Structure of singularities in the nonlinear nerve conduction problem

Aram Karakhanyan

Abstract. We give a characterization of the singular points of the free boundary $\partial \{u > 0\}$ for viscosity solutions of the nonlinear equation

$$
F(D^2u)=-\chi_{\{u>0\}},
$$

where F is a fully nonlinear elliptic operator and χ is the characteristic function. This equation models the propagation of a nerve impulse along an axon.

We analyze the structure of the free boundary $\partial \{u > 0\}$ near the singular points where u and ∇u vanish simultaneously. Our method uses the stratification approach developed in Dipierro and the author's 2018 paper.

In particular, when $n = 2$ we show that near a flat singular free boundary point, $\partial \{u > 0\}$ is a union of four C^1 arcs tangential to a pair of crossing lines.

1. Introduction

In this paper we study the free boundary problem

$$
F(D^2u) = -\chi_{\{u>0\}} \quad \text{in } \Omega,\tag{1.1}
$$

where $\Omega \subset \mathbb{R}^n$ is a given bounded domain with $C^{2,\alpha}$ boundary, $\chi_{\{u>0\}}$ is the characteristic function of $\{u > 0\}$, and F is a convex fully nonlinear elliptic operator satisfying some structural conditions. Equation (1.1) appears in a model of the nerve impulse propagation [\[10,](#page-17-0) [18,](#page-18-1) [19\]](#page-18-2).

It comes from the following linearized diffusion system of FitzHugh:

$$
\begin{cases} u_t = r(x)\Delta u + \mathcal{F}(u, \vec{v}), \\ \vec{v}_t = G(u, \vec{v}), \end{cases}
$$
 (1.2)

Mathematics Subject Classification 2020: 35R35 (primary); 35R35 (secondary).

Keywords: free boundary regularity, fully nonlinear elliptic operator, nerve impulse propagation problem, obstacle problem.

where $u(x, t)$ is the voltage across the nerve membrane at distance x and time t, and the components of $\vec{v} = (v^1, \dots, v^k)$ model the conductance of the membrane to various ions [\[10\]](#page-17-0). A specific form for the interaction term $\mathcal{F}(u, \vec{v})$ was suggested by McKean namely, $\mathcal{F}(u, \vec{v}) = -u + \chi_{\{u>0\}}$ [\[16\]](#page-18-3). Due to the homogeneity of the equation, the linear term in F disappears after quadratic scaling, so we neglect it.

The linearized steady state equation

$$
\Delta u = -\chi_{\{u>0\}}\tag{1.3}
$$

also arises in a solid combustion model $[17]$ and the composite membrane problem; see $[4]$ and also [\[6\]](#page-17-2) for a variational formulation.

A chief difficulty is to analyze the free boundary near singular points where both u and ∇u vanish. The main technique used in [\[4,](#page-17-1) [6,](#page-17-2) [17\]](#page-18-4) is a monotonicity formula, which is not available for the nonlinear equations. The aim of this paper is to use the boundary Harnack principles and anisotropic scalings to develop a new approach to circumvent the lack of the monotonicity formulas and obtain some of the main results from [\[17\]](#page-18-4) and [\[15\]](#page-18-5) for the fully nonlinear case. More precisely, in this paper we address the optimal regularity, uniqueness of blow-up at singular points, degeneracy, and the shape of the free boundary near the singular points.

One of the main results in [\[17\]](#page-18-4) concerns the cross-shaped singularities in \mathbb{R}^2 . It follows from the classification of homogeneous solutions and an application of the monotonicity formula introduced in [\[17\]](#page-18-4). For nonlinear equations, this method cannot be applied. We remark that the degenerate case (i.e., when $u(x) = o(|x - x_0|^2)$ near a free boundary point x_0) cannot be treated by the monotonicity formula introduced in [\[17\]](#page-18-4) because it does not provide any qualitative information about u ; see [\[17,](#page-18-4) Proposition 5.1].

It is well known that the strong solutions of [\(1.3\)](#page-1-0) may not be $C_{\text{loc}}^{1,1}$; see [\[5,](#page-17-3) Proposition 5.3.1]. However, if $F = \Delta$, then ∇u is always log-Lipschitz continuous; see [\[13,](#page-18-6) Lemma 2.1]. For general elliptic operators one can show that ∇u is C^{α} for every $\alpha \in (0,1)$; see [\[3\]](#page-17-4) and Remark [2.2.](#page-3-0) It appears that the natural scaling is quadratic, but the lack of compactness is one of the key difficulties we will have to deal with.

Problem [\(1.3\)](#page-1-0) has some resemblance to the classical obstacle problem [\[2\]](#page-17-5), and can be extended for fully nonlinear operators [\[14\]](#page-18-7).

The paper is organized as follows: In Section [2](#page-2-0) we state some technical results. In Section [3](#page-4-0) we prove the existence of viscosity solutions using a penalization argument. We also show the existence of a maximal solution and establish its nondegeneracy. Section [4](#page-6-0) contains the proof of the following dichotomy: either the free boundary points are flat or

the solution has quadratic growth. As a consequence, we show that if $n = 2$, then near a flat point the free boundary is a union of four $C¹$ curves tangential to a pair of crossing lines. This is done in Section [6.](#page-13-0)

2. Technical results

Throughout this paper $B_r(x)$ denotes the open ball of radius r centered at $x \in \mathbb{R}^n$ and we write $B_r = B_r(0)$. For a continuous function u, we let $u = u^+ - u^-, u^+ = \max(0, u)$, $\Omega^+(u) = \{u > 0\}$, and $\Omega^-(u) = \{u < 0\}$, and let $\partial_{\text{sing}}\{u > 0\}$ be the singular subset of the free boundary $\partial \{u > 0\}$, where $u = |\nabla u| = 0$.

We shall now make two standing assumptions on the operators under consideration. To formulate them we let S be the space of $n \times n$ symmetric matrices and $S^+(\lambda, \Lambda)$ positive definite symmetric matrices with eigenvalues bounded between two positive constants λ and Λ .

F1° The operator $F : \mathcal{S} \subset \mathbb{R}^{n \times n} \to \mathbb{R}$ is uniformly elliptic, that is, there are two positive constants λ , Λ such that

$$
\lambda \|N\| \le F(M+N) - F(M) \le \Lambda \|N\|, \quad M \in \mathcal{S}, \tag{2.1}
$$

for every nonnegative matrix N.

 $\mathbf{F2}^{\circ}$ F is smooth except at the origin and homogeneous of degree one. In addition, $F(tM) = tF(M), t \in \mathbb{R}$ and $F(0) = 0$.

For smooth F, hypothesis $F1^\circ$ is equivalent to

$$
\lambda |\xi|^2 \leq F_{ij}(M)\xi_i \xi_j \leq \Lambda |\xi|^2,
$$

where $F_{ij}(S) = \frac{\partial F(S)}{\partial s_{ij}}$ $\frac{F(S)}{\partial s_{ij}}, S = [s_{ij}].$

Typically, $F(M) = \sup_{t \in \mathcal{I}} A_{ij,t} M_{ij}$, where \mathcal{I} is the index set and $A_{ij,t} \in \mathcal{S}^+(\lambda, \Lambda)$ is such that $\lambda |\xi|^2 \leq A_{ij,t} \xi_i \xi_j \leq \Lambda |\xi|^2$. Notice that if $w_t(x) = w(A_t^{\frac{1}{2}} x)$, then we have $\Delta w_t = A_{ii,t} w_{ii}.$

We also define Pucci's extremal operators

$$
\mathcal{M}^-(M,\lambda,\Lambda)=\lambda\sum_{e_i>0}e_i+\Lambda\sum_{e_i<0}e_i,\quad \mathcal{M}^+(M,\lambda,\Lambda)=\Lambda\sum_{e_i>0}e_i+\lambda\sum_{e_i<0}e_i,
$$

where $e_1 \le e_2 \le \cdots \le e_n$ are the eigenvalues of $M \in S$.

