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Acylindrical hyperbolicity of Artin groups associated
with graphs that are not cones

Motoko Kato and Shin-ichi Oguni

Abstract. Charney and Morris-Wright showed acylindrical hyperbolicity of Artin groups of infi-
nite type associated with graphs that are not joins, by studying clique-cube complexes and the
actions on them. In this paper, by developing their study and formulating some additional discus-
sion, we demonstrate that acylindrical hyperbolicity holds for more general Artin groups. Indeed,
we are able to treat Artin groups of infinite type associated with graphs that are not cones.

1. Introduction

Artin groups, also called Artin–Tits groups, have been widely studied since their intro-
duction by Tits [30]. In particular, Artin groups are important examples in geometric
group theory. For various nonpositively curved or negatively curved properties on dis-
crete groups, Artin groups are interesting targets. In this paper, we consider acylindrical
hyperbolicity of Artin groups.

Let � be a finite simple graph with the vertex set V DV.�/ and the edge setEDE.�/.
Each edge e has two end vertices, which we denote by se and te . We suppose that any
edge e is labeled by an integer �.e/ � 2. The Artin group A� associated with � is defined
by the following presentation:

A� D hV.�/ j setesete � � �„ ƒ‚ …
length �.e/

D tesetese � � �„ ƒ‚ …
length �.e/

for all e 2 E.�/i: (1.1)

Free abelian groups, free groups, and braid groups are typical examples of Artin groups.
Adding the relation v2 D 1 for all v 2 V.�/ to (1.1) produces the associated Coxeter
group W� . In terms of the properties of W� , we can define several important classes of
Artin groups. The Artin group A� is said to be of finite type ifW� is finite. Otherwise, it is
said to be of infinite type. The Artin groupA� is said to be irreducible ifW� is irreducible,
that is, the defining graph � cannot be decomposed as a join of two subgraphs such that all
edges between them are labeled by 2. It is well known that an infinite Coxeter group W�
is irreducible if and only if W� cannot be directly decomposed into two nontrivial sub-
groups [24, 28]. However, it is unclear whether A� is irreducible if and only if A� cannot
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be directly decomposed into two nontrivial subgroups. In general, Coxeter groups are well
understood, but many basic questions for Artin groups remain open (refer to [10, 16]).

We consider nonpositively curved or negatively curved properties on Artin groups.
The following is one of the most important open problems [10, Problem 4].

Problem 1.1. Which Artin groups are CAT(0) groups, that is, groups acting geometrically
on CAT(0) spaces?

Here, CAT(0) spaces are geodesic spaces in which every geodesic triangle is not fatter
than the comparison triangle in the Euclidean plane (see [5] for the precise definition).
A group action is said to be geometric if the action is proper, cocompact, and isometric.
In recent studies on geometric group theory, various properties besides the CAT(0) prop-
erty have been actively investigated, such as systolic property and the Helly property (see,
for example, [19, 20]).

In this paper, we consider the following problem [17, Conjecture B].

Problem 1.2. Are irreducible Artin groups of infinite type acylindrically hyperbolic?

The definition of acylindrical hyperbolicity is given in Section 2. There are many appli-
cations of acylindrical hyperbolicity (see, for example, [13, 25], and [26]).

Remark 1.3. (1) Reducible Artin groups can be directly decomposed into two infinite
subgroups. However, acylindrical hyperbolic groups cannot be directly decomposed into
two infinite subgroups [25, Corollary 7.3]. Hence, such Artin groups are not acylindrically
hyperbolic.

(2) Irreducible Artin groups of finite type have infinite cyclic centers [6,14]. Because
acylindrical hyperbolic groups do not permit infinite centers [25, Corollary 7.3], such
Artin groups are not acylindrically hyperbolic. We remark that the central quotients for
irreducible Artin groups of finite type are acylindrically hyperbolic (see [2,3,18] for braid
groups, and [8] for the general case).

Many affirmative partial answers for Problem 1.2 are known. Indeed, the following
irreducible Artin groups of infinite type are known to be acylindrically hyperbolic:

• right-angled Artin groups [9, 22];

• two-dimensional Artin groups such that the associated Coxeter groups are hyper-
bolic [23];

• Artin groups of XXL-type [17];

• Artin groups of type FC such that the defining graphs have diameter greater than
two [12];

• Artin groups that are known to be CAT(0) groups according to the result of Brady and
McCammond [4] (see also [21]);

• Euclidean Artin groups [7].
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Actually, except for Euclidean Artin groups, all of these Artin groups are regarded as
special cases of the following irreducible Artin groups of infinite type, which are known
to be acylindrically hyperbolic:

• Artin groups associated with graphs that are not joins [11];

• two-dimensional Artin groups, that is, Artin groups such that every triangle with three
vertices v1, v2, v3 of the defining graphs satisfies (see [32])

1

�..v1; v2//
C

1

�..v2; v3//
C

1

�..v3; v1//
� 1:

Charney and Morris-Wright [11] showed acylindrical hyperbolicity of Artin groups of
infinite type associated with graphs that are not joins, by studying clique-cube complexes,
which are CAT(0) cube complexes, and the isometric actions on them. In fact, they con-
structed a WPD (weak properly discontinuous) contracting element of such an Artin group
with respect to the isometric action on the clique-cube complex. In this paper, we general-
ize this result by developing their study and formulating some additional discussion. Our
main theorem can be stated as follows.

Theorem 1.4. Let A� be an Artin group associated with � , where � has at least three
vertices. Suppose that � is not a cone. Then, the following are equivalent:

(1) A� is irreducible, that is, � cannot be decomposed as a join of two subgraphs
such that all edges between them are labeled by 2;

(2) A� has a WPD contracting element with respect to the isometric action on the
clique-cube complex;

(3) A� is acylindrically hyperbolic;

(4) A� is directly indecomposable, that is, it cannot be decomposed as a direct prod-
uct of two nontrivial subgroups.

Remark 1.5. When an Artin group A� is irreducible and the defining graph � is not
a cone, the center Z.A�/ is known to be trivial. This fact is shown in [11]. We present an
alternative proof based on Theorem 1.4 (see Remark 6.6).

From Theorem 1.4, we find that many irreducible Artin groups of infinite type are
acylindrically hyperbolic, e.g., the Artin groups associated with the defining graphs in
Figure 1.

The remainder of this paper is organized as follows. Section 2 contains some prelimi-
naries regarding acylindrically hyperbolic groups, WPD contracting elements, and CAT(0)
cube complexes. Section 3 presents preliminaries on defining graphs of Artin groups and
joins of graphs. In Section 4, we treat clique-cube complexes and the actions on them
by Artin groups following [11]. In Section 5, we study the local geometry of clique-cube
complexes. Section 6 gives a proof of Theorem 1.4. Our main task is to construct a candi-
date WPD contracting element and show that it really is a WPD contracting element.
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Figure 1. Defining graphs � of new examples A� .

2. Acylindrical hyperbolicity, weak properly discontinuous
contracting elements, and CAT(0) cube complexes

In this section, we collect some definitions and properties related to acylindrical hyper-
bolicity, WPD contracting elements, and CAT(0) cube complexes that will be used later
in the paper. See [15] and the references therein for details.

First, we recall the definition of acylindrical hyperbolicity (see [25]).

Definition 2.1. A group G is acylindrically hyperbolic if it admits an isometric action on
a hyperbolic space Y that is non-elementary (i.e., with an infinite limit set) and acylin-
drical (i.e., for every D � 0, there exist some R; N � 0 such that, for all y1; y2 2 Y ,
dY .y1; y2/ � R implies #¹g 2 G j dY .y1; g.y1//; dY .y2; g.y2// � Dº � N ).

Next, we recall the definition of a WPD contracting element.

Definition 2.2. Let a group G act isometrically on a metric space X . For  2 G, we say
that

•  is WPD if, for every D � 0 and x 2 X , there exists some M � 1 such that

#¹g 2 G j dX .x; g.x//; dX .M .x/; gM .x// � Dº <1I

•  is contracting if  is loxodromic, that is, there exists x0 2 X such that Z ! X ,
n 7! n.x0/ is a quasi-isometry onto the image Zx0 WD ¹

n.x0/ j n 2 Zº, and Zx0
is contracting, that is, there exists B � 0 such that the diameter of the nearest-point
projection of any ball that is disjoint from Zx0 onto Zx0 is bounded by B .

The following is a consequence of [1].
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Theorem 2.3. Let a group G act isometrically on a geodesic metric space X . Suppose
that G is not virtually cyclic. If there exists a WPD contracting element  2 G, then G is
acylindrically hyperbolic.

CAT(0) cube complexes are considered as generalized trees in higher dimensions. The
following is a precise definition (see [5, p. 111]).

Definition 2.4. A cube complex is aCW complex constructed by gluing together cubes of
arbitrary (finite) dimension by isometries along their faces. Furthermore, the cube complex
is nonpositively curved if the link of any of its vertices is a simplicial flag complex (i.e.,
nC 1 vertices span an n-simplex if and only if they are pairwise adjacent), and CAT(0) if
it is nonpositively curved and simply connected.

Definition 2.5. Let X be a CAT(0) cube complex. We define an equivalence relation for
the edges of X as the transitive closure of the relation identifying two parallel edges of
a square. For an equivalence class, a hyperplane is defined as the union of the midcubes
transverse to the edges belonging to the equivalence class. Then, for any edge belonging
to the equivalence class, the hyperplane is said to be dual to the edge.

