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Limits of conformal images and conformal images of limits for
planar random curves
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Abstract. We address the scaling limits of random curves arising from, e.g., planar lattice mod-
els, especially in rough domains. The well-known precompactness conditions of Kemppainen
and Smirnov (2017) show that certain crossing probability estimates guarantee the subsequential
weak convergence of the random curves in the topology of unparametrized curves, as well as in a
topology inherited from the unit disc via conformal maps. We complement this result by proving
that proceeding to weak limit commutes with changing topology, i.e., limits of conformal images
are conformal images of limits, with minimal boundary regularity assumptions on the domains
where the random curves lie. Such rough boundaries are especially interesting if, in the context
of multiple random curves, a limit candidate is defined in terms of iterated SLE-type processes
with � 2 .4; 8/, and one hence needs to study (boundary-touching) curves in domains slit by
other random curves.
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1. Introduction

1.1. Background. In physics, Conformal field theories appear as scaling limit can-
didates for planar lattice models of statistical mechanics at criticality [6, 7, 9, 29].
Mathematical-physics proofs of conformal invariance properties in such scaling lim-
its have only been achieved more recently, one successful approach being to prove
the convergence of interface curves to conformally invariant random curves, called
Schramm–Loewner evolutions (SLEs) [31,32]. Such convergence proofs have been
established in several lattice models [8, 10, 26, 33–36]. Also different variants of
SLEs [12, 25, 36] and multiple SLEs [4, 5, 13, 23, 28] have been introduced, and shown
to serve as scaling limits [5, 15, 17, 18, 20, 22].

The most typical route to an SLE convergence proof consists of two parts: pre-
compactness, i.e., the existence of subsequential scaling limits, and identification of
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Figure 1
A schematic illustration of a situation where irregular boundary approximations naturally arise:
For example multiple SLE-type curves (left panel) can be defined in terms of iterated SLE
processes, so that the second curve is sampled in the area left after sampling the first curve
(shaded). The curves are non-self-crossing but for � 2 .4; 8/ they intersect themselves and
each other in a fractal manner. In a discrete iterated sampling (right panel), the corresponding
component of ƒn n  .n/1 may now have “deep fjords”, even if the approximating domains ƒn
are well behaved. Based on the present note, no a priori results on  .n/

1
need to be proven to

exclude such fjords.

any subsequential limit. The precompactness part is usually not model-specific, in the
sense that it is deduced by verifying certain crossing probability estimates [2, 21] for
the model of interest. These estimates for instance guarantee that the random curve
laws on lattices of increasingly fine mesh are precompact in a standard topology of
unparametrized curves, as well as in a topology inherited from curves on the unit
disc D via conformal maps. The main theorem (Theorem 4.2) of this paper states
that the weak limits in these two topologies agree, i.e., limits of conformal images are
conformal images of limits, assuming the same crossing estimates as [21] and imposing
essentially no boundary regularity assumptions.

The corresponding result is easily deduced if either suitable boundary regularity is
assumed, or if boundary visits of the random curves can be excluded (see Section 3.1
for details), which is probably why it has not, to the best of our knowledge, been
priorly explicated. Apart from independent interest, studying domains with irregular
boundaries is motivated by, e.g., multiple SLE-type curves with � 2 .4; 8/, due to their
definition in terms of iterated SLE-type growth processes, see Figure 1. The results in
this paper do not rely on any underlying lattice structure, and they also have interesting
implications in terms of chordal SLEs, which will be discussed.
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1.2. The main application. All the basic SLE-type curves are defined via a driving
functionW WR�0!R, t 7!Wt , which first yields via a Loewner-type equation a curve
in a reference domain, say the curve D in the unit disc D, and the SLE-type curve 
in the domain of interest ƒ is then defined via conformal invariance:

W
Loewner
�����! D

conformal
�����! :

Now, assume that we study a lattice model on graph domainsƒn, n 2N, approximating
the domain ƒ in some sense, and that we wish to show that some discrete interface
curves  .n/ on ƒn converge weakly to the SLE-type curve  in ƒ. Proceeding with
the strategy above, the results of [2, 21] often guarantee the subsequential convergence
of  .n/ to some weak limit  . Due to the very definition of SLE, the most typical and
straightforward way to identify this limit as an SLE (cf. [21]) is to first map it to a
driving function,

 .n/
conformal
�����! 

.n/
D

Loewner
�����! W .n/;

and then prove precompactness also in the sense of the curves  .n/D and the func-
tions W .n/, and finally show, informally speaking, that the diagram

 .n/

n!1

��

conformal // 
.n/
D

n!1

��

Loewner // W .n/

n!1

��

 Dconformal
oo W

Loewner
oo

with mappings and weak convergences, commutes. The main result of this paper
addresses the bottom left horizontal arrow in the diagram above (in the case of minimal
boundary regularity assumptions and boundary-visiting curves), while the other ones
follow from the results of [2, 21].

2. Preliminaries

2.1. Conformal structures. The Riemann (uniformization) map from a simply-conn-
ected domainƒ¨ C to D normalized at u 2ƒ is the unique conformal map �Wƒ! D

such that �.u/D 0 and �0.u/2RC. A sequence of simply-connected domains .ƒn/n2N

converges to ƒ with respect to u in the Carathéodory sense, denoted ƒn
Cara
��! ƒ, if u

lies in all the domains and the inverse Riemann maps ��1n as above converge uniformly
on compact subsets of D to ��1, where all the conformal maps are normalized at the
same point u. By Carathéodory’s kernel theorem [30, Theorem 1.8], this occurs if
and only if every z 2 ƒ has some neighbourhood Vz such that Vz � ƒn for all large
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enough n, and for every p 2 @ƒ there exists a sequence pn 2 @ƒn such that pn ! p.
Note that whether or not a convergence ƒn

Cara
��! ƒ occurs is hence independent of

the choice of u 2 ƒ (only taking the tail of the sequence .ƒn/n2N if needed to ensure
u 2 ƒn).

The boundary behaviour of conformal maps is a central issue in this note. A cross cut
of a simply-connected domainƒ is an open Jordan arc S inƒ such that xS D S [ ¹a;bº,
where a; b 2 @ƒ; a null chain is a sequence .Sn/n2N of disjoint cross cuts, nested in
the sense that for all n, Sn separates SnC1 from S0 inƒ, and such the spherical-metric
diameter of Sn tends to zero as n!1. The intuitive notion of a “boundary point”
often needs to be replaced by a prime end, i.e., an equivalence class of null chains
of ƒ when two null chains .Sn/n2N and . zS/n2N are equivalent if for any m large
enough there exists n such that the cross cut Sm separates zSn from zS0 in ƒ, and zSm
separates Sn from S0 inƒ. The prime end theorem by Carathéodory [30, Theorem 2.15]
then states that a conformal map �Wƒ! D induces a bijection between the prime
ends of ƒ and the unit sphere @D, such that if .Sn/n2N is a representative of a prime
end p, then �.Sn/ converge to the image point of p on @D. We extend the definition
of Carathéodory convergence to domains with finitely many marked prime ends using
this bijection: e.g., .ƒnIp.n//

Cara
��! .ƒIp/ ifƒn

Cara
��! ƒ and �n.p.n//! �.p/ on @D,

where we also denoted the induced prime ends bijections by �n and �, respectively.
A less general but arguably more direct boundary extension of a conformal map

��1WD ! ƒ to @D is obtained via radial limits. Formally, for 0 < " � 1, denote
by P"W xD ! D the radial projection

P".z/ WD
z

jzj
min¹1 � "; jzjº:

Then, the radial limit of ��1 at z 2 @D is given by lim"#0 �
�1 ıP".z/; by the classical

Fatou theorem this limit indeed exists for Lebesgue almost every z 2 @D ifƒ is bounded.
While the definition above involves the conformal map ��1, both the existence and the
value of a radial limit at the point on @D that corresponds to a given prime end p are
actually properties of only the domainƒ and p that do not depend on the choice of the
conformal map;1 we thus simply say that p has radial limits.

A topological quadrilateral, or a quad, .QI S0; S1; S2; S3/ consists of a planar
domain Q homeomorphic to a square and arcs S0; S1; S2; S3 of its boundary, indexed
counter-clockwise and corresponding to the edges of the square. We will denote
.QIS0; S1; S2; S3/ by simply Q if the sides are clear in the context. The conformal

1This essentially stems from the fact that the conformal (Möbius) maps D! D are conformal and
differentiable also on the boundary @D, and a radial (i.e., boundary-normal) line segment maps to a radial
line segment up to a second-order correction; see, e.g., [30, Corollary 2.17] for a formal proof.
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structure of a quad is captured by the modulus m.QIS0; S1; S2; S3/ (also called the
extremal distance of S0 and S2 inQ); it is the uniqueL > 0 such that there exists a con-
formal map fromQ to the rectangle .0;L/� .0; 1/, so that the sides S0;S1;S2;S3 ofQ
correspond to the edges of the rectangle, and S0 to ¹0º � Œ0; 1� (see, e.g., [1, Chapter 4]).

2.2. Probability measures on metric spaces. Let .Y; dY / denote a metric space
and BY the corresponding Borel sigma algebra. A sequence�n of probability measures
on .Y;BY / converges weakly to the measure � on .Y;BY / if �nŒf � ! �Œf � for
all bounded continuous functions f W Y ! R. A collection ¹�˛º˛2A of probability
measures on .Y;BY / is precompact (in the topology of weak convergence) if every
sequence �n from that collection contains a subsequence that converges weakly. The
collection is tight if for every " > 0 there exists a compact setK � Y such that�˛ŒK� >
1 � " for all ˛ 2 A. By Prokhorov’s theorem a tight collection is precompact, and
if .Y; d/ is separable and complete, then tightness and precompactness are equivalent.

The most prominent non-trivial metric space in this note is the space of unpara-
metrized plane curves X.C/. A planar curve is a continuous mapping  W Œ0; 1�! C.
We define the equivalence relation � on curves by setting  � z , if

inf
 

�
sup
t2Œ0;1�

j.t/ � z ı  .t/j
�
D 0;

where the infimum is taken over increasing (hence continuous) bijections  W Œ0; 1�!
Œ0; 1�, and X.C/ is the space of these equivalence classes. We will always study an
equivalence class through a representative, and we will not make notational difference
between a curve, its equivalence class, or its trace. The space X.C/ is equipped with
the metric

d.; z/ WD inf
 

�
sup
t2Œ0;1�

j.t/ � z ı  .t/j
�
;

where the infimum is again over increasing bijections  W Œ0; 1�! Œ0; 1� (and hence
independent of the choice of representatives).