Definition 2.1. A continuous function u is said to be a viscosity solution of the equation $F(D^2u) = -\chi_{\{u>0\}}$ if the equation $F(D^2v(x_0)) = -\chi_{\{u>0\}}$ holds pointwise, whenever at $(x_0, u(x_0))$ the graph of u can be touched from above and below by paraboloids v.

Remark 2.2. We will be using some well-known estimates for the viscosity solutions. If F is convex or concave and u is a viscosity solution of $F(D^2u) = 0$ in B_1 , then

$$
||u||_{C^{2,\alpha}(B_{\frac{1}{2}})} \leq C(||u||_{L^{\infty}(B_1)} + |F(0)|), \tag{2.2}
$$

where $0 < \alpha < 1$ and C are universal constants; see [\[3,](#page-17-4) Theorem 6.6]. Moreover, if F is convex or concave, then for the viscosity solutions of $F(D^2u) = 0$, we still have the local estimate

$$
||u||_{C^{1,1}(B_{1/11})} \leq C||u||_{L^{\infty}(B_1)}
$$

(see [\[3,](#page-17-4) page 60, (6.14) and Remark 1]).

Under assumptions $F1^\circ - F2^\circ$, the classical weak and strong comparison principles are valid for the viscosity solutions [\[3\]](#page-17-4). Moreover, we have the strong and Hopf's comparison principles.

Lemma 2.3 (Strong comparison principle; [\[12,](#page-18-8) Theorem 3.1]). *Suppose* $v \in C^2(D)$, $w \in C^1(D)$, and $\nabla v \neq 0$ in a bounded domain D. Let $F(D^2v) \geq 0 \geq F(D^2w)$ in $D \subset \mathbb{R}^n$ *in the viscosity sense and* $v \leq w$ *where* v, w *are not identical. Then,*

$$
v < w \quad \text{in } D. \tag{2.3}
$$

Lemma 2.4 (Hopf's comparison principle; [\[12,](#page-18-8) Theorem 4.1]). *Let* B *be a ball contained in D* and assume that $w \in C^1(D)$, $v \in C^2(D)$ and that $\nabla v \neq 0$ *in B. Let v* and *w be* a *viscosity subsolution and a supersolution of* $F(D^2u) = 0$ *, respectively. Moreover, suppose that* $v < w$ *in* B, and that $v(x_0) = w(x_0)$, for some $x_0 \in \partial B$. Then, $\nabla v(x_0) \neq \nabla w(x_0)$.

One of the main tools in our analysis is the boundary Harnack principle. As before, we assume that F is smooth, homogeneous of degree 1, and uniformly elliptic with ellipticity constants λ and Λ , and that $F(0) = 0$. We use the following notation: $f(x')$, $x' \in$ $B'_1 \subset \mathbb{R}^{n-1}$ is a Lipschitz continuous function with Lipschitz constant $M > 1$; $f(0) = 0$; $\Omega_r = B'_r \times [-rM, rM] \cap \{x_n > f(x')\}; \Delta_r = B'_r \times [-rM, rM] \cap \{x_n = f(x')\};$ and $A = e_n M/2$, where e_n is the unit direction of the x_n axis.

Then, we have the following Harnack principle (see [\[20\]](#page-18-9)):

Theorem 2.5. Assume $F1^{\circ} - F2^{\circ}$ *hold and* F *is either concave or convex. Let* u, v *be two nonnegative solutions of* $F(D^2u) = 0$ *in* Ω_1 *that equal 0 along the Lipschitz bottom of* Δ_1 *. Suppose also that* $v \neq 0$, $u - \sigma v > 0$ *in* Ω_1 *for some* $\sigma > 0$ *. Then, for some constant* C depending only on λ , Λ , n , and the Lipschitz character of Ω_1 , we have in $\Omega_{\frac{1}{2}}$

$$
C^{-1} \frac{u(A) - \sigma v(A)}{v(A)} \le \frac{u - \sigma v}{v} \le C \frac{u(A) - \sigma v(A)}{v(A)}.
$$
 (2.4)

Furthermore, as in [\[1\]](#page-17-6) (see also [\[20,](#page-18-9) Section 2]) one can show that the nonnegative solutions in Ω_1 are monotone in Ω_{δ_0} for some universal δ_0 . We state this only in two spatial dimensions.

Theorem 2.6. Let w be a viscosity solution of $F(D^2w) = 0$; $w \ge 0$ in $D = \{|x_1| \le 1$; $f(x_1) < x_2 \le M$ *}*, $M = ||f||_{C^{0,1}}$; $w = 0$ on $f(x_1) = x_2$. Assume F1^o–F2^o hold and F *is either concave or convex. Then, there is* $\delta = \delta(M)$ *such that*

$$
\partial_2 w \ge 0 \quad \text{in } D_\delta = \big\{ |x_1| \le \delta, \, f(x_1) < x_2 \le M\delta \big\}.
$$

In [\[20\]](#page-18-9), Theorem [2.6](#page-4-1) is stated for concave operator F ; however, the concavity is needed only to assure that the viscosity solutions of the homogeneous equation are locally $C^{2,\alpha}$ regular; see [\[20,](#page-18-9) Remark 1.2]. Seeing that in the proofs of [20, Lemmata 2.1–2.5] one needs only $C^{1,\alpha}$ regularity of the solutions, in view of Remark [2.2](#page-3-0) we see that Theorem [2.6](#page-4-1) continues to hold for convex F ; see [\[9\]](#page-17-7).

3. Existence and nondegeneracy

In this section we prove the existence of viscosity solutions and the nondegeneracy of maximal solutions.

3.1. Existence of viscosity solutions

Definition 3.1. A continuous function u is said to be a viscosity subsolution of the equation $F(D^2u) = -\chi_{\{u>0\}}$ if the inequality $F(D^2v(x_0)) \geq -\chi_{\{u>0\}}$ holds pointwise, whenever at $(x_0, u(x_0))$ the graph of u can be touched from below by a paraboloid v. Moreover, u is said to be a strict subsolution if the inequality above is strict.

Definition 3.2. A viscosity solution u of $F(D^2u) = -\chi_{\{u>0\}}$ is said to be maximal in D if for every strong subsolution v satisfying $v \leq u$ on $\partial D'$ for some subdomain $D' \subset D$, we have $v \leq u$ in D' .

