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Abstract. This expository paper considers real cubic plane curves as combinations C D
a1T1 C a2T2 of two real triangles meeting in nine distinct points. Our study of hexagonal
pencils, defined by C with parameters ai 2 R, picks up on some themes of a recent paper on
cubics by Bonifant and Milnor (2017).
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1. Introduction

A regular pencil of real cubics F W ˛G C ˇH may have any number of singular
curves in the range 0 � n � 12. As a foliation of RP2, F may have any number of
singularities in the range 1 � N � 21 – counting base points (common to all curves
in F ) and isolated curve singularities belonging to a unique curve.

Such results were obtained in [7] in the course of investigating decomposable
pencils

F W ˛G1G2G3 C ˇH1H2H3

(defined by six distinct lines), for which the corresponding numbers are 2 � n � 8
and 2 � N � 21. The most interesting examples tend to be hexagonal pencils (or
hex pencils), defined by two real triangles T1; T2 meeting in nine distinct points (the
generic case among R-decomposable pencils). Hexagonal pencils cover the ranges
3 � n � 8 and 16 � N � 21.

While hex pencils are quite special, they are well suited for representing real cubics.
In addition to demonstrating this here, we intend to provide an overview of the topology
of hex pencils as a class of pencil foliations of RP2.

To begin, we construct a family of hex pencils with symmetry of the dihedral
group D3, each of which represents all smooth real cubics (Theorem 4.2). Such a
pencil will be called full, while a perfect pencil represents each smooth, irreducible
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real cubic exactly once. In particular, the Hessian pencil

H W ˛.x3 C y3 C z3/C ˇxyz

is a perfect pencil. Here we are paraphrasing a result from [2] (Theorem 2.1, below),
which assigns to H a leading role in the theory of real cubics. (The more famous
appearance of H in the complex theory also requires the j -invariant to effectively
factor out a tetrahedral group of symmetries of H .)

Thus we obtain full hex pencils, essentially, by comparison with H . But when it
comes to representing singular cubics, hex pencils are more versatile. While the only
singular cubics in H are triangles, a sufficient set of hex pencils will be constructed
here to establish (Theorem 5.4): A real cubic belongs to a hex pencil if and only if
it has no repeated line, imaginary line-pair, or imaginary conic (nomenclature as in
Proposition 5.1).

Further, we proceed to identify all (real and complex) singular cubics in many addi-
tional hex pencils, and thus obtain a fuller picture of their range of topological behavior.
This last part of the paper is more open-ended, but aims towards a classification of hex
pencil foliations of RP2.

Table 2 contains the following topological data for the singular cubics in each of
the 15 hex pencils shown in Figure 7:

(1) The Euler number �.CR/ of the topological subspace CR � RP2;

(2) The Euler number �.CC/ of CC � CP2;

(3) The corresponding Kodaira fiber type in the associated rational elliptic surface,
obtained by blowing up at the 9 base points of the pencil.

We need not dwell on the latter, since no subtleties arise here. In fact, only 6 of the
20 possible singular fiber types occur for hex pencils (see Table 1). This is partly due
to all base points being simple (that is, transverse intersections), and also due to the
lack of repeated components (Proposition 5.2). The upshot is that for singular cubics
in hex pencils, Euler numbers (1) and (2) determine fiber type (3).

On the other hand, we wish to compare the fiber configurations K in Table 2
against the list of 279 configurations which occur in rational elliptic surfaces [9]. This
will provide one measure of completeness of our current list of topologically distinct
hex pencils. It turns out we are still missing 3 of the 17 hex-like configurations, which
may or may not actually occur for hex pencils. Thus, our paper ends with an open
question.

The paper is organized as follows. In Section 2, we review some of the relevant
facts about H , the j -invariant, and the k-invariant (following [2]). In Section 3, we
display an equivalent pencil zH , with symmetry of the dihedral groupD3. The pencil zH
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leads to theD3-normal form (almost the canonical position of [2]), and corresponding
formulas for j and k. In Section 4, the D3-normal form is used to construct full hex
pencils.

A number of types of singular real cubics (and the non-singular, reducible type)
appear in the D3-symmetric hex pencils of Section 4. The remainder require special
hex pencils withD2-symmetry or just reflection symmetry, and are treated in Section 5.

