.x/j dLn.y/ D 0 (2.7)

for Hn�1-almost every x 2 @�. Here, Hn�1 @� denotes the restriction of the Hausdorff
measure Hn�1 to the boundary @� and L1..@�;Hn�1 @�/IR/ is the space of L1-
functions on @� with respect to the measure Hn�1 @�. In what follows, we will simply
write L1.@�/ instead of L1..@�;Hn�1 @�/IR/. The corresponding norm on L1.@�/
is given by

k�kL1.@�/ D

ˆ
@�

j�j dHn�1:

Due to [4, Theorem 3.88], the operator

BV.�/! L1.@�/;

u 7! uj@�

is continuous with respect to strict convergence in BV.�/.
To conclude this section, we give the definition of the relative perimeter. The relative

perimeter in � of a measurable set E � Rn is defined as

P�.E/ WD V.�E ; �/:

3. Formulation of the problem and the main results

In what follows, we consider the design domain � D BR.0/ � Rn with n � 2 and some
finite radius R > 0.

For functions ' 2 L1.�; Œ0; 1�/, the eigenvalue problem introduced in [26] reads as

��w C b".'/w D �w in �; (3.1a)

wj@� D 0 on @�. (3.1b)

In view of the term b".'/w, this problem can be understood as a phase-field approximation
of the classical Dirichlet–Laplace eigenvalue problem on the shape represented by the
set ¹' D 1º. For a detailed motivation for and introduction to this eigenvalue problem,
we refer to [26, Section 2]. To specify the notion of weak solutions, eigenvalues, and
eigenfunctions, we recall the following definition (cf. [26, Section 3.1]):
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Definition 3.1. Let " > 0 and ' 2 L1.�; Œ0; 1�/ be arbitrary.

(a) For any given � 2 R, a function w 2 H 1
0 .�/ is called a weak solution of the

system in (3.1) if the weak formulationˆ
�

.rw � r�C b".'/w�/ dLn
D �

ˆ
�

w� dLn (3.2)

is satisfied for all test functions � 2 H 1
0 .�/.

(b) A real number �";' is called an eigenvalue associated with ' if there exists at
least one non-trivial weak solution w";' 2 H 1

0 .�/ of eigenvalue problem (3.1)
written for � D �";' . In this case, w";' is called an eigenfunction associated with
the eigenvalue �";' .

We further recall some important properties of the eigenvalue problem in (3.1). The
results can be found in [26], but are also accessible via the standard literature (see,
e.g., [1, 28]).

Proposition 3.2. Let " > 0 and ' 2 L1.�; Œ0; 1�/ be arbitrary.

(a) Eigenvalue problem (3.1) has countably many eigenvalues and each of them has
a finite-dimensional eigenspace. Repeating each eigenvalue according to its mul-
tiplicity, we can write them as a sequence .�";'

k
/k2N with

0 < �
";'
1 � �

";'
2 � �

";'
3 � � � � and �

";'

k
!1 as k !1:

(b) There exists an orthonormal basis .w";'
k
/k2N of L2.�/ where for every k 2 N,

w
";'

k
is an eigenfunction to the eigenvalue �";'

k
.

(c) The eigenvalue �";'1 is called the principal eigenvalue. It can be represented via
the Courant–Fischer characterization

�
";'
1 D min

w2H1
0 .�/n¹0º

´
�
.jrwj2 C b".'/w2/ dLn

kwk2
L2.�/

: (3.3)

Any function w 2H 1
0 .�/n¹0º at which this minimum is attained is an eigenfunc-

tion to the eigenvalue �";'1 . Moreover, the eigenspace of �";'1 is one-dimensional
and there exists a unique eigenfunction w 2 H 1

0 .�/n¹0º corresponding to this
eigenvalue which fulfills

w > 0 a.e. in � and kwkL2.�/ D 1:

We call w the positive-normalized eigenfunction. Without loss of generality, as
the choice of sign does not matter, we will always choose w";'1 D w in the ortho-
normal basis given by part (b).

For any prescribed m 2 .0; 1/, we define the set of admissible controls

ˆm WD
°
' 2 H 1

0 .�/
ˇ̌̌ 0 � '.x/ � 1 for a.e. x 2 �;ffl

�
' dLn D m

±
� H 1

0 .�/ \ L
1.�/:
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Applying [28, Theorem 8.12], we directly infer the following statement:

Corollary 3.3. Let " > 0 and ' 2 ˆm be arbitrary, and let w be an eigenfunction asso-
ciated with the eigenvalue �";'1 in the sense of Definition 3.1. Then, it holds that w 2
H 1
0 .�/ \H

2.�/ and w is a strong solution of the system in (3.1), meaning that

��w C b".'/w D �
";'
1 w a.e. in �;

wj@� D 0 a.e. on @�.

Now we formulate the shape optimization problem for the principal eigenvalue. This
can be regarded as a special case of the framework in [26] by choosing‰.�1/D �1 there.
Hence, we only briefly summarize the main aspects concerning this optimization problem
at this point.

For " > 0 and ' 2 ˆm, we now introduce the Ginzburg–Landau energy

E".'/ WD

ˆ
�

� "
2
jr'j2 C

1

"
 .'/

�
dLn: (3.5)

This term regularizes the optimization problem in order for it to be well-posed (see, e.g.,
[27, Theorem 6.1]). We observe that the Ginzburg–Landau energy is decreasing with
respect to symmetric-decreasing rearrangement of its argument. This can be interpreted
as a phase-field version of the isoperimetric inequality.

Lemma 3.4 (Phase-field isoperimetric inequality). Let " > 0 be arbitrary. Then, for all
' 2 H 1

0 .�I Œ0; 1�/, we have
E".'�/ � E".'/: (3.6)

Furthermore, we will prove the following phase-field version of the Faber–Krahn
inequality on the diffuse interface level:

Theorem 3.5 (Phase-field Faber–Krahn inequality). Let " > 0 be arbitrary. Then, for all
' 2 H 1

0 .�I Œ0; 1�/, we have
�
";'�

1 � �
";'
1 :

In order to recover the classical Faber–Krahn inequality in the sharp interface
limit "! 0, we consider the following optimization problem:´

Minimize J "
 .'/ D �
";'
1 C 
E

".'/

subject to ' 2 ˆm:
(OP"
 )

Here, �";'1 denotes the principal eigenvalue corresponding to the function ' as introduced
in Proposition 3.2 and 
 > 0 is the surface tension. Here, the additional summand 
E".'/
acts as a regularization term which ensures well-posedness of the optimization problem
and is further used to gain additional information about its minimizers. More precisely, for
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fixed " > 0, the gradient term appearing in the Ginzburg–Landau energy ensures the weak
compactness of any minimizing sequence of phase-fields in H 1

0 .�/, which is needed to
apply the direct method in the calculus of variations (see e.g. [27, Theorem 6.1]).

After passing to the sharp interface limit "! 0, we recover the classical Faber–Krahn
inequality in the framework of sets of finite perimeter which are represented by BV func-
tions. First of all, for fixed 
 > 0, the Ginzburg–Landau energy gives rise to compactness
in the space BV for a sequence of minimizers .'"/">0 of J "
 as "! 0, thus providing
us with a minimizer '0 2 BV.�I ¹0I 1º/ on the sharp interface level; see the proof of
Theorem 3.15 for details. Afterward, we are able to send 
 ! 0 in order to get rid of
the additional perimeter regularization, which is possible, as we will see later that the
minimizer on the sharp interface level does not depend on 
 .

