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Continuity of the temperature
in a multi-phase transition problem. Part II

Ugo Gianazza and Naian Liao

Abstract. Local continuity is established for locally bounded, weak solutions to a doubly non-linear
parabolic equation that models the temperature of a material undergoing a multi-phase transition.
The enthalpy, as a maximal monotone graph of the temperature, is allowed to possess several jumps
and/or infinite derivatives at the transition temperatures. The effect of the p-Laplacian-type diffusion
is also considered. As an application, we demonstrate a continuity result for the saturation in the flow
of two immiscible fluids through a porous medium, when irreducible saturation is present.

1. Introduction

Initiated in [11], we keep up the study of the continuity of the temperature of a material
undergoing a multi-phase change. In this manuscript we consider the following non-linear
parabolic partial differential equation:

@t ž.u/ � div.jDujp�2Du/ 3 0 weakly in ET ; for p � 2: (1.1)

Here E is an open set of RN with N � 1 and ET WD E � .0; T � for some T > 0. The
enthalpy ž.�/ is a maximal monotone graph in R �R defined by

ž.u/ D ˇ.u/C
X̀
iD0

�iHei .u/ for some ` 2 N [ ¹1º; ei 2 R; and �i > 0: (1.2)

We have assumed that 0 D eo < e1 < � � � < e` and used the notation

Hei .u/ D

8̂̂<̂
:̂
1 u > ei ;

Œ0; 1� u D ei ;
0 u < ei ;

while ˇ.�/ is a continuous and piecewise C 1 function in R satisfying´
ˇ0 � ˛o for some constant ˛o > 0,

ˇ0 <1 except at ei for i 2 ¹0; 1; : : : ; `º. (1.3)
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Moreover, we stipulate that ˇ.�/ has the same graph near each ei after translation, that is,´
ˇ.uC ei / D ˇ.u/C ˇ.ei / for all i 2 ¹0; 1; : : : ; `º, if juj � d

for some 0 < d < 1
2

min
®
eiC1 � ei W 0 � i � ` � 1

¯
.

(1.4)

Condition (1.4) is not restrictive but for ease of notation only, as we do not impose any
growth condition on ˇ.�/ near ei . Finally, we assume that for some 0 < Nd � d ,

ˇ is concave in .0; Nd/ and is convex in .� Nd; 0/; (1.5)

8u 2 .� Nd; Nd/; ˇ.u/ D �ˇ.�u/: (1.6)

The behavior of ˇ in a neighborhood of the origin is depicted in Figure 1, whereas an
example of graph of ž.�/ is given in Figure 2.

The main result is that locally bounded, local weak solutions to (1.1) with p � 2 are
locally continuous. Moreover, our estimates are structural and a modulus of continuity can
be traced like in [11, Theorem 1.1], given explicit ˇ.�/. As an application of our argument,
we establish a continuity result for the saturation in the flow of two immiscible fluids
through a porous medium, when irreducible saturation is present (more about this can be
found in Section 1.3).

1.1. Statement of the results

From here on, we will deal with the following more general parabolic partial differential
equation modeled on (1.1):

@t ž.u/ � div A.x; t; u;Du/ 3 0 weakly in ET : (1.7)

Here ž.�/ is defined in (1.2). The function A.x; t; u; �/WET � RNC1 ! RN is assumed
to be measurable with respect to .x; t/ 2 ET for all .u; �/ 2 R � RN , and continuous
with respect to .u; �/ for almost every .x; t/ 2 ET . Moreover, we assume the structure
conditions´

A.x; t; u; �/ � � � Coj�jp
jA.x; t; u; �/j � C1j�jp�1

a.e. .x; t/ 2 ET ; 8u 2 R; 8 � 2 RN ; (1.8)

where Co and C1 are given positive constants, and we take p � 2.
In the remainder of the paper, the set ¹˛o; ˇ; Nd; d; �i ; p; N; Co; C1; kuk1;ET º will be

referred to as the data. A generic positive constant  depending on the data will be used
in the estimates.

The formal definition of local weak solution to (1.7) will be given in Section 1.4. Now
we present the main theorem.
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Theorem 1.1. Let u be a bounded weak solution to (1.7) in ET , under the structure
condition given by (1.8) for p � 2. The function u is continuous in any compact set
K � ET . More precisely, for every pair of points .x1; t1/; .x2; t2/ 2K , it holds that

ju.x1; t1/ � u.x2; t2/j � !.jx1 � x2j C jt1 � t2j
1
p /;

where the modulus !.�/ is determined by the data and the distance from K to the parabolic
boundary of ET .

Remark 1.1. The assumption about bounded solutions in Theorem 1.1 is quite standard
when dealing with an equation like the one we consider here. For instance, given bounded
boundary data, one should be able to prove a weak maximum principle (cf. [7, Chapter V,
Theorem 3.3]) and apply Theorem 1.1 to construct locally continuous solutions. On the
other hand, we do not know of results where local boundedness of u is proved when one
has a graph ž as in (1.2). However, it is conceivable, as seen, for example, in [7, Chapter V,
Section 5] that qualitative information on the boundedness of u can be converted into
quantitative one.

Remark 1.2. The perspective of our work is definitely local and in the interior of the
domain ET . Extending our results up to the boundary, both under Dirichlet and Neumann
conditions, is a very interesting and open problem. Recent results in [17] suggest that a
geometric density condition probably suffices to achieve global continuity for solutions to
the Dirichlet problem, whereas at least aC 1 boundary should be required for the Neumann
problem. However, at this stage, these are just speculations: extending our methods up to
the boundary for a general ž as in (1.2) poses quite a number of technical difficulties.

Remark 1.3. As we frequently point out in what follows in an explicit way, all the con-
stants, parameters, and so on, depend on p, which is one of the data. We work in such
a way that all estimates are stable as p # 2, that is, given any parameter  , we always
have limp#2 .p/ D .2/, where .2/ is a finite quantity. When studying the regularity of
solutions to the parabolic p-laplacian, p D 2 represents a threshold value that separates
the two quite different regimes which correspond to p > 2 and 1 < p < 2, and the sta-
bility of the estimates as p # 2 (as it is the case here), or as p " 2 (which is beyond the
framework of this manuscript) is a much sought-after condition; under this point of view,
see, for example [7, Chapters III–IV].

Remark 1.4. The main argument can be adapted when lower-order terms are present. In
fact, we will deal with some specific lower-order terms in Section 5, which bear particular
physical meanings. For general lower-order terms, the modifications can be done as in
[15, Chapter III]. We refrain from entering into details in this case.

Remark 1.5. Concerning the characterization of the modulus of continuity, there are
interesting connections between solutions to the problem under consideration here and
solutions to systems arising in the study of congested traffic dynamics (see [4]). Moreover,
another comment is in order. The stability of all the estimates as p # 2 notwithstanding,
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the modulus of continuity does not improve when p tends to the limit value. Under this
point of view, it is the same kind of situation that occurs when one compares the para-
bolic p-Laplacian with bounded and measurable coefficients that depend on .x; t/ with
linear parabolic equations with the same kind of coefficients: in both instances solutions
are Hölder continuous (see, respectively, [7, Chapters III–IV] and [15, Chapter III]), and
the only relevant fact is that for the Hölder continuity exponent ˛ one has limp!2 ˛.p/
D ˛.2/. The results of [12, Theorem 1.1] seem to suggest that the modulus of continuity
depends on an interplay between p and N , but we refrain from going any further into
details.

It could be remarked that the type of modulus of continuity one ends up with does
not have a clear meaning in the application; indeed, in [11], for ˇ.u/ D u, the modulus
of continuity established involves ln.6/, that is, logarithm composed with itself six times,
and here things would not be very different. However, we think that this is not the case: as
observed in [11, Corollary 1.1], once a modulus of continuity is obtained, we can localize
and improve it.

Corollary 1.1 (Localization). Under the hypotheses of Theorem 1.1, the modulus auto-
matically improves to the one for the two-phase problem corresponding to a graph ˇ that
satisfies (1.3)–(1.6).

Moreover, in our opinion there is also a more theoretical aspect that makes The-
orem 1.1 interesting: under the purely qualitative assumptions given by (1.2)–(1.6) on
the graph ˇ, it is nevertheless possible to prove the continuity of the solution. Therefore,
however singular, the diffusion process still ensures the regularity of u.

1.2. More general graphs

A priori, the number of jump points can be infinite, but we do not want them to cluster at
any real point: this is the motivation of the assumption d > 0 in (1.4), where min might be
inf if `DC1, and Nd > 0 in (1.5)–(1.6). On the other hand, since we assume to work with
bounded solutions u, that is, �kuk1;ET � u � kuk1;ET , even when an infinite number
of jump points occurs in the graph ž, only finitely many of them actually have to be dealt
with.

The above-defined ž.�/ carries two types of singularities: vertical jumps brought by the
Heaviside functions and infinite derivatives of ˇ.�/. Clearly, after proper rearrangement,
they may or may not happen at a same temperature. Thus, taking into account the previous
remark, ž.�/ actually concerns a class of piecewiseC 1 functions, where only finitely many
jumps and finitely many infinite derivatives have to be dealt with.

It might seem restrictive to assume, as we do in (1.3)–(1.6), that infinite derivatives
take place only at jump points. However, this is just for the sake of simplicity, and it does
not imply any loss of generality. Indeed, as we discuss at the end of Section 1.3, nothing
would be altered if there were no derivative blow-up at a jump point. Conversely, if we
had such a blow-up at a point where no jump occurs, condition (2.5) in Lemma 2.4, which
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ensures that the effect due to the jump is negligible, would be automatically satisfied, and,
once more, no change would take place. Under this point of view, see also the remarks
before the statement of Lemma 2.4.

Condition (1.6) is not the most general one, and indeed it can be extended. From a
technical point of view, the crucial task is preserving the validity of Lemma 2.4. This can
be done, for instance, by assuming that the graph ˇ is steeper on the left-hand side of the
origin than on the right-hand one. Then, we could have

8u 2 .0; Nd/; ˇ.u/ � �ˇ.�u/I
8u 2 .0; Nd/; ˇ0.u/ � ˇ0.�u/I

for some suitable 0 < �o < min¹1; Ndº;
Z �o

0

ˇ0.s/
jˇ.�s/j ds D1:

The case where the right-hand side is steeper than the left-hand one can be dealt with in
an analogous way.

Similar considerations hold as far as (1.4) is concerned: it reduces the analysis of ˇ
to the study of its behavior in a neighborhood of the origin. However, one can dispense
with such an assumption; if ˇ had a different behavior at each discontinuity point ei , then
Lemma 2.4 would yield a different value of j�, say j�;i , and consequently of �i , for each
i D 1; : : : ; `. Nevertheless, the arguments of Section 3 would remain the same, provided
we choose

� D min
®
�1; �2; : : : ; �`

¯I
this is possible, since only a finite number of points ei are considered, due the boundedness
of u, as we have already discussed at the very beginning of this section.

1.3. Novelty and significance

As already mentioned at the beginning, this is the second part of an ongoing study about
the local continuity for locally bounded, weak solutions to a doubly non-linear parabolic
equation that models the temperature of a material undergoing a multi-phase transition,
the so-called Stefan problem. This is a classical topic which has seen a huge amount of
contributions since the pioneering work of Olga Oleı̆nik in 1960 [18]: we refer to [11, Sec-
tion 1.2] for a general introduction to the regularity of solutions to the problem, and the
corresponding state of the art. The interested reader can see [9,20,24], and also [2], where
the physically relevant investigation of the behavior of solutions to the Stefan problem,
when a volumetric heat source is present, is considered. The understanding of the beha-
vior of solutions reached so far notwithstanding, the general mathematical theory of weak
solutions to multi-phase transitions is still fragmented, an overall comprehension is lack-
ing, and there are yet a number of delicate and deep issues which are completely open,
in particular, as far as quantitative moduli of continuity of solutions for general graphs ˇ
are concerned. Our study, which started in [11], builds on recent advances by the authors
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on the local regularity of solutions to the parabolic p-Laplacian; these progresses help
in shedding light on some of the issues in the Stefan problem which still await full and
satisfactory answers and foster concrete hopes of gaining a more thorough perspective.

In [11], the enthalpy, as a maximal monotone graph of the temperature, was allowed
to possess several jumps at the transition temperatures, but otherwise was an absolutely
continuous function ˇ in R, such that

0 < ˛o � ˇ0 � ˛1;

for two constants ˛o and ˛1.
In the present work we dispense with the bound above on ˇ0, and we allow ˇ to

have infinite derivatives at the transition temperatures. Besides the intrinsic mathematical
interest of this kind of graphs, they are also significant from the point of view of applic-
ations; indeed, experimental measurements of enthalpy curves in the so-called phase-
change materials (PCM) show graphs whose derivatives can blow up (see, for example,
[19, Figures 3, 9, and 10]). Without entering into details here, it suffices to say that PCM
are materials which release or absorb sufficient energy at phase transition to provide use-
ful heat or cooling. Moreover, these graphs are usually obtained through measurements;
despite their qualitative nature, we can conclude that u is continuous, as already remarked
above.