For a hyperplane J , we denote the union of the cubes intersecting J by N.J /, that
is, the smallest subcomplex of X containing J . We denote the union of the cubes not
intersecting J by X nnJ , that is, the largest subcomplex of X not intersecting J .

See [29] for the following.

Theorem 2.6. LetX be a CAT.0/ cube complex and J be a hyperplane. Then,X nnJ has
exactly two connected components.

The two connected components of X nnJ are often denoted by JC and J�.
For convenience, we prepare the following for the proof of Theorem 1.4.

Definition 2.7. Let X be a CAT(0) cube complex. For two vertices x and x0 in X , we call
a sequence of hyperplanes P1; : : : ; PM a sequence of separating hyperplanes from x to x0

if the sequence satisfies

x 2 P�1 ; PC1 © PC2 © � � � © PCM�1 © PCM 3 x
0

for some connected components PCi of X nnPi for all i 2 ¹1; : : : ;M º.
For two hyperplanes J and J 0 in X , we call a sequence of hyperplanes P1; : : : ; PM

a sequence of separating hyperplanes from J to J 0 if the sequence satisfies

JC © PC1 © PC2 © � � � © PCM�1 © PCM © J 0C

for some connected components JC of X nnJ , J 0C of X nnJ 0, and PCi of X nnPi for all
i 2 ¹1; : : : ;M º.

Remark 2.8. When P1; : : : ; PM is a sequence of separating hyperplanes from J to J 0,
for two vertices x 2 J� [ N.J / and x0 2 J 0C [ N.J 0/, P1; : : : ; PM is a sequence of
separating hyperplanes from x to x0.
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The following is a part of [15, Theorem 3.3] and is used in the proof of Theorem 1.4.

Theorem 2.9. Let a group G act isometrically on a CAT.0/ cube complex X . Then,
 2 G is a WPD contracting element if there exist two hyperplanes J and J 0 satisfying
the following:

(i) J and J 0 are strongly separated, that is, no hyperplane can intersect both J
and J 0;

(ii)  skewers J and J 0, that is, we have connected components JC of X nnJ
and J 0C of X nnJ 0 such that n.JC/ ¨ J 0C ¨ JC for some n 2 N;

(iii) stab.J /\ stab.J 0/ is finite, where stab.J /D¹g 2G j g.J /D J º and stab.J 0/D
¹g 2 G j g.J 0/ D J 0º.

3. Defining graphs of Artin groups and joins

3.1. Defining graphs of Artin groups

We now present a precise description of the defining graph of an Artin group and introduce
some related graphs.

Let V be a finite set. Denote the diagonal set by diag.V � V / WD ¹.v; w/ 2 V � V j
v D wº. We consider the involution on the off-diagonal set

�W V � V n diag.V � V / 3 .v; w/ 7! .w; v/ 2 V � V n diag.V � V /:

Any e 2 V � V n diag.V � V / is often presented as .se; te/. Then, for any e 2 V � V n
diag.V � V /, we have s�.e/ D te and t�.e/ D se . We take a symmetric map

z�W V � V n diag.V � V /! Z�2 [ ¹1º:

Here, ‘symmetric’ means that z� ı � D z� is satisfied. Set Em WD z��1.m/ for any m 2
Z�2 [ ¹1º. Then, we have

V � V n diag.V � V / D
G

m2Z�2[¹1º

Em:

We now have a finite simple labeled graph � with the vertex set V.�/ D V , the edge
set E.�/ D

F
m2Z�2

Em, and the labeling � WD z�jE.�/. The Artin group A� associated
with � is then defined by presentation (1.1), and � is called the defining graph of A� .

For convenience, we define two other finite simple graphs �c and � t as follows. The
graph �c is the finite simple graph with the vertex set V.�c/ D V and the edge set
E.�c/ D E1. This is the so-called complement graph of � . The graph � t is the finite
simple graph with the vertex set V.� t /D V and the edge set E.� t /D

F
m2Z�3[¹1º

Em.
See Figures 1 and 2.
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Figure 2. The graphs � t and �c with respect to � in Figure 1.

Remark 3.1. In research related to Coxeter groups and some traditional treatments of
Artin groups, � t is used with the label z�jE.� t /. We mainly use � in accordance with
many recent studies on Artin groups. We only use � t as an aid in this paper.

3.2. Joins

Definition 3.2. Letƒ¤ ; be an index set. The join �˛2ƒ�˛ of simple graphs �˛ , ˛ 2 ƒ,
is defined as a simple graph with the vertex set

V.�˛2ƒ�˛/ WD
G
˛2ƒ

V.�˛/

and the edge set

E.�˛2ƒ�˛/ WD
G
˛2ƒ

E.�˛/ t
G

˛;ˇ2ƒ;˛¤ˇ

¹.v˛; vˇ / j v˛ 2 V.�˛/; vˇ 2 V.�ˇ /º:

A simple graph � is said to be decomposable (as a join) if there exist an index set ƒ
with #ƒ � 2 and subgraphs �˛ , ˛ 2 ƒ, of � such that � D �˛2ƒ�˛ . This is called a join
decomposition of � into factors �˛ , ˛ 2 ƒ. The graph � is said to be indecomposable (as
a join) if it is not decomposable.

A simple decomposable graph � is called a cone if � has a join decomposition into
a subgraph consisting of only one vertex v0 and a subgraph � 0

� D ¹v0º � �
0:
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Remark 3.3. Any simple graph � is indecomposable as a join if and only if its comple-
ment graph �c is connected.

The following is a well-known fact. See Figures 1 and 2.

Lemma 3.4. Let � be a simple graph. Suppose that � is decomposable. Then, � has
a unique join decomposition into indecomposable factors

� D �˛2ƒ�˛:

Proof. Consider the decomposition of �c into connected components

�c D
G
˛2ƒ

.�c/˛:

Set V˛ WD V..�c/˛/ and define �˛ as the subgraph of � spanned by V˛ . Then, .�˛/c D
.�c/˛ . Additionally, we have a join decomposition � D �˛2ƒ�˛ .

Remark 3.5. Any decomposable graph is not a cone if and only if each of its indecom-
posable factors has at least two vertices.

4. Clique-cube complexes and actions on them

In this section, we consider clique-cube complexes and the actions on them following [11].
Let A� be an Artin group associated with a defining graph � as in Section 3.1. By the the-
orem of van der Lek (see [27, 31]), for any subset U � V D V.�/, the subgroup of A�
generated by U is itself an Artin group associated with the full subgraph of � spanned
by U . We denote this subgroup by AU . When U is empty, we define A; D ¹1º. We say
that U spans a clique in � if any two elements of U are joined by an edge in � .

Definition 4.1 ([11, Definition 2.1]). Consider the set

�� D ¹U � V j U spans a clique in � or U D ;º:

The clique-cube complex C� is the cube complex whose vertices (i.e., 0-dimensional
cubes) are cosets gAU , g 2 A� , U 2 �� , where two vertices gAU and hAU 0 are joined
by an edge (i.e., a 1-dimensional cube) in C� if and only if gAU � hAU 0 and U and U 0

differ by a single generator. Note that, in this case, we can always replace h by g, that
is, hAU 0 D gAU 0 . More generally, two vertices gAU and gAU 0 with gAU � gAU 0 span
a #.U 0 n U/-dimensional cube ŒgAU ; gAU 0 � in C� .

The group A� acts on the clique-cube complex C� by left multiplication, h � gAU D
.hg/AU . This action preserves the cubical structure and is isometric. The action is also
co-compact with a fundamental domain

S
U2��

ŒA;; AU �, where ŒA;; AU � is a #U -di-
mensional cube spanned by two vertices A; and AU in C� . However, the action is not
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proper. In fact, the stabilizer of a vertex gAU is the conjugate subgroup gAUg�1, so all
vertices except translations of A; have infinite stabilizers. We also note that C� is not
a proper metric space because it contains infinite valence vertices. Additionally, C� has
infinite diameter if and only if � itself is not a clique.

Remark 4.2 ([11, Section 2]). Each edge in C� can be labeled with a generator in V . For
example, the edge between gAU and gAUt¹vº is labeled by v. Any two parallel edges in
a cube have the same label, so we can also label the hyperplane dual to such an edge by v
and say that such a hyperplane is of v-type. Every hyperplane of v-type is the translation
of a hyperplane dual to the edge between A; and A¹vº. If a hyperplane of v-type crosses
another hyperplane of v0-type, then .v;v0/2E.�/. In particular, two different hyperplanes
of the same type do not cross each other.

Theorem 4.3 ([11, Theorem 2.2]). The clique-cube complex C� is CAT.0/ for any
graph � .

Lemma 4.4 ([11, Lemma 2.3]). In the clique-cube complex C� , the link of the vertex A;
is isomorphic to the flag simplicial complex whose 1-skeleton is � .

Lemma 4.5 ([11, Lemma 2.4]). If the clique-cube complex C� is reducible, that is, de-
composable as a product of two subcomplexes, then � is decomposable (as a join). In par-
ticular, if � is indecomposable, then C� is irreducible.

More strongly, we can show the following. This proposition is not directly used in the
proof of Theorem 1.4, but is of independent interest.

Proposition 4.6. The following are equivalent:

(1) C� is reducible.

(2) A� is reducible, that is, � t is connected. In other words, � can be decomposed as
a join of two subgraphs such that all edges between them are labeled by 2.

(3) In addition to .2/, C� is a direct product of C� 0 and C� 00 when � is decomposed
as a join of two subgraphs � 0 and � 00 such that all edges between them are labeled
by 2.

