
Groups Geom. Dyn. 18 (2024), 1233–1273
DOI 10.4171/GGD/809

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Compressed decision problems in hyperbolic groups

Derek Holt, Markus Lohrey, and Saul Schleimer

Abstract. We prove that, for any hyperbolic group, the compressed word and the compressed con-
jugacy problems are solvable in polynomial time. As a consequence, the word problem for the
(outer) automorphism group of a hyperbolic group is solvable in polynomial time. We also prove
that the compressed simultaneous conjugacy and the compressed centraliser problems are solv-
able in polynomial time. Finally, we prove that, for any infinite hyperbolic group, the compressed
knapsack problem is NP-complete.

1. Introduction

1.1. Background

Suppose thatG is a finitely generated group. Let† be a finite generating set which is sym-
metric: If a lies in† then so does a�1. The word problem forG asks, given a wordw 2†�,
if w represents the identity in G. This, along with the conjugacy and isomorphism prob-
lems, was set out by Dehn [18] in 1911. These three decision problems are fundamental
in group theory generally [13, 55].

However, Dehn’s claimed justification was that solutions to these problems have
applications in what is now called low-dimensional topology. Dehn’s techniques, in par-
ticular his solution to the word problem in surface groups, were greatly generalised by
Gromov. Gromov [31] introduced what are now called word-hyperbolic or Gromov hyper-
bolic groups. (We will simply call these hyperbolic groups; see Section 3.) With this and
other innovations, Gromov revived the strictly geometric study of groups. For example,
he characterised hyperbolic groups as being exactly those that satisfy a linear isoperimet-
ric inequality (see [31, Section 6.8.M] as well as [10, 62, 64]). Gromov also showed that,
in certain models of random groups, all groups are almost surely hyperbolic (see [31,
Section 5.5.F] as well as [63]).

Another theme in geometric group theory is the subject of distortion. As a concrete
example, consider the Baumslag–Solitar group [6]

G D
˝
a; b j b�1ab D a2

˛
:

Mathematics Subject Classification 2020: 20F10 (primary); 20F67 (secondary).
Keywords: algorithmic group theory, hyperbolic groups, word problem, straight-line programs.

https://creativecommons.org/licenses/by/4.0/

D. Holt, M. Lohrey, and S. Schleimer 1234

The subgroup hai is exponentially distorted in G, in the sense that the element a2n
DG

b�nabn has length 2n as an element of hai but length 2nC 1 as an element of G. Thus,
to solve the word problem efficiently in G, it seems necessary to record exponents of a,
say in binary (see also [72]).

So, seeking to solve the word problem in groups leads us to consider compressed
words: elements of the group given by some useful succinct representation. One popu-
lar such representation is by straight-line programs; we give definitions and examples of
these in Section 4.1. We will call the word problem for group elements that are represented
by straight-line programs the compressed word problem.

The motivating result for this paper is a theorem due to the second author [48,
Theorem 4.5]. Let Fn be the free group on n generators. Lohrey gives a polynomial-
time algorithm to solve the compressed word problem for Fn; in fact, this problem is
P-complete. Building on this, the third author shows in [68, Theorems 5.2 and 6.1] that
the word problems for Aut.Fn/ and Out.Fn/ can be solved in polynomial time and then
goes on to show that the compressed word problem for closed surface groups can be solved
in polynomial time. This also gives a new solution to the word problem in mapping class
groups of surfaces.

This sequence of results closely parallels Dehn’s original development, but in the
compressed setting.

1.2. This paper

Suppose that w is a word in the generators of G. We say w is shortlex reduced if it is
shorter than, or of the same length and lexicographically earlier than, any other word rep-
resenting the same group element (see Definition 2.2). Suppose that G is a straight-line
program over †. Then we denote the output of G by eval.G /. Here is our main result.

Theorem 5.7. Let G be a hyperbolic group, with symmetric generating set †. There
is a polynomial-time algorithm that, given a straight-line program G over †, finds a
straight-line program H so that eval.H / is the shortlex reduction of eval.G /.

This was previously announced without proof in [50, Theorem 4.12]. From this
theorem, we deduce the following.

Corollary 5.8. Let G be a hyperbolic group. Then the compressed word problem for G
can be solved in polynomial time.

In the recent paper [40], the first author, with Sarah Rees, has generalised the tech-
niques of this paper to relatively hyperbolic groups where all peripheral groups are free
abelian. So, for a knotK � S3, the compressed word problem for the knot complement is
polynomial time. This gives a further parallel with Dehn’s program for low-dimensional
topology via the study of the fundamental group.

Compressed decision problems in hyperbolic groups 1235

1.3. Applications

Given these results, in Section 6.2, we deal with the compressed versions of several other
algorithmic problems. Recall that the order problem for a group G asks us, given an
element g 2 G, to compute the order of g. Since hyperbolic groups only have torsion
elements of bounded order, we can prove the following.

Corollary 6.1. Let G be a hyperbolic group. Then the compressed order problem for G
can be solved in polynomial time.

The first author, with Epstein, [25] proved that the conjugacy problem in hyperbolic
groups is linear time. If, in the conjugacy problem, we replace the given pair of elements
by a pair of finite ordered lists of elements, then we obtain the simultaneous conjugacy
problem. See [45] and its references for a discussion of this problem, for various classes
of groups.

In the centraliser problem, the input consists of a list of group elements g1; : : : ;gk 2G

and the goal is to compute a set of generators for the intersection of the centralisers of the
gi . Holt and Buckley [12] proved that the simultaneous conjugacy problem as well as the
centraliser problem for hyperbolic groups is linear time.

Using the results of [12, 25], and our work above, we solve the compressed versions
of these problems.

Theorem 6.3. Let G be a hyperbolic group. Then the compressed simultaneous con-
jugacy problem for G can be solved in polynomial time. Moreover, if the two input lists
are conjugate, then we can compute a straight-line program for a conjugating element in
polynomial time.

Theorem 6.4. LetG be a hyperbolic group. Then the compressed centraliser problem for
G can be solved in polynomial time.

We remark that, for finitely generated nilpotent groups, the (compressed) simultaneous
conjugacy problem is solvable in polynomial time [54, Theorem 7].

As suggested in [68, Remark A.5], the word problem for a finitely generated sub-
group of the automorphism group Aut.G/ is polynomial-time reducible to the compressed
word problem for G. Similarly, the word problem for a finitely generated subgroup of
the outer automorphism group Out.G/ is polynomial-time reducible to the compressed
simultaneous conjugacy problem for G (see [35, Proposition 10]).

Note that, if G is hyperbolic then Aut.G/, and thus Out.G/, is finitely generated
(see [17, Corollary 8.4]). We deduce the following.

Corollary 1.1. Let G be a hyperbolic group. Then the word problems for Aut.G/ and
Out.G/ can be solved in polynomial time.

D. Holt, M. Lohrey, and S. Schleimer 1236

Our final application is to knapsack problems. Suppose that G is a finitely generated
group. The given input is a list .u0; u1; u2; : : : ; uk/ of words over the generators ofG. We
are asked if there are natural numbers ni such that

u0 DG u
n1

1 u
n2

2 � � �u
nk

k
:

When G is hyperbolic, the knapsack problem can be solved in polynomial time (see [59,
Theorem 6.1]).

In the compressed knapsack problem, the words ui are represented by straight-line
programs. For the special case G D Z, this problem is a variant of the classical knapsack
problem for binary encoded integers, which is NP-complete [43, p. 95]. Using this, and
our results above, we prove the following.

Theorem 6.5. Let G be an infinite hyperbolic group. Then the compressed knapsack
problem for G is NP-complete.

1.4. Related work

We here give a brief overview of previous work. For a more in-depth treatment, we refer
to [49, 50].

1.4.1. Compressed word problems. The use of straight-line programs in group theory
dates back to, at least, the methods developed by Sims [69] for computing with a sub-
group of the symmetric group Sn defined by generators. The first step in virtually all of
the algorithms developed by Sims is to expand the given list of generators to a longer list
(a strong generating set) by defining a sequence of new generators as words in the existing
generators. Straight-line programs were later used, again in the context of finite groups,
by Babai and Szemerédi [3] in the proof of their Reachability Theorem.

Note that the compressed word problem for a group G is decidable if and only if the
word problem for G is decidable. However, the computational complexity of the com-
pressed word problem for G can be strictly more difficult than the word problem itself.
We return to this topic below.

It is interesting to note that the compressed word problem for a group G is exactly the
circuit evaluation problem for G. For finite groups, the compressed word problem, and
thus the circuit evaluation problem, is nearly linear time. In fact, more is known. The par-
allel complexity of the circuit evaluation problem over finite groups is investigated in [7].
If G is a finite solvable group, then the compressed word problem for G belongs to the
parallel complexity class DET� NC2. IfG is finite and not solvable, then the compressed
word problem for G is P-complete.

We now turn our attention to infinite, but finitely generated, groups. As mentioned
above, the word problem for a finitely generated subgroup of Aut.G/ is polynomial-time
reducible to the compressed word problem for G. A similar reduction exists for certain
group extensions [50, Theorem 4.8 and 4.9]. These results on automorphisms are tightly
connected to the study of distortion of subgroups, mentioned above.

Compressed decision problems in hyperbolic groups 1237

Beyond hyperbolic groups, there are several important classes of groups where the
compressed word problem can be solved in polynomial time. These include the following:

• Finitely generated nilpotent groups [50, Section 4.7]. Here, the compressed word
problem belongs to the parallel complexity class DET [46].

• Virtually special groups; that is, finite extensions of finitely generated subgroups
of right-angled Artin groups [50, Corollary 5.6]. Right-angled Artin groups are
also known as graph groups or partially commutative groups. The class of virtu-
ally special groups contains all Coxeter groups [34], one-relator groups with tor-
sion [73], fully residually free groups [73], and fundamental groups of hyperbolic
three-manifolds [1]. Note that the case of fully residually free groups is independently
due to Macdonald [53].

Furthermore, the class of groups with polynomial time compressed word problem is
closed under the following operations:

• Graph products [50, Chapter 5].

• Amalgamated free products (or HNN-extensions) where the edge groups are finite
[50, Chapter 6].

We also note that, for finitely generated linear groups, the compressed word problem
belongs to the complexity class CORP [50, Theorem 4.15]. That is, there is a random-
ised polynomial-time algorithm that may err with a small probability on negative input
instances.

1.4.2. Hardness results. Certain hardness results for the compressed word problem are
known or suspected:

• The compressed word problem for every restricted wreath product G o Z with G
finitely generated nonabelian is CONP-hard [50, Theorem 4.21]. For G finite non-
solvable (or free of rank 2), the problem is PSPACE-complete [4, Corollary B]; the
authors obtain the same result for Thompson’s group F , the Grigorchuk group, and
the Gupta–Sidki groups.
On the other hand, the uncompressed word problem for the Grigorchuk group can
be solved in logarithmic space [28]. Also, if G is finite then the uncompressed word
problem for G o Z belongs to the circuit complexity class NC1 [70]. Thus, we have
examples of groups where the compressed word problem is provably more difficult
than the uncompressed word problem.

• There exist automaton groups with an EXPSPACE-complete compressed word
problem [71].
On the other hand, the uncompressed word problem for any automaton group belongs
to PSPACE. Again this gives examples where the compressed word problem is
provably more difficult than the uncompressed.

• The compressed word problem for the linear group SL.3; Z/ is equivalent, up to
polynomial-time reductions, to the problem of polynomial identity testing. This last is

D. Holt, M. Lohrey, and S. Schleimer 1238

the decision problem of whether a given circuit over the polynomial ring ZŒx1; : : : ; xn�

evaluates to the zero polynomial [50, Theorem 4.16]. The existence of a polynomial-
time algorithm for polynomial identity testing is an outstanding open problem in the
area of algebraic complexity theory.
On the other hand, the uncompressed word problem for SL.3;Z/ is polynomial time.

1.4.3. Knapsack problems over groups. The uncompressed knapsack problem has been
studied for various classes of groups (see [26, 27, 47]). For non-elementary hyperbolic
groups, the knapsack problem lies in LOGCFL (the logspace closure of the class of
context-free languages) (see [51, Theorem 4.1]). The second author further shows, in [52,
Theorem 3.1], that the compressed knapsack problem for every virtually special group
belongs to NP.

1.4.4. Compressing integers. In addition to straight-line programs, there are other meth-
ods of compression that arise in significant ways in computational group theory. Here
we will mention just a few with particular relevance to the word problem. These are
techniques for recording extremely large integers, as opposed to recording long words.

The binary representation of an integer n can be translated into a straight-line pro-
gram Gn of size O.log n/ with output an. Following our discussion of circuit evaluation
above, we could replace “concatenation of strings” by the primitive operator “addition of
integers”. Likewise, we replace the alphabet ¹aº by the alphabet ¹1º. This transforms the
straight-line program Gn into an additive circuit with output n.

If we allow multiplication as well as addition gates, we obtain arithmetic circuits. For
example, a circuit with n gates can produce an integer of size 22n

using iterated squaring.
Power circuits, the topic of [61], replace multiplication of x and y by the operation x � 2y :
that is, shifting the first input by the second. Thus, a power circuit of depth n can represent
an integer of the size of a tower of exponentials of height n. The same authors use their
new theory, in [60], to show that the word problem in Baumslag’s group [5]˝

a; b j
�
b�1ab

��1
a
�
b�1ab

�
D a2

˛
is polynomial time. Recently, the complexity has been further improved to the paral-
lel complexity class TC1 [56]. We note that Baumslag’s group has a non-elementary
Dehn function [66]; this demonstrates one of the many possible separations between the
computational and the geometric theories of a group.

Again exploiting various properties of power circuits, the authors of [20] give a cubic
time algorithm for the word problem in Baumslag’s group [20, Theorem 16]. They also
show that the word problem for Higman’s group [36]˝

a; b; c; d j b�1ab D a2; c�1bc D b2; d�1cd D c2; a�1da D d2
˛

is polynomial time [20, Theorem 19].
Of course, even more extreme compression is possible, and this leads to polynomial-

time algorithms for even more extreme groups. The authors of [21, 22] construct certain

Compressed decision problems in hyperbolic groups 1239

HNN-extensions of the hydra groups [23]

Hk D
˝
a; b j Œ���ŒŒa; b�; b�; : : : ; b� D 1

˛
;

where Œx; y� D x�1y�1xy is a commutator and Œ���ŒŒa; b�; b�; : : : ; b� is a nested commut-
ator of depth k, for which the Dehn function grows roughly like the Ackermann function
and the word problem is still solvable in polynomial time. For this, they use a compression
scheme for integers that yields a compression ratio of order of the Ackermann function on
some integers.

2. General notation

We include zero in the set of natural numbers; that is, N D ¹0; 1; 2; : : :º.