There is another important instance of maximal monotone graphs with infinite deriv-
atives, arising from real-world problems: in the so-called Buckley–Leverett model for the
motion of two immiscible fluids in a porous medium (see [14, 16]), ˇ presents two singu-
larities, say at uD 0 and uD 1, where ˇ can become vertical with an exponential speed, or
even faster, and might also exhibit a jump in the case of irreducible saturation. The Hölder
continuity of the saturation u was studied in [23], where a power-like behavior at u D 0
and u D 1 was considered. This result was extended in [8], where a weaker modulus of
continuity was shown to hold, assuming no a priori knowledge about the singularity of ˇ
at both critical points; however, the presence of a jump could not be taken into account.
This is the issue we consider in Section 5, where, as a straightforward application of the
techniques developed in Sections 2–4, we prove that the saturation is continuous up to
the irreducible value. Therefore, the continuity issue in this problem can be considered
as definitely settled, and in our opinion this represents an interesting step forward with
respect to the existing literature.

Besides the interest for applications, the continuity result is also very important from a
mathematical perspective, as it shows the strong smoothing effect that the non-linearities,
both of ˇ and of A, have.

Coming to the technical aspects, the main novelty is represented by Lemma 2.4; it is
based on previous work developed in [8, Sections 4.3–4.5], but this is required to be prop-
erly adapted in order to take care of the more general context under consideration here.
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There is another important technical feature that deserves proper comments; this also
helps to understand why the approach we develop here works for p � 2, but breaks down
when 1 < p < 2. For simplicity, assume we have a single jump point at the origin. The
“derivative” of ž is infinite at such a point, and consequently, ž is singular at Œu D 0�. On
the other hand, since p > 2, the p-laplacian is degenerate at ŒDu D 0�, and singular as
jDuj !1. Such a range for p is usually referred to as degenerate regime. In the classical
De Giorgi approach to continuity of weak solutions, the essential point lies in showing that
the oscillation of u reduces in a quantified way along a sequence of nested cylinders. Due
to the two singularities of equations (1.7)–(1.8), here one needs to stretch or compress the
cylinders according to the oscillation itself. Such an approach is called “intrinsic scaling”
(see [7, Chapters III–IV]). Suppose 0 � u � 1. If one works in the region of ET where
u � 0, the singularity of ž prevails, and this calls for a stretching of the cylinder; on the
other hand, in the region where u� 1, the singularity of ž plays no role, and the dominant
effect is due to the singularity of the p-laplacian. Luckily enough, in such a case p > 2
requires a stretching of the cylinder as well. Hence, in the degenerate regime, although
independent, both singularities concur and a proper balancing is relatively easy. On the
contrary, if we had 1 < p < 2, the singularity coming from the p-laplacian would require
a compression of the cylinder; therefore, balancing these two contrasting requirements is
much more challenging and cannot be achieved with a straightforward adaptation of the
techniques we employ here.

Moreover, an estimate of the modulus of continuity can be achieved once a specific
expression of ˇ is given; it suffices to trace all our computations, step by step, inserting its
functional dependence.

Finally, even though ˇ is assumed to be a continuous and piecewiseC 1 function whose
derivative ˇ0 blows up at ei , if we had ˇ.u/ � u, ˇ0 � 1 and no blow-up occurred, the
reasoning in Lemma 2.4 and Section 3 would not change, and the conclusions would
remain the same. Therefore, the continuity result of [11, Theorem 1.1] can be retrieved as
a particular case from the framework considered here.

The structure of the paper is as follows: in Section 2 we collect all the preliminary
tools; most of them are known and, therefore, we refer to elsewhere for their proofs, the
only exception being Lemma 2.4, which is dealt with in Section 4. Section 3 is devoted
to the proof of Theorem 1.1. Finally, Section 5 applies the main result to the flow of two
immiscible fluids with irreducible saturation; the application is far from trivial, because it
requires a careful analysis of particular lower-order terms. As clearly pointed out in [6],
only the particular structure of the right-hand side combined with the incompressibility
condition allows for the wanted regularity.

1.4. Definition of solution

A function
u 2 L1loc.0; T IL2loc.E// \ Lploc.0; T IW 1;p

loc .E//
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is a local, weak sub(super)-solution to (1.7) with the structure conditions in (1.8), if for
every compact set K � E and every sub-interval Œt1; t2� � .0; T �, there is a selection
v � ž.u/, that is, ®

.z; v.z// W z 2 ET
¯ � ®�z; žŒu.z/�� W z 2 ET ¯;

such that Z
K

v� dx
ˇ̌̌t2
t1
C
Z t2

t1

Z
K

Œ�v@t� C A.x; t; u;Du/ �D��dxdt �.�/ 0

for all non-negative test functions

� 2 W 1;2
loc .0; T IL2.K// \ Lploc.0; T IW 1;p

o .K//:

All the integrals are convergent as v 2 L1loc.0; T IL2loc.E//.
A function that is both a local, weak sub-solution and a local, weak super-solution is

termed a local, weak solution.
The use of test functions that involve u itself is standard in the regularity theory. Nev-

ertheless, the above notion of solution, though standard in the existence theory, does not
grant the admissibility of u a test function due to the lack of information in the time deriv-
ative and the jumps of ž. A common device to overcome this is to regularize (1.7). More
precisely, for " 2 .0; d/, we let

H "
ei
.u/ D

8̂̂<̂
:̂
1 u > ei C ";
1
"
.u � ei / ei � u � ei C ";
0 u < ei ;

and define

ž
".u/ � ˇ.u/CH".u/ WD ˇ.u/C

X̀
iD0

�iH
"
ei
.u/I

we now deal with

@t Œˇ.u/CH".u/� � div A.x; t; u;Du/ �.�/ 0 weakly in ET : (1.9)

A function u is termed a local weak sub(super)-solution to (1.9) if8̂<̂
:
Z u

0

Œˇ0.s/CH 0".s/�s ds 2 Cloc.0; T IL1loc.E//;

u 2 Lploc.0; T IW 1;p
loc .E//;

and for every compact subset K of E and every subinterval Œt1; t2� of .0; T �, we haveZ
K

Œˇ.u/CH".u/�� dx
ˇ̌̌t2
t1

C
Z t2

t1

Z
K

® � Œˇ.u/CH".u/�@t� C A.x; t; u;Du/ �D�¯dxdt �.�/ 0
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for all non-negative test functions

� 2 W 1;2
loc .0; T IL2.K// \ Lploc.0; T IW 1;p

o .K//:

A function u that is both a local weak sub-solution and a local weak super-solution
to (1.9) is termed a local weak solution.

Notice that the above notion of local weak solution to (1.9) still does not involve any
time derivative of u. However, we may now use u as a test function, modulo a standard
time mollification procedure (cf. [7, Chapter II]).

In this manuscript we assume that local solutions to (1.7) can be approximated by a
sequence of solutions to (1.9) locally uniformly. In [10, Section 1] it is briefly explained
why it is not restrictive to make such an assumption. The main goal is to establish a mod-
ulus of continuity for solutions to (1.9) uniform in ", which then is inherited by solutions
to (1.7) in the uniform convergence. Under this point of view, in [9, Section 5.1] there
is an interesting discussion about how this way of proceeding might be used in order to
prove existence of weak solutions to the equation.

2. Preliminary tools

2.1. Energy estimates

We denote byKR.xo/ the cube in RN with center xo and side length 2R, whose faces are
parallel with the coordinate planes. Moreover, for any k 2 R, we let

.u � k/C � max¹u � k; 0º; .u � k/� � max¹k � u; 0º:
The following energy estimate is standard (see, for example, [10, proof of estimate (2.5)]):

Proposition 2.1. Let u be a local weak sub(super)-solution to (1.9) with (1.8) in ET .
There exists a constant .Co; C1; p/ > 0 such that for all cylinders QR;S D KR.xo/ �
.to �S; to/�ET , every k 2R, and every non-negative, piecewise smooth cutoff function �
vanishing on @KR.xo/ � .to � S; to/, it holds that

ess sup
to�S<t<to

Z
KR.xo/�¹tº

�Z .u�k/˙

0

ˇ0.k ˙ s/s ds
�
�p dx

C ess sup
to�S<t<to

Z
KR.xo/�¹tº

�Z .u�k/˙

0

H 0".k ˙ s/s ds
�
�p dx

C
“
QR;S

�pjD.u � k/˙jp dxdt

� 
“
QR;S

.u � k/p˙jD�jp dxdt C 
“
QR;S

�Z .u�k/˙

0

ˇ0.k ˙ s/s ds
�
j@t�pj dxdt

C 
“
QR;S

�Z .u�k/˙

0

H 0".k ˙ s/s ds
�
j@t�pj dxdt
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C
Z
KR.xo/�¹to�Sº

�Z .u�k/˙

0

ˇ0.k ˙ s/s ds
�
�p dx

C
Z
KR.xo/�¹to�Sº

�Z .u�k/˙

0

H 0".k ˙ s/s ds
�
�p dx: (2.1)

Now we discuss some simplification of the general energy estimate in (2.1). First of
all, we deal with the terms containing H". Since H 0" � 0, we may discard the second term
on the left-hand side. Meanwhile, sinceH" is a linear combination of Heaviside functions
modulo ", we haveZ .u�k/˙

0

H 0".k ˙ s/s ds � .u � k/˙
Z .u�k/˙

0

H 0".k ˙ s/ ds �
�X̀
iD0

�i

�
.u � k/˙;

provided
P`
iD0 �i is finite. Instead, if it is infinite, we let

M WD kuk1;ET ;

and estimate Z .u�k/˙

0

H 0".k ˙ s/s ds � sup
jsj�M

jH".s/j.u � k/˙:

Hence, in this case the subsequent estimates will depend also onM , but will be independ-
ent of ".

Next we deal with the terms of ˇ. By using the fact that ˇ0 � ˛o in (1.3), we estimateZ .u�k/˙

0

ˇ0.k ˙ s/s ds � 1

2
˛o.u � k/2˙:

On the other hand, we easily obtainZ .u�k/˙

0

ˇ0.k ˙ s/s ds � sup
jsj�M

jˇ.s/j.u � k/˙:

Taking into account these remarks, we reduce (2.1) to

ess sup
to�S<t<to

1

2
˛o

Z
KR.xo/�¹tº

�p.u � k/2˙ dx C
“
QR;S

�pjD.u � k/˙jp dxdt

� 
“
QR;S

.u � k/p˙jD�jp dxdt C 
“
QR;S

.u � k/˙j@t�pj dxdt

C 
Z
KR.xo/�¹to�Sº

�p.u � k/˙ dx;

where the constant  depends on the data and M .
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If the cutoff function � is chosen to vanish at to � S , then we obtain

ess sup
to�S<t<to

1

2
˛o

Z
KR.xo/�¹tº

�p.u � k/2˙ dx C
“
QR;S

�pjD.u � k/˙jp dxdt

� 
“
QR;S

�
.u � k/p˙jD�jp C .u � k/˙j@t�pj

�
dxdt; (2.2)

which corresponds to [10, (2.5)].
On the other hand, if the cutoff function is chosen independent of the t variable, that

is, � D �.x/, then we have

ess sup
to�S<t<to

1

2
˛o

Z
KR.xo/�¹tº

�p.u � k/2˙ dx C
“
QR;S

�pjD.u � k/˙jp dxdt

� 
“
QR;S

.u � k/p˙jD�jp dxdt C 
Z
KR.xo/�¹to�Sº

�p.u � k/˙dx; (2.3)

which corresponds to [10, (2.6)].

2.2. Logarithmic estimates

Letting k, u, and QR;S be as in Proposition 2.1, we set

L WD sup
QR;S

.u � k/˙;

take c 2 .0;L/, and introduce the following function in QR;S :

‰.x; t/ � ‰.L; .u � k/˙; c/ WD lnC
� L

L � .u � k/˙ C c
�
:

To simplify the notation, if we let ‰.s/ D ‰.L; s; c/, then

‰0.s/ D 1

L � s C c �Œs>c�.s/:

We may prove the following logarithmic energy estimate just like in [10, (2.7)] or in
[11, Proposition 2.2]:

Proposition 2.2. Let the hypotheses in Proposition 2.1 hold. There exists  > 1 depending
only on the data and on M , such that for any � 2 .0; 1/,

sup
to�S�t�to

Z
K�R.xo/

‰2.x; t/ dx � 

c

Z
KR.xo/

‰.x; to � S/ dx

C 

.1 � �/pRp
“
QR;S

‰j‰0j2�p dxdt:
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For the cylinder Q WD K � .T1; T2/ � ET , we introduce the numbers �˙ and ! sat-
isfying

�C � ess sup
Q

u; �� � ess inf
Q

u; ! � �C � ��:

Then, we have the following consequence of the above logarithmic estimate, whose
proof can be retrieved from [11, Lemma 2.4]; it indicates how the measure of a set near the
supremum/infimum shrinks at each level of an arbitrarily long time interval, once initial
pointwise information is assigned:

Lemma 2.1. Let u be a local weak sub(super)-solution to (1.9) with (1.8) in ET . For
� 2 .0; 1/, set � D .�!/2�p . Suppose that

˙.�˙ � u.�; t1// � �! a.e. in K%.xo/:

Then, for any ˛ 2 .0; 1/ and A � 1, there exists N� 2 .0; 1
4
�/ such that

jŒ˙.�˙ � u.�; t // � N�!� \K 1
2%
.xo/j � ˛jK 1

2%
j for all t 2 .t1; t1 C A�%p/;

provided the cylinder K%.xo/ � .t1; t1 C A�%p/ is included in Q. Moreover, the depend-
ence of N� is given by

N� D 1

2
� exp

°
� .data/

A

˛

±
:

2.3. De Giorgi-type lemmas

For the cylinder Q � ET , we introduce the numbers �˙ and ! just like in Section 2.2.
Setting .xo; to/ C Q%.�/ D K%.xo/ � .to � �%p; to/, we now present the first De

Giorgi-type lemma that can be shown by using the energy estimates in (2.2); for the
detailed proof we refer to [17, Lemma 2.1]. If no confusion arises, we omit the ver-
tex .xo; to/ for simplicity.