Theorem 3.3. Assume $\mathbf{F1}^{\circ} - \mathbf{F2}^{\circ}$ *hold. Let* D *be a bounded* $C^{2,\alpha}$ *domain and* $g \in C^{2,\alpha}(\overline{D})$ *. There exists a maximal viscosity solution* u *to*

$$
\begin{cases}\nF(D^2u) = -\chi_{\{u>0\}} & \text{in } D, \\
u = g & \text{on } \partial D,\n\end{cases}
$$
\n(3.1)

such that $u \in W^{2,p}(D)$ *for every* $p \geq 1$ *.*

Proof. We use a standard penalization argument (see [\[11,](#page-17-8) page 24, Lemma 3.1]). Let $\beta_{\varepsilon}(t)$, $t \in \mathbb{R}$ be a family of C^{∞} functions such that

$$
\begin{cases}\n\beta_{\varepsilon}(t) \geq \chi_{\{t>0\}} & \text{on } \mathbb{R}, \\
\beta_{\varepsilon'}(t) \leq \beta_{\varepsilon}(t) & \text{if } \varepsilon' < \varepsilon, \\
\lim_{\varepsilon \to 0} \beta_{\varepsilon}(t) = \chi_{\{t>0\}} & t \in \mathbb{R}.\n\end{cases}
$$
\n(3.2)

Given $\varepsilon > 0$, there is a solution v of

$$
\begin{cases}\nF(D^2v) = -\beta_{\varepsilon}(v) & \text{in } D, \\
v = g & \text{on } \partial D.\n\end{cases}
$$
\n(3.3)

This follows from Schauder's fixed point theorem; see [\[11,](#page-17-8) page 24, Lemma 3.1]. Observe that Perron's method implies that for every $\varepsilon > 0$, the maximal solution u_{ε} exists. Furthermore, since β_{ε} are uniformly bounded, then $||v||_{W^{2,p}(D)} \leq C$ with some C independent of ε ; see [\[3,](#page-17-4) Theorem 7.1] and Remark [2.2](#page-3-0) above.

If v is a subsolution, that is, $F(D^2v) \ge -\chi_{\{v>0\}}$, then by [\(3.2\)](#page-5-0) we also have that $F(D^2v) \ge -\beta_{\varepsilon}(v)$. Thus, for $\varepsilon > \varepsilon'$ (using [\(3.2\)](#page-5-0)) we get

$$
F(D^2u_{\varepsilon'})=-\beta_{\varepsilon'}(u_{\varepsilon'})\geq -\beta_{\varepsilon}(u_{\varepsilon'}).
$$

This shows that u_{ε} is a subsolution to [\(3.3\)](#page-5-1). Since u_{ε} is the maximal solution, we then have

$$
v \le u_{\varepsilon}, \quad u_{\varepsilon'} \le u_{\varepsilon}.\tag{3.4}
$$

Thus, $u(x) = \lim_{\varepsilon \to 0} u_{\varepsilon}$ in $W^{2,p}$, and by [\(3.4\)](#page-5-2), $u \ge v$ for every subsolution v. From the uniform convergence, it follows that $u(z) > 0$, implying that $u_{\varepsilon} > 0$ in some neighborhood of z. Thus, $F(D^2u) = -1$ near z. Since $D^2u = 0$ almost everywhere on $\{u = 0\}$, it follows that $F(D^2u) = -\chi_{\{u>0\}}$. П

3.2. Nondegeneracy

Theorem 3.4. *Assume* F1°–F2° *hold and let u be the maximal solution. Then, there is a universal constant* $c_{n,y}$, depending only on dimension n and $\gamma = \frac{\Lambda(n-1)}{\lambda} - 1$, such that

$$
\inf_{B_r(x_0)} u > -c_{n,\gamma} r^2
$$

implies that $u(x_0) > 0$ *.*

Proof. Let us consider

$$
b(x) = \begin{cases} C(1-|x|^2) & \text{if } |x| \le 1, \\ \phi(x) - \phi(1) & \text{if } |x| > 1, \end{cases}
$$

where

$$
\phi(x) = \begin{cases}\n-\log|x| & \text{if } n = 2, \\
\frac{1}{\gamma}|x|^{-\gamma} & \text{if } n \ge 3,\n\end{cases}
$$

and the constant C is chosen so that $b(x)$ is $C¹$ regular. It is straightforward to compute D^2b , and thus,

$$
F(D^2b) = \begin{cases} -2CF(\delta_{ij}) & \text{if } |x| \le 1, \\ -\frac{1}{|x|^{\gamma+2}}F(\delta_{ij} - (\gamma+2)\frac{x_ix_j}{|x|^2}) & \text{if } |x| > 1. \end{cases}
$$

From the ellipticity in (2.1) , we get that

$$
F(\delta_{ij} - (\gamma + 2) \frac{x_i x_j}{|x|^2}) \le \mathcal{M}^+\Big(\delta_{ij} - (\gamma + 2) \frac{x_i x_j}{|x|^2}\Big) = 0, \quad |x| > 1.
$$

Hence,

$$
F(D^2b) \ge -\frac{1}{|x|^{\gamma+2}} \mathcal{M}^+\Big(\delta_{ij} - (\gamma+2)\frac{x_i x_j}{|x|^2}\Big) = 0, \quad |x| > 1.
$$

Consequently, we see that $\hat{b}(x) = \frac{b(x)}{2CF(\delta)}$ $\frac{D(X)}{2CF(\delta_{ij})}$ is a subsolution.

Given *r*, choose ρ so that $\frac{2}{\rho} = r$. Then, for $|x| > \frac{1}{\rho}$, we have

$$
\frac{1}{\rho^2}\hat{b}(\rho x) = \frac{1}{\rho^{\gamma+2}\gamma} \Big[\frac{1}{|x|^{\gamma}} - \rho^{\gamma} \Big],
$$

and consequently,

$$
\frac{\hat{b}(r)}{\rho^2} = \frac{1}{\rho^2} \hat{b} \left(\frac{2}{\rho} \right) = -\left(1 - \frac{1}{2^{\gamma}} \right) \frac{1}{\rho^2 \gamma} \n= -\left(1 - \frac{1}{2^{n-2}} \right) r^2 \frac{1}{4\gamma} =: -c_{n,\gamma} r^2.
$$

Thus, $u(0) > \hat{b}(0) > 0$.

4. Dichotomy

In order to formulate the main result of this section, we first introduce the notion of flatness. Let P_2 be the set of all homogeneous normalized polynomials of degree two, that is,

$$
P_2 := \left\{ p(x) = \sum a_{ij} x_i x_j, \text{ for any } x \in \mathbb{R}^n, \text{ with } ||p||_{L^{\infty}(B_1)} = 1 \right\},\tag{4.1}
$$

 \blacksquare

where a_{ij} is a symmetric $n \times n$ matrix. For given $p \in P_2$ and $x_0 \in \mathbb{R}^n$, we set $p_{x_0}(x)$

 $p(x - x_0)$ and consider the zero level set of translated polynomial p

$$
S(p, x_0) := \{x \in \mathbb{R}^n : p_{x_0}(x) = 0\}.
$$
 (4.2)

By definition, $S(p, x_0)$ is a cone with a vertex at x_0 .

Definition 4.1. Let $\delta > 0$, $R > 0$, and $x_0 \in \partial\{u > 0\}$. We say that $\partial\{u > 0\}$ is (δ, R) -flat at x_0 if, for every $r \in (0, R]$, there exists $p \in P_2$ such that

$$
HD(\partial \{u > 0\} \cap B_r(x_0), S(p, x_0) \cap B_r(x_0)) < \delta r.
$$

Here HD denotes the Hausdorff distance defined as follows:

$$
HD(A, B) := \max\{\sup_{a \in A} \text{dist}(a, B), \sup_{b \in B} \text{dist}(b, A)\}.
$$
 (4.3)

Remark 4.2. In the previous definition p may depend on r . Later we will show that in the two-dimensional case, the limiting configurations at asymptotically flat points are unique.

