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Abstract. We study nodal quintic surfaces with an even set of 16 nodes as analogues of singular
Kummer surfaces. The interpretation of the natural double cover of an even 16-nodal quintic as
a certain Fano variety of lines could be viewed as a replacement for the additive structure of the
cover of a singular Kummer surface by its associated abelian surface.

Most of the results in this article can be seen as refinements of known facts and our arguments
rely heavily on techniques developed by Beauville (1979), Murre (1972), and Voisin (1986),
Results due to Shen (2012, 2014) are particularly close to some of the statements. In this sense,
the text is mostly expository (but with complete proofs), although our arguments often differ
substantially from the original sources.
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1. Introduction

A nodal quartic surface S � P3 can have at most 16 nodes. When the maximum
is attained, the minimal resolution � W zS ! S is a K3 surface and, more precisely,
a Kummer surface. In other words, S is then a singular Kummer surface, so it is
isomorphic to the quotient A=� of an abelian surface A by its natural involution �.
Ultimately, the link to abelian surfaces relies on the fact that the set ¹Eiº of the 16
exceptional lines of the resolution � is even, i.e.,

P
Ei D 0 inH 2. zS;Z=2Z/. Then the

double cover zA! zS ramified along
S
Ei � zS is the blow-up of A in its two-torsion

points. The situation was first studied by Kummer and marks the beginning of the
theory of K3 surfaces. The situation for nodal quadrics and nodal cubics is also well
understood. For example, a nodal cubic can have at most four nodes and in this case it
is the Cayley cubic.

The maximal number of nodes of a nodal quintic surface D � P3 was determined
by Beauville [6]. It is 31, which is realized by the Togliatti surface. However, in this
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case the set ¹Eiº is not even. As Beauville showed [6, Section 2], only a set of 16 or
of 20 nodes can lead to an even set of exceptional lines ¹Eiº. The two situations have
been studied by Beauville [5] and Catanese [11]. In this article, we are concerned with
even 16-nodal quintic surfaces, i.e., nodal quintic surfaces with exactly 16 nodes such
that the integral cohomology class

P
Ei on the minimal resolution is divisible by two.

In this case, D ' F=�, where F is a smooth surface of general type endowed with
an involution � with 16 fixed points. Its blow-up in the fixed points can be viewed as
the double cover zF ! zD of the minimal resolution zD ! D ramified along the unionS
Ei � zD of all exceptional lines. In this sense,D is the analogue of a singular Kummer

surface and F is the quintic analogue of the abelian surface A. It is now tempting to
try to develop a theory that parallels the classical theory of abelian surfaces and their
associated (singular) Kummer surfaces. But how far can one push this analogy? The
following picture already includes the objects that we will study:

zA zS

� ˚A S � P3

H�.A;Z/� D H 1.A;Z/˚H 3.A;Z/;

CH.A/� D A � yA;
h.A/� D h1.A/˚ h3.A/;

zF zD

� ˚F D� P3

H�.F;Z/� D H 2.F;Z/�;

CH.F /� D CH0.F /� ˚ CH1.F /�;
h.F /� D h2.F /�:

The first step is to find the correct analogue of the additional geometric structure
of the double cover A! S provided by the interpretation of A as an abelian surface.
Already the work of Fano [14] and Togliatti [37] suggests where to look. For any smooth
cubic fourfold X � P5 the variety of lines L0 � X intersecting a fixed generic line
L � X is a smooth surface FL endowed with a natural involution � mapping L0 to the
residual line of L [ L0 � X \ LL0. By mapping L0 2 FL to the point of intersection
of the plane P2 ' LL0 with a generic P3 � P5, the quotient DL WD FL=� is realized
as an even 16-nodal quintic surface with the nodes corresponding to the fixed points
of �. From this perspective, the surfaces F and D have been studied by Voisin [41].
Understanding their geometry is a crucial step in her proof of the global Torelli theorem
for cubic fourfolds. Viewing the double cover F ! D of an even 16-nodal quintic as
F ' FL can be seen as the analogue of viewing the double cover A! S as an abelian
surface.
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There are clear limitations to the analogy between the double covers A! S of a
singular Kummer quartic surface and the natural double covers F ! D of an even
16-nodal quintic surface. For one, F is a surface of general type with ample canonical
bundle !F while the abelian surface A has of course trivial canonical bundle. Also,
from a Hodge theoretic perspective, A and F are quite different. For example, the
Hodge structure H 1.F;Z/ of weight one is trivial, although the minimal resolutions
zS and zD are both simply connected. Although this phenomenon is well known, a
clear topological reason for the different behaviour of the corresponding double covers
zA! zS and zF ! zD seems missing.

This article naturally splits in two interwoven parts: The geometry of even 16-nodal
quintic surfaces D � P3 together with their double covers F ! D and the geometry
of Fano varieties of lines on cubic fourfolds.

1.1. In the first section of this article we collect the known facts about even 16-nodal
quintic surfaces D � P3 and their natural double cover F ! D. We summarize the
information about F in the following theorem. Note that (i) is due to Voisin [41]
and (iii) strengthens a result of Beauville [6]. I presume that the other assertions are
also more or less well known to the experts.

Theorem 1.1. Let D � P3 be an even 16-nodal quintic surface written as a quotient
D ' F=�.
(i) The numerical invariants of F are as follows:

�.F;OF / D 6; q.F / D 0; pg.F / D 5;

e.F / D 62; b2.F / D 60; c21.F / D 10:

(ii) The surface F is algebraically simply connected.1
(iii) The integral cohomology H 2.F;Z/ is torsion free.
(iv) The anti-invariant partH 2.F;Z/� is a K3 Hodge structure, i.e., a Hodge structure

of weight two with a 1-dimensional .2; 0/-part.
(v) The intersection form on H 2.F;Z/� is even and definite of signature .2; 21/.

For the full cohomology one finds

H�.F;Z/� D H 2.F;Z/�;

while for a singular Kummer surfaces and the covering abelian surface, we have

H�.A;Z/� D H 1.A;Z/˚H 3.A;Z/:

1In the appendix by J. Ottem, the Fano perspective will be used to show that F is also topologically
simply connected.
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1.2. Even 16-nodal quintics naturally occur in the study of smooth cubic fourfolds
X � P5. Recall that the Fano variety F.X/ of lines contained in X is a hyperkähler
fourfold [7]. For a generic lineL�X the variety FL � F.X/ of all lines intersectingL
is a smooth surface with a natural involution �. Its quotient DL WD FL=� is an even
16-nodal quintic.

Due to a classical result of Beauville and Donagi [7], there exists a Hodge isometry�
H 4.X;Z/pr.1/;�. : /

�
'
�
H 2.F.X/;Z/pr; q

�
;

where q is the Beauville–Bogomolov–Fujiki pairing restricted to the Plücker primitive
cohomology. The next theorem complements this result by another Hodge isometry
which refines results due to Izadi [23] and Shen [31, 33]; see Section 4.3 for a detailed
comparison.

Theorem 1.2. Let L 2 F.X/ be a generic line contained in a smooth cubic fourfold
X � P5 and let FL � F.X/ be the smooth surface of all lines intersecting L. Then
there exist natural isometries of Hodge structures�

H 4.X;Z/pr.1/;�. : /
�
'
�
H 2.F.X/;Z/pr; q

�
'
�
H 2.FL;Z/

�
pr; .1=2/. : /

�
:

On the right hand side, H 2.FL;Z/pr denotes the primitive part with respect to the
restriction of the Plücker polarization and H 2.FL;Z/�pr � H

2.FL;Z/pr is its �-anti-
invariant part. The standard intersection form . : / on the surface FL is scaled by the
factor .1=2/.

The following geometric global Torelli-type result is an analogue of a well-known
result for cubic threefolds; for a more complete version, see Section 4.2.

Corollary 1.3. Assume X;X 0 � P5 are two smooth cubic fourfolds and let L � X
and L0 � X 0 be two generic lines. Then X ' X 0 if and only if there exists an isometry
of Hodge structures�

H 2.FL;Z/
�
pr; . : /

�
'
�
H 2.FL0 ;Z/

�
pr; . : /

�
:

The assumptions on L and L0 simply mean that the two Fano varieties FL � F.X/
and FL0 � F.X 0/ of lines intersecting L � X and L0 � X 0 are smooth surfaces.

