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A pro-p version of Sela’s accessibility and Poincaré
duality pro-p groups

Ilaria Castellano and Pavel A. Zalesskii

Abstract. We prove a pro-p version of Sela’s theorem (1997) stating that a finitely generated group
is k-acylindrically accessible. This result is then used to prove that PDn pro-p groups admit a unique
k-acylindrical JSJ-decomposition.

Dedicated to the 65th birthday of Peter H. Kropholler

1. Introduction

Since 1970, the Bass–Serre theory of groups acting on trees stood out as one of the major
advances in the classical combinatorial group theory. The main notion of the Bass–Serre
theory is the notion of graph of groups. The fundamental group of a graph of groups acts
naturally on a standard (universal) tree that allows to describe subgroups of these con-
structions. This theory raised naturally the question of accessibility, namely, whether we
can continue to split G into an amalgamated free product or an HNN-extension forever,
or do we reach the situation, after finitely many steps, where we cannot split it any more.
In other words, accessibility is the question whether splittings of G as the fundamental
group of a graph of groups have natural bound. Accessibility of splittings over finite
groups (i.e., as a graph of groups with finite edge-groups) was studied by Dunwoody [3,4],
who proved that finitely presented groups are accessible but found an example of an
inaccessible finitely generated group. This initiated naturally a search for a kind of access-
ibility that holds for finitely generated groups. The breakthrough in this direction is due
to Sela [18], who proved k-acylindrical accessibility for any finitely generated group:
accessibility provided the stabilizer of any segment of length k of the group acting on its
standard tree is trivial for some k.

The profinite version of Bass–Serre theory was developed by Luis Ribes, Oleg Mel-
nikov and the second author. However, the pro-p version of Bass–Serre theory does
not give subgroup structure theorems the way it does in the classical Bass–Serre the-
ory: even in the pro-p case, if G acts on a pro-p tree T , then a maximal subtree of the
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quotient graph G n T does not always exist, and even if it exists, it does not always lift
to T . Nevertheless, the pro-p version of the subgroups structure theorem works for pro-p
groups acting on a pro-p trees that are accessible with respect to splitting over edge sta-
bilizers; see [2, Theorem 6.3]. This shows additional importance of studying accessibility
of pro-p groups. In general, finitely generated pro-p groups are not accessible, as shown
by Wilkes [24], and it is an open question whether finitely presented are. Our main result
in this direction is the pro-p version of the celebrated Sela’s result [18] (cf. Theorem 3.13).

Theorem 1.1. Let G D …1.G ; �/ be the fundamental group of a finite reduced k-acylin-
drical graph of pro-p groups. Then jE.�/j � d.G/.4k C 1/ � 1, jV.�/j � 4kd.G/.

We use our accessibility theorem to establish the Kropholler type [12, Theorem A2]
JSJ-decomposition for Poincaré duality pro-p groups. First JSJ-decompositions appeared
in 3-dimensional topology with the theory of the characteristic submanifold by Jaco–
Shalen and Johannson. These topological ideas were carried over to the group theory first
by Kropholler [12] for some Poincaré duality groups. Later constructions of JSJ-decom-
positions were given in various settings by Sela for torsion-free hyperbolic groups [19],
and in various settings by Rips–Sela [17], Bowditch [1], Dunwoody–Sageev [5], Fujiwa-
ra–Papasoglu [7], Dunwoody–Swenson [6], etc. This has had a vast influence and a range
of applications in the geometric and combinatorial group theory.

The result below can be considered as the first step towards this theory in the cat-
egory of pro-p groups. We establish a canonical JSJ-decomposition of Poincaré duality
pro-p groups of dimension n (i.e., PDn pro-p groups) which is a pro-p version of the
Kropholler [12, Theorem A2]. It also can be viewed as a pro-p version of the torus decom-
position theorem for 3-manifolds (cf. Theorem 4.5).

Theorem 1.2. For every PDn pro-p group G, n > 2, there exists a (possibly trivial) k-
acylindrical pro-p G-tree T satisfying the following properties:

(i) every edge stabilizer is a maximal polycyclic subgroup of G of Hirsch length
n � 1;

(ii) every polycyclic subgroup of G of Hirsch length > 1 stabilizes a vertex;

(iii) the underlying graph of groups does not split further k-acylindrically over poly-
cyclic subgroups of G of Hirsch length n � 1.

Moreover, every two pro-p G-trees satisfying the properties above are G-isomorphic.

Examples of JSJ-decompositions of PD3 pro-p groups can be obtained by the pro-p
completion of an abstract JSJ-decomposition of some 3-manifolds (see [23]). The pro-p
completion of PDn groups in general were studied in [8, 9, 11, 12, 22].