Proof. .3/) .1/ is obvious. We show that .1/) .2/) .3/.
We first consider .1/) .2/. Suppose that C� is reducible. First, we show that � can

be decomposed as a join of two subgraphs. We fix two subcomplexes C 0 and C 00 of C�
satisfying C� D C 0 � C 00. Then, for any vertex v D .v0; v00/ of C� D C 0 � C 00, LkC�v
is the join of LkC 0v0 and LkC 00v00. Let �v , � 0v , and � 00v be 1-skeletons of LkCv, LkC 0v0,
and LkC 00v00, respectively. Then, �v is the join of � 0v and � 00v . In particular, �A; is the join
of � 0A; and � 00A; . We set

� 0 WD � 0A; and � 00 WD � 00A; :

Because � is isomorphic to �A; by Lemma 4.4, � can be regarded as the join of � 0 and � 00.
Thus far, the argument is based on the proof of Lemma 4.4 in [11].
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sA;A¹sºA;

sA¹tº

A¹s;tº

A¹tº

tA; tA¹sº

Figure 3. A 3-line full subgraph of �A¹s;tº .

Next, we show that all edges between � 0 and � 00 are labeled by 2. Assume that we
have s 2 V.� 0/ and t 2 V.� 00/ such that e D .s; t/ is an edge of � with label m > 2. Let
us consider three squares ŒA;; A¹s;tº�, ŒsA;; A¹s;tº�, and ŒtA;; A¹s;tº� around A¹s;tº. Then,
we have a 3-line subgraph of �A¹s;tº corresponding to these three squares (see Figure 3).
The 3-line subgraph is a full subgraph of �A¹s;tº , because it follows from Lemma 5.1
(see the next section) that there is no square in C� containing both edges ŒA¹s;tº; tA¹sº�
and ŒA¹s;tº; sA¹tº�. Because C� is C 0 � C 00 and edges ŒA;; A¹sº� and ŒA;; A¹tº� of C�
correspond to edges of C 0 � ¹A;º and ¹A;º � C 00, respectively, edges ŒA¹tº; A¹s;tº� and
ŒA¹sº;A¹s;tº� ofC� must correspond to edges ofC 0 � ¹A¹tºº and ¹A¹sºº �C 00, respectively.
Thus, the two middle vertices of the 3-line full subgraph of �A¹s;tº D �

0
A¹s;tº
� � 00A¹s;tº

belong
to � 0A¹s;tº and � 00A¹s;tº , respectively. This contradicts the fact that any 3-line full subgraph of
a join of two graphs is contained in either of the join factors.

We now show that .2/) .3/. Suppose that � is decomposed as a join of two sub-
graphs � 0 and � 00 such that all edges between them are labeled by 2. Then, we have
a bijection

�� 0 ��� 00 ! �� ; .T 0; T 00/ 7! T 0 t T 00: (4.1)

In addition, because A� is a direct product of subgroups A� 0 and A� 00 , we have a group
isomorphism

A� 0 � A� 00 ! A� ; .g0; g00/ 7! g0g00: (4.2)

Clearly, (4.1) and (4.2) imply a bijection from vertices of C� 0 � C� 00 to vertices of C�

�0W C 0� 0 � C
0
� 00 ! C 0� ; .g0AT 0 ; g

00AT 00/ 7! g0g00AT 0tT 00 :

This can be extended to the cubical isomorphism

�W C� 0 � C� 00 ! C�

such that �.Œg0AT 0 ; g0AU 0 � � Œg00AT 00 ; g00AU 00 �/ D Œg0g00AT 0[T 00 ; g
0g00AU 0[U 00 � for any

.T 0; T 00/ 2 �� 0 ��� 00 and .g0; g00/ 2 A� 0 � A� 00 .
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Lemma 4.7 ([11, Lemma 3.2]). Suppose that � is not a cone. Then, the action of A�
on C� is minimal. That is, for any point x 2 C� , we have Hull.A�x/ D C� (the convex
hull of the orbit of x is all of C� ).

Proposition 4.8. Suppose that � is not a cone. Then, a finite normal subgroup of A� is
trivial. In particular, a finite center of A� is trivial. Also, if A� is isomorphic to a direct
product A1 � A2 and A1 is finite, then A1 is trivial.

Proof. Let N be a finite normal subgroup of A� . Set

Fix.N / WD ¹x 2 C� j nx D x for any n 2 N º:

Because N is finite and C� is a complete CAT(0) space, we have Fix.N / ¤ ;. Take
any x 2 Fix.N /. Then, A�x � Fix.N /. Indeed, the normality of N implies that, for any
g 2 A� and n 2 N , there exists n0 2 N such that ng D gn0. Therefore, we have ngx D
gn0x D gx. Because C� is CAT(0), Fix.N / is convex. Hence, we have Hull.A�x/ �
Fix.N /. By Lemma 4.7, we have Hull.A�x/ D C� . Hence, Fix.N / D C� . In particular,
A; 2 Fix.N /. In general, A; is not fixed by any nontrivial element of A� . Hence, N must
be trivial.

5. Lemmas on local geometry of clique-cube complexes

In this section, we state two lemmas related to the local geometry of clique-cube com-
plexes. The first one is used in the proof of Proposition 4.6. The second is used in the
proof of Theorem 1.4.

Recall that the dihedral group for any r 2 N is defined as

I2.r/ WD

´
hs; t j s2 D 1; t2 D 1; st � � � s D ts � � � t .length r/i if r is odd;

hs; t j s2 D 1; t2 D 1; st � � � t D ts � � � s .length r/i if r is even:

It is well known that #I2.r/ D 2r .
Let A� be an Artin group associated with a defining graph � as in Section 3.1.

Lemma 5.1. Let e D .s; t/ be an edge of � with labelm greater than 2. Then, there exists
no square in C� containing both edges ŒA¹s;tº; tA¹sº� and ŒA¹s;tº; sA¹tº�, that is, there exist
no p; q 2 Z such that tsp D stq in A� .

See Figure 3.

Proof. Assume that we have a square in C� containing both edges ŒA¹s;tº; tA¹sº� and
ŒA¹s;tº; sA¹tº�. Then, the square has four vertices A¹s;tº, tA¹sº, sA¹tº, and tspA; D stqA;,
where p, q are some integers. Then, we have p D q. Indeed, if we consider the projec-
tion A¹s;tº ! A¹sº Š Z defined by s 7! s and t 7! s, then tsp D stq in A¹s;tº implies
s1Cp D s1Cq in A¹sº, and thus p D q. Hence, we have tsp D stp in A¹s;tº. By the natural
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projection A¹s;tº ! W¹s;tº, tsp D stp in A¹s;tº implies ts D st in W¹s;tº if p is odd and
t D s in W¹s;tº if p is even. Both cases contradict the fact that ts ¤ st and s ¤ t in W¹s;tº
in the case where m > 2.

Lemma 5.2. Let e D .s; t/ be an edge of � with label m greater than 2. Let � be an
alternating word

� WD st � � � s

´
of length m if m is odd;

of length mC 1 if m is even:

Let U 2 �� with s; t 2 U . Then, there exists no square in C� containing both edges
ŒAU ; AUn¹sº� and ŒAU ; �AUn¹tº�, that is, there exists no g 2 AUn¹sº such that gAUn¹tº D
�AUn¹tº. Additionally, there exists no square in C� containing both edges ŒAU ; AUn¹tº�
and ŒAU ; �AUn¹sº�, that is, there exists no g 2 AUn¹tº such that gAUn¹sº D �AUn¹sº.

See Figure 4.

�AUn¹s;tº

AUn¹tºAUn¹s;tº

�AUn¹sº

AU

AUn¹sº

�AUn¹tº

Figure 4. Squares around AU .

Proof. We prove this lemma by induction on k D #U .
(1) The base case where k D 2. In this case, U D ¹s; tº. It is sufficient to show that for

any p 2 Z,
tpAUn¹tº ¤ �AUn¹tº and spAUn¹sº ¤ �AUn¹sº:

(1-1) Suppose that m is odd. Note that � D st � � � s is equal to an alternating word
ts � � � t of length m in

A¹s;tº D hs; t j st � � � s D ts � � � t .length m/i D AU � A� :

We assume that there exists p 2 Z such that tpAUn¹tº D �AUn¹tº. Then, t�p� 2 AUn¹tº.
In contrast, we clearly have that t�p� 2 A¹s;tº. Because U n ¹tº D ¹sº, there exists q 2 Z
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such that tpsq D � in A¹s;tº. Then, we have p C q D m. Indeed, if we consider the pro-
jection A¹s;tº ! A¹sº Š Z defined by s 7! s and t 7! s, then tpsq D � in A¹s;tº implies
spCq D sm in A¹sº, and thus p C q D m. Hence, we have tpsm�p D st � � � s D ts � � � t
in A¹s;tº.

(1-1-1) We treat the case where p is odd. By the natural projection A¹s;tº ! W¹s;tº,
tpsm�p D ts � � � t in A¹s;tº and tpsm�p D t in W¹s;tº imply t D ts � � � t in W¹s;tº. Thus,
we have 1 D s � � � t in W¹s;tº. This means that we have a projection I2..m � 1/=2/ !
W¹s;tº Š I2.m/ defined by s 7! s and t 7! t . Thus, we have m � 1 D #I2..m � 1/=2/ �
#I2.m/ D 2m. This contradicts m > 2.

