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Abstract. We introduce analogs of the Kempf–Laksov desingularizations of Schubert bundles
in (non-necessary Lagrangian) symplectic Grassmann bundles. In this setting, these are (possibly
singular) irreducible flag bundles that are birational to Schubert bundles, and can be described
as chains of zero-loci of regular sections in projectivized bundles. The orthogonal analogs are
also presented. We immediately derive universal Gysin formulas for isotropic Schubert bundles
from these very constructions.

Mathematics Subject Classification 2020: 14C17 (primary); 05E05, 14M15,
14N15 (secondary).

Keywords: push-forward, isotropic Grassmann bundle, isotropic Schubert bundle.

Dedicated to Professor Piotr Pragacz on the occasion of his recent retirement

1. Introduction

The goal of this short paper is to derive Gysin formulas for isotropic Schubert
bundles (and for the isotropic Kempf–Laksov flag bundles introduced in this work)
from the intersection theory developed in Fulton’s book [6], using a plain line of
thought based on the very definitions. The elementary guiding idea is to obtain a
(singular) birational model of Schubert bundles, by constructing isotropic vector spaces
line by line. To desingularize Schubert bundles, it is usual to use Bott–Samelson
resolutions (see [5]), but here we will deal with a much simpler geometry, in the spirit
of Grothendieck’s construction of flag bundles. Sharing our goal of simplification,
in [7], Kazarian has also constructed an interesting birational model of Schubert bundles
using zero-loci and projective bundles of lines, in the Lagrangian case, working with
the Grassmannian as a base. It seems however that our construction is more easily
adapted to non-Lagrangian case, and it is our goal to work with base X (see [3] for
a justification for this point). In [1], Anderson and Fulton also draw inspiration from
Kempf–Laksov and Kazarian in order to prove formulas for a large class of degeneracy
loci in classical types. Some of the results of this work were announced in [4].

https://creativecommons.org/licenses/by/4.0/


L. Darondeau 534

The paper is organized as follows. We first deal with the symplectic setting. In
Section 2, we quickly recall a definition of Schubert bundles in isotropic Grassmann
bundles, and we fix notations. In Section 3, we define flag bundles birational to isotropic
Schubert bundles. These are analogous to the flag bundles of Kempf and Laksov in [8]
which desingularize the Schubert bundles when working with the general linear groups.
These are constructed as a chain of zero-loci in projective bundles of lines. It is
noteworthy that these are not smooth in general, but always cut out by regular sections,
which is sufficient regarding our goals. In Section 4, we derive Gysin formulas for
isotropic Kempf–Laksov bundles and isotropic Schubert bundles. In Section 5, we
indicate how to adapt the arguments in order to treat the orthogonal setting.

2. Schubert bundles

Let .E; !/! X be a rank 2n symplectic vector bundle for the symplectic form
!WE˝E!Lwith value in a line bundleL!X , over a varietyX . For d 2 ¹1; : : : ;nº,
let G!

d
.E/ be the Grassmann bundle of isotropic d -planes in the fibers of E. For a

vector space V 2 E.x/ let denote V ! its symplectic complement. Let

0 D E0 ¨ E1 ¨ � � � ¨ En D .En/
! ¨ � � � ¨ .E0/

!
D E

be a reference flag of isotropic subbundles and co-isotropic subbundles of E, where
rank.Ei / D i . For the sake of uniformity of notation, for i D 0; 1; : : : ; n, denote as
well E2n�i WD .Ei /! .

A partition � of a non-negative integer n 2 N is a decomposition of n as a sum of
non-negative integers. We denote by j�j the number partitioned by �. Two partitions are
identified if they are the same up to order of the summands, or if one can be obtained
from the other by adding some zeros. It is usual to sort the summands in decreasing
order and to write partitions as weakly decreasing sequences of non-negative integers. A
non-zero summand in a partition is called a part. A partition is said strict if all its parts
are distinct. The Young diagram associated to a partition �1 > �2 > � � �> �d > 0 is the
finite collection of cells, arranged in left-justified rows, with row lengths �1; : : : ; �d
(from top to bottom). Inclusion of Young diagrams defines a partial order denoted �
on the set of partitions (it coincides with the restriction of the product order on N.N/

to the set of weakly decreasing sequences).
Let � WD .2n; : : : ; 2n � d C 1/ be the maximal strict partition in the partition