The (closed) subset ofX.C/ consisting of curves that stay in xD is denoted byX.xD/.
By the closedness, in particular, if �n are supported on X.xD/ and �n ! � weakly
on X.xD/ (resp. weakly on X.C/), then also �n ! � on X.C/, a fortiori (resp. �
is supported on and the weak convergence also holds on X.xD/, by the Portmanteau
theorem).

The space C of continuous functions W�WR�0 ! R is studied in the metric of
uniform convergence over compact subsets:

d.W; zW / WD
X
n2N

2�n min
®
1; sup
t2Œ0;n�

j zWt �Wt j
¯
:



A. M. Karrila 390

The spacesX.C/ and C are both complete and separable (which is essentially inherited
from the space of continuous functions on Œ0; 1� with the sup norm); in particular,
Prokhorov’s theorem applies.

2.3. (Schramm–)Loewner evolutions. We briefly recap Loewner evolutions and
SLEs; note that the contribution and proofs of this paper actually have little to do with
them directly, even if they are vital to understand the context.

2.3.1. The deterministic case. The Loewner differential equation in the upper half-
plane H determines a family of complex analytic mappings gt , t � 0 by g0.z/D z 2H

and
@tgt .z/ D

2

gt .z/ �Wt
;

where W�WR�0 ! R is a given continuous function, called the driving function. For a
given z 2 H, the solution gt .z/ is defined up to a possibly infinite explosion time �.z/
when W� and g�.z/ first collide. The set where the solution is not defined is denoted
by Kt D ¹z 2 H W �.z/ � tº. The sets Kt are growing in t , and for all t , the are hulls,
i.e.,Kt are bounded, closed in H, andHt DWH nKt is simply-connected. Furthermore,
gt is a conformal map Ht ! H such that gt .z/ D z C 2t

z
CO.z�2/ as z !1:

Conversely, for a family of growing hulls .Kt /t�0, there exists a driving functionW�
so that Kt , up to time re-parametrization, are obtained as the Loewner hulls of this
function, ifKt satisfy the so-called local growth condition and their half-plane capacity
tends to infinity as t " 1; see, e.g., [24] for details. Such families .Kt /t�0 are called
Loewner growth processes, and the Loewner differential equation thus produces a
bijection between Loewner growth processes and continuous functions W WR�0 ! R.

We say that a Loewner growth process .Kt /t�0 is generated by a continuous map
HWR�0 ! xH if Ht is the unbounded component of H n H.Œ0; t �/ for all t . Whether
a given H (up to re-parametrization) generates some Loewner growth process can be
determined based on the aforementioned conditions; in particular, the local growth
condition always holds if H is a simple chordal curve staying in H except for the end
points.

Throughout this paper, we fix conformal (Möbius) maps  and  �1 taking the
domain .DI �1; 1/ with marked prime ends to .HI 0;1/ and vice versa, say for
definiteness

 .z/ WD i
z C 1

1 � z
;  �1.z/ D

z � i

z C i
:

If the hulls corresponding to a driving function W are generated by H and
H.t/

t!1
���!1, we define the curve DW Œ0; 1�! xD by D.t/ D  

�1.H.
t
1�t
// for

t 2 Œ0; 1/ and D.1/D 1 and say thatWt and D are deterministic Loewner transforms
of each other.
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2.3.2. Random Loewner processes. We equip the space of Loewner growth processes
with the metric (topology) of their driving functionsW 2C . A random Loewner growth
process on some probability space is then a growth process valued random variable (i.e.,
measurable in our topology on C ). For example, ifBt is a standard Brownian motion on
the probability space .�;F ;P /, then the chordal Schramm–Loewner evolution from 0
to1 in xH with parameter � � 0 (SLE.�/ for short) is the random Loewner growth
process with Wt D

p
�Bt . We say that a random curve D 2 X.xD/ and a driving

function W 2 C defined on the same probability space are (probabilistic) Loewner
transforms of each other if they are almost surely deterministic Loewner transforms of
each other. Discrete models with finitely many possible curve trajectories often trivially
give rise to such a random Loewner transform pair; the existence of a suitable random
variable D for the SLE is less trivial but is recalled in Section 5.1.

3. Some easy special cases and warning examples

3.1. Easy special cases. We point out two common special cases where the main
application of our results, as explained in the Introduction, is readily handled. The core
of both cases is that the uniform convergence “��1n ! ��1” extends to (parts of) the
boundary; not even conformality is actually needed. We however stick to the context of
conformal maps for simplicity.

3.1.1. Regular boundary approximations. Letƒn
Cara
��! ƒ and let �nWƒn! D and

�Wƒ! D be conformal maps with ��1n ! ��1 uniformly over compact subsets of D.
Suppose in addition that C nƒn are uniformly locally connected, as defined in [30, Sec-
tion 2.2] (e.g., this occurs if C nƒ is locally connected andƒn is, for each n, the domain
bounded by a simple loop on 1

n
Z2 that stays inside ƒ and encloses a maximal number

of squares). Then, the conformal maps ��1n ; ��1 can be continuously extended to xD,
and also the convergence ��1n ! ��1 is uniform over xD [30, Theorem 2.1 and Corol-
lary 2.4]. In particular, ��1 and ��1n are also continuous as functions X.xD/! X.C/.

Proposition 3.1. Let  .n/D ! D weakly in X.xD/, and suppose that ��1n ! ��1 uni-
formly over xD. Then, ��1n .

.n/
D /

n!1
����! ��1.D/ weakly in X.C/.

Proof. It is sufficient to show weak convergence with a bounded Lipschitz-continuous
test function f WX.C/! R. Compute

jE.n/Œf .��1n .
.n/
D //� � EŒf .��1.D//�j � jE

.n/Œf .��1n .
.n/
D // � f .��1.

.n/
D //�j

C jE.n/Œf .��1. .n/D //� � EŒf .��1.D//�j:

The second term on the right-hand side becomes arbitrarily small as n!1 due to
the weak convergence  .n/D

n!1
����! D . The first term becomes arbitrarily small by the
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Figure 2
An SLE.8/ curve D in .DI �1; 1/ cannot be mapped conformally to a chordal curve
 W Œ0; 1�! C in this domain .ƒI a; b/.

Lipschitzness of f and the fact that ��1n ! ��1 uniformly over xD, and hence also
��1n ! ��1 uniformly as maps X.xD/! X.C/.

3.1.2. No boundary visits. The main application is also readily handled if the bound-
ary visits of  .n/D and D can be restricted (a priori or a posteriori) to only boundary
segments with enough boundary regularity.

Proposition 3.2. Let  .n/D ! D weakly in X.xD/. Suppose that D is, almost surely, a
chordal curve from �1 to 1 hitting no other boundary points, and that the maps ��1n
and ��1 and their uniform convergence can be extended to xV˙1, where V˙1 are some
neighbourhoods of˙1 in D. Then, ��1n .

.n/
D /! ��1.D/ weakly in X.C/.

A proof for this proposition is obtained, e.g., from the previous one by approxim-
ating f with gf , where g is a suitable continuous cut-off function that removes the
(unlikely) cases when a curve comes close to @D n xV˙1. We leave the details for the
reader. Proposition 3.2 is often sufficient, e.g., for multiple SLE applications analogous
to Figure 1 when � � 4.

3.2. Warning examples. We start by remarking, perhaps trivially, that it is easy to
give examples of (non-conformal) homeomorphisms fnWƒn ! D and f Wƒ! D,
such that f �1n ! f �1 uniformly over compact subsets of D, and suitable  .n/D ! D

(even deterministic curves) so that no convergence “f �1n .
.n/
D /! f �1.D/” occurs.

The conformal structure will indeed play a key role in the proofs.
As a first real warning, general Carathéodory converging domains ƒn ! ƒ may

contain “deep fjords”, and it may occur that  .n/!  and  .n/D ! D weakly but  does
not even stay in xƒ (see also Figure 4), certainly preventing any relation “ D ��1.D/”.
The conditions on  .n/ from [21] however rule this out, apart from the curve end points
which we will handle separately in our main theorem.
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Secondly, for rough domains ƒ, making sense of a random curve “��1.D/” in
the first place is an issue (without any reference to weak convergence): ��1 may not
have any natural extension to xD and even if it has, e.g. by radial limits, the extension
may be discontinuous. For instance, the SLE.8/ in .DI �1; 1/ exists as a random
Peano curve D 2 X.xD/ and appears as a scaling limit of a lattice model [26], but if
��1W .DI �1; 1/! .ƒI a; b/ is a conformal map to the domain in Figure 2, then one
can show that, almost surely, there exists no continuous curve  W Œ0; 1�! C such that
.t/ D ��1.D.t// for all t with D.t/ 2 D. For 4 < � < 8, SLE.�/-type curves D

visit the boundary on an uncountable set with no isolated points. Straightforwardly
defining a curve “��1.D/” would thus still require a strong control of ��1 on a
large-cardinality random boundary set, cf. [14].

Finally, we will have to gain such control uniformly over all n. Informally speaking,
the strategy will be to control the radial derivative of ��1n near  .n/D with high probability,
uniformly over n. This is done by restricting large derivatives to preimages of “deep
fjords”, uniformly over the target domains, while travelling into deep fjords is excluded
by [21]. Combining with the weak convergence . .n/D ; ��1n .

.n/
D //! .D; / given by

precompactness, one then deduces that  D ��1.D/, in the sense of radial limits. The
conclusions can be contrasted with [14] and some other results in “continuous” SLE
theory, see Section 5.

4. The main results

4.1. Setup. The following setup and notation applies throughout this section. Let
.ƒnI an; bn/, n 2 N, be simply-connected planar domains with two distinct marked
prime ends with radial limits, and let 'nWƒn ! D be conformal maps such that
'�1n .�1/ D an and 'n.1/ D bn (in the sense of the prime end bijection). A ran-
dom chordal Loewner curve model on .ƒnI an; bn/ is, formally, a probability space
.P .n/; �.n/;F.n// with random variables  .n/ 2 X.C/,  .n/D 2 X.xD/, and W .n/ 2 C

such that, almost surely,  .n/D traverses from �1 to 1,  .n/ satisfies  .n/ D '�1n .
.n/
D /

(extending '�1n by radial limits), and W .n/ is the Loewner transform of  .n/D . We
equip F.n/ with the right-continuous filtration .F.n/t /t�0 of the driving functions
W
.n/
t 2 C ; stopping times refer to this filtration. While a stopping time � is thus

defined on the interval Œ0;1/, we will use abusive notations such as  .n/.Œ0; ��/ for
the corresponding segments on curves parametrized by times in Œ0; 1�.