Lemma 2.2. Let u be a local weak sub(super)-solution to (1.9) with (1.8) in ET and let
� 2 .0; 1/ and � D .�!/2�p . There exists a constant co 2 .0; 1/ depending only on the
data such that if

jŒ˙.�˙ � u/ � �!� \Q%.�/j � co.�!/
NCp
p jQ%.�/j;

then
˙.�˙ � u/ � 1

2
�! a.e. in Q 1

2%
.�/;

provided Q%.�/ is included in Q.

The next lemma is a variant of the previous one, involving quantitative initial data. For
this purpose, we will use the forward cylinder at .xo; t1/ with length � > 0

.xo; t1/CQC% .�/ WD K%.xo/ � .t1; t1 C �%p/:
The proof is based on (2.3) and can be retrieved from [11, Lemma 2.2].
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Lemma 2.3. Let u be a local weak sub(super)-solution to (1.9) with (1.8) in ET . Assume
that for some � 2 .0; 1/, it holds that

˙.�˙ � u.�; t1// � �! a.e. in K%.xo/:

There exists a constant o 2 .0; 1/ depending only on the data such that for any � > 0, if

jŒ˙.�˙ � u/ � �!� \ Œ.xo; t1/CQC% .�/�j �
o.�!/

2�p

�
jQC% .�/j;

then
˙.�˙ � u/ � 1

2
�! a.e. in K 1

2%
.xo/ � .t1; t1 C �%p/;

provided the cylinder .xo; t1/CQC% .�/ is included in Q.

As we have seen, the previous two lemmas use the “simplified" version of energy
estimates (2.2) and (2.3) only. In contrast, the next lemma examines the singularity of ž
at ŒuD ei � for any i D 0;1; : : : ; `more carefully; due to the periodicity assumption, we are
reduced to studying Œu D 0�. The lemma quantifies a measure condition to ensure that the
singular effect due to the jump is negligible. As a result, the singularity due to ˇ0.0/ D1
prevails, which will be reflected by a time scaling different from the previous one. We will
evoke an argument from [8, Sections 4.3–4.5] to deal with the situation.

The vertex .xo; to/ will be omitted from Q%.A!
2�p/ for simplicity.

Lemma 2.4. Let u be a local weak super-solution to (1.9) with (1.8) in ET . Assume that
for some ˛; � 2 .0; 1/ and A > 1, it holds that

jŒu.�; t / � �� � �!� \K%j > ˛jK%j for all t 2 .to � A!2�p%p; to�: (2.4)

There exists � 2 .0; �/ determined by the data, ˛, �, M , and ˇ.�/ such that if

A � ˇ.1
8
�!/

1
8
�!

�2�pI

j�� � ei j � 1
4
�! for some i 2 ¹0; 1; : : : ; `º, 5

4
�! 2 .0; Nd/; and it holds that“

Q%.�/

�Z k

u

H 0".s/�Œs<k� ds
�

dxdt � ˇ.�!/
ˇ̌̌h
u � �� C 1

2
�!
i
\Q 1

2%
.�/
ˇ̌̌
; (2.5)

where k D �� C �!, and � D ˇ. 18 �!/
1
8 �!

.�!/2�p , then

u � �� C 1

4
�! a.e. in Q 1

2%
.�/;

provided the cylinder Q%.A!2�p/ is included in Q.

We will postpone the proof to Section 4.

Remark 2.1. A similar result to Lemma 2.4 also holds for sub-solutions. Since we do not
use it, it is omitted.
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3. Proof of Theorem 1.1

Assume .xo; to/ D .0; 0/, introduce Qo D K8% � .�.8%/p�1; 0�, and set

�C D ess sup
Qo

u; �� D ess inf
Qo

u; ! � �C � ��:

Letting � D .1
4
!/2�p , for some A.!/ > 1 to be determined in terms of the data and !,

we may assume that

Q8%.A�/ � Qo D K8% � .�.8%/p�1; 0� such that ess osc
Q%.A�/

u � !I (3.1)

the case when the set inclusion does not hold will be incorporated later.

3.1. Reduction of oscillation near the supremum

In this section, we work with u as a sub-solution near its supremum. Suppose for some
Nt 2 .�.A � 1/�%p; 0�ˇ̌̌h

�C � u � 1

4
!
i
\ Œ.0; Nt /CQ%.�/�

ˇ̌̌
� co

�1
4
!
�NCp

p jQ%.�/j DW ˛jQ%.�/j (3.2)

holds, where co 2 .0; 1/ depends only on the data as determined in Lemma 2.2. An applic-
ation of Lemma 2.2 (with � D 1

4
) then yields

�C � u � 1

8
! a.e. in .0; Nt /CQ 1

2%
.�/. (3.3)

In particular, estimate (3.3) holds at t1 WD Nt � �.12%/p and serves as the initial datum for
an application of Lemmas 2.1 and 2.3. In fact, Lemma 2.3 determines some o 2 .0; 1/
satisfying that if for some � 2 .0; 1

8
/,

jŒ�C � u � �!� \ zQj � o.
1
8
!/2�p

A�
j zQj where zQ WD K 1

2%
� .t1; 0/; (3.4)

then
�C � u � 1

2
�! a.e. in K 1

4%
� .t1; 0/: (3.5)

In the meantime, thanks to Lemma 2.1, (3.4) is fulfilled with the choice

� D 1

16
exp

°
� A2

2p�2o

±
;

and hence, so is (3.5) in view of Lemma 2.3. As a result, we obtain a reduction of oscilla-
tion from estimate (3.5), no matter where the location of Nt is. More precisely,

ess osc
Q 1
4 %
.�/
u �

�
1 � 1

2
�
�
!: (3.6)

Note that A.!/ has not been fixed yet. It will be chosen at the final stage of the argument,
and hence, simultaneously it will determine the value of �.
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3.2. Reduction of oscillation near the infimum: Part I

Starting from this section, let us suppose contrary to (3.2) that, for any Nt 2 .�.A �
1/�%p; 0�,ˇ̌̌h

�C � u � 1

4
!
i
\ Œ.0; Nt /CQ%.�/�

ˇ̌̌
> ˛jQ%.�/j for ˛ D co

�1
4
!
�NCp

p
:

Since �C � 1
4
! � �� C 1

4
! always holds, we may rephrase it asˇ̌̌h

u � �� � 1

4
!
i
\ Œ.0; Nt /CQ%.�/�

ˇ̌̌
> ˛jQ%.�/j: (3.7)

Suppose Nt is fixed for the moment. The measure information in (3.7) together with
energy estimate (2.2) implies a local clustering phenomenon of u. This is the content
of the next lemma, similar to [10, Proposition 5.1˙]; the proof can be reproduced as in
[10, Sections 5–8] or [11, Lemma 3.1]. Throughout Sections 3.2–3.6, we will work with u
as a super-solution near its infimum.

Lemma 3.1. For every � 2 .0; 1/ and � 2 .0; 1/, there exists a point .x�; t�/ 2 .0; Nt /
CQ%.�/, a number � 2 .0; 1/, and a cylinder .x�; t�/CQ�%.�/ � .0; Nt /CQ%.�/ such
that ˇ̌̌h

u � �� C 1

4
�!
i
\ Œ.x�; t�/CQ�%.�/�

ˇ̌̌
� �jQ�%.�/j:

The constant � is determined by the data, M , �, �, ˛, and !.

Although the location of .x�; t�/CQ�%.�/ � .0; Nt /CQ%.�/ is only known qualit-
atively, we may use the quantified measure concentration to extract a pointwise estimate
with the aid of Lemma 2.2, and then use the logarithmic energy estimate to propagate the
measure information up to the level Nt .

Indeed, if in Lemma 3.1 we choose �D 1
2

and �D co.14!/
NCp
p , where co is determined

in Lemma 2.2, then Lemmas 2.2 and 3.1 would yield that

u � �� C 1

16
! a.e. in .x�; t�/CQ 1

2 �%
.�/;

for some .x�; t�/ 2 .0; Nt /CQ%.�/ and some � 2 .0; 1/ depending on the data,M , and !.
In particular, we have

u
�
�; t� � �

�1
2
�%
�p�
� �� C 1

16
! a.e. in K 1

2 �%
.x�/;

which serves as the initial datum to apply Lemma 2.1. In fact, setting ˛ D 1
2

and � D 1
16

in Lemma 2.1 and choosing zA so large that�1
4
!
�2�p

%p � zA
� 1
16
!
�2�p�1

2
�%
�p
; that is, zA � 24�p

�p
;
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it yields a number N� 2 .0; 1
4
�/ such that

jŒu.�; Nt / > �� C N�!� \K 1
4 �%
.x�/j > 1

2
jK 1

4 �%
j: (3.8)

As in [11, Section 3.2, (3.17)], the dependence of N� is traced by

N� D 1

32
exp

°
� 

!p Nq
±
;

where
Nq WD

�N
p
C 1

��
3C 2

p

�
C 1

p
C 1:

The measure information in (3.8) permits us to claim that

jŒu.�; Nt / > �� C N�!� \K%j � jŒu.�; Nt / > �� C N�!� \K 1
4 �%
.x�/j

>
1

2
jK 1

4 �%
j D 1

2

�1
4
�
�N
jK%j DW N̨ jK%j:

Thanks to the arbitrariness of Nt , we have actually arrived at

jŒu.�; t / � �� C N�!� \K%j > N̨ jK%j for all t 2 .�.A � 1/�%p; 0�: (3.9)

Once more, as in [11, Section 3.2, (3.19)], the dependence of N̨ is traced by

N̨ D .data/ ! NqN :

The analysis to be unfolded in the following sections relies on the measure information
in (3.9). For simplicity, we will use (3.9) with A� 1 replaced by A; recall that A is a free,
large number to be chosen.

3.3. Reduction of oscillation near the infimum: Part II

Let us first introduce the following intrinsic cylinders8̂<̂
:Q%.

y�/ D K% � .�y�%p; 0/; y� D ˇ.1
8
�!/

1
8
�!

.�!/2�p;

Q%.z�/ D K% � .�z�%p; 0/; z� D .ı�!/1�p;
for some �.!/ and ı.!/ in .0; 1/ to be determined later. We can always assume � and ı to
be sufficiently small, so that on one hand 8ˇ.1

8
�!/ � ı1�p , which ensures y� � z� , and on

the other hand, y� � � .
In addition, we may suppose that

8p z� � A8p� (3.10)

for some A.!/ yet to be determined.
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Throughout Sections 3.3–3.5, we always assume that 5
4
�! 2 .0; Nd/ and

j�� � ei j � 1

4
ı�! for some i 2 ¹0; 1; : : : ; `º; (3.11)

for the same �.!/ and ı.!/ in .0; 1/ introduced above, to be determined. When restric-
tion (3.11) does not hold, the case will be examined in Section 3.6.

First of all, we turn our attention to Lemmas 2.2 and 2.4. In view of the measure
information in (3.9), Lemma 2.4 is at our disposal, with ˛, �, and A replaced by N̨ , N�,
and A=42�p , respectively. Suppose � is determined in Lemma 2.4 in terms of the data
and N̨ , assume � < 1

4
with no loss of generality, and let �� WD .�!/2�p . Ifˇ̌̌h

u � �� C 1

2
�!
i
\Q 1

2%
.��/

ˇ̌̌
� co.�!/

NCp
p jQ 1

2%
.��/j

holds, then Lemma 2.2 yields that

u � �� C 1

4
�! a.e. in Q 1

4%
.��/: (3.12)

Analogously, if for k D �� C �!,“
Q%.y�/

Z k

u

H 0".s/�Œs<k� dsdxdt � ˇ.�!/
ˇ̌̌h
u � �� C 1

2
�!
i
\Q 1

2%
.y�/
ˇ̌̌

holds, then, stipulating

A � �2�p ˇ.
1
8
�!/

1
8
�!