We begin Section 6 by explaining the basic constraints on the Euler numbers of
singular curves in a hex pencil of cubics. (For general regular pencils, one needs to
consider corresponding fibers.) In the real setting,

P
�.C iR/ D �8; in the complex

case,
P
�.C iC/D 12. Although the blow up process provides topological explanations

for both, alternative interpretations work very well for hex pencils.
In the real case, we apply the Poincaré–Hopf theorem for the sum of indices of

a line field. For the complex case, we consider the 12th-degree discriminant form
�.˛; ˇ/, which vanishes precisely when C D ˛G C ˇH is a singular cubic. As it
turns out, the multiplicity of the root .˛ W ˇ/ is invariably �.CC/! (Not so for regular
pencils in general.) This explains not only the sum

P
�.C iC/ D 12, but also accounts

for the utility of � as a general tool for identifying types of singular cubics in a hex
pencil. The remainder of Section 6 is a compilation of examples based on � (we omit
computational details).

2. The Hessian pencil of cubics in real and complex settings

In this section, we briefly recall the main features of the Hessian pencil of cubics,
H W ˛.x3 C y3 C z3/C ˇxyz, and how it may be used to describe the equivalence
classes of non-singular cubics with respect to both real and complex projective trans-
formations. (Further background may be found in [1–3,5].)

We are especially interested in the Hessian pencil for real values of ˛;ˇ. Figure 1 (a)
shows H in the x; y-plane and Figure 1 (b) shows H in the disk model D2 ' RP2,
where ideal points become visible (as antipodal pairs on the green circle).

But first we describe the pencil in CP2, with parameter .˛ W ˇ/ 2 CP1. It is conve-
nient to write �3k D ˇ=˛ 2 yC, and express H and the j -invariant along H :

H W .x3 C y3 C z3/ � 3kxyz; j.k/ D
k3.k3 C 8/3

64.k3 � 1/3
:

Then H degenerates to a triangle at each of the four k-values: k D 1; e2�i=3; e4�i=3;1.
Otherwise, H is non-singular. We discuss the j -invariant shortly; for now we simply
note that its poles are exactly the k-values where H becomes singular.

The base points of H are the 9 intersection points of the four triangles. These are
in fact the 9 flexes on the Fermat cubic F D x3 C y3 C z3; namely, the intersections
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(a) (b)

Figure 1
(a) Real curve–pairs in the Hessian pencil H with j D 0 (red), j D 1 (blue), and j D 1
(green); (b) view of H in D2.

of F with the cubic obtained as the HessianH.F /D jD2F j D 6xyz: The same points
are likewise the 9 flexes on each of the non-singular cubics in H .

The 9 points and 12 lines (triangular edges) form a configuration which plays a
key role in the theory of cubics. That a structure this special is of general importance
depends on this fact: Any non-singular cubic C in CP2 can be put into Hessian normal
form, that is, C is equivalent by complex projective transformations to some cubic
in H . It follows also that, up to projective equivalence in CP2 (and projective change
of parameter), H is the unique pencil of the form FG W ˛G C ˇH.G/, where G is a
non-singular cubic.

Turning to the significance of the j -invariant: Two non-singular cubics in H are
equivalent by complex projective transformations if and only if their k-values satisfy
j.k1/ D j.k2/. Thus, we want to understand the geometry of level sets of j .

To begin, the 4 poles of j may be regarded as tetrahedral vertices; they are permuted
by a copy of the tetrahedral group T ' A4, a subgroup of the Möbius group T �

PGL.2;C/. Namely, T is generated by the rotation �.k/ D e2�i=3k and the involution
�.k/ D kC2

k�1
(see [2]). Further, one can verify directly that � and � leave j unchanged.

Thus we have the remarkable fact: j.k/ is an automorphic function with respect to the
tetrahedral group T .

The upshot is that T -orbits correspond exactly to equivalence classes of cubics
in H . For example, face centers, defined by j.k/ D 0, give 4 “copies” of the Fermat
cubic x3 C y3 C z3; likewise edge midpoints, j.k/ D 1, give 6 equivalent cubics. The
14 curves in H mentioned so far correspond to ramification values j D 0; 1;1. Every
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Figure 2
Ramification points of j.k/ along Hessian pencil H : (a) for k 2 yC; (b) for k 2 yR. (Key:
j D 0; 1;1! red, blue, green.)

j ¤ 0; 1;1 defines a T -orbit of length 12, hence, a dozen equivalent cubics. The
situation is depicted in Figure 2 (a).

Now we reconsider the Hessian pencil from the real point of view, H � RP2. The
main features of j.k/ for real values of k are visible in Figure 2. The real axis in (a),
and the k-axis in (b), may be identified with the cross section of a tetrahedron in R3 cut
out by a plane of reflection symmetry. More precisely, the cross section is parametrized
by a copy of the extended real line yR.