4.2. Kemppainen and Smirnov’s theorem. Let us first review the results of Kemp-
painen and Smirnov [21]. We start with the hypothesis, formulated in terms of certain
crossing conditions. For equivalent hypotheses, see [21, Section 2.1.4].
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a.n/

b.n/

S0

S1

S2

S3
Q

ƒn .n/.Œ0; ��/

a.n/

b.n/

z

ƒn

 .n/.Œ0; ��/

r

R

Figure 3
Illustrations of the crossing conditions of [21]. Condition (C) depicted in the left figure requires
that it is unlikely that the remainder  .n/.Œ�; 1�/ of the curve  .n/ crosses a quadrilateral Q of
large conformal modulus m.Q/ on the boundary of ƒn n  .n/.Œ0; ��/. The equivalent Condi-
tion (G) depicted on the right requires that an unforced crossing of a boundary annulusA.z; r;R/
of large ratio R=r is unlikely. The connected components of A.z; r; R/ \ƒn n  .n/.Œ0; ��/
where a crossing is unforced are depicted in grey; the remainder curve  .n/.Œ�; 1�/ is topologic-
ally forced to cross the component depicted in green.

For 0 < r < R and z 2 C, we denote

B.z; r/ WD ¹w 2 C W jw � zj < rº; S.z; r/ WD @B.z; r/;

A.z; r; R/ WD B.z;R/ n B.z; r/:

We say that .QI S0; S1; S2; S3/ is a boundary quad (resp. A.z; r; R/ is a boundary
annulus) of a simply-connected domainƒ�C ifQ�ƒ, S1;S3 � @ƒ, and S0;S2 �ƒ
(resp. ifB.z; r/\ @ƒ¤;). We say that a boundary quad (resp. a connected component
of a boundary annulus inƒ) disconnects two prime ends a and b inƒ if it disconnects
some neighbourhood of a in ƒ from some neighbourhood of b in ƒ. Finally, for
a chordal curve  from a to b in ƒ, a crossing of a boundary quad Q between S0
and S2 by is unforced ifQ does not disconnect a from b (resp. a crossing of a boundary
annulusA.z;r;R/ between @B.z; r/ and @B.z;R/ is unforced if it occurs in a connected
component of A.z; r; R/ that does not disconnect a from b). We can now formulate
the hypothesis (see Figure 3).

Condition (C). We say that the measures P .n/ satisfy Condition (C) if for all " > 0
there exists M > 0, independent of n, such that the following holds for all stopping
times � <1: for any quad Q with m.Q/ �M on the boundary of ƒn n  .n/.Œ0; ��/,
we have

P .n/
�
 .n/.Œ�; 1�/ makes an unforced crossing of Q j F.n/�

�
� "; a.s.
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Condition (G). We say that the measures P .n/ satisfy Condition (G) if for all " > 0
there existsM >0, independent of n, such that the following holds for all stopping times
� <1: for any annulusA.z; r;R/withR=r �M on the boundary ofƒn n  .n/.Œ0; ��/,
we have

P .n/
�
 .n/.Œ�; 1�/ makes an unforced crossing of A.z; r; R/ j F.n/�

�
� "; a.s:

We also point out [21, Remark 2.9] here: if the curves  .n/ live on finite graphs, it
suffices to check these conditions for stopping times in the sparser, discrete filtration
.F
.n/
�i /i2N , where �i is the hitting time of the i th vertex on the curve  .n/. We are now

ready to state the theorem.

Theorem 4.1 ([21, Theorem 1.5 and Corollary 1.7]). In the setup of Section 4.1,
suppose that the measures P .n/ satisfy the equivalent Conditions (C) and (G). Then, the
laws under P .n/ of the pairs . .n/D ;W .n// on X.xD/ � C are precompact. Furthermore,
for any subsequential limit pair, the curve and driving function are, almost surely,
Loewner transforms of each other.

Note that a direct consequence of the above is that if a weak convergence takes
place for either  .n/D or W .n/, then it also takes place for their joint law.

A careful reader may observe two minor differences to the formulation in [21] which
are however essentially of presentational nature. First, the assumptions in Section 4.1
were given following the equivalent form from [21, Section 1.4], rather than [21,
Theorem 1.5 and Corollary 1.7] directly. Second, [21, Theorem 1.5 and Corollary 1.7]
were not formulated in product topology. Tightness (and hence precompactness) in
the product topology however follows directly from the tightness of  .n/D and W .n/

individually. As regards the Loewner transform property for the limit in the product
topology, the proof of [21, Corollary 1.7] is based on finding, for any m > 0, a set of
Loewner transformable curves Km that carries a P .n/-probability at least 1 � 1=m, is
compact in the topology of both  .n/D and W .n/, and on which the two are continuous
functions of each other. The limiting objects are thus also supported on

S
mKm and the

Loewner transform property follows, e.g., by showing with Tietze’s extension theorem
that

E
�
jf .Loewner.W // � f .D/j

�
D 0;

where E, W , and D are the limit objects f WX.xD/! R is any bounded continuous
test function.

4.3. The contribution of the present note. We will need the following notion to
formulate our main theorem. Suppose that .ƒnI an/! .ƒI a/ in Carathéodory sense
with respect to u and that radial limits exist at the prime ends an and a; let us for
lighter notation identify an and a with the corresponding radial limit points in C.
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a
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ƒ
ƒn

a
an

ƒ
ƒn

Figure 4
Schematic illustrations of undesired behaviour of boundary approximations .ƒnIan/! .ƒIa/.
Left: an 6! a as points in C. Right: an ! a but an are not close approximations.

For r 2 .0; d.a; u//, let Sr denote the connected component of @B.a; r/ \ ƒ that
disconnects the point a from u and is closest to a (such exists by Lemma A.1 and
approximation by radial limits). We say that an are close approximations of a (see
Figure 4) if an ! a as points in C and for any r 2 .0; d.a; u// and fixed wr 2 Sr , an
is connected to wr inside ƒn \ B.a; r/ for all n a large enough, n > n0.r; wr/. (By
Carathéodory convergence, it suffices to verify this condition for a given choice of wr .)

Our main theorem concerns the curves  .n/ in the original domains, adding the
following assumptions to our setup described in Section 4.1:
� (bounded domains) there existsM > 0 such thatƒ�B.0;M/ and Area.ƒn/�M

for all n;

� (Carathéodory convergence) .ƒnI an; bn/
Cara
��! .ƒI a; b/, and the conformal maps

'nW .ƒnI an; bn/! .DI �1; 1/ and 'W .ƒI a; b/! .DI �1; 1/

normalized at boundary points are chosen so that '�1n ! '�1 uniformly over
compact subsets of D; and

� (close approximations) the prime ends an and bn in ƒn have radial limits and are
close approximations of the prime ends a and b in ƒ with radial limits.

We are now ready to formulate our main theorem. The precompactness part, apart
from the behaviour at the marked boundary points, originates from [2,21].

Theorem 4.2. Under the setup given above and in Section 4.1, suppose that the meas-
ures P .n/ satisfy the equivalent Conditions (C) and (G). Then, the laws of . .n/D ;  .n// 2

X.xD/ � X.C/ under P .n/ are precompact. Furthermore, any subsequential limit
.D; / almost surely satisfies  D '�1.D/, where '�1 is extended by radial limits.

Before the proof, let us make some remarks. First, combining Theorems 4.1 and 4.2,
one straightforwardly obtains an analogous result for the triplets .W .n/; 

.n/
D ;  .n//.
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. . .

...

ƒ

Figure 5
A schematic illustration of a counterexample about the regularity of the limit curves  in
Theorem 4.2. If the limiting domain ƒ that has on its boundary an “infinite spiral of corridors
with multiple layers of obstacles in each corridor”, then the prime end at the bottom of the
spiral has radial limits. However, one can show that if the number of obstacle layers grows fast
enough towards the bottom of the spiral (in the picture, the number of obstacle layers is drawn
for simplicity equal to the number of the corridor), then any curve reaching the bottom of the
spiral and not crossing @ƒ must be of upper box dimension two.

Consequently, if weak convergence takes place for either W .n/,  .n/D , or  .n/, then
it also takes place for their joint law, and the limit objects are Loewner/conformal
transforms of each other, as detailed in Theorems 4.1 and 4.2, in particular satisfying
the informal “commutative diagram” in the introduction.

Second, as discussed in Section 3.2, it is not immediate, but a part of the result
that, almost surely, '�1 (as extended by radial limits) is defined an all points of D

and the function '�1 ı DW Œ0; 1�! C is continuous (i.e., a curve). Furthermore, this
curve is a measurable X.C/ valued random variable in the sigma algebra of D; this
follows from Proposition 4.3.

It is also an interesting question what regularity properties can be proven for the
limit curve  above. The proof of the tightness below boils down to applying [2] to
interior segments of  .n/, from the time of first exiting a small neighbourhood of an
to the time of first hitting a small neighbourhood of bn. The Hölder regularity and
dimension bounds of [2] thus follow for analogous interior segments of  . However,
these regularity properties generally do not hold for the full curve  without additional
boundary regularity assumptions for the domains; an explicit counterexample can be
worked out from the idea depicted in Figure 5.

4.4. Proof of Theorem 4.2.

Proof of precompactness in Theorem 4.2. It suffices to show that the laws of  .n/ 2
X.C/ under P .n/ are precompact. Indeed (using Prokhorov’s theorem twice) then  .n/
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are tight and, combining with Theorem 4.1, also . .n/D ;  .n// are tight and hence
precompact.

Fix % > 0 and denote by S .a/ the innermost arc of the circle S.a; %/ in ƒ that
disconnects the boundary point a from u. Let w.a/ 2 S .a/ be the corresponding refer-
ence point, and let S .a/n be the arc of the circle S.a; %/ in ƒn that contains w.a/ (such
an arc exists for all large enough n > n0.%/). Finally, define the similar objects for b.
Denote by  .n/% the segment  .n/.Œ�

S
.a/
n
; �
S
.b/
n
�/ of the curve  .n/, where �

S
.a/
n

and �
S
.b/
n

are the first hitting times of S .a/n and S .b/n , respectively. For any fixed % > 0, the curves

.n/
% are precompact in X.C/ by [21, Corollary 1.8].

Given z" > 0, fix � D �.z"/ through property (G) so that an unforced crossing of
any fixed boundary annulus A.z; r; �r/ occurs with P .n/-probability at most z"=2, for
any n. We next claim that for any %; z" and �, there exist n0 D n0.%; z"; �/ such that for
all n > n0,

(4.1) P .n/
�
d. .n/;  .n/% / � 2�%

�
� z":

Indeed, choose n0 through the close approximation property so that for n > n0, S .a/n
exists, an 2 B.a; %/ and an is connected to S .a/n inside B.a; %/ \ƒn, and the similar
properties hold for b. Thus, any crossing of A.a; %; �%/ before �

S
.a/
n

is unforced (for
any � > 1), and likewise is any crossing of A.b; %; �%/ after �

S
.b/
n

. If such crossings
do not occur, truncating  .n/ to  .n/% perturbs the curve at most by 2�%. The choice
of �.z"/ then implies (4.1).