2.1. Words

Suppose that † is an alphabet; the elements of † are called letters. We write †� for the
Kleene closure of †; that is, the set of all finite words over †. We call any subset L � †�

a language over †.
For any alphabet †, we use " 2 †� to denote the empty word. Suppose that u, v, and

w are words over †. We denote the concatenation of u and v by u � v; we often sim-
plify this to just uv (u � v is sometimes preferred for better readability). So, for example,
w � "D " �wDw. We say that u is a factor of v if there are words x and y so that vD xuy.
We say that u is a rotation of v if there are words x and y so that v D xy and uD yx. We
have the following easy but useful result.

Lemma 2.1. Let u and v be words over†. Then u is a rotation of v if and only if juj D jvj
and u is a factor of v � v.

Suppose that w D a0 � a1 � � � an�1 lies in †�, where the ai are letters. Then we define
jwj to be the length of w; that is, jwj D n. For any i between zero and n � 1 (inclusive),
we define wŒi� D ai . Note that the empty word " is the unique word of length zero.

We now define the cut operators. Let w be a word, as above, and let i and j be indices
with 0 � i � j � n D jwj. We define wŒi W j � D ai � � �aj�1. If 0 � i � j � jwj does not
hold, then wŒi W j � is not defined. We use wŒW j � to denote wŒ0 W j �, the prefix of length
j . We use wŒi W� to denote wŒi W n�, the suffix of length n � i . Note that wŒi W i � D " and
w D wŒW i � � wŒi W�.

Suppose that † is a finite alphabet equipped with a total order < (the concrete choice
of < will never be important for us).

Definition 2.2. We define the shortlex order on †� as follows. For words u; v, we have
u <slex v if

D. Holt, M. Lohrey, and S. Schleimer 1240

• juj < jvj or

• juj D jvj and there are words x; y; z 2 †� and letters a; b 2 † so that

– u D xay,

– v D xbz, and

– a < b.

Note that shortlex is a well-order on †�; that is, every nonempty subset of †� has a
unique shortlex least element.

2.2. Finite state automata

We refer to [41] for background in automata theory. A (deterministic) finite state
automaton is a tuple M D .Q;†; q0; ı; F /, where

• Q is a finite set of states,

• † is a finite alphabet,

• q0 2 Q is the initial state,

• ıWQ �†! Q is a transition function, and

• F � Q is the set of accept states.

Intuitively, if the automaton M is “in” state q 2 Q and receives input a 2 †, then it
transitions to the new state ı.q;a/. We extend ı to a function ı0WQ �†�!Q recursively.
That is, for any state q, word w, and letter a, we have

• ı0.q; "/ D q and

• ı0.q; wa/ D ı.ı0.q; w/; a/.

Since ı and ı0 agree on words of length at most one, we will suppress ı0 in what follows
and instead reuse ı. We define

L.M/ D ¹w 2 †� j ı.q0; w/ 2 F º

to be the language accepted byM . Intuitively, if w lies in L.M/, then w, when input into
M , takes it from the initial state to an accept state.

We say that a language L � †� is regular, if there exists a finite state automaton M
so that L D L.M/.

3. Hyperbolic groups

We refer to [2] as a general reference on (word) hyperbolic groups.
LetG be a finitely generated group. Let 1G denote the identity element ofG. Let† be

a finite, symmetric generating set for G. That is, if a lies in † then so does a�1. For two
words u; v 2 †�, we will use u DG v to mean that u and v represent the same element of
G. We fix a total order < on †.

Compressed decision problems in hyperbolic groups 1241

The (right) Cayley graph � D �.G;†/ of G with respect to † is defined as follows:

• The vertices of � are the elements of G.

• The undirected edges of � are of the form ¹g; gaº for g 2 G and a 2 †.

We will label a directed edge .g; ga/ with the letter a. Note that G acts, by graph
automorphisms, on � on the left.

Giving all edges length one makes � into a geodesic metric space. We do this in such
a way so that the action of G is by isometries. The distance between two points p; q is
denoted d�.p; q/. For g 2 G, we define jgj D d�.1; g/. We deduce that jgj is the smallest
length among all words w 2 †� that represent g. Fix r � 0. The ball of radius r in � is
the set

B.r/ D B�.r/ D ¹g 2 G W jgj � rº:

Fix a word w 2 †�. We define Pw � � to be the path starting at 1G which is labelled
by w. Thus, the path g � Pw starts at g and is again labelled by w. In general, we will take
P W Œ0; n�! � to be an edge path from P.0/ to P.n/. In particular, we must allow real
t 2 Œ0; n� as we traverse edges. We use xP to denote P with its parametrisation reversed.
Note that xPw D gw � Pw�1 .

We call a path P geodesic if for all real t � 0, we have d�.P.0/; P.t// D t . Sup-
pose that the word w 2 †� represents the group element gw 2 G. We say that w 2 †�

is geodesic if the path Pw is geodesic. We say that w 2 †� is shortlex reduced if for all
u 2 †�, the equality gu D gw implies w �slex u. We use slex.w/ to denote the shortlex
reduced representative of gw .

Remark. Suppose that w is geodesic or shortlex reduced. Suppose that u is a factor of w.
Then u is also, respectively, geodesic or shortlex reduced.

A geodesic triangle in � consists of three vertices p; q; r 2 G and three sides
P;Q; R � � . The sides are geodesic paths connecting the vertices (see Figure 3.1). Fix
ı � 0. We now follow [2, Definition 1.3]. We say that a geodesic triangle is ı-slim, if every
point x in the side P is distance at most ı from some point of R [Q and similarly for the
sides Q and R.

Fix G and † as above. We say G is ı-hyperbolic if every geodesic triangle in the
Cayley graph � D �.G; †/ is ı-slim. Finally, we simply say G is hyperbolic, if it is ı-
hyperbolic for some ı � 0. For example, the group G is 0-hyperbolic (with respect to †)
if and only if G is a free group, freely generated by (half of) †.

Remark 3.1. Gromov [31] proves that hyperbolic groups have many good properties. In
Corollary 2.3.B, he states that such groups satisfy a linear isoperimetric inequality; hence,
they have solvable word problem. In Corollary 2.3.E, he shows that the notion of hyperbol-
icity is independent of the choice of finite generating set. In Section 7.4.B, he proves that
they have solvable conjugacy problem. For another exposition of these results (excepting
the conjugacy problem), we refer to [2, Theorems 2.5 and 2.18 and Proposition 2.10]. For
an exposition of the conjugacy problem, we refer to [25].

D. Holt, M. Lohrey, and S. Schleimer 1242

p q

r

cPcQ

cR

R

Q P

Figure 3.1. A geodesic triangle in a hyperbolic metric space. Note how the three sides “bow in” to
a common centre. Dotted lines represent paths of length at most ı between corresponding points.

We will need a seemingly stronger condition on our geodesic triangles, called ı-
thinness. We here follow [2, Definition 1.5]. Suppose again that we have a geodesic
triangle with vertices p;q; r 2G and with sides P;Q;R� � (see Figure 3.1). Let cP 2P ,
cQ 2 Q, and cR 2 R be the unique points so that

d�.p; cQ/ D d�.p; cR/; d�.q; cR/ D d�.q; cP /; d�.r; cP / D d�.r; cQ/:

We call these the meeting points of the triangle. Note that the meeting points may be
elements of G or midpoints of edges of � . Suppose that x 2 P and y 2Q are points with

• d�.r; x/ D d�.r; y/ D t and

• t � d�.r; cP / D d�.r; cQ/.

Then we call x and y corresponding points with respect to r . Note that if one of x or y
lies in G then so does the other. We make the same definition with respect to the vertices
p and q. Note that the three meeting points are all in correspondence. Fix ı � 0. The
triangle is called ı-thin if for all corresponding pairs .x; y/, we have d�.x; y/ � ı. See
Figure 3.1; there the dotted arcs indicate corresponding pairs. Note that a ı-thin triangle is
ı-slim. A converse also holds: Every geodesic triangle in a ı-hyperbolic space is 4ı-thin
(see [2, Proposition 2.1]).

We now fix a group G and a symmetric generating set †; we assume that G is
ı-hyperbolic. We choose ı large enough to ensure that all geodesic triangles in � are
ı-thin.

Remark. From a computational viewpoint, hyperbolic groups have many nice properties.
For example, their word problems can be solved in linear time [2, Theorem 2.18] as can
their conjugacy problems [25]. (Here we gloss over the details of the required model of
computation.) In a more recent and noteworthy achievement, their isomorphism problem
has also been solved (see [16, 17]). Thus all three of Dehn’s fundamental problems have
been settled positively for hyperbolic groups.

Compressed decision problems in hyperbolic groups 1243

Other positive results include the simultaneous conjugacy problem [11, 12] and the
knapsack problem [51]. We will return to both of these below.

Note that the compressed word problem easily reduces to the problem of checking
the solvability of a system of equations. There is a substantial body of work on the lat-
ter, over hyperbolic groups. Dahmani and Guirardel [16] prove (building on earlier work
of [67]) that the problem is decidable. The compressibility by straight-line programs of
solutions of equations in hyperbolic groups is studied in [19]. Ciobanu and Elder [15]
give a complete description of the set of all solutions of a given system of equations over a
hyperbolic group. They obtain, as a corollary, a polynomial-space algorithm for deciding
the existential theory of a hyperbolic group.

The following results come from the fact that hyperbolic groups have automatic
structures with respect to any shortlex ordering [24, Theorem 3.4.5 and Corollary 2.5.2].

Lemma 3.2 ([24, Theorem 2.3.10]). There is a polynomial-time (in fact, quadratic)
algorithm that, given a word w 2 †�, produces slex.w/.

Lemma 3.3 ([24, Proposition 2.5.11 and Theorem 3.4.5]). The languages in †�, of
geodesic words and of shortlex reduced words, are regular.

Remark. We will in fact need both geodesic and shortlex reduced words in our proof
of Theorem 5.7. This is because the inverse of a geodesic word is again geodesic; this
need not be the case for shortlex reduced words. On the other hand, shortlex reduced
words provide unique representatives of group elements; this is almost never the case for
geodesic words.

We will need the following standard lemma on geodesic quadrilaterals. See, for
example, the proof of [2, Proposition 3.5].

Lemma 3.4. Let a; b; u; v 2 †� be geodesic words such that vb DG au. Suppose that u
has a factorisation u D u0u00 with ju0j � jaj C 2ı and ju00j � jbj C 2ı. Then there exists
a factorisation v D v0v00 and a geodesic word c so that

• jcj � 2ı,

• v0c DG au0, and

• v00b DG cu00.

Proof. We consider the quadrilateral with sides Pa, ga � Pu, gv � Pb , and Pv . Here gw is
the group element represented by a word w. We are given a factorisation u D u0u00. Set
g D gagu0 and note that g lies in ga � Pu. See Figure 3.2, where we label a path by the
word labelling the path (for instance, ga � Pu is labelled with u). Since geodesic quadri-
laterals are 2ı-slim, there is a group element h with d�.g; h/ � 2ı lying in the union of
the three other sides.

D. Holt, M. Lohrey, and S. Schleimer 1244

v0 v00
v

a b

u
u0 u00

c

Figure 3.2. Splitting a geodesic quadrilateral according to Lemma 3.4.

We now consider cases. Suppose that h lies in Pa � ¹1Gº. Then the triangle inequality
implies ju0j < jaj C 2ı. Similarly, if h lies in gv � Pb � ¹gvº, then ju00j < jbj C 2ı. Both
of these are contrary to hypothesis. We deduce that h lies in Pv , proving the lemma.

The lemma has a useful corollary.

Corollary 3.5. Let a; b; u; v 2 †� be geodesic words such that vb DG au. Suppose that
u has a factorisation u D u0u00u000 with ju0j � jaj C 2ı, ju00j � 4ı, and ju000j � jbj C 2ı.
Then there exists a factorisation v D v0v00v000 and geodesic words c; d so that

• jcj; jd j � 2ı,

• v0c DG au0,

• v00d DG cu00, and

• v000b DG du000.

Proof. We prove this with two applications of Lemma 3.4. The first application gives us c.
In the second application, we restrict our attention to the quadrilateral with sides labelled
c, b, u00 � u000, and the fourth side labelled by the resulting suffix of v. This gives d .

Suppose that S is a path in � of length n, and i is an integer. We adopt the convention
that the use of the expression S.i/ implies that i lies in Œ0; n�. Recall that xS denotes S with
its parametrisation reversed.

Lemma 3.6. Let T be a ı-thin geodesic triangle with vertices at p, q, and r and with sides
P ,Q, andR. Suppose that P.0/D q D xR.0/,Q.0/D r D xP .0/, andR.0/D p D xQ.0/.
Let j be any integer so that d�.R.j /; xQ.j // > ı. Then there are integers iR < iQ so that
d�.R.j /; P.iR// � ı and d�. xQ.j /; P.iQ// � ı.

In the statement and the proof, we follow the notation of Figure 3.1.

Proof. Since d�.R.j /; xQ.j // > ı, the group elementsR.j / and xQ.j / do not correspond
to each other. Thus, R.j / is strictly after the meeting point cR along R. Similarly, xQ.j /
is strictly after the meeting point cQ along xQ. Since T is ı-thin, there are integers iR and
iQ so that

• R.j / corresponds to P.iR/ and so d�.R.j /; P.iR// � ı and

• xQ.j / corresponds to P.iQ/ and so d�. xQ.j /; P.iQ// � ı.

Compressed decision problems in hyperbolic groups 1245

We deduce that P.iR/ is strictly before, and P.iQ/ is strictly after, cP along P . Thus,
iR < iQ and we are done.

4. Compressed words and the compressed word problem

4.1. Straight-line programs

Straight-line programs offer succinct representations of long words that contain many
repeated substrings. We here review the basics, referring to [50] for a more in-depth
introduction.

Definition 4.1. Fix †, a finite alphabet. A straight-line program over † is a triple
G D .V; S; �/ where

• V is a finite set of variables, disjoint from †,

• S 2 V is the start variable, and

• � W V ! .V [†/� is an acyclic production mapping: that is, the relation

¹.B;A/ 2 V � V j B appears in �.A/º

is acyclic. We call �.A/ the right-hand side of A.

Example 4.2. Let†D ¹a;bº and fix n� 0. We define Gn D .¹A0; : : : ;Anº;An; �/, where
�.A0/ D ab and �.AiC1/ D AiAi for 0 � i � n � 1.

Definition 4.3. Given a straight-line program G as above, we define an evaluation
function eval D evalG W .V [†/� ! †� as follows:

• eval.a/ D a for a 2 †,

• eval.uv/ D eval.u/eval.v/ for uv 2 .V [†/�, and

• eval.A/ D eval.�.A// for A 2 V .

One proves by a delicate induction that eval is well defined. We finally take eval.G / D
eval.S/. We call eval.G / the output of the program G .

In other words, G is a context-free grammar that generates exactly one word eval.G /
of †�.

So, continuing Example 4.2, we have eval.A0/ D ab and more generally eval.Ai / D

.ab/2
i
. Thus, eval.Gn/ D eval.An/ D .ab/

2n
. So the output has length 2nC1.

We say a straight-line program G D .V; S; �/ over † is trivial if S is the only variable
and �.S/ D " D eval.G /.