The existence of a minimizer ' 2 ˆm of optimization problem (OP"
 ) was established
in [26, Theorem 3.8]. This means that the following lemma holds:

Lemma 3.6. Let "; 
 > 0 be arbitrary. Then, optimization problem (OP"
 ) possesses a
minimizer ' 2 ˆm.

Now, based on Lemma 3.4 and Theorem 3.5, the next theorem shows that minim-
izers of (OP"
 ) are necessarily symmetric-decreasing. The same holds for the positive-
normalized eigenfunction of the corresponding principal eigenvalue.

Theorem 3.7 (Phase-field Faber–Krahn). Let ";
 > 0 be arbitrary andm2 .0;1/. Also, let
' 2ˆm be any minimizer of optimization problem (OP"
 ). Then, 'D '� almost everywhere
in �, meaning that ' is symmetric-decreasing, and the positive-normalized eigenfunc-
tion w";'1 to the principal eigenvalue �";'1 also fulfills w";'1 D .w

";'
1 /� almost everywhere

in �.

Furthermore, the following theorem, which is a direct consequence of the boundedness
of the Ginzburg–Landau energy along a sequence of minimizers for "! 0, shows that the
thickness of the interface up to an infinitesimally small error is O."/:

Theorem 3.8. Let 
 > 0 andm 2 .0; 1/ be arbitrary. Then, there exists a constant C > 0

such that for any minimizer '" of optimization problem (OP"
 ) with " > 0 and for all
0 < ı < 1

2
, it holds that

Ln.¹ı � '" � 1 � ıº/ �
C"

˛ı

with ˛ı WD min

Œı;1�ı�
 > 0:

The proofs of Theorems 3.7 and 3.8 are presented in Section 4.
Combining the preceding two results, we deduce that every minimizer '" of (OP"
 )

is symmetric-decreasing and exhibits the expected phase-field structure, that is, for any
0 < ı < 1

2
, the width of the annulus on which '" attains values between ı and 1 � ı is of

order ". This behavior is illustrated in Figure 2.
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Figure 2. Schematic sketch of a minimizer '" in radial direction r D jxj.

Now, we investigate the limit " ! 0. Therefore, let us fix a sequence of minim-
izers .'"/">0 of (OP"
 ). We intend to show that this sequence converges to the charac-
teristic function of the ball centered at the origin with volume mj�j and that this ball is
a minimizer of a suitable limit cost functional (see Theorem 3.15). To this end, we recall
the most important aspects from [26].

First of all, we recall the limit eigenvalue problem, that is, the eigenvalue problem
corresponding to (3.2) on the sharp interface level. For details, we refer again to [26]. For
any given ' 2 BV.�I ¹˙1º/, we want to solve

��w D �w in E' ; (3.7a)

wj@E' D 0 on @E' , (3.7b)

where
E' D

®
x 2 � j '.x/ D 1

¯
:

Note that, in general, E' is only a set of finite perimeter and, therefore, it merely enjoys a
very weak regularity. However, the following definition turns out to be the suitable notion
of a weak solution, as it is compatible with the sharp interface limit "! 0 (see Proposi-
tion 3.12):

Definition 3.9. Let

' 2 ˆ0m WD
®
' 2 BV.�I ¹0; 1º/ j

ffl
�
' dLn D m

¯
be arbitrary. Then, we have the following:

(a) For any given � 2 R, a function w 2 V ' is called a weak solution of system (3.7)
if the weak formulationˆ

�

rw � r� dLn
D �

ˆ
�

w� dLn
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is satisfied for all test functions � 2 V ' , where

V ' D
®
� 2 H 1

0 .�/ j � D 0 a.e. in �nE'
¯
:

(b) A real number �0;' is called an eigenvalue associated with ' if there exists at least
one non-trivial weak solution w0;' 2H 1

0 .�/ of eigenvalue problem (3.7) written
for � D �0;' . In this case, w0;' is called an eigenfunction to the eigenvalue �0;' .

We recall the next proposition, which is a direct consequence of [26, Theorem 4.2].

Proposition 3.10. Suppose that ' 2 ˆ0m with V ' ¤ ¹0º.

(a) The minimum in

min
°´
�
jrvj2 dLn´
�
jvj2 dLn

ˇ̌
v 2 V 'n¹0º

±
DW �

0;'
1 (3.8)

is attained and any minimizer w 2 V 'n¹0º is an eigenfunction of the limit prob-
lem in (3.7) to the eigenvalue �0;'1 in the sense of Definition 3.9(b).

(b) �
0;'
1 > 0 is the smallest eigenvalue of the limit problem in (3.7) in the sense of

Definition 3.9(b).

Remark 3.11. Regarding the definition of the space V ' , we make note of the following:

(a) Note that in [26, Theorem 4.2], we are in the situation that V ' is an infinite-
dimensional vector space. In the present paper, we only assume that V ' is non-
trivial, but the above proposition can be established analogously using classical
spectral theory. If V ' D ¹0º, we set �0;'1 D C1, which is consistent with the
above proposition.

(b) We point out that the Sobolev-like space V ' is not new to the literature; see
[9, 12, 21] as well as [30, Section 4.5]. The space V ' is alternatively denoted
by zH 1

0 .E
'/. More generally, for any measurable set E � �, we define

zH 1
0 .E/ WD

®
u 2 H 1

0 .�/ j u D 0 almost everywhere in �nE
¯
:

Here, the tilde indicates that this is not the canonical generalization of classical
Sobolev spaces. In fact, if E � � is open, the classical Sobolev space H 1

0 .E/

can be expressed as

H 1
0 .E/ D

®
u 2 H 1

0 .�/ j zu D 0 quasi-everywhere in �nE
¯
;

where the left-hand side is understood as the closure of C10 .E/ with respect
to the H 1-norm and zu denotes the unique quasi-continuous representative of
u 2 H 1

0 .�/; see [30, Proposition 3.3.42]. For this reason, the canonical exten-
sion of the classical Sobolev space H 1

0 .E/ for arbitrary sets E � � of finite
perimeter is actually defined as

H 1
0 .E/ WD

®
u 2 H 1

0 .�/ j zu D 0 quasi-everywhere in �nE
¯
:
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We point out that, in general, H 1
0 .E/ does not coincide with zH 1

0 .E
'/. How-

ever, if E � � is an open set with Lipschitz boundary, it actually holds that
H 1
0 .E/ D

zH 1
0 .E/ (see, e.g., [21, Remark 2.3]). However, there are two main

reasons why, for our optimization problem on the sharp interface level, the space
V ' D zH 1

0 .E
'/ is the adequate choice.

On the one hand, we will see in Proposition 3.12 that if a sequence of phase-
fields .'"/">0 � H 1.�/ converges in L1.�/ to some ' 2 BV.�I ¹0; 1º/, then
there exists a function u 2 H 1.�/ such that, along a non-relabeled subsequence,
it holds that

lim
"&0
kw";'" � ukH1.�/ D 0

and
lim
"&0

ˆ
�

b".'"/jw
";'" j

2 dLn
D

ˆ
�

b0.'/juj2 dLn
D 0:

In this case, u plays the role of an eigenfunction for the sharp interface problem.
Recalling the construction of the coefficient function b" in (A3) and (A4), we
have b0.1/ D 0 and b0.0/ D C1. Thus, the conditionˆ

�

b0.'/juj2 dLn
D 0

is equivalent to uD 0 almost everywhere in ¹' D 0º. This motivates the usage of
the Lebesgue measure instead of the capacity.
On the other hand, one could be tempted to employ the fact that for any measur-
able set E � �, there exists a unique quasi-open set ! � � such that

zH 1
0 .E/ D H

1
0 .!/I

see [26, Section 4.1]. Even though this is a crucial relation also used in the �-
convergence proof in [26, Theorem 4.10], it does not allow us to replace the
space V ' with the associated space H 1

0 .!
'/. This is due to the fact that the limit

cost functional J 0
 that will be defined in (3.9) involves a perimeter term and it is
unclear how the perimeter changes when E' is replaced by the quasi-open set !;
see also the discussion in [9, Remark 2.1].