There are 6 special values k 2 yR – two for each color (red, blue, green), paired by the
involution �.k/D kC2

k�1
. In fact, j maps all of yR onto itself, two-to-one. There are triple

zeros at k D 0;�2, triple poles at k D 1;1, and critical points at k D 1˙
p
3 (j is

normalized so that j.1˙
p
3/D 1). As indicated in Figure 2 (b), j maps .1�

p
3;1/[

.1; 1C
p
3/ injectively onto R n ¹1º; likewise for .�1; 1�

p
3/[ .1C

p
3;1/. The

latter two subsets are interchanged by �.
Although � pairs curves in H of the same j -value, it is important to note that the

two curves are not equivalent in RP2. For example, the solid blue curve in Figure 1
has one connected component, the dashed curve has two. Otherwise, paired curves
have the same number of components, so topology alone does not settle things.

But the matter is definitively addressed in [2, Theorem 6.3].

Theorem 2.1. Every smooth irreducible real cubic C is real projectively equivalent
to exactly one cubic in the Hesse normal form, with k 2 .�1; 1/ [ .1;1/. If k < 1,
C � RP2 is connected, and if k > 1, C has two components.
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Paraphrasing (the first part of) the theorem: k plays the same role for real cubics
as the j -invariant plays for cubics in CP2. Thus, we will sometimes refer to k as
the k-invariant to underscore this fact. (We use the same letter k as in [2], where the
authors remark that they were unable to find their result in the literature.)

3. D3-normal form for real cubics

Each curve in the Hessian pencil H has six real projective symmetries given by
permutations of coordinates x; y; z. These fix e0 D .1 W 1 W 1/ and permute the three
real flexes

.�1 W 0 W 1/; .0 W �1 W 1/; .�1 W 1 W 0/

of the smooth curves in H . It is useful to note that the symmetries also permute the
vertices

e1 D .1 W 0 W 0/; e2 D .0 W 1 W 0/; e3 D .0 W 0 W 1/

of the triangle4 D H jkD1 D xyz.
The above suggests how to turn the Hessian pencil into an equivalent pencil with

the geometrically familiar symmetry of the dihedral group D3 ' S3; see Figure 3. A
unique real projective transformation ˆ maps the four points ¹eiº to vertices of an
equilateral triangle

v1 D .
p
3 W 1 W 1/; v2 D .�

p
3 W 1 W 1/; v3 D .0 W �2 W 1/

and its centroid v0 D .0 W 0 W 1/ (both 4-tuples being in general position). Namely, ˆ
and its inverse � D ˆ�1 are given by:

ˆ W X D
p
3x �

p
3y; Y D x C y � 2z; Z D x C y C zI

� W x D
p
3X C Y C 2Z; y D �

p
3X C Y C 2Z; z D �2Y C 2Z:

Note ˆ takes the above flexes to ideal points .1 W ˙
p
3 W 0/, .1 W 0 W 0/.

Substitution by � in H (and reverting to lower case) gives the equivalent pencil:
zH W .k � 1/.3x2y � y3 C 4z3/ � 3.k C 2/.x2 C y2/z:

The cubics in the pencil are now in canonical position; see [2, Remark 6.9] (except for
the suggested z-rescaling, which would not have preserved zH as a pencil).

Remark 3.1. We could have written zH (less compactly) in the form zH W F C k4,
with F (solid red curve in Figure 3) the ˆ-image of the Fermat cubic x3 C y3 C z3,
and4 the (green) equilateral triangle. Instead, zH W ˛F � C ˇˇ is generated by F � D
3x2y � y3C 4z3 (dashed red curve) satisfying j.F �/D j.F /D 0, and the conjugate
triangleˇD�3.x2C y2/z. The real locus ofˇ (ideal line and the isolated singularity
at the origin) appears (dashed green) in Figure 3 (b).



Hexagonal pencils of cubic plane curves 485

(a) (b)

Figure 3
A D3-symmetric pencil zH ' H : (a) in R2; (b) in D2.

We note that zH is a perfect pencil, but not a hex pencil. While there are no perfect
hex pencils, zH leads us closer to the construction of full hex pencils. For this purpose,
it will be useful to have a redundant version of the above-mentioned canonical position,
which we will refer to as the D3-normal form:

(3.1)
Ta;b D .3x

2y � y3/ � 3a.x2 C y2/z C 4bz3I

j D
.a4 C 8ab/3

64b.a3 � b/3
I k D �

� a

b1=3

�
:

Here we note that the change of variable z 7! b1=3z gives an isomorphism between
zH .k/ D 0 and Ta;b D 0 with �.k/ D a=b1=3. Thus,

j.Ta;b/ D j.k/ D j.�.k// D j
� a

b1=3

�
;

giving the formula for j in equation (3.1).
The tangents to T D Ta;b at flexes .1 W 0 W 0/, .1 W ˙

p
3 W 0/ form the triangle/star

5a D .3x
2y � y3/ � 3a.x2 C y2/z C 4a3z3

D .y � az/.3x2 � .y C 2az/2/:

Note that any smooth cubic C with the above flexes and D3 symmetry has the tangent
triangle/star (formed by the tangents at flexes) 5.C / D 5a, for some a 2 R. (For
example, a smooth cubic in zH has the tangent triangle5�.k/.) Taking a non-inflection
point q 2 C , one can always choose b in equation (3.1) so that T .q/ D 0. Then Ta;b
meets C ten times (counting each flex three times), so C D Ta;b .
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Aside from zH , there are other interesting pencils inD3-normal form. For example,
the pencil P W T1;b is the level set diagram of the affine cubic

p.x; y/ WD .3x2y � y3/ � 3.x2 C y2/

(and the repeated ideal line z3), which looks quite similar to zH . The invariants

j D
.1C 8b/3

64b.1 � b/3
; k D

1C 2b1=3

1 � b1=3

indicate that P is almost a perfect pencil; it lacks only a representative of

F � D 3x2y � y3 C 4z3;

with j D 0; k D �2. In P , j D 0, k D �2 are the limiting values for the singular
cubic z3! Finally, we note that the two critical level sets of p are: p.x; y/ D �4 (the
fixed tangent triangle51 for curves in P ), and the acnodal cubic p.x; y/ D 0.

Figure 4 shows several more examples of pencils inD3-normal form. One of these
will be used in the next section to prove Theorem 4.2.

4. Hex pencils in D3-normal form

Next, we consider pencils generated by pairs of triangles of the type5a:

F`;m W ˛ 5` Cˇ5m D .˛ C ˇ/.3x
2y � y3/(4.1)

� 3.˛`C ˇm/.x2 C y2/z C 4.˛`3 C ˇm3/z3:

Figure 4 shows three examples of F`;m using the disk model of the projective plane
D2'RP2 to plot the corresponding pencil foliations. The generating triangles5`;5m
are shown in red and blue; we note that their edges (lines) are represented by circular arcs
in the disk model. The remaining singular or reducible curves in F`;m (colored/dashed)
are explained in the proof of Theorem 4.2.

We note that the left pencil F�1;1=4 represents the generic case of F`;m, which
is a hex pencil with D3 symmetry. The middle pencil F�1;1 is also a hex pencil; but
because of its exceptionalD6 symmetry, it contains a star 50 and gives a topologically
different foliation. Finally, F�1;1=2, which is generated by one triangle inscribed in
another, is bi-triangular. These remarks lead up to the following definition.

Definition 4.1. A D3-hex pencil F`;m is given by equation (4.1), where ` ¤ 0 and
mD r` for real r ¤ 0;˙1;�2;�1=2. (So F�1;1 and F�1;1=2 are notD3-hex pencils!)
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(a) (b) (c)

Figure 4
Pencils F`;m in D2: (a) F�1;1=4 ; (b) F�1;1; (c) F�1;1=2.

Theorem 4.2. There exist full hex pencils. In particular, each D3-hex pencil F`;m
contains representatives of every smooth, irreducible real cubic C .

Proof. Let F`;m D F`;r` be a D3-hex pencil. Note that ˛ C ˇ D 0 gives the (non-
singular) reducible cubic consisting of a circle centered at the origin and the ideal
line (dashed in Figure 4 (a). For all other cubics in the pencil, we can normalize by
˛ C ˇ D 1 so that F`;m has the D3-normal form T . Then the cube of the invariant
� D �.k/ defines a rational function

f .˛/ WD �3 D
a3

b
D
.˛`C ˇm/3

˛`3 C ˇm3
D
..1 � r/˛ C r/3

.1 � r3/˛ C r3
:

Since r ¤˙1, this fraction does not reduce. In fact, f .˛/ has a triple zero at ˛0 D r
r�1

,
a simple pole at ˛1 D r3

r3�1
, and a double pole at ˛2 D1. As a map of the extended

real line to itself, f has topological degree ˙1. So f assumes every real value; but
then the same must hold for its restriction to R, since f .1/ D1. Thus, � takes on
all real values for curves in F`;r`.