.2n/d WD .2n; : : : ; 2n/. For a partition � � .2n� d/d , we denote by � D �{ � � the
complementary partition of � in �, i.e. the partition with parts �i WD �i � �dC1�i .
It is a strict partition with d parts. One shall consider only admissible partitions �,
i.e. partitions such that �i C �j ¤ 2nC 1 for 1 6 i; j 6 d .
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When the strict partition � D �{ is admissible, there is the Schubert open cell
V��.E�/ in G!

d
.E/ given over the point x 2 X by the conditions

V��.E�/ WD
®
V 2 G!

d .E/.x/ W dim
�
V \E�i

.x/
�
D d C 1 � i; for i D 1; : : : ; d

¯
:

The Schubert bundle $�W�� ! X is the Zariski-closure of V��, given over a point
x 2 X by the conditions

��.E�/ WD
®
V 2 G!

d .E/.x/W dim
�
V \E�i

.x/
�

> d C 1 � i; for i D 1; : : : ; d
¯
:

Observe that the incidence conditions are trivial if � D 0, i.e. if � D �. The Schubert
bundle �� is a subvariety of the Grassmann bundle G!

d
.E/, that is in general singu-

lar ([5]). In the spirit of Kempf and Laksov [8], and also inspired by Kazarian [7],
we will now construct flag bundles #�WF�.E�/! X birational to Schubert bundles
$�W�� ! X .

3. Isotropic Kempf–Laksov flag bundles

Let F!.1; : : : ; d /.E/ denote the bundle of flags of nested isotropic subspaces
with respective dimensions 1; : : : ; d in the fibers of E. Consider an admissible strict
partition � D .�1; : : : ; �d / � � with d parts. We define the isotropic Kempf–Laksov
flag bundle #�WF�.E�/! X as the subvariety given over the point x 2 X by

F�.E�/.x/ WD
®
¹0ºDV0 ¨V1 ¨ � � �¨Vd 2F!.1; : : : ;d /.E/.x/ WVdC1�i �E�i

.x/
¯
:

For � D �{, the natural forgetful map F!.1; : : : ; d /.E/! G!
d
.E/ restricts to a

map from the Kempf–Laksov bundle F� to ��, which is invertible on the Schubert
cell V��. However, notice that in opposition to type A, isotropic Kempf–Laksov flag
bundles can be singular, as we shall soon illustrate (see Example 3.2).

Let us first introduce some important combinatorial quantities attached to the
partition �. For an admissible strict partition � � �, introduce the d integers:

ıi WD #¹j > i W �i C �j < 2nC 1º:

For a flag V� 2 F�.E�/, since VdC1�j � E�j
, as soon as E�j

� .E�i
/! , i.e. as long

as �i C�j < 2nC 1, one has VdC1�j � .E�i
/! . Therefore, for i D 1; : : : ; d one has

Vıi
� Vd�i \ .E�i

/! . In our step-by-step construction of isotropic Kempf–Laksov
flag bundles, we will soon see that

(3.1) Vd�i \ .E�i
/! D Vıi

is an expected incidence condition.
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Let us for now study two elementary cases of singular Kempf–Laksov flag bundles,
and the role played by (3.1) in these examples. There is no such example for n < 3,
and these are the two only examples for n D 3.

Example 3.2 (n D 3). For X D ¹ptº, consider the vector space E D C6, equipped
with a symplectic basis .e1; e2; e3/ of C3 and dual vectors .f1; f2; f3/. Let E� be
the standard symplectic flag corresponding to the basis .e1; e2; e3; f3; f2; f1/. Note
that the forgetful map F!.1; : : : ; d /! F!.1; : : : ; d � 1/ induces (dominant) maps
F.�1;:::;�d /.E�/! F.�2;:::;�d /.E�/.

(1) Take � D .6; 5; 3/.
� The fiber of F5;3.E�/ over Œe1� 2 F3.E�/ is P.he2; e3; f3; f2i/, which is a 3-

dimensional projective space, whereas the fiber of F5;3.E�/ over any other line
Œae1 C be2 C ce3�, with jbj2 C jcj2 D 1, identifies with

P
�
he1; e2; e3; f3; f2i=hae1 C be2 C ce3; xcf3 C xbf2i

�
;

which is a 2-dimensional projective space.
� In both cases the fiber of F6;5;3.E�/ over F5;3.E�/ is then a 1-dimensional projec-

tive space.