We say that a straight-line program is in Chomsky normal form if it is either a trivial
program or all right-hand sides are of the form a 2 † or BC with B; C 2 V . There is a
linear-time algorithm that transforms a given straight-line program G into a program G 0 in
Chomsky normal form with the same output (see [50, Proposition 3.8]).

D. Holt, M. Lohrey, and S. Schleimer 1246

Definition 4.4. We define the size jG j of G D .V; S; �/ to be the sum of the bit-lengths
of the right-hand sides of �. Symbols from V [† are encoded by bit strings of length
O.log.jV j C j†j// using a prefix code.

Again considering Example 4.2, we see that the size of Gn is O.n log.n//. (Note that
we take into account the cost of writing out the indices of the variables Ai .) Thus, we see
that straight-line programs can achieve (essentially) exponential compression. The follow-
ing result proves that straight-line programs can do no better; the proof follows the proof
of [14, Lemma 1].1

Lemma 4.5. For every straight-line program G , we have jeval.G /j � 3jG j=3.

As a convenient shorthand, we will refer to straight-line programs over † as
compressed words.

4.2. Algorithms for compressed words

We will assume that all integers given as input to algorithms are given in binary. We
will need to know that the following algorithmic tasks can be solved in polynomial time
(see [50, Proposition 3.9]).

Given a straight-line program G and natural numbers i � j :

• find the length jeval.G /j;

• find the letter eval.G /Œi �;

• find a straight-line program G 0 with eval.G 0/ D eval.G /Œi W j �.

The following proposition is also well known [14, Lemma 2].

Proposition 4.6. There is a polynomial-time algorithm that, given a straight-line program
G and a natural number n > 0, computes a straight-line program Gn with eval.Gn/ D

eval.G /n. In fact, the time required is linear in jG j C logn.

The following results are less trivial. A proof of this proposition can be found in [50,
Theorem 3.11].

Proposition 4.7. There is a polynomial-time algorithm that, given

• a finite alphabet †,

• a finite state automaton M over †, and

• a straight-line program G over †,

decides if eval.G / lies in the language L.M/.

1In [14], jG j is defined as the sum of all lengths of right-hand sides of G . Note that this value is less
than or equal to our value of jG j (the bit-lengths of the right-hand sides).

Compressed decision problems in hyperbolic groups 1247

We also need the following variant of Proposition 4.7.

Proposition 4.8. There is a polynomial-time algorithm that, given

• a finite alphabet †,

• a finite state automaton M over †, and

• a straight-line program G over †,

decides if ¹eval.G /n j n 2 Nº is a subset of L.M/.

Proof. Let M D .Q; †; q0; ı; F / be the automaton. Suppose that w D eval.G /. All
non-negative powers of w belong to L.M/ if and only if ı.q0; w

n/ lies in F , for all
n � 0.

Since Q is finite, there are natural numbers k and l , with 0 � k < l � jQj such that
ı.q0; w

k/ D ı.q0; w
l / and hence

ı.q0; w
kCi / D ı.q0; w

lCi / for all i � 0:

It follows that wn 2 L.M/ for all n � 0 if and only if wn 2 L.M/ for all 0 � n � jQj. By
Proposition 4.6, we can compute, in polynomial time and for all 0 � n � jQj, a straight-
line program Gn with output eval.Gn/ D wn. Finally, we use Proposition 4.7 to test, in
polynomial time, if eval.Gn/ 2 L.M/ for these programs.

The following result is central to our past and present work. It was independently
discovered by Hirshfeld, Jerrum, and Moller [37, Proposition 12] (see also [38, Proposi-
tion 3.2]), by Mehlhorn, Sundar, and Uhrig [57, 58] (where the result is implicitly stated
in terms of dynamic string data structures), and by Plandowski [65, Theorem 13].

Theorem 4.9. There is a polynomial-time algorithm that, given straight-line programs G

and H , decides if eval.G / D eval.H /.

We now give a version of [44, Theorem 1]; this generalises Theorem 4.9 to the so-
called fully compressed pattern matching problem. See [42, Theorem 1.1] for a quadratic
time algorithm, which is the best currently known.

Theorem 4.10. There is a polynomial-time algorithm that, given straight-line programs
G and H , decides if eval.G / is a factor of eval.H /. Furthermore, if it is a factor,
the algorithm returns (in binary) the smallest m 2 N so that eval.G / is a prefix of
eval.H /Œn W�.

We obtain the following corollary of Theorem 4.10 and Lemma 2.1.

Corollary 4.11. There is a polynomial-time algorithm that, given straight-line programs
G and H , decides if eval.G / is a rotation of eval.H /. Furthermore, if it is, then the
algorithm returns straight-line programs H 0 and H 00 such that

eval.H / D eval.H 0/eval.H 00/ and eval.G / D eval.H 00/eval.H 0/:

D. Holt, M. Lohrey, and S. Schleimer 1248

4.3. The compressed word problem

Suppose that G is a group and † is a finite symmetric generating set. The compressed
word problem for G, over †, is the following decision problem:

Input: A straight-line program G over †.

Question: Does eval.G / represent the identity of G?

Note that the compressed word problem for a group G is decidable if and only if the
word problem for G is decidable. As discussed in Section 1, there are in fact groups G
where the compressed word problem is strictly harder than the word problem itself.

Observe that the computational complexity of the compressed word problem for G
does not depend on the chosen generating set †. That is, if †0 is another such, then
the compressed word problem for G over † is logspace reducible to the compressed
word problem for G over †0 [50, Lemma 4.2]. Thus, when proving that the compressed
word problem is polynomial time, we are allowed to use whatever generating set is most
convenient for our purposes.

Remark 4.12. As a simple but useful tool, note that if G is a straight-line program over
† with output w, then there is a straight-line program xG with output w�1.

4.4. Cut programs

A useful generalisation of straight-line programs is the composition systems of [33,
Definition 8.1.2]. These are also called cut straight-line programs in [50]. We shall simply
call them cut programs. They are used, for example, in the polynomial-time algorithm for
the compressed word problem of a free group [48].

A cut program over † is a tuple G D .V; S; �/, with V and S as in Section 4.1, and
where we also allow, as right-hand sides for �, expressions of the form BŒi W j �, with
B 2 V and with i � j . We again require � to be acyclic. When �.A/ D BŒi W j �, we
define

eval.A/ D eval.B/Œi W j �

with the cut operator Œi W j � as defined in Section 2. Note that this is only well defined if
0 � i � j � jeval.B/j. This condition will be assumed for the rest of the paper. The size
of a cut program G is the sum of the bit-lengths of the right-hand sides; as usual all natural
numbers are written in binary.

We can now state a straightforward but important result of Hagenah (see [33,
Algorithmus 8.1.4] as well as [50, Theorem 3.14]).

Theorem 4.13. There is a polynomial-time algorithm that, given a cut program G , finds
a straight-line program G 0 such that eval.G / D eval.G 0/.

Theorems 4.9 and 4.13 imply that there is a polynomial-time algorithm that, given two
cut programs, decides if they have the same output.

Compressed decision problems in hyperbolic groups 1249

Remark 4.14. In fact, in what follows, we will only ever need the prefix and suffix cut
operators ŒW j � and Œi W�. This is because, when using a word to represent a group element,
cancellation appears where two factors meet.

We also note that iterating the cut operator can be done using arithmetic alone. That
is, the cut variables

BŒi W j �Œk W `� and BŒi C k W i C `�

have the same evaluation. This “cut elimination” is, in some sense, the heart of the proof
of Theorem 4.13.

5. The compressed word problem for hyperbolic groups

Suppose that G is a group and † is a finite symmetric generating set. We fix a total order
< on †. Suppose that G is ı-hyperbolic; here we take ı large enough so that all geodesic
triangles are ı-thin, and we assume also that ı > 0 is an integer. (This assumption is used
in Case 3.2 inside of the proof of Lemma 5.3.) In what follows, we take � D 2ı. Recall
that B.r/ is the ball of radius r about 1G in the Cayley graph � D �.G;†/.

5.1. Tethered programs

We introduce a new type of program using the tether operator.
A tethered program over † is a tuple G D .V; S; �/, with V and S as in Section 4.1,

and where we also allow, as right-hand sides for �, expressions of the form Bha; bi, with
B 2 V and with a; b 2 B.�/. We again require � to be acyclic. If �.A/D Bha; bi, then we
define

eval.A/ D slex.a � eval.B/ � b�1/:

We call the suffix ha; bi a tether operator. The size of a tethered program G is the sum
of the bit-lengths of the right-hand sides; group elements in B.�/ are represented by their
shortlex representatives.

Finally, in a tether-cut program G over †, we allow right-hand sides which are words
from .V [†/�, a cut variable, or a tethered variable. It is sometimes convenient to allow
more complicated right-hand sides of the form ˛1 � ˛2 � � � ˛k where every ˛i is either a
symbol from † or a variable B to which a sequence of cut and tether operators is applied
to. An example of such a right-hand side is

AŒW i �ha; bi � a � BŒj W�hc; d i:

Note that a right-hand side of the form .A � B/Œi W j � or .A � B/ha; bi is not allowed.
Finally, we define the size of a tether-cut program G as the sum of the bit-lengths of

the right-hand sides. In what follows, we will assume that all programs arising are over a
fixed alphabet †.

D. Holt, M. Lohrey, and S. Schleimer 1250

Remark 5.1. In what follows, we mostly need the prefix and suffix tether operators ha; 1i
and h1; bi. Suppose that �.G; †/ is hyperbolic and that u and v are geodesic words.
Let w DG uv be a geodesic word representing their product. Then we can describe w
(up to bounded Hausdorff distance) by taking a prefix of u, tethering the result at the
end, concatenating with a short word, and then tethering (at the front) a suffix of v (see
Figure 5.12).

We also note that iterating tether operators can be done “locally”. That is, for any
a; a0; b; b0 2 B.�/, there are elements a00; b00 2 B.�/, elements x; y 2 B.2�/, and natural
numbers i; j so that the expressions

Bha; biha0; b0i and x � BŒi W j �ha00; b00i � y

have the same evaluation: That is, they represent the same shortlex reduced word (see
Figure 5.2). Again, this “tether-elimination” is, in some sense, the heart of our proof of
Lemma 5.3.

We say that a program is in Chomsky normal form if it is either a trivial program or
all right-hand sides �.A/ have one of the following forms, where B;C 2 V , a 2 †, i � j
and b; c 2 B.�/: a, BC , BŒi W j �, Bhb; ci. Similar to the case of straight-line programs,
there is a linear-time algorithm that transforms a given program G (with eval.G /¤ ") into
a program G 0 in Chomsky normal form with the same output.

We say that a program G is geodesic (or shortlex) if for every variable A, the word
eval.A/ is geodesic (shortlex reduced).

Lemma 5.2. There is a polynomial-time algorithm that, given a geodesic tether-cut pro-
gram G , returns a geodesic tether-cut program G 0 with the same evaluation which is in
Chomsky normal form.

Proof. We essentially use the usual algorithm (see, e.g., [50, Proposition 3.8]). However,
some care must be taken with tethered variables.

By introducing new variables, we can first assume that all right-hand sides of G have
the form w 2 .V [†/�, BŒi W j � or Bha; bi with B 2 V . This preserves the property

x

w00

y

u0
u00

u000

a b

a0 b0

a00 b00

Figure 5.2. The evaluation of Bha; biha0; b0i agrees with the evaluation of x � BŒi W j �ha00; b00i � y.
Here we are assuming that eval.B/ D u D u0u00u000 and that eval.BŒi W j �ha00; b00i/ D w00.

Compressed decision problems in hyperbolic groups 1251

of being a geodesic tether-cut program, since every factor of a geodesic word is again
geodesic.

Next we eliminate variables B with �.B/ D ". For this, we take any variable B with
�.B/ D ", remove B from the tether-cut program, and replace every occurrence of B in a
right-hand side �.A/ by the empty word. Note that if �.A/ D BŒi W j �, then we must have
i D j D 0 and we set �.A/D ". If �.A/D Bha; bi, then we set �.A/D slex.ab�1/ 2 †�

(which has length at most 2�). Iterating this step will finally eliminate all variables B
whose right-hand side is the empty word.

The rest of the proof follows the proof of [50, Proposition 3.8]: By introducing new
variables, we can assume that all right-hand sides have one of the following forms: a 2 � ,
B1B2 � � �Bn, BŒi W j �, Bhb; ci, where B;B1; : : : ;Bn are variables and n � 1. If �.A/D B
for variables A;B we can remove A and replace all occurrences of A in a right-hand side
by B . Iterating this step ensures that whenever �.A/ D B1B2 � � �Bn for a variable A, then
n � 3. Finally, by adding new variables we can split up right-hand sides B1B2 � � �Bn with
n � 3 in right-hand sides consisting of exactly two variables.

Note that the above construction preserves the property of being geodesic, since every
factor of a geodesic word is again geodesic. Also notice that the final program may still
have variables B with eval.B/ D ". This is due to the tether operator.

Note that the concatenation of geodesic words may not itself be geodesic; however,
the concatenation does provide two sides of a geodesic triangle. When the group G is
hyperbolic, this gives us the beginnings of a reduction procedure.

We now turn to the task of proving Proposition 5.5. We will give a sequence of
results that allows us to transform a geodesic tether-cut program into a straight-line pro-
gram, whose evaluation is the shortlex representative of the original. The first step, in
Lemma 5.3, gives such a transformation for tethered programs. The second step, finishing
the proof of Proposition 5.5, is to transform a geodesic tether-cut program into a geodesic
tethered program with the same output. This second step is inspired by Hagenah’s result
(Theorem 4.13) transforming a cut program into an equivalent straight-line program.

5.3. Transforming tethered programs

Suppose that G D .V; S; �/ is a program, as above.
We recursively define the height of elements of † [V . If a 2 †, then we take

height.a/ D 0. For A 2 V , we define

height.A/ D max¹height.B/C 1 j B 2 † [V occurs in �.A/º:

Finally, we set height.G / D height.S/.
Suppose that G is a tethered program in Chomsky normal form. If A 2 V is a variable,

we define its tether-height, denoted heightt .A/, recursively as follows:

• If �.A/ D a, then heightt .A/ D 0,

• if �.A/ D BC , then heightt .A/ D max¹heightt .B/; heightt .C /º, and

D. Holt, M. Lohrey, and S. Schleimer 1252

• if �.A/ D Bhs; ti then heightt .A/ D heightt .B/C 1.

For a variable A, we define its tether-depth to be

deptht .A/ D heightt .S/ � heightt .A/C 1:

Lemma 5.3. There is a polynomial-time algorithm that, given a geodesic tethered
program G , finds a shortlex straight-line program G 0 so that eval.G 0/ D slex.eval.G //.

Proof. Set G D .V; S; �/. The straight-line program G 0 that we construct will be of the
form G 0 D .V 0; S 0; �0/ for suitable V 0 and �0.