A more careful analysis of the situation allows one to upgrade the Hodge isometry
in Theorem 1.2 to the level of Chow groups and rational Chow motives. The first
assertion of the next theorem was first proved by Shen; see [33, Theorem 1.5] and [31,
Theorem 4.7]. The second part, a direct consequence of the first, formulated in terms
of transcendental motives, is due to Bolognesi and Pedrini [9, Proposition 2.7]. See
Section 5.5 for a comparison of the techniques.
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Theorem 1.4. The Fano correspondence induces an isomorphism

CH0.FL/�hom ' CH1.X/hom

of the homologically trivial integral Chow groups and an isomorphism of rational
Chow motives

h2.FL/
�
pr ' h4.X/pr.1/:

To compare the result with the case of Kummer surfaces, observe that h2.FL/
� is

the quintic analogue of the motive h1.A/˚ h3.A/ of an abelian surface.

1.3. Here is an outline of the content. Section 2 deals with the topological and Hodge
theoretic invariants of an even 16-nodal quintic and its natural double cover. It contains
the proofs of the various parts of Theorem 1.1. With one minor exception in the proof
of Lemma 2.6 and for convenience reasons only, we do not resort to the interpretation
in terms of Fano varieties of lines on cubic fourfolds.

Section 3 discusses the natural occurrence of double covers of even 16-nodal
quintics as Fano varieties of lines contained in a cubic fourfold intersecting a fixed
line. This interpretation, allows one to consider the double cover endowed with the
restriction of the Plücker polarization which is not canonical from the point of view of
the quintic. This leads to the K3 Hodge structure of rank 22 that appears in Theorem 1.2,
the proof of which is postponed to the short Section 4.

Chow groups with integral coefficients and rational Chow motives are discussed in
Section 5. The proofs of the two parts of Theorem 1.4 can be found in Sections 5.4
and 5.7. The appendix contains the proof of the simple connectedness of FL.

1.4. As should be clear from the introduction, the paper builds heavily on earlier work
of Beauville, Murre, Voisin, and others. Many of the results can be found in a similar
form in the literature, especially in the work of Shen [31,33], cf. Section 4.3. It seemed
worthwhile to add further observations and refinements to their results and to present a
coherent and streamlined picture of what is currently known. The paper was originally
intended to become part of [22], but it grew out of proportion and it seemed more
appropriate to publish it separately.

2. The topology of an even 16-nodal quintic and its double cover

In the following D � P3 will always denote a quintic surface with 16 nodes
x1; : : : ; x16 2 D as its only singularities. By the adjunction formula, its canonical
bundle is !D ' OD.1/.
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2.1. The minimal resolution � W zD!D with canonical bundle! zD ' �
�OD.1/ replaces

the nodes xi by the .�2/-curves Ei � zD. The surface D is called an even 16-nodal
quintic if in addition

P
Ei D 0 in H 2. zD;Z=2Z/ or, equivalently, if the line bundle

O.
P
Ei / admits a square root. Note that the line bundle L with L2 ' O.

P
Ei / is

unique, as Pic. zD/ is torsion free due to �1. zD/ D ¹1º; see below. Unlike the case
of 16-nodal quartics, cf. [20, Remark 14.3.19], it seems unclear whether a 16-nodal
quintic is automatically even.2

Similar to the well-known smoothing of ordinary double points on a singular
quartic Kummer surface, the surface zD is diffeomorphic to a smooth quintic surface,
cf. [6, Section 2] or for more general results [24]. (Ideally, one would like zD to
be deformation equivalent to a smooth quintic, which would need the nodes to be
independent [10].) In particular, by the Lefschetz theorem, zD is simply connected with

b2. zD/ D 53 and e. zD/ D 55:

Hence, for the 16-nodal quintic D one has

b2.D/ D 37 and e.D/ D 39:

2.2. Assume now that D is an even 16-nodal quintic and let z� W zF ! zD be the double
cover of zD ramified along

S
Ei � zD, i.e., z� is the cyclic double cover associated with

the line bundle L and the section of L2 defining
S
Ei . We will use the same notation

for the reduced pre-images of the .�2/-curves and write Ei � zF . These .�1/-curves
can also be viewed as the fixed components of the natural involution z� of zF . Then

! zF ' O
�X

Ei

�
˝ z��! zD ' O

�X
Ei

�
˝ z����OD.1/:

The blow-down z� W zF ! F of the .�1/-curves Ei � zF fits into the commutative
diagram:

zF zD

F D:

z�

z� �

�

The smooth surface F with its canonical bundle !F ' ��!D ' ��OD.1/ comes
with a covering involution � with 16 fixed points over the nodes xi and its quotient is
F=� ' D. Throughout, we will write xi for the fixed points in F and for their images
in D.

2F. Catanese informed the author that there are 16-nodal quintics which are not even and that this follows
from a forthcoming paper of his.
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The numerical invariants of the surface F are as follows:

�.F;OF / D 6; q.F / D 0; pg.F / D 5;

e.F / D 62; b2.F / D 60; c21.F / D 10:

These facts are either classical [14, 37] or have been proved by Voisin [41]; see
also [22, Section 6.4.5] for a variant of the proof. The most surprising fact is probably
the regularity of the surface F , which can equivalently be phrased as H 1.F;Z/ D 0.
This is in stark contrast to H 1.A;Z/ ¤ 0 for the natural double cover of a 16-nodal
quartic surface. To prove this, Voisin [41, Section 3, Lemma 3] uses the Fano description
of F , cf. Remark 2.4 below or [22, Section 6.4.5] for a more classical argument.

The fact that F is regular in particular shows

Pic.F / � H 2.F;Z/ and Tors Pic.F / D TorsH 2.F;Z/:

2.3. The action of the involution � on F leads to an eigenspace decomposition

H 0.F; !F / D H
0.F; !F /

C
˚H 0.F; !F /

�

into a 4-dimensional invariant part H 0.D; !D/ ' H
0.F; !F /

C and a 1-dimensional
anti-invariant part H 0.F; !F /

�

Proof. Indeed, as !D ' OD.1/ for the quintic D, we have h0.D; !D/ D 4. Since
F � D is an étale double cover over the complement of the nodes xi , we know

��WH 0.D; !D/
�
�! H 0.F; !F /

C:

Eventually, use h0.F; !F / D pg.F / D 5.

Clearly, the composition � WF ! D � P3 is the morphism associated with the
invariant linear system j!F jC � j!F j.

2.4. The invariant and anti-invariant parts H 2.F;Z/˙ � H 2.F;Z/ of the induced
action of the involution � satisfy

rkH 2.F;Z/C D 37 and rkH 2.F;Z/� D 23:

In the following, H 2.F;Z/� is considered as a Hodge structure of K3 type (as we
will see, torsion free). Furthermore, the intersection pairing on H 2.F;Z/� has signa-
ture .2; 21/.
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Proof. In order to compute the ranks, we can work with rational cohomology. Then

H 2.D;Q/ ' H 2.F;Q/C

by a standard spectral sequence argument [18, Proposition 5.2.3]. Combining e.D/D39
with H 1.D;Q/ ' H 1.F;Q/ D 0 to deduce

rkH 2.F;Z/C D b2.D/ D 37;

we can conclude by

rkH 2.F;Z/� D b2.F / � 37 D 23:

Alternatively,3 one can combine the Lefschetz fixed point formula 16 D 2C bC2 � b
�
2

with 62D e.F /D 2C b2 D 2C bC2 C b
�
2 to compute the dimensions ofH 2.F;Q/˙.

The last assertion follows from the orthogonal decomposition

H 2.F;Q/ D H 2.F;Q/C ˚H 2.F;Q/�

and the Hodge index theorem on H 2.D;Q/ ' H 2.F;Q/C.

Note that the result is in contrast toH 2.A;Z/DH 2.A;Z/C andH 2.A;Z/� D 0

for the natural involution of an abelian surface. However,

H�.A;Z/� D H 1.A;Z/˚H 3.A;Z/:

2.5. It is known that not only zD but also the nodal quintic D is simply connected,
cf. [13, Section 5.2]. In particular, H1.D;Z/ D 0 and by the universal coefficient
theorem H 2.D;Z/ is torsion free. The same holds for F , see also Remark 2.4.

Lemma 2.1. The integral cohomology H 2.F;Z/ is torsion free.

Proof. We first show that H 2.F;Z/ has no two-torsion, i.e., H 2.F;Z/Œ2� D 0 or,
equivalently, Pic.F /Œ2� D 0. This is an immediate consequence of results of Beauville.
According to [6, Lemma 2], one has

Pic.F /Œ2� ' ker
�
.Z=2Z/˚16 ! Pic. zD/˝ Z=2Z

�
=Ze:

Here, e D .1; : : : ; 1/ and the map is given by the classes O.Ei / 2 Pic. zD/. Further-
more, by virtue of [6, Proposition §2], if a collectionEi , i 2 I , is even, i.e., O.