The proof can now be finished with a general argument about complete metric
spaces. To explain it, recall first that weak convergence of Borel probability measures
on metric spaces can be metrized by the Lévy–Prokhorov metric dLP, defined by

dLP.�; �/ WD inf¹" > 0 W �.A/ � �.A"/C " and
�.A/ � �.A"/C " for all Borel sets Aº;

when A" denotes the open "-neighbourhood of A. For instance, (4.1) directly gives

(4.2) dLP.
.n/;  .n/% / � max¹2�%; z"º;

where we (slightly abusively) denoted the distance of laws by the corresponding random
variables. The space of probability measures with the Lévy–Prokhorov metric is
in addition complete if the underlying metric space is (as it is here). The general
argument (in the notation of a complete Lévy–Prokhorov space) is the following: a
sequence of probability measures .�n/n2N is precompact if there exists an array of
probability measures .�n;m/n;m2N such that dLP.�n; �n;m/ � 1=m for all n; m and



Limits of conformal images and conformal images of limits for planar random curves 399

that the sequence .�n;m/n2N is precompact for everym. Indeed, by diagonal extraction,
there is a subsequence nk such that .�nk ;m/k2N converges weakly for all m and that

dLP.�nk ;m; �nk0 ;m/ < 1=k

for all m � k � k0. Then,

dLP.�nk ; �nk0 / � dLP.�nk ; �nk ;m/C dLP.�nk ;m; �nk0 ;m/C dLP.�nk0 ;m; �nk0 /

� 1=mC 1=k C 1=m

for all m � k � k0, and choosing m D k, we observe that the sequence .�nk /k2N is
Cauchy.

To apply the general argument, let �n be the law of  .n/. Given m, set z" D 1=m,
then � D �.z"/ as above, then % so that 2�% � 1=m, and finally n0 D n0.%; z"; �/

as above. For n � n0 let �n;m D �n, and for n > n0 let �n;m be the law of  .n/% .
By (4.2), dLP.�n; �n;m/ � 1=m and, as noticed above, the laws .�n;m/n2N of  .n/

%.m/

are precompact for all m. The claim now follows.

For the proof of the conformal property of Theorem 4.2, the Riemann maps
�nWƒn ! D (i.e., normalized at a fixed common point u 2 ƒn) turn out technic-
ally nicer; recall that ��1n converge to the inverse Riemann map ��1 of ƒ (normalized
at u). Denote

z
.n/
D WD �n.

.n// D �n ı '
�1
n .

.n/
D /I

note that by the “easy special case” of Proposition 3.1, z .n/D ! zD weakly if and only if

.n/
D ! D weakly, where zD D � ı '

�1.D/ (since �n ı '�1n and � ı '�1 are Möbius
maps xD ! xD). It is thus equivalent to show that  D ��1.zD/, for any subsequential
limit. Recall also the notation for radial projections from Section 2.1. We first prove
the following.

Proposition 4.3. Let .D; / be a limiting pair from Theorem 4.2, and

zD D � ı '
�1.D/:

For any sequence "j # 0, there exists a subsequence ."jm/m2N such that, almost surely,

��1 ı P"jm .zD/! 

in X.C/ as m " 1.

Proof. For notational simplicity, let us suppress a subsequence notation and assume that
.
.n/
D ;  .n//! .D; / weakly. By a theorem of Skorokhod, there exists a coupling P
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such that .z .n/D ;  .n//! .zD; / almost surely. In this coupling, for any "j DW " 2 .0; 1/
and any n 2 N on the right-hand side

d.; ��1 ı P".zD// � d.; 
.n//C d. .n/; ��1n ı P".z

.n/
D //(4.3)

C d.��1n ı P".z
.n/
D /; ��1 ı P".z

.n/
D //

C d.��1 ı P".z
.n/
D /; ��1 ı P".zD//:

The strategy of the proof is to use (4.3) to show that for every m 2 N there exist "jm
such that

(4.4) P
�
d.; ��1 ı P"jm .zD// � 1=2

m
�
� 1=2m:

Indeed, by (4.4) and the Borel–Cantelli lemma, the events®
d.; ��1 ı P"jm .zD// � 1=2

m
¯

almost surely occur for only finitely many m, and the claim is proven.
We now analyze the terms on the right-hand side of (4.3) separately. For the first

one, almost sure convergence implies convergence in probability, so

(4.5) P
�
d.;  .n// � 1=2mC2

�
� 1=2mC2 for all n > n.1/0 ;

where n.1/0 only depends on the coupling P . For the third one, pick n.3/0 ."/ by the
convergence ƒn

Cara
��! ƒ, so that

j��1n .�/ � ��1.�/j < 1=2mC2

on B.0; 1 � "/, for all n > n.3/0 ."/. Thus, deterministically,

(4.6) d
�
��1n ı P".z

.n/
D /; ��1 ı P".z

.n/
D /

�
< 1=2mC2 for all n > n.3/0 ."/:

For the fourth term, note first that P" satisfies

jP".z/ � P".z
0/j � jz � z0j

for all z; z0 2 xD. Denoting D" D supz2B.0;1�"/ j.��1/0.z/j one then deduces that,
deterministically,

d
�
��1 ı P".z

.n/
D /; ��1 ı P".zD/

�
� D"d.z

.n/
D ; zD/:

Using the convergence z .n/D ! zD in probability and taking n > n.4/0 ."/ so that

P
�
d.z

.n/
D ; zD/ � 1=.D"2

mC2/
�
� 1=2mC2;
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we obtain

(4.7) P
�
d.��1 ı P".z

.n/
D /; ��1 ı P".zD// � 1=2

mC2
�
� 1=2mC2

for all n > n.4/0 ."/.
Note that the three terms above could be treated with simple and general arguments,

not even requiring " to be small. The core of the proof is thus the second term, which
we formulate as a separate result and prove in Section 6.

Key Lemma 4.4. In the setup of Theorem 4.2, for any z" > 0, there exists "0.z"/ > 0
such that if " < "0 and n > n0."/, then

P .n/
�
d.��1n .x/; ��1n ı P".x// > z" for some x 2 z .n/D

�
� z":

In particular, setting z" D 1=2mC2, we have

(4.8) P Œd. .n/; ��1n ı P".z
.n/
D // � 1=2mC2� � 1=2mC2

by first taking " < "0.m/ small enough and then n > n.2/0 ."/ large enough.
Combining (4.5)–(4.8) we observe that taking first "jm < "0.m/ and then n >

max1�k�4 n
.k/
0 ."jm/, (4.4) is guaranteed.

Proof of the conformal property of limits in Theorem 4.2. As noted above, it is equi-
valent to show that, almost surely,  D ��1.zD/. Proposition 4.3 directly finishes
the proof if the limiting domain ƒ is regular enough so that the conformal map ��1

extends continuously to the closed unit disc xD; this continuity implies that a curve
lim"#0 �

�1 ı P".zD/ exists. (Note that this argument did not impose any requirements
for the approximating domains ƒn.) For more irregular limiting domains, the proof
is concluded from Proposition 4.3 by Lemma 4.5 below, which is a statement about
deterministic curves.

In the following, we mean by non-self-crossing curves the X.C/-closure of simple
curves. Note that, by the Portmanteau theorem, any weak limit of probability measures
supported on non-self-crossing curves is also supported on non-self-crossing curves.
In particular, this is the case for any weak limit D in our setup, since  .n/D are Loewner
transformable and hence non-self-crossing.

Lemma 4.5. Let ƒ be a bounded simply-connected domain, � its Riemann map
normalized at u 2 ƒ, and a; b two distinct prime ends with radial limits. Let z�D be a
non-self-crossing curve in xD with z�D.0/ D �.a/ and z�D.1/ D �.b/ (in the sense of
the prime end bijection). Suppose that for some sequence "m # 0, we have

��1 ı P"m.z�D/! � in X.C/ as m!1.
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Then, ��1, as extended by radial limits, is defined on all points of z�D and

��1 ı P".z�D.t//
"#0
��! ��1.z�D.t// uniformly over t 2 Œ0; 1�.

In particular, ��1.z�D/ is one parametrized representative of � 2X.C/ and the uniform
converge ��1 ı P".z�D/! ��1.z�D/ takes place as " # 0 (not only along a special
sequence) and in this particular parametrization.

Proof. It suffices to show that the complex numbers ��1 ı P".z�D.t// converge uni-
formly over t 2 Œ0; 1� to some limits as " # 0. Assume for a contradiction that this is
not the case, and denote

%.r; t/ WD
®
��1.P".z�D.t///; " 2 .0; r/

¯
� C:

The counter assumption means that for some ` > 0, there exists a sequence rJ # 0 and
times tJ 2 Œ0; 1� such that

diam.%.rJ ; tJ // > `:

Denote �.t/D arg.z�D.t// 2 Œ0;2�/; by compactness we may assume that tJ are chosen
so that ei�.tJ / ! ei� , and that the sequence �.tJ / is monotonous.

Fix J and suppress the indexing for a moment, .r; t/ WD .rJ ; tJ /. Let x and y be
two points on %.r; t/ such that d.x; y/ > `=2, y corresponding to a smaller value
of " D ".y/ in y D P".y/.z�D.t//. By Proposition 6.4 from Section 6, there exists a
quantity � D �.r/ (independent of t ), �! 0 as r ! 0, so that the following holds for
all r small enough: the innermost connected component S .x/ of the circle S.x; �/ that
separates x from the normalization point u, actually separates from u the remainder of
the whole “conformal ray” (i.e., a ��1 image of a radial line segment) from x onwards;
and the analogous statement holds with x replaced by y for the same �. Assume that r
is small enough so that � < `=8; hence, S .x/ disconnects S .y/ from u. Changing the
choice of � D �.r/ infinitesimally if needed, we will also later assume that neither
�.S .x// nor �.S .y// has ei� as an end point on @D.

