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Structure of singularities in the nonlinear nerve
conduction problem

Aram Karakhanyan

Abstract. We give a characterization of the singular points of the free boundary @¹u > 0º for vis-
cosity solutions of the nonlinear equation

F.D2u/ D ��¹u>0º;

where F is a fully nonlinear elliptic operator and � is the characteristic function. This equation
models the propagation of a nerve impulse along an axon.

We analyze the structure of the free boundary @¹u > 0º near the singular points where u and ru
vanish simultaneously. Our method uses the stratification approach developed in Dipierro and the
author’s 2018 paper.

In particular, when n D 2 we show that near a flat singular free boundary point, @¹u > 0º is a
union of four C 1 arcs tangential to a pair of crossing lines.

1. Introduction

In this paper we study the free boundary problem

F.D2u/ D ��¹u>0º in �; (1.1)

where � � Rn is a given bounded domain with C 2;˛ boundary, �¹u>0º is the character-
istic function of ¹u > 0º, and F is a convex fully nonlinear elliptic operator satisfying
some structural conditions. Equation (1.1) appears in a model of the nerve impulse prop-
agation [10, 18, 19].

It comes from the following linearized diffusion system of FitzHugh:´
ut D r.x/�uC F .u; Ev/;

Evt D G.u; Ev/;
(1.2)
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where u.x; t/ is the voltage across the nerve membrane at distance x and time t , and
the components of Ev D .v1; : : : ; vk/ model the conductance of the membrane to various
ions [10]. A specific form for the interaction term F .u; Ev/ was suggested by McKean—
namely, F .u; Ev/ D �uC �¹u>0º [16]. Due to the homogeneity of the equation, the linear
term in F disappears after quadratic scaling, so we neglect it.

The linearized steady state equation

�u D ��¹u>0º (1.3)

also arises in a solid combustion model [17] and the composite membrane problem; see [4]
and also [6] for a variational formulation.

A chief difficulty is to analyze the free boundary near singular points where both u
and ru vanish. The main technique used in [4, 6, 17] is a monotonicity formula, which
is not available for the nonlinear equations. The aim of this paper is to use the boundary
Harnack principles and anisotropic scalings to develop a new approach to circumvent the
lack of the monotonicity formulas and obtain some of the main results from [17] and [15]
for the fully nonlinear case. More precisely, in this paper we address the optimal regularity,
uniqueness of blow-up at singular points, degeneracy, and the shape of the free boundary
near the singular points.

One of the main results in [17] concerns the cross-shaped singularities in R2. It follows
from the classification of homogeneous solutions and an application of the monotonicity
formula introduced in [17]. For nonlinear equations, this method cannot be applied. We
remark that the degenerate case (i.e., when u.x/ D o.jx � x0j

2/ near a free boundary
point x0) cannot be treated by the monotonicity formula introduced in [17] because it
does not provide any qualitative information about u; see [17, Proposition 5.1].

It is well known that the strong solutions of (1.3) may not be C 1;1loc ; see [5, Propo-
sition 5.3.1]. However, if F D �, then ru is always log-Lipschitz continuous; see [13,
Lemma 2.1]. For general elliptic operators one can show thatru isC ˛ for every ˛ 2 .0;1/;
see [3] and Remark 2.2. It appears that the natural scaling is quadratic, but the lack of com-
pactness is one of the key difficulties we will have to deal with.

Problem (1.3) has some resemblance to the classical obstacle problem [2], and can be
extended for fully nonlinear operators [14].

The paper is organized as follows: In Section 2 we state some technical results. In
Section 3 we prove the existence of viscosity solutions using a penalization argument. We
also show the existence of a maximal solution and establish its nondegeneracy. Section 4
contains the proof of the following dichotomy: either the free boundary points are flat or
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the solution has quadratic growth. As a consequence, we show that if n D 2, then near a
flat point the free boundary is a union of four C 1 curves tangential to a pair of crossing
lines. This is done in Section 6.

2. Technical results

Throughout this paper Br .x/ denotes the open ball of radius r centered at x 2 Rn and we
write Br D Br .0/. For a continuous function u, we let u D uC � u�, uC D max.0; u/,
�C.u/ D ¹u > 0º, and ��.u/ D ¹u < 0º, and let @sing¹u > 0º be the singular subset of
the free boundary @¹u > 0º, where u D jruj D 0.

We shall now make two standing assumptions on the operators under consideration. To
formulate them we let � be the space of n � n symmetric matrices and �C.�;ƒ/ positive
definite symmetric matrices with eigenvalues bounded between two positive constants �
and ƒ.

F1ı The operator F W � � Rn�n ! R is uniformly elliptic, that is, there are two
positive constants �;ƒ such that

�kN k � F.M CN/ � F.M/ � ƒkN k; M 2 � ; (2.1)

for every nonnegative matrix N .

F2ı F is smooth except at the origin and homogeneous of degree one. In addition,
F.tM/ D tF .M/; t 2 R and F.0/ D 0.