P
i2I Ei /

has a square root, then jI j D 16 or 20. Hence, Pic.F /Œ2� D 0.

3Thanks to A. Kuznetsov for suggesting this.
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To conclude, one can evoke a result by Ciliberto and Mendes Lopes [12, Theorem A]:
The torsion of Pic.X/ of a regular, minimal surface of general type with c21.X/ D
2�.OX / � 2 is either trivial or Z=2Z. The assumptions are satisfied for the surface F .
For the reader’s convenience and later use, we recall the key argument. First, one shows
j�

alg
1 j � 3 by the following argument originally due to Bombieri: Assume F0 ! F is

an irreducible étale cover of degree d , then

c21.F0/ D d � c
2
1.F / D d � .2�.OF / � 2/

D d � ..2=d/ � �.OF0
/ � 2/ D 2�.OF0

/ � 2d:

Noether’s inequality
2pg.F0/ � c21.F0/C 4;

together with the obvious 2�.OF0
/ � 2 � 2pg.F0/, then gives

c21.F0/C 2.d � 1/ � c21.F0/C 4;

which proves d � 3.
The case d D 3 is excluded by [12, (1.2)]. Alternatively, one can observe that for

d D 3 the two inequalities above are equalities. Hence, the surface F0 is on the Noether
line with q.F0/ D 0, pg D 17, and c21.F0/ D 30. According to results of Horikawa,
see [3, Section VII,9], the minimal resolution of the canonical model of F0 is then
a Hirzebruch surface. As the canonical model of F0 dominates the canonical model
of F which in turn maps onto D, this results in a contradiction.

Lemma 2.2. The surface F is algebraically simply connected, i.e., �alg
1 .F / D ¹1º.

Proof. According to [44, Corollary 4.4], every minimal surface of general type satisfy-
ing c21 < .8=3/.�.O/ � 2/ is algebraically simply connected. As the inequality holds
for the surface F , one indeed has �alg

1 .F / D ¹1º.
Alternatively, one may use the arguments in the proof of Lemma 2.1. There we

saw that irreducible étale covers F0 ! F are of degree at most two. However, an étale
double cover corresponds to a line bundle of order two and thus defines a non-trivial
two-torsion class in H 2.F;Z/, the existence of which is excluded by the previous
lemma or rather by its first step showing Pic.F /Œ2� D 0.

The following immediate consequence is originally due to Shen [31, Lemma 4.5
and Section 5]. The original proof is rather involved and makes heavy use of the Fano
interpretation of F .

Corollary 2.3. The surface F satisfies H1.F;Z/ D 0.
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Remark 2.4. (i) Lemmas 2.1 and 2.2 are essentially equivalent. Clearly, Lemma 2.2
and its consequence Corollary 2.3 combined with the universal coefficient theorem
imply thatH 2.F;Z/ is torsion free. Conversely, the torsion freeness was used to show
that F is algebraically simply connected. Also note that H1.F;Z/ D 0 implies the
regularity of F , which gives an alternative argument to Voisin’s original proof [41].

(ii) From the above, it is not clear whether also the topological fundamental group
�1.F / is trivial.4 Since

F 0 WD F n ¹xiº ! D0´ D n ¹xiº

is an étale cover, �1.F /' �1.F 0/ is the kernel of the surjection �1.D0/!Z=2Z map-
ping a simple loop 
i inD around xi 2D (or, equivalently, in zD aroundEi � zD) to the
generator. Here, the fundamental group �1.D0/ is viewed as a quotient of .Z=2Z/�16.
Since by the above the pro-finite completion �alg

1 .F / of �1.F / is trivial, F is simply
connected if and only if its fundamental group �1.F / is residually finite.

Remark 2.5. A nodal quintic D � P3 with an even set of 20 nodes gives rise to a
double cover F !D satisfying q.F /D 0, pg.F /D 4, and c21.F /D 10. In particular,
the composition F ! P3 is the canonical map. Examples were first constructed by
Beauville [5, Proposition 3.6] and a construction due to Gallarati was studied in detail
by Catanese [11]. A special example was described by van der Geer and Zagier [39,
Section 4] as the minimal model of a Hilbert modular surface associated with Q.

p
21/.

It turns out that quintics with an even set of 20 nodes form an irreducible fam-
ily [5, Remark 3.7 (2)]. However, without the condition on the 20 nodes to be even the
moduli space is reducible [11, Proposition 3.8]. The Hilbert modular surface is simply
connected [38, Theorem 6.1], hence for any quintic with an even set of 20 nodes the
double cover F is simply connected.

2.6. The Picard group Pic.D0/ of the open subset D0 D zD n
S
Ei D D n ¹xxiº is

generated by the image of the restriction map Pic.D/! Pic.D0/ and the two-torsion
line bundle LjD0 corresponding to F 0 � D0.

Proof. Indeed, the restriction map Pic. zD/! Pic.D0/ is surjective and its kernel is
generated by the line bundles O.Ei /. Furthermore, Pic. zD/ is generated by Pic.D/,
the line bundles O.Ei / and all line bundles M with

M2
' O

�X
i2I

O.Ei /

�

4Now proved in the appendix.
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for some I � ¹1; : : : ; 16º. However, the kernel of the pull-back Pic.D0/! Pic.F 0/ is
generated by LjD0 ; see, for example, [27, Lemma 3.1]. Thus, if jI j < 16, such an M

would pull-back to a non-trivial two-torsion line bundle onF 0. Since Pic.F 0/' Pic.F /,
this would contradict Lemma 2.1.

2.7. The following assertion is analogous to the classical fact that for any étale double
cover C ! xC of a smooth curve the image of the map

1 � ��WH 1.C;Z/! H 1.C;Z/

is the anti-invariant partH 1.C;Z/� �H 1.C;Z/, see [22, Section 5.3.2] for references.

Lemma 2.6. The image of the map

(2.1) 1 � ��WH 2.F;Z/! H 2.F;Z/

is the anti-invariant part H 2.F;Z/� D ¹˛ 2 H 2.F;Z/ j ��˛ D �˛º.

Proof. Clearly, the image of (2.1) is contained in the anti-invariant part. The difficult
part is to show that every anti-invariant class ˛ 2H 2.F;Z/� is of the form ˛D ˇ� ��ˇ
for some integral class ˇ 2 H 2.F;Z/.

We first consider the class ˛ D ŒE� of a divisor E on F , which typically is not
effective nor irreducible. In this case, one can use the following argument, which is
inspired by [4, Lemma 0.3.4], see also [27, Lemma 3.1]. By using the projectivity of F ,
we may assume that at least one of the fixed points x1; : : : ; x16 2 F is not contained
in the support of E. Then ��E C E is a principal divisor .f / for some f 2 K.F /.
Hence,

.��f / D ��.��E CE/ D E C ��E D .f /

and, therefore, ��f D� � f for some�2C�. By evaluating at one point xi not contained
in the support of E, one finds � D 1, i.e., ��f D f or, equivalently, f D ��g for
some g 2 K.D/. Now write

E D E1 �E2 C �
�1.E0/;

where E1; E2 � F are effective divisors without common irreducible components
and ��1.E0/ is the �-invariant part of E. In other words, if E 0i � Ei , i D 1; 2, is an
irreducible component then ��E 0i is not an irreducible component of Ei .

Then ��E CE D .��g/ can be rewritten as

��E1 CE1 D �
�E2 CE2 C �

�1.E 00/;
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where E 00 D .g/ � 2E0. By our assumptions on E1 and E2, this implies E1 D ��E2
or, equivalently, E2 D ��E1. Therefore,

E D E1 � �
�E1 C �

�1.E0/;

which passing to cohomology becomes

˛ D ŒE� D ŒE1� � �
�ŒE1�C �

�ŒE0�:

Since the last summand is contained in the invariant part, it has to be trivial, which
proves ˛ D .1 � ��/ˇ for ˇ D ŒE1�.

As the assertion is purely topological, it is invariant under deformations. It thus
suffices to argue thatH 2.F;Z/� is generated by classes that are of type .1; 1/ on some
deformation. This can be done directly or by using the Fano perspective. We defer the
proof to Remark 4.3.

Corollary 2.7. For all classes ˛1; ˛2 2 H 2.F;Z/� the intersection pairing .˛1:˛2/
is even.

Proof. Indeed, writing ˛i D ˇi � ��ˇi , i D 1; 2, with ˇi 2 H 2.F;Z/ the assertion
follows from

.˛1:˛2/ D 2.ˇ1:ˇ2/ � 2.ˇ1:�
�ˇ2/;

which uses that �� is an isometric involution.