Since .E5/! D E1 and .E6/! D E0, in this case the expected incidence conditions
are V1 \E1 D ¹0º and V2 \E0 D ¹0º (the second condition is empty).

(2) Take � D .6; 5; 4/.
� The fiber of F5;4.E�/ over Œe1� 2 F4.E�/ is P.he2; e3; f3; f2i/, which is a 3-

dimensional projective space, whereas the fiber of F5;4.E�/ over any other line
Œae1 C be2 C ce3 C df3�, with jbj2 C jcj2 C jd j2 D 1, identifies with

P
�
he1; e2; e3; f3; f2i=hae1 C be2 C ce3; xde3 C xcf3 C xbf2i

�
;

which is a 2-dimensional projective space.
� In both cases the fiber of F6;5;4.E�/ over F5;4.E�/ is then a 1-dimensional projec-

tive space.

In this case the expected incidence conditions are still V1 \E1D¹0º and V2 \E0D¹0º.

From these examples, one can extrapolate the role played by (3.1) in the general
case. However, in order to reduce the combinatorial difficulty, we will deal with a
strengthening of the conditions (3.1). For a flag V� 2 F�.E�/.x/ over a point x 2 X ,
denote by �.V�/ � � the strict partition made of the d integers®

�i > 1 W dim
�
Vd \E�i

.x/
�
> dim

�
Vd \E�i�1.x/

�¯
:
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The strictness follows from Gaussian elimination in a frame of Vd with respect to the
reference flagE�.x/. This argument also implies that �.V�/� �. Lastly, one also infers
from this argument that, since Vd is isotropic, the partition �.V�/ has to be admissible.
Indeed, if not, after the above Gaussian elimination, two vectors of the frame of Vd
would not be symplectically orthogonal. We denote by

VF�.E�/ WD ¹V� 2 F�.E�/ W �.V�/ D �º;

the set of flags with �.V�/ maximal. Clearly, for a flag in VF�.E�/, the conditions (3.1)
hold.

Theorem 3.3. Let � � � be an admissible strict partition. Fix a point x 2 X .
� The isotropic Kempf–Laksov flag bundle F�.E�/.x/ is a variety of dimension
j�j C jıj � d2, that can be described as a chain of zero-loci of regular sections in
projectivized bundles.

� The subvariety VF�.E�/.x/, is an irreducible open dense subset contained in the
non-singular part of F�.E�/.x/.

Proof. The idea is to construct the isotropic flagV1 ¨ � � �¨Vd line-by-line (considering
quotients Vi=Vi�1 of successive spaces), in such way that it satisfies the incidence
conditions defining F�.E�/ at each step.

We proceed by double induction on d and j�j. For d D 1, the isotropic Kempf–
Laksov flag bundleF�1

.E�/ is P.E�1
/. For j�j D d C � � �C 1, minimal,�D.d; : : : ;1/.

Therefore, F�.E�/ is a point, and ı D .d � 1; : : : ; 1; 0/. In both cases, the result is
straightforward.

We now describe the step

F.�1;�2;:::;�d /.E�/! F.�2;:::;�d /.E�/:

Let Ud�1 be the universal subbundle of rank d � 1 on F!.1; : : : ; d � 1/.E/. Note that
in restriction to F.�2;:::;�d /.E�/:
� the condition Vd�1 � E�2

.x/ yields: Ud�1 � E�2
� E�1

;
� the condition Vd�1 isotropic yields: Vd�1˚ `.x/ isotropic, `� .Ud�1/

! (recall
that a line ` is always isotropic).

It thus follows from the definition of F�.E�/ that

F.�1;:::;�d /.E�/ '
®
` 2 P.E�1

=Ud�1/ W ` � .Ud�1/
!
¯
:

In the above quotient, and in the rest of the text, we only imply the restriction of E�1

and of Ud�1 to F.�2;:::;�d /.E�/, allowing the expression to make sense. We denote
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byUd=Ud�1 the tautological subbundle of P.E�1
=Ud�1/, so thatUd coincide with the

restriction to F.�1;:::;�d /.E�/ of the universal subbundle of rank d on F!.1; : : : ; d /.E/.
Since we restrict to F.�2;:::;�d /.E�/, one has

