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Structure of singularities in the nonlinear nerve
conduction problem

Aram Karakhanyan

Abstract. We give a characterization of the singular points of the free boundary d{u > 0} for vis-
cosity solutions of the nonlinear equation

F(D*u) = =)0}

where F is a fully nonlinear elliptic operator and yx is the characteristic function. This equation
models the propagation of a nerve impulse along an axon.

We analyze the structure of the free boundary d{u > 0} near the singular points where u and Vu
vanish simultaneously. Our method uses the stratification approach developed in Dipierro and the
author’s 2018 paper.

In particular, when n = 2 we show that near a flat singular free boundary point, d{u > 0} is a
union of four C! arcs tangential to a pair of crossing lines.

1. Introduction

In this paper we study the free boundary problem
F(D*u) = — >0y in<, (1.1)

where Q C R” is a given bounded domain with C%* boundary, y,>oy is the character-
istic function of {u > 0}, and F is a convex fully nonlinear elliptic operator satisfying
some structural conditions. Equation (1.1) appears in a model of the nerve impulse prop-
agation [10, 18, 19].

It comes from the following linearized diffusion system of FitzHugh:

r(x)Au + ¥ (u, v),

223
(1.2)
{6[ = G(U, 6),
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where u(x,?) is the voltage across the nerve membrane at distance x and time ¢, and
the components of U = (vl, R vk ) model the conductance of the membrane to various
ions [10]. A specific form for the interaction term ¥ (u, U) was suggested by McKean—
namely, ¥ (u, V) = —u + Y=oy [16]. Due to the homogeneity of the equation, the linear
term in ¥ disappears after quadratic scaling, so we neglect it.

The linearized steady state equation

Au = —X{u>0} (1.3)

also arises in a solid combustion model [17] and the composite membrane problem; see [4]
and also [6] for a variational formulation.

A chief difficulty is to analyze the free boundary near singular points where both u
and Vu vanish. The main technique used in [4, 6, 17] is a monotonicity formula, which
is not available for the nonlinear equations. The aim of this paper is to use the boundary
Harnack principles and anisotropic scalings to develop a new approach to circumvent the
lack of the monotonicity formulas and obtain some of the main results from [17] and [15]
for the fully nonlinear case. More precisely, in this paper we address the optimal regularity,
uniqueness of blow-up at singular points, degeneracy, and the shape of the free boundary
near the singular points.

One of the main results in [ 17] concerns the cross-shaped singularities in R2. It follows
from the classification of homogeneous solutions and an application of the monotonicity
formula introduced in [17]. For nonlinear equations, this method cannot be applied. We
remark that the degenerate case (i.e., when u(x) = o(|x — x¢|?) near a free boundary
point x¢) cannot be treated by the monotonicity formula introduced in [17] because it

does not provide any qualitative information about u; see [17, Proposition 5.1].
1,1,

It is well known that the strong solutions of (1.3) may not be C. ;

see [5, Propo-
sition 5.3.1]. However, if F' = A, then Vu is always log-Lipschitz continuous; see [13,
Lemma 2.1]. For general elliptic operators one can show that Vu is C* forevery « € (0, 1);
see [3] and Remark 2.2. It appears that the natural scaling is quadratic, but the lack of com-
pactness is one of the key difficulties we will have to deal with.

Problem (1.3) has some resemblance to the classical obstacle problem [2], and can be
extended for fully nonlinear operators [14].

The paper is organized as follows: In Section 2 we state some technical results. In
Section 3 we prove the existence of viscosity solutions using a penalization argument. We
also show the existence of a maximal solution and establish its nondegeneracy. Section 4

contains the proof of the following dichotomy: either the free boundary points are flat or
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the solution has quadratic growth. As a consequence, we show that if n = 2, then near a
flat point the free boundary is a union of four C! curves tangential to a pair of crossing

lines. This is done in Section 6.

2. Technical results

Throughout this paper B, (x) denotes the open ball of radius r centered at x € R” and we
write B, = B, (0). For a continuous function u, we let v = u+t —u~, ut = max(0, u),
QT (u) = {u >0}, and Q™ (u) = {u < 0}, and let dgng{u > 0} be the singular subset of
the free boundary d{u > 0}, where u = |Vu| = 0.