(1-1-2) We treat the case where p is even. In this case, tpsm�p D st � � � s in A¹s;tº
and tpsm�p D s in W¹s;tº imply s D st � � � s in W¹s;tº. Thus, we have 1 D s � � � t in W¹s;tº.
This means that we have a projection I2..m� 1/=2/! W¹s;tº Š I2.m/ defined by s 7! s

and t 7! t . Thus, we have m � 1 D #I2..m � 1/=2/ � #I2.m/ D 2m. This contradicts
m > 2.

By (1-1-1) and (1-1-2), for any p 2 Z, we have tpAUn¹tº ¤ �AUn¹tº. By the same
argument, for any p 2 Z, we have spAUn¹sº ¤ �AUn¹sº.

(1-2) Suppose thatm is even. Note that alternating words st � � � t and ts � � �s of lengthm
are equal in

A¹s;tº D hs; t j st � � � t D ts � � � s .length m/i D AU � A� :

We assume that there exists p 2 Z such that tpAUn¹tº D �AUn¹tº. Then, from the same
argument as in (1-1), there exists q 2 Z such that tpsq D � in A¹s;tº. Thus, we have
pC q DmC 1. Indeed, if we consider the projectionA¹s;tº!A¹sº ŠZ defined by s 7! s

and t 7! s, then tpsq D � inA¹s;tº implies spCq D smC1 inA¹sº, and thus pC q DmC 1.
Hence, we have tpsmC1�p D st � � � s in A¹s;tº. This implies tpsm�p D st � � � t in A¹s;tº.
Thus, we have tpsm�p D st � � � t D ts � � � s in A¹s;tº.

(1-2-1) We treat the case where p is odd. By the natural projection A¹s;tº ! W¹s;tº,
tpsm�p D ts � � � s in A¹s;tº and tpsm�p D ts in W¹s;tº imply ts D ts � � � s in W¹s;tº. Thus,
1 and an alternating word s � � � t of length m � 2 are equal in W¹s;tº. This means that we
have a projection I2..m � 2/=2/! W¹s;tº Š I2.m/ defined by s 7! s and t 7! t . Thus,
we have m � 2 D #I2..m � 2/=2/ � #I2.m/ D 2m. This contradicts m > 2.

(1-2-2) We treat the case where p is even. In this case, tpsm�p D st � � � t in A¹s;tº and
tpsm�p D 1 in W¹s;tº implies 1 D st � � � t in W¹s;tº. This means that we have a projection
I2.m=2/!W¹s;tº Š I2.m/ defined by s 7! s and t 7! t . Thus, we havemD #I2.m=2/�
#I2.m/ D 2m. This contradicts m > 2.

By (1-2-1) and (1-2-2), for any p 2 Z, we have tpAUn¹tº ¤ �AUn¹tº. By the same
argument, for any p 2 Z, we have spAUn¹sº ¤ �AUn¹sº.

(2) Suppose that k > 2 and the statement is true for k � 1. LetU D¹u1; : : : ;uk�2; s; tº,
where #U D k. Assume that there exists g 2 AUn¹sº such that gAUn¹tº D �AUn¹tº. Then,
we have a square ŒgAUn¹s;tº; AU � in C� . Its vertices are AU , �AUn¹tº, gAUn¹s;tº, and
AUn¹sº. Because C� is CAT(0), this square spans a cube together with other two squares
ŒAUn¹u1;sº; AU � and Œ�AUn¹u1;tº; AU �. See Figure 5.
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AUn¹u1º

AUn¹sº AU

g1AUn¹u1;s;tº

gAUn¹s;tº gAUn¹tº D �AUn¹tº

g1AUn¹u1;tºD�AUn¹u1;tº

g1 2 AUn¹u1;sºAUn¹u1ºAUn¹u1;sº

g 2 AUn¹sº

�AUn¹u1;tº

u1

AU
t

s

gAUn¹s;tº gAUn¹tº D �AUn¹tº

Figure 5. Three squares around AU span a cube.

This cube contains another square Œg1AUn¹u1;s;tº; AUn¹u1º� as a face, where g1 2
AUn¹u1;sº D A.Un¹u1º/n¹sº. Then, we have

g1A.Un¹u1º/n¹tº D �A.Un¹u1º/n¹tº:

Because #.U n ¹u1º/ D k � 1, this contradicts the inductive assumption.

6. Proof of Theorem 1.4

In this section, let A� be an Artin group associated with a graph � that has at least three
vertices, and suppose that � is not a cone. We show our main theorem (Theorem 1.4), that
is, the following are equivalent:

(1) A� is irreducible, that is, � cannot be decomposed as a join of two subgraphs such
that all edges between them are labeled by 2;

(2) A� has a WPD contracting element with respect to the isometric action on the
clique-cube complex;

(3) A� is acylindrically hyperbolic;

(4) A� is directly indecomposable, that is, it cannot be decomposed as a direct product
of two nontrivial subgroups.

6.1. Proof of .2/ ) .3/, .3/ ) .4/, .4/ ) .1/ in Theorem 1.4

We show that .2/) .3/; .3/) .4/; .4/) .1/ in Theorem 1.4.
First, .2/) .3/ follows from Theorem 2.3.
Next, we show .3/) .4/. Let A� be acylindrically hyperbolic. If A� is isomorphic to

a direct product A1 � A2, then either A1 or A2 is finite by acylindrical hyperbolicity [25,
Corollary 7.3]. Proposition 4.8 implies that the finite one is trivial. Hence, A� is directly
indecomposable.

Finally, .4/) .1/ is clear.
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6.2. Proof of .1/ ) .2/ in Theorem 1.4

In this subsection, we give a proof of .1/) .2/ in Theorem 1.4. Suppose that A� is
irreducible. We will construct an element  2 A� and show that  is a WPD contracting
element with respect to the action on the clique-cube complex. When � is indecompos-
able, that is, not a join, a WPD contracting element is already given in [11, Remark 4.5].
Hence, it is sufficient to treat the case where � is decomposable. From now on, we suppose
that � is decomposable.

We consider a unique join decomposition � D �1�i�k�i into indecomposable factors
(see Lemma 3.4). We set Vi D V.�i / and Ei D E.�i / for each i 2 ¹1; : : : ; kº. Then, for
every i 2 ¹1; : : : ; kº, the complement graph .�i /c of �i is connected, and the complement
graph �c of � is the disjoint union of connected components �c D

F
1�i�k.�i /

c .
We define Q.�/ as a finite simple graph with

• the vertex set V.Q.�// D ¹Viº1�i�k , and

• the edge set E.Q.�//D ¹.Vi ; Vj /; .Vj ; Vi / j 1 � i < j � k; .�i � �j /t is connectedº.

Note that .�i /t is connected because .�i /c is connected, V..�i /c/ D V..�i /
t / D Vi ,

and E..�i /c/ � E..�i /t /. Note that the following are equivalent for different i; j 2
¹1; : : : ; kº:

• .�i � �j /
t is connected;

• there exists an edge with label greater than 2 between a vertex of �i and a vertex
of �j .

We confirm our setting:

(1) � is decomposable, i.e., �c is not connected, that is, k � 2;

(2) � is not a cone, i.e., every connected component of �c has at least two vertices,
that is, #�i � 2 for any i 2 ¹1; : : : ; kº;

(3) A� is irreducible, i.e., � t is connected, that is, Q.�/ is connected.

We take a spanning tree T of Q.�/. We regard T as a rooted tree with the root V1.
By trading indices of V2; : : : ; Vk if necessary, we suppose that i < j only if Vi is not
farther than Vj from V1 in T . For each i , j with i < j and .Vi ; Vj / 2 E.T /, take an
edge ei;j 2 E.�/ with label mi;j D �.ei;j / greater than 2 with si;j WD sei;j 2 V.�i / and
ti;j WD tei;j 2 V.�j /, and set ej;i WD �.ei;j /. For any i; j 2 ¹1; : : : ; kºwith .Vi ;Vj / 2E.T /,
let �i;j be an alternating word

�i;j D si;j ti;j � � � si;j

of length mi;j if mi;j is odd, and let �i;j be an alternating word

�i;j D si;j ti;j � � � si;j

of length mi;j C 1 if mi;j is even.
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Lemma 6.1. There exist n2N, for each i2¹1; : : : ;kº, a closed path .vi;1; : : : ;vi;n;vi;nC1/
with vi;1 D vi;nC1 on .�i /c passing through every vertex at least once, and for any
i; j 2 ¹1; : : : ; kº with .Vi ; Vj / 2 E.T /, l.i; j / 2 ¹1; : : : ; nº such that .vi;l.i;j /; vj;l.i;j // D
.si;j ; ti;j / .D ei;j / and l.j; i/ D l.i; j /.

Proof. For any i 2 ¹1; : : : ; kº, we consider the minimum length ni of closed paths on
.�i /

c passing through every vertex at least once. Set n D
Q
1�i�k ni . Then, for any i 2

¹1; : : : ; kº, by concatenating n=ni copies of a closed path of length ni on .�i /c passing
through every vertex at least once, we have a closed path .v0i;1; : : : ; v

0
i;n; v

0
i;nC1/ with

v0i;1 D v
0
i;nC1 on .�i /c passing through every vertex at least n=ni times (in particular, at

least once).
We set .v1;1; : : : ; v1;n; v1;nC1/ WD .v01;1; : : : ; v

0
1;n; v

0
1;nC1/. For any j 2 ¹2; : : : ; kº,

we define .vj;1; : : : ; vj;n; vj;nC1/ inductively as follows. Take j 2 ¹2; : : : ; kº. Assume that
.vi;1; : : : ; vi;n; vi;nC1/ is defined for i 2 ¹1; : : : ; j � 1ºwith .Vi ; Vj / 2E.T /. Then, we set
l.i; j / as the minimum l such that vi;l D si;j . By a cyclic permutation of v0j;1; : : : ; v

0
j;n,

we have vj;1; : : : ; vj;n such that vj;l.i;j /D ti;j . By setting vj;nC1 WD vj;1, we have .vj;1; : : : ;
vj;n; vj;nC1/. For any i; j with 1 � i < j � k and .Vi ; Vj / 2 E.T /, we set l.j; i/ WD
l.i; j /.