2.8. The linear system of all quintics jO.5/j is of dimension 55. Dividing by the natural
action of PGL.4/ and imposing the existence of 16 nodes reduces the dimension
to 24. For the details of this dimension count, in a more general setting, see [11,
Proposition 2.26].

As we will recall below, the family of even 16-nodal quintics constructed from cubic
fourfolds is also of dimension 24. In fact, due to results of Catanese [11, Theorem 3.3
and Remark 3.4], the space of even 16-nodal quintics is irreducible. Therefore, the
generic even 16-nodal quintic D � P3 comes from a Fano variety of lines on a cubic
fourfold, by the construction to be recalled in the next section. In particular, any
additional topological information obtained in the Fano setting, holds for any even
16-nodal quintic and its natural double cover.

Remark 2.8. The situation is similar to the case of cubic threefolds. The generic
smooth plane quintic curve is indeed of the form DL. Note however that the generic
étale double quotient C ! D of a curve of genus 11 is not of the form CL ! DL and
the generic deformation of C alone will not have any quotient of this form. Similarly,
for cubic fourfolds, the generic (infinitesimal) deformation of F will not be a double
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cover of a nodal quintic. Indeed, a computation using the Hirzebruch–Riemann–Roch
theorem reveals that �.F; TF / D �40, and, therefore, h1.F; TF / � 40.5

3. The Fano perspective

In the following, X � P5 is a smooth cubic fourfold and F.X/ denotes its Fano
variety of lines. According to Beauville and Donagi [7], F.X/ is a hyperkähler fourfold
and we will use � 2 H 2;0.F.X// to denote a non-degenerate holomorphic symplectic
form on it.

For a line L � X let

FL WD ¹ L
0
j L \ L0 ¤ ; º � F.X/

be the Fano variety of all lines contained in X that intersect L � X .

3.1. From [41] we recall the following. For a generic line L � X in a smooth cubic
fourfold X � P5 the Fano variety FL is a smooth surface of general type. Mapping
L0 2 FL to the intersection point of the plane LL1 ' P2 with a fixed generic P3

defines a finite morphism
� WFL � DL � P3

of degree two onto a quintic surfaceDL � P3 with exactly 16 nodes x1; : : : ; x16 2DL
as its only singularities. The covering involution �WFL �

�! FL has exactly 16 fixed
points x1; : : : ; x16 2 FL mapping bijectively onto the nodes of DL. In other words,
DL is an even 16-nodal quintic and FL ! DL is its natural double cover.

Proof. Indeed, the surface DL is the discriminant divisor of the linear projection
BlL.X/ � P3 of X from the line L � X . By construction, the covering involution
maps a line L0 2 FL to the residue line of L [ L0 � X \ LL0, i.e.,

L [ L0 [ �.L0/ D X \ P2

for a certain plane P2 � P5. For generic L the singularities of the discriminant sur-
faceDL are nodes which correspond exactly to the fixed points of �. The number of these
points is computed by Porteous’s formula; see the original [41] or [22, Section 6.4.5]
for more details.

By definition, the line L defines a point in FL.6 For a generic choice, this is not a
fixed point of the involution �.

5This comment was prompted by a question of G. Oberdieck.
6This is in contrast to the case of cubic threefolds, where for a generic lineL the set all lines intersectingL

splits off the point corresponding to L.
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3.2. Observe that the restriction � jFL
2 H 2;0.FL/ of the holomorphic symplectic

form � 2 H 2;0.F.X// is not zero, i.e., FL � F.X/ is not Lagrangian.

Proof. Indeed, due to [41] one knows that 3 ŒFL� is the image of h3D ŒP2� 2H 6.X;Z/

under the Fano correspondence and, therefore,

ŒFL� D .1=3/
�
g2 � ŒF .Y /�

�
:

Here, g denotes the Plücker polarization and F.Y / � F.X/ is the Fano surface of
a generic hyperplane section Y D X \ P4; see [2] or [22, Sections 2.5.1 and 6.4.1].
Using the positivity of g and the fact that F.Y / � F.X/ is Lagrangian [42], one
concludes Z

FL

.�x�/jFL
D
1

3

Z
F.X/

.�x�/g2 ¤ 0;

which in particular proves the assertion � jFL
¤ 0.

3.3. The restriction of any primitive class ˛ 2 H 2.F.X/;Z/pr to FL is anti-invariant
with respect to the action of � on H 2.FL;Z/, i.e.,

��.˛jFL
/ D �˛jFL

:

Proof. The proof imitates the well-known argument for the analogous fact for cubic
threefolds, cf. [22, Section 5.3.1] for an account and references. First note that the
assertion is invariant under deformations. Next observe that the union of all

H 2;0.F.X 0// � H 2.F.X/;C/pr;

for arbitrary smooth deformations X 0 � P5 of X , is Zariski dense. Thus, it suffices to
show that ��.� jFL

/ D �� jFL
or, dually, that the composition

H 2;0.DL/! H 2;0.FL/! H 4;2.F.X//! H 3;1.X/

is zero. This follows from the Bloch–Srinivas principle, see for example [43, Proposi-
tion 22.24], and the observation that the map DL ! CH1.X/ is constant. To see the
latter, consider L0 2 FL and let t WD �.L0/ 2 DL. Then,

L [ L0 [ �.L0/ D X \ P2

and the image of the point t 2DL is the constant class ŒX \ P2�� ŒL� 2 CH1.X/.
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3.4. Restriction defines an injection of Hodge structures of corank one

H 2.F.X/;Z/pr ,! H 2.FL;Z/
�:

Proof. By Section 3.3, the restriction of any primitive class is indeed anti-invariant. To
prove the injectivity of the restriction map one can use a standard deformation argument,
cf. [22, Remark 2.5.7]. As the assertion is purely topological, we may assume that X is
very general and, in particular, that H 2.F.X/;Z/pr is an irreducible Hodge structure.
Hence, the restriction map is either trivial or injective. However, as FL � F.X/ is not
Lagrangian by Section 3.2, i.e., � jFL

¤ 0, and

� 2 H 2;0.F.X// � H 2.F.X/;Z/pr ˝C;

it is certainly not trivial. Alternatively, one can use Section 3.5 below.
The assertion on the corank follows from rkH 2.F.X/;Z/ D 23 and Section 2.4.

3.5. For any class ˛ 2 H 2.F.X/;Z/pr and its restriction ˛jFL
2 H 2.FL;Z/, one has

2 q.˛/ D .˛jFL
:˛jFL

/:

Here, q is the Beauville–Bogomolov–Fujiki form on the hyperkähler fourfold F.X/
and . : / denotes the intersection form on the surface FL.

Proof. The result follows from a straightforward and well-known computation of
certain natural cohomology classes on F.X/, see [22, Section 6.4.1] for an account and
references, and a result of Voisin mentioned before: The natural class zq 2H 4.F.X/;Q/

defined by the condition that q.˛/ D
R
F.X/

˛2 � zq satisfies

30 zq D c2.TF.X// D 15 ŒFL� � 3 c2.�F / D 15 ŒFL� � 3 ŒF.Y /�;

where as above F.Y / � F.X/ is the surface of all lines contained in a generic hyper-
plane section Y D X \H . Hence,

q.˛/ D

Z
F.X/

zq � ˛2 D
1

2

Z
FL

˛j2FL
:

Here, the last equality follows from the vanishing ˛jF.Y / D 0, and henceZ
F.Y /

˛j2F .Y / D 0;

for all primitive classes ˛, which is a consequence of F.Y / � F.X/ being Lagrang-
ian [42, Example 3.7].
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3.6. Let g D c1.O.1// 2 H 2.F.X/;Z/ be the class of the Plücker polarization and
let gjFL

D gC C g� be the decomposition of its restriction in its invariant and anti-
invariant part, i.e., g˙ 2H 2.FL;Q/ with ��g˙ D˙g˙. Then both parts are non-zero,
i.e., g˙ ¤ 0.