Ud�1 � .Ud�1/
! and Uı1

� Ud�1 \ .E�1
/! :

Hence, there is a well-defined global section s of the vector bundle

Hom
�
Ud=Ud�1; L˝ .Ud�1=Uı1

/_
�
' L˝ .Ud=Ud�1/

_
˝ .Ud�1=Uı1

/_

defined at the point ` D Vd=Vd�1 � E�1
=Vd�1 by

s.`/ WD
®
t 2 ` 7! !.t; �/jVd�1

¯
:

We denote byZd the zero-locus of s in P.E�1
=Ud�1/. Over a point Vd�1 © � � � © V1,

the lines in Zd are these lines that are (symplectically) orthogonal to Vd�1 or equiva-
lently the lines ` such that the vector space Vd D `˚ Vd�1 is isotropic. Indeed, both
` and Vd�1 are already isotropic. Therefore, F.�1;:::;�d /.E�/ ' Zd .

Over a point Vd�1 © � � � © V1 above a point x 2 X , the zero-locus Zd consists of
the common zeros of the linear forms

!.�; `0/WE�1
.x/=Vd�1 ! L.x/;

for `0 � Vd�1. Such a linear form is trivial if and only if `0 � Vd�1 \ .E�1
/!.x/. As a

consequence the codimension codim.Zd ;P.E�1
=Ud�1// of the fibers of Zd is given

at a point Vd�1 © � � � © V1 2 F.�2;:::;�d /.E�/.x/ by

codim
�
Zd ;P.E�1

=Ud�1/
�
D dim.Vd�1/ � dim

�
Vd�1 \ .E�1

/!.x/
�
:

Now, recall that Uı1
� Ud�1 \ .E�1

/! . One infers the following upper bound on the
codimension of Zd at a point V�:

codim
�
Zd ;P.E�1

=Ud�1/
�

6 dim.Vd�1/ � dim.Vı1
/(�)

6 rank
�
L˝ .Ud=Ud�1/

_
˝ .Ud�1=Uı1

/_
�
:

Note that this inequality is an equality if and only if Vd�1 \ .E�1
/!.x/ D Vı1

. This
is condition (3.1) for i D 1.

The flags in VF�.E�/ satisfy all conditions (3.1), for i 6 d . One infers inductively
that the dimension of VF�.E�/ is

.�1 � d/ �
�
.d � 1/ � ı1

�
C
�
.�2 C � � � C �d /C .ı2 C � � � C ıd / � .d � 1/

2
�

D j�j C jıj � d2:
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Moreover, it follows from (�) that the dimensions of the irreducible components of
F�.E�/ ' Zd are all at least equal to the dimension of VF�.E�/.

Now, consider an admissible partition � ¨ �, for which there are p elements in
the chain of admissible partitions from � to �, with respect to the partial order �. On
the one hand, by Lemma 3.5 below, one has

dim
�
¹V� 2 F�.E�/ W �.V�/ D �º

�
< p C dim

�
VF�.E�/

�
D p C j�j C jı.�/j � d2:

On the other hand, by Lemma 3.4, one has

dim
�
¹V� 2 F�.E�/ W �.V�/ D �º

�
D dim

�
VF�.E�/

�
D j�j C jı.�/j � d2 D p C j�j C jı.�/j � d2:

Putting these facts together, one infers that

dim
�
¹V� 2 F�.E�/ W �.V�/ D �º

�
< dim

�
¹V� 2 F�.E�/ W �.V�/ D �º

�
:

Thus

dim
�
¹V� 2 F�.E�/ W �.V�/ ¨ �º

�
< dim

�
¹V� 2 F�.E�/ W �.V�/ D �º

�
:

Therefore, VF�.E�/ D ¹V� 2 F�.E�/W �.V�/ D �º is dense in F�.E�/.
Let us now prove by induction on d that VF�.E�/ is irreducible. The regularity of s

will follow. The same argument also gives the smoothness of VF�.E�/. For d D 1, one
has

VF�1
.E�/ D F�1

.E�/ D P.E�1
/:

Hence, VF�.E�/ is irreducible (and smooth). The forgetful map

F!.1; : : : ; d /.E/! F!.1; : : : ; d � 1/.E/

gives a smooth fibration from VF�.E�/�F�.E�/ to VF.�2;:::;�d /.E�/�F.�2;:::;�d /.E�/.
Assuming that VF.�2;:::;�d /.E�/ is irreducible (and smooth), one gets that VF�.E�/ as
well is irreducible (and smooth).