; (3.13)

Lemma 2.4 yields that

u � �� C 1

4
�! a.e. in Q 1

2%
.y�/: (3.14)

Consequently, either (3.12) or (3.14) yields a reduction of oscillation

ess osc
Q 1
4 %
.��/

u �
�
1 � 1

4
�
�
!; (3.15)

where we have taken into account that

y� D ˇ.1
8
�!/

1
8
�!

.�!/2�p > .�!/2�p D ��:

Remark 3.1. We may trace the dependence of � by

� D 2�mj� N� D 1

32
2�mj� exp

°
� 

!p Nq
±

with m 2 N; 2p � m < 2p C 1:

Here j� � j�.!/ will be determined according to (4.6).
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3.4. Reduction of oscillation near the infimum: Part III

This section starts dealing with the situation when the measure conditions in Section 3.3
are violated, that is, when the measure condition in Lemma 2.2 is violated, meaning thatˇ̌̌h

u � �� C 1

2
�!
i
\Q 1

2%
.��/

ˇ̌̌
> co.�!/

NCp
p jQ 1

2%
.��/j; (3.16)

and when the condition in Lemma 2.4 is also violated: for k D �� C �!, it holds that“
Q%.y�/

Z k

u

H 0".s/�Œs<k� dsdxdt > ˇ.�!/
ˇ̌̌h
u � �� C 1

2
�!
i
\Q 1

2%
.y�/
ˇ̌̌
: (3.17)

Combining (3.16)–(3.17) and recalling z� � ��, we obtain that, for all r 2 Œ2%; 8%�,“
Qr .y�/

Z k

u

H 0".s/�Œs<k� dsdxdt �
“
Q%.y�/

Z k

u

H 0".s/�Œs<k� dsdxdt

� ˇ.�!/
ˇ̌̌h
u � �� C 1

2
�!
i
\Q 1

2%
.y�/
ˇ̌̌

� ˇ.�!/
ˇ̌̌h
u � �� C 1

2
�!
i
\Q 1

2%
.��/

ˇ̌̌
� co.�!/

NCp
p ˇ.�!/jQ 1

2%
.��/j

� 1

8
co.�!/

1CNCp
p

ˇ.�!/

ˇ.1
8
�!/
jQr .y�/j

� zb.�!/jQr .y�/j; (3.18)

where z D co 1816�N�p and

b.�!/ WD .�!/1CNCp
p :

Next, assuming ı has been chosen, we introduce a free parameter Nı 2 .ı; 2ı/ and set
N� WD . Nı�!/1�p . Recall also that

� D
�1
4
!
�2�p

; z� D .ı�!/1�p; y� D ˇ.1
8
�!/

1
8
�!

.�!/2�p;

and that we have assumed z�.8%/p � A�.8%/p � .8%/p�1 in (3.10). Hence, we have

Qr .y�/ � Qr . N�/ � Qr .z�/ � Qr .A�/ � Qo for any r 2 Œ2%; 8%�:

According to (3.18), it is not hard to find some t� 2 Œ�y�rp; 0� satisfyingZ
Kr�¹t�º

Z k

u

H 0".s/�Œs<k� dsdx � zb.�!/jKr j: (3.19)
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Observe also that for any t 2 Œ� N� rp; 0� and any Nı 2 .ı; 2ı/,

jKr j � jŒu � �� C Nı�!� \Kr j � . Nı�!/�2
Z
Kr�¹tº

Œu � .�� C Nı�!/�2� dx (3.20)

holds. Denoting Nk D �� C Nı�! and enforcing that for some i 2 ¹0; 1; : : : ; `º,

j�� � ei j � 1

4
ı�! and " � 1

4
ı�!;

we use (3.19) and (3.20) to estimate

ess sup
� N�rp<t<0

Z
Kr

Z Nk
u

H 0".s/.s � Nk/� dsdx

� . Nk � ei � "/ ess sup
� N�rp<t<0

Z
Kr

Z Nk
u

H 0".s/�Œs< Nk� dsdx � z. Nk � ei � "/b.�!/jKr j

� 1

2
zb.�!/.ı�!/. Nı�!/�2 ess sup

� N�rp<t<0

Z
Kr�¹tº

Œu � .�� C Nı�!/�2� dx:

Here we require 5
4
�! 2 .0; Nd/ because of Lemma 2.4, and in the first inequality above

we have also assumed 9
4
�! � d by possibly further restricting the choice of �; hence,

.��; Nk/ � .ei � 1
4
ı�!; ei C 1

4
ı�! C 2ı�!/ � .ei � d; ei C d/. The above analysis,

together with (2.1), yields the following energy estimate:

Lemma 3.2. Let u be a weak super-solution to (1.9) with (1.8) in ET , under the measure
information in (3.9). Let (3.16) and (3.17) hold true. Denoting

b.�!/ D .�!/1CNCp
p ;

and setting k D �� C Nı�! with Nı 2 .ı; 2ı/, there exists a positive constant  depending
only on the data such that for all � 2 .0; 1/ and all r 2 Œ2%; 8%�, we have

ı�!. Nı�!/�2b.�!/ ess sup
� N�.�r/p<t<0

Z
K�r�¹tº

.u � k/2� dx C
“
Q�r . N�/

jD.u � k/�jp dxdt

� 

.1 � �/prp
“
Qr . N�/

.u � k/p�dxdt C 

.1 � �/ N� rp
“
Qr . N�/

.u � k/� dxdt;

provided that for some i 2 ¹0; 1; : : : ; `º,

j�� � ei j � 1

4
ı�!;

5

4
�! 2 .0; Nd/; and " � 1

4
ı�!:

The energy estimate in Lemma 3.2 yields the following De Giorgi-type lemma; notice
that the time scaling used here is different from the one in Lemmas 2.2–2.4:
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Lemma 3.3. Suppose the hypotheses in Lemma 3.2 hold. Let ı 2 .0; 1/. There exists a
constant c2 2 .0; 1/ depending only on the data such that if

jŒu < �� C 2ı�!� \Q4%.z�/j � c2b.�!/jQ4%.z�/j; where z� D .ı�!/1�p;
and 5

4
�! 2 .0; Nd/, then either j�� � ei j > 1

4
ı�! for all i 2 ¹0; 1; : : : ; `º or

u � �� C ı�! a.e. in Q2%.z�/;
provided 4p z� � A8p� .

Proof. For n D 0; 1; : : : ; we set8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

kn D �� C ı�! C ı�!

2n
; Qkn D kn C knC1

2
;

%n D 2%C %

2n�1
; Q%n D %n C %nC1

2
;

Kn D K%n ; zKn D K Q%n ;
Qn D Q%n.z�/; zQn D Q Q%n.z�/:

We will use the energy estimate in Lemma 3.2 with the pair of cylinders zQn � Qn. Note
that the constant Nı in Lemma 3.2 is replaced by .1C 2�n/ı, as indicated in the definition
of kn. Enforcing j�� � ei j � 1

4
ı�! and " � 1

4
ı�!, the energy estimate in Lemma 3.2

yields that

.ı�!/�1b.�!/ ess sup
�z� Q%pn<t<0

Z
zKn�¹tº

.u � Qkn/2� dx C
“
zQn
jD.u � Qkn/�jp dxdt

�  2
pn

%p
.ı�!/pjAnj;

where
An D Œu < kn� \Qn:

Let 0 � � � 1 be a cutoff function that vanishes on the parabolic boundary of zQn and
equals 1 in QnC1. An application of the Hölder inequality, the Sobolev imbedding [7,
Chapter I, Proposition 3.1], and the above energy estimate gives that

ı�!

2nC3
jAnC1j �

“
zQn

�
u � Qkn

�
�� dxdt

�
h“

zQn

��
u � Qkn

�
��
�p NC2N dxdt

i N
p.NC2/ jAnj1�

N
p.NC2/

� 
h“

QQn

ˇ̌
D
�
.u � Qkn/��

�ˇ̌p dxdt
i N
p.NC2/

�
h

ess sup
�z� Q%2n<t<0

Z
zKn

�
u � Qkn

�2
� dx

i 1
NC2 jAnj1�

N
p.NC2/
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� Œb.�!/�� 1
NC2 .ı�!/

1
NC2

h
.ı�!/p

2np

%p

i NCp
p.NC2/ jAnj1C 1

NC2 :

In terms of Yn D jAnj=jQnj, the recurrence is rephrased as

YnC1 � C n

Œb.�!/�
1

NC2
Y
1C 1

NC2
n ;

for a constant  depending only on the data and with C D 2 2NC2CpNC2 . Hence, by [7, Chap-
ter I, Lemma 4.1], there exists a positive constant c2 depending only on the data such that
Yn ! 0 if we require that Yo � c2b.�!/. This concludes the proof.

The next lemma concerns the smallness of the measure density of the set Œu � ���.
Its proof relies on (2.2) and the measure information in (3.9) will be employed.

Lemma 3.4. Let u be a weak super-solution to (1.9) with (1.8) in ET , under the measure
information in (3.9). There exists a positive constant  depending only on the data such
that for any s� 2 N, we haveˇ̌̌h

u � �� C �!

2s�

i
\Q4%.z�/

ˇ̌̌
� 

N̨ s
� p�1p� jQ4%.z�/j; where z� D

� �!
2s�

�1�p
;

provided 4p z� � A8p� .

Proof. The proof is identical to that of [11, Lemma 3.4].

3.5. Reduction of oscillation near the infimum: Part IV

Now we have all the prerequisites to reduce the oscillation under conditions (3.16)
and (3.17). First of all, let � be determined by Lemma 2.4 in terms of the data and N̨
as in Section 3.3. Then, we choose the integer s� large enough to satisfy



N̨s
p�1
p�
� c2b.�!/;

where the constant c2 and the quantity b.�!/ are defined in Lemma 3.3.
Next, we can fix 2ı D 2�s� in Lemma 3.3. Consequently, Lemma 3.3 can be applied,

assuming that j�� � ei j � 1
4
ı�! for some i 2 ¹0;1; : : : ; `º and "� 1

4
ı�!, and we arrive at

u � �� C ı�! a.e. in Q2%.z�/:

This would give us a reduction of oscillation

ess osc
Q2%.z�/

u � .1 � ı�/! (3.21)
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with the above-defined ı and �. For the moment, as required in (3.10) and (3.13), the
choice of A can be made from

A D max
°
2pC4!�1.ı�/1�p; �2�p

ˇ.1
8
�!/

1
8
�!

±
D 2pC4!�1.ı�/1�p: (3.22)

To summarize the achievements in Sections 3.1–3.5, taking the reverse of (3.1), (3.6),
and (3.15), as well as (3.21) all into account, if j�� � ei j � 1

4
ı�! for some i 2 ¹0;1; : : : ; `º

and " � 1
4
ı�! hold true, then for � D .1

4
!/2�p , taking into account that � < ��, we have

either ess osc
Q 1
4 %
.�/
u � .1 � N�.!//! or

�1
4
!
�p�2

ŒA.!/��1 � %; (3.23)

where
N� D min

°1
2
�;
1

4
�; ı�

±
:

Among them � is to be fixed, as the final choice of A is yet to be made.

3.6. Reduction of oscillation near the infimum: Part V

Let �.!/ and ı.!/ be determined as in the previous sections. The analysis throughout Sec-
tions 3.3–3.5 has been founded on condition (3.11). We now examine the case when (3.11)
does not hold, namely,

j�� � ei j > 1

4
ı�! for all i 2 ¹0; 1; : : : ; `º: (3.24)

Notice that the analysis in Section 3.2 does not rely on condition (3.11), and thus, the
measure information in (3.9) derived there is still at our disposal. In view of the determ-
ination of � starting from N�, we have that � < N� (cf. Remark 3.1), and hence, (3.9) holds
true with N� replaced by ı� .

Next, for z� 2 .0; 1
8
/, we introduce the levels k D �� C z�ı�!. According to (3.24) and

assuming that " � 1
4
ı�!, energy estimate (2.1)� written in Q%.#/ � Q%.A�/ for some

0 < # < A� yields that

ess sup
�#%p<t<0

1

2
˛o

Z
K%�¹tº

�p.u � k/2� dx C
“
Q%.#/

�pjD.u � k/�jp dxdt

� 
“
Q%.#/

h
.u � k/p�jD�jp C ˇ0

�1
8
ı�!

�
.u � k/2�j@t�pj

i
dxdt:

Given this energy estimate and the measure information in (3.9), the theory of the para-
bolic p-Laplacian in [7, Chapter III] applies, bearing in mind that at this stage ı and �
have been chosen and hence ˇ0.1

8
ı�!/ is deemed a fixed quantity, although it could be

quite large.
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Lemma 3.5. Let u be a weak super-solution to (1.9) with (1.8) in ET . Suppose (3.9)
and (3.24) hold true, and " � 1

4
ı�!. There exists a positive constant z� depending on the

data, !, and N̨ , such that for # D .z�ı�!/2�p , we have

ess osc
Q 1
4 %
.#/
u � .1 � z�ı�/!;

provided # � A� .