We shall now make two standing assumptions on the operators under consideration. To
formulate them we let S be the space of n x n symmetric matrices and S+ (1, A) positive
definite symmetric matrices with eigenvalues bounded between two positive constants A
and A.

F1° The operator F : § C R"*" — R is uniformly elliptic, that is, there are two
positive constants A, A such that

A|N| < F(M +N)—F(M) <A|N|, MEeS, 2.1

for every nonnegative matrix N.

F2° F is smooth except at the origin and homogeneous of degree one. In addition,
FM)=tF(M),t € Rand F(0) =0.

For smooth F', hypothesis F1° is equivalent to
MEP? = Fyp(M)&i&; < AJEP,

where Fl‘j(S) = 3gs—(j),S = [Sij].
Typically, F(M) = sup,c; Aij: M;j, where I is the index set and A;;; € ST(A, A)
1
is such that A|§|? < A;j,&& < Al§|*. Notice that if w,(x) = w(A47 x), then we have
Awt = A,-j,twij.
We also define Pucci’s extremal operators
MMAN) =LY ei+AY e, MEMAA) =AY e+A1) e

e;>0 e; <0 e;>0 e; <0
where e; < e; <--- < ¢, are the eigenvalues of M € §.
Definition 2.1. A continuous function u is said to be a viscosity solution of the equation

F(D?u) = — >0y if the equation F(D?v(x)) = —yu>o} holds pointwise, whenever
at (xo, u(xo)) the graph of u can be touched from above and below by paraboloids v.
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Remark 2.2. We will be using some well-known estimates for the viscosity solutions.

If F is convex or concave and u is a viscosity solution of F(D?u) = 0in By, then

lelc2esy) = Cllulle + FOD, (22)

where 0 < a < 1 and C are universal constants; see [3, Theorem 6.6]. Moreover, if F is
convex or concave, then for the viscosity solutions of F (Dzu) = 0, we still have the local
estimate

lullcrics, ) < ClullLes)

(see [3, page 60, (6.14) and Remark 1]).

Under assumptions F1°-F2°, the classical weak and strong comparison principles are
valid for the viscosity solutions [3]. Moreover, we have the strong and Hopf’s comparison

principles.

Lemma 2.3 (Strong comparison principle; [12, Theorem 3.1]). Suppose v € C?(D),
w € CY(D), and Vv # 0 in a bounded domain D. Let F(D?v) > 0> F(D?w) in D C R"

in the viscosity sense and v < w where v, w are not identical. Then,
v<w inD. 2.3)

Lemma 2.4 (Hopf’s comparison principle; [12, Theorem 4.1]). Let B be a ball contained
in D and assume that w € C1(D),v € C?(D) and that Vv # 0 in B. Let v and w be a
viscosity subsolution and a supersolution of F(D?u) = 0, respectively. Moreover; suppose
that v < w in B, and that v(xg) = w(xy), for some xo € 0B. Then, Vv(xo) # Vw(xp).

One of the main tools in our analysis is the boundary Harnack principle. As before,
we assume that F' is smooth, homogeneous of degree 1, and uniformly elliptic with ellip-
ticity constants A and A, and that F(0) = 0. We use the following notation: f(x’), x’ €
Bj c R""!is a Lipschitz continuous function with Lipschitz constant M > 1; f(0) = 0;
Q, = B, x [-rM,rM] N {x, > f(x")}; Ay = B, x [-rM,rM] N {x, = f(x')}; and
A = e, M /2, where e, is the unit direction of the x,, axis.