We take n 2N, .vi;1; : : : ; vi;n; vi;nC1/ for each i 2 ¹1; : : : ; kº, and l.i; j / 2 ¹1; : : : ; nº
for any i; j 2 ¹1; : : : ; kº with .Vi ; Vj / 2 E.T / as in Lemma 6.1. For 1 � l � n, set

�l WD v1;lv2;l � � � vk;l :

For any i; j 2 ¹1; : : : ; kº with .Vi ; Vj / 2 E.T /, we define �l .i; j / as �l .i; j / WD �l if
l ¤ l.i; j /. In addition, we define �l.i;j /.i; j / as

�l.i;j /.i; j / WD �i;j v1;l.i;j /v2;l.i;j / � � � vi�1;l.i;j /viC1;l.i;j /

� � � vj�1;l.i;j /vjC1;l.i;j / � � � vk;l.i;j /

if i < j , and �l.i;j /.i; j / WD �l.j;i/.j; i/ if i > j , where we note that l.j; i/ D l.i; j /.
Moreover, we define .i; j / as

.i; j / W D �1.i; j /�2.i; j / � � ��n.i; j /

D �1�2 � � ��l.i;j /�1�l.i;j /.i; j /�l.i;j /C1 � � ��n:

Then, we have .j; i/ D .i; j /.
Take a closed path

.Vi1 ; : : : ; Vir ; VirC1/ (6.1)

with i1 D irC1 D 1 on the spanning tree T of Q.�/ passing through every vertex at least
once. We define  as

 WD .i1; i2/.i2; i3/ � � � .ir ; irC1/: (6.2)
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We set

.0/ WD 1; .1/ WD �1.i1; i2/; .2/ WD �1.i1; i2/�2.i1; i2/; : : : ; .n/ WD .i1; i2/;

and for a 2 ¹2; : : : ; rº and l 2 ¹1; : : : ; nº, we set

..a � 1/nC l/ WD .i1; i2/ � � � .ia�1; ia/.�1.ia; iaC1/ � � ��l .ia; iaC1//:

In particular, we have .rn/ D  .
We confirm the following for convenience:

(1) k is the number of indecomposable factors of a unique join decomposition of �;

(2) n is the common length of the closed paths on .�i /c for all i 2 ¹1; : : : ; kº taken in
Lemma 6.1;

(3) r is the length of the closed path (6.1) on T taken above.

For 1 � l � n, set
Ul WD ¹v1;l ; v2;l ; : : : ; vk;lº:

Then, Ul spans a clique in � , that is, Ul 2 �� . Hence, we have a k-dimensional cube
ŒA;;AUl � in C� . The hyperplanes dual to edges of ŒA;;AUl � are of vi;l -type, i2¹1; : : : ; kº.
We denote such hyperplanes by Hi;l , i 2 ¹1; : : : ; kº.

Lemma 6.2. For i 2 ¹1; : : : ; kº, l 2 ¹1; : : : ; nº, and a 2 ¹1; : : : ; rº, we have the following:

(1) Hi;l \Hi;lC1 D ;, where we set Hi;nC1 WD Hi;1;

(2) Hi;l \ �lHi;l D ;;

(3) Hi;l.ia;iaC1/ \ �l.ia;iaC1/.ia; iaC1/Hi;l.ia;iaC1/ D ;;

(4) ŒA;; AUl � \ ŒA;; AUlC1 � D ¹A;º, where we set UnC1 WD U1;

(5) ŒA;; AUl � \ �l ŒA;; AUl � D ¹AUl º;

(6) ŒA;; AUl.ia;iaC1/ � \ �l.ia;iaC1/.ia; iaC1/ŒA;; AUl.ia;iaC1/ � D ¹AUl.ia;iaC1/º.

Proof. (1) Hi;l and Hi;lC1 are of vi;l -type and vi;lC1-type, respectively. Note that vi;l ¤
vi;lC1 impliesHi;l ¤Hi;lC1. Because .vi;l ; vi;lC1/ … E.�/, we have ¹vi;l ; vi;lC1º … �� ,
and thus Hi;l \Hi;lC1 D ;.

(2) Because ŒAUln¹vi;l º; AUl � � N.Hi;l /, we have Œ�lAUln¹vi;l º; �lAUl � � �lN.Hi;l /.
Note that �lAUl D AUl and �lAUln¹vi;l º D v1;l � � � vi;lAUln¹vi;l º. Now, assume thatHi;l \
�lHi;l ¤ ;. Because Hi;l and �lHi;l are of vi;l -type, we see that Hi;l D �lHi;l (see
Remark 4.2). Then, we have

Œ�lAUln¹vi;l º; �lAUl � D Œv1;l � � � vi;lAUln¹vi;l º; AUl � � N.Hi;l /:

Hence, we obtainAUln¹vi;l º D v1;l � � �vi;lAUln¹vi;l º. This means that vi;l 2AUln¹vi;l º. How-
ever, from [31], ¹vi;lº \ .Ul n ¹vi;lº/D; implies thatA¹vi;l º \AUln¹vi;l ºDA;D ¹1º. This
contradicts vi;l ¤ 1 in A� .
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(3) When i ¤ ia; iaC1, by the same argument as in (2), we see that

Hi;l.ia;iaC1/ \ �l.ia;iaC1/.ia; iaC1/Hi;l.ia;iaC1/ D ;:

Now, assume that i D ia or i D iaC1 and

Hi;l.ia;iaC1/ \ �l.ia;iaC1/.ia; iaC1/Hi;l.ia;iaC1/ ¤ ;:

Note that �l.ia;iaC1/.ia; iaC1/AUl.ia;iaC1/ D AUl.ia;iaC1/ and

�l.ia;iaC1/.ia; iaC1/AUl.ia;iaC1/n¹vi;l.ia;iaC1/º
D �ia;iaC1AUl.ia;iaC1/n¹vi;l.ia;iaC1/º

:

Because Hi;l.ia;iaC1/ and �l.ia;iaC1/Hi;l.ia;iaC1/ are of vi;l.ia;iaC1/-type, we see that

Hi;l.ia;iaC1/ D �l.ia;iaC1/Hi;�l.ia;iaC1/
:

Then, we have

Œ�l.ia;iaC1/AUl.ia;iaC1/n¹vi;l.ia;iaC1/º
; �l.ia;iaC1/AUl.ia;iaC1/ �

D Œ�ia;iaC1AUl.ia;iaC1/n¹vi;l.ia;iaC1/º
; AUl.ia;iaC1/ � � N.Hi;l.ia;iaC1//:

Hence, we have

�ia;iaC1AUl.ia;iaC1/n¹vi;l.ia;iaC1/º
D AUl.ia;iaC1/n¹vi;l.ia;iaC1/º

:

This contradicts Lemma 5.2.
Parts (4), (5), and (6) follow from (1), (2), and (3), respectively.

The following is a key lemma.

Lemma 6.3. For a 2 ¹1; : : : ; rº, we have

Hia;l.ia;iaC1/ \ �l.ia;iaC1/.ia; iaC1/HiaC1;l.ia;iaC1/ D ;:

Proof. Let us note that the hyperplane Hia;l.ia;iaC1/ is of via;l.ia;iaC1/-type, and the hyper-
plane �l.ia;iaC1/.ia; iaC1/HiaC1;l.ia;iaC1/ is of viaC1;l.ia;iaC1/-type. Note that via;l.ia;iaC1/ ¤
viaC1;l.ia;iaC1/ implies Hia;l.ia;iaC1/ ¤ �l.ia;iaC1/.ia; iaC1/HiaC1;l.ia;iaC1/. Additionally,

�l.ia;iaC1/.ia; iaC1/AUl.ia;iaC1/ D AUl.ia;iaC1/ ;

�l.ia;iaC1/.ia; iaC1/AUl.ia;iaC1/n¹viaC1;l.ia;iaC1/º
D �l.ia;iaC1/AUl.ia;iaC1/n¹viaC1;l.ia;iaC1/º

:

Consider
ŒAUl.ia;iaC1/n¹via;l.ia;iaC1/º

; AUl.ia;iaC1/ � � N.Hia;l.ia;iaC1//

and

Œ�ia;iaC1.ia; iaC1/AUl.ia;iaC1/n¹viaC1;l.ia;iaC1/º
; AUl.ia;iaC1/ �

� �l.ia;iaC1/.ia; iaC1/N.HiaC1;l.ia;iaC1//:
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Now, assume that

Hia;l.ia;iaC1/ \ �l.ia;iaC1/.ia; iaC1/HiaC1;l.ia;iaC1/ ¤ ;:

Because

AUl.ia;iaC1/ 2 N.Hia;l.ia;iaC1// \ �l.ia;iaC1/.ia; iaC1/N.HiaC1;l.ia;iaC1//;

the two edges
ŒAUl.ia;iaC1/n¹via;l.ia;iaC1/º

; AUl.ia;iaC1/ �

and

Œ�ia;iaC1.ia; iaC1/AUl.ia;iaC1/n¹viaC1;l.ia;iaC1/º
; AUl.ia;iaC1/ �

must span a square. This contradicts Lemma 5.2.