We next claim that for r < r0 small enough, where r0 only depends on the domain
.ƒI a; b/, the limit curve � must contain a subcurve �.Œt1; t2�/ between S .x/ and S .y/.
(Note that such a subcurve necessarily has a diameter � `=4.) To work towards this
observation, note that S .x/ and S .y/ divideƒ into three components: the componentCu
of u in ƒ n S .x/, the boundary quadQ between S .x/ and S .y/, and the component Cy
of ƒ n S .y/ containing y (and not containing u nor S .x/). By the construction of S .y/,
the points P".z�D.t// with " � ".y/ (in particular along the special sequence "m # 0)
all belong to Cy . On the other hand, for r and hence �.r/ small enough, at least one out
of a and b must lie on the boundary Cu (otherwise, taking �! 0, one boundary arc
between a and b would have an arbitrarily small harmonic measure as seen from u).
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Figure 6
Schematic illustrations of the prime ends a and b, the point u, and the collection of cross cuts
S
.x/
n ; S

.y/
n , as mapped conformally to D by � (the notations � are omitted in the figure), in the

different cases itemized in the end of the proof of Proposition 4.5.

Hence for allm large enough, ��1 ıP"m.z�D/ is a curve inƒ that visits bothCy andCu,
in particular crossing between S .x/ and S .y/. The existence of such a crossing carries
over to the limit curve �.

We now go back to the sequence .rJ ; tJ /, constructing a certain subsequence Jk .
Let S .x/

k
and S .y/

k
be the circle arcs above for .r; t/ WD .rJk ; tJk /.2 We define Jk

inductively so that the cross cut �.S .x/
k
/ separates �.S .y/

k
/ in D from all the previous

ones, i.e.,
�.S

.x/
1 /; : : : ; �.S

.x/

k�1
/ and �.S

.y/
1 /; : : : ; �.S

.y/

k�1
/:

This is possible since the previous cross cuts avoid ei� , while an easy harmonic measure
argument shows that for Jk large enough, entire �.S .x/

k
/ can be made arbitrarily close

to ei� . As observed above, the limit curve �must contain a subcurve �.Œt .k/1 ; t
.k/
2 �/ from

S
.x/

k
to S .y/

k
, hence with diameter � `=4. We claim that the time intervals Œt .k/1 ; t

.k/
2 �

can be chosen disjoint. Proving this claim true contradicts the continuity of � and
finishes the entire proof.

To construct the disjoint time intervals, we consider the following three cases,
illustrated in Figure 6:
� infinitely many of the boundary quads Qn in ƒ determined by the two cross cuts

S
.x/
n and S .y/n contain either a or b;

� infinitely many of the boundary quads contain neither a nor b and disconnect a
from b; and

2We should denote here x D xk and y D yk ; the exact choice of these points is however unimportant
in what follows, apart from x lying closer to u on the same “conformal ray”.
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� infinitely many of the boundary quads contain neither a nor b and do not disconnect
a from b.

At least one of these occurs. Let us denote the corresponding infinitely many quadri-
laterals by Q1;Q2; : : :, suppressing a subsequence notation. In the first case, assume
that infinitely many quads contain b (if not, reverse the curve �). Note that the quadri-
laterals are nested by the monotonicity of �.tJ /, Q1 � Q2 � � � � and that the inner
arcs S .y/

k
“move towards b”, see Figure 6. Now, an initial segment of � up to the

end of any crossing of Qk from S
.x/

k
to S .y/

k
either contains no crossing of the next

quadrilateralQkC1 from S
.x/

kC1
to S .y/

kC1
, or the rest of � is topologically forced to make

such a crossing again (due to the non-self-crossing property). In any case, we can
thus find disjoint crossings of the quads in their order. The second case is trivial: the
quadrilaterals are then by construction disjoint, and so are their crossings. In the third
case, assume for definiteness that the boundary points ei�.tJk / corresponding to the
quadrilaterals move farther from �.a/ and towards �.b/ (if not, reverse �). The proof
is then identical to the first case. This completes the proof.

4.5. Parametrized curves. For a pair .D; W / 2 X.xD/ � C of Loewner transforms,
we say that D is capacity-parametrized if

D.t/ D  
�1
�
H

� t

1 � t

��
for t 2 Œ0; 1/, where H is the map generating the hulls of W . In this subsection, we
assume that  .n/D and D are capacity-parametrized and equip the space C.Œ0; 1�;C/ of
continuous functions Œ0; 1�!C by the usual sup norm. One (simple extension of a) res-
ult in [21] is that Theorem 4.1 also holds in the (stronger) topology of C.Œ0; 1�;C/ � C .

Theorem 4.6. Suppose that  .n/D and D are capacity-parametrized and  .n/ are
parametrized so that

 .n/.�/ D '�1n
�

.n/
D .�/

�
:

Then, the statement of Theorem 4.2 holds in the topology C.Œ0; 1�;C/ � C.Œ0; 1�;C/.

Proof. By Theorem 4.2 and [21], . .n/D ;  .n// are tight in C.Œ0;1�;C/�X.C/. Suppose
hence that . .n/D ;  .n//! .D; / weakly in C.Œ0; 1�;C/ �X.C/. We will show that
there exists a subsequence .nm/ such that also

.
.nm/
D ;  .nm//! .D; '

�1.D// in C.Œ0; 1�;C/ � C.Œ0; 1�;C/;

this readily implies the entire analogue of Theorem 4.2 in C.Œ0; 1�;C/ � C.Œ0; 1�;C/.
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Similarly to the proof of Theorem 4.2, embed everything in one probability space
so that . .n/D ;  .n//! .D; / in C.Œ0; 1�;C/ �X.C/, almost surely. Now, we claim
that, for all m 2 N, one can choose nm so that, in this coupling,

P
�
d. .nm/; ��1.zD// � 1=2

m
�
� 1=2m;

where the distance is in C.Œ0; 1�;C/ and we remind the reader that zD D � ı '
�1.D/.

The desired weak convergence along subsequence nm then readily follows by the
Borel–Cantelli lemma.

To prove the above claim, compute with distances in C.Œ0; 1�;C/:

d
�
 .n/; ��1.zD/

�
� d

�
 .n/; ��1n ı P".z

.n/
D /

�
C d

�
��1n ı P".z

.n/
D /; ��1 ı P".z

.n/
D /

�
C d

�
��1 ı P".z

.n/
D /; ��1 ı P".zD/

�
C d

�
��1 ı P".zD/; �

�1.zD/
�
:

The rest of the proof is similar to the proof Proposition 4.3 and we only outline the
idea: the three first terms on the right-hand side can be handled identically to that proof,
choosing for eachm first " < "0.m/ and then n > n0."/. For the fourth one, the almost
sure convergence

.z
.n/
D ;  .n//! .zD; / in C.Œ0; 1�;C/ �X.C/

implies the analogous weak convergence in X.xD/ � X.C/; then by Proposition 4.3
and Lemma 4.5 (which directly addresses parametrized curves),

��1 ı P".zD/
"#0
��! ��1.zD/ in C.Œ0; 1�;C/;

almost surely and thus also in probability.

5. An application to SLE

In this section, we demonstrate the use of Theorem 4.2 by proving that the chordal
SLE.�/ (as a random curve in X.C/) is stable both in the domain and in the parameter
� 2 Œ0; 8/. This can be seen as an analogue of the SLE application in [21]. Applying
Theorem 4.6 instead, the analogues of the results in this section could be given for
capacity-parametrized curves.

5.1. SLE in the topology of curves. Recall from Section 2.3.2 the definition of SLE
as a random Loewner growth processes. By the celebrated results of [31], the hulls of
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an SLE.�/ growth process with � 2 Œ0; 8/ are almost surely generated by a continuous
map H and H.t/

t!1
���!1. For such H, there exists also a corresponding curve D

in xD (see Section 2.3.2).

Proposition 5.1. Fix � 2 Œ0; 8/. The SLE curve D defined above is almost surely
equal to an X.xD/-valued random variable, measurable in the sigma algebra of the
Brownian motion that defines the SLE.

Proof sketch. Note first that Condition (C) can be formulated only in terms of hulls and
stopping times of the Loewner process. It thus makes sense to claim that D satisfies
Condition (C), even if do not know if it exists as a X.xD/-valued random variable.
Condition (C) is then verified in [21, Theorem 1.10].3 Finally, arguing identically to
the proof of [21, Theorem 1.7], Condition (C) implies that for any " > 0, there is a
set K" in the space of curves with a Loewner transform, compact both in the topology
of the driving functions W 2 C and the curves D 2 X.C/, and carrying probability
mass P ŒK"� � 1 � ", and on which D 2 X.C/ is a continuous function of W 2 C .
The claim follows.

The next result yields an alternative proof of [14, Theorem 1.1], in addition address-
ing the behaviour of the curve at the end points and its measurability as a random
variable.

Proposition 5.2. Letƒ be a bounded simply-connected domain, a;b its prime ends with
radial limits, ' a conformal map .ƒI a; b/! .DI �1; 1/, and D an SLE.�/ curve on
.DI�1;1/with � 2 Œ0; 8/. There exists anX.C/-valued random variable  , measurable
with respect to the sigma algebra of D (and hence also that of the underlying Brownian
motion) such that, almost surely,  D '�1.D/, where '�1 is extended by radial limits.

Proof. Set u D '�1.0/ 2 ƒ; rotating ƒ, we may assume that ' is the Riemann map
normalized at u. Let ƒn be the simply-connected domain bounded by the simple
loop on 1

n
Z2 that encloses u and a maximal number of squares of 1

n
Z2, let 'n be

their Riemann maps normalized at u, and an D '�1n .�1/, bn D '�1n .1/; by polygonal-
ity, '�1n extend continuously to xD and the curves '�1n .D/ D 

.n/ 2 X.C/ are thus
measurable random variables in the sigma algebra of D . They satisfy Condition (C)
by the argument in the proof of Proposition 5.1, and the remaining assumptions of
Theorem 4.2 are readily verified. Hence, .D; 

.n// converge weakly to .D; /, where
 D '�1.D/, and  is measurable in the sigma algebra of D by Proposition 4.3. This
concludes the proof.

3Prior to [21], SLE semicircle intersection probabilities were studied in [3]. Condition (C) alternatively
follows from this result and the relation of annulus and quad crossings, see [21, Proof of “G2) C2”].
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5.2. Stability of SLE. We finish by proving the stability of the chordal SLE in both
the domain and the parameter �. Stability in � has been addressed in [19, 21], and
domain stability (for � � 4) in [23]. Note that in order to apply the main results of
this paper, derived for random triplets .W .n/; 

.n/
D ;  .n// such that W .n/ and  .n/D are

Loewner transforms of each other and  .n/ D '�1n .
.n/
D /, the results of the previous

subsection were necessary.

Proposition 5.3. Assume that �n! � < 8 and .ƒnI an; bn/
Cara
��! .ƒI a; b/ satisfy the

assumptions of Theorem 4.2. Then, the SLE.�n/-curves  .n/ in .ƒnI an; bn/ converge
weakly in X.C/ to the SLE.�/ curve  in .ƒI a; b/.