Then, we have the following Harnack principle (see [20]):

Theorem 2.5. Assume F1°-F2° hold and F is either concave or convex. Let u, v be two
nonnegative solutions of F(D?u) =0 in Q, that equal 0 along the Lipschitz bottom of A1.
Suppose also that v # 0, u — ov > 0 in Q4 for some 6 > 0. Then, for some constant C

depending only on A, A, n, and the Lipschitz character of 21, we have in Q 1
_1u(A) —ov(4) _u—ov _ Cu(A)—av(A). 2.4)

¢ v(A) - v T v(A)
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Furthermore, as in [1] (see also [20, Section 2]) one can show that the nonnegative
solutions in €2; are monotone in 25, for some universal 5. We state this only in two

spatial dimensions.

Theorem 2.6. Let w be a viscosity solution of F(D?w) = 0;w > 0in D = {|x1]| < 1,
f(x1) <xo <M}, M = | fllcoi; w=0o0n f(x1) = x2. Assume F1°-F2° hold and F

is either concave or convex. Then, there is § = §(M) such that
dw =0 inDs = {|x1] <6, f(x1) < x2 < M§}.

In [20], Theorem 2.6 is stated for concave operator F; however, the concavity is
needed only to assure that the viscosity solutions of the homogeneous equation are locally
c?@ regular; see [20, Remark 1.2]. Seeing that in the proofs of [20, Lem-
mata 2.1-2.5] one needs only C % regularity of the solutions, in view of Remark 2.2

we see that Theorem 2.6 continues to hold for convex F; see [9].

3. Existence and nondegeneracy

In this section we prove the existence of viscosity solutions and the nondegeneracy of

maximal solutions.

3.1. Existence of viscosity solutions

Definition 3.1. A continuous function u is said to be a viscosity subsolution of the equa-
tion F(D?u) = — x>0y if the inequality F(D?v(x0)) > — x>0} holds pointwise, when-
ever at (xo, u(xg)) the graph of u can be touched from below by a paraboloid v. More-

over, u is said to be a strict subsolution if the inequality above is strict.

Definition 3.2. A viscosity solution u of F(D?u) = — x>0} is said to be maximal in D
if for every strong subsolution v satisfying v < u on dD’ for some subdomain D’ C D,

we have v < u in D’.

Theorem 3.3. Assume F1°—F2° hold. Let D be a bounded C** domain and g € C**(D).

There exists a maximal viscosity solution u to

F(D?*u) = — inD,
{ ( ) X{u>0} 3.1

u=g on dD,

such that u € W?P (D) for every p > 1.
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Proof. We use a standard penalization argument (see [11, page 24, Lemma 3.1]).
Let Be(¢),t € R be a family of C* functions such that

Be(t) = x>0y on R,
Ber(t) < Be(t) if & <, (3.2)
algg(l)ﬂs(t) = fu=0p t€R.

Given ¢ > 0, there is a solution v of

F(D?v) = —f¢(v)  inD,
v=g on dD.

(3.3)

This follows from Schauder’s fixed point theorem; see [1 1, page 24, Lemma 3.1]. Observe
that Perron’s method implies that for every ¢ > 0, the maximal solution u, exists. Further-
more, since B, are uniformly bounded, then |[v|y2.,(py < C with some C independent
of &; see [3, Theorem 7.1] and Remark 2.2 above.

If v is a subsolution, that is, F(D?v) > —X{v>0}, then by (3.2) we also have that
F(D?v) > —B¢(v). Thus, for ¢ > ¢ (using (3.2)) we get

F(Dzus/) = —Be(ug) > —Be(ue).

This shows that u, is a subsolution to (3.3). Since u, is the maximal solution, we then
have

V= Ug, Uy = Ug. 34

Thus, u(x) = limg_o u, in W27, and by (3.4), u > v for every subsolution v. From the
uniform convergence, it follows that u(z) > 0, implying that u, > 0 in some neighborhood
of z. Thus, F(D?u) = —1 near z. Since D?u = 0 almost everywhere on {u = 0}, it follows
that F(D?u) = — x(u>0}- n

3.2. Nondegeneracy

Theorem 3.4. Assume F1°—F2° hold and let u be the maximal solution. Then, there is a

universal constant ¢y ,,, depending only on dimension n and y = w — 1, such that

inf u > —cp,r?
By (x0)

implies that u(xg) > 0.