It remains to prove the following combinatorial lemmas on admissible strict parti-
tions in order to conclude.

Lemma 3.4. Let � and � be two admissible strict partitions in �. If � is a direct
predecessor of � for the product order among all admissible partitions, then

j�j C jı.�/j D j�j C jı.�/j � 1:
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Proof. In order to be more synthetic, for an admissible strict partition � � � we
represent ¹1; : : : ; 2nº by 2n balls. We colorize the ball i in black if i is a part of �, in
gray if .2nC 1 � i/ is a part of �, and in white otherwise. Then there are three ways
to obtain a direct predecessor � of �:

(1)

Ý

or

Ý

here j�j D j�j � 1; jı.�/j D jı.�/jI

(2a)

n nC 1

Ý
n nC 1

here j�j D j�j � 1; jı.�/j D jı.�/jI

(2b) For i D 1; : : : ; n � 1,

.n � i/ .nC i/

Ý
.n � i/ .nC i/

here j�j D j�j � 2; jı.�/j D jı.�/j C 1:

Each one of these transformations decreases j�j C jıj by 1.

Lemma 3.5. Let X be a point. Let � � � be an admissible partition. The flags V� 2
F�.E�/ with �.V�/D � form a smooth fibration over VF�.E�/. Moreover, if there are p
elements in the chain of admissible partitions from � to � with respect to the partial
order �, then the relative dimension of this fibration is strictly less than p.

Proof. By Gaussian elimination with respect to the reference flag E�, the flag V�
is generated by some vectors ¹v1; : : : ; vd º with vdC1�i 2 Eni

n Eni�1 for pairwise
distinct integers ni . Since Vd D hv1; : : : ; vd i, one has ¹nd ; : : : ; n1º D ¹�d ; : : : ; �1º.
However, the order of the terms may differ. This allows us to define a map

¹V� 2 F�.E�/ W �.V�/ D �º ! VF�.E�/;

given by
V� 7! W� D .Vd \E�dC1�i

/iD1;:::;d :
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The fiber of this map over a flag W� is then given by a tower of projectivized bundles

P.Wkd
=Sd�1/! � � � ! P.Wk2

=S1/! P.Wk1
/! ¹W�º;

where we denote by Si=Si�1 the tautological subbundle at step i , and where for
j D 1; : : : ; d , the integer kj is the largest i for which �dC1�i 6 �dC1�j . Note that
kj > j , since � � �. The relative dimension of the fibration is

.k1 � 1/C � � � C .kd � d/:

If � D �, this quantity is of course 0. As in the proof of the Lemma 3.4, the
partition � being fixed, let us consider the three ways to get an immediate predecessor
of an admissible partition � (we keep the numerotation of Lemma 3.4).

(1) The integers kj will be unchanged unless the black dot on the left hand side is a
part of �, in which case one of the integers kj decreases by 1.

(2a) The integers kj will be unchanged unless nC 1 is a part of �, in which case one
of the integers kj decreases by 1.

(2b) The integers kj will be unchanged unless .nC 1 � i/ or .nC 1C i/ is a part
of �, in which case one or two of the integers kj decreases by 1.

In particular, if� is a direct successor of �, then the quantity .k1 � 1/C � � � C .kd � d/
does not change when passing from � to �. Therefore, if there are no occurrences of
step (2b), where it decreases by 2, the result is proven.

Assume now that in the chain from � to �, there are occurrences of step (2b), where
both .nC 1C i/ and .nC 1 � i/ are parts of �. Notice that by admissibility of the
partition �, in that case neither .n� i/ nor .nC i/ is a part of �. Consider the next steps
in the remaining chain to � involving .n � i/ and .nC i/. Since .n � i/C .nC i/ <
2nC 2 the parts are not symmetric with respect to .nC 1/, and there should be two
separate steps.

Consider one of these steps, for m D n˙ i :
� Either it is a step of type (1), (2a), or (2b), where the quantity .k1 � 1/C � � � C

.kd � d/ does not vary;
� Or it is a step of type (2b), where .2nC 2 �m/ 2 �.