The following continuity result for the principal eigenvalues in the limit "! 0 was
established in [26, Lemma 4.4]:

Proposition 3.12. Let .'"/">0 � L1.�/ with '" 2 Œ0; 1� almost everywhere in � and
suppose that ' 2 BV.�; ¹0; 1º/ with V ' ¤ ¹0º such that

lim
"&0
k'" � 'kL1.�/ D 0:

Moreover, we demand the additional convergence rate

k'" � 'kL1.E'\¹'"< 1
2 º/
D O."/:
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Then, there exists an eigenfunction u 2 V ' of limit problem (3.7) to the eigenvalue �0;'1
such that

lim
"&0

ˆ
�

b".'"/jw
";'"
1 j

2 dLn
D

ˆ
�

b0.'/juj2 dLn
D 0;

as well as
lim
"&0
kw

";'"
1 � ukH1.�/ D 0 and lim

"&0
�
";'"
1 D �

0;'
1 :

We point out that in [26], the above result was established for any eigenvalue in the
case where V ' is an infinite-dimensional vector space. However, as we only consider
the principal eigenvalue, the Rayleigh quotient merely needs to be minimized over the
set V 'n¹0º (cf. (3.8)). It is thus clear that the proof of [26] also works under the weaker
assumption V ' ¤ ¹0º.

Since �0;'1 D C1 if V ' D ¹0º, the next corollary is a trivial consequence, but we
state it here for the sake of completeness as this provides us with the upper semicontinuity
of the principal eigenvalue, even if the shape prescribed by ' 2 BV.�; ¹0; 1º/ does not
admit an eigenvalue.

Corollary 3.13. Let the assumptions of the previous theorem be fulfilled, but allow for the
case V ' D ¹0º. Then, it still holds that

lim sup
"&0

�
";'"
1 � �

0;'
1 :

Finally, we consider the limit cost functional

J 0
 .'/ WD

8<:�0;'1 C 
c0
�
P�.E

'/C

ˆ
@�

'j@� dHn�1
�

if ' 2 ˆ0m;

C1 if ' 2 L1.�/nˆ0m;
(3.9)

where c0 D
´ 1
0

p
2 .t/ dt and 'j@� 2 L1.@�/ denotes the trace of the BV function '

(see Section 2.4).

Remark 3.14. We note that in [37], where the phase-fields are subject to a more complex
inhomogeneous space-dependent Dirichlet boundary condition, the corresponding term in
the limit cost functional resulting from the Ginzburg–Laundau energy is written (trans-
ferred to our notation) asˆ

�

jr‰.'/j dLn
C

ˆ
@�

j‰.'j@�/j dHn�1:

Here, the function ‰ is defined by

‰.s/ WD

ˆ s

0

p
2 .t/ dt; (3.10)

and
´
�
jr‰.'/j dLn denotes the variation of ‰.'/ 2 L1.�/ as given in Section 2.4.

Since, obviously, ‰.'/ D ‰.1/�E' in BV.�; ¹0; 1º/, we obtainˆ
�

jr‰.'/j dLn
D c0P�.E

'/:
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Furthermore, due to the definition of the trace in (2.7) and ' 2 BV.�; ¹0; 1º/, we see also
that 'j@� only attains the values 0 and 1. Hence, we have‰.'j@�/D‰.1/'j@� inL1.@�/,
which yields ˆ

@�

j‰.'j@�/j dHn�1
D c0

ˆ
@�

'j@� dHn�1:

Note that, as we are imposing a homogeneous Dirichlet boundary condition, we do not
need to rely on the very technical construction of a recovery sequence presented in [37],
as we can simply perform a cut-off procedure as in [8]. The idea in [8] is to approx-
imate any finite perimeter set by truncated sets that are compactly contained within �.
For these truncated sets, we then perform a diffuse interface approximation in the spirit
of [35, 41]. Using this approach, the need for the additional boundary integral in the limit
cost functional can be clearly seen: in the course of this approximation, the boundaries of
the truncated sets are getting closer and closer to the boundary of�. Therefore, the whole
boundary of the limit set has to be perceived by the limit energy. For more details, we refer
to the proof of Theorem 3.17 given in Section 4.

The previous discussion allows us to state the desired theorem, which states the con-
vergence of minimizers as " tends to zero.

Theorem 3.15. Let '0 2 ˆ0m be the characteristic function of the ball centered at the
origin with volume mj�j and let .'"/">0 be a sequence of minimizers of (OP"
 ). Then,

lim
"&0
k'" � '0kL1.�/ D 0; lim

"&0
J "
 .'"/ D J

0

 .'0/;

and '0 is a minimizer of J 0
 .

The proof of Theorem 3.15 can be found in Section 4. As a direct consequence, we
finally obtain the classical Faber–Krahn theorem in our framework by sending the surface
tension parameter 
 to zero.

Corollary 3.16 (Faber–Krahn theorem for BV functions and sets of finite perimeter). Let
'0 2ˆ

0
m be the characteristic function of the ball centered at the origin with volumemj�j.

Then, it holds that
�
0;'0
1 D min

®
�
0;'
1 j ' 2 ˆ

0
m

¯
:

Formulated in the framework of sets of finite perimeter, it thus holds that

�01.B/ D min
®
�01.E/ j E � � measurable; P�.E/ <1; jEj D mj�j

¯
;

where B � � is the ball centered at the origin with volume mj�j and

�01.E/ WD �
0;�E
1 D min

°´
�
jrvj2 dLn´
�
jvj2 dLn

ˇ̌
v 2 zH 1

0 .E/n¹0º
±

for every finite perimeter set E � �.
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We point out that this result slightly extends the classical Faber–Krahn theorem, which
merely states that any open ball is a minimizer among all open sets of the same volume.
Of course, Corollary 3.16 can also be obtained by taking the classical Faber–Krahn the-
orem for granted and then performing the regularization of finite perimeter sets as in the
proof of Theorem 3.17. It is further worth mentioning that the classical Faber–Krahn the-
orem is stated without the constraint of a surrounding design domain which makes the
analysis more delicate; see, for example, [21,34]. We further want to mention that in [14],
it was shown that the Faber–Krahn theorem remains valid if the minimization problem is
formulated on the class of quasi-open sets.

Nevertheless, the purpose of this paper is not to generalize the Faber–Krahn theorem
but to understand the classical Faber–Krahn theorem within our phase-field approach as
the sharp interface limit of the Faber–Krahn theorem on the diffuse interface level from
Theorem 3.7.