Noting Lemma 6.2, for any i 2 ¹1; : : : ; kº, we define a sequence of hyperplanes

: : : ; Ji;�1; Ji;0; Ji;1; : : : ; Ji;2rn; Ji;2rnC1; : : : ;

a sequence of k-dimensional cubes

: : : ; K�1; K0; K1; : : : ; K2rn; K2rnC1; : : : ;

and a sequence of vertices of C�

: : : ; w�1; w0; w1; : : : ; w2rn; w2rnC1; : : :

as follows. First, for a 2 ¹1; : : : ; rº and l 2 ¹1; : : : ; nº, we define

Ji;2..a�1/nCl/�1 WD ..a � 1/nC l � 1/Hi;l ;

Ji;2..a�1/nCl/ WD ..a � 1/nC l/Hi;l ;

K2..a�1/nCl/�1 WD ..a � 1/nC l � 1/ŒA;; AUl �;

K2..a�1/nCl/ WD ..a � 1/nC l/ŒA;; AUl �;

w2..a�1/nCl/�1 WD ..a � 1/nC l � 1/AUl ;

w2..a�1/nCl/ WD ..a � 1/nC l/A;;

where we note that both Ji;2..a�1/nCl/�1 and Ji;2..a�1/nCl/ are of the same vi;l -type.
Second, for any b 2 ¹1; : : : ; 2rnº and c 2 Z, we set

Ji;2rncCb WD 
cJi;b; K2rncCb WD 

cKb; w2rncCb WD 
cwb :

Then, we have
K2rncCb D Œw2rncCb�1; w2rncCb�:
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Additionally, we have the two connected components J�
i;2rncCb

and JC
i;2rncCb

such that

C� nnJi;2rncCb D J
�
i;2rncCb t J

C

i;2rncCb
;

w2rncCb�1 2 J
�
i;2rncCb; w2rncCb 2 J

C

i;2rncCb
:

Then, Lemma 6.2 implies that, for any i 2 ¹1; : : : ; kº,

� � � ¨ J�i;�1 ¨ J�i;0 ¨ J�i;1 ¨ � � � ¨ J�i;2rn ¨ J�i;2rnC1 ¨ � � � ;
� � � © JCi;�1 © JCi;0 © JCi;1 © � � � © JCi;2rn © JCi;2rnC1 © � � � :

Note that
J�i;0 63 w0 D A; 2 J

�
i;1; JCi;2rn 3 w2rn D A; 62 J

C

i;2rnC1:

Let ` be a path from w0 D A; to w2rn D A; that diagonally penetrates each of the
cubes K1; : : : ; K2rn in order. Then, the set of all hyperplanes intersecting the path ` is
¹Ji;d ºi2¹1;:::;kº; d2¹1;:::;2rnº. Hence, we have the following.

Lemma 6.4. The set ¹Ji;d ºi2¹1;:::;kº; d2¹1;:::;2rnº is the set of all hyperplanes separating
w0 D A; and w2rn D A;.

We now state the final lemma required for the proof of Theorem 1.4, where we recall
Definition 2.7 and Remark 2.8.

Lemma 6.5. (1) For any i 2 ¹1; : : : ; kº, the sequence of hyperplanes

Ji;1; : : : ; Ji;2rn

is a sequence of separating hyperplanes from Ji;0 to Ji;2rnC1, where Ji;0 and
Ji;2rnC1 are of vi;n-type and vi;1-type, respectively (in particular, from w0 D A;
to w2rn D A;).

(2) The sequence of hyperplanes

Ji1;1; Ji1;2; : : : ; Ji1;2l.i1;i2/�1;

Ji2;2l.i1;i2/; Ji2;2l.i1;i2/C1; : : : ; Ji2;2n;

Ji2;2nC1; Ji2;2.nC1/; : : : ; Ji2;2.nCl.i2;i3//�1;

:::

Jir ;2..r�2/nCl.ir�1;ir //; Jir ;2..r�2/nCl.ir�1;ir //C1; : : : ; Jir ;2.r�1/n;

Jir ;2.r�1/nC1; Jir ;2..r�1/nC1/; : : : ; Jir ;2..r�1/nCl.ir ;irC1//�1;

JirC1;2..r�1/nCl.ir ;irC1//; JirC1;2..r�1/nCl.ir ;irC1//C1; : : : ; JirC1;2rn

is a sequence of separating hyperplanes from J1;0 to J1;2rnC1, where J1;0 and
J1;2rnC1 are of v1;n-type and v1;1-type, respectively (in particular, from w0 D A;
to w2rn D A;). (See Figure 6.)
Moreover, the sequence contains a hyperplane of vi -type for any i 2 ¹1; : : : ; kº
and vi 2 V.�i /.
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K2l.i1;i2/�1 K2l.i1;i2/ K2n�1 K2nK1 K2

w0 w1

w2 w2l.i1;i2/ w2n

w2n�1w2l.i1;i2/�2
Ji1;2Ji1;1

w2l.i1;i2/�1 Ji2;2n�1 Ji2;2n

Ji1;2l.i1;i2/�1 Ji2;2l.i1;i2/

Figure 6. Part of a sequence of hyperplanes for the case where � D �1 � �2. Here w0 D .0/A; D
A;, w1 D .0/AU1 D AU1 (D .1/AU1 ), w2l.i1;i2/�2 D .l.i1; i2/ � 1/A;, w2l.i1;i2/�1 D
.l.i1; i2/ � 1/AUl.i1;i2/

(D .l.i1; i2//AUl.i1;i2/ ), w2n D .n/A;.

Proof. (1) The assertion is clear from parts (1) and (2) of Lemma 6.2.
(2) Parts (1), (2), and (3) of Lemma 6.2 and Lemma 6.3 imply that the sequence

specified in the assertion is a sequence of separating hyperplanes from Ji1;0 to JirC1;2rnC1.
Note that i1 D 1 and irC1 D 1 by definition.

We show that the sequence contains a hyperplane of vi -type for any i 2 ¹1; : : : ; kº and
vi 2 V.�i /. Recall that .Vi1 ; : : : ; Vir ; VirC1/ (6.1) is a closed path on the tree T . Thus, if an
edge .Vi ; Vj / 2 E.T / is contained in the closed path, then so is the inverse edge .Vj ; Vi /.
In addition, because T is a spanning tree ofQ.�/ and the closed path .Vi1 ; : : : ; Vir ; VirC1/
passes through every vertex at least once, any i 2 ¹1; : : : ; kº, Vi is contained in the closed
path as a vertex. Additionally, recall that T has the root V1 and that i < j only if Vi is not
farther than Vj from V1 in T .

Now, take any i 2 ¹1; : : : ; kº. We consider the two cases of i D 1 and i ¤ 1.
First, suppose that i D 1. Note that i1 D 1 and set j D i2. Take a 2 ¹1; 2; : : : ; rº such

that a ¤ 1, ia D 1, and ia�1 D j . Then, the sequence in the assertion contains the two
subsequences

Ji1;1; Ji1;2; : : : ; Ji1;2l.i1;i2/�1;

which are of v1;1-type, v1;1-type; : : : ; v1;l.1;j /-type, and

Jia;2..a�2/nCl.ia�1;ia//; Jia;2..a�2/nCl.ia�1;ia//C1; : : : ; Jia;2.a�1/n;

which are of v1;l.j;1/-type, v1;l.j;1/C1-type; : : : ; v1;n-type. Note that l.j; 1/ D l.1; j / by
Lemma 6.1. Take any vertex v1 2 V.�1/. Then, there exists some l 2 ¹1; : : : ; nº such that
v1;l D v1 by Lemma 6.1. Hence, the sequence in the assertion contains a hyperplane of
v1-type.

Next, suppose that i ¤ 1. Take the smallest a 2 ¹1; : : : ; rº such that ia D i . Because
i1 D 1 and i ¤ 1, we have a ¤ 1. We set j D ia�1. Then, we have a0 2 ¹1; : : : ; rº such
that a � a0, ia0 D i , and ia0C1 D j . The sequence contains the two subsequences

Jia;2..a�2/nCl.ia�1;ia//; Jia;2..a�2/nCl.ia�1;ia//C1; : : : ; Jia;2.a�1/n;
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which are of vi;l.j;i/-type, vi;l.j;i/C1-type; : : : ; vi;n-type, and

Jia0 ;2.a0�1/nC1; Jia0 ;2..a0�1/nC1/; : : : ; Jia0 ;2..a0�1/nCl.ia0 ;ia0C1//�1;

which are of vi;1-type, vi;1-type; : : : ; vi;l.j;i/-type. Note that

l.j; i/ D l.i; j /

by Lemma 6.1. Take any vertex vi 2 V.�i /. Then, there exists some l 2 ¹1; : : : ; nº such
that vi;l D vi by Lemma 6.1. Hence, the sequence in the assertion contains a hyperplane
of vi -type.

We can now complete the proof of Theorem 1.4.

Proof of .1/) .2/ in Theorem 1.4. We show .1/) .2/ in Theorem 1.4. Consider  2A�
defined by (6.2) and hyperplanes

J WD J1;0 and J 0 WD J1;2rnC1;

which are of v1;n-type and v1;1-type, respectively. We will confirm conditions (i), (ii),
and (iii) in Theorem 2.9.