The exceptional value � D 1 (k D 1) occurs for the two generating triangles
5m;5`: f .0/ D f .1/ D 1. In fact, there is always a third triangle corresponding to

f .˛/ D f
�2r C 1
r � 1

�
D 1

(purple triangle in Figure 4 (a)). Also, there is an acnodal cubic for f .˛1/ D1 (solid
green). Counting as well the smooth, reducible cubic for ˛ C ˇ D 0, there are thus
five exceptional cubics in the pencil. These account for the roots of the 12th-degree
discriminant form along the pencil (see Section 6)

�.˛; ˇ/ D .r � 1/6˛3ˇ3..r C 2/˛ C .2r C 1/ˇ/3.˛ C ˇ/2.˛ C ˇr3/I
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the triangles give triple roots, the circle/line gives a double root, and the acnodal cubic
gives a simple root.

It follows that the rest of the pencil consists of smooth irreducible cubics cor-
responding to all values � ¤ 1;1 (k ¤ 1; 1). So Theorem 2.1 implies that every
smooth irreducible real cubic is real projectively equivalent to a curve in F`;m. Since
real projective transformations preserve the class of hex pencils, the second statement
of the proposition follows.

Remark 4.3. The hex pencil F�1;1 shown in Figure 4 (b) is not full. For r D �1,
a cancellation results in f .˛/ D .2˛ � 1/2, so F�1;1 lacks cubics with � < 0, i.e.,
�2 < k < 1; in particular, it misses cubics with 0 < j < 1. On the other hand, F�1;1
contains exactly two representatives of every irreducible real cubic with two connected
components.

The bi-triangular pencil F�1;1=2 (Figure 4 (c)) is full, since f .˛/D .�2C3˛/3

�8C9˛
takes

every real value. In fact, F�1;1=2 represents every cubic with k < 1 once, and every
cubic with k > 1 thrice!

5. Singular/reducible real cubics in hex pencils

It is well known that every cubic belongs to one of nine geometric types (nomencla-
ture as in [5]): general, nodal, cuspidal, conic-plus-chord, conic-plus-tangent, triangle,
three-line-type (star), two-line-type, one-line-type. The general type is actually the
continuum of equivalence classes of non-singular cubics, while the last eight types are
unique singular cubics, up to complex projective equivalence.

In the real projective setting, this list has to be expanded. For instance, one has to
distinguish between nodal cubics, with two real tangents at the double point p, and
acnodal cubics, with a pair of complex conjugate tangents at p.

Triangles and stars can have three real edges, or one real edge and an imaginary line-
pair (e.g., x2 C y2). A conic-plus-chord can be singular, with two real double points.
Or it can be non-singular, with complex conjugate double points; in the latter case,
the conic can either be real (e.g., x2 C y2 � z2), or imaginary (e.g., x2 C y2 C z2).
(Apologies for calling some real curves “imaginary”!)

Proposition 5.1. The types of real cubic curves C are enumerated as follows:
(a) C is smooth and irreducible: k.C / D k0 for exactly one k0 2 R n ¹1º;
(b) C singular and irreducible: C is nodal, acnodal, or cuspidal;
(c) C is reducible but indecomposable: C is a conic-plus-tangent, singular conic-

plus-chord, or non-singular conic-plus-chord, with real or imaginary conic;
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(a) (b)

Figure 5
D2-hex pencils with: (a) nodal cubics; (b) type (2) cubics.

(d) C is decomposable:C is a real triangle, real star, triangle with imaginary line-pair,
star with imaginary line-pair, one-line-type or two-line-type.

Proposition 5.2. A hex pencil contains no cubic with a repeated line (one-line-type or
two-line-type), imaginary line-pair (in a triangle or star), or imaginary conic.

Proof. Let a hex pencil F W ˛G C ˇH have a curve C with one of the five types just
described. The real locus of C consists of one or two lines (or one line and one point).
Then 5 of the 9 base points of F must lie on a real line L � C (there being at most
two). So L meets the triangle G in 5 points, so L is a component of G. But no two
cubics in F share a line (otherwise, so do G and H ).

In Section 4, we found all types of class (a) represented withinD3 hex pencils F`;m.
Triangles belong to every hex pencil; acnodal cubics and non-singular conic-plus-
chords appear in eachD3 hex pencil; a star occurs in theD6 hex pencil F�1;1. In view
of Proposition 5.2, it remains only to consider the following four types of singular
cubics:

(1) nodal; (2) singular conic-plus-chord; (3) cuspidal; and (4) conic-plus-tangent.

Remark 5.3. If C0 is one of the types (1)–(4), it cannot appear in a D3 hex pencil.
Unlike the triangle, star, or acnodal cubic,C0 cannot be madeD3-symmetric, and there-
fore could only appear in multiples of three. But the discriminant for the D3-normal
form, which may be written as

�.c.3x2y � y3/ � 3a.x2 C y2/z C 4bz3/ D bc2.a3 � bc2/3;
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(a) (b)

Figure 6
Hex pencil with: (a) cusp; (b) conic-plus-tangent.

shows that a D3-pencil cannot have enough roots of any given type (e.g., three simple
roots for three nodal cubics).