In this proof, the key step is to show that J "

�
! J 0
 as "! 0, that is, J "
 converges

to J 0
 in the sense of �-convergence. Our strategy will be similar to that in [26].
The first step in the proof of Theorem 3.15 is to establish the �-convergence for

slightly modified functionals F 
" , where the corresponding set of admissible phase-fields
does not contain a volume constraint. In the proof, we need to revisit the construction of
the recovery sequence in [41] as we allow for more general potentials  . In order to tackle
the Dirichlet boundary constraint hidden inH 1

0 .�/, we apply the idea of [8, Theorem 3.1].
More precisely, to construct a recovery sequence for any given ' 2 BV.�I ¹0; 1º/, we
approximate the corresponding set ¹' D 1º by truncated sets which are compactly con-
tained in �. The �-convergence result is stated by the following theorem:

Theorem 3.17. For any "; 
 > 0, let the functions F 
" ; F


0 W L

1.�/ ! R [ ¹C1º be
defined as

F 
" .'/ D

´
�
";'"
1 C 


´
�
"
2
jr'j2 C 1

"
 .'/ dLn if ' 2 H 1

0 .�I Œ0; 1�/;

C1 else;

and

F


0 .'/ D

´
�
0;'
1 C c0
.P�.E

'/C
´
@�
'j@� dHn�1/ if ' 2 BV.�I ¹0; 1º/;

C1 else:

Then, F 
"
�
! F



0 .

The second step is to modify the recovery sequence obtained by Theorem 3.17, as in
[26, Theorem 4.8], via suitable C 1-diffeomorphisms such that the modified sequence is
actually a recovery sequence for J "
 satisfying the volume constraint included inˆm. This
is done in the following theorem:



P. Hüttl, P. Knopf, and T. Laux 606

Theorem 3.18. For any "; 
 > 0, let the functions J "
 ; J
0

 W L

1.�/ ! R [ ¹C1º be
defined as

J "
 .'/ D

´
�
";'
1 C 


´
�
"
2
jr'j2 C 1

"
 .'/ dLn if ' 2 ˆm;

C1 else;

and

J 0
 .'/ D

´
�
0;'
1 C c0
.P�.E

'/C
´
@�
'j@� dHn�1/ if ' 2 ˆ0m;

C1 else:

Then, J "

�
! J 0
 .

The proofs of Theorems 3.17 and 3.18 are presented in Section 4.

Remark 3.19. Although for our purposes we have fixed�DBR.0/, the results presented
in Theorems 3.17 and 3.18 hold true for any bounded, open set � � Rn with Lipschitz
boundary.

4. Proofs

We first assure that the basic properties of radially symmetric-decreasing rearrangements
in Rn carry over to our local case.

Proof of Lemma 2.4. In view of Remark 2.3(b), statements (a)–(c), (e) and (f) are direct
consequences of the results in [32, Sections 3.3–3.5].

To prove (d), we use the decomposition ‰0 D ‰0C � ‰
0
�, where ‰0C WD max.‰0; 0/

and ‰0� WD �min.‰0; 0/ denote the positive part and the negative part of ‰0, respectively.
Now, we define

‰1.t/ WD

ˆ t

0

‰0C.s/ ds and ‰2.t/ WD

ˆ t

0

‰0�.s/ ds for all t 2 Œ0; 1�.

Recalling ‰.0/ D 0, we apply the fundamental theorem of calculus to derive the decom-
position ‰ D ‰1 �‰2. As the functions ‰1 and ‰2 are non-decreasing, (2.4) follows
directly from [32, Section 3.3(iv)].

To prove (g), let f 2 H 1
0 .�IR

C
0 / be any function and let f0 W Rn ! RC0 denote its

trivial extension as in Remark 2.3(b). This means that f0 2 H 1.Rn/ is a non-negative
function with compact support. We further define

A W Œ0;1/! Œ0;1/; x 7! x2:

Hence, A 2 C 2.Œ0;1/ is strictly increasing, A.0/ D 0, and A
1
2 is convex. Thus, as all
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conditions are fulfilled, we can apply the first part of [10, Theorem 1.1] and obtain
ˆ

Rn

jrf �0 j
2 dLn

�

ˆ
Rn

jrf0j
2 dLn; (4.1)

which directly implies (2.5), since rf0 D 0 and rf �0 D 0 almost everywhere on Rnn�.
We note that this classical Pólya–Szegő inequality is well known (see, e.g., [29, The-

orem 2.1.3]), but the strong version contained in [10, Theorem 1.1] given below is more
delicate.

In addition, let us now assume that condition (2.6) holds true and that f > 0 almost
everywhere in �. Since f �0 D 0 on Rnn�, we have ¹f �0 > 0º � � and, thus,

Ln
�®
x 2 Rn j rf �0 .x/ D 0

¯
\ .f �0 /

�1..0;1//
�
� Ln

�®
x 2 � j rf �.x/ D 0

¯�
D 0:

Therefore, [10, Theorem 1.1] states that equality in (4.1) holds if and only if f0 is a
translate of f �0 . This directly entails that equality in (2.5) holds if and only if f is a
translate of f �. However, since f 2H 1

0 .�/with f > 0 almost everywhere in�DBR.0/,
this is possible if and only if f D f � almost everywhere in�, which proves the claim.

Now we are in the position to present the proofs of our main results.

Proof of Lemma 3.4. In view of the definition of E" given in (3.5), the assertion follows
directly by using the Pólya–Szegő inequality (Lemma 2.4(g)) to estimate the gradient
term, and by applying Lemma 2.4(d) to the potential term.

Proof of Theorem 3.5. Let ' 2 H 1
0 .�I Œ0; 1�/ be arbitrary.

First of all, we derive some general inequalities. So, we letw 2H 1
0 .�/n¹0ºwithw� 0

almost everywhere in � be arbitrary. In view of (A3), the coefficient b" is continuous,
decreasing, and b".0/ D ˇ"; therefore, we infer that the function

B" W Œ0; 1�! Œ0; ˇ"�; s 7! b".0/ � b".s/

is continuous and increasing. Hence, according to Lemma 2.4(c), we have

.B".'//� D B".'�/ and .w2/� D .w�/2

almost everywhere in �. Applying Lemma 2.4(b) and (e), we thus obtain
ˆ
�

b".'/w2 dLn
D b".0/

ˆ
�

w2 dLn
�

ˆ
�

B".'/w2 dLn

� b".0/

ˆ
�

.w�/2 dLn
�

ˆ
�

.B".'//�
�
w2/� dLn

D b".0/

ˆ
�

.w�/2 dLn
�

ˆ
�

B".'�/ .w�/2 dLn
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D

ˆ
�

b".'�/ .w�/2 dLn: (4.2)

In particular, since '�� D '�, this already entails that
ˆ
�

b".'�/w2 dLn
�

ˆ
�

b".'�/ .w�/2 dLn: (4.3)

These general estimates can now be used to prove the assertion �";'
�

1 � �
";'
1 . Indeed,

we define the functional

R W H 1
0 .�/n¹0º ! R; w 7!

´
�
.jrwj2 C b".'�/ w2/ dLn

kwk2
L2.�/

:

We now consider the positive-normalized eigenfunction w";'
�

1 associated with '�,
which is obviously a minimizer of R. Using (4.3) along with the Pólya–Szegő inequality
(Lemma 2.4(g)) and Lemma 2.4(b), we find that

R..w
";'�

1 /�/ � R.w
";'�

1 /:

Therefore, .w";'
�

1 /� is also a minimizer of R and, thus, due to Proposition 3.2(c), it is an
eigenfunction to the eigenvalue �";'

�

1 . As .w";'
�

1 /� is non-negative and L2-normalized,
this is enough to deduce

.w
";'�

1 / D .w
";'�

1 /� a.e. in �;

as the eigenspace to �";'
�

1 is one-dimensional. On the other hand, the Courant–Fischer
characterization (see (3.3)) yields that for any w 2 H 1

0 .�/n¹0º with w � 0 almost every-
where in �, we have

�
";'�

1 �

´
�
.jrw�j2 C b".'�/ .w�/2/ dLn

kw�k2
L2.�/

�

´
�
.jrwj2 C b".'/ .w/2/ dLn

kwk2
L2.�/

: (4.4)

Here, we applied the Pólya–Szegő inequality (Lemma 2.4(g)), estimate (4.2), and Lem-
ma 2.4(b). Hence, choosing w D w";'1 , we use Proposition 3.2(c) to conclude that

�
";'�

1 � �
";'
1 (4.5)

and, thus, the proof is complete.