Given $r > 0$, $x_0 \in \partial \{u > 0\}$, and $p \in P_2$, we let

$$
h_{\min}(r, x_0, p, u) := \text{HD}(\partial \{u > 0\} \cap B_r(x_0), S(p, x_0) \cap B_r(x_0)).\tag{4.4}
$$

Then, we define the flatness at level $r > 0$ of $\partial \{u > 0\}$ at x_0 as follows:

Definition 4.3. Let $\delta > 0$, $r > 0$, and $x_0 \in \partial \{u > 0\}$. We say that $\partial \{u > 0\}$ is δ -flat at level r at x_0 if $h(r, x_0, u) < \delta r$, where

$$
h(r, x_0, u) := \inf_{p \in P_2} h_{\min}(r, x_0, p, u).
$$
 (4.5)

Remark 4.4. In view of Definitions [4.1](#page-7-0) and [4.3,](#page-7-1) we can say that $\partial \{u > 0\}$ is (δ, R) -flat at $x_0 \in \partial \{u > 0\}$ if and only if, for every $r \in (0, R]$, it is δ -flat at level r at x_0 .

Theorem 4.5. Let $n > 2$ and u be a viscosity solution of [\(1.1\)](#page-0-0). Let $D \subset \Omega$, $\delta > 0$, and *let* $x_0 \in \partial \{u > 0\} \cap D$ *such that* $|\nabla u(x_0)| = 0$ *and* $\partial \{u > 0\}$ *is not* δ -*flat at* x_0 *at any level* $r > 0$ *. Then, u has at most quadratic growth at* x_0 *and is bounded from above in* $dependence$ on δ .

Theorem [4.5](#page-7-2) will follow from Proposition [4.6](#page-7-3) below in a standard way; see [\[8\]](#page-17-9). Let us define $r_k = 2^{-k}$ and $M(r_k, x_0) = \sup_{B_{r_k}(x_0)} |u|$, where $x_0 \in \partial \{u > 0\} \cap {\{|\nabla u| = 0\}}$.

Proposition 4.6. Let u be as in Theorem [4.5](#page-7-2) and sup $|u| < 1$. If

$$
h(r_k, x_0, u) > \delta r_k
$$

for some $\delta > 0$ *, then there exists* $C = C(\delta, n, \lambda, \Lambda)$ *such that*

$$
M(r_{k+1}, x) \le \max\Bigl(C r_k^2, \frac{1}{2^2} M(r_k, x), \dots, \frac{M(r_{k-m}, x)}{2^{2(m+1)}}, \dots, \frac{M(r_0, x)}{2^{2(k+1)}}\Bigr). \tag{4.6}
$$

Proof. If [\(4.6\)](#page-7-4) fails, then there are solutions $\{u_i\}$ of [\(1.1\)](#page-0-0) with sup $|u_i| \le 1$, sequences $\{k_i\}$ of integers, and free boundary points $\{x_j\}$, $x_j \in B_1$ such that

$$
M(r_{k_j}+1,x_j) > \max\Big(jr_{k_j}^2,\frac{1}{2^2}M(r_{k_j},x_j),\ldots,\frac{M(r_{k_j-m},x_j)}{2^{2(m+1)}},\ldots,\frac{M(r_0,x_j)}{2^{2(k_j+1)}}\Big),\ (4.7)
$$

where with some abuse of notation we set $M(r_{k_j}, x_j) = \sup_{B_{r_{k_j}}(x_j)} |u_j|$. Since $M(r_{k_j}, x_j)$ \leq sup_{B₁} $|u_j| < \infty$, it follows that $k_j \to \infty$. Define the scaled functions

$$
v_j(x) = \frac{u_j(x_j + r_{k_j}x)}{M(r_{k_j} + 1, x_j)}.
$$

By construction, we have

$$
v_j(0) = 0, \quad |\nabla v_j(x)| = 0,
$$

\n
$$
\sup_{B_{\frac{1}{2}}} |v_j| = 1,
$$

\n
$$
h(0, 1, v_j) > \delta,
$$

\n
$$
v_j(x) \le 2^{2m-1}, \quad |x| \le 2^m, \quad m < 2^{k_j},
$$
\n(4.8)

where the last inequality follows from (4.7) after rescaling the inequality

$$
\frac{M(r_{k_j-m}, x_j)}{M(r_{k_j+1}, x_j)} < 2^{2(m-1)}.
$$

Utilizing the homogeneity of operator F and noting that

$$
D_{x_{\alpha}x_{\beta}}^2 v_j(x) = r_j^2 (D_{\alpha\beta}^2 u_j)(x_j + r_{k_j}x),
$$

it follows that

$$
F(D^2v_j(x)) = -\frac{r_{k_j}^2}{M(r_{k_j+1},x_j)}\chi_{\{v_j>0\}} = -\sigma_j\chi_{\{v_j>0\}},
$$
\n(4.9)

where $\sigma_j = \frac{r_{k_j}^2}{M(r_{k-1})}$ $\frac{k_j}{M(r_{k_j+1}, x_j)}$. Observe that $\sigma_j < \frac{1}{j}$ in view of [\(4.7\)](#page-8-0). Since under hypotheses F1[°]–F2[°] we have local $W^{2,p}$ bounds for all $p \ge 1$ (see [\[3,](#page-17-4) Theorem 7.1]), it follows that we can employ a customary compactness argument for the viscosity solutions to show that there is a function $v_0 \in W^{2,p}_{loc}(\mathbb{R}^n)$ such that

$$
v_{k_j} \to v_0 \quad \text{in } C_{\text{loc}}^{1,\alpha}(\mathbb{R}^n),
$$

$$
v_0(0) = |\nabla v_0(0)| = 0,
$$

$$
F(D^2 v_0) = 0.
$$

From Liouville's theorem, it follows that v_0 is homogeneous quadratic polynomial p of degree two. Since (4.8) holds, we have for this particular p that

$$
h_{\min}(0, 1, p, v_j) \ge h(0, 1, v_j) > \delta.
$$

Consequently, there are points $z_j = y_j + \delta \hat{e}_j$ such that z_j 's are outside of the δ neighborhood of $\{p = 0\}$ and $v_j(z_j) = 0$. We can extract a subsequence from z_j so that it converges to some z_0 , and z_0 is at least δ away from $\{p = 0\}$. Moreover, $v_0(z_0) = 0$ by uniform convergence. This is a contradiction and, therefore, the proof is complete.

Remark 4.7. In [\[15\]](#page-18-5) the authors proved some partial results for the problem

$$
F(D2u) = \chi_{\mathcal{D}} \quad \text{in } B_1, \qquad u = |\nabla u| = 0 \quad \text{in } B_1 \setminus \mathcal{D}. \tag{4.10}
$$

For $F = \Delta$, this problem arises in the linear potential theory related to harmonic continuation of the Newtonian potential of $B_1 \cap D$.

Analysis similar to that of the proof of Proposition [4.6](#page-7-3) shows that the result is also valid for the solutions of [\(4.10\)](#page-9-0).