In view of the remark, we now turn to hex pencils with less symmetry. Nodal cubics
are commonplace in such pencils, as are singular conic-plus-chords in the presence
of D2-symmetry. Figure 5 (a) shows a D2-symmetrical pencil with a pair of nodes
that are exchanged by �-rotations. Figure 5 (b) shows a D2-symmetrical pencil with a
pair of type (2) cubics that are fixed by �-rotations. (The linear component of the blue
cubic is the ideal line.)

Our hex pencils with cubics of types (3) and (4) use only reflection symmetry and
require more precise constructions; note cusps and conic-plus-tangents are destroyed
by small changes in coefficients. For example, for the pencil in Figure 6 (a), the strategy
is to begin with a cuspidal cubic C , and to construct the triangles so as to meet at 9
points on C . Only 6 such points are visible in the figure. The last step is to choose
the third edge of the red triangle to meet the blue triangle three more times on C . A
vertical edge does so – twice to the right of the region shown and at the ideal point
.0 W 1 W 0/. (This pencil happens to contain also a cubic of type (2).)

A similar description applies to Figure 6 (b), which shows the construction of a hex
pencil with a conic-plus-tangent (also a nodal cubic, green). In both cases, the method
depends on the reflection symmetry of the singular curve.

It is now easy to prove the following result.
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Theorem 5.4. A real cubic belongs to a hex pencil if and only if it has no repeated
line, imaginary line-pair, or imaginary conic.

Proof. The if statement is Proposition 5.2. To prove the converse, let C be a real
cubic with no repeated or non-real line. Among the examples of this and the previous
section, we have found an equivalent cubic C 0 ' C which belongs to a hex pencil
F 0 W ˛G0 C ˇH 0. A real projective transformation h 2 PGL.2;R/ gives C D h � C 0,
so C belongs to the hex pencil generated by G D h �G0 and H D h �H 0.

Remark 5.5. A unified hex pencil construction for cubics (with no repeated or non-
real line) should be possible based on the Cayley–Bacharach theorem. Above, we
constructed two triangles to meet at 8 points on the given cubic in Figure 6; the
existence of a ninth such point was guaranteed by symmetry. For more subtle examples
(as in Figure 7 (i), (j)) the Cayley–Bacharach theorem plays the same role. But for a
general result, some technical arguments would still be required to produce a pencil
which is hexagonal (not just bi-triangular).

6. Which of the 279 configurations of Kodaira fibers are hexagonal?

We begin this section by summarizing some topological background which pertains
to a pencil of cubics. By limiting the discussion to hex pencils, fortunately, we are able
to avoid a number of subtleties which arise in general. Thus, we will quickly get to
some concrete questions regarding the connection between hex pencils and the theory
of rational elliptic surfaces [8, 9].

For each geometric type of real cubic in a hex pencil, C � HP , Table 1 lists the
Euler characteristics �.CR/ and �.CC/ of the topological subspaces CR � RP2 and
CC � CP2. For example, a non-singular cubic is a circle in RP2 or a torus in CP2;
a nodal cubic is a “figure eight” in RP2 or a “pinched torus” in CP2; a triangle in RP2

has �.CR/D v � eD�3; in CP2 a triangle consists of three spheres touching pairwise
at three points.

The fourth column of the table gives shorthand notation �.C / for the pair �.CR/,
�.CC/ (using bars above integers to denote negative signs). The fifth column gives
standard notation for corresponding Kodaira fibers resulting from blow up at all 9
base points of the pencil. We observe that the pair �.C / for a singular cubic uniquely
determines the Kodaira fiber.

Summing over (real) singular curves C iR in a hex pencil HP gives (see [4]):

(6.1)
X

�.C iR/ D �.B9RP2/ D �8:
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Type of real cubic C �.CR/ �.CC/ �.C / Fiber

nodal �1 1 x11 I1

acnodal 1 1 11 I1

cuspidal 0 2 02 II
singular conicC chord �2 2 x22 I2

conicC tangent �1 3 x13 III
triangle �3 3 x33 I3

star �2 4 x24 IV

non-singular irreducible 0 0 00 I0

non-singular conicC chord 0 2 02 I2

Table 1
Data for 9 geometric types of real cubics in hex pencils.