Proof of Theorem 3.7. Let ' 2 ˆm be any minimizer of optimization problem (OP"
 ).
Combining estimates (3.6) and (4.5), we deduce that J "
 .'

�/ � J "
 .'/. Since ' is a min-
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imizer, this implies that
J "
 .'

�/ D J "
 .'/: (4.6)

This proves that the symmetric-decreasing rearrangement '� is also a minimizer of optim-
ization problem (OP"
 ).

Therefore, it remains to prove that the eigenfunction w";'1 and the minimizer ' are
symmetric-decreasing, meaning that ' D '� andw";'1 D .w

";'
1 /� almost everywhere in�.

First of all, using (3.6) and (4.6), we obtain the estimate

�
";'
1 D J

"

 .'/ � 
E

".'/ � J "
 .'
�/ � 
E".'�/ D �

";'�

1 :

Hence, in combination with (4.5), we conclude that

� WD �
";'
1 D �

";'�

1 : (4.7)

As above, let w D w
";'
1 be the positive-normalized eigenfunction corresponding to the

principal eigenvalue � associated with the minimizer '. Combining (4.4) with (4.7), we
arrive at

�
";'�

1 D

´
�
.jrw�j2 C b".'�/ .w�/2/ dLn

kw�k2
L2.�/

D

´
�
.jrwj2 C b".'/ .w/2/ dLn

kwk2
L2.�/

D �
";'
1 : (4.8)

Since, according to Proposition 3.2(c), the eigenspace associated to the eigenvalue �";'
�

1 is
one-dimensional, we conclude that

w� D .w
";'
1 /� D w

";'�

1 a.e. in �:

Moreover, Proposition 3.2(c) further yields w� > 0 almost everywhere in �. As w� is
a symmetric-decreasing rearrangement, it follows from Lemma 2.4(a) that w� > 0 actu-
ally holds everywhere in �, which will be crucial in what follows. Since kw�kL2.�/ D
kwkL2.�/ D 1, (4.8) entails that

ˆ
�

.jrwj2 C b".'/w2/ dLn
D

ˆ
�

.jrw�j2 C b".'�/.w�/2/ dLn: (4.9)

Invoking (4.2), we thus obtain
ˆ
�

jrwj2 dLn
�

ˆ
�

jrw�j2 dLn
D

ˆ
�

b".'�/.w�/2 dLn
�

ˆ
�

b".'/w2 dLn

� 0:

Hence, we have equality in the Pólya–Szegő inequality (Lemma 2.4(g)):
ˆ
�

jrwj2 dLn
D

ˆ
�

jrw�j2 dLn: (4.10)
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In order to prove w D w� almost everywhere in�, we now intend to show thatw� is even
strictly symmetric-decreasing. Therefore, we argue by contradiction and assume that this
is not the case. This means that there exists a direction x 2 Rn with jxj D 1 as well as
0 � s < t � R such that w�.sx/ D w�.tx/ DW c. As the function w� is positive in �, we
deduce that c > 0. Moreover, since w� is non-increasing in radial direction, we infer that
w�.�x/ D c for all � 2 Œs; t �. Because of spherical symmetry, this already implies

w� D c in
®
x 2 � j s � jxj � t

¯
: (4.11)

We further know from Corollary 3.3 that w� 2 H 2.�/ is a strong solution of eigenvalue
problem (3.1). Hence, recalling (4.7), we have

0 D �w� D .b".'�/ � �/w� a.e. in
®
x 2 � j s < jxj < t

¯
:

As w� > 0 in� and since b".'�/� � is non-decreasing and defined everywhere in�, we
infer that

b".'�/ � � D 0 in
®
x 2 � j s < jxj < t

¯
;

b".'�/ � � � 0 in A WD
®
x 2 � j s < jxj < R

¯
;

which in turn implies

�w� D .b".'�/ � �/w� � 0 a.e. in A:

Due to (4.11), we have
sup
A

w� D c;

since w� is symmetric-decreasing. Applying the strong maximum principle for the La-
place operator (see, e.g., [28, Theorem 8.19] with L D �), we infer that

w� D c in A:

However, since c > 0, this is a contradiction to the zero-trace condition hidden in
w� 2 H 1

0 .�/. We have thus proven that w� is strictly symmetric-decreasing.
As a consequence of this strict monotonicity, we have rw� ¤ 0 almost everywhere

in �, meaning that
Ln
�®
x 2 � j rw� D 0

¯�
D 0:

Recalling that w� > 0 in �, we use Lemma 2.4(g) along with (4.10) to conclude

w D w� a.e. in �;

meaning that w is symmetric-decreasing. Plugging this into (4.9), we arrive at
ˆ
�

.b".'�/ � b".'//.w�/2 dLn
D 0:
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Since w� > 0 in �, we infer

b".'�/ D b".'/ a.e. in �:

This directly implies ' D '� almost everywhere in �, as b" is strictly decreasing (and,
thus, injective). This proves that ' is symmetric-decreasing and, hence, the proof
complete.

Proof of Theorem 3.17. The lim inf inequality of the Ginzburg–Landau part directly car-
ries over from [37, Lemma 1], as in our case we only need to consider trivial extensions
of '"; ' instead of the more complicated boundary value function h" discussed there. We
point out that (A1) is sufficient for the proof to work, as only the continuity in Œ0;1� and the
non-negativity of the potential  is needed to ensure that the function ‰ defined in (3.10)
is well-defined and differentiable. Note that we actually need to include the factor

p
2 in

the definition of ‰ in order for the Modica–Mortola trick
ˆ
�

jr‰.'"/j dLn
D

ˆ
�

p
2 .'"/jr'"j dLn

�

ˆ
�

� "
2
jr'"j

2
C
1

"
 .'"/

�
dLn

D E".'"/

in the proof of the lim inf inequality to work (see, e.g., [5, Formula (3.61)] also). In [37],
the factor 2 is used, which is due to the fact that there the gradient term in the energy is
not scaled by 1

2
.