Proof. Let us consider

b(x) =

{C(l —lx?) iffx =1,
() —p(1) if |x[ > 1,
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where
—log|x| ifn =2,
p(x) =11
—|x|7" ifn > 3,
4
and the constant C is chosen so that h(x) is C' regular. It is straightforward to com-

pute D?b, and thus,

—2CF(8)) if x| < 1,
F(D?*b) = 1 .

From the ellipticity in (2.1), we get that

F( (y+2)||2)§M+( (y+2)||2)=0, x| > 1.

Hence,

I
F(D2b)z—|x|y+2M+(5 (y+2)| |2)=0, x| > 1.

Consequently, we see that b (x) = % is a subsolution.
Given r, choose p so that % = r. Then, for |x| > %, we have

and consequently,

Thus, u(0) > b(0) > 0. .

4. Dichotomy

In order to formulate the main result of this section, we first introduce the notion of flat-

ness. Let P, be the set of all homogeneous normalized polynomials of degree two, that is,

P, = {p(x) = Za,-jx,-xj, for any x € R", with || p|Leo(B,) = l}, 4.1)

where a;; is a symmetric n X n matrix. For given p € P, and xo € R”, we set py,(x)
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:= p(x — xo) and consider the zero level set of translated polynomial p
S(p.xo) :={x € R" : py,(x) =0}. 4.2)
By definition, S(p, x¢) is a cone with a vertex at xq.

Definition 4.1. Let§ > 0, R > 0, and xo € d{u > 0}. We say that d{u > 0} is (§, R)-flat
at xg if, for every r € (0, R], there exists p € P, such that

HD(3{u > 0} N By (x0), S(p. xo0) N By(x0)) < §r.
Here HD denotes the Hausdorff distance defined as follows:
HD(A, B) := max{sup dist(a, B), sup dist(b, 4)}. 4.3)
acA beB
Remark 4.2. In the previous definition p may depend on r. Later we will show that in the
two-dimensional case, the limiting configurations at asymptotically flat points are unique.
Givenr > 0, xg € d{u > 0}, and p € P,, we let
hmin(r» X0, p5 u) = HD(B{M > 0} N Br('xo)v S(pv X()) N Br(x()))- (44)
Then, we define the flatness at level r > 0 of d{u > 0} at xq as follows:

Definition 4.3. Let § > 0, r > 0, and x¢ € d{u > 0}. We say that d{u > 0} is §-flat at
level r at xg if h(r, xo,u) < §r, where

h(r, xo,u) := inf Ay (7, X0, p, u). 4.5)
PEP;

Remark 4.4. In view of Definitions 4.1 and 4.3, we can say that d{u > 0} is (§, R)-flat
at xo € d{u > 0} if and only if, for every r € (0, R], it is §-flat at level r at x.

Theorem 4.5. Let n > 2 and u be a viscosity solution of (1.1). Let D C @, § > 0, and
let xo € d{u > 0} N D such that |Vu(xg)| = 0 and d{u > 0} is not §-flat at xo at any
level r > 0. Then, u has at most quadratic growth at xo and is bounded from above in

dependence on §.

Theorem 4.5 will follow from Proposition 4.6 below in a standard way; see [8]. Let us
define ry = 27% and M (r¢, x0) = SUPB,, (xo) |u|, where xo € d{u > 0} N {|Vu| = 0}.

Proposition 4.6. Let u be as in Theorem 4.5 and sup |u| < 1. If
h(ry, xo,u) > 8rg

for some § > 0, then there exists C = C(8,n, A, A) such that

M (rg—m, X) M(ro,x))
22(m+1) "7 92(k+1) )°

1
M(rg41,Xx) §max(Cr,f,2—2M(rk,x),..., 4.6)
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Proof. If (4.6) fails, then there are solutions {1 } of (1.1) with sup |u;| < 1, sequences {k; }
of integers, and free boundary points {x;}, x; € By such that

M(rk}-—m,xj)““’ M(ro,xj))7 @7)
22(m+1) 22(k;+1)