Remark 3.2. The dependence of z� can be traced by

z� D exp
°
� .data/ N̨� p

p�1
h
ˇ0
�1
8
ı�!

�iNCpC1
p�1 ±

:

Lemma 3.5 imposes a new condition on A in order to satisfy # � A� , namely,
A� .4z�ı�/2�p; taking into account the existing condition given by (3.22), the final choice
of A is made by

A D max
®
.4z�ı�/2�p; 2pC4!�1.ı�/1�p¯:

This choice of A also determines the value of � in (3.6).
Let us summarize what has been achieved in the previous sections. According to (3.23)

and Lemma 3.5, we have

ess osc
Q 1
4 %
.�/
u � .1 � z�.!//!; or !p�2ŒA.!/��1 � 4p�2%; or ı.!/�.!/! � 4";

where � D .1
4
!/2�p and

z� D min
® N�; z�ı�¯:

Moreover, the functions

.0; 1/ 3 ! 7! z�.!/; ı.!/; �.!/; ŒA.!/��1

are increasing and satisfy

z�; ı; �; A�1 ! 0 as ! ! 0:

Remark 3.3. Starting from the previous conclusions, the final proof of continuity of u is
given in a standard way, showing how the oscillation of u decreases in a controlled way
along a sequence of nested cylinders. Moreover, once the functional dependence of ˇ is
given, an argument like the one in [11, Section 3.7] can be set up to quantify the modulus
of continuity.

4. Proof of Lemma 2.4

We assume .xo; to/ D .0; 0/ for simplicity and use energy estimate (2.1) with QR;S
D Qr .�/ for 1

2
% � r � %, and with k D �� C �!.
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The length � of the cylinder will be determined in what follows. For the moment we
assume it as a given quantity.

We discard the second term on the left-hand side sinceH 0" � 0, and we choose the test
function such that �.�;��%p/ D 0. As for the first term on the left-hand side, we haveZ k

u

ˇ0.s/.k � s/� ds � min
u�s�k

ˇ0.s/
Z k

u

.k � s/� ds D 1

2

�
min
u�s�k

ˇ0.s/
�
.u � k/2�;

and also for some i 2 ¹0; 1; : : : ; `º,

ei � 1
4
�! � �� � ei C 1

4
�! H) ei C 3

4
�! � k � ei C 5

4
�!:

Therefore, taking (1.4)–(1.5) into account, we estimate

min
u�s�k

ˇ0.s/ � min
°
ˇ0
�
ei C 5

4
�!
�
; ˇ0
�
ei � 1

4
�!
�±
D min

®
ˇ0
�5
4
�!
�
; ˇ0
�
�1
4
�!
�±
:

If we denote
ˇ0�.�!/ WD min

°
ˇ0
�5
4
�!
�
; ˇ0
�
�1
4
�!
�±
;

then energy estimate (2.1) becomes

ess sup
��rp<t<0

1

2
ˇ0�.�!/

Z
Kr�¹tº

.u � k/2��p dx C
“
Qr .�/

�pjD.u � k/�jp dxdt

� 
“
Qr .�/

.u � k/p�jD�jp dxdt C 
“
Qr .�/

�Z .u�k/�

0

ˇ0.k � s/s ds
�
j@t�pj dxdt

C 
“
Qr .�/

�Z .u�k/�

0

H 0".k � s/s ds
�
j@t�pj dxdt:

Next we treat the right-hand side of this energy estimate. Let us first estimate the last
integral via the given measure-theoretical information in (2.5):“

Qr .�/

Z k

u

H 0".s/.k � s/C dsj@t�pj dxdt

� .k � ��/
“
Qr .�/

Z k

u

H 0".s/�Œs<k� dsj@t�pj dxdt

� �!
“
Q%.�/

Z k

u

H 0".s/�Œs<k� dsj@t�pj dxdt

� .�!/2ˇ.�!/
�!
k@t�pk1

ˇ̌̌h
u � �� C 1

2
�!
i
\Q 1

2%
.�/
ˇ̌̌

� .�!/2ˇ.�!/
�!
k@t�pk1

“
Qr .�/

�Œu<��C�!� dxdt:
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On the other hand, if we consider the second term on the right-hand side of the energy
estimate,“

Qr .�/

Z k

u

ˇ0.s/.k � s/C dsj@t�pj dxdt

� .k � ��/
“
Qr .�/

Z k

u

ˇ0.s/�Œs<k� dsj@t�pj dxdt

� �!k@t�pk1
“
Qr .�/

Z k

u

ˇ0.s/�Œs<k� dsdxdt

� �!k@t�pk1Œˇ.�� C �!/ � ˇ.��/�
“
Qr .�/

�Œu<��C�!� dxdt:

Due to (1.4), we have

ˇ.�� C �!/ � ˇ.��/ � ˇ
�
ei C 5

4
�!
�
� ˇ

�
ei � 1

4
�!
�
D ˇ

�5
4
�!
�
� ˇ

�
�1
4
�!
�

�
�5
4
�!
�hˇ.5

4
�!/

5
4
�!

C ˇ.�1
4
�!/

�1
4
�!

i
�
�5
4
�!
�

max
°ˇ.5

4
�!/

5
4
�!

;
ˇ.�1

4
�!/

�1
4
�!

±
:

Hence, we arrive at“
Qr .�/

Z k

u

ˇ0.s/.k � s/C dsj@t�pj dxdt

� .�!/2 max
°ˇ.5

4
�!/

5
4
�!

;
ˇ.�1

4
�!/

�1
4
�!

±
k@t�pk1

“
Qr .�/

�Œu<��C�!� dxdt:

Consequently, under the assumption that j�� � ei j � 1
4
�! for some i 2 ¹0; 1; : : : ; `º,

energy estimate (2.1) becomes

ess sup
��rp<t<0

1

2
ˇ0�.�!/

Z
Kr�¹tº

.u � k/2��p dx C
“
Qr .�/

�pjD.u � k/�jp dxdt

� 
“
Qr .�/

.u � k/p�jD�jp dxdt

C k@t�pk1.�!/2��.�!/
“
Qr .�/

�Œu<��C�!� dxdt; (4.1)

where we have set

��.�!/ WD max
°ˇ.5

4
�!/

5
4
�!

;
ˇ.�1

4
�!/

�1
4
�!

±
; ˇ0�.�!/ WD min

°
ˇ0
�5
4
�!
�
; ˇ0
�
�1
4
�!
�±
:
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In the derivation of (4.1) we have used the periodicity of ˇ expressed in (1.4), but oth-
erwise, we have tried to keep its formulation as general as possible. Based on energy
estimate (4.1), we can establish the following two claims:

Claim 1. Letting � � �.�!/ WD ��.12�!/.�!/2�p , there exists c1 2 .0; 1/ depending only
on the data such that if

jŒu � �� C �!� \Q%.�/j � c1
h ˇ0�.�!/
��.12�!/

i
jQ%.�/j;

then
u � �� C 1

2
�! a.e. in Q 1

2%
.�/;

provided j�� � ei j � 1
4
�! for some i 2 ¹0; 1; : : : ; `º, and 5

4
�! 2 .0; Nd/.

Proof. Recall that the wanted parameter � has not been determined yet. Assuming it has
been fixed for the moment, for n 2 N, we introduce8<:%n D %

2
C %

2nC1
; kn D �� C �n!; �n D �

2
C �

2nC1
;

Kn D K%n ; Qn D Kn � .��%pn ; 0/:
The above energy estimate (see (4.1)) is used in Qn instead of Qr .�/, with k and �
replaced by kn and �n, respectively. Moreover, by the definition of �n, ˇ0�, ��, the property
of ˇ in (1.5), and the restriction 5

4
�! 2 .0; Nd/, we estimate

ˇ0�.�n!/ � ˇ0�.�!/; ��.�n!/ � ��
�1
2
�!
�
:

To proceed, the quantity � is chosen to be ��.12�!/.�!/
2�p . As a result, energy estim-

ate (4.1) may be written as

ess sup
��%pn<t<0

1

2
ˇ0�.�!/

Z
Kn�¹tº

.u � kn/2��p dx C
“
Qn

�pjD.u � kn/�jp dxdt

� 
“
Qn

.u � kn/p�jD�jp dxdt C k@t�pk1.�!/p�
“
Qn

�Œu<kn� dxdt:

Let 0 � � � 1 be a cutoff function that vanishes on the parabolic boundary of Qn and
equals the identity in QnC1. Moreover, suppose that its derivatives satisfy jD�j � 2n=%
and j@t�j � 2np=�%p . Then, the energy estimate becomes

ess sup
��%pn<t<0

1

2
ˇ0�.�!/

Z
Kn�¹tº

.u � kn/2��p dx C
“
Qn

�pjD.u � kn/�jp dxdt

�  2
np

%p
.�!/pjAnj;

where An D Œu < kn� \Qn.
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An application of the Hölder inequality, the Sobolev imbedding [7, Chapter I, Propos-
ition 3.1], and the above energy estimate gives that

�!

2nC2
jAnC1j �

“
Qn

�
u � kn

�
�� dxdt

�
h“

Qn

��
u � kn

�
��
�p NC2N dxdt

i N
p.NC2/ jAnj1�

N
p.NC2/

� 
h“

Qn

ˇ̌
D
�
.u � kn/��

�ˇ̌p dxdt
i N
p.NC2/

�
h

ess sup
��%pn<t<0

Z
Kn�¹tº

�
u � kn

�2
��
2 dx

i 1
NC2 jAnj1�

N
p.NC2/

� Œˇ0�.�!/��
1

NC2 .�!/1C
p�2
NC2

2n
NCp
NC2

%
NCp
NC2
jAnj1C 1

NC2 :

In terms of Yn D jAnj=jQnj, the recurrence is rephrased as

YnC1 � C n
h��.12�!/
ˇ0�.�!/

i 1
NC2

Y
1C 1

NC2
n ;

where C D 2
2NC2Cp
NC2 and  is a constant depending only on the data. Hence, by [7,

Chapter I, Lemma 4.1], there exists c1 2 .0; 1/ depending only on the data such that
Yn ! 0 if we require that Yo � c1ˇ0�.�!/=��.12�!/. This completes the proof.

From the measure-theoretical information in (2.4), we obtain that

jŒu.�; t / � �� � �!� \K2%j > ˛2�N jK2%j for all t 2 .to � A!2�p%p; to�: (4.2)

The following claim hinges upon this measure information:

Claim 2. For j 2N, let �j WD ��.122�j�!/.2�j�!/2�p . Assume the measure-theoretical
information in (4.2) holds with A!2�p � �mj� . There exists  > 0 depending only on the
data such that for any m; j� 2 N,ˇ̌̌h

u � �� C �!

2mj�

i
\Q%.�mj�/

ˇ̌̌
� m4m.NCp/

˛mj
m
p�1
p�
jQ%.�mj�/j;

provided j�� � ei j � 1
4
2�mj��! for some i 2 ¹0; 1; : : : ; `º.

Proof. We employ energy estimate (4.1) in Q2%.�mj�/ with the levels

kj WD �� C �!

2j
; j D 0; 1; : : : ; j�:

According to the restriction j�� � ei j � 1
4
2�mj��!, we are allowed to employ energy

estimate (4.1) with the above levels kj . At this stage we are using neither (1.5) nor (1.6). To
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this end, the cutoff function � is chosen to vanish on the parabolic boundary ofQ2%.�mj�/
and equal the identity inQ%.�mj�/, such that jD�j � 1=% and j@t�j � 1=.�mj�%2/. There-
fore, assuming m and j� have been chosen and noticing that �j � �mj� , energy estim-
ate (4.1) yields that“

Q%.�mj� /
jD.u � kj /�jp dxdt � 

%p

��!
2j

�p�
1C �j

�mj�

�
jAj;2%j � 

%p

��!
2j

�p
jAj;2%j;

where Aj;2% WD Œu < kj � \Q2%.�mj�/.
Next, we apply [7, Chapter I, Lemma 2.2] slicewise to u.�; t / for t 2 .��mj�%p; 0� over

the cube K%, for levels kjC1 < kj . Taking into account the measure-theoretical informa-
tion in (4.2), this gives

.kj � kjC1/jŒu.�; t / < kjC1� \K%j

� %NC1

jŒu.�; t / > kj � \K%j
Z
ŒkjC1<u.�;t/<kj �\K%

jDu.�; t /j dx

� %

˛

hZ
ŒkjC1<u.�;t/<kj �\K%

jDu.�; t /jp dx
i 1
p jŒkjC1 < u.�; t / < kj � \K%j1�

1
p

D %

˛

hZ
K%

jD.u � kj /�.�; t /jp dx
i 1
p
ŒjAj;%.t/j � jAjC1;%.t/j�1�

1
p ;

where Aj;%.t/ WD Œu.�; t / < kj � \ K%. We now integrate the last inequality with respect
to t over .��mj�%p; 0� and apply Hölder’s inequality in time. This procedure leads to

�!