To verify the lim inf inequality for the eigenvalue term, we proceed as in [26, The-
orem 4.10]. However, we need to be careful with the constraints for the limit cost func-
tional. In [26], the additional constraint ' 2 U was imposed, which fixes a non-trivial
open set S1 such that S1 � ¹' D 1º. This guarantees that all the eigenvalues are finite. In
our framework, we now additionally need to consider the case �'1 D C1. Therefore, we
consider '" ! ' in L1.�/ such that

lim inf
"&0

F 
" .'"/ < C1:

Applying Fatou’s lemma to the potential term as in [35, Proposition 1] (which only re-
quires the continuity of  demanded in (A1)), we obtain that ' 2 BV.�I ¹0; 1º/ and, up
to subsequence extraction, that the sequence of eigenvalues .�";'"/">0 is bounded. Hence,
as in the proof of [26, Theorem 4.10], the sequence of minimizers .v"/">0 of the problem

min
°ˆ
�

jrvj2 dLn
C

ˆ
�

b".'"/jvj
2 dLn

ˇ̌̌ v 2 H 1
0 .�/;

kvkL2.�/ D 1

±
fulfills

v" * v in H 1
0 .�/; v" ! v in L2.�/; v" ! v a.e. in �;
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after another subsequence extraction. Now, due to the boundedness of the sequence´
�
b".'"/jv"j

2 dLn, we proceed as in [26] and use Fatou’s lemma to infer v 2 V ' . Con-
sequently, V ' is non-trivial and �0;'1 <1. This means that the case �0;'1 DC1 can only
occur if also

lim inf
"&0

F 
" .'"/ D C1:

Therefore, the lim inf inequality is established as in [26, Theorem 4.10].
It remains to prove the lim sup inequality. First of all, as already mentioned in Re-

mark 2.1, we want to show that the proof given in [41, Theorem 1] for the smooth double-
well potential carries over to general potentials satisfying assumptions (A1) and (A2). The
key step is to consider the ordinary differential equation´

�0.t/ D
p
2 .�.t//;

�.0/ D 1
2
:

(4.12)

As the right-hand side is locally Lipschitz away from �.t/ D 0 and �.t/ D 1, the Picard–
Lindelöf theorem provides the existence of a unique maximal solution � on an open
interval .t0; t1/ with suitable t0 2 R [ ¹�1º and t1 2 R [ ¹C1º, satisfying

lim
t!t1

�.t/ D 1 and lim
t!t0

�.t/ D 0: (4.13)

Moreover, since the right-hand side is non-negative, we know that � is non-decreasing.
Now, depending on the choice of the potential  , the values 0 and/or 1 can either be
reached in finite time (i.e., t0 or t1 are finite), or the solution tends to those values asymp-
totically (i.e., t0 or t1 are non-finite). If the solution � satisfies �.t0/ D 0 for some finite
t0 < 0 (or �.t1/D 1 for some finite t1 > 0), it holds that �.t/D 0 for all t � t0 (or �.t/D 1
for all t � t1). In particular, in any case, the solution exists for all t 2 R. These proper-
ties follow from classical ODE theory, exploiting that, due to (A1), the right-hand side
of (4.12) is strictly positive whenever �.t/ 2 .0; 1/.

As in [41, (1.22)], we construct the profile function �P" W R! Œ0; 1� by defining

�P" .t/ WD

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

1 for t > 2
p
";

1C
�
1 � �."�

1
2 /
��

t�2
p
"

p
"

�
for
p
" � t � 2

p
";

�
�
t
"

�
for jt j �

p
";

�.�"�
1
2 /
�
tC2
p
"

p
"

�
for � 2

p
" � t � �

p
";

0 for t < �2
p
":

The idea behind these profiles is to use the solution of (4.12) and possibly linearly inter-
polate the values where � is close to 0 or 1. This interpolation is necessary to obtain a
transition from 0 to 1 on a finite interval scaling suitably with ", even though the solution
of (4.12) does possibly not reach these values in finite time.
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In case � actually reaches the values 0 and/or 1, the interpolations in the second and
fourth line of this definition become trivial and therefore negligible, provided that " > 0
is sufficiently small.

In case the values 0 and/or 1 are only reached asymptotically, we still need the fol-
lowing exponential convergence rates in order for the proof in the spirit of [41] to work
out:

• If the value 1 is only reached asymptotically, there exists T1 > 0 as well as con-
stants C1; a1 > 0 such that

j1 � �.t/j � C1 exp.�a1t / for all t � T1. (4.14)

• If the value 0 is only reached asymptotically, there exists T0 > 0 as well as con-
stants C0; a0 > 0 such that

j�.t/j � C0 exp.�a0t / for all t � �T0. (4.15)

We will only prove estimate (4.14), since estimate (4.15) can be established completely
analogously. Therefore, we assume that � reaches the value 1 only asymptotically. Due to
the monotonicity of �, we have �.t/ 2 Œ1

2
; 1/ and, thus,  .�.t// > 0 for all t 2 Œ0;1/.

Hence, � is twice continuously differentiable with

�00.t/ D
1

2
p
2 .�.t//

2 0.�.t//�0.t/ D  0.�.t// for all t 2 Œ0;1/:

Combining (4.13) and (4.12), we further deduce

lim
t!1

�0.t/ D 0:

Hence, for any � 2 Œ0;1/, we have
ˆ 1
�

 0.�.t// dt D ��0.�/: (4.16)

Let us now assume that  0.1/ ¤ 0. Since  W Œ0; 1�! R possesses a local minimum at 1,
this already entails  0.1/ < 0. Hence, due to the continuity of  0, we have

 0.s/ <
1

2
 0.1/ < 0

for all s 2 .0; 1/ in a suitably small neighborhood around 1. However, this is an obvious
contradiction to the finiteness of the integral in (4.16). We thus conclude

 0.1/ D 0: (4.17)

This equality will now be the crucial ingredient in applying the comparison principle for
ODEs. Recalling that  2 C 2.Œ0; 1�/, for any s 2 .0; 1�, we consider the Taylor expansion

 .s/ D  .1/C  0.1/.s � 1/C
1

2
 00.�s/.s � 1/

2
D
1

2
 00.�s/.s � 1/

2;
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for a �s between 1 and s. In the light of (4.17) and (A2), there exist c; ı > 0 such that

j 00.x/j � c > 0; for all x 2 .1 � ı; 1C ı/ \ Œ0; 1�:

Hence, defining a1 WD
p
c, we obtainp

2 .s/ � a1.1 � s/ (4.18)

for all s 2 .1 � ı; 1C ı/ \ Œ0; 1�: Due to (4.13), there exists t1 2 R such that

s1 WD �.t1/ 2 .1 � ı; 1C ı/ \ .0; 1/: (4.19)

We now consider the initial value problem´
�0.t/ D a1.1 � �.t//;

�.t1/ D s1;
(4.20)

which possesses the unique global solution

� W R! R; �.t/ D .s1 � 1/ exp.�a1.t � t1//C 1:

On the other hand, combining (4.12) and (4.19) with (4.18) and recalling that � is non-
decreasing, we infer that � W R! R satisfies´

�0.t/ � a1.1 � �.t// for t � t1;

�.t1/ D s1:
(4.21)

Equations (4.20) and (4.21) directly imply´
.� � �/0.t/ � �a1.� � �/.t/ for t � t1;

.� � �/.t1/ D 0

and, thus,
�.t/ � �.t/ for all t � t1;

as a direct consequence of Gronwall’s lemma.
Hence, we conclude

j�.t/ � 1j D 1 � �.t/ � .1 � s1/ exp.�a1.t � t1// for all t � t1;

which proves (4.14) with xC1 WD .1 � s1/ exp.a1t1/ > 0 and T1 WD t1.
Now, estimates (4.14) and (4.15) allow us to continue as in [41]. Therefore, we will

need to approximate any general finite perimeter set by a suitable sequence of smooth
sets. The reason for this approximation is that we know from the proof of [41, Theorem 1]
that for any smooth, bounded, open set E � Rd having finite perimeter and satisfying the
transversality condition

Hn�1.@E \ @�/ D 0;
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there exists a recovery sequence .'"/">0 � H 1.�I Œ0; 1�/ which satisfies8̂<̂
:lim sup

"&0

ˆ
�

� "
2
jr'"j

2
C
1

"
 .'"/

�
dLn
� c0Per�.E/;

k'" � �EkL1.�/ D O."/:

(4.22)

We point out that the above L1-convergence rate can be obtained by following the line of
argument in Step 1 of [41, Theorem 1]. The key fact is that, due to (4.14) and (4.15), the
profile �P" converges in the interpolation parts exponentially to 0 and 1, respectively. In
the middle part, �P" is scaled with " such that, using the coarea formula and a change of
variables, we obtain the desired rate.