In the latter case, by admissibility, the part .m � 1/ in the output is again not a part
of the partition �. One can look further in the remaining chain to � with m D m � 1.
Since there cannot be an infinite sequence of steps where one obtains parts that are not
in �, at some point the first case will eventually occur.

Now, one can separate .nC i/ and .n � i/ in the reasoning, because step (2b) can
involve only parts m0 and m00 such that m0 Cm00 D 2nC 2, whereas in our case, all
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parts at stake satisfy m0 Cm00 6 .n � i/C .nC i/. In the end one gets `C 3 steps
where the quantity .k1 � 1/C � � � C .kd � d/ increases by `C 2.

Furthermore, our proof never involved another step (2b), where both parts are
parts of �. So one can apply the reasoning to all such steps separately. This analysis
yields that in a chain of length p from � to �, the quantity .k1 � 1/C � � � C .kd � d/
decreases by strictly less than p.

4. Gysin formulas

To sum up the construction in the proof of Theorem 3.3, for a strict partition � � �,
we get a sequence of Kempf–Laksov flag bundles

F.�1;:::;�d /.E�/! F.�2;:::;�d /.E�/! � � � ! F.�d�1;�d /.E�/! F.�d /.E�/! X;

induced by forgetful maps, which is the same as the chain of zero-loci in projective
bundles:

(4.1)

Zd Zd�1 Z2 Z1 X

P.��
d�1

E�1
=Ud�1/ P.��

d�2
E�2

=Ud�2/ P.��1E�d�1
=U1/ P.E�d

/

�d �d�1 �2 �1
pd

where for i D 1; : : : ; d , the subvariety Zi WD ¹` � .Ui�1/!º is the zero-locus of a
regular section of the vector bundle

L˝ .Ui=Ui�1/
_
˝ .Ui�1=UıdC1�i

/_:

In the spirit of [2, 3], we shall deduce a Gysin formula for #�WF�.E�/! X from this
description.

We fix an integer d and we denote by U the universal subbundle on G!
d
.E/, as well

as its pullback to F!.1; : : : ; d /.E/ by the natural forgetful map F!.1; : : : ; d /.E/!
G!
d
.E/. We still denote bu U the restrictions of these respective bundles to Schubert

bundles in G!
d
.E/ or to Kempf–Laksov bundles in F!.1; : : : ; d /.E/. For a symmetric

polynomial f in d variables, we write f .U / for the specialization of f with Chern
roots of U_.

For a Laurent polynomial P in d variables t1; : : : ; td , and a monomial m, we
denote by Œm�.P / the coefficient of m in the expansion of P . Clearly, for any second
monomial m0, one has Œmm0�.Pm0/ D Œm�.P /.
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Theorem 4.2 (Gysin formula). For a strict partition � � � and #�WF�.E�/! X ,
one has

.#�/�f .U / D

� dY
jD1

t
�j�1

j

��
f .t1; : : : ; td /

�

Y
16i<j6d

.ti � tj /
Y

16i<j6d
�iC�j>2nC1

�
c1.L/C ti C tj

� Y
16j6d

s1=tj .E�j
/

�
:

Proof. We will prove this formula by induction on d . With the notation of (4.1), for
i D 1; : : : ; d , let

�i WD c1
�
.UdC1�i=Ud�i /

_
�
2 A�.ZdC1�i /:

Then (the pullbacks of) �1; : : : ; �d form a set of Chern roots for U_ on Zd ' F�.E�/.
We want to compute .#�/�f .�1; : : : ; �d /. If d D 1, this is the Gysin formula

along projective bundles of lines (see [2]). Assume that the formula holds for d � 1.
Since Zd�1 ' F�2;:::;�d

.E�/, we know the Gysin formula A�.Zd�1/! A�.X/, it is
thus sufficient to study the Gysin map A�.Zd /! A�.Zd�1/. Considering (4.1), we
decompose this map as

A�.Zd /
.�d /�
���! A�P.��d�1E�1

=Ud�1/
.pd /�
����! A�.Zd�1/:

The Gysin formula for .pd /� is the formula for projective bundles of lines. It remains
to study the Gysin formula for .�d /�.