Proof. Since gjFL
is ample, so is ��gjFL

. Hence,

��gjFL
¤ �gjFL

;

i.e., gC ¤ 0. Suppose now that g� D 0. Then g is �-invariant. Since Pic.FL/ �
H 2.FL;Z/ is torsion free, see Lemma 2.1, it means that the restriction O.1/ of the
Plücker polarization to FL is �-invariant. Hence, its restriction to F 0L WD FL n ¹xiº

descends to a line bundle onD0L DDL n ¹xiº, cf. [4, Lemma 0.3.4] or [27, Lemma 3.1].
Combining this with Section 2.6 and the fact that ��.LjD0

L
/ ' OF 0

L
, one finds a line

bundle K on DL such that

��.KjD0
L
/ ' O.1/jF 0

L

and, in fact, ��K ' O.1/jFL
, as Pic.FL/ ' Pic.F 0L/. Thus, for k WD c1.K/, we have

��k D gjFL
and, in particular,

.��k:��k/ D .gjFL
:gjFL

/;

which we will show to be impossible.
First note that .��k:��k/ D 2 � .k:k/ is even, as FL � DL is of degree two. On

the other hand, 3 ŒFL� is the image of h3 2 H 6.X;Z/ under the Fano correspondence
and ŒFL� D .1=3/ .g2 � ŒF .Y /�/, cf. [22, Sections 2.5.1 and 6.4.1]. This implies

.gjFL
:gjFL

/ D

Z
F.X/

ŒFL� � g
2
D
1

3

�Z
F.X/

g4 �

Z
F.Y /

g2jF.Y /

�
D
1

3

�
deg.F.X// � deg.F.Y //

�
D 21:

Thus, .gjFL
:gjFL

/ is odd, which produces the desired contradiction.

Remark 3.1. To show that g is not invariant, one can alternatively use that the linear
system O.1/jFL

˝��O.�1/ defines the rational mapFL L that mapsL0 to its point
of intersection with L, which is clearly not �-invariant; see [41, Section 3, Lemma 2].

Remark 3.2. (i) The arguments in the proof also show that every �-invariant line
bundle on FL is the pull-back of a line bundle on DL. A priori, this is not clear, as a
linearization of an invariant line bundle may act non-trivially on the fibre at one of the
fixed points.
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(ii) Also, it is not clear whether the same holds true for arbitrary cohomology
classes. In other words, is H 2.DL;Z/! H 2.FL;Z/C surjective? One way to prove
surjectivity would be to show that H 2.FL;Z/C is generated by classes that become
algebraic on some deformation of DL as an even 16-nodal quintic. Note that in the
analogous situation for cubic threefolds the map is indeed not surjective. Indeed, for
an étale double cover C � xC of smooth curves the map H 1. xC ;Z/! H 1.C;Z/C

has a cokernel of order two; see [22, Section 5.3.2] for references.

Consider the torsion free lattice

H 2.FL;Z/
�
pr � H

2.FL;Z/

of all classes that are primitive with respect to the restriction gjFL
of the Plücker

polarization and anti-invariant with respect to the involution �.

Corollary 3.3. The lattice H 2.FL;Z/�pr is of rank 22 and signature .2; 20/. It is
naturally endowed with a Hodge structure of K3 type.

Proof. As rkH 2.FL;Z/� D 23 by Section 2.4, it suffices to show thatH 2.FL;Z/�pr �

H 2.FL;Z/� is a proper sub-lattice, i.e., the linear form .g: / on H 2.FL;Z/� is
non-zero. As the two sublattices H 2.FL;Z/� and H 2.FL;Z/C are orthogonal with
respect to . : /, this follows from g� ¤ 0 proved above. By the Hodge index theorem,
.g�:g�/ < 0, which implies the claimed signature. That the Hodge structure is of K3
type follows from Section 2.3.

4. Hodge isometries and global Torelli

The goal of this section is to prove Theorem 1.2.

4.1. As before, we consider a smooth cubic fourfoldX � P5 and a generic lineL�X .

Proposition 4.1. The restriction map induces an isometry of Hodge structures of K3
type �

H 2.F.X/;Z/pr; q
�
'
�
H 2.FL;Z/

�
pr; .1=2/. : /

�
:

Proof. By virtue of Sections 3.4 and 3.5, restriction embeds the Hodge structure
H 2.F.X/;Z/pr endowed with the Beauville–Bogomolov–Fujiki form q isometrically
into H 2.FL;Z/� viewed with the scaled intersection form .1=2/. : /. The latter is
integral on H 2.FL;Z/� due to Corollary 2.7.

This leads to a morphism of rational Hodge structures

H 2.F.X/;Q/pr ,! H 2.FL;Q/
�
D H 2.FL;Q/

�
pr ˚Q � g� � Q � g�;
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which has to be trivial due to the irreducibility of the Hodge structureH 2.F.X/;Q/pr

for the very general X . Hence, restriction defines an embedding of Hodge structures

(4.1) H 2.F.X/;Z/pr ,! H 2.FL;Z/
�
pr;

which is isometric with respect to the two symmetric forms q and .1=2/. : /. Note
that both sides are of rank 22. Thus, restriction identifies H 2.F.X/;Z/pr with a sub-
lattice of H 2.FL;Z/�pr of finite index m <1. By a standard fact in lattice theory, the
discriminants of the two lattices are related by the formula

discr.q/ D discr..1=2/. : // �m2:

Since by [7] there exists an isometry (up to a global sign)

H 2.F.X/;Z/pr ' H
4.X;Z/pr;

we know that discr.q/ D 3. This suffices to conclude that m D 1, i.e., (4.1) is bijective

Together with the result of Beauville and Donagi [7] this proves Theorem 1.2.

Remark 4.2. (i) The isomorphism types of the two lattices given byH 2.F.X/;Z/ and
H 2.F.X/;Z/pr are known. The latter is the even latticeE8.�1/˚2˚U˚2˚A2.�1/,
which therefore also describes H 2.FL;Z/�pr.

However, it is not clear to us how to determine the isomorphism type of the lattice
H 2.FL;Z/�, which according to Section 2.4 has signature .2; 21/. It is tempting to
conjecture the existence of an isometry (up to a global sign)H 4.X;Z/'H 2.FL;Z/�,
but I have no further evidence for it.

(ii) A. Kuznetsov suggested that Proposition 4.1 could possibly be seen as a conse-
quence of a result for general conic fibrations �W zX ! P3. Indeed, it seems feasible that
one can establish a direct link between the Hodge structuresH 4. zX;Z/ andH 2.F;Z/�,
whereF is the natural double cover of the discriminant surfaceD � P3 of �. Due to the
dependence on the Plücker polarization, incorporating the quadratic forms and defining
the primitive part of H 2.FL;Z/� seem less obvious. In any case, in the context of a
cubic fourfold X the approach via its Fano variety F.X/ has the advantage that the
Hodge isometry constructed above is compatible with the inclusion F D FL � F.X/.

Remark 4.3. General deformation theory for hyperkähler manifolds implies that the
classes in H 2.F.X/;Z/pr that are of type .1; 1/ for some deformation of X generate
the full primitive cohomology. Hence, the same is true for H 2.FL;Z/� and then for
H 2.F;Z/� of the natural cover of an arbitrary even 16-nodal quintic. This was used
in the proof of Lemma 2.6.
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Remark 4.4. According to Hassett [19], there exists a countable union of divisors
in the moduli space of cubic fourfolds for which H 2.F.X/;Z/pr contains the Hodge
structure H 2.S;Z/pr of a polarized K3 surface. The correspondence is known to be
algebraic [1]. Thus, along these divisors one finds algebraic correspondences between a
K3 surface S and the surface of general type FL. Can those be realized geometrically?

4.2. It may be worthwhile to spell out the various Hodge theoretic conditions and their
geometric consequences. Let L � X and L0 � X 0 be as above and let us consider the
following statements:

(i) There exists an isomorphism FL ' FL0 compatible with the natural involutions �
and �0.

(ii) There exists an equivariant isometry�
H 2.FL;Z/pr; . : /; �

�
�
'
�
H 2.FL0 ;Z/pr; . : /; �

0�
�

of Hodge structures.

(iii) There exists an isometry of Hodge structures�
H 2.FL;Z/

�
pr; . : /

�
'
�
H 2.FL0 ;Z/

�
pr; . : /

�
:

(iv) There exists an isomorphism of polarized varieties .F.X/; g/ ' .F.X 0/; g0/.

(v) There exists an isomorphism X ' X 0.

Then the following implications hold

(i)) (ii)) (iii), (iv), (v):

The equivalence of (iii) and (iv) follows from Theorem 1.2 and the global Torelli
theorem for hyperkähler manifolds. All other implications are either obvious or well
known. The first implication is not an equivalence and neither should be the second.