Corollary 4.8. *Let* u *be a viscosity solution to* [\(4.10\)](#page-9-0)*. Then, the statement of Theorem* [4.5](#page-7-2) *holds for* u *too.*

Remark 4.9. If in Proposition [4.6](#page-7-3) we let $\delta \downarrow 0$, say $\delta = 1/k$, $k \uparrow \infty$ then either [\(4.6\)](#page-7-4) remains valid uniformly or $C \to \infty$. For the first scenario, in the limit we get a degree 2 homogeneous solution U solving $F(D^2U) = -\chi_{\{U>0\}}$. Such a solution does not exist for $F = \Delta$. Also, by a simple computation, one can check that for more general operators such a solution does not exist. Therefore, from now on we will assume that as $\delta \downarrow 0$, the constant in [\(4.6\)](#page-7-4) $C \to \infty$. We conclude that at an asymptotically flat point x_0 , that is, for vanishing δ , one has

$$
\frac{\sup_{B_r(x_0)}|u|}{r^2} \to \infty.
$$
\n(4.11)

5. Uniqueness of blow-up

In this section we prove that for $n = 2$, the blow-up configuration at the flat point is unique. The proof is based on an argument from [\[7\]](#page-17-10). Let

$$
Q_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}
$$

Figure 1. The uniqueness proof via a reflection principle.

be the counterclockwise rotation by θ . Suppose

$$
U = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2
$$

solves $F(D^2U) = 0$ in \mathbb{R}^2 . We consider two cases; first, if $a_{11} = a_{22} = 0$, then this means

$$
F\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 0.
$$

The other case is when one of these coefficients is not zero, say a_{11} . Since F is homogeneous, without loss of generality we take $a_{11} > 0$. Then,

$$
U = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 = a_{11}\left(x_1 + \frac{a_{12}}{a_{11}}x_2\right)^2 + \frac{a_{22}a_{11} - a_{12}^2}{a_{11}}x_2^2.
$$

Observe that $a_{22}a_{11} - a_{12}^2 \neq 0$, since otherwise $U \geq 0$ is a solution to $F(D^2U) = 0$ with local minimum at the origin. Consequently, the matrix $a = [a_{ij}]$ is nonsingular, and the zero set of U is a pair of crossing lines.

The main result of this section is that for $F(M) = \sup_{t \in \mathcal{I}} A_{ij,t} M_{ij}$ and $n = 2$, for vanishing δ -flat points the approximating quadratic polynomial p is unique.

Theorem 5.1. *Suppose that* $n = 2$ *,* $x_0 \in \partial_{sing}\{u > 0\}$ *, and*

$$
\lim_{r \downarrow 0} \frac{h(r, x_0, u)}{r} = 0.
$$

Then, there is a unique $p \in P_2$ *and an* $r_0 > 0$ *such that*

$$
h_{\min}(r, x_0, p, u) = o(r), \quad r < r_0.
$$

Proof. For simplicity let us assume that $x_0 = 0$ and $F(M) = \sup_{t \in \mathcal{T}} A_{ij,t} M_{ij}$; see Section [2.](#page-2-0)

Suppose that the limiting configuration is not unique; in other words, there are two quadratic polynomials

$$
p_i(x) = M_i^2 x_1^2 - x_2^2, \quad M_i > 0
$$

such that for some $r_k \downarrow 0$, we have that $\partial \{u > 0\} \cap B_{r_{2m}}$ (up to a rotation) is close to $\partial \{p_2 > 0\}$ and $\partial \{u > 0\} \cap B_{r_{2m+1}}$ is close to $\partial \{p_1 > 0\}$. Let us define the rotated polynomials

$$
\widetilde{p}_i(r,\theta) = p_i(Q_{\theta_i}x) = r^2(M_i^2\cos^2(\theta-\theta_i)-\sin^2(\theta-\theta_i)),
$$

and note that

$$
\partial_{\theta}(\tilde{p}_i(r,\theta) - \tilde{p}_i(r,2\theta_0 - \theta))
$$

= $r^2(-2M_i^2 \cos(\theta - \theta_i)\sin(\theta - \theta_i) - 2\sin(\theta - \theta_i)\cos(\theta - \theta_i))$
 $- r^2(2M_i^2 \cos(2\theta_0 - \theta_i - \theta)\sin(2\theta_0 - \theta_i - \theta))$
+ $2\sin(2\theta_0 - \theta_i - \theta)\cos(2\theta_0 - \theta_i - \theta)).$

At $\theta = \theta_0 := (\theta_1 + \theta_2)/2$, this gives

$$
\begin{split} \partial_{\theta}(\widetilde{p}_1(r,\theta) - \widetilde{p}_1(r,2\theta_0 - \theta))\big|_{\theta=\theta_0} &= -r^2(4M_1^2 + 2)\sin(\theta_0 - \theta_1)\cos(\theta_0 - \theta_1) \\ &= -r^2(4M_1^2 + 2)\sin\left(\frac{\theta_2 - \theta_1}{2}\right)\cos\left(\frac{\theta_2 - \theta_1}{2}\right). \end{split}
$$

Similarly,

$$
\partial_{\theta}(\widetilde{p}_2(r,\theta)-\widetilde{p}_2(r,2\theta_0-\theta))\big|_{\theta=\theta_0}=r^2\big(4M_2^2+2\big)\sin\Big(\frac{\theta_2-\theta_1}{2}\Big)\cos\Big(\frac{\theta_2-\theta_1}{2}\Big).
$$

Introduce

$$
w(r,\theta) = u(r,\theta) - u(r,2\theta_0 - \theta);
$$

then, since $u(x)/M(r_{2m})$ is close to \tilde{p}_2 in $B_{r_{2m}}$ and $u(x)/M(r_{2m+1})$ is close to \tilde{p}_1

in $B_{r_{2m+1}}$, it follows from the above computation that

$$
\partial_{\theta} w(r_k, \theta_0)(-1)^k > 0, \quad k = 1, 2, \tag{5.1}
$$

This will be enough to get a contradiction, because after rescaling and using a customary compactness argument as in Proposition [4.6,](#page-7-3) we have

$$
U_k = w(r r_k, \theta) / \mu(r_k) \to U^o, \quad \mu(r_k) = \frac{1}{r_k} \Biggl(\int_{B_{r_k}} w^2 \Biggr)^{\frac{1}{2}}
$$

with the properties that

$$
U^{o}(r, \theta_{0}) = \partial_{\theta} U^{o}(r, \theta_{0}) = 0 \quad \text{and} \quad ||U^{o}||_{L^{2}(B_{1})} = 1,
$$
 (5.2)

provided that U^o solves an elliptic equation. To find this equation let us first note that $w(x) = u(x) - u(Qx)$ for some rotation Q; therefore,

$$
D^{2}w(x) = D^{2}u(x) - Q^{*}(D^{2}u)(Qx)Q.
$$

By assumption,

$$
F(D2u(x)) = \sup_{t \in \mathcal{I}} c_{ij,t} u_{ij}(x); \tag{5.3}
$$

and moreover, from the homogeneity of F , we get that

$$
F(M) = F_{ij}(M)M_{ij}, \quad F_{ij}(M) = \frac{\partial F(M)}{\partial M_{ij}}, \quad M \neq 0, \quad F_{ij}(M) \in \mathcal{S}^+(\lambda, \Lambda),
$$

so that $F(D^2u(x)) \geq F_{ij}(D^2u(x))u_{ij}(x)$. Thus, taking $c_{ij}(x) = F_{ij}(D^2u(x))$ we have

$$
c_{ij}w_{ij} = -\chi_{\{u>0\}} - c_{ij}(Q^*(D^2u)(Qx)Q)_{ij} \ge -\chi_{\{u>0\}} + \chi_{\{u(Qx)>0\}}.\tag{5.4}
$$