Recall that the zero-locus Zd is cut out by a regular section of the vector bundle

L˝ .Ud=Ud�1/
_
˝ .Ud�1=Uı1

/_:

By [6, Proposition 14.1], the map .�d /�.�d /� is given by the cup-product with the top
Chern class

ctop
�
L˝ .Ud=Ud�1/

_
˝ .Ud�1=Uı1

/_
�

D

Y
1<j<d�ı1

�
c1.L/C �1 C �j

�
D

Y
j>1W�1C�j>2nC1

�
c1.L/C �1 C �j

�
:

Composing the Gysin formulas for .pd /� (see [2]) and .�d /� (and using the projec-
tion formula), we get

.pd /�.�d /�
�
f .�1; �2; : : : ; �d /

�
D
�
t
�1�d
1

��
f .t1; �2; : : : ; �d /

�

Y
j>1W�1C�j>2nC1

�
c1.L/C t1 C �j

�
s1=t1.E�1

=Ud�1/

�
:
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Now

s1=t1.E�1
=Ud�1/ D s1=t1.E�1

/c1=t1.Ud�1/

D s1=t1.E�1
/
Y
1<j

.1 � �j =t1/ D s1=t1.E�1
/
Y
1<j

.t1 � �j /

t1
:

Thus (multiplying the extracted monomial and the polynomial by td�11 ):

.pd /�.�d /�
�
f .�1; �2; : : : ; �d /

�
D
�
t
�1�1
1

��
f .t1; �2; : : : ; �d /

�

Y
1<j6d

.t1 � �j /
Y

1<j6d
�1C�j>2nC1

�
c1.L/C t1 C �j

�
s1=t1.E�1

/

�
:

Composing the map A�.Zd�1/! A�.X/ known by induction with this expression
for A�.Zd /! A�.Zd�1/, one gets the stated formula for A�.Zd /! A�.X/.

Note that the formula and its proof also hold for general polynomials f .�1; : : : ; �d /,
without symmetry.

As a corollary, one gets the following pushforward formula, that was announced
in [4].

Theorem 4.3. For a partition � � .2n � d/d , and $�W�� ! X , let � be the com-
plementary partition of � in �, then

.$�/�f .U / D

� dY
jD1

t
�j�1

j

��
f .t1; : : : ; td /

�

Y
16i<j6d

.ti � tj /
Y

16i<j6d
�iC�j>2nC1

�
c1.L/C ti C tj

� Y
16j6d

s1=tj .E�j
/

�
:

5. Orthogonal case

The arguments are easily adapted to the orthogonal setting, replacing the projective
bundles by quadric bundles of isotropic lines and modifying mutadis mutandis.

In this case, we get a sequence of Kempf–Laksov flag bundles

F.�1;:::;�d /.E�/! F.�2;:::;�d /.E�/! � � � ! F.�d�1;�d /.E�/! F.�d /.E�/! X;
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induced by forgetful maps, which is the same as the chain of zero-loci in quadric
bundles:

Zd Zd�1 Z2 Z1 X

Q.��
d�1

E�1
=Ud�1/ Q.��

d�2
E�2

=Ud�2/ Q.��1E�d�1
=U1/ Q.E�d

/

�d �d�1 �2 �1
pd

where for i D 1; : : : ; d , the subvariety Zi WD ¹` � .Ui�1/!º is the zero-locus of a
regular section of the vector bundle

L˝ .Ui=Ui�1/
_
˝ .Ui�1=UıdC1�i

/_:

For the sake of completeness we state the general Gysin formula for Kempf–Laksov
bundles #� in the orthogonal setting. Notice the change “i 6 j ” in the part of the
formula related to isotropy; the contribution i D j appears when passing from the
projective bundle of lines to the quadric bundle of isotropic lines. It reflects the fact
that a line is not always isotropic: recall that the quadric bundle of isotropic lines is cut
out in the projective bundle of lines by a section of the line bundle

L˝ .Ui=Ui�1/
_
˝ .Ui=Ui�1/

_:

Theorem 5.1. For a partition � � .2n � d/d , and $�W�� ! X , let � be the com-
plementary partition of � in �, then

.$�/�f .U / D

� dY
jD1

t
�j�1

j

��
f .t1; : : : ; td /

�

Y
16i<j6d

.ti � tj /
Y

16i6j6d
�iC�j>2nC1

�
c1.L/C ti C tj

� Y
16j6d

s1=tj .E�j
/

�
:

Note that, if the rank is 2n and d D n, we consider both of the two isomorphic
connected components of the flag bundle. Thus, if one is interested in only one of the
two components, the result should be divided by 2.
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