Corollary 1.3 is the combination (iii) , (iv) , (v). It is the analogue of the
celebrated result of Clemens–Griffiths and Tyurin combined with Mumford’s work on
Prym varieties: For two smooth cubic threefolds Y and Y 0, one has

Y ' Y 0, Prym.CL=DL/ ' Prym.CL0=DL0/

with an isomorphism of polarized abelian varieties on the right hand side. Here,L� Y
and L0 � Y 0 are generic lines and CL ! DL and CL0 ! DL0 are the analogues of
FL ! DL and FL0 ! DL0 ; see [22, Chapter 5] for references.
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4.3. Theorem 1.2 can be seen as a stronger and more precise version (in dimension
four) of a result of Izadi [23, Theorem 3], which asserts the existence of an exact
sequence

0! H 2.DL;Z/pr ! H 2.FL;Z/pr ! H 4.X;Z/pr ! 0;

where the ample class gjFL
C c1.��O.1// is used to define the primitive part. However,

the proof of the surjectivity is incomplete. It uses the surjectivity of

H 2.F.X/;Z/ � H 2.F.X/;Z/pr

claimed in [23, Section 4], which only exists with coefficients in Q or after some
suitable localization, and, no argument is given for the surjectivity in the proof of [23,
Lemma 5.12]. The problem is similar to showing that

H 2.F.X/;Z/pr ,! H 2.FL;Z/
�
pr

is bijective, see the proof of Proposition 4.1. Furthermore, the claim that H 2.DL;Z/

is the invariant part of H 2.FL;Z/, which again does hold for coefficients in Q and for
algebraic classes, see Sections 2.4 and 3.6, is not adequately addressed and no proof is
given for the torsion freeness of H 2.FL;Z/.

Shen’s result [33, Theorem 1.5 (2) and Remark 5.10] for the Fano surface of lines
meeting a fixed general rational curve of degree at least two is similar to the above
proposition. The proof of the surjectivity there relies on degeneration techniques devel-
oped in [34]. Also the image of 1� �� is used instead ofH 2.FL;Z/�pr, which, however,
by virtue of 2.7 eventually amounts to the same. Subsequently, Shen considered the
case of lines. The results [31, Theorem 4.7 and Corollary 4.8] come closest to Propo-
sition 4.1 and Theorem 1.2, although Shen defines the primitive anti-invariant part
in terms of two classes in H 2.FL;Z/, the Plücker polarization and the class of the
fibre of the natural projection FL L. Also, the convention for the pairings q and
.1=2/. : / on the two sides are different. In Section 5.5 we give a brief comparison of
the techniques.

5. Chow groups and Chow motives

The goal of this section is to ‘lift’ the Hodge isometry constructed above to the
level of integral Chow groups and rational Chow motives. As a first step, one needs to
define properly the analogue of the Prym variety Prym.CL=DL/ as a subgroup of the
Chow group CH0.FL/.
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5.1. Let us first consider the general situation of an even 16-nodal quintic D � P3

and the natural double cover � WF � D with the covering involution �.
Let CH.F /hom D CH0.F /hom � CH0.F / be the homologically trivial part of the

Chow group (of 0-cycles) on the surface F . We consider it with the action induced by
the involution

��WCH0.F /hom
�
�! CH0.F /hom

and define the two subgroups

CH0.F /˙hom WD ¹˛ j �
�˛ D ˙˛º:

The groups CH0.D/hom and CH0.F /hom are divisible and, since the Albanese of
the regular surfaces D and F are trivial, also torsion free [8, 30]. In particular, this
allows one to write any class ˛ 2 CH0.F /hom as

˛ D ˛C C ˛�

with integral ˛˙ 2 CH0.F /˙hom. Explicitly, ˛˙ WD .1=2/.˛ ˙ ��˛/. In other words,

(5.1) CH0.F /hom D CH0.F /Chom ˚ CH0.F /�hom:

The group CH0.F /Chom can be identified with CH0.D/hom via

��WCH0.D/hom
�
�! CH0.F /Chom:

Indeed, �� is injective, as �� ı �� D 2 � id and CH0.D/hom is torsion free. The sur-
jectivity follows from the well-known statement for Chow groups with coefficients
in Q, see [15, Example 1.7.6], and the divisibility of the Chow group. Note that the
singularities of the surface D do not cause trouble, for CH0.D/hom ' CH0. zD/hom

by [35, Corollary 9.8].
We are more interested in the anti-invariant part which admits several alternative

descriptions.

Lemma 5.1. Projection defines an isomorphism

CH0.F /�hom ' CH0.F /hom=CH0.F /Chom ' CH0.F /hom=CH0.D/hom:

Furthermore,

CH0.F /�hom D Im
�
1 � ��WCH0.F /hom ! CH0.F /hom

�
and

CH0.F /�hom D ker
�
��WCH0.F /hom ! CH0.D/hom

�
:

In particular, CH0.F /�hom is generated by classes of the form Œt � � Œ�.t/� 2 CH0.F /.
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Proof. The first two assertions follow from the discussion above. It remains to verify
the description of CH0.F /�hom as ker.��/.

As��˛D����˛D��.�˛/ for all˛ 2CH0.F /�hom and since CH0.D/hom is torsion
free, the inclusion CH0.F /�hom� ker.��/ is clear. Conversely, write a given˛ 2 ker.��/
as above as ˛ D ˛C C ˛� D ��ˇ C ˛�, which leads to 0 D ��˛ D ����ˇ D 2ˇ
and, therefore, ˇ D 0, i.e., ˛ D ˛�.

Remark 5.2. The situation is very similar to the case of cubic threefolds where
Prym.CL=DL/ is replaced by CH0.FL/�hom. However, there are two notable differences
caused by the torsion freeness of the Chow group.

First, the Prym variety Prym.CL=DL/, defined as the image of

1 � ��WPic0.CL/! Pic0.CL/;

and thus isomorphic to the quotient Pic.CL/= Pic.CL/C, is only one of the two con-
nected components of the kernel of ��WPic0.CL/! Pic0.DL/. Second,

��WPic0.DL/! Pic0.CL/

has a kernel of order two generated by the torsion line bundle defining the étale double
cover CL ! DL. In other words, the analogue of (5.1) in the case of cubic threefolds
is not a direct product decomposition of Pic0.CL/ but the étale degree two map

Pic0.DL/ � Prym.CL=DL/ � Pic0.CL/:

5.2. The arguments to prove the first part of Theorem 1.4 follow closely ideas of
Murre [25]. At the heart of the proof is the following geometric construction which
has immediate consequences for the Chow group of X . Here, as before, we use L;L0,
etc. to denote a line in X as well as the corresponding point in FL.

Consider a tangent direction v at a point x 2 L � X , i.e., a line in TxX , and let
Lv � P5 be the unique line through x realizing this tangent direction. If Lv is not
contained in X , then it intersects X in x with multiplicity at least two and, therefore,
defines a unique point yv 2 X such that Lv \X D 2x C yv, cf. [22, Section 2.1.5].
This defines a dominant rational map P .TX jL/ X which is not defined at the points v
with Lv � X . Note that by construction any Lv � X , v 2 P .TX jL/, intersects L, and
hence defines a point Lv 2 FL. Conversely, mapping a line L0 2 FL distinct from L

to its tangent direction at the point of intersection L \ L0 D ¹xº defines a map

FL n ¹Lº ,! P .TX jL/; L0 7! .x; TxL
0/;

which extends to a closed embedding

BlL.FL/ ,! P .TX jL/
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of the blow-up BlL.FL/ of FL in the point L 2 FL. The blow-up can also be described
as q�1.L/, whereF

p
 �L

q
�!X denotes the universal family of lines inX . In particular,

the exceptional curve in BlL.FL/ can be viewed as p�1L�L. The picture is as follows:

L P .TX /

BlL.FL/ ' q�1.L/ P .TX jL/

L 'p�1L P .TL/:
�

We now consider the blow-up

� W zX WD BlBlL.FL/.P .TX jL// � P .TX jL/

with the surface BlL.FL/ as its center. Then the dominant rational map P .TX jL/ X

extends to a surjective morphism


 W zX � X:

Alternatively, zX can be described as the incidence variety of all triples .x; y; L0/
consisting of a lineL0 � P5 and points x 2L\L0, y 2X \L0 such that 2x �X \L0,
i.e., L0 is tangent to X at the point x.7 Then

�.x; y; L0/ D .x; TxL
0/ 2 P .TX jL/ and 
.x; y; L0/ D y 2 X:

ForL0 2 FL n ¹Lº thought of as the point .x;TxL0/ 2 P .TX jL/, the fibre ��1.L0/� zX
consists all triples .x; y; L0/, where ¹xº D L \ L0 and y 2 L0 arbitrary. In particular,


 W ��1.L0 D .x; TxL
0//

�
�! L0 � X:

Similarly, for .x; TxL/ 2 P .TX jL/ the fibre under the blow-up is ¹.x; y; L/ j y 2 Lº.
Hence, the pre-image ��1.p�1L/ of the exceptional line L ' p�1L � BlL.FL/ is
naturally identified with L � L such that � and 
 correspond to the two-projections.