By inspection, one can check that in the sector (θ_0, θ_1) both $u(x)$ and $u(Qx)$ are posi-tive; see Figure [1.](#page-10-0) Using [\(5.1\)](#page-12-0), near (r_{2m}, θ_0) it follows from [\(5.4\)](#page-12-1) that $c_{ij} w_{ij} \ge 0$, and hence $\{w > 0\}$ has a nontrivial component on the line $\theta = \theta_0$ as part of its boundary; see Figure [1.](#page-10-0) Consequently, it follows from [\(5.4\)](#page-12-1) that this component should propagate to the boundary of B_{r_0} for small r_0 . A similar argument, with $\tilde{c}_{ij} = F_{ij}(Q^*D^2(Qx)Q)$, shows that

$$
\begin{aligned} \tilde{c}_{ij}w_{ij} &= F_{ij}(Q^*D^2(Qx)Q)D^2u(x) - F(D^2u(Qx)) \\ &= F_{ij}(Q^*D^2(Qx)Q)D^2u(x) + \chi_{\{u(Qx) > 0\}} \\ &\le -\chi_{\{u > 0\}} + \chi_{\{u(Qx) > 0\}}; \end{aligned} \tag{5.5}
$$

in other words, the component of $\{w < 0\}$ near (r_{2m+1}, θ_0) has a nontrivial component

on the line $\theta = \theta_0$ as part of its boundary which propagates to the boundary of B_{r_0} for small r_0 . This means that we cannot have infinitely many such components in view of the definition of p_1 and p_2 .

Observe that

$$
\frac{1}{\rho^4} \int_{B_\rho} w^2 = \frac{2}{\rho^4} \int_{B_\rho} u^2 - \frac{2}{\rho^4} \int_{B_\rho} u(x)u(Qx)dx \to \infty
$$
 (5.6)

as $\rho \rightarrow \infty$. Indeed, if it fails, then

$$
\frac{\int_{B_{\rho}} u(x)u(Qx)dx}{\int_{B_{\rho}} u^2} \to 1,
$$
\n(5.7)

but this is impossible since u changes sign and $\{u < 0\}$ is asymptotically a cone.

At a singular point, we have from the weak Harnack inequality

$$
\infty \leftarrow \frac{M(\rho)}{\rho^2} \lesssim o(1) + \frac{1}{\rho^2} \Bigl(\int_{B_{\rho}} u^2 \Bigr)^{\frac{1}{2}}.
$$

This together with (5.4) and (5.5) implies that at the limit,

$$
c_{ij}^o U_{ij}^o \ge 0 \quad \text{and} \quad \tilde{c}_{ij}^o U_{ij}^o \le 0. \tag{5.8}
$$

Combining this with [\(5.2\)](#page-12-3) and applying Hopf's lemma, we get a contradiction.

6. Quadruple junctions

Throughout this section we assume that F is convex and satisfies $F1^{\circ} - F2^{\circ}$ and that u is a viscosity solution; see Section [3.](#page-4-0)

Lemma 6.1. Assume $F1^{\circ} - F2^{\circ}$ *hold and F is convex. Let* $n = 2$ *and* $|\nabla u(0)| = 0$ *and* let $0 \in \partial \{u > 0\}$ be a δ -flat point such that the zero set of the polynomial $p(x) = M^2 x_1^2$ $-x_2^2$, $M > 0$ approximates $\partial \{u > 0\}$ near 0. Assume further that u is nondegenerate at 0. Then, for every $\delta_0 > 0$, there is $r_0 = 2^{-k_0}$ (for some $k_0 \in \mathbb{N}$) such that $\partial_2 u^-(x + t e_2) \geq 0$ whenever $x \in (B_{r_0} \setminus B_{\delta_0 r_0}) \cap \{x_2 \geq M|x_1|\}$ and $\delta_0 \leq t \leq 2$.

Proof. Let $\theta_0 = \arctan M$ and denote $K^- = \{x_2 \ge M |x_1|\}$. After rotation of the coordinate system, we can assume that K^- contains $u < 0$ away from some small neighborhood of $x_2 = M|x_1|$ $x_2 = M|x_1|$ $x_2 = M|x_1|$ (the green cones in Figure 2 represent that neighborhood).

Suppose the claim fails; then, there is $\delta_0 > 0$ so that for every $r_k = 2^{-k} \to 0$ and some points $x_k \in B_{r_k} \setminus B_{\delta_0 r_k} \cap \Omega^-(u)$, we have

$$
\partial_2 u^-(x_k + r_k t_k e_2) < 0 \quad \text{for some } \delta_0 \le t_k \le 2. \tag{6.1}
$$

Figure 2. The geometric construction in the proof of Lemma [6.1.](#page-13-1) The shadowed balls are in the Harnack chain.

We can choose δ_0 so that for large k, we have $\delta_0 > \frac{h_k}{\cos \theta_0} \to 0$, where $h_k = h(2^{-k}, 0)$. Introduce the scaled functions

$$
v_k(x) = \begin{cases} \frac{u(r_k x)}{M(r_k)} & \text{if (4.6) is true for all } k \ge \hat{k}, \text{ for some fixed } \hat{k},\\ \frac{u(r_k x)}{M(r_{k+1})} & \text{if there is a sequence } r_k = 2^{-k} \text{ such that (4.7) holds.} \end{cases}
$$
(6.2)

Here we set $M(r_k) = M(r_k, 0)$. For both scalings, we have that v_k 's are nondegenerate; for the first scaling it follows from Theorem [3.4](#page-5-3) (our assumption on nondegeneracy), and for the second one it follows from the fact that $\sup_{B_{1/2}} |v_k| = 1$.

Moreover, by [\(6.1\)](#page-13-2) there is $y_k \in (B_1 \setminus B_{\delta_0}) \cap \{v_k < 0\}$ such that

$$
\partial_2 v_k^-(y_k + t_k e_2) < 0 \quad \text{for some } \delta_0 \le t_k \le 2. \tag{6.3}
$$

Consequently, there is a subsequence $y_{k_j} + t_{k_j}e_2 \rightarrow y_0 + t_0e_2 \in K^- \cap B_2$ and there is a Harnack chain B^1, \ldots, B^N where $B^1 = B_{\cos \theta_0/2}(e_2)$ and $B^N = B_{\delta_0/2}(y_0)$, where N is independent of k_j . Let $\tilde{K} = B_1 \cup \bigcup_{i=1}^N B^i$. Since under hypotheses $\mathbf{F1}^\circ - \mathbf{F2}^\circ$ we have local $W^{2,p}$ bounds for all $p \ge 1$ (see [\[3,](#page-17-4) Theorem 7.1]), it follows that we can employ a customary compactness argument for viscosity solutions to infer that there is a function $v_0 \in W^{2,p}_{loc}(\mathbb{R}^n)$ such that we have

$$
v_k \to v_0 \quad \text{in } W^{2,p}, \forall p \ge 1,
$$

\n
$$
|F(D^2 v_k)| \le C \quad \text{uniformly},
$$

\n
$$
v_0 < 0 \quad \text{in } K^-,
$$

\n
$$
|v_k| \le C \quad \text{in Harnack chain domain } \widetilde{K},
$$

\n
$$
\frac{\partial_2 v_0^-(y_0 + t_0 e_2) \le 0}{\partial_2 v_0^-(y_0 + t_0 e_2)} \le 0 \quad \text{in view of (6.3)}.
$$

Applying Theorem [2.6](#page-4-1) to $v_0^- \ge 0$, it follows that $\partial_2 v_0^-(y_0 + t_0 e_2) = 0$. Moreover, $w = \partial_2 v_0^-$ satisfies the equation $F_{ij} D_{ij} w = 0$ in \tilde{K} ; hence, from the strong maximum principle it follows that $w = 0$ in K^- . Consequently, v_0 depends only on x_1 , implying that $\theta_0 = 0$ or $\theta_0 = \pi/2$, which is a contradiction.