For smooth F , hypothesis F1ı is equivalent to

�j�j2 � Fij .M/�i�j � ƒj�j
2;

where Fij .S/ D
@F .S/
@sij

; S D Œsij �.
Typically, F.M/ D supt2	 Aij;tMij , where 	 is the index set and Aij;t 2 �C.�;ƒ/

is such that �j�j2 � Aij;t�i�j � ƒj�j2. Notice that if wt .x/ D w.A
1
2
t x/, then we have

�wt D Aij;twij .
We also define Pucci’s extremal operators

M�.M; �;ƒ/ D �
X
ei>0

ei Cƒ
X
ei<0

ei ; MC.M; �;ƒ/ D ƒ
X
ei>0

ei C �
X
ei<0

ei ;

where e1 � e2 � � � � � en are the eigenvalues of M 2 � .

Definition 2.1. A continuous function u is said to be a viscosity solution of the equation
F.D2u/ D ��¹u>0º if the equation F.D2v.x0// D ��¹u>0º holds pointwise, whenever
at .x0; u.x0// the graph of u can be touched from above and below by paraboloids v.
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Remark 2.2. We will be using some well-known estimates for the viscosity solutions.
If F is convex or concave and u is a viscosity solution of F.D2u/ D 0 in B1, then

kukC 2;˛.B 1
2
/ � C.kukL1.B1/ C jF.0/j/; (2.2)

where 0 < ˛ < 1 and C are universal constants; see [3, Theorem 6.6]. Moreover, if F is
convex or concave, then for the viscosity solutions of F.D2u/D 0, we still have the local
estimate

kukC 1;1.B1=11/ � CkukL1.B1/

(see [3, page 60, (6.14) and Remark 1]).

Under assumptions F1ı–F2ı, the classical weak and strong comparison principles are
valid for the viscosity solutions [3]. Moreover, we have the strong and Hopf’s comparison
principles.

Lemma 2.3 (Strong comparison principle; [12, Theorem 3.1]). Suppose v 2 C 2.D/;
w 2C 1.D/, andrv 6� 0 in a bounded domainD. Let F.D2v/� 0�F.D2w/ inD�Rn

in the viscosity sense and v � w where v;w are not identical. Then,

v < w in D: (2.3)

Lemma 2.4 (Hopf’s comparison principle; [12, Theorem 4.1]). Let B be a ball contained
in D and assume that w 2 C 1.D/; v 2 C 2.D/ and that rv 6D 0 in B . Let v and w be a
viscosity subsolution and a supersolution of F.D2u/D 0, respectively. Moreover, suppose
that v < w in B , and that v.x0/ D w.x0/, for some x0 2 @B . Then, rv.x0/ 6D rw.x0/.

One of the main tools in our analysis is the boundary Harnack principle. As before,
we assume that F is smooth, homogeneous of degree 1, and uniformly elliptic with ellip-
ticity constants � and ƒ, and that F.0/ D 0. We use the following notation: f .x0/; x0 2
B 01 � Rn�1 is a Lipschitz continuous function with Lipschitz constant M > 1If .0/ D 0;
�r D B 0r � Œ�rM; rM� \ ¹xn > f .x0/º; �r D B 0r � Œ�rM; rM� \ ¹xn D f .x0/º; and
A D enM=2, where en is the unit direction of the xn axis.

Then, we have the following Harnack principle (see [20]):

Theorem 2.5. Assume F1ı–F2ı hold and F is either concave or convex. Let u; v be two
nonnegative solutions of F.D2u/D 0 in�1 that equal 0 along the Lipschitz bottom of�1.
Suppose also that v 6� 0, u � �v � 0 in �1 for some � � 0. Then, for some constant C
depending only on �;ƒ; n, and the Lipschitz character of �1, we have in � 1

2

C�1
u.A/ � �v.A/

v.A/
�
u � �v

v
� C

u.A/ � �v.A/

v.A/
: (2.4)
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Furthermore, as in [1] (see also [20, Section 2]) one can show that the nonnegative
solutions in �1 are monotone in �ı0 for some universal ı0. We state this only in two
spatial dimensions.

Theorem 2.6. Let w be a viscosity solution of F.D2w/ D 0Iw � 0 in D D ¹jx1j � 1;
f .x1/ < x2 �M º, M D kf kC 0;1 ; w D 0 on f .x1/ D x2. Assume F1ı–F2ı hold and F
is either concave or convex. Then, there is ı D ı.M/ such that

@2w � 0 in Dı D
®
jx1j � ı; f .x1/ < x2 �Mı

¯
:

In [20], Theorem 2.6 is stated for concave operator F ; however, the concavity is
needed only to assure that the viscosity solutions of the homogeneous equation are locally
C 2;˛ regular; see [20, Remark 1.2]. Seeing that in the proofs of [20, Lem-
mata 2.1–2.5] one needs only C 1;˛ regularity of the solutions, in view of Remark 2.2
we see that Theorem 2.6 continues to hold for convex F ; see [9].