Proof. Embed all the SLEs in the same probability space by sampling from the same
Brownian motion, W .n/

t D
p
�nBt . Hence, W .n/

t ! Wt D
p
�Bt almost surely and

weakly in C . Condition (C) is again satisfied by the argument in Proposition 5.1; the
claim then follows from Theorems 4.1–4.2.

6. Proof of the Key Lemma 4.4 in Theorem 4.2

In this section, we prove the Key Lemma 4.4, which also constitutes the bulk of the
proofs of Proposition 4.3 and Theorem 4.2. For convenience, we take an equivalent
formulation where the probability bound and the distance bound are given the distinct
notations z" and `, respectively.

Key Lemma 6.1. In the setup and notation of Proposition 4.3, for any ` > 0 and any
z" > 0, there exists "0.`; z"/ > 0 such that if " < "0 and n > n0."/, then

P .n/
�
d.��1n .x/; ��1n ı P".x// > ` for some x 2 z .n/D

�
� z":

The rest of this section constitutes the proof. Section 6.1 defines fjords of a domain
and recalls a probabilistic result from [21], showing that “deep tours into narrow fjords”
by random curves are unlikely, given the equivalent Conditions (C) and (G). Section 6.2,
in turn, is purely analytic and argues that the radial projection ��1n ı P".x/ does not
differ much from ��1n .x/ except if the latter lies deep in a narrow fjord of ƒn. The
proof is concluded in Section 6.3 by putting these pieces together and handling the
curve end points.

6.1. Fjords. Letƒ� be a simply-connected domain, u 2ƒ� and a� and b� prime ends
of ƒ� (here and in continuation, we will use subscript � instead of n to indicate that it
is fixed). Let S be a cross cut of ƒ�, with diam.S/ � ı and u 62 S . Then, we say that
the union F of S and the connected component of ƒ� n S that does not contain u is a
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ı-fjord with respect to u. Similarly, if some neighbourhoods of a� and b�, respectively,
are both contained in one and same connected component ofƒ� n S , then the union F
of S and the connected component ofƒ� n S not adjacent to a� and b� forms a ı-fjord
with respect to .a�; b�/. We say that a point z 2 F lies `-deep in F if the interior
distance in ƒ� from z to S is at least `, dƒ�.z; S/ � `.

Proposition 6.2 (Special case of [21, Lemma 3.14]). In the setup of Section 4.1, assume
that the domains ƒn are uniformly bounded in area, Area.ƒn/ � M for all n, and
that the measures P .n/ satisfy the equivalent Conditions (C) and (G). Then, for any
` > 0 and any z" > 0, there exists ı D ı.M; `; z"/ > 0 (independent of n) such that
if .F .n/i /m

.n/

iD1 is any finite collection of interior-disjoint ı-fjords with respect to .an; bn/
in ƒn, then

P .n/
�
 .n/ visits `-deep in some of the fjords .F .n/i /m

.n/

iD1

�
� z":

6.2. Boundary behaviour of radial projections. This subsection constitutes the
complex analysis part of the proof of Lemma 6.1. We start with some notations and
definitions. Given a conformal map ��Wƒ� ! D, we define conformal ray segments

�
.�/

�;p;q
WD ��1�

�
¹z 2 D W z D tei� for some t 2 Œp; q�º

�
;

for 0 � p < q < 1 and � 2 Œ0; 2�/; we will also allow q D 1 by setting t 2 Œp; q/
above. The entire conformal ray is denoted by �.�/

�;0;1
D �

.�/

�
for short. Recall also the

concept of innermost disconnecting arc from Lemma A.1 in Appendix A.
Let K � ƒ� be closed and z 2 ƒ� n K. We say that a curve �W Œ0; 1� ! ƒ�

connects z to K ı-inside ƒ� if �.0/ D z, �.1/ 2 K, and �.Œ0; 1// � ƒ� nK, and for
the open ı-thickening of curve �,

Gı WD ¹w 2 C W d.w; �.t// < ı for some t 2 Œ0; 1�º;

the connected component of Gı nK that contains �.Œ0; 1// is entirely contained inƒ�;
see Figure 7.

Finally, we say that B.0; 1 � "/ is a ı-approximation of ƒ� under ��1� if

(i) for all � 2 ��1� .S.0; 1 � "//, we have d.�; @ƒ�/ < ı; and

(ii) if z 2 ƒ� n ��1� .B.0; 1 � "// satisfies d.z; @ƒ�/ � ı, then there exists no curve �
that connects z to ��1� .B.0; 1 � "// ı-inside ƒ�.

The idea of this definition it can be guaranteed for the tail of a Carathéodory converging
sequence with the same ı and ".

Lemma 6.3. Assume that ƒn
Cara
��! ƒ, and that ƒ is bounded. For any ı > 0, there

exists "0.ı/ such that if " < "0 is first taken small enough and after that n0.ı; "/ large
enough, then B.0; 1 � "/ are ı-approximations of ƒn under ��1n , for all n � n0.ı; "/.
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z
�

K

Gı

ƒ�

Figure 7
A curve � connecting z to K ı-inside ƒ�.

The proof of the above lemma is postponed to the appendix. We are now at a
position to state the main result of this subsection (see Figure 8 for an illustration).

Proposition 6.4. There exist absolute constants C;D > 0 such that the following
holds. Let ƒ� be a simply-connected planar domain and ��Wƒ� ! D its Riemann
map normalized at u 2 ƒ�. Let ı 2 .0; D

C
d.u; @ƒ�// and suppose that B.0; 1 � "/ is

a ı-approximation of ƒ� under ��1� . Then, for all z of the form z D ��1� ..1 � "/e
i� /,

the innermost arc of S.z; Cı/ disconnecting z from u disconnects from u the entire
conformal ray segment �.�/

�;1�";1
from z onwards.

The rest of this subsection complements this proposition: some necessary results
about harmonic measures are given in Section 6.2.1, and the proof of Proposition 6.4
in Section 6.2.2.

6.2.1. Harmonic measures. Recall that the harmonic measure H.z;ƒ;E/ of a bound-
ary set E � @ƒ in a domain ƒ as seen from z 2 ƒ is the probability that a Brownian
motion launched from z first hits @ƒ onE. In all the cases that we consider, H.z;ƒ;E/
coincides with the unique harmonic function in z 2ƒ that takes boundary values 1 onE
and 0 on @ƒ n xE. An important property is that the harmonic measure is conformally
invariant, in the sense that for a conformal map � defined on ƒ, then

H.�.z/; �.ƒ/; �.E// D H.z;ƒ;E/:

Lemma 6.5 (The (weak) Beurling estimate). There exist absolute constants A; ˛ > 0
such that the following holds. Let z 2 C, R > 0 and denote B D B.z;R/; let K � C

be a connected closed set that intersects @B and denote r D d.z;K/; then

H.z; B nK; @B/ � A.r=R/˛:
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ƒ�

z

Cı

<ı

�
.�/

�;0;1�"

��1� .S.0; 1� "//

Figure 8
A schematic illustration of Proposition 6.4. The remainder of the conformal ray �.�/

�
from z

onwards lies inside the fjord determined by the cross cut given by the part of the circle drawn in
solid.

See, e.g., [11, Proposition 2.11] for a probabilistic proof; an analytic proof follows
from the Beurling projection theorem ([1, Theorem 3.6] or [27, Theorem 1]) and a
sequence of explicit conformal maps as in [16, Section 4]. The latter also reveals that
A D 4

�
and ˛ D 1=2 yield a tight bound (in the sense of relative error when K is a

radial line segment).
We define the harmonic function h W D n Œp; q�! R by

h.z/ WD H.z;D n Œp; q�; Œp; q�/:(6.1)

This function, together with the conformal invariance of harmonic measures and
the Beurling estimate, will play a key role in restricting the geometric behaviour of
conformal rays, due to the following maximization property, whose proof we postpone
to Appendix A.

Lemma 6.6. For any p; q; " 2 Œ0; 1� with 1 � " � p < q � 1, the function h defined
in (6.1) attains its unique maximum in B.0; 1 � "/ at the point .1 � "/.

6.2.2. Proof of Proposition 6.4. Assume for a contradiction that for some conformal
ray �.�/

�;1�";1
in some domain ƒ�, the innermost disconnecting component of S.z; Cı/

does not separate �.�/
�;1�";1

from u. We will show that there exist absolute constants
C0;D0 > 0 such that if C > C0 andD < D0, this assumption leads to a contradiction.

Define the following notations (see Figure 9): let S2 and S0 denote the innermost
disconnecting components of S.z; Cı=3/ and S.z; Cı/ in ƒ�, respectively (they exist
if C > 3 and D is small enough). Denote by Q the unique connected component of
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z

ƒ�S0

S1
S2

S3

Cı

Cı=3
<ı

�
.�/

�

�
.�/

�;p;q

��1� .S.0; 1� "//

Figure 9
The point z, with d.z; @ƒ�/ < ı, is the crossing point of the conformal image ��1� .S.0; 1� "//

of a circle and the conformal ray �.�/
�

. The cross cuts S2 and S0 are arcs of the circles S.z;Cı=3/
and S.z; Cı/, respectively, and they determine a quadrilateral Q � ƒ� with sides S0; S1; S2,
and S3, crossed by �.�/

�;p;q
.

ƒ� n .S0 [ S2/ adjacent to both S2 and S0, and equip .QI S0; S1; S2; S3/ with the
structure of a topological quadrilateral, where the sides are indexed counterclockwise
and S1;S3 lie on @ƒ�. Let q be the smallest number> .1� "/ such that ��1� .qei� /2 S0
(such exists by the counter-assumption), and p is the largest of number < q such that
��1� .pe

i� / 2 S2.
Denote h.�/.�/ D h.e�i���.�// where h is the harmonic function (measure) (6.1).

Using first the conformal invariance of harmonic measures, then a simple probabilistic
Brownian motion argument, and finally the Beurling estimate and the assumption
d.z; @ƒ�/ < ı, we calculate

h.�/.z/ D H
�
z;ƒ� n �

.�/

�;p;q
; �
.�/

�;p;q

�
(6.2)

� H
�
z;ƒ� \ B.z; Cı=3/; @B.z; Cı=3/

�
� A

�
d.z; @ƒ�/

Cı=3

�˛
� A.3=C/˛:

Note that if C is large, this quantity is small; on the other hand, by Lemma 6.6 and con-
formal invariance, zmaximizes the harmonic measure h.�/ of �.�/

�;p;q
in��1� .B.0; 1�"//.

The strategy of the proof is now, informally, to find w 2 ��1� .B.0; 1 � "// which is
close to �.�/

�;p;q
and thus produce a contradiction.