Theorem 6.2. *Let* u *be as in Lemma* [6.1](#page-13-1) *and let* 0 *be a flat free boundary point. Then, in some neighborhood of* 0 *the free boundary consists of four* C 1 *curves tangential to the zero set of the polynomial* $M^2x_1^2 - x_2^2$.

Proof. Let $\partial_{\text{sing}}\{u > 0\} = \partial\{u > 0\} \cap {\{\nabla u| = 0\}}$. Clearly, it is enough to prove that there is r such that $\partial_{sing}\{u > 0\} \cap B_r = \{0\}$. Suppose the claim fails. Then, there is a sequence $x_k \in \partial_{\text{sing}} \{u > 0\}, x_k \to 0.$ Let $M_k^- := M^-(2r_k \ell_0) = \sup_{B_{2r_k \ell_0}} u^-, r_k = |x_k|$ and consider

$$
v_k(x) = \frac{u(r_k x)}{M^-(2r_k \ell_0)} \quad \text{where } \ell_0 = \sqrt{\frac{\Lambda}{\lambda}}.
$$
 (6.4)

Note that $F(D^2v_k) = -\chi_{\{v_k>0\}} \frac{r_k^2}{M^-(2r_k\ell_0)}$, and therefore by nondegeneracy we have $|F(D^2v_k)| \leq C$ for some $C > 0$ independent of k.

By construction, $\sup_{B_{2\ell_0}} |v_k^ |k| = 1$ and since $F(D^2 v_k) = 0$ in $\Omega^-(v_k) := \{v_k < 0\}$, it follows that there is $z_k \in \partial B_2_{\ell_0} \cap \Omega^-(v_k)$ such that $v_k^$ k_k (z_k) = 1. Consequently, dist(z_k + $\delta_0 e_2$, $\{p = 0\}$) $\geq \delta_0/2$ and by Lemma [6.1,](#page-13-1)

$$
v_k^-(z_k + \delta_0 e_2) \ge 1.
$$

Claim 6.3. *With the notation above, we have*

$$
M_k^+ \leq C M_k^-,
$$

for some universal constant $C > 0$ *.*

To check this, we first observe that trace $(A_t D^2 v_k(x)) \leq F(D^2 v_k x)$ thanks to the convexity of F and $A_t \in S_{\lambda,\Lambda}$. Now consider that if $w_{k,t}(x) = v_k(A_t^{\frac{1}{2}}x)$, then $\Delta w_{k,t}(x) =$

trace $(A_t D^2 v_k(x)) \leq F(D^2 v_k(x)) \leq 0$. Since $w_{k,t}$ is continuous and $w_{k,t}(0) = 0$, then one can easily check that

$$
\oint_{B_r} w_{k,t} = \int_0^r \frac{1}{t} \int_{B_t} \Delta w_{k,t} \le 0
$$
\n(6.5)

because of convexity of F and the estimate $F(D^2v_k) \leq 0$.

Note that

$$
\int_{B_r} w_{k,t}(x) dx = \frac{1}{\sqrt{\det A_t}} \int_{|A^{-\frac{1}{2}}y| < r} v_k(y) dy \le 0.
$$

Thus, from [\(6.5\)](#page-16-0) it follows that

$$
\frac{1}{\Lambda} \int_{B_{\frac{r}{\sqrt{\Lambda}}} v_k^+ \le \frac{1}{\sqrt{\det A_t}} \int_{|A^{-\frac{1}{2}}y| < r} v_k^+(y) dy \le \frac{1}{\sqrt{\det A_t}} \int_{|A^{-\frac{1}{2}}y| < r} v_k^-(y) dy
$$

$$
\le \frac{1}{\lambda} \int_{B_{\frac{r}{\sqrt{\lambda}}} v_k^-(y) dy, \quad r < 2.
$$

Consequently, we get

$$
\int_{B_r} v_k^+(y) dy \leq \ell_0^2 \int_{B_{r\ell_0}} v_k^-.
$$

Let $\hat{v}_k = v_k + \hat{C} |x|^2$. Then,

$$
F(D^2\hat{v}_k) \ge F(D^2v_k) + 2\hat{C}\lambda \ge 0,
$$

provided that \hat{C} is sufficiently large.

We see that \hat{v}_k , and hence \hat{v}_k^+ τ_k^+ , is a subsolution. Consequently, applying the weak Harnack inequality [\[3\]](#page-17-4), we get

$$
\sup_{B_{\frac{4}{3}}} v_k^+ \leq \sup_{B_{\frac{4}{3}}} \hat{v}_k^+ \leq c_0 \int_{B_2} (v_k^- + \hat{C}|x|^2) \leq c_0 (1 + 2\pi \hat{C}).
$$

This completes the proof of the claim.

Thus, as in the proof of Lemma [6.1,](#page-13-1) we can employ a customary compactness argument in $W^{2,p}$ so that $y_k = x_k / r_k \rightarrow y_0 \in \{x_2 = M | x_1 | \} \cap \partial B_1$ and

$$
\nabla v_0(y_0) = 0, \quad v_0(z_0 + \delta_0 e_2) \ge 1,
$$

by Harnack chain and $C^{1,\alpha}$ estimates in the Harnack chain domain (which joins $2\ell_0e_2$ with $z_0 + \delta_0 e_2$). Since $y_0 \in \{x_2 = M |x_1|\}$, $y_0 \neq 0$, the free boundary at y_0 is a line. Therefore, we can apply Hopf's lemma to conclude that $v_0^- \equiv 0$, which is a contradiction.

It remains to show that the curves are $C¹$ up to the origin. Suppose this is not the case; then, there is a sequence $x_k \to 0$ of regular free boundary points such that the unit normal v_k at x_k does not converge to the corresponding unit normal e of the component of $\{Mx_1^2 - x_2^2 = 0\}$. Using the same compactness argument for v_k as before, we can see that $|e - v_k| \ge \sigma$ for some fixed $\sigma > 0$ and large k, where v_k is now the normal of some free boundary point of v_k with distance 1 from 0. But this is a contradiction, since v_k converge locally uniformly to some v_0 and its free boundary is exactly the zero set of the polynomial $Mx_1^2 - x_2^2$.

Funding. The author was partially supported by EPSRC grant EP/S03157X/1 *Mean curvature measure of free boundary*.