Obviously, this recovery sequence is not yet admissible as (in general) it does not
fulfill the homogeneous Dirichlet boundary condition hidden in H 1

0 .�/. Following the
idea in [8, Theorem 3.1], we make the following observation: if the finite perimeter set E
is compactly contained in �, then .'"/">0 � H 1

0 .�/ is guaranteed, provided that " > 0
is sufficiently small. This directly follows from the construction of '" via the optimal
profile �P" which vanishes in all points t < �2

p
". This means that outside of a small

tubular neighborhood around the boundary of E, we indeed have '" D 0. Therefore, we
now approximate any finite perimeter set E � � by smooth, open, finite perimeter sets
which are compactly contained in �. Although the line of argument is outlined in the
proof of [8, Theorem 3.1], we highlight the key steps in order to present a comprehensive
proof.

Let now ' 2 BV.�I ¹0; 1º/ be arbitrary and E WD ¹' D 1º. In what follows, we use
the notation

E� WD E \�; �01.E/ WD �
0;�

E�

1 ; and F


0 .E/ WD F



0 .�E�/:

As mentioned above, in order to construct a recovery sequence in H 1
0 .�I Œ0; 1�/, we

now approximate the finite perimeter set E by a sequence .Ek/k2N of bounded, smooth,
open sets Ek � Rn fulfilling8̂̂̂̂

<̂̂
ˆ̂̂̂:

Hn�1.@Ek \ @�/ D 0;

Per�.Ek/! Per�.E/ for k !1;

�E�
k
! �E in L1.�/ for k !1;

lim sup
k!1

�01.Ek/ � �
0
1.E/:

(4.23)

Such a sequence is constructed in the proof of [26, Theorem 4.10], relying on the ideas
in [7, 35, 40]. Note that the second and the third property of (4.23) mean that

�E�
k
! �E strictly in BV.�/

as k ! 1; see Section 2.4. Due to the continuity of the trace operator with respect to
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strict BV -convergence, we further know

k�E�
k
kL1.@�/ ! k�EkL1.@�/ D

ˆ
@�

'j@� dHn�1;

for k !1.
Now, the crucial idea of [8, Theorem 3.1] is to perform a further approximation by

cutting offEk in a tubular neighborhood around the boundary of� such that the truncated
set is compactly contained in �. As we fix k 2 N in what follows, we omit this index for
a cleaner presentation.

For any ı > 0, the truncated set is defined as Eı WD E \ Bı with

Bı WD
®
x 2 � j dist.x; @�/ > ı

¯
:

Obviously, Eı is compactly contained in� and it also is a set of finite perimeter. We now
intend to show that 8̂<̂

:
lim sup
ı!0

F


0 .E

ı/ � F


0 .E/;

lim
ı!0
k�Eı � �EkL1.�/ D 0:

(4.24)

Then, applying a diagonal sequence argument will yield the desired lim sup inequality—
see below.

The L1-convergence in (4.24) is clear by construction. To establish the first line
of (4.24), we consider the eigenvalue term and the perimeter term separately.

For the eigenvalue term, we need to rely on the concept of 
 -convergence (see [11,
Definition 3.3.1]), which was also a crucial tool in [26, Theorem 4.10]. First of all, by
using the characterization of 
 -convergence via Mosco convergence (see [11, Proposi-
tion 4.5.3]), we can show

Bı


! �;

for ı ! 0. Concerning the Mosco 1 condition, we note that for any � 2 H 1
0 .�/, we find

a sequence .�ı/ı>0 � C10 .�/ with

�ı ! � in H 1
0 .�/:

Due to the construction ofBı and the fact that each �ı has compact support in�, we know
�ı 2 H

1
0 .Bı/ (after possibly relabeling the index ı). The Mosco 2 condition is clear, as

Bı ��. Hence, from the fact that 
 -convergence is stable with respect to intersection (cf.
[11, Proposition 4.5.6]), we infer the convergence

Eı D E \ Bı


! E \� D E�: (4.25)

Note that at this stage we have to be careful not to confuse the notion of eigenvalues, as
continuity with respect to 
 -convergence is only formulated for the notion of eigenvalues
defined on the classical Sobolev space, that is,

�1.!/ WD min
°´
�
jrvj2 dLn´
�
jvj2 dLn

ˇ̌̌
v 2 H 1

0 .!/n¹0º
±
;
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with ! � � quasi-open. For the 
 -continuity of this “classical” eigenvalue, we refer to
[11, Corollary 6.1.8, Remark 6.1.10]. Recalling the characterization in (3.8), our notion of
the limit eigenvalue is defined as

�01.
zE/ D min

°´
�
jrvj2 dLn´
�
jvj2 dLn

ˇ̌̌
v 2 zH 1

0 .
zE/n¹0º

±
;

for any finite perimeter set zE � �, since by construction, V � zE D zH 1
0 .
zE/ (see also Re-

mark 3.11(b)). Nevertheless, as E D Ek � Rd and Bı � � are smooth open sets, we
infer from the theory recalled in Remark 3.11 that

zH 1
0 .E \ Bı/ D H

1
0 .E \ Bı/:

Thus, in our case, �01.E
ı/ D �1.E

ı/. In the light of (4.25), we use the 
 -continuity of
eigenvalues (cf. [11, Corollary 6.1.8, Remark 6.1.10]) to obtain

lim
ı&0

�01.E
ı/ D �01.E/: (4.26)

For the perimeter term, we obtain

P�.E
ı/ D P�.E \ Bı/ � Hn�1.@.E \ Bı//; (4.27)

due to [4, Proposition 3.62]. Applying [4, Proposition 2.95], we deduce that

Hn�1.@E \ @Bı/ D Hn�1
�
@E \

®
dist.�; @�/ D ı

¯�
D 0 (4.28)

for almost every ı > 0. Using the simple fact

@.E \ Bı/ � .@E \ Bı/ [ .@Bı \E/;

and exploiting (4.28), we arrive at

Hn�1.@.E \ Bı// � Hn�1.@E \ Bı/CHn�1.E \ @Bı/

D PBı .E/CHn�1
�
E \

®
dist.�; @�/ D ı

¯�
: (4.29)

Here, for the equality in the second line, the smoothness ofE is crucial. The first summand
in the second line of (4.29) side can be expressed as PBı .E/D jD�E j.Bı/; where jD�E j
denotes the total variation of the Radon-measureD�E associated with �E 2 BV.�/ (see,
e.g., [33, Chapter 12]). From the � -additivity of jD�E j, we directly infer

lim
ı!0

PBı .E/ D lim
ı!0
jD�E j.Bı/ D jD�E j.�/ D P�.E/: (4.30)

For the second summand in the second line of (4.29), we use the transversality condition
Hn�1.@E \ @�/ D 0 in order to apply [40, Lemma 13.9]. This yields

lim
ı!0

Hn�1
�
E \

®
dist.�; @�/ D ı

¯�
D Hn�1.E \ @�/ D

ˆ
@�

'j@� dHn�1: (4.31)
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Noticing that the trace of 'ı vanishes on @� in the sense of Section 2.4, we combine
(4.27)–(4.31) to obtain

lim sup
ı!0

P�.E
ı/ � P�.E/: (4.32)

Combining (4.26) and (4.32), we eventually conclude with (4.24).
Now, we close the proof by means of a final diagonal sequence argument. Therefore,

we reinstate the index k. Note that without loss of generality we can assume Eı
k