3. Existence and nondegeneracy

In this section we prove the existence of viscosity solutions and the nondegeneracy of
maximal solutions.

3.1. Existence of viscosity solutions

Definition 3.1. A continuous function u is said to be a viscosity subsolution of the equa-
tion F.D2u/D��¹u>0º if the inequality F.D2v.x0//���¹u>0º holds pointwise, when-
ever at .x0; u.x0// the graph of u can be touched from below by a paraboloid v. More-
over, u is said to be a strict subsolution if the inequality above is strict.

Definition 3.2. A viscosity solution u of F.D2u/ D ��¹u>0º is said to be maximal in D
if for every strong subsolution v satisfying v � u on @D0 for some subdomain D0 � D,
we have v � u in D0.

Theorem 3.3. Assume F1ı–F2ı hold. LetD be a boundedC 2;˛ domain and g2C 2;˛.D/.
There exists a maximal viscosity solution u to´

F.D2u/ D ��¹u>0º in D;

u D g on @D;
(3.1)

such that u 2 W 2;p.D/ for every p � 1.
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Proof. We use a standard penalization argument (see [11, page 24, Lemma 3.1]).
Let ˇ".t/; t 2 R be a family of C1 functions such that8̂̂<̂

:̂
ˇ".t/ � �¹t>0º on R;

ˇ"0.t/ � ˇ".t/ if "0 < ";

lim
"!0

ˇ".t/ D �¹t>0º t 2 R:

(3.2)

Given " > 0, there is a solution v of´
F.D2v/ D �ˇ".v/ in D;

v D g on @D:
(3.3)

This follows from Schauder’s fixed point theorem; see [11, page 24, Lemma 3.1]. Observe
that Perron’s method implies that for every " > 0, the maximal solution u" exists. Further-
more, since ˇ" are uniformly bounded, then kvkW 2;p.D/ � C with some C independent
of "; see [3, Theorem 7.1] and Remark 2.2 above.

If v is a subsolution, that is, F.D2v/ � ��¹v>0º, then by (3.2) we also have that
F.D2v/ � �ˇ".v/. Thus, for " > "0 (using (3.2)) we get

F.D2u"0/ D �ˇ"0.u"0/ � �ˇ".u"0/:

This shows that u"0 is a subsolution to (3.3). Since u" is the maximal solution, we then
have

v � u"; u"0 � u": (3.4)

Thus, u.x/ D lim"!0 u" in W 2;p , and by (3.4), u � v for every subsolution v. From the
uniform convergence, it follows that u.z/ > 0, implying that u" > 0 in some neighborhood
of z. Thus,F.D2u/D�1 near z. SinceD2uD 0 almost everywhere on ¹uD 0º, it follows
that F.D2u/ D ��¹u>0º.

3.2. Nondegeneracy

Theorem 3.4. Assume F1ı–F2ı hold and let u be the maximal solution. Then, there is a
universal constant cn;
 , depending only on dimension n and 
 D ƒ.n�1/

�
� 1, such that

inf
Br .x0/

u > �cn;
r
2

implies that u.x0/ > 0.

Proof. Let us consider

b.x/ D

´
C.1 � jxj2/ if jxj � 1;

�.x/ � �.1/ if jxj > 1;
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where

�.x/ D

8̂<̂
:
� log jxj if n D 2;

1



jxj�
 if n � 3;

and the constant C is chosen so that b.x/ is C 1 regular. It is straightforward to com-
pute D2b, and thus,

F.D2b/ D

8̂<̂
:
� 2CF.ıij / if jxj � 1;

�
1

jxj
C2
F
�
ıij � .
 C 2/

xixj

jxj2

�
if jxj > 1:

From the ellipticity in (2.1), we get that

F
�
ıij � .
 C 2/

xixj

jxj2

�
�MC

�
ıij � .
 C 2/

xixj

jxj2

�
D 0; jxj > 1:

Hence,

F.D2b/ � �
1

jxj
C2
MC

�
ıij � .
 C 2/

xixj

jxj2

�
D 0; jxj > 1:

Consequently, we see that yb.x/ D b.x/
2CF .ıij /

is a subsolution.
Given r , choose � so that 2

�
D r . Then, for jxj > 1

�
, we have

1

�2
yb.�x/ D

1

�
C2


h 1

jxj

� �


i
;

and consequently,

yb.r/

�2
D

1

�2
yb
�2
�

�
D �

�
1 �

1

2


� 1

�2


D �

�
1 �

1

2n�2

�
r2
1

4

DW �cn;
r

2:

Thus, u.0/ � yb.0/ > 0.