) 1
M(rg; +1,x;) > max(Jr,fj, ﬁM(rkj,xj), ces

where with some abuse of notation we set M (r;, x;j) = sup B, (x)) |uj|. Since M (rg;,x;)

< supg, |u;| < oo, it follows that k; — oo. Define the scaled ‘functions

By construction, we have

0 (0) =0, |V (x)] =0,

sup [v;| =1,
By (4.8)
h(O, 1, Uj) > 5,

vi(x) <2271 x| <2 omo<2b,
where the last inequality follows from (4.7) after rescaling the inequality

M(ri;—m Xj) < 92m=1)_
M(rg;+1, X))

Utilizing the homogeneity of operator F and noting that
D3, v (x) = 1} (Digu;)(x; + rg; x),

it follows that

2
r
k.
F(D?vj(x)) = —————— J(v;>0} = —0j X{v;>0}- 49
( 1 (x)) M(ij+1,xj)X{UJ>0} j X{v;>0} 4.9)
r2.
where 0; = Wilm Observe that 0; < % in view of (4.7). Since under hypothe-

ses F1°-F2° we ﬁave local W2°? bounds for all p > 1 (see [3, Theorem 7.1]), it follows
that we can employ a customary compactness argument for the viscosity solutions to show
that there is a function vy € lec’p (R™) such that

Uk; = Vo in Cr¥RM),

v0(0) = [Vvo(0)| = 0,
F(D?vg) = 0.
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From Liouville’s theorem, it follows that vy is homogeneous quadratic polynomial p of

degree two. Since (4.8) holds, we have for this particular p that
hmin(os l)pv U]) 2 h(o’ 17 v]) > 8

Consequently, there are points z; = y; + §¢; such that z;’s are outside of the § neigh-
borhood of {p = 0} and v;(z;) = 0. We can extract a subsequence from z; so that it
converges to some zg, and zq is at least § away from {p = 0}. Moreover, vg(z9) = 0 by

uniform convergence. This is a contradiction and, therefore, the proof is complete. ]

Remark 4.7. In [15] the authors proved some partial results for the problem
F(D?u) = yp in By, u=|Vu|=0 inB;\D. (4.10)

For FF = A, this problem arises in the linear potential theory related to harmonic contin-
uation of the Newtonian potential of By N D.

Analysis similar to that of the proof of Proposition 4.6 shows that the result is also
valid for the solutions of (4.10).

Corollary 4.8. Let u be a viscosity solution to (4.10). Then, the statement of Theorem 4.5
holds for u too.

Remark 4.9. If in Proposition 4.6 we let § | 0, say § = 1/k, k 1 oo then either (4.6)
remains valid uniformly or C — oo. For the first scenario, in the limit we get a degree 2
homogeneous solution U solving F(D?U) = —y(u=oy- Such a solution does not exist
for F' = A. Also, by a simple computation, one can check that for more general operators
such a solution does not exist. Therefore, from now on we will assume that as § | 0, the
constant in (4.6) C — co. We conclude that at an asymptotically flat point xo, that is, for

vanishing §, one has
SUPB, (xy) 14| L s

2 4.11)

5. Uniqueness of blow-up

In this section we prove that for n = 2, the blow-up configuration at the flat point is unique.

The proof is based on an argument from [7]. Let

0p = cos —sind
o= sinf  cosf
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{w > 0}

/
{w < 0}

Figure 1. The uniqueness proof via a reflection principle.

be the counterclockwise rotation by 6. Suppose
2 2
U =anxy+2apx1x2 +azx;

solves F(D?U) = 0in R%. We consider two cases; first, if a;; = a2 = 0, then this means

0 1
F =0.
1 0

The other case is when one of these coefficients is not zero, say a1;. Since F is homoge-

neous, without loss of generality we take a1 > 0. Then,

aix  \?2

—Xz) +
ar

2
dazadl] —da
2 2 12 2
U =anxi+2apx1x2 +axnx; = 011<X1 + a—xz'
11

Observe that axxaqy — a3, # 0, since otherwise U > 0 is a solution to F(D?U) = 0 with
local minimum at the origin. Consequently, the matrix a = [a;;] is nonsingular, and the
zero set of U is a pair of crossing lines.