Here, B9RP2 is the non-orientable surface obtained from RP2 by blowing up at the 9
base points pi , and

�.B9RP2/ D �.RP2/ � 9 D �8;

since each pi is effectively replaced by a circle. The first equality treats B9RP2 as a
union of disjoint singular curves and bands (cylinders or Möbius strips) foliated by the
non-singular curves; the bands have � D 0 and do not contribute to �.B9RP2/.

Since we view a pencil of real cubics as a singular foliation F of RP2, it is natural
to interpret equation (6.1) also in terms of the Poincaré–Hopf theoremX

p2RP2

Ip.F / D �.RP2/ D 1:

The singularities of a curve C in HP determine singularities of F (or its tangent line
field), whose total contribution to the index sum is �.CR/. For instance, as Figure 4
illustrates, the three vertices of a triangle C are saddles, contributing �.CR/ D �3;
the isolated singularity of an acnodal cubic C is a center, contributing �.CR/ D 1; a
star gives a singularity of index Ip.F / D �.CR/ D �2. But F also has 9 “sources”
(or “sinks”) at the base points of HP . Thus, writingX

p2RP2

Ip.F / D
X

�.C iR/C 9;

equation (6.1) may be recovered from the Poincaré–Hopf theorem.
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On the other hand, we may consider the sum
P
�.C iC/ – not just over real singular

cubics in a hex pencil, but also complex ones (these come in conjugate pairs):

(6.2)
X

�.C iC/ D �.B9CP2/ D 12:

This result may be derived by a similar topological argument as in the real case; but in
the complex setting, blow up replaces a point by a sphere, thus giving

�.B9CP2/ D �.CP2/C 9 D 12:

As in the real case, there is an alternative interpretation of the result which relates
more concretely to our examples of pencils of cubics. This is based on the discriminant
form for a regular pencil of cubics P W ˛G C ˇH W �.˛; ˇ/ is a homogeneous poly-
nomial of degree 12 which vanishes exactly when ˛G C ˇH is singular (as a cubic
in CP2).

To be brief, an explicit formula for � as a 6 � 6 determinant � D jM j can be
given as follows. It can be shown that a singularity p of a cubic F is also singular
on its Hessian H.F / D jD2F j (see formula for H.F / in [6]). Let M be the 6 � 6
matrix whose respective rows are formed by the coefficients of the monomials in the
six quadrics Fx , Fy , Fz ,H.F /x ,H.F /y ,H.F /z . ThenM is singular at p; conversely,
it can be shown that M is singular only at such points [7].

In particular, this provides a second proof (besides equation (6.2)) that a regular pen-
cil of cubics has at most twelve singular curves (in CP2): Letting ı.C / D ı.˛G C ˇH/
denote the multiplicity of .˛ W ˇ/ as a root of �, we have

P
ı.C i / D 12.

Further, it can be directly verified (by considering the matrixM for representatives
of each singular type of cubic [7]) that ı.C / is precisely the Euler characteristic:
ı.C / D �.CC/. (Again we assume a hex pencil; the general case is more difficult to
state in elementary terms.) Thus, the discriminant provides a computationally useful
tool for detecting the (complex) type of any singular cubic in HP .

For instance, the discriminant form for the hex pencil in Figure 7 (c) is given by

�.˛; ˇ/ D ˛3ˇ3.˛ � ˇ/2.˛ C ˇ/2.5˛2 C 118˛ˇ C 5ˇ2/:

The factors correspond to: Two triangles (red, blue), two singular conic-plus-chords
(orange, blue-green), and two acnodes (purple, green); note the last factor has two real
roots.

For interpretation of such graphics, which can be intricate, note the following
conventions. The generating pair of triangles in Figure 7 are always red and blue (and
lines appear as circle-arcs in the disk model D2 ' RP2). All other real singular cubics
are shown in other solid colors; non-singular conic-plus-chords appear dashed (these
are the only real non-singular cubics which are plotted).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 7
Hex pencils for all but four hex-like configurations.
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We now introduce concise notation for tabulation of hex pencils, in Table 2. We
begin with the R-configuration of a hex pencil, KR.HP /. This is a list of all (real
and complex) singular cubics in HP , which makes distinctions related to reality. The
type of each Ci is identified by its integer pair �.Ci / D aibi , and the configuration is
given by a sequence of pairs separated by spaces KR.HP / D a1b1 a2b2 : : : ambm;
for brevity, exponents denote repetition of a pair. For example, the two hex pencils in
Figure 4 have R-configurations

KR.F�1;1=4/ D x33
3 11 02 and KR.F�1;1/ D x33

2 x24 02:

For singular non-real cubics (there were none in F�1;1=4 and F�1;1), we extend
our notation �.C / D ab using a D 0. Pairs for real cubics appear first, followed by
ab D 02 for a non-singular conic-plus-chord (if it occurs), followed by pairs 0b for
non-real cubics. The pair ab D 02 for a cusp will always precede the pair for another
real singular cubic (which must exist in a hex pencil). For example, in Figure 6 (a),

KR D x33
2 02x22 02:

The non-singular conic-plus-chord was not shown in Figure 6, but appears (dashed) in
Figure 7 (g), where the same pencil is shown.