4. Dichotomy

In order to formulate the main result of this section, we first introduce the notion of flat-
ness. Let P2 be the set of all homogeneous normalized polynomials of degree two, that is,

P2 WD
°
p.x/ D

X
aijxixj ; for any x 2 Rn; with kpkL1.B1/ D 1

±
; (4.1)

where aij is a symmetric n � n matrix. For given p 2 P2 and x0 2 Rn, we set px0.x/
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WD p.x � x0/ and consider the zero level set of translated polynomial p

S.p; x0/ WD
®
x 2 Rn W px0.x/ D 0

¯
: (4.2)

By definition, S.p; x0/ is a cone with a vertex at x0.

Definition 4.1. Let ı > 0, R > 0, and x0 2 @¹u > 0º. We say that @¹u > 0º is .ı; R/-flat
at x0 if, for every r 2 .0; R�, there exists p 2 P2 such that

HD.@¹u > 0º \ Br .x0/; S.p; x0/ \ Br .x0// < ı r:

Here HD denotes the Hausdorff distance defined as follows:

HD.A;B/ WD max
®

sup
a2A

dist.a; B/; sup
b2B

dist.b; A/
¯
: (4.3)

Remark 4.2. In the previous definition p may depend on r . Later we will show that in the
two-dimensional case, the limiting configurations at asymptotically flat points are unique.

Given r > 0, x0 2 @¹u > 0º, and p 2 P2, we let

hmin.r; x0; p; u/ WD HD.@¹u > 0º \ Br .x0/; S.p; x0/ \ Br .x0//: (4.4)

Then, we define the flatness at level r > 0 of @¹u > 0º at x0 as follows:

Definition 4.3. Let ı > 0, r > 0, and x0 2 @¹u > 0º. We say that @¹u > 0º is ı-flat at
level r at x0 if h.r; x0; u/ < ır , where

h.r; x0; u/ WD inf
p2P2

hmin.r; x0; p; u/: (4.5)

Remark 4.4. In view of Definitions 4.1 and 4.3, we can say that @¹u > 0º is .ı; R/-flat
at x0 2 @¹u > 0º if and only if, for every r 2 .0; R�, it is ı-flat at level r at x0.

Theorem 4.5. Let n � 2 and u be a viscosity solution of (1.1). Let D � �, ı > 0, and
let x0 2 @¹u > 0º \D such that jru.x0/j D 0 and @¹u > 0º is not ı-flat at x0 at any
level r > 0. Then, u has at most quadratic growth at x0 and is bounded from above in
dependence on ı.

Theorem 4.5 will follow from Proposition 4.6 below in a standard way; see [8]. Let us
define rk D 2�k and M.rk ; x0/ D supBrk .x0/ juj; where x0 2 @¹u > 0º \ ¹jruj D 0º.

Proposition 4.6. Let u be as in Theorem 4.5 and sup juj � 1. If

h.rk ; x0; u/ > ırk

for some ı > 0, then there exists C D C.ı; n; �;ƒ/ such that

M.rkC1; x/ � max
�
Cr2k ;

1

22
M.rk ; x/; : : : ;

M.rk�m; x/

22.mC1/
; : : : ;

M.r0; x/

22.kC1/

�
: (4.6)
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Proof. If (4.6) fails, then there are solutions ¹uj º of (1.1) with sup juj j � 1, sequences ¹kj º
of integers, and free boundary points ¹xj º; xj 2 B1 such that

M.rkj C 1; xj / > max
�
jr2kj ;

1

22
M.rkj ; xj /; : : : ;

M.rkj�m; xj /

22.mC1/
; : : : ;

M.r0; xj /

22.kjC1/

�
; (4.7)

where with some abuse of notation we setM.rkj ; xj / D supBrkj .xj /
juj j. SinceM.rkj ;xj /

� supB1 juj j <1, it follows that kj !1. Define the scaled functions

vj .x/ D
uj .xj C rkj x/

M.rkj C 1; xj /
:

By construction, we have

vj .0/ D 0; jrvj .x/j D 0;

sup
B 1
2

jvj j D 1;

h.0; 1; vj / > ı;

vj .x/ � 2
2m�1; jxj � 2m; m < 2kj ;

(4.8)

where the last inequality follows from (4.7) after rescaling the inequality

M.rkj�m; xj /

M.rkjC1; xj /
< 22.m�1/:

Utilizing the homogeneity of operator F and noting that

D2
x˛xˇ

vj .x/ D r
2
j .D

2
˛ˇuj /.xj C rkj x/;

it follows that

F.D2vj .x// D �
r2
kj

M.rkjC1; xj /
�¹vj>0º D ��j�¹vj>0º; (4.9)

where �j D
r2
kj

M.rkjC1;xj /
. Observe that �j < 1

j
in view of (4.7). Since under hypothe-

ses F1ı–F2ı we have local W 2;p bounds for all p � 1 (see [3, Theorem 7.1]), it follows
that we can employ a customary compactness argument for the viscosity solutions to show
that there is a function v0 2 W

2;p
loc .R

n/ such that

vkj ! v0 in C 1;˛loc .R
n/;

v0.0/ D jrv0.0/j D 0;

F.D2v0/ D 0:
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From Liouville’s theorem, it follows that v0 is homogeneous quadratic polynomial p of
degree two. Since (4.8) holds, we have for this particular p that

hmin.0; 1; p; vj / � h.0; 1; vj / > ı:

Consequently, there are points zj D yj C ıyej such that zj ’s are outside of the ı neigh-
borhood of ¹p D 0º and vj .zj / D 0. We can extract a subsequence from zj so that it
converges to some z0, and z0 is at least ı away from ¹p D 0º. Moreover, v0.z0/ D 0 by
uniform convergence. This is a contradiction and, therefore, the proof is complete.