The main result of this section is that for F (M) = sup,c; Aij:M;i; and n = 2, for

vanishing §-flat points the approximating quadratic polynomial p is unique.
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Theorem 5.1. Suppose that n = 2, xg € dsingtu > 0}, and

. h(r,xo,u)
Iim— =
rlo r

0.

Then, there is a unique p € P, and an ry > 0 such that
huin (7, X0, pou) = 0(r), r < ro.

Proof. For simplicity let us assume that xo = 0 and F(M) = sup,cr A;j,: M;;; see Sec-
tion 2.
Suppose that the limiting configuration is not unique; in other words, there are two
quadratic polynomials
pi(x) = M?xi —x3, M; >0

such that for some r; | 0, we have that d{u > O} N B,,, (up to a rotation) is close
to d{p> > 0} and d{u > 0} N B
polynomials

rams1 18 close to d{p; > 0}. Let us define the rotated

pi(r.0) = pi(Qg,x) = r>(M? cos®(6 — 6;) —sin*(0 — 6;)),
and note that

g (pi(r,0) — pi(r, 2600 — 0))
= r?(—=2M? cos(0 — 6;) sin(6 — 6;) — 2sin(0 — 6;) cos(0 — 6;))
— r2(2Mi2 cos(26p — 0; — 0) sin(26y — 6; — 6)
+ 2sin(26y — 0; — 0) cos(26p — 6; — 0)).

At 0 = 6y := (01 + 62)/2, this gives

dg(p1(r,0) — p1(r,260 — 9))|9:90 = —r2(4M12 + 2)sin(6y — 61) cos(6y — 61)

_ —1’2(4M12 +2)Sin(92;91)cos(92;91).

Similarly,

3 . T 6, — 6
06 (P21, 0) = pa(r. 260 — 0))] g, = r* (4313 +2) sin( 2= ) cos(Z5).

Introduce
w(r,0) = u(r,0) —u(r,26p — 0);

then, since u(x)/M (ra;,) is close to pz in By, and u(x)/M(ram+1) is close to p;

2m
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in B;,,,, it follows from the above computation that

dow(re. Oo)(=D* >0, k=1,2,.... (5.1)

This will be enough to get a contradiction, because after rescaling and using a custom-

ary compactness argument as in Proposition 4.6, we have

U = wirre )/ = U, p) = ([ w?)’

Tk

with the properties that
U°(r,00) = 0gU°%(r,6p) =0 and |U°|L28,) = 1. (5.2)

provided that U? solves an elliptic equation. To find this equation let us first note that

w(x) = u(x) — u(Qx) for some rotation Q; therefore,

D*w(x) = D*u(x) — Q*(D*u)(Qx)Q.

By assumption,

F(Du(x)) = sup ¢ij i (X): (5.3)
tel

and moreover, from the homogeneity of F, we get that

IF (M)
aMij ’

F(M) = Fij(M)M;;, Fij(M) = M #0, F;(M)eST(A,A),

so that F(D?u(x)) > F;;(D*u(x))u;j(x). Thus, taking ¢;j (x) = F;; (D?u(x)) we have

CijWi; = —X{us0y — Cij (Q*(D*u)(0x)Q)ij = — x>0} + X{u(Qx)>0}- (5.4)

By inspection, one can check that in the sector (g, 81) both u(x) and u(Qx) are posi-
tive; see Figure 1. Using (5.1), near (r2,,, 6p) it follows from (5.4) that ¢;;w;; > 0, and
hence {w > 0} has a nontrivial component on the line 6 = 6 as part of its boundary; see
Figure 1. Consequently, it follows from (5.4) that this component should propagate to the
boundary of By, for small ry. A similar argument, with ¢;; = F;; (Q*D?(Qx)Q), shows
that