, which
is compactly contained in �, is smooth by performing again the approximation of (4.23).
We point out that by performing this approximation of Eı

k
, the approximation sets are still

compactly contained in�. This is because the corresponding proof in [26, Theorem 4.10]
is based on classical convolution with mollifiers and, thus, the set Eı

k
is only modified up

to a small tubular neighborhood.
As we now take for granted that the sets Eı

k
are smooth, there exists a recovery

sequence 'k;ı" � H 1
0 .�I Œ0; 1�/ fulfilling (4.22) with E replaced by Eı

k
. Using the con-

vergence rate and the upper semicontinuity of eigenvalues provided by Corollary 3.13, we
further know for any for fixed k 2 N and ı > 0,

lim sup
"&0

�
";'

k;ı
"

1 � �1.E
ı
k/

and, consequently,
lim sup
"&0

F 
" .'
k;ı
" / � F



0 .E

ı
k/:

Now, according to (4.23) and (4.24), for every k 2 N, we can find a sufficiently small
ık > 0 such that

lim sup
k!1

F


0 .E

ık
k
/ � F



0 .E/ and

lim
k!1
k�
E
ık
k

� �EkL1.�/ D 0:

This in turn allows us now to also choose "k > 0 small enough such that, finally,

lim sup
k!1

F"k .'
k;ık
"k

/ � F


0 .E/ and

lim
k!1



'k;ık"k
� �E




L1.�/

D 0:

Thus, the proof is complete.

Proof of Theorem 3.18. We have ˆm � H 1
0 .�I Œ0; 1�/ and ˆ0m � BV.�I ¹0; 1º/ and we

know that the volume constraint is preserved under L1-convergence. Hence, the lim inf
inequality is a direct consequence of Theorem 3.17, as now there are less admissible
sequences.
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It remains to prove the lim sup inequality—more precisely, that for every ' 2 ˆ0m,
there exists a sequence .z'"/">0 � ˆm fulfilling

lim
"&0
kz'" � 'kL1.�/ D 0; (4.33)

lim sup
"&0

J "
 .z'"/ � J
0

 .'/: (4.34)

For any ' 2 ˆ0m, a recovery sequence .'"/">0 � H 1
0 .�I Œ0; 1�/ for the functional F 
"

was constructed in Theorem 3.17. It was shown that this recovery sequence converges
in L1.�/ and fulfills the lim sup inequality for F 
" . Now, our goal is to carefully modify
this recovery sequence such that it preserves these properties but additionally fulfills the
mean value constraint. For this modification, we proceed completely analogously to the
proof of [26, Theorem 4.8]. Therefore, we only briefly sketch the most important steps.
Since ' 2 ˆ0m, it is non-constant. Hence, we can find a function � 2 C 10 .�;R

n/ such that
ˆ
�

'r � � dLn > 0:

For any s 2 R, we define the function

Ts W R
n
! Rn;

x 7! x C s�.x/;

which is a C 1-diffeomorphism if s is sufficiently small. By means of the implicit function
theorem, we deduce that for any sufficiently small " > 0, there exists s."/ 2 R such that

z'" WD '" ı T
�1
s."/ 2 ˆm

and s."/! 0 as "! 0. In particular, the property z'" 2 H 1
0 .�/ holds, since for x close

to @�, we have Ts."/.x/ D x, due to the fact that � has compact support in�. Eventually,
we show that the sequence .z'"/">0 satisfies properties (4.33) and (4.34) and, thus, it is a
suitable recovery sequence.

Proof of Theorem 3.8. In the proof of Theorem 3.18, for any admissible ' 2 ˆ0m, we
have constructed a recovery sequence .z'"/">0. In particular, this implies that the cost
functional J "
 is bounded uniformly in " along any sequence .'"/">0 of minimizers to
optimization problem (OP"
 ). Consequently, there exists a constant C > 0 independent
of " and 
 such that

ˆ
�

 .'"/ dLn
� "E".'"/ �

"



J "
 .'"/ �

C"



;

for all " > 0. Note that here the constant C > 0 is universal in the sense that it is independ-
ent of the sequence of minimizers .'"/">0, because the sequence .J "
 .'"//">0 is bounded
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independently of that choice. Recalling that  2 C 2.Œ0; 1�/ is non-negative, we thus have�
min
Œı;1�ı�

 
�
Ln
�®
ı � '" � 1 � ı

¯�
�

ˆ
¹ı�'"�1�ıº

 .'"/ dLn

�

ˆ
�

 .'"/ dLn
�
C"



:

Since  > 0 on Œı; 1 � ı� due to (A1), the assertion directly follows.

Proof of Theorem 3.15. We apply the compactness of the Ginzburg–Landau energy of
[35, Proposition 3(a)], which only relies on the fact that

‰ W Œ0; 1�! Œ0; c0�; s 7!

ˆ s

0

p
2 .t/ dt

is invertible. This is true, since due to (A1), we have  > 0 in .0; 1/. Consequently, there
exists a function '0 2 BV.�; ¹0; 1º/ such that

lim
"&0
k'" � '0kL1.�/ D 0 (4.35)

along a non-relabeled subsequence of .'"/">0. We further recall that '"D '�" , according to
Theorem 3.7. Hence, the non-expansivity of the rearrangement (see Lemma 2.4(f)) yieldsˆ

�

j'0 � '
�
0 j dLn

�

ˆ
�

j'0 � '"j dLn
C

ˆ
�

j'�" � '
�
0 j dLn

� 2

ˆ
�

j'" � '0j dLn:

Hence, we infer '0 D '�0 almost everywhere in �. As the mean value is preserved un-
der L1-convergence, this is already enough to deduce that '0 is the characteristic function
of the ball centered at the origin with volume mj�j. Obviously, the limit '0 does not
depend on the choice of the subsequence of .'"/">0. Hence, the convergence in (4.35)
even holds for the whole sequence.

Eventually, using Theorem 3.18, which states that J "
�
! J 0, we conclude that '0 is a

minimizer of J 0
 , as �-convergence implies the convergence of minimizers.
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[42] G. Szegő, Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech.
Anal. 3 (1954), 343–356 Zbl 0055.08802 MR 61749

[43] H. F. Weinberger, An isoperimetric inequality for the N -dimensional free membrane problem.
J. Rational Mech. Anal. 5 (1956), 633–636 Zbl 0071.09902 MR 79286

Received 5 May 2023.

Paul Hüttl (corresponding author)
Fakultät für Mathematik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg,
Germany; paul.huettl@ur.de

Patrik Knopf
Fakultät für Mathematik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg,
Germany; patrik.knopf@ur.de

Tim Laux
Hausdorff Center for Mathematics, University of Bonn, Villa Maria, Endenicher Allee 62,
53115 Bonn, Germany; tim.laux@ur.de

https://doi.org/10.1512/iumj.1954.3.53017
https://zbmath.org/?q=an:0055.08802
https://mathscinet.ams.org/mathscinet-getitem?mr=61749
https://doi.org/10.1512/iumj.1956.5.55021
https://zbmath.org/?q=an:0071.09902
https://mathscinet.ams.org/mathscinet-getitem?mr=79286
mailto:paul.huettl@ur.de
mailto:patrik.knopf@ur.de
mailto:tim.laux@ur.de

	1. Introduction
	2. Preliminaries and important tools
	2.1. Notation
	2.2. Assumptions
	2.3. Symmetric-decreasing rearrangements
	2.4. Properties of functions of bounded variation

	3. Formulation of the problem and the main results
	4. Proofs
	References