Remark 4.7. In [15] the authors proved some partial results for the problem

F.D2u/ D �D in B1; u D jruj D 0 in B1 nD : (4.10)

For F D �, this problem arises in the linear potential theory related to harmonic contin-
uation of the Newtonian potential of B1 \D .

Analysis similar to that of the proof of Proposition 4.6 shows that the result is also
valid for the solutions of (4.10).

Corollary 4.8. Let u be a viscosity solution to (4.10). Then, the statement of Theorem 4.5
holds for u too.

Remark 4.9. If in Proposition 4.6 we let ı # 0, say ı D 1=k; k " 1 then either (4.6)
remains valid uniformly or C !1. For the first scenario, in the limit we get a degree 2
homogeneous solution U solving F.D2U/ D ��¹U>0º. Such a solution does not exist
for F D �. Also, by a simple computation, one can check that for more general operators
such a solution does not exist. Therefore, from now on we will assume that as ı # 0, the
constant in (4.6) C !1: We conclude that at an asymptotically flat point x0, that is, for
vanishing ı, one has

supBr .x0/ juj

r2
!1: (4.11)

5. Uniqueness of blow-up

In this section we prove that for nD 2, the blow-up configuration at the flat point is unique.
The proof is based on an argument from [7]. Let

Q� D

 
cos � � sin �
sin � cos �

!
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�0

�1

�2

¹w > 0º

r2k

r0

¹w < 0º

Figure 1. The uniqueness proof via a reflection principle.

be the counterclockwise rotation by � . Suppose

U D a11x
2
1 C 2a12x1x2 C a22x

2
2

solves F.D2U/D 0 in R2. We consider two cases; first, if a11 D a22 D 0, then this means

F

 
0 1

1 0

!
D 0:

The other case is when one of these coefficients is not zero, say a11. Since F is homoge-
neous, without loss of generality we take a11 > 0. Then,

U D a11x
2
1 C 2a12x1x2 C a22x

2
2 D a11

�
x1 C

a12

a11
x2

�2
C
a22a11 � a

2
12

a11
x22 :

Observe that a22a11 � a212 6D 0, since otherwise U � 0 is a solution to F.D2U/D 0 with
local minimum at the origin. Consequently, the matrix a D Œaij � is nonsingular, and the
zero set of U is a pair of crossing lines.

The main result of this section is that for F.M/ D supt2	 Aij;tMij and n D 2, for
vanishing ı-flat points the approximating quadratic polynomial p is unique.
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Theorem 5.1. Suppose that n D 2, x0 2 @sing¹u > 0º, and

lim
r#0

h.r; x0; u/

r
D 0:

Then, there is a unique p 2 P2 and an r0 > 0 such that

hmin.r; x0; p; u/ D o.r/; r < r0:

Proof. For simplicity let us assume that x0 D 0 and F.M/ D supt2	 Aij;tMij ; see Sec-
tion 2.

Suppose that the limiting configuration is not unique; in other words, there are two
quadratic polynomials

pi .x/ DM
2
i x

2
1 � x

2
2 ; Mi > 0

such that for some rk # 0, we have that @¹u > 0º \ Br2m (up to a rotation) is close
to @¹p2 > 0º and @¹u > 0º \ Br2mC1 is close to @¹p1 > 0º. Let us define the rotated
polynomials

zpi .r; �/ D pi .Q�ix/ D r
2.M 2

i cos2.� � �i / � sin2.� � �i //;

and note that

@� . zpi .r; �/ � zpi .r; 2�0 � �//

D r2.�2M 2
i cos.� � �i / sin.� � �i / � 2 sin.� � �i / cos.� � �i //

� r2.2M 2
i cos.2�0 � �i � �/ sin.2�0 � �i � �/

C 2 sin.2�0 � �i � �/ cos.2�0 � �i � �//:

At � D �0 WD .�1 C �2/=2, this gives

@� . zp1.r; �/ � zp1.r; 2�0 � �//
ˇ̌
�D�0

D �r2.4M 2
1 C 2/ sin.�0 � �1/ cos.�0 � �1/

D �r2.4M 2
1 C 2/ sin

��2 � �1
2

�
cos
��2 � �1

2

�
:

Similarly,

@� . zp2.r; �/ � zp2.r; 2�0 � �//
ˇ̌
�D�0

D r2
�
4M 2

2 C 2
�

sin
��2 � �1

2

�
cos
��2 � �1

2

�
:

Introduce
w.r; �/ D u.r; �/ � u.r; 2�0 � �/I

then, since u.x/=M.r2m/ is close to zp2 in Br2m and u.x/=M.r2mC1/ is close to zp1
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in Br2mC1 , it follows from the above computation that

@�w.rk ; �0/.�1/
k > 0; k D 1; 2; : : : : (5.1)

This will be enough to get a contradiction, because after rescaling and using a custom-
ary compactness argument as in Proposition 4.6, we have

Uk D w.rrk ; �/=�.rk/! U o; �.rk/ D
1

rk

�ˆ
Brk

w2
� 1
2

with the properties that

U o.r; �0/ D @�U
o.r; �0/ D 0 and kU okL2.B1/ D 1; (5.2)

provided that U o solves an elliptic equation. To find this equation let us first note that
w.x/ D u.x/ � u.Qx/ for some rotation Q; therefore,

D2w.x/ D D2u.x/ �Q�.D2u/.Qx/Q:

By assumption,
F.D2u.x// D sup

t2	

cij;tuij .x/I (5.3)

and moreover, from the homogeneity of F , we get that

F.M/ D Fij .M/Mij ; Fij .M/ D
@F.M/

@Mij

; M 6D 0; Fij .M/ 2 �C.�;ƒ/;

so that F.D2u.x// � Fij .D
2u.x//uij .x/. Thus, taking cij .x/ D Fij .D2u.x// we have

cijwij D ��¹u>0º � cij .Q
�.D2u/.Qx/Q/ij � ��¹u>0º C �¹u.Qx/>0º: (5.4)

By inspection, one can check that in the sector .�0; �1/ both u.x/ and u.Qx/ are posi-
tive; see Figure 1. Using (5.1), near .r2m; �0/ it follows from (5.4) that cijwij � 0, and
hence ¹w > 0º has a nontrivial component on the line � D �0 as part of its boundary; see
Figure 1. Consequently, it follows from (5.4) that this component should propagate to the
boundary of Br0 for small r0. A similar argument, with zcij D Fij .Q�D2.Qx/Q/; shows
that

zcijwij D Fij .Q
�D2.Qx/Q/D2u.x/ � F.D2u.Qx//

D Fij .Q
�D2.Qx/Q/D2u.x/C �¹u.Qx/>0º

� ��¹u>0º C �¹u.Qx/>0ºI (5.5)

in other words, the component of ¹w < 0º near .r2mC1; �0/ has a nontrivial component
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on the line � D �0 as part of its boundary which propagates to the boundary of Br0 for
small r0. This means that we cannot have infinitely many such components in view of the
definition of p1 and p2.

Observe that

1

�4

ˆ
B�

w2 D
2

�4

ˆ
B�

u2 �
2

�4

ˆ
B�

u.x/u.Qx/dx !1 (5.6)

as �!1. Indeed, if it fails, then
´
B�
u.x/u.Qx/dx´

B�
u2

! 1; (5.7)

but this is impossible since u changes sign and ¹u < 0º is asymptotically a cone.
At a singular point, we have from the weak Harnack inequality

1 
M.�/

�2
. o.1/C

1

�2

�ˆ
B�

u2
� 1
2
:

This together with (5.4) and (5.5) implies that at the limit,

coijU
o
ij � 0 and zcoijU

o
ij � 0: (5.8)

Combining this with (5.2) and applying Hopf’s lemma, we get a contradiction.

6. Quadruple junctions

Throughout this section we assume that F is convex and satisfies F1ı–F2ı and that u is a
viscosity solution; see Section 3.

Lemma 6.1. Assume F1ı–F2ı hold and F is convex. Let n D 2 and jru.0/j D 0 and
let 0 2 @¹u > 0º be a ı-flat point such that the zero set of the polynomial p.x/ D M 2x21

� x22 ;M > 0 approximates @¹u > 0º near 0. Assume further that u is nondegenerate at 0.
Then, for every ı0 > 0, there is r0 D 2�k0 (for some k0 2N) such that @2u�.xC te2/� 0
whenever x 2 .Br0 n Bı0r0/ \ ¹x2 �M jx1jº and ı0 � t � 2.

Proof. Let �0 D arctanM and denote K� D ¹x2 �M jx1jº. After rotation of the coordi-
nate system, we can assume thatK� contains u < 0 away from some small neighborhood
of x2 DM jx1j (the green cones in Figure 2 represent that neighborhood).

Suppose the claim fails; then, there is ı0 > 0 so that for every rk D 2�k! 0 and some
points xk 2 Brk n Bı0rk \�

�.u/, we have

@2u
�.xk C rktke2/ < 0 for some ı0 � tk � 2: (6.1)
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x1

x2

yk

yk C tke2

ı0M

0

Figure 2. The geometric construction in the proof of Lemma 6.1. The shadowed balls are in the
Harnack chain.

We can choose ı0 so that for large k, we have ı0 >
hk

cos �0
! 0; where hk D h.2�k ; 0/.