(i)  skewers .J; J 0/. Indeed, it is clear that

JC © .�1.J 0C/ © .JC/ ©/J 0C © 2.JC/:

(ii) We show that J and J 0 are strongly separated. Take any hyperplane H with J \
H ¤ ;. WhenH is of vi -type for some i and vi 2 V.�i /, take a hyperplaneH 0 of vi -type
separatingA; and A; such that J \H 0D; by part (2) of Lemma 6.5. Then,H \H 0D;
by Remark 4.2. Because

J � H 0�;H 0C � J 0; J \H ¤ ; and H \H 0 D ;;

we have J 0 \H D ;.
(iii) We show Stab.J / \ Stab.J 0/ D ¹1º. Note that for any i 2 ¹1; : : : ; kº and any

vi 2 V.�i /, we have at least one sequence of separating hyperplanes P 01; : : : ; P
0
M 0 from

A; to A; such that P 01 is of vi -type and P 0M 0 is of v1;n-type. For example, we can take
such a sequence by considering a subsequence of the sequence in part (2) of Lemma 6.5.
For any i 2 ¹1; : : : ; kº and any vi 2 V.�i /, we can take a longest sequence of separating
hyperplanesP1; : : : ;PM fromA; to A; such thatP1 is of vi -type andPM is of v1;n-type,
where

A; 2 P
�
1 ; PC1 © PC2 © � � � © PCM�1 © PCM 3 A;

by taking decompositions by appropriate connected components

C� nnP1 D P
�
1 t P

C
1 ; : : : ; C� nnPM D P

�
M t P

C

M :
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Note that
P1; : : : ; PM 2 ¹Jj;d ºj2¹1;:::;kº; d2¹1;:::;2rnº

by Lemma 6.4. By noting PM 2 ¹J1;d ºd2¹1;:::;2rnº and part (1) of Lemma 6.5 for the case
i D 1, we have PCM © J 0C.

Now assume that Stab.J /\ Stab.J 0/¤ ¹1º. Take g 2 Stab.J /\ Stab.J 0/with g¤ 1.
Note that g�1 2 Stab.J / \ Stab.J 0/. Then, we have a hyperplane H of vi -type for some
i 2 ¹1; : : : ; kº and some vi 2 V.�i /, separating A; and gA;. We take a longest sequence
of separating hyperplanes P1; : : : ; PM from A; to A; such that P1 is of vi -type and PM
is of v1;n-type. Then, we have

gA;; g
�1A; 2 P

C

M

by PCM © J 0C. We take a connected componentH� of C� nnH such thatA; 2H�. Then,
the other connected component HC satisfies gA; 2 HC. Because H \ J ¤ ;, we have
H \ J 0 D ; by (ii). Thus, H cannot separate A; and gA;. Hence, we have either

(a) A;; A;; gA; 2 H� and gA; 2 HC or

(b) A; 2 H� and gA;; A;; gA; 2 HC.

Assume that case (a) occurs. Then, H does not separate A; and A; and thus H …
¹Ji;d ºd2¹1;:::;2rnº by Lemma 6.4. Hence, H and P1 are different hyperplanes of the same
vi -type, and thus they cannot intersect by Remark 4.2. Then, we have either H� © PC1
or HC © PC1 . However, HC © PC1 cannot occur because A; … HC and A; 2 PC1 .
Therefore,

H� © PC1 :

Then, we have

gA; 2 H
C; H� © PC1 © PC2 © � � � © PCM�1 © PCM 3 gA;:

Then, Q1 D H;Q2 D P1; : : : ; QMC1 D PM is a sequence of separating hyperplanes
from gA; to gA; such that Q1 is of vi -type and QMC1 is of v1;n-type. Thus, g�1Q1;
g�1Q2; : : : ; g

�1QMC1 is a sequence of separating hyperplanes from A; to A; such that
g�1Q1 is of vi -type and g�1QMC1 is of v1;n-type, which contradicts the fact that the
sequence P1; : : : ; PM is longest.

Next, assume that case (b) occurs. Then, H does not separate gA; and gA;, that is,
g�1H does not separate A; and A; and thus g�1H … ¹Ji;d ºd2¹1;:::;2rnº by Lemma 6.4.
Hence, g�1H and P1 are different hyperplanes of the same vi -type, and thus they cannot
intersect by Remark 4.2. Then, we have either g�1HC ©PC1 or g�1H� ©PC1 . However,
g�1H� © PC1 cannot occur because A; … g�1H� and A; 2 PC1 . Therefore,

g�1HC © PC1 :

Then, we have

g�1A; 2 g
�1H�; g�1HC © PC1 © PC2 © � � � © PCM�1 © PCM 3 g

�1A;:
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Then, Q1 D H;Q2 D gP1; : : : ; QMC1 D gPM is a sequence of separating hyperplanes
from A; to A; such that Q1 is of vi -type and QMC1 is of v1;n-type, which contradicts
the fact that the sequence P1; : : : ; PM is longest.

We now see that Stab.J / \ Stab.J 0/ D ¹1º.
This completes the proof of Theorem 1.4.

Remark 6.6. In [11, Theorem 3.3], it is shown that A� is centerless under the setting
in Theorem 1.4 with (1). This claim can be proved based on Theorem 1.4. Indeed, Theo-
rem 1.4 .1/) .2/ implies thatA� is acylindrically hyperbolic. Therefore, the center ofA�
is finite by acylindrical hyperbolicity [25, Corollary 7.3]. Proposition 4.8 then implies that
the center is trivial. Hence, A� is centerless.

Acknowledgments. The authors would like to thank Sam Shepherd for helpful com-
ments. The authors would like to thank the anonymous referees for comments on the
previous version of this paper.

Funding. The first author is supported by JSPS KAKENHI Grant Numbers 19K23406,
20K14311, and JST, ACT-X Grant Number JPMJAX200A, Japan. The second author is
supported by JSPS KAKENHI Grant Number 20K03590.

References

[1] M. Bestvina, K. Bromberg, and K. Fujiwara, Constructing group actions on quasi-trees and
applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci. 122 (2015), 1–64
Zbl 1372.20029 MR 3415065

[2] M. Bestvina and K. Fujiwara, Bounded cohomology of subgroups of mapping class groups.
Geom. Topol. 6 (2002), 69–89 Zbl 1021.57001 MR 1914565

[3] B. H. Bowditch, Tight geodesics in the curve complex. Invent. Math. 171 (2008), no. 2, 281–
300 Zbl 1185.57011 MR 2367021

[4] T. Brady and J. P. McCammond, Three-generator Artin groups of large type are biautomatic.
J. Pure Appl. Algebra 151 (2000), no. 1, 1–9 Zbl 1004.20023 MR 1770639

[5] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren Math.
Wiss. 319, Springer, Berlin, 1999 Zbl 0988.53001 MR 1744486

[6] E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17 (1972),
245–271 Zbl 0243.20037 MR 323910

[7] M. Calvez, Euclidean Artin–Tits groups are acylindrically hyperbolic. Groups Geom. Dyn. 16
(2022), no. 3, 963–983 Zbl 1517.20057 MR 4506543

[8] M. Calvez and B. Wiest, Acylindrical hyperbolicity and Artin–Tits groups of spherical type.
Geom. Dedicata 191 (2017), 199–215 Zbl 1423.20028 MR 3719080

[9] P.-E. Caprace and M. Sageev, Rank rigidity for CAT.0/ cube complexes. Geom. Funct. Anal.
21 (2011), no. 4, 851–891 Zbl 1266.20054 MR 2827012

[10] R. Charney, Problems related to Artin groups. 2008, httpW//people.brandeis.edu/~charney/
papers/Artin_probs.pdf, visited on 25 March 2024

https://doi.org/10.1007/s10240-014-0067-4
https://doi.org/10.1007/s10240-014-0067-4
https://zbmath.org/?q=an:1372.20029
https://mathscinet.ams.org/mathscinet-getitem?mr=3415065
https://doi.org/10.2140/gt.2002.6.69
https://zbmath.org/?q=an:1021.57001
https://mathscinet.ams.org/mathscinet-getitem?mr=1914565
https://doi.org/10.1007/s00222-007-0081-y
https://zbmath.org/?q=an:1185.57011
https://mathscinet.ams.org/mathscinet-getitem?mr=2367021
https://doi.org/10.1016/S0022-4049(99)00094-8
https://zbmath.org/?q=an:1004.20023
https://mathscinet.ams.org/mathscinet-getitem?mr=1770639
https://doi.org/10.1007/978-3-662-12494-9
https://zbmath.org/?q=an:0988.53001
https://mathscinet.ams.org/mathscinet-getitem?mr=1744486
https://doi.org/10.1007/BF01406235
https://zbmath.org/?q=an:0243.20037
https://mathscinet.ams.org/mathscinet-getitem?mr=323910
https://doi.org/10.4171/ggd/683
https://zbmath.org/?q=an:1517.20057
https://mathscinet.ams.org/mathscinet-getitem?mr=4506543
https://doi.org/10.1007/s10711-017-0252-y
https://zbmath.org/?q=an:1423.20028
https://mathscinet.ams.org/mathscinet-getitem?mr=3719080
https://doi.org/10.1007/s00039-011-0126-7
https://zbmath.org/?q=an:1266.20054
https://mathscinet.ams.org/mathscinet-getitem?mr=2827012
http://people.brandeis.edu/~charney/papers/Artin_probs.pdf
http://people.brandeis.edu/~charney/papers/Artin_probs.pdf


Acylindrical hyperbolicity of Artin groups associated with graphs that are not cones 1315

[11] R. Charney and R. Morris-Wright, Artin groups of infinite type: Trivial centers and acylindrical
hyperbolicity. Proc. Amer. Math. Soc. 147 (2019), no. 9, 3675–3689 Zbl 1483.20068
MR 3993762