Applying Lemma 5.2, we may assume that G is in Chomsky normal form. Introducing
a new start variable, if needed, we may assume that �.S/ has the form Ah1; 1i for a vari-
able A. We do this to force the evaluation of G to be shortlex reduced, not just geodesic.
By removing unused variables, we can assume that S has maximal height and maximal
tether-height among all variables. This implies that, for all A 2 V , the tether-depth of A is
greater than zero. Finally, for every variable A 2 V such that �.A/D BC with B;C 2 V ,
we can assume that

deptht .A/ D deptht .B/ D deptht .C /:

To ensure this property, we add dummy variables to G , with productions of the form
Xh1; 1i, as needed.

In the rest of the proof, height, heightt , and deptht always refer to the original tethered
program G .

We carry out the proof in a bottom-up fashion; that is, we consider the variables of G

in order of increasing height. Here is an outline of the proof; we give the details below. Set
w D eval.A/. If jwj � 16�deptht .A/C 2� (such a word will be also called short), then we
compute and record w, as a word. If w > 16�deptht .A/C 2� (such a word will be also
called long), then we instead compute words `A and rA such that

w D `A � w
0
� rA

for some word w0 of length at least 2�. The details of the computation depend on the
production �.A/. We require that the word `A satisfies the following length constraint

8�deptht .A/ � j`Aj � 8�deptht .A/C 2�height.A/ (4)

and similarly for rA.
When w is long, we also add to the program G 0 the decorated variables A0

a;b
for all

a; b 2 B.�/. We arrange the following:

eval.A0a;b/ D slex.a � w0 � b�1/:

These new variablesA0
a;b

, and also a new start variable S 0, are the only variables appearing
in G 0, that is, they form the set V 0. All of the words that we compute and record along the

Compressed decision problems in hyperbolic groups 1253

way, such as the short words w and the prefixes and suffixes `A and rA, are not separately
stored as part of G 0.

That completes our outline of the proof. We now consider the possibilities for the
right-hand side �.A/.

Case 1. Suppose that �.A/ 2 †. Thus, w D eval.A/ is geodesic and shorter than
16�deptht .A/C 2�. We record it and continue.

Case 2. Suppose �.A/ D BC for variables B and C . Recall that we have

deptht .A/ D deptht .B/ D deptht .C /:

Set � D deptht .A/. Let u D eval.B/, v D eval.C /, and w D eval.A/ D uv. Recall that
u; v;w are geodesic by assumption.

Case 2.1. Suppose juj > 16��C 2� and jvj > 16��C 2�. Hence, in previous stages of
the algorithm, we computed words `B ; rB ; `C ; rC such that the following properties hold:

• The prefixes and suffixes `B ; rB ; `C ; rC satisfy the length constraint of equation (4).

• There are geodesic words u0; v0 of length at least 2� with u D `B � u
0 � rB and

v D `C � v
0 � rC .

Also, we have already defined variables B 0a;c and C 0
d;b

for all a; b; c; d 2 B.�/, which
produce slex.a � u0 � c�1/ and slex.d � v0 � b�1/, respectively (see Figure 5.5).

We now set `A D `B and rA D rC . Since the tether-depths of A; B; C are all the
same, but A has greater height, we deduce that `A and rA satisfy the length constraint of
equation (4). We also note that

ju0 � rB � `C � v
0
j � 2�

because ju0j � 2�.
It remains to define the right-hand sides for the variables A0

a;b
for all a; b 2 B.�/. Fix

a; b 2 B.�/. For all c; d 2 B.�/, we compute

z D slex.c � rB � `C � d
�1/

in polynomial time using Lemma 3.2. We then check, using Proposition 4.7 and
Lemma 3.3, whether the word

eval.B 0a;c/ � z � eval.C
0
d;b/ D slex.a � u0 � c�1/ � slex.c � rB � `C � d

�1/ � slex.d � v0 � b�1/

is shortlex reduced, in which case it is equal to

slex.a � u0 � rB � `C � v
0
� b�1/:

Again, see Figure 5.5. Since ju0j � 2� � jaj C �D jaj C 2ı, jv0j � 2� � jbj C �D jbj C 2ı,
and jrB`C j � 16� � 4ı, Corollary 3.5 ensures that there must be at least one such pair
c; d . (If there are several, we stop as soon as we find the first such.) We then define

�0.A0a;b/ D B
0
a;c � z � C

0
d;b :

D. Holt, M. Lohrey, and S. Schleimer 1254

a c d b

`B u0

slex.au0c�1/ z

rB `C v0

slex.dv0b�1/

rC

Figure 5.5. Case 2.1 from the proof of Lemma 5.3. Dashed lines represent words that are given by
straight-line programs.

Case 2.2. Suppose juj > 16��C 2� and jvj � 16��C 2�. Thus, at previous stages of the
algorithm, we computed the geodesic word v explicitly and also computed explicit words
`B and rB such that the following properties hold:

• The prefix and suffix `B ; rB satisfy the length constraint of equation (4).

• There is a geodesic word u0 of length at least 2� with u D `B � u
0 � rB .

Also, we already defined variables B 0
a;b

for all a; b 2 B.�/ such that B 0
a;b

produces
slex.a � u0 � b�1/.

If jvj � 2�, then we set `A D `B and rA D rBv. In this case, we also define �0.A0
a;b
/D

B 0
a;b

for all a; b 2 B.�/. Since height.B/C 1 � height.A/, we have the following:

8�� � j`Aj � 8��C 2�height.B/ � 8��C 2�height.A/

8�� � jrAj � 8��C 2�.height.B/C 1/ � 8��C 2�height.A/:

Thus, the length bounds of equation (4) are satisfied.
Now assume that jvj > 2�. Again, we set `A D `B . Since jrB � vj � jrB j � 8��, we

can define rA as the suffix of rB � v of length 8��; that is, rB � v D y � rA for some word
y of length jyj D jrB j C jvj � jrAj � jvj > 2�. This satisfies the required bounds on the
lengths of `A and rA.

It remains to define the right-hand sides for the variables A0
a;b

for all a; b 2 B.�/. Let
us fix a; b 2 B.�/. For all c 2 B.�/, we compute z D slex.c � y � b�1/ and check whether
the word

eval.B 0a;c/ � z D slex.a � u0 � c�1/ � slex.c � y � b�1/

is shortlex reduced. If it is, then it equals slex.a � u0 � y � b�1/ (see Figure 5.6). By
Lemma 3.4, there must be at least one such c, for which we define

�0.A0a;b/ D B
0
a;c � z:

Case 2.3. Suppose juj � 16��C 2� and jvj > 16��C 2�. This is dealt with in similar
fashion to the previous case.

Case 2.4. Suppose juj � 16�� C 2� and jvj � 16�� C 2�. In this case, we have com-
puted u and v explicitly at a previous stage. We now distinguish between the cases
jwj � 16��C 2� and jwj > 16��C 2�. In the first case, we record the word w for later

Compressed decision problems in hyperbolic groups 1255

a c b

`B u0

slex.au0c�1/ z

rB

y

v

Figure 5.6. Case 2.2 from the proof of Lemma 5.3. Again, dashed lines represent words that are
given by straight-line programs.

use. In the second, we factorise w as w D `A � w0 � rA with j`Aj D jrAj D 8��, and thus
jw0j � 2�. We then explicitly compute, for each a; b 2 B.�/, the word slex.a � w0 � b�1/

and set �0.A0
a;b
/ equal to it. This again uses Lemma 3.2.

Case 3. Suppose �.A/ D Bha; bi for a; b 2 B.�/. Let u D eval.B/ and v D eval.A/ D
slex.a � u � b�1/. The word u is geodesic by assumption, and v is shortlex reduced by
definition. Let � D deptht .B/. We have deptht .A/ D � � 1 � 1.

Case 3.1. Suppose juj � 16��C 2�. Hence, at a previous stage, we explicitly computed
the word u. Using Lemma 3.2, we explicitly compute the word v D slex.a � u � b�1/. The
rest of the work divides into cases as jvj is less than or equal to 16��C 2� or is greater.
This is analogous to Case 2.4 (where w plays the role of v).

Case 3.2. Suppose juj> 16��C 2�. At a previous stage, we computed words `B ; rB with
the following properties:

• The prefix and suffix `B ; rB satisfy the length constraint of equation (4).

• There is a geodesic word u0 of length at least 2� with u D `B � u
0 � rB .

Also, we already defined variables B 0
c;d

for all c; d 2 B.�/ such that B 0
c;d

produces
slex.cu0d�1/.

We check for all c; d 2 B.�/ whether

slex.a � `B � c
�1/ � eval.B 0c;d / � slex.d � rB � b

�1/

D slex.a � `B � c
�1/ � slex.c � u0 � d�1/ � slex.d � rB � b�1/

is shortlex reduced. If it is shortlex reduced, then it equals

slex.a � `B � u
0
� rB � b

�1/ D slex.a � u � b�1/ D v:

See Figure 5.7. By Corollary 3.5, there must exist such c;d 2 B.�/. Let v0 D eval.B 0
c;d
/D

slex.cu0d�1/.
Let s D slex.a � `B � c

�1/ and t D slex.d � rB � b�1/. By the triangle inequality, these
words have length at least 8�� � 2�. Hence, we can factorise these words as s D wx and
t D yz with

jwj D jzj D 8�.� � 1/ D 8�deptht .A/ � 8�:

D. Holt, M. Lohrey, and S. Schleimer 1256

w0 x0

u0
y0 z0

w
`A

x v0 y z
rA

a e c d f b

a0 b0

c0 d 0

`B rB

Figure 5.7. Case 3 from the proof of Lemma 5.3. Again, dashed lines represent words that are given
by straight-line programs.

Again, see Figure 5.7. The words x and y have length at least 6�. We set `A D w and
rA D z. These words satisfy the required bounds on their lengths. Note that

eval.A/ D slex.a � u � b�1/ D `A � x � v
0
� y � rA and jx � v0 � yj � 12� � 2�:

It remains to define the right-hand sides of the variables A0
a0;b0

for all a0; b0 2 B.�/. (This,
in essence, is where we call upon Remark 5.1.)

Fix a0; b0 2 B.�/. The lower bounds on the lengths of w; x; y; z allow us to apply
Lemma 3.4 to the geodesic quadrilaterals with sides labelled a; `B ; c;wx and d; rB ; b; yz,
respectively. Note that all of these words have been computed explicitly. Applying
Lemma 3.2, we compute in polynomial time words e; f 2 B.�/ and factorisations `B D

w0x0 and rB D y0z0 such that aw0 DG we, ex0 DG xc, dy0 DG yf , and f z0 DG zb.
Once again, see Figure 5.7. Now consider the geodesic quadrilateral with sides labelled
x0 � u0 � y0, slex.a0e/, slex.b0f /, and slex.a0e � x0 � u0 � y0 � .b0f /�1/. The triangle inequal-
ity implies jx0j; jy0j � 4� and jslex.a0e/j; jslex.b0f /j � 2�. Again applying Corollary 3.5,
there are c0; d 0 2 B.�/ such that the word

slex.a0e � x0 � .c0/�1/ � evalG 0.B 0c0;d 0/ � slex.d
0
� y0 � .b0f /�1/

D slex.a0e � x0 � .c0/�1/ � slex.c0 � u0 � .d 0/�1/ � slex.d 0 � y0 � .b0f /�1/

is shortlex reduced. Thus, the above word is

slex.a0e � x0 � u0 � y0 � .b0f /�1/ D slex.a0 � x � v0 � y0 � .b0/�1/

As before, we can compute such c0; d 0 2 B.�/ in polynomial time. We finally define the
right-hand side of A0

a0;b0
as

�0.A0a0;b0/ D slex.a0e � x0 � .c0/�1/ � B 0c0;d 0 � slex.d
0
� y0 � .b0f /�1/:

This concludes the definition of the right-hand sides for the variables A0
a0;b0

.
We complete the definition of the straight-line program G 0. We add a new start variable

S 0 to G 0. If eval.S/ is short, then we set �0.S 0/ D eval.S/ and we are done. If eval.S/ is
long, then we set �0.S 0/ D `S � S

0
1;1 � rS . This ensures eval.G 0/ D `S � slex.s0/ � rS , where

Compressed decision problems in hyperbolic groups 1257

s0 is such that `S � s
0 � rS D eval.S/ D eval.G /. But eval.G / is shortlex reduced (since

�.S/ has the form Ah1; 1i). Hence, s0 is also shortlex reduced and we find

eval.G 0/ D `S � slex.s0/ � rS D `S � s
0
� rS D eval.G /:

This concludes the proof of the lemma.

The next lemma follows from Lemma 5.3.

Lemma 5.4. There is a polynomial-time algorithm that, given a geodesic tethered
program G , computes for every A the length jeval.A/j.

Proof. By Lemma 5.3, we can compute for every variable A a straight-line program
GA with eval.GA/ D slex.eval.A//. As in Section 4.2, we can compute jeval.GA/j D

jslex.eval.A//j D jeval.A/j in polynomial time. Here the last equality holds since G is
a geodesic program.

We now can prove our proposition; this generalises Lemma 5.3 to tether-cut programs.

Proposition 5.5. There is a polynomial-time algorithm that, given a geodesic tether-
cut program G , computes a shortlex straight-line program G 0 such that eval.G 0/ D
slex.eval.G //.

Proof. The idea of the proof is taken from the proof of Theorem 4.13 (see [33, Algorith-
mus 8.1.4]). That is, we will eliminate cut operators by pushing them towards smaller
variables. We then appeal to Lemma 5.3 to eliminate tether operators.

Let G D .V; S; �/ be the input geodesic tether-cut program. By Lemma 5.2, we can
assume that G is in Chomsky normal form. Let � D height.G /. By Lemma 5.3, it suffices
to transform G into a geodesic tethered program for eval.G /.

We will only consider cuts of the form ŒW i � and Œi W� (see Remark 4.14). It is not difficult
to include also general cuts of the form Œi W j �.

Consider a variable A such that �.A/ D BŒW i �; the case that �.A/ D BŒi W� is dealt
with analogously. We consider variables in order of increasing height; so the algorithm
is bottom-up. By induction, we may assume that no cut operator occurs in the right-hand
side of any variable C with height less than that of A.

We now must eliminate the cut operator in �.A/. In so doing, we add at most � new
variables to the tether-cut program. Moreover, the height of the tether-cut program after
the cut elimination will still be bounded by �. Hence, the final tethered program will have
at most � � jV j variables. In addition, the bit-length of every new right-hand side will be
polynomially bounded in the input length. Thus, the size of the final tethered program will
be polynomially bounded in the input length.

Recall that �.A/ D BŒW i �. We divide the work into cases, depending on the form of
�.B/. Since we already have processed B , only one of the following cases can occur.

D. Holt, M. Lohrey, and S. Schleimer 1258

Case 1. Suppose �.B/D a 2 †. If i D 1 we redefine �.A/D a, and if i D 0 we redefine
�.A/ D ".

Case 2. Suppose �.B/ D CD with C; D 2 V . We compute nC D jeval.C /j using
Lemma 5.4 and with an appeal to the induction hypothesis. If i � nC then we redefine
�.A/ D C ŒW i �. If i > nC then we add a new variable X , we define �.X/ D DŒW i � nC �,
and we redefine �.A/ D CX . We then eliminate the new cut operator in C ŒW i � or in
DŒW i � nC � with a top-down sub-routine. (This is what leads to the quadratic growth of
new variables.)