Cijwij = F;(Q*D*(0x)Q)D?u(x) — F(D*u(Qx))
= F;j(Q*D*(Qx)Q)D*u(x) + x{u(ox)>0}
< —X{u>0} + X{u(0x)>0} (5.5

in other words, the component of {w < 0} near (2,41, 69) has a nontrivial component
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on the line § = 6, as part of its boundary which propagates to the boundary of B,, for
small r¢. This means that we cannot have infinitely many such components in view of the
definition of p; and p5.
Observe that
1 2 2
— w? = — u? — —4/ u(x)u(Q@x)dx — oo (5.6)
o JB, o JB, 0" JB,
as p — oo. Indeed, if it fails, then

pr u(x)u(Qx)dx R

fB,, u? ’

but this is impossible since u changes sign and {u < 0} is asymptotically a cone.

(5.7)

At a singular point, we have from the weak Harnack inequality

M(f) <o(l) + p—i(/B u2>%.

0
This together with (5.4) and (5.5) implies that at the limit,

o0 <—

ciU7 >0 and ¢ U5 <0. (5.8)

Combining this with (5.2) and applying Hopf’s lemma, we get a contradiction. ]

6. Quadruple junctions

Throughout this section we assume that F' is convex and satisfies F1°~F2° and that u is a

viscosity solution; see Section 3.

Lemma 6.1. Assume F1°-F2° hold and F is convex. Let n = 2 and |Vu(0)| = 0 and
let 0 € d{u > 0} be a §-flat point such that the zero set of the polynomial p(x) = M?x?
— x%, M > 0 approximates 0{u > 0} near 0. Assume further that u is nondegenerate at 0.
Then, for every 8y > 0, there is ro = 2750 (for some ko € N) such that d,u™(x + te;) > 0

whenever x € (Byy \ Bs,r,) N{x2 = M|x1|} and 8y <t < 2.

Proof. Let 6y = arctan M and denote K~ = {x, > M |x|}. After rotation of the coordi-
nate system, we can assume that K~ contains ¥ < 0 away from some small neighborhood
of x, = M|x| (the green cones in Figure 2 represent that neighborhood).

Suppose the claim fails; then, there is 8o > 0 so that for every ry = 27% — 0 and some
points xi € By, \ Bsyr, N Q27 (u), we have

0u” (xx + rrtrez) <0 forsome 8o < 1 < 2. 6.1)
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X2 y

Figure 2. The geometric construction in the proof of Lemma 6.1. The shadowed balls are in the
Harnack chain.

We can choose &g so that for large k, we have §y > co};_kgo — 0, where hy = h(27*, 0).
Introduce the scaled functions

u(rix) if (4.6) is true for all k > lg, for some fixed lg,
v(x) = uj(‘f(;’g) 6.2)
kD if there is a sequence ry = 2% such that (4.7) holds.
M(rg+1)

Here we set M (ry) = M(rg,0). For both scalings, we have that v ’s are nondegenerate;
for the first scaling it follows from Theorem 3.4 (our assumption on nondegeneracy), and
for the second one it follows from the fact that supg, 1 lvg| = 1.

Moreover, by (6.1) there is yx € (B \ Bs,) N {vx < 0} such that

020 (yk + txe2) <0 forsome 8o < 1 < 2. (6.3)

Consequently, there is a subsequence yg, + fx;€2 — yo + foe2 € K~ N B and there
is a Harnack chain B!,..., BN where B! = B, 60/2(e2) and BN = Bs,/2(»0), where N
is independent of k;. Let K =B U U1N=1 B'. Since under hypotheses F1°~F2° we have
local W2:? bounds for all p > 1 (see [3, Theorem 7.1]), it follows that we can employ a
customary compactness argument for viscosity solutions to infer that there is a function
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vo € W27 (R™) such that we have

v = vo  in WP ¥p>1,
|F(D?v)| <C  uniformly,
vp <0 inK7,
lux| < C  in Harnack chain domain K,

d2vg (Yo +t0e2) <0 in view of (6.3).