To formalize this strategy, let zS be the innermost disconnecting arc of S.z; 2Cı=3/,
which by Lemma A.1 traverses from side S1 to S3 inside the quadrilateralQ. We claim
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z

S0

S2

�
.�/

�

�
.�/

�;1�";q

�
.�/

�;r;1�" �

��1� .S.0; 1� "//

z

v
�

S0

S1

S2
S3

zS
ı

Figure 10
Left: the curves �.�/

�;r;1�"
, �.�/
�;1�";q

, and � from z to S0. Right: the cross cut zS and the points
� 2 � \ zS and v 2 zS .

that there is a point w 2 ��1� .S.0; 1 � "// such that

(6.3) d.w; �
.�/

�;p;q
/ � 2ı and d.w; zS/ � ı:

To prove this claim, we will study the following three curves from z to S0 (see
Figure 10 (left)):

(1) �.�/
�;1�";q

, where q is as previously;

(2) �.�/
�;r;1�"

, where r is the largest number < 1 � " such that ��1� .rei� / 2 S0; and

(3) the segment � along the curve ��1� .S.0; 1 � "// from z to first hitting S0, to the
direction chosen so that � is disconnected from @ƒ� by S0 [ �.�/�;r;q .

Note that � has to cross zS ; if some point of �\ zS is at a distance� ı from �
.�/

�;p;q
we are

done, so assume the contrary. Let then zQ be the connected component of Q n �.�/
�;p;q

crossed by �. Note that either S1 or S3 is disconnected from zQ by �.�/
�;p;q

; for the rest of
the proof we will assume for definiteness that it is S3 as in Figure 10 (if not, just reverse
the roles of S1 and S3). Hence, zQ is a topological quadrilateral with S1 and �.�/

�;p;q

being two opposite sides and the two other ones contained in S0 and S2, respectively.
Let � be a connected component of zS in zQ that disconnects S0 from S2 in zQ, so �
crosses � . Let � 2 �\ � be the last such intersection point along � , when � is directed
from S1 to �.�/

�;p;q
; by assumption

d.�; �
.�/

�;p;q
/ > ı

(see Figure 10 (right)). Let finally v be the first point, proceeding from � towards
�
.�/

�;p;q
along the curve � , at which d.v; �.�/

�;p;q
/ D ı. The proof of the claim will now
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be finished if we show that B.v; ı/ disconnects S0 from S2 in zQ; indeed, a point
w 2 � \ B.v; ı/ then exists and satisfies the desired properties.

We thus prove this disconnection property of B.v; ı/. Let r 0 denote the smallest
number > r so that ��1� .r 0ei� / 2 S2, so �.�/

�;r;r 0
is a crossing of zQ in zQ. Now, on the

segment of the reversed curve � from v up to first hitting ��1� .B.0; 1 � "// (which
occurs at latest in the point �), we have

d. � ; �
.�/

�;p;q
/ � ı

by definition, and
d.�; S0/; d.�; S2/ � Cı=3 � ı:

But this curve lies in a quad Q0 restricted by �.�/
�;p;q

, �.�/
�;r;r 0

, and two subcurves of S0
and S2, and the curve is disconnected in this quad from �

.�/

�;r;r 0
by �� ��1� .B.0; 1 � "//.

In particular, the curve hence connects v to ��1� .B.0; 1 � "// ı-inside Q0, and hence
also ı-inside ƒ�. Since it was assumed that B.0; 1 � "/ is a ı-approximation of ƒ�
under ��1� , it must thus hold that d.v; @ƒ�/ < ı. But

d.v; @ƒ�/ � d.v; @ zQ/ � min
®
d.v; S1/; d.v; S0/; d.v; S2/; d.v; �

.�/

�;p;q
/
¯
;

and
d.v; S0/; d.v; S2/; d.v; �

.�/

�;p;q
/ � ı;

as we saw above. Hence, we conclude that d.v; S1/ < ı and that B.v; ı/ intersects
the opposite sides S1 and �.�/

�;p;q
of zQ. This finishes the construction of the point w

satisfying (6.3).
Define next d� as the following “strong distance” fromw to S1: d� is the supremum

of d � .Cı=3 � ı/ such that the boundary of the connected component of B.w; d/
inƒ� n �.�/�;p;q that containsw, does not intersect S1. Hence, this connected component
with d D d� does not intersect S0, S1, or S2 and is separated from S3 by �.�/

�;p;q
. Simple

harmonic measure arguments and the Beurling estimate thus yield

h.�/.w/ D H
�
w;ƒ� n �

.�/

�;p;q
; �
.�/

�;p;q

�
(6.4)

� H
�
w;B.w; d�/ n �

.�/

�;p;q
; �
.�/

�;p;q

�
D 1 � H

�
w;B.w; d�/ n �

.�/

�;p;q
; S.w; d�/

�
� 1 � A

�
d.w; �

.�/

�;p;q
/=d�

�˛
� 1 � A.2ı=d�/˛:

Combining (6.2), (6.4), and the maximization property h.�/.z/�h.�/.w/ of Lemma 6.6,
we obtain (assuming that C is large enough so that .3=C /˛ � 1=A)

d� �
�
1=A � .3=C /˛

��1=˛
2ı;
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z

w

S0

S1

S2

S3

zS
ı

2ı
d�

Figure 11
The point w 2 � satisfies d.w; �.�/

�;p;q
/ � 2ı, and d.w; zS/ � ı, and d.w; S1/ � d

� �

.1=A � .3=C /˛/�1=˛2ı.

so also the strong distance d� from w to S1 is also short; see Figure 11. In particular,
denoting d�� D max¹d�; 2ıº, we observe that both �.�/

�;r;1�"
and �.�/

�;p;q
must intersect

B.w; d��/.
We can now conclude the contradiction. Namely, with the absolute constant D

small enough, a simple harmonic measure argument shows that the opposite conformal
ray �.�/

�C�
cannot intersect the 2Cı-fjord with respect to u defined by the cross cut S0.

In particular, it occurs that the entire boundary segment S1 maps to the lower half-plane
by e�i���.�/, or that S3 maps to the upper half-plane (or both). Let us assume for
definiteness that the first case occurs; the second is treated analogously. The argument
with Beurling estimate explained in Figure 12 and its caption now yields a contradiction.
This concludes the proof.

6.3. Concluding the proof of the Key Lemma.

6.3.1. The collection of fjords. Given ı > 0 we define, for a domain ƒ�, a finite
collection .F .�/i /m

.�/

iD1 of interior-disjoint .6Cı/-fjords with respect to u in ƒ� as
follows. Start with the plane andƒ�. Then, we draw, say in black, the square gridCıZ2,
and the component of the .C C 1/ı-interior of ƒ� containing u, denoted G, where C
is the absolute constant from Proposition 6.4. Then, we draw, say in red, the simple
loop � on the grid CıZ2 that stays inside G and encloses u and a maximal amount
of squares. Hence, any square of CıZ2 which is not enclosed by � but has at least
one side on the loop �, must intersect C n G. For all such squares, we first draw in
red the boundary of the square from the side(s) on the loop � in both directions until
it hits @G. From those hitting points, we draw, still in red, a straight line segment to
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C1

C1

�1

�1

z

w�

S0

S1

S2

S3

zS
ı

d��
d��

Figure 12
Left: The boundary values of a harmonic function zh (essentially a harmonic measure)
on D n Œp; q�. By symmetry, this function vanishes on .�1; 1/ n Œp; q�. Right: zh.�/.�/ D
zh.e�i���.�// is a harmonic function on ƒ� n �.�/�;p;q that vanishes on �.�/

�;0;1
n �
.�/

�;p;q
. On

the other hand, there must exist a point � 2 �.�/
�;0;p

that is close to w, and zh.�/ takes boundary
values 1 on S1 and on the side of �.�/

�;p;q
facing towards � (drawn in thick lines). The Beurling

estimate shows that, when C is large enough, zh.�/.�/ > 0, a contradiction.

the closest point on @ƒ�, thus of length .C C 1/ı. It is a simple exercise in plane
geometry to show that two such line segments cannot intersect in ƒ�. Now, the line
segments drawn in red divide ƒ� into connected components, one of which is the
interior of � and the remaining ones are the desired fjords .F .�/i /m

.�/

iD1 , cut from ƒ� by
cross cuts drawn in red, which we denote by .S .�/i /m

.�/

iD1 . By construction, the fjords
.F

.�/
i /m

.�/

iD1 are fjords with respect to u, and interior-disjoint and finitely many. The
mouths of the fjords have a diameter at most 6Cı: indeed, each mouth consists of line
segments from the square of CıZ2, and two other segments of length .C C 1/ı, and
p
2Cı C 2.C C 1/ı < 6Cı.

Note that we constructed above fjords with respect to u, while Proposition 6.2
addressed fjords with respect to .a�; b�/. This difference is handled as follows. Let V�
be a fixed neighbourhood of a� in ƒ�, such that it also is a fjord with respect to u
in ƒ�, determined by a cross cut S�. Let ı > 0 be small enough so that for the 6Cı-
thickening H of S�, a� 62 H and furthermore the connected component of the 6Cı-
interior of ƒ� containing u intersects the component of a� in V� nH .

Lemma 6.7. Given V� and ı as above, if x 2 ƒ� n V� lies in one of the fjords F .�/i ,
then that fjord is also a fjord with respect to a�.

Proof. If F .�/i and V� are disjoint, the claim is immediate. If F .�/i and V� intersect,
then F .�/i 6� V� since by assumption x 2 F .�/i n V�. On the other hand, by construc-
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tion, F .�/i does not intersect the 6Cı-interior of ƒ�, while V� does by assumption,
so V� 6� F .�/i . Thus, if the two fjords intersect, they must do it in such a manner that
their mouths S .�/i and S� cross. Note that S .�/i has diameter < 6Cı. Hence, S .�/i lies
in the 6Cı-thickening of S�, i.e., S .�/i � H . By the definition of V�, a� is connected
inƒ� nH � ƒ� n S .�/i to the component of the 6Cı-interior ofƒ� containing u and,
continuing within the latter, to u in ƒ� n S .�/i . Hence, F .�/i is a fjord with respect
to a�.

Define Pƒ�" Wƒ� ! ƒ� by Pƒ�" D ��1� ı P" ı ��. The following (simple) lemma
is the key in combining Propositions 6.2 and 6.4.