Case 3. Suppose �.B/ D C ha; bi with C 2 V and a; b 2 B.�/. Let u D evalG .C /, v D
evalG .B/, and vD v0v00 with jv0j D i . Thus, we have evalG .A/D v0 and vD slex.aub�1/.
By Lemma 5.3, we can assume that we have straight-line programs for the words u and v.

Case 3.1. There exists c 2 B.�/ and a factorisation a D a0a00 such that v0 DG a0c (see
Figure 5.8). Note that this implies that i D jv0j � 2�. Hence, we can check in polynomial
time whether this case holds by computing the prefix of the compressed word v of length
i . We redefine �.A/ D v0.

Case 3.2. There exists c 2 B.�/ and a factorisation b D b00b0 such that v00b00 DG c (see
Figure 5.9). As in Case 3.1, we can check in polynomial time whether this condition holds.
We introduce a new variableX , we set �.X/D C h1;b0i, and we redefine �.A/DXha; ci.

Case 3.3. Neither Case 3.1 nor Case 3.2 holds. In this case, there exists a factorisation
u D u0u00 and c 2 B.�/ such that v0c DG au0 and v00b DG cu00 (see Figure 3.2). The tri-
angle inequality implies i � 2� � ju0j � i C 2�. We can find such a factorisation of u
in polynomial time; we note that j D ju0j lies in N and satisfies ji � j j � 2�. So, using
Theorem 4.13, we find straight-line programs for the 4� C 1 many words u0 D uŒW j �,
where j 2 N, ji � j j � 2�. Since u is geodesic, also all factors of u are geodesic. Hence,
the straight-line programs for the words u0 D uŒW j � must be geodesic too. Then we apply
Lemma 5.3 and compute for every c 2 B.�/ a shortlex straight-line program for the word

v0

v00
v

a0

a00
b

u

c

Figure 5.8. Case 3.1 in the proof of Proposition 5.5.

v0

v00
va

b0

b00

u

c

Figure 5.9. Case 3.2 in the proof of Proposition 5.5.

Compressed decision problems in hyperbolic groups 1259

w0 D slex.au0c�1/. Theorem 4.13 yields a shortlex straight-line program for v0 D vŒW i �.
Finally, we check, using Theorem 4.9, whether v0 D w0.

Hyperbolicity ensures that we will find at least one such j and c. We introduce a new
variable X , we set �.X/ D C ŒW j �, and we redefine �.A/ D Xha; ci. We then continue
with the elimination of the cut operator in C ŒW j �, as in Case 2. This concludes the proof
of the lemma.

Recall our convention: If w 2 †� is a word, then gw 2 G is the corresponding group
element. Thus, gw is a vertex of the Cayley graph � D �.G;†/.

Lemma 5.6. There is a polynomial-time algorithm that, given geodesic tether-cut pro-
grams G and H , determines if d�.g; h/ � ı, where g D geval.G / and h D geval.H/.
Moreover, when this holds, the algorithm also finds an element b 2 B.ı/ such that
g DG hb.

Proof. Let S and T be the start variables of G and H , respectively. For all b 2 B.ı/, we
produce a new geodesic tether-cut program G b for slex.eval.G /b�1/. We do this by adding
to G a new start variable with right-hand side Sh1; bi.

We also add to H a new start variable with right-hand side T h1; 1i and denote the res-
ulting tether-cut program by H 1. This ensures that the evaluation of H 1 is slex.eval.H //.
Using Proposition 5.5 and Theorem 4.9, we now check, in polynomial time, if eval.G b/D

eval.H 1/. This is equivalent to g DG hb.

5.10. Solving the compressed word problem

We now prove our main result. Recall that † is a symmetric generating set for the
hyperbolic group G.

Theorem 5.7. There is a polynomial-time algorithm that, given a straight-line program
G over †, finds a straight-line program H with evaluation slex.eval.G //.

Proof. By Proposition 5.5, it suffices to build, in polynomial time, a geodesic tether-cut
program H for slex.eval.G //. We process G from the bottom-up; that is, we consider its
variables in order of increasing height. Set G D .V; S; �/; applying [50, Proposition 3.8],
we may assume that G is in Chomsky normal form. We build by induction on the height
a new tether-cut program G 0 D .V 0; S 0; �0/ over †; here V 0 D ¹A0 j A 2 V º is a copy
of V and S 0 2 V 0 is the variable corresponding to S . The construction will ensure that
eval.A0/ D slex.eval.A// for every A 2 V .

In the base cases, we have �.A/ D a 2 †. Here we set �0.A0/ D slex.a/.
In the inductive step, we have �.A/ D BC . Since B and C have smaller height than

A, they satisfy the induction hypotheses. Set

u D slex.eval.B// D eval.B 0/ and v D slex.eval.C // D eval.C 0/:

D. Holt, M. Lohrey, and S. Schleimer 1260

By Proposition 5.5, we can transform the geodesic tether-cut programs with start vari-
ables B 0 and C 0 into shortlex straight-line programs. Using these, we compute the lengths
m D juj and n D jvj. If one or both of these have length zero, then we accordingly take
�0.A0/DC 0 or �0.A0/DB 0 or �0.A0/D ". We now assume thatm and n are both non-zero.
Breaking symmetry, we assume that m � n.

Let P be the path in the Cayley graph � starting at 1G , ending at u, and labelled by u.
Similarly, letQ be the path starting at u, ending at uv, and labelled by v. Finally, let R be
the path starting at 1G , ending at uv, and labelled by slex.uv/ (see Figure 5.12). The path
xP , the reverse of P , is labelled by u�1. Applying Remark 4.12, we invert the geodesic

straight-line program for u to give a straight-line program for u�1. Using Lemma 5.6, we
can check whether or not

d�. xP .m/;Q.m// � ı:

We break into cases accordingly.

Case 1. Suppose that d�. xP .m/;Q.m//� ı. We compute, again using Lemma 5.6, a word
a of length at most ı such that a DG uvŒW m�. See the left-hand side of Figure 5.12. In this
case, we set �0.A0/ D C 0Œm W�ha; 1i.

Case 2. Suppose that d�. xP .m/;Q.m// > ı. Using binary search, we compute an integer
k 2 Œ0;m � 1� such that

d�. xP .k/;Q.k// � ı and d�. xP .k C 1/;Q.k C 1// > ı:

Here are the details of the binary search. We store an interval Œp; q� � Œ0;m� such that

• p < q,

• d�. xP .p/;Q.p// � ı, and

• d�. xP .q/;Q.q// > ı.

We begin with p D 0 and q Dm. We stop when q D pC 1. In each iteration, we compute
r D d.p C q/=2e and check, using Lemma 5.6, whether

d�. xP .r/;Q.r// � ı or d�. xP .r/;Q.r// > ı:

In the first case, we set p D r and do not change q; in the second case, we set q D r and
do not change p. In each iteration, the size of the interval Œp; q� is roughly halved. Thus,
the binary search halts after O.log.m// iterations; this is polynomial in the input size. In
addition to the final position k, we record a word a 2 B.ı/ that labels a path from xP .k/ to
Q.k/. Let j D k C 1.

Recall that R is the path from xP .m/ D 1G to Q.n/ labelled by slex.uv/. By
Lemma 3.6, there exists iP � iQ such that

d�. xP .j /; R.iP // � ı and d�.Q.j /; R.iQ// � ı:

For all pairs b; c 2 B.ı/, we explicitly compute the word

s D slex.b � uŒm � j � � a � vŒk� � c�1/:

Compressed decision problems in hyperbolic groups 1261

s

u va

b c

u

v
a

Figure 5.12. Case 1 (left) and 2 (right) from the proof of Theorem 5.7.

The symbols uŒm � j � and vŒk� can be computed in polynomial time from the available
straight-line programs for u and v using [50, Proposition 3.9] (see Section 4.2). For each
of these words s, we must check if the word

slex.uŒW m � j � � b�1/ � s � slex.c � vŒj W�/ (11)

is shortlex reduced; if so, it equals slex.uv/. This step can be done using Lemma 3.3
and using the given geodesic tether-cut programs for u and v. From these, we obtain
geodesic tether-cut programs for slex.uŒW m � j � � b�1/ and slex.c � vŒj W�/. We then use
Proposition 5.5 to transform these into equivalent straight-line programs.

Lemma 3.6 ensures that we will find a pair b; c 2 B.ı/ such that the word in (11) is
shortlex reduced. Using the first such pair we find, we set

�0.A0/ D .B 0ŒW m � j �h1; bi/ � s � .C 0Œj W�hc; 1i/:

This concludes the proof of the theorem.

Theorem 5.7 now solves the compressed word problem.

Corollary 5.8. The compressed word problem for a hyperbolic group can be solved in
polynomial time.

Proof. Suppose that G is the given compressed word. Note that eval.G / 2 †� represents
1G if and only if slex.eval.G // D ". This, in turn, happens if and only if slex.eval.G // has
length zero. By Theorem 5.7, we can compute in polynomial time a straight-line program
G 0 for slex.eval.G //, and by [50, Proposition 3.9], we can compute the length of eval.G 0/
in polynomial time. This concludes the proof.

6. Further compressed decision problems

6.1. Compressed order problem

Suppose that G is a group. Suppose that † is a finite, symmetric generating set for G. For
any g 2 G, we define the order of g to be the smallest positive integer k so that gk D 1G .
If there is no such k, we define the order to be infinity. We define the compressed order
problem as follows:

D. Holt, M. Lohrey, and S. Schleimer 1262

Input: Straight-line program G over †.

Output: The order of the group element eval.G /.

As a consequence of Corollary 5.8, we have the following result.

Corollary 6.1. Suppose thatG is a hyperbolic group. Then the compressed order problem
for G can be solved in polynomial time.

Proof. Suppose that G is the given compressed word. Suppose that g 2 G has finite order.
Suppose that ı is the hyperbolicity constant for G. Then the order of g is at most 2ı C 1
(see [9]).

To compute the order of eval.G /, it suffices to check whether eval.G /k DG 1G , for
some integer k between 1 and 2ı C 1 (inclusive). Proposition 4.6 gives us the desired
compressed word and Corollary 5.8 checks it, both in polynomial time.

6.2. The compressed (simultaneous) conjugacy and compressed centraliser
problems

Suppose that G is a group. Suppose that † is a finite, symmetric generating set for
G. For group elements g; h 2 G, we have the standard abbreviation gh D h�1gh. If
L D .g1; : : : ; gk/ is a finite list of group elements, then we write Lh D .gh

1 ; : : : ; g
h
k
/.

We extend these definitions to words over † in the obvious way.

6.3. The problems

The compressed conjugacy problem for G is the following:

Input: Straight-line programs G and H over †.

Question: Do eval.G / and eval.H / represent conjugate elements in G?

If L is a list of straight-line programs over †, then we define eval.L/ to be the cor-
responding list of evaluations. We now define the compressed simultaneous conjugacy
problem for G:

Input: Finite lists L D .G1; : : : ;Gk/ and M D .H1; : : : ;Hk/ of straight-line programs
over †.

Question: Are eval.L/ and eval.M/ conjugate lists in G?

In the case when the answer to either of these questions is positive, we might also want
to compute a straight-line program for an element that conjugates eval.G / to eval.H / or
eval.L/ to eval.M/.

The compressed centraliser problem for G is the following computation problem:

Input: A finite list L D .G1; : : : ;Gk/ of straight-line programs over †.

Output: A finite list M D .H1; : : : ;Hl / such eval.M/ generates the intersection of the
centralisers of the elements eval.L/.

Compressed decision problems in hyperbolic groups 1263

Note that this intersection is in fact the centraliser of the subgroup generated by the
elements eval.L/. When the desired centraliser is not finitely generated, by convention the
problem has no solution.

6.4. The proofs

A linear-time algorithm for solving the conjugacy problem in a hyperbolic group G is
described in [25, Section 3]. For the (uncompressed) simultaneous conjugacy problem, a
quadratic time algorithm for torsion-free hyperbolic groups was presented in [11]. This
was generalised in [12] to linear-time algorithms for the uncompressed simultaneous
conjugacy, and the centraliser, problems in all hyperbolic groups. We will show that essen-
tially the same algorithms can be used to solve the compressed (simultaneous) conjugacy
problem and the compressed centraliser problem, in polynomial time.

We deal with the compressed conjugacy problem in Section 6.4.1. Building on that,
and making the special assumption that one of the input elements has infinite order, we
solve the compressed simultaneous conjugacy problem and the compressed centraliser
problem in Section 6.4.2. Finally, we deal with the case that all input group elements have
finite order in Section 6.4.3.

6.4.1. Compressed conjugacy problem. We now have the following.

Theorem 6.2. Let G be a hyperbolic group. Then the compressed conjugacy problem in
G is polynomial time.

Proof. The input consists of two straight-line programs G and H ; we wish to test if
u D eval.G / and v D eval.H / are conjugate. To do this, we essentially use the conjugacy
algorithm from [25, Theorem 1.1], applied to the words u and v. We will describe our
modification of their algorithm, step-by-step, in the following.

Our description of each step consists of two parts. The first describes operations relat-
ing to the words u and v; the second explains how we effect these operations in polynomial
time using only the straight-line programs G and H . All assertions that we make in the
uncompressed setting are justified in [25]. All corresponding assertions are then justified
again, in the compressed setting, using the work in previous sections of this paper.

Let ı be a positive integer that serves as a thinness constant for the Cayley graph
� D �.G;†/ (see Section 3). We define constants L D 34ı C 2 and K D 17.2LC 1/=7
(see [25, p. 298]).

A word w 2 †� is said to be shortlex straight if, for all non-negative powers k, the
wordwk is shortlex reduced. Applying Lemma 3.3 and Proposition 4.8, we can determine,
in polynomial time, if a given compressed word eval.G / is shortlex straight.

In the preprocessing stage, we make a look-up table of all pairs of shortlex reduced
words of length at most K that are conjugate in G.

Step 1. We replace u and v by slex.u/ and slex.v/.

D. Holt, M. Lohrey, and S. Schleimer 1264

By Theorem 5.7, we can replace, in polynomial time, the programs G and H by
straight-line programs for slex.eval.G // and slex.eval.H //, respectively.

Step 2. For a word w, we define wC D wRwL, where w D wLwR with jwLj � jwRj �

jwLj C 1. Replace u by slex.uC / and v by slex.vC /.
Using cut operators and Theorem 5.7, we can make the corresponding substitutions

on G and H .

Step 3. If juj; jvj � K, then use the look-up table to test for conjugacy of u and v. Other-
wise, at least one of the words, u say, satisfies juj � K > 2LC 1. If jvj < 2LC 1, then
u and v are not conjugate [25, Section 3.1], and we return false. We assume from now on
that juj; jvj � 2LC 1.

For the compressed conjugacy problem, if jeval.G /j; jeval.H /j � K then we can
compute eval.G / and eval.H / explicitly. We then proceed as in the uncompressed setting.