[12] I. Chatterji and A. Martin, A note on the acylindrical hyperbolicity of groups acting on CAT.0/
cube complexes. In Beyond hyperbolicity, pp. 160–178, Lond. Math. Soc. Lect. Note Ser. 454,
Cambridge University Press, Cambridge, 2019 Zbl 1514.20168 MR 3966610

[13] F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating fam-
ilies in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc. 245 (2017), no. 1156,
v+152 pp. Zbl 1396.20041 MR 3589159

[14] P. Deligne, Les immeubles des groupes de tresses généralisés. Invent. Math. 17 (1972), 273–
302 Zbl 0238.20034 MR 422673

[15] A. Genevois, A cylindrical hyperbolicity from actions on CAT.0/ cube complexes: a few cri-
teria. New York J. Math. 25 (2019), 1214–1239 Zbl 1496.20073 MR 4028832

[16] E. Godelle and L. Paris, Basic questions on Artin–Tits groups. In Configuration spaces, pp.
299–311, CRM Series 14, Edizioni della Normale, Pisa, 2012 Zbl 1282.20036 MR 3203644

[17] T. Haettel, XXL type Artin groups are CAT.0/ and acylindrically hyperbolic. Ann. Inst. Fourier
(Grenoble) 72 (2022), no. 6, 2541–2555 Zbl 1511.20128 MR 4500363

[18] U. Hamenstädt, Bounded cohomology and isometry groups of hyperbolic spaces. J. Eur. Math.
Soc. (JEMS) 10 (2008), no. 2, 315–349 Zbl 1139.22006 MR 2390326

[19] J. Huang and D. Osajda, Large-type Artin groups are systolic. Proc. Lond. Math. Soc. (3) 120
(2020), no. 1, 95–123 Zbl 1481.20159 MR 3999678

[20] J. Huang and D. Osajda, Helly meets Garside and Artin. Invent. Math. 225 (2021), no. 2,
395–426 Zbl 1482.20023 MR 4285138

[21] M. Kato and S.-I. Oguni, Acylindrical hyperbolicity of Artin–Tits groups associated with
triangle-free graphs and cones over square-free bipartite graphs. Glasg. Math. J. 64 (2022),
no. 1, 51–64 Zbl 1512.20117 MR 4348871

[22] S.-H. Kim and T. Koberda, The geometry of the curve graph of a right-angled Artin group.
Internat. J. Algebra Comput. 24 (2014), no. 2, 121–169 Zbl 1342.20042 MR 3192368

[23] A. Martin and P. Przytycki, Acylindrical actions for two-dimensional Artin groups of hyper-
bolic type. Int. Math. Res. Not. IMRN 2022 (2022), no. 17, 13099–13127 Zbl 07582349
MR 4475273

[24] K. Nuida, On the direct indecomposability of infinite irreducible Coxeter groups and the iso-
morphism problem of Coxeter groups. Comm. Algebra 34 (2006), no. 7, 2559–2595
Zbl 1104.20038 MR 2240393

[25] D. Osin, Acylindrically hyperbolic groups. Trans. Amer. Math. Soc. 368 (2016), no. 2, 851–888
Zbl 1380.20048 MR 3430352

[26] D. Osin, Groups acting acylindrically on hyperbolic spaces. In Proceedings of the Interna-
tional Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, pp. 919–
939, World Scientific, Hackensack, NJ, 2018 Zbl 1445.20037 MR 3966794

[27] L. Paris, Parabolic subgroups of Artin groups. J. Algebra 196 (1997), no. 2, 369–399
Zbl 0926.20022 MR 1475116

[28] L. Paris, Irreducible Coxeter groups. Internat. J. Algebra Comput. 17 (2007), no. 3, 427–447
Zbl 1134.20046 MR 2333366

[29] M. Sageev, Ends of group pairs and non-positively curved cube complexes. Proc. Lond. Math.
Soc. (3) 71 (1995), no. 3, 585–617 Zbl 0861.20041 MR 1347406

[30] J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus. J. Algebra 4 (1966), 96–116
Zbl 0145.24703 MR 206117

https://doi.org/10.1090/proc/14503
https://doi.org/10.1090/proc/14503
https://zbmath.org/?q=an:1483.20068
https://mathscinet.ams.org/mathscinet-getitem?mr=3993762
https://doi.org/10.1017/9781108559065.011
https://doi.org/10.1017/9781108559065.011
https://zbmath.org/?q=an:1514.20168
https://mathscinet.ams.org/mathscinet-getitem?mr=3966610
https://doi.org/10.1090/memo/1156
https://doi.org/10.1090/memo/1156
https://zbmath.org/?q=an:1396.20041
https://mathscinet.ams.org/mathscinet-getitem?mr=3589159
https://doi.org/10.1007/BF01406236
https://zbmath.org/?q=an:0238.20034
https://mathscinet.ams.org/mathscinet-getitem?mr=422673
https://zbmath.org/?q=an:1496.20073
https://mathscinet.ams.org/mathscinet-getitem?mr=4028832
https://doi.org/10.1007/978-88-7642-431-1_13
https://zbmath.org/?q=an:1282.20036
https://mathscinet.ams.org/mathscinet-getitem?mr=3203644
https://doi.org/10.5802/aif.3524
https://zbmath.org/?q=an:1511.20128
https://mathscinet.ams.org/mathscinet-getitem?mr=4500363
https://doi.org/10.4171/JEMS/112
https://zbmath.org/?q=an:1139.22006
https://mathscinet.ams.org/mathscinet-getitem?mr=2390326
https://doi.org/10.1112/plms.12284
https://zbmath.org/?q=an:1481.20159
https://mathscinet.ams.org/mathscinet-getitem?mr=3999678
https://doi.org/10.1007/s00222-021-01030-8
https://zbmath.org/?q=an:1482.20023
https://mathscinet.ams.org/mathscinet-getitem?mr=4285138
https://doi.org/10.1017/S0017089520000555
https://doi.org/10.1017/S0017089520000555
https://zbmath.org/?q=an:1512.20117
https://mathscinet.ams.org/mathscinet-getitem?mr=4348871
https://doi.org/10.1142/S021819671450009X
https://zbmath.org/?q=an:1342.20042
https://mathscinet.ams.org/mathscinet-getitem?mr=3192368
https://doi.org/10.1093/imrn/rnab068
https://doi.org/10.1093/imrn/rnab068
https://zbmath.org/?q=an:07582349
https://mathscinet.ams.org/mathscinet-getitem?mr=4475273
https://doi.org/10.1080/00927870600651281
https://doi.org/10.1080/00927870600651281
https://zbmath.org/?q=an:1104.20038
https://mathscinet.ams.org/mathscinet-getitem?mr=2240393
https://doi.org/10.1090/tran/6343
https://zbmath.org/?q=an:1380.20048
https://mathscinet.ams.org/mathscinet-getitem?mr=3430352
https://doi.org/10.1142/9789813272880_0082
https://zbmath.org/?q=an:1445.20037
https://mathscinet.ams.org/mathscinet-getitem?mr=3966794
https://doi.org/10.1006/jabr.1997.7098
https://zbmath.org/?q=an:0926.20022
https://mathscinet.ams.org/mathscinet-getitem?mr=1475116
https://doi.org/10.1142/S0218196707003779
https://zbmath.org/?q=an:1134.20046
https://mathscinet.ams.org/mathscinet-getitem?mr=2333366
https://doi.org/10.1112/plms/s3-71.3.585
https://zbmath.org/?q=an:0861.20041
https://mathscinet.ams.org/mathscinet-getitem?mr=1347406
https://doi.org/10.1016/0021-8693(66)90053-6
https://zbmath.org/?q=an:0145.24703
https://mathscinet.ams.org/mathscinet-getitem?mr=206117


M. Kato and S. Oguni 1316

[31] H. van der Lek, The homotopy type of complex hyperplane complements. Ph.D. thesis, 1983,
Radboud Universiteit

[32] N. Vaskou, Acylindrical hyperbolicity for Artin groups of dimension 2. Geom. Dedicata 216
(2022), no. 1, article no. 7 Zbl 1515.20175 MR 4366944

Received 2 June 2022.

Motoko Kato
Faculty of Education, University of the Ryukyus, 1 Sembaru, Nakagami Gun Nishihara Cho,
Okinawa Ken 903-0213, Japan; katom@edu.u-ryukyu.ac.jp

Shin-ichi Oguni
Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama,
Ehime 790-8577, Japan; oguni.shinichi.mb@ehime-u.ac.jp

https://doi.org/10.1007/s10711-021-00664-5
https://zbmath.org/?q=an:1515.20175
https://mathscinet.ams.org/mathscinet-getitem?mr=4366944
mailto:katom@edu.u-ryukyu.ac.jp
mailto:oguni.shinichi.mb@ehime-u.ac.jp

	1. Introduction
	2. Acylindrical hyperbolicity, weak properly discontinuous contracting elements, and CAT(0) cube complexes
	3. Defining graphs of Artin groups and joins
	3.1. Defining graphs of Artin groups
	3.2. Joins

	4. Clique-cube complexes and actions on them
	5. Lemmas on local geometry of clique-cube complexes
	6. Proof of Theorem 1.4
	6.1. Proof of (2) \Rightarrow (3), (3) \Rightarrow (4), (4) \Rightarrow (1) in Theorem 1.4
	6.2. Proof of (1) \Rightarrow (2) in Theorem 1.4

	References