The morphism 
 is generically of degree two, which is seen as follows. For any
point y 2 X n L consider the plane cubic curve X \ Ly. For a generic point y the
residual conic Qy of L � X \ Ly does not contain L and, therefore, intersects L in

7A. Kuznetsov suggested to view zX alternatively as the fibre product BlL.X/ �P3 E , where E �
BlL.X/ denotes the exceptional divisor. Note that the restriction �WE ! P 3 is generically finite of degree
two and that the conic fibration given by the first projection zX ! E comes with a section.
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at most two points x1; x2 2 L. The tangent directions of the two lines connecting x1
and x2 with y are the pre-images of y; see [22, Corollary 2.1.21] for further details.

The induced rational covering involution

zX zX

X

j


 


maps a generic point .x1; y; L/ to .x2; y; L0/, where L0 is the line through y and the
second point of intersection of Qy \ L D ¹x1; x2º.

5.3. Since � W zX ! P .TX jL/ is the blow-up in BlL.FL/ � P .TX jL/, the Chow group
CH1. zX/ naturally splits as

CH1. zX/ ' �� CH1.P .TX jL//˚ k���0 CH0.BlL.FL//
' CH1.P .TX jL//˚ CH0.FL/:

Here,

�0WE WD �
�1.BlL.FL// � BlL.FL/ and kW ��1.BlL.FL// ,! zX

are the projection, a P1-bundle, and the natural closed embedding of the exceptional
divisor.

Lemma 5.3. The homologically trivial part of CH. zX/ sits in dimension one and is
naturally identified with the homologically trivial part of the center of the blow-up � ,
i.e.,

CH. zX/hom D CH1. zX/hom ' CH0.FL/hom D CH.FL/hom:

Proof. The assertion follows directly from the fact that the first summand in the above
decomposition injects into cohomology.

The component in CH0.FL/ of a curve class ˛ 2CH1. zX/ is computed by��0�˛jE .
For example, if C � zX intersects only one fibre ��10 .L0/ and does so transversally in
only one point, then ŒC � is mapped (up to the sign) to the class of that fibre�Œ��10 .L0/�2

k��
�
0 CH0.FL/.

Lemma 5.4. The direct image 
�WCH. zX/! CH.X/ defines a surjective map

CH1. zX/hom � CH1.X/hom:

Furthermore, CH1.X/ is generated by lines intersecting a fixed line L.
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Proof. As 
 is of degree two, we know that


� ı 

�
D 2 � id:

As CH1.X/ is generated by lines, see [28, 32] or the more general result [36, Theo-
rem 1.6], homological equivalence equals algebraic equivalence. Thus, CH1.X/hom is
divisible and the assertion follows.

The second assertion follows from CH1. zX/hom being contained in the subgroup
generated by classes of fibres L0 ' ��10 .L0/ � zX over L0 2 BlL.FL/.

Lemma 5.5. The pull-back 
�WCH1.X/! CH1. zX/ maps the subgroup CH1.X/hom

� CH1.X/ onto CH0.FL/�hom � CH0.FL/hom ' CH1. zX/hom.

Proof. We have to show that the image of 
�WCH1.X/hom ! CH0.FL/ is CH0.FL/�.
Clearly, the image is invariant under the covering involution j � and we also know that
CH1.X/ is generated by the classes of lines L0 2 FL.

Fix a generic line L0 2 FL. As explained above, ��1.L0/ � zX consists of all triples
.x0; y; L0/ with ¹x0º D L \ L0 and y 2 L0 arbitrary. By definition,

j.x0; y; L0/ D .x00; y; L00/;

where x00 is the point of intersection of L with the residual line �.L0/ of L [ L0 �
X \ LL0, i.e., L [ L0 [ �.L0/ D X \ P2 and L00 WD x00y.

The second component of the class

Œj.��1.L0//� 2 CH1. zX/ D CH1.P .TX jL//˚ CH0.FL/

is �Œ��1.L00/�, because j.��1.L0// intersects the exceptional divisor ��1.BlL.FL//
transversally in the point .x00; z; �.L0//, where ¹zº D L0 \ �.L0/. Therefore, the homo-
logically trivial part of 
�ŒL0� is nothing but

Œ��1.L0/�C Œj.��1.L0//� D Œ��1.L0/� � Œ��1.�.L0//�;

which corresponds to ŒL0� � Œ�.L0/� 2 CH0.FL/�. As classes of this form generate
CH0.FL/�, this proves surjectivity.

Lemma 5.6. Consider a class ˛ 2 CH0.FL/� � CH0.FL/� CH1. zX/. Then, we have

�
�.˛/ D 2˛.

Proof. By the surjectivity of 
�WCH1.X/hom � CH0.FL/� proved in the previous
lemma, it suffices to verify the assertion for classes of the form 
�ˇ, which follows
from 
� ı 


� D 2 � id.
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5.4. We can now conclude the proof of the first part of Theorem 1.4, by adapting
arguments of Murre [25] to the case of cubic fourfolds.

First observe that for L ¤ L0 2 FL the morphism 
 W zX ! X induces an isomor-
phism 
 W ��1.L0/

�
�! L0 � X . Hence, for two arbitrary points L0; L00 2 FL the map

(5.2) CH0.FL/hom ' CH1. zX/hom

�
��!! CH1.X/hom

sends ŒL0�� ŒL00� 2CH0.FL/hom to the class ŒL0�� ŒL00� 2CH1.X/hom. In other words,

CH0.FL/hom
k�ı�

�
0

����!! CH1. zX/hom

�
��!! CH1.X/hom

is indeed the map induced by the Fano correspondence.
Next recall from the proof in Section 3.3 the standard fact that we have

ŒL0�C ŒL00� D ŒX \ P2� � ŒL� � const

in CH1.X/ for any L0 2 FL and its image L00 WD �.L0/ 2 FL under the covering
involution of � WFL!DL. Combining this with Lemma 5.1, we find that the map (5.2)
factors through a surjection

CH0.FL/�hom � CH1.X/hom:

However, as by virtue of Lemma 5.6 we know that 
�
�.˛/D 2˛ for all ˛ 2CH0.FL/�

and since CH0.FL/ is torsion free, the map is in fact bijective.

5.5. The approaches to Theorem 1.4 here and in [31, Theorem 4.7] are different. Shen
uses a family of correspondences of degree five for the Fano surfaces FL, similar to
the construction in [32, Section 3] for higher degree rational curves. The action of this
correspondence is the composition of the Fano correspondence and its dual, which
he identifies with the action �� � id. Our arguments instead rely on techniques due to
Murre for cubic threefolds [25] and, at least at first glance, there does not seem to be
any link between the two.

5.6. Consider the general situation of Section 5.1, i.e., � WF �D is a finite morphism
of degree two between surfaces with vanishing irregularity and � is the covering
involution with its graph �� � F � F . Then the rational Chow motive h.F / 2Mot.C/
decomposes into

h.F / ' h.F /C ˚ h.F /�;

where h.F / WD .F; Œ�F �/ and h.F /˙ WD .F; .1=2/.Œ��˙ Œ���/. On the other hand,

h.F / ' h0.F /˚ h2.F /˚ h4.F /:
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Note that due to q.F / D 0, the odd parts h1.F / and h3.F / are both trivial and recall
that

h0.F /´
�
F; p0 D Œx � F �

�
' L0;

h4.F / WD
�
F; p4 D ŒF � x�

�
' L2;

h2.F / WD
�
F; Œ�� � p0 � p4

�
:

The two decompositions are compatible in the sense that

h.F /C ' h0.F /˚ h2.F /C ˚ h4.F / and h.F /� ' h2.F /�:

Eventually, the choice of a polarization on F allows one to write

h2.F / ' h2.F /pr ˚ L and h.F /� D h2.F /� ' h2.F /�pr ˚ L:

5.7. The Chow motive of a smooth cubic fourfold X � P5 naturally decomposes as

h.X/ '

4M
iD0

Li ˚ h4.X/pr:

The first summand corresponds to the image of H�.P5;Q/! H�.X;Q/ while the
cohomology of the second isH 4.X;Q/pr. Recall that due to results of Bloch–Srinivas,
cf. [43, Proposition 22.27], and Murre [26], the cycle class map

CH2.X/˝Q! H 4.X;Q/

is injective for the rationally connected variety X . Together with the Hodge conjecture
for cubic fourfolds [41], this gives

CH.h4.X/pr/˝Q D
�
CH2.X/pr ˚ CH1.X/hom

�
˝Q

' H 2;2.X;Q/pr ˚ CH1.X/hom ˝Q:

Now, the Fano correspondence induces a morphism

(5.3) h2.FL/
�
pr ! h4.X/pr.1/

in Mot.C/. Taking Chow groups (with Q-coefficients) gives

CH0.FL/� ˚ CH1.FL/�pr ! CH1.X/hom ˚ CH2.X/pr:

The first component is nothing but the isomorphism CH0.FL/�hom
�
�! CH1.X/hom

proved in Section 5.4. The second defines the map

H 1;1.FL;Q/
�
pr ' CH1.FL/�pr ˝Q! CH2.X/pr ˝Q �

�! H 2;2.X;Q/pr;

which according to Proposition 4.1 is an isomorphism.
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To conclude the verification of the second part of Theorem 1.4, i.e., the isomor-
phism h2.F /�pr ' h4.X/pr.1/, it is enough to observe that (5.3) induces isomorphisms
between their Chow groups even after arbitrary base field extension. By Manin’s iden-
tity principle, combine [16, Lemma 1] and [29, Lemma 3.2], see also [21, Lemma 1.1]
and [40, Lemma 4.3], this implies that (5.3) is indeed an isomorphism. This last
argument is rather standard and essentially identical to the proof in [9].