Step 4. There exists a group element g 2 B.4ı/ and a positive integer m, of size at most
jB.4ı/j2, such that the shortlex reduction of g�1umg is shortlex straight [25, Section 3.2].
To find such, for every pair .g; m/ of at most those sizes, we replace u by slex.g�1ug/

and test z D slex.um/ to see if it is shortlex straight.
Using Proposition 4.8, we can perform the corresponding operations with G . Thus, we

find g and m and also find a straight-line program G 0 with eval.G 0/ D z.

Step 5. We now test for the following necessary (but not sufficient) property for the con-
jugacy of u and v: Is vm conjugate to z? We decide this as follows. For all h 2 B.6ı/, we
compute vh D slex.hvmh�1/ and then test whether vh is a rotation of z. If this fails for
all h, then vm and z DG um are not conjugate [25, Section 3.3]. But then, u and v are not
conjugate, so we may stop and return false.

Otherwise, we find h and vh with this property. Let z1 be a prefix of z such that
zDG z1hv

mh�1z�1
1 . We replace v by slex.z1hvh

�1z�1
1 /. Now we have vmDG u

mDG z.
From this, we get that every g 2 G with g�1ug DG v belongs to the centraliser CG.z/

of z in G. In particular, u and v are conjugate in G if and only if they are conjugate in
CG.z/.

Using Corollary 4.11, we can do the corresponding calculations with H and G 0.
Checking whether vh is a rotation of z can be accomplished in polynomial time by the
first statement of Corollary 4.11; the second statement allows us to compute in polynomial
time a straight-line program for z1.

Step 6. Find the shortest prefix y of z that is a root of z: That is, there is an ` � 1 so that
z D y`. We do that by finding the second occurrence of the substring z in the word z2.

To find the root of eval.G 0/, we compute a straight-line program for eval.G 0/2 and
appeal to Theorem 4.10. We then build a straight-line program G 00 with eval.G 00/ D y

using cut operators and Theorem 4.13.

Compressed decision problems in hyperbolic groups 1265

Step 7. For each h 2 B.2ı/, compute slex.hzh�1/ and test whether it is a rotation of z.
If so, find a prefix zh of z with hzh�1 DG z�1

h
zzh, and compute and store slex.zh � h/

(which lies in CG.z/) in a list Cz . Then, jCzj � J D jB.2ı/j.
Corollary 4.11 allows us to do the corresponding calculations with G 0. We obtain a list

of straight-line programs that evaluate to the words in the list Cz .

Step 8. For each n with 0 � n � .J � 1/Š and for each z0 2 Cz , let g D ynz0. Test if
u DG gvg�1. If so, then return true (and a conjugating element). If not, then return false
because u and v are not conjugate [25, Section 3.4].

We can perform corresponding operations on the straight-line programs.
This concludes our description of a polynomial-time algorithm for the compressed

conjugacy problem. The correctness proof is identical to that in [25, Section 3].

6.4.2. Compressed simultaneous conjugacy and centralisers: The infinite order case.
We now turn to the following.

Theorem 6.3. Let G be a hyperbolic group. Then the compressed simultaneous con-
jugacy problem for G can be solved in polynomial time. Moreover, if the two input lists
are conjugate, then we can compute a straight-line program for a conjugating element in
polynomial time.

Theorem 6.4. LetG be a hyperbolic group. Then the compressed centraliser problem for
G can be solved in polynomial time.

The input now consists of two lists L D .G1; : : : ; Gk/ and M D .H1; : : : ;Hk/ of
straight-line programs over the alphabet †. For the compressed centraliser problem, we
assume that L DM. For all i , we let ui D eval.Gi / and vi D eval.Hi /.

By Corollary 6.1, we can check in polynomial time whether some ui has infinite order.
Following [12, Section 3], we begin by assuming that this is indeed the case. Reordering
the lists in the same way, as needed, we may assume that u1 has infinite order. If v1 does
not have infinite order we are done.

The conjugacy testing algorithm proceeds as follows. We first repeatedly replace the
elements in L by conjugates, using a common conjugating element. This culminates in a
check for a conjugating element which must lie in an explicit finite set. In each replace-
ment, straight-line programs are known for the conjugating element. By keeping track of
these, we can find (if the lists are conjugate) an overall conjugating element for the original
input. We omit further details regarding this overall conjugating element.

We proceed by carrying out the eight steps of the algorithm of Section 6.4.1 as applied
to u1 and v1. If they are not conjugate we are done. Suppose that they are conjugate. In this
case, we record the programs for the words z and y produced by Steps 5 and 6. We also
record the list (of straight-line programs) Cz given in Step 7. The overall algorithm also
gives us a straight-line program for an element g 2 G with ug

1 DG v1. The algorithm
also replaced u1 and v1 by conjugates in some of the steps; we make the corresponding

D. Holt, M. Lohrey, and S. Schleimer 1266

replacements to the other elements of L and M. By replacing each ui by its conjugate
under g, we may now assume that u1 D v1.

Thus, we have reduced the problem to the following. Assuming that u1 D v1 and that
u1 has infinite order, we must decide if there is g 2 CG.u1/ with ug

i DG vi for 2 � i � k.
We are also given z; thus um

1 DG v
m
1 DG z and z is shortlex straight element z andm� 1.

We are also given y with z D y` and for maximal ` � 1.
In [25, Section 3.4], it is shown that all elements g 2 CG.z/ have the form g DG y

nz0,
for some n 2 Z and z0 2 Cz , where Cz is the list given above. So the same applies to any
g 2 CG.u1/ � CG.z/.

We now try each z0 2Cz in turn. Replacing each vi by z0vi .z
0/�1, the problem reduces

to the following: Is there some n 2 Z such that uyn

i DG vi for 1 � i � k?
To solve this problem, we apply [12, Proposition 24] to each pair ui ; vi in turn. For

each i , there are three possibilities:

(i) There exist 0� ri < ti � jB.2ı/j such that uyj

i DG vi if and only if j � ri mod ti .

(ii) There is a unique ri 2 Z with uyri

i DG vi , where jri j is bounded by a linear
function of jui j and jvi j.

(iii) There is no ri 2 Z with uyri

i DG vi .

The proof of [12, Proposition 24] provides an algorithm for determining which case
applies, and for finding ri ; ti in cases (i) and (ii). This involves calculating a number
of powers un

i , vn
i , and yn for integers n such that jnj is bounded by a linear function of

jui j and jvi j, and where the number of powers that need to be calculated is bounded by
a constant. So we can perform these calculations in polynomial time with straight-line
programs by Proposition 4.6.

After performing this calculation for each i with 1 � i � k, the conjugacy problem
for the lists reduces to solving some modular linear equations involving the integers ri
and ti , as described in [12, Section 3.4]. Since the ri and ti in case (i) are bounded by a
constant and, for ri in case (ii), log jri j is bounded by a linear function of the size of the
straight-line programs representing ui and vi , these equations can be solved in polynomial
time using standard arithmetical operations on the binary representations of ri and ti . This
completes our discussion of the compressed simultaneous conjugacy problem in the case
where there is a list element of infinite order.

For the compressed centraliser problem, we are in the same situation but with vi D ui

for all i . We perform the same calculations as above, but we do them for every z0 2 Cz . If
there are solutions, then we find them by solving modular equations. The set of solutions
we find now generates the centraliser. This completes our discussion of the compressed
centraliser problem in the case where there is a list element of infinite order.

6.4.3. Compressed simultaneous conjugacy and centralisers: The finite order case.
Here we continue the proofs of Theorems 6.3 and 6.4. We now consider the case where
all of the ui (in the list eval.L/) have finite order. We now follow [12, Section 4]. No
new complications arise when applying those methods to lists of straight-line programs.

Compressed decision problems in hyperbolic groups 1267

Indeed, some steps become easier because we are only interested in achieving polynomial,
rather than linear, time.

We follow the steps of the algorithm described in [12, Section 4.5]. We deal with
the conjugacy and centraliser problems together; the two lists are taken to be equal for the
centraliser calculation. At this stage, we have already verified that all of the ui and vi have
finite order. Furthermore, all of the words are shortlex reduced. By deleting programs, we
can assume that the list u1; : : : ; uk , and likewise the list v1; : : : ; vk , has no duplicates.
Thus, the ui represents distinct group elements, as do the vi .

Let nDmin¹jB.2ı/j4C 1;kº. We consider the prefix sublists eval.L0/D .u1; : : : ; un/

and eval.M0/ D .v1; : : : ; vn/. We apply the function SHORTENWORDS from [12,
Section 4.2] to the lists L0 and M0. This function applies slex to a number of words;
this number is bounded above by n2. Each word is a concatenation (of length at most
n C 2) of words either from the lists L0 or M0, or of words previously calculated dur-
ing this process. These operations can be executed in polynomial time when working
with straight-line programs. Since there is an absolute bound jB.2ı/j4 C 1 on the lengths
of L0 and M0, the complete application of SHORTENWORDS to each list takes place in
polynomial time.

SHORTENWORDS has two possible outcomes. In the first, it finds a product ur �

urC1 � � � us of elements of L0 with infinite order. This reduces the problem to the case
dealt with in Section 6.4.2.

In the second possible outcome, SHORTENWORDS replaces L0 and M0 by conjugates
and then calculates lists L00 D .u01; : : : ; u

0
n/ and M00 D .v01; : : : ; v

0
n/ with ju0i j and jv0i j

bounded by a constant, and such that Lg DM if and only if .L00/g DM00.
We now test in time O.1/ (using our precomputed look-up table) whether there exists

g 2 G with
.u01; : : : ; u

0
n/

g
D .v01; : : : ; v

0
n/:

If so, we replace .u1; : : : ; uk/ by .u1; : : : ; uk/
g and thereby assume that ui D vi for

1 � i � n. For the centraliser problem, methods are described in [29, Proposition 2.3]
of finding a generating set of the centraliser of any quasiconvex subgroup of any biauto-
matic group; finitely generated subgroups of hyperbolic groups satisfy these conditions.
Since they need only to be applied to words of bounded length, their complexity does not
matter – indeed, we could precompute all such centralisers.

This completes the proof in the case nD k. In the case k > n, it is proved in [12, Corol-
lary 30] that the centraliser C of the subgroup hu1; : : : ; uni is finite and that the elements
of C have lengths bounded by a constant. So we can compute the elements of C explicitly
(in time O.1/). Then we simply need to check whether any g 2 C satisfies

.unC1; : : : ; uk/
g
D .vnC1; : : : ; vk/:

This completes the proofs of Theorems 6.3 and 6.4.

D. Holt, M. Lohrey, and S. Schleimer 1268

6.5. Compressed knapsack

In this final section, we prove the following.

Theorem 6.5. IfG is an infinite hyperbolic group, then the compressed knapsack problem
for G is NP-complete.

As above, fixG a finitely generated group. Fix as well a finite symmetric generating set
†. A knapsack expression over† is a regular expression of the form E D u�1u�1u

�
2 � � �u

�
k

with k � 0 and u; ui 2 †
�. The length of E is defined to be jEj D juj C

Pk
iD1 jui j.

A solution for E is a tuple .n1; n2; : : : ; nk/ 2 Nk of natural numbers such that u DG

u
n1
1 u

n2
2 � � �u

nk

k
. In other words, the language defined by E contains a word that represents

the identity of G.
The knapsack problem for G, over †, is the following:

Input: A knapsack expression E over †.

Question: Does E have a solution?

In [59, Theorem 6.1], it was shown that the knapsack problem for a hyperbolic group can
be solved in polynomial time. A crucial step in the proof for this fact is the following
result, which is of independent interest.

Theorem 6.6 ([59, Theorem 6.7]). For every hyperbolic group G, there exists a poly-
nomial p.x/ such that the following holds. Suppose that a knapsack expression E D
u�1u�1u

�
2 � � � u

�
k

over G has a solution. Then E has a solution .n1; n2; : : : ; nk/ 2 Nk

such that ni � p.jEj/ for all i satisfying 1 � i � k.

Recently, this result has been extended to acylindrically hyperbolic group in [8].
Let us now consider the compressed knapsack problem for G. It is defined in the same

way as the knapsack problem, except that the words u; ui 2 †
� are given by straight-line

programs. Note that the compressed knapsack problem for Z is NP-complete [32, Pro-
position 4.1.1]. Hence, for every group with an element of infinite order, the compressed
knapsack problem is NP-hard. This makes it interesting to look for groups where the
compressed knapsack problem is NP-complete.

From Corollary 5.8 and Theorem 6.6, we prove Theorem 6.5, which states that
compressed knapsack for an infinite hyperbolic group G is NP-complete.

Proof of Theorem 6.5. Consider a knapsack expression E D u�1u�1u
�
2 � � � u

�
k

over G,
where u and the ui are given by straight-line programs G and Gi . We then have juj; jui j �

3jGi j=3 by Lemma 4.5. Let N D jG j C
Pk

iD1 jGi j be the input length.
By Theorem 6.6, there exists a polynomial p.x/ such that E has a solution if and only

if it has a solution .n1; n2; : : : ; nk/ 2Nk with ni � p.jEj/ for all i so that 1� i � k. Thus,
we obtain a bound of the form 2O.N / on the exponents ni . Hence, we can guess the binary
encoding of a tuple .n1; n2; : : : ; nk/ 2 Nk with all ni bounded by 2O.N / and then check

Compressed decision problems in hyperbolic groups 1269

whether it is a solution for E. The latter can be done in polynomial time by constructing
from the straight-line programs G and Gi a straight-line program H for u�1u

n1
1 u

n2
2 � � �u

nk

k

using Proposition 4.6. Finally, we check in polynomial time whether eval.H /DG 1 using
Corollary 5.8.

The NP-hardness of the compressed knapsack problem for G (an infinite hyperbolic
group) now follows from the fact that G has elements of infinite order [30, p. 156] and the
above-mentioned result for Z [32, Proposition 4.1.1].

Acknowledgements. An extended abstract of this paper appeared in [39]. The third
author thanks the first two for their patience during the writing of this paper.

Funding. The second author has been supported by the DFG research project LO
748/13-1.