References

- [1] L. A. Caffarelli, [Compactness methods in free boundary problems.](https://doi.org/10.1080/0360530800882144) *Comm. Partial Differential Equations* 5 (1980), no. 4, 427–448 Zbl [0437.35070](https://zbmath.org/?q=an:0437.35070) MR [567780](https://mathscinet.ams.org/mathscinet-getitem?mr=567780)
- [2] L. A. Caffarelli, [A Harnack inequality approach to the regularity of free boundaries. I. Lips](https://doi.org/10.4171/RMI/47)[chitz free boundaries are](https://doi.org/10.4171/RMI/47) $C^{1,\alpha}$. *Rev. Mat. Iberoamericana* **3** (1987), no. 2, 139–162 Zbl [0676.35085](https://zbmath.org/?q=an:0676.35085) MR [990856](https://mathscinet.ams.org/mathscinet-getitem?mr=990856)
- [3] L. A. Caffarelli and X. Cabré, *[Fully nonlinear elliptic equations](https://doi.org/10.1090/coll/043)*. Amer. Math. Soc. Colloq. Publ. 43, American Mathematical Society, Providence, RI, 1995 Zbl [0834.35002](https://zbmath.org/?q=an:0834.35002) MR [1351007](https://mathscinet.ams.org/mathscinet-getitem?mr=1351007)
- [4] S. Chanillo and C. E. Kenig, [Weak uniqueness and partial regularity for the composite mem](https://doi.org/10.4171/JEMS/127)[brane problem.](https://doi.org/10.4171/JEMS/127) *J. Eur. Math. Soc. (JEMS)* 10 (2008), no. 3, 705–737 Zbl [1154.35096](https://zbmath.org/?q=an:1154.35096) MR [2421158](https://mathscinet.ams.org/mathscinet-getitem?mr=2421158)
- [5] S. Chanillo, C. E. Kenig, and T. To, [Regularity of the minimizers in the composite membrane](https://doi.org/10.1016/j.jfa.2008.04.015) [problem in](https://doi.org/10.1016/j.jfa.2008.04.015) \mathbb{R}^2 . *J. Funct. Anal.* **255** (2008), no. 9, 2299–2320 Zbl [1154.49026](https://zbmath.org/?q=an:1154.49026) MR [2473259](https://mathscinet.ams.org/mathscinet-getitem?mr=2473259)
- [6] J.-Y. Chemin, *[Perfect incompressible fluids](https://doi.org/10.1093/oso/9780198503972.001.0001)*. Oxford Lecture Ser. Math. Appl. 14, The Clarendon Press, Oxford University Press, New York, 1998 Zbl [0927.76002](https://zbmath.org/?q=an:0927.76002) MR [1688875](https://mathscinet.ams.org/mathscinet-getitem?mr=1688875)
- [7] X.-Y. Chen, H. Matano, and L. Véron, [Anisotropic singularities of solutions of nonlinear ellip](https://doi.org/10.1016/0022-1236(89)90031-1)[tic equations in](https://doi.org/10.1016/0022-1236(89)90031-1) R 2 . *J. Funct. Anal.* 83 (1989), no. 1, 50–97 Zbl [0687.35020](https://zbmath.org/?q=an:0687.35020) MR [993442](https://mathscinet.ams.org/mathscinet-getitem?mr=993442)
- [8] S. Dipierro and A. L. Karakhanyan, [Stratification of free boundary points for a two-phase](https://doi.org/10.1016/j.aim.2018.01.005) [variational problem.](https://doi.org/10.1016/j.aim.2018.01.005) *Adv. Math.* 328 (2018), 40–81 Zbl [1394.35585](https://zbmath.org/?q=an:1394.35585) MR [3771123](https://mathscinet.ams.org/mathscinet-getitem?mr=3771123)
- [9] M. Feldman, [Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear](https://doi.org/10.1512/iumj.2001.50.1921) [elliptic equations.](https://doi.org/10.1512/iumj.2001.50.1921) *Indiana Univ. Math. J.* 50 (2001), no. 3, 1171–1200 Zbl [1037.35104](https://zbmath.org/?q=an:1037.35104) MR [1871352](https://mathscinet.ams.org/mathscinet-getitem?mr=1871352)
- [10] J. A. Feroe, [Existence and stability of multiple impulse solutions of a nerve equation.](https://doi.org/10.1137/0142017) *SIAM J. Appl. Math.* 42 (1982), no. 2, 235–246 Zbl [0502.92002](https://zbmath.org/?q=an:0502.92002) MR [650219](https://mathscinet.ams.org/mathscinet-getitem?mr=650219)
- [11] A. Friedman, *Variational principles and free-boundary problems*. Wiley-Intersci. Publ., Pure Appl. Math., John Wiley & Sons, New York, 1982 Zbl [0564.49002](https://zbmath.org/?q=an:0564.49002) MR [679313](https://mathscinet.ams.org/mathscinet-getitem?mr=679313)
- [12] Y. Giga and M. Ohnuma, On strong comparison principle for semicontinuous viscosity solutions of some nonlinear elliptic equations. *Int. J. Pure Appl. Math.* 22 (2005), no. 2, 165–184 Zbl [1330.35151](https://zbmath.org/?q=an:1330.35151) MR [2168254](https://mathscinet.ams.org/mathscinet-getitem?mr=2168254)
- [13] V. I. Judovic, Non-stationary flows of an ideal incompressible fluid. ˇ *Ž. Vyˇcisl. Mat i Mat. Fiz.* 3 (1963), 1032–1066 MR [158189](https://mathscinet.ams.org/mathscinet-getitem?mr=158189)
- [14] K.-A. Lee, *Obstacle problems for the fully nonlinear elliptic operators*. Ph.D. Thesis, New York University, NY, 1998 MR [2698202](https://mathscinet.ams.org/mathscinet-getitem?mr=2698202)
- [15] K.-A. Lee and H. Shahgholian, [Regularity of a free boundary for viscosity solutions of non](https://doi.org/10.1002/1097-0312(200101)54:1<43::AID-CPA2>3.0.CO;2-T)[linear elliptic equations.](https://doi.org/10.1002/1097-0312(200101)54:1<43::AID-CPA2>3.0.CO;2-T) *Comm. Pure Appl. Math.* 54 (2001), no. 1, 43–56 Zbl [1020.35123](https://zbmath.org/?q=an:1020.35123) MR [1787106](https://mathscinet.ams.org/mathscinet-getitem?mr=1787106)
- [16] H. P. McKean, Jr., [Nagumo's equation.](https://doi.org/10.1016/0001-8708(70)90023-X) *Advances in Math.* 4 (1970), 209–223 Zbl [0202.16203](https://zbmath.org/?q=an:0202.16203) MR [260438](https://mathscinet.ams.org/mathscinet-getitem?mr=260438)
- [17] R. Monneau and G. S. Weiss, [An unstable elliptic free boundary problem arising in solid](https://doi.org/10.1215/S0012-7094-07-13624-X) [combustion.](https://doi.org/10.1215/S0012-7094-07-13624-X) *Duke Math. J.* 136 (2007), no. 2, 321–341 Zbl [1119.35123](https://zbmath.org/?q=an:1119.35123) MR [2286633](https://mathscinet.ams.org/mathscinet-getitem?mr=2286633)
- [18] J. P. Pauwelussen, [Nerve impulse propagation in a branching nerve system: a simple model.](https://doi.org/10.1016/0167-2789(81)90005-1) *Phys. D* 4 (1981/82), no. 1, 67–88 Zbl [1194.37181](https://zbmath.org/?q=an:1194.37181) MR [636471](https://mathscinet.ams.org/mathscinet-getitem?mr=636471)
- [19] J. M. Rinzel, *[Traveling-wave solutions of a nerve conduction equation](https://doi.org/10.1016/s0006-3495(73)86065-5)*. Ph.D. Thesis, New York University, NY, 1973 MR [2623547](https://mathscinet.ams.org/mathscinet-getitem?mr=2623547)
- [20] P.-Y. Wang, [Regularity of free boundaries of two-phase problems for fully nonlinear elliptic](https://doi.org/10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q) [equations of second order. I. Lipschitz free boundaries are](https://doi.org/10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q) $C^{1,\alpha}$. *Comm. Pure Appl. Math.* 53 (2000), no. 7, 799–810 Zbl [1040.35158](https://zbmath.org/?q=an:1040.35158) MR [1752439](https://mathscinet.ams.org/mathscinet-getitem?mr=1752439)

Received 20 April 2023; revised 22 October 2023.

Aram Karakhanyan

School of Mathematics, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh 10623, UK; aram6k@gmail.com