Applying Theorem 2.6 to v, > 0, it follows that d,v, (yo + foe2) = 0. Moreover,
w = 0, satisfies the equation Fj; D;jw = 0 in I?; hence, from the strong maximum
principle it follows that w = 0 in K~. Consequently, vo depends only on x;, implying

that 8p = 0 or 6y = /2, which is a contradiction. [ ]

Theorem 6.2. Let u be as in Lemma 6.1 and let O be a flat free boundary point. Then,
in some neighborhood of 0 the free boundary consists of four C! curves tangential to the

zero set of the polynomial szf — x%.

Proof. Let Osing{u > 0} = d{u > 0} N {|Vu| = 0}. Clearly, it is enough to prove that there
is r such that dgne{u > 0} N B, = {0}. Suppose the claim fails. Then, there is a sequence
Xk € Oging{tt > O}, xp — 0. Let M := M~ (2rido) = SUPg,,. ¢, u~,rr = |xx| and consider

u(rex) A
= —-— h Z = -_— 6.4
B0 = g7 Wherefo = /5 (6.4)
2
Note that F(D?v;) = — X{vk>0}m’ and therefore by nondegeneracy we have

|F(D?vy)| < C for some C > 0 independent of k.

By construction, Supg,, |v, | = 1 and since F(D?v;) = 0in Q7 (vg) := {vx <0}, it
follows that there is zx € dB¢, N Q7 (vg) such that v, (zx) = 1. Consequently, dist(zx +
8oez, {p = 0}) > 6p/2 and by Lemma 6.1,

vy (zi + Soez) = 1.
Claim 6.3. With the notation above, we have
M} < CM,
for some universal constant C > 0.

To check this, we first observe that trace(A; D?v(x)) < F(D?vix) thanks to the
1
convexity of F and A; € §;_a. Now consider that if wg ;(x) = vk (A7 x), then Awg ,(x) =
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trace(A; D?vy(x)) < F(D?vi(x)) < 0. Since Wk, is continuous and wg ((0) = 0, then

one can easily check that
"1
][ Wk, ¢ =/ —/ Awg, <0 (6.5)
B, o ! JB

because of convexity of F and the estimate F(D?vy) < 0.
Note that
Wk, (x)dx =

A/ : /
vk (y)dy < 0.
B, detA[ |A_%y|<r

Thus, from (6.5) it follows that

1 1 1

+ + -
L N Oy = o= [ 0
A /B B k Jdet A; /|A_%y|<r k (y) Y \/detAl IA_%y|<r ,

VA

1
< —/ v, (y)dy, r<2.
AJe.,

[umar =i [ .
B, B¢

0

S

Consequently, we get

Let 3% = vk + C|x|2. Then,
F(D*;) > F(D?vx) +2CA > 0,

provided that Cis sufficiently large.
We see that U, and hence ﬁ,’c", is a subsolution. Consequently, applying the weak
Harnack inequality [3], we get

sup vk+ < supﬁk+ < co/ (v + C|x?) < co(1 4+ 27C).
B>

B4 B4
3 3

This completes the proof of the claim.
Thus, as in the proof of Lemma 6.1, we can employ a customary compactness argu-
ment in W22 so that yx = xx/rx — Yo € {x2 = M|x1|} N 0B; and

Vug(yo) =0, vo(zo + doe2) > 1,

by Harnack chain and C % estimates in the Harnack chain domain (which joins 2£ge;
with zg + 8pez). Since yg € {xo = M|x1|}, yo # 0, the free boundary at y, is a line.
Therefore, we can apply Hopf’s lemma to conclude that v, = 0, which is a contradiction.
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It remains to show that the curves are C! up to the origin. Suppose this is not the
case; then, there is a sequence x; — 0 of regular free boundary points such that the unit
normal vg at x; does not converge to the corresponding unit normal e of the component
of {Mx? — x2 = 0}. Using the same compactness argument for vy as before, we can see
that |e — vg| > o for some fixed 0 > 0 and large k, where v is now the normal of some
free boundary point of vy with distance 1 from 0. But this is a contradiction, since vk
converge locally uniformly to some vg and its free boundary is exactly the zero set of the

polynomial M x? — x2. "

Funding. The author was partially supported by EPSRC grant EP/S03157X/1 Mean

curvature measure of free boundary.
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