Introduce the scaled functions

vk.x/ D

8̂̂<̂
:̂

u.rkx/

M.rk/
if (4.6) is true for all k � yk; for some fixed yk;

u.rkx/

M.rkC1/
if there is a sequence rk D 2�k such that (4.7) holds:

(6.2)

Here we set M.rk/ D M.rk ; 0/. For both scalings, we have that vk’s are nondegenerate;
for the first scaling it follows from Theorem 3.4 (our assumption on nondegeneracy), and
for the second one it follows from the fact that supB1=2 jvkj D 1.

Moreover, by (6.1) there is yk 2 .B1 n Bı0/ \ ¹vk < 0º such that

@2v
�
k .yk C tke2/ < 0 for some ı0 � tk � 2: (6.3)

Consequently, there is a subsequence ykj C tkj e2 ! y0 C t0e2 2 K
� \ B2 and there

is a Harnack chain B1; : : : ;BN where B1 D Bcos �0=2.e2/ and BN D Bı0=2.y0/, whereN
is independent of kj . Let zK D B1 [

SN
iD1 B

i . Since under hypotheses F1ı–F2ı we have
local W 2;p bounds for all p � 1 (see [3, Theorem 7.1]), it follows that we can employ a
customary compactness argument for viscosity solutions to infer that there is a function



A. Karakhanyan 558

v0 2 W
2;p

loc .R
n/ such that we have

vk ! v0 in W 2;p;8p � 1;

jF.D2vk/j � C uniformly;

v0 < 0 in K�;

jvkj � C in Harnack chain domain zK;

@2v
�
0 .y0 C t0e2/ � 0 in view of (6.3):

Applying Theorem 2.6 to v�0 � 0, it follows that @2v�0 .y0 C t0e2/ D 0. Moreover,
w D @2v

�
0 satisfies the equation FijDijw D 0 in zK; hence, from the strong maximum

principle it follows that w D 0 in K�. Consequently, v0 depends only on x1, implying
that �0 D 0 or �0 D �=2, which is a contradiction.

Theorem 6.2. Let u be as in Lemma 6.1 and let 0 be a flat free boundary point. Then,
in some neighborhood of 0 the free boundary consists of four C 1 curves tangential to the
zero set of the polynomial M 2x21 � x

2
2 .

Proof. Let @sing¹u > 0º D @¹u > 0º \ ¹jruj D 0º. Clearly, it is enough to prove that there
is r such that @sing¹u > 0º \ Br D ¹0º. Suppose the claim fails. Then, there is a sequence
xk 2 @sing¹u> 0º, xk! 0. LetM�

k
WDM�.2rk`0/D supB2rk`0

u�; rk D jxkj and consider

vk.x/ D
u.rkx/

M�.2rk`0/
where `0 D

r
ƒ

�
: (6.4)

Note that F.D2vk/ D ��¹vk>0º
r2
k

M�.2rk`0/
, and therefore by nondegeneracy we have

jF.D2vk/j � C for some C > 0 independent of k.
By construction, supB2`0 jv

�
k
j D 1 and since F.D2vk/ D 0 in��.vk/ WD ¹vk < 0º, it

follows that there is zk 2 @B2`0 \�
�.vk/ such that v�

k
.zk/D 1. Consequently, dist.zk C

ı0e2; ¹p D 0º/ � ı0=2 and by Lemma 6.1,

v�k .zk C ı0e2/ � 1:

Claim 6.3. With the notation above, we have

MC
k
� CM�k ;

for some universal constant C > 0.

To check this, we first observe that trace.AtD2vk.x// � F.D
2vkx/ thanks to the

convexity ofF andAt 2 ��;ƒ. Now consider that ifwk;t .x/D vk.A
1
2
t x/, then�wk;t .x/D
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trace.AtD2vk.x// � F.D
2vk.x// � 0. Since wk;t is continuous and wk;t .0/ D 0, then

one can easily check that
 
Br

wk;t D

ˆ r

0

1

t

ˆ
Bt

�wk;t � 0 (6.5)

because of convexity of F and the estimate F.D2vk/ � 0.
Note that ˆ

Br

wk;t .x/dx D
1

p
detAt

ˆ
jA
� 12 yj<r

vk.y/dy � 0:

Thus, from (6.5) it follows that

1

ƒ

ˆ
B rp

ƒ

vC
k
�

1
p

detAt

ˆ
jA
� 12 yj<r

vC
k
.y/dy �

1
p

detAt

ˆ
jA
� 12 yj<r

v�k .y/dy

�
1

�

ˆ
B rp

�

v�k .y/dy; r < 2:

Consequently, we get ˆ
Br

vC
k
.y/dy � `20

ˆ
Br`0

v�k :