2jC1
jAjC1;%j � %

˛

h“
Q%.�mj� /

jD.u � kj /�jp dxdt
i 1
p
ŒjAj;%j � jAjC1;%j�1�

1
p

� 

˛

�!

2j
jAo;2%j

1
p ŒjAj;%j � jAjC1;%j�1�

1
p ;

where Aj;% D Œu < kj � \Q%.�mj�/.
Now take the power p

p�1 on both sides of the above inequality to obtain

jAjC1;%j
p
p�1 �

�
˛

� p
p�1 jAo;2%j

1
p�1 ŒjAj;%j � jAjC1;%j�:

Add these inequalities from 0 to j� � 1 to obtain

j�jAj�;%j
p
p�1 �

�
˛

� p
p�1 jAo;2%j

1
p�1 jAo;%j:

From this, we conclude

jAj�;%j �


j̨
p�1
p�
jAo;2%j

1
p jAo;%j

p�1
p :
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Similarly, replacing % by 2%, we have

jAj�;2%j �


j̨
p�1
p�
jAo;4%j

1
p jAo;2%j

p�1
p :

The constant .data/ appearing in the last two inequalities may be different, but we can
take the larger one.

Suppose j� has been chosen for the moment. We may repeat the above arguments for
the same kj but with j D j�; : : : ; 2j�. We are allowed to employ energy estimate (4.1)
with such kj , due to j�� � ei j � 1

4
2�2j��!. Hence, the energy estimate can be written

in the same form with such choices of kj , and the measure-theoretical condition in (4.2)
permits us to apply [7, Chapter I, Lemma 2.2] just as above. Consequently, this will lead
us to

jA2j�;%j �


j̨
p�1
p�
jAj�;2%j

1
p jAj�;%j

p�1
p ;

jA2j�;2%j �


j̨
p�1
p�
jAj�;4%j

1
p jAj�;2%j

p�1
p :

Here the constant  is the same as above.
Combining the above estimates would yield that

jA2j�;%j �
242.NCp/

˛2j
2
p�1
p�
jQ%.�mj�/j:

The procedure can be iterated m times to yield that

jAmj�;%j �
m4m.NCp/

˛mj
m
p�1
p�
jQ%.�mj�/j;

provided j�� � ei j � 1
4
2�mj��!.

Up to now, we have not used (1.6) yet; we rely on it on the final part. Combining
Claims 1 and 2, we can finish the proof of Lemma 2.4, provided we let

� WD 2�mj��;

and we choose m and j� such that

0 <
5

4
2�mj��! < Nd; (4.3)

m4m.NCp/

˛mj
m
p�1
p�
� c1 ˇ

0.2�mj��!/
��.122�mj��!/

: (4.4)
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As for (4.3), it is certainly satisfied if we let

j� >
1

m
log2

�5M
4 Nd

�
; (4.5)

assuming for the moment that m 2 N has already been chosen. Coming to (4.4), we have

m4m.NCp/

˛mj
m
p�1
p�
� c1

min
®
ˇ0.5

4
2�mj��!/; ˇ0.�1

4
2�mj��!/

¯
max

°
ˇ. 582

�mj��!/
5
82
�mj��! ;

ˇ.� 182�mj��!/
� 182�mj��!

± :

Due to (4.4), we can employ (1.5)–(1.6) to obtain

max
°ˇ.5

8
2�mj��!/

5
8
2�mj��!

;
ˇ.�1

8
2�mj��!/

�1
8
2�mj��!

±
D ˇ.1

8
2�mj��!/

1
8
2�mj��!

;

ˇ0
�5
4
2�mj��!

�
� ˇ0

�1
4
2�mj��!

�
D ˇ0

�
�1
4
2�mj��!

�
:

Therefore, (4.4) becomes

m4m.NCp/

˛mj
m
p�1
p�
� c1 1

8
2�mj��!

ˇ0.5
4
2�mj��!/

ˇ.1
8
2�mj��!/

;

and if we take into account the monotonicity of ˇ, we conclude it suffices to choose j�
such that

2pC14.2pC1/.NCp/

˛2pj
2.p�1/�

� 1

10
c1

�5
4
2�2pj��!

�ˇ0.5
4
2�2pj��!/

ˇ.5
4
2�2pj��!/

; (4.6)

where we letm 2 N with 2p � m < 2p C 1. We claim that there exists j� such that (4.6)
holds true. Indeed, if we let s WD 5

4
2�4j��!, then (4.6) can be rewritten as

C 0

ln.2p�2/ s
� C 00s ˇ

0.s/
ˇ.s/

;

with s in a neighborhood of the origin, and C 0, C 00 constants that depend on the data, ˛, �,
and !. If there did not exist a j� satisfying (4.6), we would have

ˇ0.�/
ˇ.�/

� C 0

C 00
1

� ln.2p�2/ �
; 8 � 2 .0; �o/;

for some suitable 0 < �o <min¹1; Ndº; integrating both sides with respect to � over .0;�o/,
we would have a contradiction, since the integral on the right-hand side is finite, whereas
the one on the left-hand side diverges. Hence, the required j� does exist; if we denote it
by zj�, and take into account (4.5) and the choice of m, we conclude that

j� WD max
°
zj�; 1
4

log2
�5M
4 Nd

�±
;

whence � is determined.
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5. Two immiscible fluids in porous media with irreducible saturation

5.1. Origin of the model

In nature, subsurface rocks were initially wet and the pores among them were saturated
with water. It is important to understand how the oil in a reservoir eventually filled up these
pores that were once occupied by the water. The displacement of the water by the oil is
driven by the so-called capillary pressure that exists on the interface of the two immiscible
fluids. The capillary pressure increases as the oil saturation increases, and meanwhile the
water saturation is forced to decrease. Such a process continues until all water at the center
of the pores is displaced, and the only water left is the layer adherent to the rock grains.
In such a case, the remaining water becomes immobile, no matter how high the capillary
pressure is exerted. This limiting saturation of water is called the irreducible saturation or
connate water saturation (cf. [3, Section 9.24], [5, Section 2.24], [21, Section 3.4.2]).

5.2. Mathematical aspects

Let v1 and v2 stand for the saturations of the two fluids in a porous medium, say, water
and oil in rock grains. Assuming Darcy’s law and mass conservation, we could set up the
system ([16], [3, Chapter 2], [5, Chapter 6], [21, Chapter 10])´

@tvi D div.ki .vi /ŒDpi C ei .vi /�/;
v1 C v2 D 1;

in ET � E � .0; T �: (5.1)

Here ki .vi / for i D 1; 2 are the permeabilities and pi are the hydrostatic pressures,
whereas ei .vi / represents the gravity forces.

If we set v WD v1, then the functions ki and ei can be recast into functions of v because
of (5.1)2. The difference p2 � p1 is the capillary pressure, which is a function of the
saturation v and we denote by p.v/. The qualitative behaviors of ki and p are shown in
Figure 3. The irreducible saturation value of the first fluid (water) is denoted by do. The
existence of solutions to proper initial-boundary value problems for (5.1) is established,
for example, in the theorem of [1, Section 2.6] and in [13, Theorem 3].

Following the Kružkov–Sukorjanskiı̆ transformation (cf. [14, Section 1] and [22, Ap-
pendix A]), we can transform system (5.1) into the following one:8̂<̂

:
0 � v � 1;
@tv � div.A.v/Dv C B.v// D V �DC.v/;

div V D 0;
in ET : (5.2)

Here we have denoted
V DK.v/.DuC e.v//

and the functions

Œ0; 1� 3 v 7!K.v/; A.v/; B.v/; C.v/; e.v/
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1

k1.v/k2.v/

p.v/ D p2.v/ � p1.v/

v0 1

do

Figure 1. Permeabilities and Capillary PressureFigure 3. Permeabilities and Capillary Pressure

are continuous, and moreover, for some positive constants Co and C1,´
Co �K.v/ � C1;
A.v/C jB.v/j C jC.v/j C je.v/j � C1:

(5.3)

For an explicit relation between functions u, K , A, B, C and quantities k1, k2, e1, e2,
and p, we refer to [8, Section 1.1]. Here we only show the expression of A by

A.v/ D k1.v/k2.v/

k1.v/C k2.v/p
0.v/:

As pointed out in [1, Section 1], the variable u can be considered as a sort of mean pres-
sure, and (5.2) can then be seen as an equation of continuity with pressure u and velocity v
for an idealized incompressible fluid, which replaces the mixture of the two fluids.
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According to Figure 3, it exhibits degeneracy near 0 and 1. In general, quantitative
information on such degeneracy is unavailable, as the model is derived from hydrostatic
experiments, dimensional analysis, and empirical arguments.

Therefore, on the degeneracy of v 7! A.v/, we only assume qualitatively that8̂<̂
:

A.v/ D 0 for v 2 Œ0; do� [ ¹1º;
A.v/ > 0 for v 2 .do; 1/;
A.v/ is increasing/decreasing in Œdo; do C ı�=Œ1 � ı; 1�;

(5.4)

where do and ı are certain small positive constants.
The notion of a weak solution will be introduced in the next section. In what follows,

the set ¹do; ı;A; N; Co; C1º will be referred to as the data. We now state the main result
of this section.

Theorem 5.1. Let .u; v/ be a local weak solution to (5.2) under conditions (5.3)–(5.4).
Then,

R v
0

A.s/ ds is locally continuous in ET . Moreover, the modulus of continuity over a
compact set in ET is determined by its distance to the parabolic boundary of ET , A.�/,
the local bound of u, and the data.

Remark 5.1. Continuity cannot be claimed for v in general, as the ellipticity A.v/ van-
ishes in the vicinity of 0. On the other hand, Theorem 5.1 implies that the composite
function F.v/ is locally continuous in ET for any continuous map Œ0; 1� 3 s 7! F.s/ that
vanishes in Œ0; do�. In particular, .v � do/C is locally continuous in ET , and when do D 0,
Theorem 5.1 recovers the continuity result in [8, Theorem 1.1].

5.3. Notion of solution

A local weak solution to (5.2) is a pair .u; v/ in the functional spaces8̂<̂
:
v 2 Cloc

�
0; T IL2loc.E/

�
; u 2 L2loc

�
0; T IW 1;2

loc .E/
�
;

w WD
Z v

0

A.s/ ds 2 L2loc

�
0; T IW 1;2

loc .E/
�
;

satisfying for any .t1; t2/ � .0; T �,Z
E

v� dx
ˇ̌̌t2
t1
C
Z t2

t1

Z
E

Œ�v@t� C .Dw C B.v/C C.v/V/ �D��dxdt D 0;
Z t2

t1

Z
E

K.v/.DuC e.v// �D' dxdt D 0;

for all test functions

� 2 W 1;2
loc .0; T IL2loc.E// \ L2loc.0; T IW 1;2

loc .E//; ' 2 L2loc.0; T IW 1;2
loc .E//:

Letting

ˆ.v/ WD w �
Z v

0

A.s/ ds; ž WD ˆ�1;
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1

a a

ž ž
"

NdNd a � Nda � Nd

"

11

do

Figure 1. ž and ž
"

Figure 4. ž and ž"

according to (5.2), formally we obtain

@t ž.w/ ��w 3 div.B.v/C C.v/V/: (5.5)

Due to the conditions of A in (5.4), the graph of ž verifies the properties8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

ž D ˇ C doHo W Œ0; a�! Œ0; 1�;

ˇ 2 C 1.0; a/; ˇ0 � 1

C1
; ˇ0.0/ D ˇ0.a/ D1;

ˇ.0/ D 0; ˇ.a/ D 1 � do;
ˇ is concave in Œ0; Nd�; while convex in Œa � Nd; a�;

where a D ˆ.1/ and Nd > 0 depends only on A and ı. The qualitative behavior of ž.�/ is
depicted in Figure 4.

As in Section 1.4, we regularize equation (5.5). For " 2 .0; 1
2
a/, we let H "

o be the
mollification of Ho as in Section 1.4. Next we define a mollification of ž by

ž
" � ˇ CH" WD ˇ C doH "

o ;

and accordingly, introduce
ˆ" WD ž�1" ; A" WD ˆ0":

As such, A" ! A uniformly in Œ0; 1�. See Figure 5.
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1

a

A"

ˆ"

11

Figure 1. ˆ" and A" D ˆ0
"Figure 5. ˆ" and A" D ˆ0"

Let us still denote by .u; v/ a local solution to (5.2) with A replaced by A". Then,
w WD ˆ".v/ will satisfy

@t ž".w/ ��w D div.B.v/C C.v/V/ weakly in ET : (5.6)

The last equation of (5.2), that is, div VD 0, is used, whose dependence on " is suppressed
for simplicity. It plays the role of an incompressibility condition.

Our main assumption is that a local weak solution to (5.2) can be identified in a uni-
form convergence of solutions to the above regularized problem in (5.6). As such the proof
of Theorem 5.1 consists in establishing a uniform estimate on the modulus of continuity
for weak solutions to the regularized problem in (5.6).