A. The topological fundamental group of FL (by John Christian Ottem)

Let X be a smooth cubic fourfold and L � X a line. In this appendix, we prove
that the surface FL � F.X/ of lines in X meeting L is simply connected.

Theorem A.1. The surface FL is simply connected.

Let F 0 denote the blow-up of FL in the point ŒL� 2 FL � F.X/. The starting point
of the proof is the fact that F 0 embeds into the projective bundle P .TX jL/ overLD P1.
Taking L general, we may assume that TX jL ' E , where E is the following vector
bundle on P1:

E D O2
P1 ˚OP1.1/˚OP1.2/:

Write �WP .E/! P1 for the bundle projection. Then the Picard group of P .E/ is
generated by ��O.1/ and the relative tautological O�.1/. We will be interested in the
following two line bundles

L1 WD �
�O.3/˝O�.2/ and L2 WD �

�O.3/˝O�.3/:

The surface F 0 � P .E/ is defined by a section of the vector bundle E appearing
as the extension, cf. [20, Proposition 2.3.10]:

(A.1) 0! L2 ! E ! L1 ! 0:

In particular, we have

(A.2) F 0 D V.s2/ � V.s1/ � P .E/;

where s1 2 H 0.P .E/;L1/ and s2 2 H 0.V .s1/;L2jV.s1//.
We will prove Theorem A.1 by a Lefschetz-type argument. This is slightly delicate,

because the line bundles L1 and L2 are not ample. However, as we will see, they still
have just enough positivity to make the argument work.

By Corollary A.4 below, the surface F 0 is deformation equivalent to a surface
S D V.s/�D for a general divisorD 2 jL1j and a general section s 2H 0.D;L2jD/.



Nodal quintic surfaces and lines on cubic fourfolds 527

It will be convenient to pick sections x0, x1, y0, y1, y2, y3 such that:

H 0.P .E/; ��O.1// D hx0; x1i;

H 0.P .E/;O�.1// D hy0; y1i;

H 0.P .E/; ��O.1/˝O�.1// D hx0y0; x0y1; x1y0; x1y1; y2i;

H 0.P .E/; ��O.2/˝O�.1// D hx
2
0y0; x

2
0y1; x0x1y0; x0x1y1; x0y2;

x21y0; x
2
1y1; x1y2; y3i:

In terms of these sections, a basis of H 0.P .E/;L1/ is given by the following 25
monomials:

(A.3)
xi0x

3�i
1 y20 ; xi0x

3�i
1 y0y1; xi0x

3�i
1 y21 ; xi0x

2�i
1 y0y2;

xi0x
2�i
1 y1y2; xiy0y3; xiy1y3; xiy

2
2 ; y2y3:

Similarly, H 0.P .E/;L2/ has a basis consisting of the 38 monomials:

(A.4)
xi0x

3�i
1 y30 ; : : : ; x

i
0x
3�i
1 y31 ; xi0x

2�i
1 y20y2; : : : ; x

i
0x
2�i
1 y21y2;

xiy
j
0y

2�j
1 y3; xiy0y3; xiy1y3; y0y2y3; y1y2y3; y32 :

Lemma A.2. The base locus of both linear systems jL1j and jL2j is the curve

Z D P .O.2// D V.y0; y1; y2/ � P .E/:

A general divisor in jL1j is non-singular; a general divisor of jL2j has multiplicity
two along Z.

Proof. Both base loci must be contained in the base locus of ��O.1/˝O�.1/ which
clearly equalsZ, as we see using the basis above. Conversely, every monomial in (A.3)
and (A.4) is divisible by either y0; y1 or y2, so Z is exactly the base locus.

For the second claim, one easily checks that x30y
2
0 C x

3
1y0y1C x

2
0x1y

2
1 C y2y3D 0

defines a non-singular divisor in P .E/. Similarly, y1y2y3 has multiplicity two alongZ
and every other monomial of (A.4) vanishes to order at least two there.

Remark A.3. It is natural to wonder whether the surfaceF 0 is actually a complete inter-
section of divisors in jL1j and jL2j on P .E/ (or stronger, whether the sequence (A.1)
splits). However, this is excluded by Lemma A.2, as any such complete intersection
will be singular along Z, but F 0 is smooth.

In fact, for any D 2 jL1j the restriction L2jD admits a section which is not a
restriction from P .E/. For example, for D D V.s1/ one can take the section defining
F 0 � V.s1/. Indeed, this follows from the exact sequence

(A.5) 0! O�.1/! L2 ! L2jV.s1/ ! 0
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and
H 1.P .E/;O�.1// ' H

1.P1;O.�2// ' C;

and
H 1.P .E/;L2/ ' H

1.P1; S2.E_/˝OP1.3// D 0:

By the sequence (A.5), the line bundle L2jD has a 37-dimensional space of global
sections for every D 2 jL1j. This implies that the parameter space of surfaces of the
form V.s2/ � V.s1/ as in (A.2) is a projective bundle over a projective space, hence it
is a smooth projective variety.

Corollary A.4. The parameter space of surfaces F 0 appearing as in a flag (A.2) is
irreducible.

Let X WD D n Z and let � WX ! P36 be the morphism defined by the linear
system jL2jDj.

Lemma A.5. The morphism � is generically injective, and contracts no divisor.

Proof. The 38 sections in (A.4) define a morphism

� WP .E/ nZ ! P37:

We claim that � contracts only the surface V.y0; y1/ to a point and is an embedding
on the complement P .E/ n V.y0; y1/. Note first that � is a toric morphism. This implies
that the locus of points z 2 P37 for which the fibre ��1.z/ has positive dimension
is a union of linear subvarieties of P37. Given the 38 monomials above, it is easy
(for instance, in Macaulay2) to compute the fibres ��1.e0/; : : : ; ��1.e37/ over the
standard coordinate points. Doing this, we find that there is a single point with positive-
dimensional fibre, namely

��1
�
Œ0 W � � � W 0 W 1�

�
D V.y0; y1/I

for the remaining points, the fibre ��1.ek/ is either empty or consists of a single point.
By semicontinuity of fibre dimension, this implies that � is injective on the complement
P .E/ n V.y0; y1/.

Now, note that the intersection � D D \ V.y0; y1/ is 1-dimensional. This follows
by Bertini, because the base locus of L1 isZ andD is assumed to be general. It follows
that the restriction

� jDnZ WD nZ ! P37

contracts at most finitely many curves to points. This morphism is defined by a subsys-
tem of jL2jDj, so the same conclusion holds for � .
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Lemma A.6. The generic D 2 jL1j is a smooth projective rational threefold, and
hence simply connected.

Proof. The genericD 2 jL1 D �
�.O.3/˝O�.2/j is smooth, see Lemma A.2, and the

projection D ! P1 is generically a quadric bundle over P1. Hence, D is rational.

Proof of Theorem A.1. Let H � P36 denote a general hyperplane. Since � defines
a small birational morphism, we may apply a theorem of Goresky–MacPherson [17,
pp. 150–151] (where with the notation there yn D 2), and deduce that the natural map

�i .�
�1.H//! �i .X/

is an isomorphism for i < 2. However, �1.X/D 0 by Lemma A.6, becauseD is simply
connected and X is obtained from D by removing a closed subset of real codimension
four.

Let now S 2 jL2jDj be a general divisor. Then S is non-singular and irreducible,
because F is of this form. From the previous paragraph, we know that S nZ, which
equals��1.H/ for a generalH , is simply connected. As�1.S nZ/ surjects onto�1.S/,
we deduce that S is simply connected as well. Finally, we note that F 0 is deformation
equivalent to S , so F 0 and hence F is simply connected. This completes the proof of
Theorem A.1.
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