References

[1] I. Agol, The virtual Haken conjecture (with an appendix by I. Agol, D. Groves and J.
Manning). Doc. Math. 18 (2013), 1045–1087 Zbl 1286.57019 MR 3104553

[2] J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short,
Notes on word hyperbolic groups. In Group theory from a geometrical viewpoint (Trieste,
1990), pp. 3–63, World Scientific, River Edge, NJ, 1991 Zbl 0849.20023 MR 1170363

[3] L. Babai and E. Szemerédi, On the complexity of matrix group problems I. In Proceedings
of the 25th annual symposium on foundations of computer science, FOCS 1984, pp. 229–240,
IEEE Computer Society, 1984

[4] L. Bartholdi, M. Figelius, M. Lohrey, and A. Weiß, Groups with ALOGTIME-hard word prob-
lems and PSPACE-complete compressed word problems. ACM Trans. Comput. Theory 14
(2022), no. 3–4, article no. 11 MR 4614244

[5] G. Baumslag, A non-cyclic one-relator group all of whose finite quotients are cyclic. J. Austral.
Math. Soc. 10 (1969), 497–498 Zbl 0214.27402 MR 0254127

[6] G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups. Bull. Amer.
Math. Soc. 68 (1962), 199–201 Zbl 0108.02702 MR 0142635

[7] M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien, Finite monoids: from word to circuit
evaluation. SIAM J. Comput. 26 (1997), no. 1, 138–152 Zbl 0868.68057 MR 1431249

[8] O. Bogopolski, Equations in acylindrically hyperbolic groups and verbal closedness. Groups
Geom. Dyn. 16 (2022), no. 2, 613–682 Zbl 1528.20064 MR 4502617

[9] O. V. Bogopolskii and V. N. Gerasimov, Finite subgroups of hyperbolic groups. Algebra i
Logika 34 (1995), no. 6, 619–622, 728 Zbl 0901.20022 MR 1400705

[10] B. H. Bowditch, A short proof that a subquadratic isoperimetric inequality implies a linear
one. Michigan Math. J. 42 (1995), no. 1, 103–107 Zbl 0835.53051 MR 1322192

[11] M. R. Bridson and J. Howie, Conjugacy of finite subsets in hyperbolic groups. Internat. J.
Algebra Comput. 15 (2005), no. 4, 725–756 Zbl 1083.20032 MR 2160576

[12] D. J. Buckley and D. F. Holt, The conjugacy problem in hyperbolic groups for finite lists of
group elements. Internat. J. Algebra Comput. 23 (2013), no. 5, 1127–1150 Zbl 1277.20033
MR 3096315

https://doi.org/10.4171/DM/421
https://zbmath.org/?q=an:1286.57019
https://mathscinet.ams.org/mathscinet-getitem?mr=3104553
https://doi.org/10.1142/1235
https://doi.org/10.1142/1235
https://zbmath.org/?q=an:0849.20023
https://mathscinet.ams.org/mathscinet-getitem?mr=1170363
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1145/3569708
https://doi.org/10.1145/3569708
https://mathscinet.ams.org/mathscinet-getitem?mr=4614244
https://doi.org/10.1017/S1446788700007783
https://zbmath.org/?q=an:0214.27402
https://mathscinet.ams.org/mathscinet-getitem?mr=0254127
https://doi.org/10.1090/S0002-9904-1962-10745-9
https://zbmath.org/?q=an:0108.02702
https://mathscinet.ams.org/mathscinet-getitem?mr=0142635
https://doi.org/10.1137/S0097539793249530
https://doi.org/10.1137/S0097539793249530
https://zbmath.org/?q=an:0868.68057
https://mathscinet.ams.org/mathscinet-getitem?mr=1431249
https://doi.org/10.4171/ggd/661
https://zbmath.org/?q=an:1528.20064
https://mathscinet.ams.org/mathscinet-getitem?mr=4502617
https://doi.org/10.1007/BF00739330
https://zbmath.org/?q=an:0901.20022
https://mathscinet.ams.org/mathscinet-getitem?mr=1400705
https://doi.org/10.1307/mmj/1029005156
https://doi.org/10.1307/mmj/1029005156
https://zbmath.org/?q=an:0835.53051
https://mathscinet.ams.org/mathscinet-getitem?mr=1322192
https://doi.org/10.1142/S0218196705002529
https://zbmath.org/?q=an:1083.20032
https://mathscinet.ams.org/mathscinet-getitem?mr=2160576
https://doi.org/10.1142/S0218196713500203
https://doi.org/10.1142/S0218196713500203
https://zbmath.org/?q=an:1277.20033
https://mathscinet.ams.org/mathscinet-getitem?mr=3096315

D. Holt, M. Lohrey, and S. Schleimer 1270

[13] B. Chandler and W. Magnus, The history of combinatorial group theory. Stud. Hist. Math.
Phys. Sci., 9, Springer, New York, 1982 Zbl 0498.20001 MR 0680777

[14] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat, The
smallest grammar problem. IEEE Trans. Inform. Theory 51 (2005), no. 7, 2554–2576
Zbl 1296.68086 MR 2246377

[15] L. Ciobanu and M. Elder, The complexity of solution sets to equations in hyperbolic groups.
Israel J. Math. 245 (2021), no. 2, 869–920 Zbl 07513379 MR 4358266

[16] F. Dahmani and V. Guirardel, Foliations for solving equations in groups: free, virtually free,
and hyperbolic groups. J. Topol. 3 (2010), no. 2, 343–404 Zbl 1217.20021 MR 2651364

[17] F. Dahmani and V. Guirardel, The isomorphism problem for all hyperbolic groups. Geom.
Funct. Anal. 21 (2011), no. 2, 223–300 Zbl 1258.20034 MR 2795509

[18] M. Dehn, Über unendliche diskontinuierliche Gruppen. Math. Ann. 71 (1911), no. 1, 116–144
Zbl 42.0508.03 MR 1511645

[19] V. Diekert, O. Kharlampovich, and A. M. Moghaddam, SLP compression for solutions of
equations with constraints in free and hyperbolic groups. Internat. J. Algebra Comput. 25
(2015), no. 1-2, 81–111 Zbl 1328.20061 MR 3325878

[20] V. Diekert, J. Laun, and A. Ushakov, Efficient algorithms for highly compressed data: the
word problem in Higman’s group is in P. Internat. J. Algebra Comput. 22 (2012), no. 8, article
no. 1240008 Zbl 1264.20034 MR 3010822

[21] W. Dison, E. Einstein, and T. R. Riley, Ackermannian integer compression and the word
problem for hydra groups. In 41st International symposium on mathematical foundations of
computer science (MFCS 2016), Leibniz International Proceedings in Informatics (LIPIcs),
Volume 58, pp. 30:1–30:14, Schloss Dagstuhl. Leibniz Zent. Inform., Wadern
Zbl 1398.20038 MR 3578466

[22] W. Dison, E. Einstein, and T. R. Riley, Taming the hydra: the word problem and extreme
integer compression. Internat. J. Algebra Comput. 28 (2018), no. 7, 1299–1381
Zbl 1499.20084 MR 3864861

[23] W. Dison and T. R. Riley, Hydra groups. Comment. Math. Helv. 88 (2013), no. 3, 507–540
Zbl 1305.20052 MR 3093501

[24] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston,
Word processing in groups. Jones and Bartlett, Boston, MA, 1992 Zbl 0764.20017
MR 1161694

[25] D. Epstein and D. Holt, The linearity of the conjugacy problem in word-hyperbolic groups.
Internat. J. Algebra Comput. 16 (2006), no. 2, 287–305 Zbl 1141.20028 MR 2228514

[26] E. Frenkel, A. Nikolaev, and A. Ushakov, Knapsack problems in products of groups.
J. Symbolic Comput. 74 (2016), 96–108 Zbl 1401.20031 MR 3424034

[27] M. Ganardi, D. König, M. Lohrey, and G. Zetzsche, Knapsack problems for wreath products.
In 35th Symposium on theoretical aspects of computer science (STACS 2018), Leibniz Int.
Proc. Inform. (LIPIcs), Volume 96, pp. 32:1–32:13, Schloss Dagstuhl. Leibniz Zentr. Inform.
2018 Zbl 1491.20078 MR 3779313

[28] M. Garzon and Y. Zalcstein, The complexity of Grigorchuk groups with application to
cryptography. Theoret. Comput. Sci. 88 (1991), no. 1, 83–98 Zbl 0749.68040 MR 1130373

[29] S. M. Gersten and H. B. Short, Rational subgroups of biautomatic groups. Ann. of Math. (2)
134 (1991), no. 1, 125–158 Zbl 0744.20035 MR 1114609

[30] É. Ghys and P. de la Harpe, Panorama. In Sur les groupes hyperboliques d’après Mikhael
Gromov (Bern, 1988), Progr. Math. 83, pp. 1–25, Birkhäuser Boston, Boston, MA, 1990
MR 1086649

https://doi.org/10.1007/978-1-4613-9487-7
https://zbmath.org/?q=an:0498.20001
https://mathscinet.ams.org/mathscinet-getitem?mr=0680777
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1109/TIT.2005.850116
https://zbmath.org/?q=an:1296.68086
https://mathscinet.ams.org/mathscinet-getitem?mr=2246377
https://doi.org/10.1007/s11856-021-2232-z
https://zbmath.org/?q=an:07513379
https://mathscinet.ams.org/mathscinet-getitem?mr=4358266
https://doi.org/10.1112/jtopol/jtq010
https://doi.org/10.1112/jtopol/jtq010
https://zbmath.org/?q=an:1217.20021
https://mathscinet.ams.org/mathscinet-getitem?mr=2651364
https://doi.org/10.1007/s00039-011-0120-0
https://zbmath.org/?q=an:1258.20034
https://mathscinet.ams.org/mathscinet-getitem?mr=2795509
https://doi.org/10.1007/BF01456932
https://zbmath.org/?q=an:42.0508.03
https://mathscinet.ams.org/mathscinet-getitem?mr=1511645
https://doi.org/10.1142/S0218196715400056
https://doi.org/10.1142/S0218196715400056
https://zbmath.org/?q=an:1328.20061
https://mathscinet.ams.org/mathscinet-getitem?mr=3325878
https://doi.org/10.1142/S0218196712400085
https://doi.org/10.1142/S0218196712400085
https://zbmath.org/?q=an:1264.20034
https://mathscinet.ams.org/mathscinet-getitem?mr=3010822
https://doi.org/10.4230/LIPIcs.MFCS.2016.30
https://doi.org/10.4230/LIPIcs.MFCS.2016.30
https://zbmath.org/?q=an:1398.20038
https://mathscinet.ams.org/mathscinet-getitem?mr=3578466
https://doi.org/10.1142/S0218196718500583
https://doi.org/10.1142/S0218196718500583
https://zbmath.org/?q=an:1499.20084
https://mathscinet.ams.org/mathscinet-getitem?mr=3864861
https://doi.org/10.4171/CMH/294
https://zbmath.org/?q=an:1305.20052
https://mathscinet.ams.org/mathscinet-getitem?mr=3093501
https://doi.org/10.1201/9781439865699
https://zbmath.org/?q=an:0764.20017
https://mathscinet.ams.org/mathscinet-getitem?mr=1161694
https://doi.org/10.1142/S0218196706002986
https://zbmath.org/?q=an:1141.20028
https://mathscinet.ams.org/mathscinet-getitem?mr=2228514
https://doi.org/10.1016/j.jsc.2015.05.006
https://zbmath.org/?q=an:1401.20031
https://mathscinet.ams.org/mathscinet-getitem?mr=3424034
https://doi.org/10.4230/LIPIcs.STACS.2018.32
https://zbmath.org/?q=an:1491.20078
https://mathscinet.ams.org/mathscinet-getitem?mr=3779313
https://doi.org/10.1016/0304-3975(91)90074-C
https://doi.org/10.1016/0304-3975(91)90074-C
https://zbmath.org/?q=an:0749.68040
https://mathscinet.ams.org/mathscinet-getitem?mr=1130373
https://doi.org/10.2307/2944334
https://zbmath.org/?q=an:0744.20035
https://mathscinet.ams.org/mathscinet-getitem?mr=1114609
https://doi.org/10.1007/978-1-4684-9167-8_1
https://mathscinet.ams.org/mathscinet-getitem?mr=1086649

Compressed decision problems in hyperbolic groups 1271

[31] M. Gromov, Hyperbolic groups. In Essays in group theory. Math. Sci. Res. Inst. Publ. 8,
pp. 75–263, Springer, New York, 1987 MR 0919829

[32] C. Haase, On the complexity of model checking counter automata. PhD thesis, University of
Oxford, St Catherine’s College, 2011

[33] C. Hagenah, Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD thesis,
University of Stuttgart, 2000 Zbl 1020.20023

[34] F. Haglund and D. T. Wise, Coxeter groups are virtually special. Adv. Math. 224 (2010), no. 5,
1890–1903 Zbl 1195.53055 MR 2646113

[35] N. Haubold, M. Lohrey, and C. Mathissen, Compressed decision problems for graph products
and applications to (outer) automorphism groups. Internat. J. Algebra Comput. 22 (2012),
no. 8, article no. 1240007, Zbl 1267.20050 MR 3010821

[36] G. Higman, A finitely generated infinite simple group. J. London Math. Soc. 26 (1951), 61–64
Zbl 0042.02201 MR 0038348

[37] Y. Hirshfeld, M. Jerrum, and F. Moller, A polynomial-time algorithm for deciding equivalence
of normed context-free processes. In Proceedings 35th annual symposium on foundations of
computer science, FOCS 1994, pp. 623–631, IEEE Computer Society, Santa Fe, NM, USA,
1994

[38] Y. Hirshfeld, M. Jerrum, and F. Moller, A polynomial algorithm for deciding bisimilarity of
normed context-free processes. Theoret. Comput. Sci. 158 (1996), no. 1–2, 143–159
Zbl 0871.68086 MR 1388967

[39] D. Holt, M. Lohrey, and S. Schleimer, Compressed decision problems in hyperbolic groups. In
36th International dymposium on theoretical aspects of computer science. LIPIcs. Leibniz Int.
Proc. Inform. 126, pp. 37:1–37:16, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019,
article no. 37, Zbl 07559146 MR 3927752

[40] D. Holt and S. Rees, The compressed word problem in relatively hyperbolic groups. J. Algebra
607 (2022), 305–343 Zbl 1515.20154 MR 4441327

[41] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and computation.
Addison-Wesley Ser. Comput. Sci., Addison-Wesley, Reading, MA, 1979 Zbl 0426.68001
MR 0645539

[42] A. Jeż, Faster fully compressed pattern matching by recompression. ACM Trans. Algorithms
11 (2015), no. 3, article no. 20 Zbl 1398.68706 MR 3310541

[43] R. M. Karp, Reducibility among combinatorial problems. In Complexity of computer compu-
tations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972),
pp. 85–103, The IBM Research Symposia Series, Plenum, New York-London, 1972
Zbl 1467.68065 MR 0378476

[44] M. Karpinski, W. Rytter, and A. Shinohara, Pattern-matching for strings with short descrip-
tions. In Combinatorial pattern matching (Espoo, 1995), Lecture Notes in Comput. Sci. 937,
pp. 205–214, Springer, Berlin, 1995 Zbl 0874.68087 MR 1467516

[45] M. Kassabov and F. Matucci, The simultaneous conjugacy problem in groups of piecewise
linear functions. Groups Geom. Dyn. 6 (2012), no. 2, 279–315 Zbl 1273.20028
MR 2914861

[46] D. König and M. Lohrey, Evaluation of circuits over nilpotent and polycyclic groups.
Algorithmica 80 (2018), no. 5, 1459–1492 Zbl 1390.68311 MR 3779006