The R-configuration KR.HP / encodes topological data, in particular, for the
corresponding foliation of RP2. For example, using Table 2, one may read off the
indices of all real singularities and the types of all real singular curves in Figure 7. Now
it is reasonable to ask, how fully do these examples represent the range of possible
topological behaviors of hex pencil foliations of RP2?

For this purpose, we also consider C-configurations KC , or simply configura-
tions K , as in the theory of rational elliptic surfaces. With the understanding that
every regular pencil of cubics gives rise to such a surface – and in the case of hex
pencils we may read off the resulting set of fibers from Table 1 – we may write, e.g.,
K.F�1;1=4/D I33 I2 I1 and K.F�1;1/D IV I23 I21. (Roman numerals like IV come first.)

Of course, K neglects key information pertaining to the foliation of RP2. On the
other hand, we wish to take advantage of the fact that rational elliptic surfaces are
subject to important additional constraints beyond equations (6.1) and (6.2). This is
not the place to discuss the role of lattice embeddings, etc., in the more sophisticated
theory of surfaces, but the upshot is this: The configuration of a pencil K.HP / must
accordingly be among the 279 fiber configurations determined by Persson [10] and also
Miranda [9]. To be clear, all 279 fiber configurations belong to actual elliptic surfaces,
and it is also a fact that, to any such surface, there corresponds a pencil of cubics.

But we wish to emphasize that the process of going from a configuration K to a
pencil is far less straightforward than the reverse; more to the point, such a pencil may
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Figure 7 (–) KR.HP / KC.HP / deg.j /

(a) x333 11 02 I3
3

I2 I1 12

(b) x333 11 012 I3
3

I3
1

12

(c) x332 x222 112 I2
3

I2
2

I2
1

12

(d) x332 x112 02 012 I2
3

I2 I4
1

12

(e) x332 112 x114 I2
3

I6
1

12

(f) x332 11x113 012 I2
3

I6
1

12

(g) x333 02x22 02 II I2
3

I2
2

10

(h) x332 02x112 02 II I2
3

I2 I2
1

10

(i) x332 02 11x113 II I2
3

I4
1

10

(j) x332 02x112 012 II I2
3

I4
1

10

(k) x332 x13x11 02 III I2
3

I2 I1 9

(l) x332 x13 11x112 III I2
3

I3
1

9

(m) x332 x24 02 IV I2
3

I2 8

(n) x332 x24 012 IV I2
3

I2
1

8

(o) x332 x132 III2 I2
3

6

Table 2
Hex pencils configurations for Figure 7.

or may not be real, and when it is, it may not be topologically unique as a foliation
of RP2. (For example, Table 2 shows that (e) and (f) are pencil isomers [7]; likewise (i)
and (j).) Thus, one cannot expect a classification of real cubic pencil foliations of RP2

to fall directly out of the theory of elliptic surfaces.
On the other hand, considering the relative topological simplicity of hex pencils,

such a goal may not be unreasonable for this special class. Note that a configuration
K.HP / must have a term I23 or I33. (Note that K D I43 identifies the equivalence class
of the Hessian pencil, which is not a hex pencil!) Perusing the list in [9] (which uses
abbreviated notation I23 D 32, I33 D 33, etc.), one finds that there are only 17 such
hex-like configurations.

Which brings us to the question:

Of the 17 hex-like configurations in the list of 279, which ones are actually
realized by hex pencils, and what are all the possible topological types of the
resulting foliations of RP2?

In fact, we observe that the examples listed in Table 2 realize all but four of the 17
hex-like configurations. One of the four is easy to dismiss: K D II3 I23 is consistent only
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with a hex pencil with 1 or 3 real cusps; but since a cusp has �.C iR/ D 0, such a pencil
would in any case result in the sum

P
�.C iR/ D �6, contradicting equation (6.1). So

only the following three configurations are in doubt:

K D II2 I23 I2; K D II2 I23 I21; K D III II I23 I1:

In the first two of these, the cusps might come in complex conjugate pairs, which
would be rather disappointing for the foliation of RP2! Thus, we leave off with the
open question: Is there a hex pencil with two real cusps?
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