In [1, Section 3] it was shown that the solutions constructed in ET are local solutions
to (5.2), so that local solutions to (5.2) do exist. On the other hand, we are not aware of an
existence theory established under the stipulated approximation; this merits an independ-
ent study.

5.4. An auxiliary result

The last equation of (5.2) can be viewed as a family of elliptic equations parametrized
by t 2 .0; T /. Sufficient conditions can be given to ensure the local boundedness of u; a
detailed discussion is given in the lemma in [1, Section 3.9]. Then, the conditions in (5.3)
allow us to apply the standard elliptic theory and obtain the following (cf. [8, Proposi-
tion 2.1]):

Proposition 5.1. Suppose u 2 L1loc.ET /. Then, u.�; t / 2 C �loc.E/, uniformly in t , on every
interval Œ�1; �2� � .0; T /. More precisely, for every compact set K � E, there exist  > 1
and � 2 .0; 1/, depending only on ¹N; Co; C1º, kuk1;K�Œ�1;�2�, and the distance from
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K � Œ�1; �2� to the parabolic boundary of ET , such that for all x1; x2 2 K,

ju.x1; t / � u.x2; t /j �  jx1 � x2j� for all t 2 Œ�1; �2�:
Moreover, there exists  > 1 with the same dependence such that for every cylinder
QR;S � KR.xo/ � .to � S; to/ � K � Œ�1; �2� and every f 2 L2loc.0; T IW 1;2

loc .E//,“
QR;S

jDuj2f 2�2 dxdt � R2�
�“

QR;S

jDf j2�2 dxdt C
“
QR;S

f 2jD�j2 dxdt
�

C
“
QR;S

f 2�2 dxdt;

where � is a non-negative cutoff function in KR.xo/ vanishing on @KR.xo/.

5.5. Energy estimates

Let � be a non-negative, piecewise smooth cutoff function in QR;S vanishing on the set
@KR.xo/ � .to � S; to/. Using .w � k/C�2 for k 2 .0; 1/ as a test function in the weak
formulation of (5.6) inQR;S , standard calculations permit us to produce energy estimates
like in Section 2.1. As usual, we will denote by  a generic positive constant depending
on the data.

First of all, we obtain an energy estimate similar to the one in Proposition 2.1:

ess sup
to�S<t<to

Z
KR.xo/�¹tº

�Z .w�k/˙

0

ˇ0.k ˙ s/s ds
�
�2 dx

C ess sup
to�S<t<to

Z
KR.xo/�¹tº

�Z .w�k/˙

0

H 0".k ˙ s/s ds
�
�2 dx

C
“
QR;S

�2jD.w � k/˙j2 dxdt

� 
“
QR;S

.w � k/2˙jD�j2 dxdt

C 
“
QR;S

�Z .w�k/˙

0

ˇ0.k ˙ s/s ds
�
j@t�2j dxdt

C 
“
QR;S

�Z .w�k/˙

0

H 0".k ˙ s/s ds
�
j@t�2j dxdt

C
Z
KR.xo/�¹to�Sº

�Z .w�k/˙

0

ˇ0.k ˙ s/s ds
�
�2 dx

C
Z
KR.xo/�¹to�Sº

�Z .w�k/˙

0

H 0".k ˙ s/s ds
�
�2 dx

�
“
QR;S

.B.v/C C.v/V/ �DŒ.w � k/˙�2� dxdt: (5.7)
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Apart from the last term, which is due to the right-hand side of (5.6) and we denote as I ,
all other terms can be estimated just like in Section 2.1. For simplicity of presentation, we
will estimate I with .w � k/C only, as the other case is similar. We write it as I D I1C I2,
and first estimate I1 by the boundedness of B:

I1 WD �
“
QR;S

B.v/DŒ.w � k/C�2� dxdt

� C1
“
QR;S

Œ�2jD.w � k/Cj C 2�.w � k/CjD�j� dxdt

� 1

4

“
QR;S

�2jD.w � k/Cj2 dxdt C
“
QS;R

.w � k/2CjD�j2 dxdt

C 2C 21
“
QR;S

�2�Œw>k� dxdt:

For I2, we write it as

I2 D �
“
QR;S

�2C.v/V �D.w � k/C dxdt � 2
“
QR;S

�C.v/.w � k/CD� � V dxdt

D I .1/2 C I .2/2 :

To proceed, we rewrite I .1/2 by using the fact that div V D 0 to obtain

I
.1/
2 D �

“
QR;S

V �D
� Z w

k

C. ž".s// �Œs>k� ds
�
�2 dxdt

D 2
“
QR;S

�
�Z w

k

C. ž".s// �Œs>k� ds
�

V �D� dxdt:

Consequently, we may estimate I2 by using the conditions in (5.3) and Proposition 5.1 as

I2 � 4C1
“
QR;S

jVj.w � k/C�jD�j dxdt

� 4C 21
“
QR;S

ŒjDuj.w � k/C�jD�j C C1.w � k/C�jD�j� dxdt

� 2C 21R��
“
QR;S

�2jDuj2.w � k/2C dxdt C 2C 21
“
QR;S

.w � k/2CjD�j2 dxdt

C 2C 21
“
QR;S

�
C 21 �

2 CR�jD�j2��Œw>k� dxdt

� C 21R�
�“

QR;S

�2jD.w � k/Cj2 dxdt C
“
QR;S

.w � k/2CjD�j2 dxdt
�

C 2C 21
“
QR;S

.w � k/2C.R���2 C jD�j2/ dxdt
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C 2C 21
“
QR;S

.C 21 �
2 CR�jD�j2/�Œw>k� dxdt

� 1

4

“
QR;S

�2jD.w � k/Cj2 dxdt C 3C 21
“
QR;S

.w � k/2C.R���2 C jD�j2/ dxdt

C 2C 21
“
QR;S

.C 21 �
2 CR�jD�j2/�Œw>k� dxdt:

In the last inequality we have imposed the condition that C 21R
� � min¹1

4
; C 21 º.

Collecting the above estimates about I , performing similar estimates about other terms
of (5.7) as in Section 2.1, and choosing the cutoff function � to vanish at to � S , we obtain
an analogue of (2.2):

ess sup
to�S<t<to

1

C1

Z
KR.xo/�¹tº

�2.w � k/2˙ dx C 1

2

“
QR;S

�2jD.w � k/˙j2 dxdt

� 
“
QR;S

.w � k/2˙.R���2 C jD�j2/ dxdt C 
“
QR;S

.w � k/˙j@t�2j dxdt

C 
“
QR;S

.�2 CR�jD�j2/�Œ.w�k/˙>0� dxdt: (5.8)

Taking � independent of t , an analogue of (2.3) is also in order:

ess sup
to�S<t<to

1

C1

Z
KR.xo/�¹tº

�2.w � k/2˙ dx C 1

2

“
QR;S

�2jD.w � k/˙j2 dxdt

� 
“
QR;S

.w � k/2˙.R���2 C jD�j2/ dxdt C 
Z
KR.xo/�¹to�Sº

�2.w � k/˙dx

C 
“
QR;S

.�2 CR�jD�j2/�Œ.w�k/˙>0� dxdt: (5.9)

Remark 5.2. The main difference of energy estimates (5.8)–(5.9) from (2.2)–(2.3) lies in
the last integral. However, if .w � k/˙ � �! in QR;S for some positive � and !, then the
last integral can be combined with the first integral on the right-hand side after enforcing
R� � .�!/2.

5.6. Logarithmic estimates

Letting k, w, and QR;S be as in Section 5.5, we set

L WD sup
QR;S

.w � k/˙;

take c 2 .0;L/, and introduce the following function in QR;S :

‰.x; t/ � ‰�L; .w � k/˙; c� WD lnC
� L

L � .w � k/˙ C c
�
:
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As in Section 2.2, we let ‰.s/ D ‰.L; s; c/, so that

‰0.s/ D 1

L � s C c �Œs>c�.s/; ‰00.s/ D
� 1

L � s C c
�2
�Œs>c�.s/ D Œ‰0.s/�2:

We aim to derive an analogous logarithmic energy estimate for w just like in Proposi-
tion 2.2. For simplicity we will only work with .w � k/C. As in the proof of [10, (2.7)]
(see also [11, Proposition 2.2]), we use .‰2/0�2 as a test function in the weak formulation
of (5.6) in QR;S , where � D �.x/ is a non-negative cutoff function in KR.xo/ that equals
the identity in K�R.xo/ and satisfies jD�j � 1=Œ.1 � �/R�. The only care is needed for a
term resulting from the right-hand side of (5.6), which we write as

I WD �
“
QR;S

.B.v/C C.v/V/ �D..‰2/0�2/ D I1 C I2:

For I1, we estimate by using jBj � C1, .‰2/00 D 2.1C‰/.‰0/2 and Young’s inequality,

I1 D �
“
QR;S

�2.‰2/00D.w � k/C � B.v/ dxdt

� 2
“
QR;S

�.‰2/0 B.v/ �D� dxdt

� 2C1
“
QR;S

�2.1C‰/.‰0/2jD.w � k/Cj dxdt

C 4C1
“
QR;S

�jD�j‰‰0 dxdt

� 1

2

“
QR;S

�2.1C‰/.‰0/2jD.w � k/Cj2 dxdt

C 2C 21
“
QR;S

�2.1C‰/.‰0/2 dxdt

C 4C1
“
QR;S

�jD�j‰‰0 dxdt:

As far as the last term in the previous estimate is concerned, we have

4C1

“
QR;S

�jD�j‰‰0 dxdt �  sup
QR;S

.‰‰0/2
“
QS;R

�2 dxdt C
“
QS;R

jD�j2 dxdt

�  sup
QR;S

.‰‰0/2jQR;S j C 

.1 � �/2R2 jQR;S j:

As for I2, we write it as

I2 D �
“
QR;S

C.v/V �D.‰2/0�2 dxdt � 2
“
QR;S

�C.v/.‰2/0D� � V dxdt

D I .1/2 C I .2/2 :
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We then use the fact that div V D 0 to estimate

I
.1/
2 D �

“
QR;S

�2C.v/.‰2/00D.w � k/C � V dxdt

D �
“
QR;S

�2D
� Z w

k

.‰2.s//00C. ž".s//ds
�
� V dxdt

D 2
“
QR;S

�
� Z w

k

.‰2.s//00C. ž".s//ds
�

V �D� dxdt

� 
“
QR;S

Z w

k

.‰2.s//00 dsjVjjD�j� dxdt

D 
“
QR;S

.‰2.w//0jVjjD�j� dxdt:

As a result, we may estimate I2 by using the definition of V, the conditions in (5.3), and
Proposition 5.1 as well as Young’s inequality as

I2 � 
“
QR;S

.‰2.w//0jVjjD�j� dxdt

�  sup
QR;S

.‰‰0/2
“
QS;R

jVj2�2 dxdt C
“
QS;R

jD�j2 dxdt

�  sup
QR;S

.‰‰0/2
R2�

.1 � �/2R2 jQR;S j C


.1 � �/2R2 jQR;S j:

Upon using

sup
QR;S

‰.w/ � ln
L

c
; sup

QR;S

‰0.w/ � 1

c
;

we arrive at the following logarithmic estimate:

Proposition 5.2. There exists  > 1 depending only on the data such that for any
� 2 .0; 1/,

sup
to�S�t�to

Z
K�R.xo/

‰2.x; t/ dx

� 

c

Z
KR.xo/

‰.x; to � S/ dx C 

.1 � �/2R2
“
QR;S

‰ dxdt

C 

c2

�
1C ln

L

c

�2�
1C R2�

.1 � �/2R2
�
jQR;S j C 

.1 � �/2R2 jQR;S j:

Letting the quantities �˙ and ! be defined by the supremum/infimum and the oscilla-
tion ofw over the cylinder QDK � .T1;T2/ as in Section 2.2, employing Proposition 5.2,
we have the following result parallel to Lemma 2.1; The change brought by the extra terms
is an either-or statement:
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Lemma 5.1. Let w be a local weak sub(super)-solution to (5.6) in ET . For � 2 .0; 1/,
suppose that

˙.�˙ � u.�; t1// � �! a.e. in K%.xo/:

Then, for any ˛ 2 .0; 1/ and A � 1, there exists N� 2 .0; 1
4
�/ such that either

! �
�
1C ln

�

N�
�%�
N�

or

jŒ˙.�˙ � u.�; t // � N�!� \K 1
2%
.xo/j � ˛jK 1

2%
j for all t 2 .t1; t1 C A%2/;

provided the cylinderK%.xo/� .t1; t1CA%2/ is included in Q. Moreover, the dependence
of N� is given by

N� D 1

2
� exp

°
� .data/

A

˛

±
:

5.7. De Giorgi-type lemmas

Let the quantities �˙ and ! be defined over Q as before. We now present some De Giorgi-
type lemmas parallel to Lemmas 2.2–2.4. The first one hinges on the energy estimates
in (5.8); the proof can be adapted from that of Lemma 2.2, recalling Remark 5.2.