[47] D. König, M. Lohrey, and G. Zetzsche, Knapsack and subset sum problems in nilpotent, poly-
cyclic, and co-context-free groups. In Algebra and computer science, Contemp. Math. 677,
pp. 129–144, Amer. Math. Soc., Providence, RI, 2016 Zbl 1392.68205 MR 3589808

https://doi.org/10.1007/978-1-4613-9586-7_3
https://mathscinet.ams.org/mathscinet-getitem?mr=0919829
https://zbmath.org/?q=an:1020.20023
https://doi.org/10.1016/j.aim.2010.01.011
https://zbmath.org/?q=an:1195.53055
https://mathscinet.ams.org/mathscinet-getitem?mr=2646113
https://doi.org/10.1142/S0218196712400073
https://doi.org/10.1142/S0218196712400073
https://zbmath.org/?q=an:1267.20050
https://mathscinet.ams.org/mathscinet-getitem?mr=3010821
https://doi.org/10.1112/jlms/s1-26.1.61
https://zbmath.org/?q=an:0042.02201
https://mathscinet.ams.org/mathscinet-getitem?mr=0038348
https://doi.org/10.1109/SFCS.1994.365729
https://doi.org/10.1109/SFCS.1994.365729
https://doi.org/10.1016/0304-3975(95)00064-X
https://doi.org/10.1016/0304-3975(95)00064-X
https://zbmath.org/?q=an:0871.68086
https://mathscinet.ams.org/mathscinet-getitem?mr=1388967
https://doi.org/10.4230/LIPIcs.STACS.2019.37
https://zbmath.org/?q=an:07559146
https://mathscinet.ams.org/mathscinet-getitem?mr=3927752
https://doi.org/10.1016/j.jalgebra.2022.01.001
https://zbmath.org/?q=an:1515.20154
https://mathscinet.ams.org/mathscinet-getitem?mr=4441327
https://zbmath.org/?q=an:0426.68001
https://mathscinet.ams.org/mathscinet-getitem?mr=0645539
https://doi.org/10.1145/2631920
https://zbmath.org/?q=an:1398.68706
https://mathscinet.ams.org/mathscinet-getitem?mr=3310541
https://doi.org/10.1007/978-1-4684-2001-2_9
https://zbmath.org/?q=an:1467.68065
https://mathscinet.ams.org/mathscinet-getitem?mr=0378476
https://doi.org/10.1007/3-540-60044-2_44
https://doi.org/10.1007/3-540-60044-2_44
https://zbmath.org/?q=an:0874.68087
https://mathscinet.ams.org/mathscinet-getitem?mr=1467516
https://doi.org/10.4171/GGD/158
https://doi.org/10.4171/GGD/158
https://zbmath.org/?q=an:1273.20028
https://mathscinet.ams.org/mathscinet-getitem?mr=2914861
https://doi.org/10.1007/s00453-017-0343-z
https://zbmath.org/?q=an:1390.68311
https://mathscinet.ams.org/mathscinet-getitem?mr=3779006
https://doi.org/10.1090/conm/677
https://zbmath.org/?q=an:1392.68205
https://mathscinet.ams.org/mathscinet-getitem?mr=3589808

D. Holt, M. Lohrey, and S. Schleimer 1272

[48] M. Lohrey, Word problems and membership problems on compressed words. SIAM J. Comput.
35 (2006), no. 5, 1210–1240 Zbl 1106.20043 MR 2217143

[49] M. Lohrey, Algorithms on SLP-compressed strings: a survey. Groups Complex. Cryptol. 4
(2012), no. 2, 241–299 Zbl 1285.68088 MR 3043435

[50] M. Lohrey, The compressed word problem for groups. SpringerBriefs Math., Springer, New
York, 2014 Zbl 1391.20003 MR 3289040

[51] M. Lohrey, Knapsack in hyperbolic groups. J. Algebra 545 (2020), 390–415 Zbl 1485.20085
MR 4044702

[52] M. Lohrey and G. Zetzsche, Knapsack in graph groups. Theory Comput. Syst. 62 (2018), no. 1,
192–246 Zbl 1386.68073 MR 3742768

[53] J. Macdonald, Compressed words and automorphisms in fully residually free groups. Internat.
J. Algebra Comput. 20 (2010), no. 3, 343–355 Zbl 1203.20032 MR 2658415

[54] J. Macdonald, A. Miasnikov, and D. Ovchinnikov, Low-complexity computations for nilpotent
subgroup problems. Internat. J. Algebra Comput. 29 (2019), no. 4, 639–661 Zbl 1515.20156
MR 3964353

[55] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory. Presentations of groups
in terms of generators and relations. Dover, New York, 1976 Zbl 0362.20023 MR 0422434

[56] C. Mattes and A. Weiß, Improved parallel algorithms for generalized Baumslag groups. In
LATIN 2022: theoretical informatics, Lecture Notes in Comput. Sci. 13568, pp. 658–675,
Springer, Cham, 2022 Zbl 07719373 MR 4540195

[57] K. Mehlhorn, R. Sundar, and C. Uhrig, Maintaining dynamic sequences under equality-tests
in polylogarithmic time. In Proceedings of the fifth annual ACM-SIAM symposium on discrete
algorithms (Arlington, VA, 1994), pp. 213–222, ACM, New York, 1994 Zbl 0873.68038
MR 1285166

[58] K. Mehlhorn, R. Sundar, and C. Uhrig, Maintaining dynamic sequences under equality tests
in polylogarithmic time. Algorithmica 17 (1997), no. 2, 183–198 Zbl 0865.68034
MR 1425732

[59] A. Myasnikov, A. Nikolaev, and A. Ushakov, Knapsack problems in groups. Math. Comp. 84
(2015), no. 292, 987–1016 Zbl 1392.68207 MR 3290972

[60] A. Myasnikov, A. Ushakov, and D. W. Won, The word problem in the Baumslag group with a
non-elementary Dehn function is polynomial time decidable. J. Algebra 345 (2011), 324–342
Zbl 1248.20038 MR 2842068

[61] A. G. Miasnikov, A. Ushakov, and D. W. Won, Power circuits, exponential algebra, and time
complexity. Internat. J. Algebra Comput. 22 (2012), no. 6, article no. 1250047
Zbl 1285.03052 MR 2974102

[62] A. Y. Ol’shanskiı̆, Hyperbolicity of groups with subquadratic isoperimetric inequality. Inter-
nat. J. Algebra Comput. 1 (1991), no. 3, 281–289 Zbl 0791.20034 MR 1148230

[63] A. Y. Ol’shanskiı̆, Almost every group is hyperbolic. Internat. J. Algebra Comput. 2 (1992),
no. 1, 1–17 MR 1167524

[64] P. Papasoglu, On the sub-quadratic isoperimetric inequality. In Geometric group theory
(Columbus, OH, 1992), Ohio State Univ. Math. Res. Inst. Publ. 3, pp. 149–157, de Gruyter,
Berlin, 1995 Zbl 0849.20026 MR 1355109

[65] W. Plandowski, Testing equivalence of morphisms on context-free languages. In Algorithms—
ESA ’94 (Utrecht), Lecture Notes in Comput. Sci. 855, pp. 460–470, Springer, Berlin,
1994 MR 1328862

[66] A. N. Platonov, An isoparametric function of the Baumslag-Gersten group. Vestnik Moskov.
Univ. Ser. I Mat. Mekh. (2004), no. 3, 12–17, 70 Zbl 1084.20022 MR 2127449

https://doi.org/10.1137/S0097539704445950
https://zbmath.org/?q=an:1106.20043
https://mathscinet.ams.org/mathscinet-getitem?mr=2217143
https://doi.org/10.1515/gcc-2012-0016
https://zbmath.org/?q=an:1285.68088
https://mathscinet.ams.org/mathscinet-getitem?mr=3043435
https://doi.org/10.1007/978-1-4939-0748-9
https://zbmath.org/?q=an:1391.20003
https://mathscinet.ams.org/mathscinet-getitem?mr=3289040
https://doi.org/10.1016/j.jalgebra.2019.04.008
https://zbmath.org/?q=an:1485.20085
https://mathscinet.ams.org/mathscinet-getitem?mr=4044702
https://doi.org/10.1007/s00224-017-9808-3
https://zbmath.org/?q=an:1386.68073
https://mathscinet.ams.org/mathscinet-getitem?mr=3742768
https://doi.org/10.1142/S021819671000542X
https://zbmath.org/?q=an:1203.20032
https://mathscinet.ams.org/mathscinet-getitem?mr=2658415
https://doi.org/10.1142/S021819671950019X
https://doi.org/10.1142/S021819671950019X
https://zbmath.org/?q=an:1515.20156
https://mathscinet.ams.org/mathscinet-getitem?mr=3964353
https://zbmath.org/?q=an:0362.20023
https://mathscinet.ams.org/mathscinet-getitem?mr=0422434
https://doi.org/10.1007/978-3-031-20624-5_40
https://zbmath.org/?q=an:07719373
https://mathscinet.ams.org/mathscinet-getitem?mr=4540195
https://dl.acm.org/doi/10.5555/314464.314496
https://dl.acm.org/doi/10.5555/314464.314496
https://zbmath.org/?q=an:0873.68038
https://mathscinet.ams.org/mathscinet-getitem?mr=1285166
https://doi.org/10.1007/BF02522825
https://doi.org/10.1007/BF02522825
https://zbmath.org/?q=an:0865.68034
https://mathscinet.ams.org/mathscinet-getitem?mr=1425732
https://doi.org/10.1090/S0025-5718-2014-02880-9
https://zbmath.org/?q=an:1392.68207
https://mathscinet.ams.org/mathscinet-getitem?mr=3290972
https://doi.org/10.1016/j.jalgebra.2011.07.024
https://doi.org/10.1016/j.jalgebra.2011.07.024
https://zbmath.org/?q=an:1248.20038
https://mathscinet.ams.org/mathscinet-getitem?mr=2842068
https://doi.org/10.1142/S0218196712500476
https://doi.org/10.1142/S0218196712500476
https://zbmath.org/?q=an:1285.03052
https://mathscinet.ams.org/mathscinet-getitem?mr=2974102
https://doi.org/10.1142/S0218196791000183
https://zbmath.org/?q=an:0791.20034
https://mathscinet.ams.org/mathscinet-getitem?mr=1148230
https://doi.org/10.1142/S0218196792000025
https://mathscinet.ams.org/mathscinet-getitem?mr=1167524
https://doi.org/10.1515/9783110810820.149
https://zbmath.org/?q=an:0849.20026
https://mathscinet.ams.org/mathscinet-getitem?mr=1355109
https://doi.org/10.1007/BFb0049431
https://mathscinet.ams.org/mathscinet-getitem?mr=1328862
https://zbmath.org/?q=an:1084.20022
https://mathscinet.ams.org/mathscinet-getitem?mr=2127449

Compressed decision problems in hyperbolic groups 1273

[67] E. Rips and Z. Sela, Canonical representatives and equations in hyperbolic groups. Invent.
Math. 120 (1995), no. 3, 489–512 Zbl 0845.57002 MR 1334482

[68] S. Schleimer, Polynomial-time word problems. Comment. Math. Helv. 83 (2008), no. 4,
741–765 Zbl 1172.20028 MR 2442962

[69] C. C. Sims, Computational methods in the study of permutation groups. In Computa-
tional Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pp. 169–183, Pergamon,
Oxford-New York-Toronto, Ont., 1970 Zbl 0215.10002 MR 0257203

[70] S. Waack, The parallel complexity of some constructions in combinatorial group theory.
J. Inform. Process. Cybernet. 26 (1990), no. 5–6, 265–281 Zbl 0698.68053 MR 1072920

[71] J. P. Wächter and A. Weiß, An automaton group with PSPACE-complete word problem.
Theory Comput. Syst. 67 (2023), no. 1, 178–218 Zbl 07680323 MR 4548621

[72] A. Weiß, A logspace solution to the word and conjugacy problem of generalized Baumslag-
Solitar groups. In Algebra and computer science, Contemp. Math. 677, pp. 185–212, Amer.
Math. Soc., Providence, RI, 2016 Zbl 1388.20051 MR 3589811

[73] D. T. Wise, Research announcement: the structure of groups with a quasiconvex hierarchy.
Electron. Res. Announc. Math. Sci. 16 (2009), 44–55 Zbl 1183.20043 MR 2558631

Received 1 March 2022.

Derek Holt
Mathematics Institute, University of Warwick, Zeeman Building, Coventry CV4 7AL, UK;
d.f.holt@warwick.ac.uk

Markus Lohrey
Department for Electrical Engineering and Computer Science, Universität Siegen,
Hölderlinstrasse 3, 57076 Siegen, Germany; lohrey@eti.uni-siegen.de

Saul Schleimer
Mathematics Institute, University of Warwick, Zeeman Building, Coventry CV4 7AL, UK;
s.schleimer@warwick.ac.uk

https://doi.org/10.1007/BF01241140
https://zbmath.org/?q=an:0845.57002
https://mathscinet.ams.org/mathscinet-getitem?mr=1334482
https://doi.org/10.4171/CMH/142
https://zbmath.org/?q=an:1172.20028
https://mathscinet.ams.org/mathscinet-getitem?mr=2442962
https://doi.org/10.1016/B978-0-08-012975-4.50020-5
https://zbmath.org/?q=an:0215.10002
https://mathscinet.ams.org/mathscinet-getitem?mr=0257203
https://zbmath.org/?q=an:0698.68053
https://mathscinet.ams.org/mathscinet-getitem?mr=1072920
https://doi.org/10.1007/s00224-021-10064-7
https://zbmath.org/?q=an:07680323
https://mathscinet.ams.org/mathscinet-getitem?mr=4548621
https://doi.org/10.1090/conm/677
https://zbmath.org/?q=an:1388.20051
https://mathscinet.ams.org/mathscinet-getitem?mr=3589811
https://doi.org/10.3934/era.2009.16.44
https://zbmath.org/?q=an:1183.20043
https://mathscinet.ams.org/mathscinet-getitem?mr=2558631
mailto:d.f.holt@warwick.ac.uk
mailto:lohrey@eti.uni-siegen.de
mailto:s.schleimer@warwick.ac.uk

	1. Introduction
	1.1. Background
	1.2. This paper
	1.3. Applications
	1.4. Related work
	1.4.1 Compressed word problems
	1.4.2 Hardness results
	1.4.3 Knapsack problems over groups
	1.4.4 Compressing integers

	2. General notation
	2.1. Words
	2.2. Finite state automata

	3. Hyperbolic groups
	4. Compressed words and the compressed word problem
	4.1. Straight-line programs
	4.2. Algorithms for compressed words
	4.3. The compressed word problem
	4.4. Cut programs

	5. The compressed word problem for hyperbolic groups
	5.1. Tethered programs
	5.3. Transforming tethered programs
	5.10. Solving the compressed word problem

	6. Further compressed decision problems
	6.1. Compressed order problem
	6.2. The compressed (simultaneous) conjugacy and compressed centraliser problems
	6.3. The problems
	6.4. The proofs
	6.4.1 Compressed conjugacy problem
	6.4.2 Compressed simultaneous conjugacy and centralisers: The infinite order case
	6.4.3 Compressed simultaneous conjugacy and centralisers: The finite order case

	6.5. Compressed knapsack

	References