Lemma 6.8. Let ƒ� be a simply-connected planar domain and ��Wƒ� ! D its
Riemann map normalized at u 2 ƒ�, and C; D > 0 the absolute constants from
Lemma 6.3. Let ı 2 .0; D

C
d.u;@ƒ�// and suppose thatB.0;1� "/ is a ı-approximation

ofƒ� under ��1� . Then, every x 2ƒ� with Pƒ�" .x/¤ x lies in some of the fjords F .�/i .
If d.x; Pƒ�" .x// � `; then x lies .` � 7Cı/-deep in that fjord.

Proof. Suppose that x ¤ P
ƒ�
" .x/. By Proposition 6.4, d.Pƒ�" .x/; @ƒ�/ < ı and

the innermost disconnecting component S of the circle arc S.Pƒ�" .x/; Cı/ also
disconnects x from u. Hence, neither x nor S can intersect the component of the
.C C 1/ı-interior ofƒ� that contains u, i.e., G, so by the definition of the fjords F .�/i ,
x lies in one of them, say F .�/j , and S in the union of them.

Suppose then that d.x; Pƒ�" .x// � `. If S � F .�/j , we compute

dƒ�.x; S
.�/
j / � dƒ�.x; S/ � d.x; S/ � d.x; P

ƒ�
" .x// � Cı � ` � Cı:

If S 6� F .�/j note first that, by definition, all the fjords F .�/i intersect G while S does
not. On the other hand, if S � ƒ� n F .�/j were to occur, since x 2 S \ F .�/j , S would
have to disconnect the entire F .�/j from u and in particular intersect G, a contradiction.
Thus, S 6� F .�/j means that S has to intersect S .�/j , and in particular

d.Pƒ�" .x/; S
.�/
j / � Cı:

This gives

dƒ�.x; S
.�/
j / � d.x; S

.�/
j /

� d.x; Pƒ�" .x// � d.Pƒ�" .x/; S
.�/
j / � diam.S .�/j / � ` � 7Cı;

where the second step is the triangle inequality. The claim follows.



Limits of conformal images and conformal images of limits for planar random curves 417

6.3.2. Proof of Lemma 6.1. Recall that the constants z"; ` as well as the area boundM
were given in the setup of the lemma. Set the parameter � through Condition (G) so
that, for any n, an unforced crossing of a fixed boundary annulus A.z; �; ��/ by the
curve  .n/ occurs with probability � z"=3 and then r > 0 so that .2�C 1/r < `. The
remaining parameters will be chosen so that first ı < min¹ı.1/0 .r/; ı

.2/
0 .M; `; z"/º, then

" < "0.ı/, and finally n > max¹n.1/0 .r; ı/; n
.2/
0 ."; ı/º, where the limiting parameter

values are specified in the proof below.
Let Sr be the cross cut in the limit domain ƒ as in the definition of close approx-

imations, equipped with an auxiliary reference point (see Section 4.3) and let ı.1/0 .r/

be small enough so that the assumption of (and right above) Lemma 6.7 holds for
the limiting domain ƒ and the fjord V cut out by S D Sr whenever ı < ı.1/0 . By the
Carathéodory convergence ƒn

Cara
��! ƒ and close approximation property, there exists

n
.1/
0 D n

.1/
0 .r; ı/ so that for n > n.1/0 :

(i) an 2 B.a; r/;

(ii) there exists a corresponding cross cut S .n/ in ƒn; and

(iii) the assumption of Lemma 6.7 also holds forƒn with the fjord V .n/ cut out by S .n/

and ı.

By close approximation, the curves  .n/ are not forced to cross any component of
A.a; r; �r/ separated from u by S .n/, and by the choice of �,

P .n/
�
x 2 B.a; �r/ for all x 2  .n/ \ Vn

�
� 1 � z"=3:

Suppose now that the probable event above occurs and let x 2  .n/ \ Vn. Let " < "0.ı/
be small enough and n > n.2/0 ."; ı/ large enough so that Lemma 6.3 and thus also
Proposition 6.4 holds true. The innermost disconnecting arc of S.Pƒn" .x/; Cı/ thus
defines a fjord that intersects Vn at x; this arc hence either lies inside the fjord Vn or it
crosses its mouth. In the latter case,

d.Pƒn" .x/; B.a; r// � d.Pƒn" .x/; S .n// � Cı;

and thus
d.a; Pƒn" .x// � Cı C r;

and finally

d.x; Pƒn" .x// � d.x; a/C d.a; Pƒn" .x// � �r C r C Cı < `

(where Cı � r by the assumptions of Lemma 6.7). In the former case, note that
the curve  .n/ (by Proposition 6.4) after the visiting x has to cross the innermost
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disconnecting arc of S.Pƒn" .x/; Cı/ to later reach bn, and this crossing point lies
in Vn, so by the assumed probable event, the crossing point also lies in B.a; �r/. Thus,

d.Pƒn" .x/; B.a; �r// � Cı;

and with the same computation as above

d.x; Pƒn" .x// � .2�C 1/r < `:

In conclusion,

(6.5) P .n/
�
d.x; Pƒn" .x// < ` for all x 2  .n/ \ Vn

�
� 1 � z"=3:

The boundary point bn is treated similarly; let zVn in what follows denote the
counterpart of Vn for bn.

Suppose now that x 2 ƒn n .Vn [ zVn/, and d.x; Pƒn" .x// � `. By Lemmas 6.7
and 6.8, x then lies .` � 7Cı/-deep in one of the fjords F .n/i , which also is a fjord
with respect to .an; bn/. Hence,

P .n/
�
d.x; Pƒn" .x// � ` for some x 2  .n/ \ .ƒn n .Vn [ zVn//

�
(6.6)

� P .n/
�
 .n/ visits ` � 7Cı-deep in some of the fjords .F .n/i /m

.n/

iD1

�
� z"=3;

where on the last line, we chose by Proposition 6.2 a ı.2/0 D ı
.2/
0 .M; `; z"/ so that for

all ı < ı.2/0 , the event on the left has probability � z"=3.
By combining (6.5), its analogue for bn, and (6.6), we now obtain

P .n/
�
d.x; Pƒn" .x// � ` for some x 2  .n/ \ƒn

�
� z":

So far, this only concerns interior points x 2  .n/ \ƒn. To handle boundary points,
note that by the assumed setup,  .n/ never travels a positive distance along @ƒ. The
statement of the Key Lemma then follows by the continuity of the curves  .n/ and
��1n ı P".z

.n/
D /.

A. Some postponed (easy) proofs

We prove for completeness some simple results on conformal and harmonic maps.

Lemma A.1. Let ƒ� be a simply-connected domain and z; u 2 ƒ� with d.z; @ƒ�/ <
d.z; u/ and d 2 .d.z; @ƒ�/; d.z; u//. Then, there are finitely many connected com-
ponents of the circle arc S.z; d/ in ƒ� that disconnect z from u in ƒ�. A unique one
of these disconnecting components is innermost, in the sense that it disconnects all the
others from z in ƒ�. If d1 < d2 and S1, S2 are the innermost disconnecting arcs of
S.z; d1/ and S.z; d2/, respectively, then S1 separates S2 from z in ƒ�.
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Proof. There exists a broken line of finitely many line segments from u to z in ƒ�.
Such a broken line intersects S.z; d/ finitely many times, proving the finite number
of separating components. The uniqueness of the innermost component follows since
the separating components S .j / of S.z; d/ are disjoint, and thus each S .j / falls into
one connected component of ƒ� n S .i/, where i ¤ j . A similar disjointness argument
shows the ordering of S1 and S2.

Proof of Lemma 6.3. Denote

K" WD �
�1.B.0; 1 � "//; K.n/" WD �

�1
n .B.0; 1 � "//;

ƒr WD ¹z 2 ƒ W d.z; @ƒ/ � rº:

Fix "0.ı/ so that ƒı=2 � K" if " < "0. Given " < "0, denote d WD d.K"; @ƒ/ � ı=2
and fix n0."; ı/ so that for all n > n0:

(a) j��1n .�/ � ��1.�/j < d=2 � ı=4 on B.0; 1 � "/, and

(b) for all w 2 @ƒ, there exists wn 2 @ƒn with jw � wnj < d=4 � ı=8.

Now, for claim (i), (a) above implies ƒ3ı=4 � K
.n/
" � ƒd=2 so by (b),

d.�; @ƒn/ < 7ı=8:

For claim (ii), suppose first that z 2 ƒ. By assumption, then z 2 ƒ nK.n/" , and from
the above, K.n/" � ƒ3ı=4, so

d.z; @ƒ/ < 3ı=4;

and by (b),
d.z; @ƒn/ < 7ı=8;

a contradiction. Thus, we must have z 62 ƒ, and any path � from z to K.n/" thus has to
intersect @ƒ. Denote m D min¹d; d.z; @ƒ/º=8 > 0, and let � be the first point on the
path � (directed from z to K.n/" ) with d.�; @ƒ/ D m; hence by property (b),

d.�; @ƒn/ � 3d=8

and on the other hand,

d.�;K.n/" / � d.@ƒ;K.n/" / � d=2

since @ƒ separates � fromK
.n/
" . A point u 2 @ƒn with d.�; u/ � 3d=8 thus exists and

cannot be separated from � in Gı by K.n/" . This concludes the proof.
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Proof of Lemma 6.6. Denote D n Œp; q� D U for short. Green’s third identity states
that

(A.1) h.z/ D

Z
w2@U

�
h.w/rwG.z;w/ �G.z;w/rwh.w/

�
� �.w/jdwj

for any z 2 U , where �.w/ is the outward normal unit vector of U at w, jdwj denotes
the length element along the boundary @U , and G.z;w/ is the Green’s function of the
Laplacian in any domain containing U . We choose the Green’s function in D,

G.z;w/ D
1

2�
log
ˇ̌̌̌
z � w

1 � zw�

ˇ̌̌̌
:

Now, the first term h.w/rwG.z; w/ � �.w/ on the right-hand side of (A.1) can-
cels out: h.w/ D 0 on @D, while Œp; q� is integrated in two directions with opposite
normals �.w/. The second term disappears on @D, leaving

h.z/ D �2

Z q

wDp

G.z;w/jrwh.w/j dw;(A.2)

where we combined the integrations in two directions on the line segment Œp; q�,
using the facts that rwh.w/, on either side of the segment, points outward of the
domain U and that its modulus jrwh.w/j is well defined even if the direction is not.
Finally, examine the Möbius map D ! D given by z 7! z�w

1�zw�
, where w 2 Œp; q�:

it preserves R \ D (with orientation), mapping z D w to the origin and the sphere
S.0; 1 � "/ to another R-centred sphere that lies entirely left of the origin. Hence, for
any w 2 Œp; q�, the function G.z; w/ D 1

2�
log j z�w

1�zw�
j attains its unique minimum

over z 2 B.0; 1 � "/ at z D 1 � ". The claim now follows from (A.2).
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