Lemma 5.2. Let u be a local weak sub(super)-solution to (5.6) in ET and let � 2 .0; 1/.
There exists a constant co 2 .0; 1/ depending only on the data such that if

jŒ˙.�˙ � u/ � �!� \Q%j � co.�!/NC22 jQ%j; (5.10)

then either
�! � % �2

or
˙.�˙ � u/ � 1

2
�! a.e. in Q 1

2%
;

provided Q% D K%.xo/ � .to � %2; to/ is included in Q.

A variant version involving quantitative initial data is formulated as Lemma 2.3. The
proof is based on (5.9) and can be adapted from that of Lemma 2.3, recalling Remark 5.2.

Lemma 5.3. Let w be a local weak sub(super)-solution to (5.6) in ET . Assume that for
some � 2 .0; 1/, it holds that

˙.�˙ � w.�; t1// � �! a.e. in K%.xo/:

There exists a constant o 2 .0; 1/ depending only on the data such that for any � > 0, if

jŒ˙.�˙ � w/ � �!� \ Œ.xo; t1/CQC% .�/�j �
o

�
jQC% .�/j;
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then either
�! � % �2

or
˙.�˙ � w/ � 1

2
�! a.e. in K 1

2%
.xo/ � .t1; t1 C �%2/;

provided the cylinder .xo; t1/CQC% .�/ � K%.xo/ � .t1; t1 C �%2/ is included in Q.

The next lemma parallels Lemma 2.4. We only present a sketch of the proof, while
keeping reference to the proof of Lemma 2.4 in Section 4 for more details. We omit .xo; to/
for simplicity.

Lemma 5.4. Let w be a local weak super-solution to (5.6) in ET . Assume that for some
˛; � 2 .0; 1/ and A > 1, it holds that

jŒw.�; t / � �� � �!� \K%j > ˛jK%j for all t 2 .to � A%2; to�:

There exists �o 2 .0; �/ determined by the data, ˛, �, and ˇ.�/ such that if

A � �o D
ˇ.1
8
�o!/

1
8
�o!

; �� � 1

4
�o!;

5

4
�o! � Nd;

and it holds that“
Q%.�o/

�Z k

w

H 0".s/�Œs<k� ds
�

dxdt � ˇ.�o!/
ˇ̌̌h
w � �� C 1

2
�o!

i
\Q 1

2%
.�o/

ˇ̌̌
; (5.11)

where k D �� C �o!, then either
�o! � % �2

or
w � �� C 1

2
�o! a.e. in Q 1

2%
.�o/;

provided the cylinder Q%.A/ is included in Q.
Likewise, there exists �1 2 .0; �/ determined by the data, ˛, �, and ˇ.�/ such that if

A � �1 D
ˇ.a/ � ˇ.a � 1

8
�1!/

1
8
�1!

; a � �� � 1

4
�1!;

5

4
�1! � Nd;

then either
�1! � % �2

or
w � �� C 1

2
�1! a.e. in Q 1

2%
.�1/;

provided the cylinder Q%.A/ is included in Q.
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Proof. We first point out that the proof of Lemma 2.4 hinges upon energy estimate (4.1).
Starting from (5.7) and employing (5.11) and �� � 1

4
�o!, a straightforward adaption of

the calculations in Section 4 will yield the following energy estimate analogous to (4.1)
for 1

2
% � r � %, � � �o, and k D �� C �!:

ess sup
��r2<t<0

1

2
ˇ0
�5
4
�!
� Z

Kr�¹tº
.w � k/2��2 dx C

“
Qr .�/

�2jD.w � k/�j2 dxdt

� 
“
Qr .�/

.w � k/2�.r���2 C jD�j2/ dxdt

C k@t�2k1.�!/2
ˇ.5
4
�!/

5
4
�!

“
Qr .�/

�Œw<��C�!� dxdt

C 
“
Qr .�/

.�2 C r�jD�j2/�Œw<��C�!� dxdt: (5.12)

Now using (5.12), a version of Claims 1 and 2 can be reproduced. The last integral
of (5.12) is absorbed by the first term on the right-hand side once imposing �o! � % �2 .
This procedure determines �o just like in the proof of Lemma 2.4, which finishes the
proof of the first part.

As for the second part, we let Ň.s/ WD ˇ.a/ � ˇ.a � s/. Then, starting from (5.7)
and using a � �� � 1

4
�1!, similar calculations will yield for 1

2
% � r � %, � � �1, and

k D �� C �! that

ess sup
��r2<t<0

1

2
Ň0�1
4
�!
� Z

Kr�¹tº
.w � k/2��2 dx C

“
Qr .�/

�2jD.w � k/�j2 dxdt

� 
“
Qr .�/

.w � k/2�.r���2 C jD�j2/ dxdt

C k@t�2k1.�!/2
Ň.1
4
�!/

1
4
�!

“
Qr .�/

�Œw<��C�!� dxdt

C 
“
Qr .�/

.�2 C r�jD�j2/�Œw<��C�!� dxdt: (5.13)

Based on (5.13), the same procedure as before will determine �1 and thus finish the proof
of the second part.

5.8. Proof of Theorem 5.1

The set-up is similar to that of Section 3. More specifically, we let .xo; to/ D .0; 0/, intro-
duceQo DK8% � .�8%;0/ for % 2 .0; 1/, and define �˙ and ! to be the supremum/infim-
um and the oscillation of w overQo, respectively. Moreover, we let A.!/ > 1 be determ-
ined by the data and ! verify the intrinsic relation given by (3.1). We will follow the
reasoning in Section 3 while keeping p D 2 and highlighting the main differences.
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The argument starts with (3.2) for some Nt 2 .�.A� 1/%2;0/. Using Lemmas 5.1–5.3 in
the place of Lemmas 2.1–2.3, we may reach a reduction of oscillation like in Section 3.1.
More precisely, either

! � .1C j ln �j/%
�
2

�
for � D 1

16
exp¹�A2º

or
ess osc
Q 1
4 %

w �
�
1 � 1

2
�
�
!: (5.14)

The argument continues with (3.7) for any Nt 2 .�.A � 1/%2; 0/. Fixing Nt , we can
perform analysis on the local clustering of u near its infimum just like Lemma 3.1, once
we enforce proper alternative conditions whenever energy estimate (5.8) is employed in
its proof (cf. Remark 5.2).

Lemma 5.5. For every � 2 .0;1/ and � 2 .0;1/, there exists a point .x�; t�/ 2 .0; Nt /CQ%,
a number � 2 .0; 1/, and a cylinder .x�; t�/CQ�% � .0; Nt /CQ% such that either

! � 4% �2

or ˇ̌̌h
w � �� C 1

4
�!
i
\ Œ.x�; t�/CQ�%�

ˇ̌̌
� �jQ�%j:

The constant � is determined by the data, M , �, �, ˛, and !.

Using this Lemma 5.5, together with Lemmas 5.1–5.2, one can reason like in Sec-
tion 3.2 and obtain an analogue of (3.9). More specifically, letting � be determined as in
Lemma 5.5 by � D 1

2
and � D ˛ D co.14!/

NC2
2 , there exist

N̨ D 1

22NC1
�N ; N� D 1

32
exp

°
� 

�2

±
such that either

! � .1C j ln N�j/%
�

N�
or

jŒw.�; t / � �� C N�!� \K%j > N̨ jK%j for all t 2 .�A%2; 0�: (5.15)

Let �.!/; ı.!/ 2 .0; 1/ to be determined and introduce the cylinder

Q%.z�/ D K% � .�z�%2; 0/; z� D .ı�!/�1

such that 82z� � A, where A.!/ is the number appearing in (5.15) and yet to be chosen.
Given the measure-theoretical information in (5.15), we first use Lemma 5.4 to determ-

ine �o and �1. Now one could reproduce the arguments in Sections 3.3–3.5, assuming
either

�� � 1

4
ı�o! or a � �� � 1

4
ı�1!: (5.16)
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Indeed, let us suppose the second of (5.16) holds true. One can use the second part of
Lemma 5.4 to obtain the reduction of oscillation

ess osc
Q 1
4 %

w �
�
1 � 1

4
�1

�
!;

after enforcing the conditions

�1! � % �2 ; A � max
°ˇ.a/ � ˇ.a � 1

8
�1!/

1
8
�1!

; 82z�
±
:

Alternately, let us suppose the first of (5.16) holds true. One can use the first part of
Lemma 5.4 to obtain the reduction of oscillation

ess osc
Q 1
4 %

w �
�
1 � 1

4
�o

�
!;

after enforcing the conditions

�o! � % �2 ; A � max
°ˇ.1

8
�o!/

1
8
�o!

; 82z�
±
;

and in addition (5.11).
Fixing such �o, if the measure condition in (5.10) with � replaced by �o is satisfied,

then Lemma 5.2 yields the same reduction of oscillation as above, once enforcing the
inequality �o! � % �2 .

Still assuming (5.16)1 holds true, the case when both (5.10)�D�o and (5.11) are violated
can be treated like in Section 3.4. Consequently, the following energy estimate can be
deduced from (5.7) (cf. Lemma 3.2):

Lemma 5.6. Denoting b.�o!/ D .�o!/1CNC2
2 , and setting N� D . Nı�o!/�1 and k D ��

C Nı�o! with Nı 2 .ı; 2ı/, there exists a positive constant  depending only on the data such
that for all � 2 .0; 1/ and all r 2 Œ2%; 8%�, we have

ı�o!. Nı�o!/�2b.�o!/ ess sup
� N�.�r/2<t<0

Z
K�r�¹tº

.w � k/2� dx C
“
Q�r . N�/

jD.w � k/�j2 dxdt

� 

.1 � �/2r2
“
Qr . N�/

.w � k/2�dxdt C 

.1 � �/ N� r2
“
Qr . N�/

.w � k/� dxdt

C r�

.1 � �/2r2
“
Qr . N�/

�Œw<k� dxdt;

provided that

�� � 1

4
ı�o!;

5

4
�o! � Nd; and " � 1

4
ı�o!:

The energy estimate in Lemma 5.6 allows us to show the following De Giorgi-type
lemma, whose proof is similar to that of Lemma 3.3:



Continuity of the temperature in a multi-phase transition problem. Part II 671

Lemma 5.7. Let ı 2 .0; 1/. There exists a constant c1 2 .0; 1/ depending only on the data
such that if

jŒw < �� C 2ı�o!� \Q4%.z�/j � c1b.�o!/jQ4%.z�/j; where z� D .ı�o!/�1;

then, enforcing �� � 1
4
ı�o!, 5

4
�o! � Nd , and " � 1

4
ı�o!, we have either

ı�o! � % �2

or
w � �� C ı�o! a.e. in Q2%.z�/;

provided 42z� � A.

We still need a version of Lemma 3.4, which is stated as follows; the proof hinges
solely on energy estimate (5.8) and is analogous to that of Lemma 3.4:

Lemma 5.8. Assume the measure information in (5.15) holds. There exists a positive
constant  depending only on the data such that for any j� 2 N, we have either

�o! � % �2

or ˇ̌̌h
w � �� C �o!

2j�

i
\Q4%.z�/

ˇ̌̌
� 

N̨ j
� 12� jQ4%.z�/j; where z� D

��o!
2j�

��1
;

provided 42z� � A� .

Like in Section 3.5, we combine Lemmas 5.7 and 5.8 to determine j� by



N̨j
1
2�
� c1b.�o!/;

and determine ı by 2ı D 2�j� , and thus, z� by z� D .ı�o!/
�1. Enforcing ı�o! � % �2 ,

Lemma 5.7 yields a reduction of oscillation

ess osc
Q2%

w � .1 � ı�o/!:

This completes the argument when the first of (5.16) holds true.
The choice of A can be made out of

A.!/ WD max
°ˇ.1

8
�o!/

1
8
�o!

;
ˇ.a/ � ˇ.a � 1

8
�1!/

1
8
�1!

; 82z�
±
D 82z�;

taking into account the value of z� determined above. This also determines � in (5.14) by
such A.
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The remaining case is when (5.16) does not hold. This is done as in Lemma 3.5.
Here the quantities ¹�o; �1; ıº being fixed and setting � WD min¹�o; �1º, Lemma 3.5 can be
reproduced after additionally enforcing ı�! � % �2 .

Overall, we have achieved the following:

ess osc
Q 1
4 %

w � .1 � z�.!//!; or ŒA.!/��1 � %; or y�! � % �2 ; or y�! � ";

where
y� WD min

° N�
j ln N�j ;

�

j ln �j ; ı�
±
; z� WD min

°1
2
�;
1

4
�; ı�o

±
:

Moreover, the functions

.0; 1/ 3 ! 7! y�.!/; �.!/; ŒA.!/��1

are increasing, determined only by the data, and satisfy

y�; �; A�1 ! 0 as ! ! 0:

As a result, we can now set up an iteration scheme as discussed in Remark 3.3 and finish
the proof.
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