Let yvk D vk C yC jxj2. Then,

F.D2
yvk/ � F.D

2vk/C 2 yC� � 0;

provided that yC is sufficiently large.
We see that yvk , and hence yvC

k
, is a subsolution. Consequently, applying the weak

Harnack inequality [3], we get

sup
B 4
3

vC
k
� sup

B 4
3

yvC
k
� c0

ˆ
B2

.v�k C
yC jxj2/ � c0.1C 2� yC/:

This completes the proof of the claim.
Thus, as in the proof of Lemma 6.1, we can employ a customary compactness argu-

ment in W 2;p so that yk D xk=rk ! y0 2 ¹x2 DM jx1jº \ @B1 and

rv0.y0/ D 0; v0.z0 C ı0e2/ � 1;

by Harnack chain and C 1;˛ estimates in the Harnack chain domain (which joins 2`0e2
with z0 C ı0e2). Since y0 2 ¹x2 D M jx1jº; y0 6D 0, the free boundary at y0 is a line.
Therefore, we can apply Hopf’s lemma to conclude that v�0 � 0, which is a contradiction.
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It remains to show that the curves are C 1 up to the origin. Suppose this is not the
case; then, there is a sequence xk ! 0 of regular free boundary points such that the unit
normal �k at xk does not converge to the corresponding unit normal e of the component
of ¹Mx21 � x

2
2 D 0º. Using the same compactness argument for vk as before, we can see

that je � �kj � � for some fixed � > 0 and large k, where �k is now the normal of some
free boundary point of vk with distance 1 from 0. But this is a contradiction, since vk
converge locally uniformly to some v0 and its free boundary is exactly the zero set of the
polynomial Mx21 � x

2
2 .
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3 (1963), 1032–1066 MR 158189

[14] K.-A. Lee, Obstacle problems for the fully nonlinear elliptic operators. Ph.D. Thesis, New
York University, NY, 1998 MR 2698202

[15] K.-A. Lee and H. Shahgholian, Regularity of a free boundary for viscosity solutions of non-
linear elliptic equations. Comm. Pure Appl. Math. 54 (2001), no. 1, 43–56 Zbl 1020.35123
MR 1787106

[16] H. P. McKean, Jr., Nagumo’s equation. Advances in Math. 4 (1970), 209–223
Zbl 0202.16203 MR 260438

[17] R. Monneau and G. S. Weiss, An unstable elliptic free boundary problem arising in solid
combustion. Duke Math. J. 136 (2007), no. 2, 321–341 Zbl 1119.35123 MR 2286633

[18] J. P. Pauwelussen, Nerve impulse propagation in a branching nerve system: a simple model.
Phys. D 4 (1981/82), no. 1, 67–88 Zbl 1194.37181 MR 636471

[19] J. M. Rinzel, Traveling-wave solutions of a nerve conduction equation. Ph.D. Thesis, New
York University, NY, 1973 MR 2623547

[20] P.-Y. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic
equations of second order. I. Lipschitz free boundaries are C 1;˛ . Comm. Pure Appl. Math. 53
(2000), no. 7, 799–810 Zbl 1040.35158 MR 1752439

Received 20 April 2023; revised 22 October 2023.

Aram Karakhanyan
School of Mathematics, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh 10623, UK;
aram6k@gmail.com

https://zbmath.org/?q=an:1330.35151
https://mathscinet.ams.org/mathscinet-getitem?mr=2168254
https://mathscinet.ams.org/mathscinet-getitem?mr=158189
https://mathscinet.ams.org/mathscinet-getitem?mr=2698202
https://doi.org/10.1002/1097-0312(200101)54:1<43::AID-CPA2>3.0.CO;2-T
https://doi.org/10.1002/1097-0312(200101)54:1<43::AID-CPA2>3.0.CO;2-T
https://zbmath.org/?q=an:1020.35123
https://mathscinet.ams.org/mathscinet-getitem?mr=1787106
https://doi.org/10.1016/0001-8708(70)90023-X
https://zbmath.org/?q=an:0202.16203
https://mathscinet.ams.org/mathscinet-getitem?mr=260438
https://doi.org/10.1215/S0012-7094-07-13624-X
https://doi.org/10.1215/S0012-7094-07-13624-X
https://zbmath.org/?q=an:1119.35123
https://mathscinet.ams.org/mathscinet-getitem?mr=2286633
https://doi.org/10.1016/0167-2789(81)90005-1
https://zbmath.org/?q=an:1194.37181
https://mathscinet.ams.org/mathscinet-getitem?mr=636471
https://doi.org/10.1016/s0006-3495(73)86065-5
https://mathscinet.ams.org/mathscinet-getitem?mr=2623547
https://doi.org/10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q
https://zbmath.org/?q=an:1040.35158
https://mathscinet.ams.org/mathscinet-getitem?mr=1752439
mailto:aram6k@gmail.com

	1. Introduction
	2. Technical results
	3. Existence and nondegeneracy
	3.1. Existence of viscosity solutions
	3.2. Nondegeneracy

	4. Dichotomy
	5. Uniqueness of blow-up
	6. Quadruple junctions
	References