The structure of the paper is as follows. Section 2 recalls the notions of a pro-p tree,
a pro-p fundamental group and a graph of pro-p groups with a special focus on finite
graphs of pro-p groups. Throughout the paper, finite graphs of pro-p groups will be
often required to be reduced and proper (see Definitions 2.12 and 2.17) but Remarks 2.13
and 2.18 show that such an assumption is not restrictive. Section 3 is devoted to the proof
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of the pro-p version of Sela’s accessibility which states that every finitely generated pro-p
group is k-acylindrically accessible. Recall that a profinite graph of pro-p groups .G ; �/
is k-acylindrical if the action of the pro-p fundamental group on its standard pro-p tree
is k-acylindrical (cf. Section 2.2). In this section, we also prove the pro-p version of
Karras–Solitar result describing 2-generated subgroups of free products with malnormal
amalgamation (see Theorem 3.19). Finally, Section 4 deals with splittings of PDn pro-p
groups and culminates with a JSJ-decomposition for PDn pro-p groups (see Theorem 1.2)
which is a pro-p version of the Kropholler theorem [12, Theorem A2]. Note that the Krop-
holler theorem gives also information on vertex-groups of a JSJ-splitting that is based on
the Kropholler–Roller decomposition theorem [13, Theorem B] that states that a PDn

groupG having a PDn�1 subgroupH virtually splits as a free product with amalgamation
or HNN-extension over a subgroup commensurable with it if cd.H \Hg/ ¤ n � 2 for
each g 2 G. In fact, by [13, Theorem C], G virtually splits over H if H is polycyclic.

Unfortunately, Kropholler–Roller theorems do not hold in the prop-p case as shown
by the following example, which has been constructed in communication with Peter Kro-
pholler during the visit of the second author to the University of Southampton.

Example 1.3. Let G be an open pro-p subgroup of SL2.Zp/ and H be the intersection
of the Borel subgroup of SL2.Zp/ with G. Then H is a malnormal metacyclic subgroup
of G and therefore is a PD2 pro-p group. The group G is an analytic pro-p group of
dimension 3 and so is a PD3 pro-p group. However, G does not split as an amalgamated
free pro-p product or HNN-extension at all.

In Section 5, we provide the details of the statement written in the example above.
Here we just remark that the absence of the Kroholler–Roller splitting result is an obstacle
for obtaining information on vertex-groups of a JSJ-splitting from Theorem 1.2.

2. Notation, definitions and basic results

2.1. Notation. We shall denote by d.G/ the number of a minimal set of generators of
a pro-p group G and by ˆ.G/ its Frattini subgroup. If a pro-p group G continuously
acts on a profinite space X , we denote by Gx the stabilizer of x in G. If x 2 X and
g 2 G, then Ggx D gGxg�1. We shall use the notation hg D g�1hg for conjugation. For
a subgroup H of G, HG will stand for the (topological) normal closure of H in G. If G
is an abstract group, yG will mean the pro-p completion of G.

2.2. Conventions. Throughout the paper, unless otherwise stated, groups are pro-p, sub-
groups will be closed and morphisms will be continuous. Finite graphs of groups will
be proper and reduced (see Definitions 2.12 and 2.17). Actions of a pro-p group G on
a profinite graph � will a priori be supposed to be faithful (i.e., the action has no kernel),
unless we consider actions on subgraphs of � .

Next we collect basic definitions, following [15].
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2.1. Profinite graphs

Definition 2.3. A profinite graph is a triple .�; d0; d1/, where � is a profinite (i.e.,
boolean) space, and d0; d1W� ! � are continuous maps such that didj D dj for i; j 2
¹0; 1º. The elements of V.�/ WD d0.G/ [ d1.G/ are called the vertices of � , and the ele-
ments of E.�/ WD � n V.�/ are called the edges of � . If e 2 E.�/, then d0.e/ and d1.e/
are called the initial and terminal vertices of e. A vertex with only one incident edge is
called pending. If there is no confusion, one can just write � instead of .�; d0; d1/.

Definition 2.4. A morphism f W � ! � of graphs is a map f which commutes with
the di ’s. Thus it will send vertices to vertices, but might send an edge to a vertex.1

2.5. Collapsing edges. We do not require for a morphism to send edges to edges. If � is
a graph and e is an edge which is not a loop, we can collapse the edge e by removing ¹eº
from the edge set of � , and identify d0.e/ and d1.e/ with a new vertex y. That is, � 0 is
the graph given by V.� 0/D V.�/ n ¹d0.e/; d1.e/º [ ¹yº (where y is the new vertex), and
E.� 0/D E.�/ n ¹eº. We define � W�! � 0 by setting �.m/Dm ifm … ¹e; d0.e/; d1.e/º,
�.e/D �.d0.e//D �.d1.e//D y. The maps d 0i W�

0! � 0 are defined so that � is a morph-
ism of graphs. Another way of describing � 0 is that � 0 D �=�, where � is the subgraph
¹e; d0.e/; d1.e/º collapsed into the vertex y.

Definition 2.6. Every profinite graph � can be represented as an inverse limit � D lim
 �

�i
of its finite quotient graphs [15, Proposition 1.5].

A profinite graph � is said to be connected if all its finite quotient graphs are con-
nected. Every profinite graph is an abstract graph, but a connected profinite graph is not
necessarily connected as an abstract graph.

A connected finite graph without circuits is called a tree. In the next subsection, we
shall explain how this notion extends to the pro-p context. The valency of a vertex is the
number of edges connected to it. Hence, a vertex is pending if it has valency 1. A tree with
two pending vertices will be called a line.

2.2. Pro-p trees

2.7. The fundamental group of a profinite graph. Let � be a connected profinite graph.
If � D lim

 �
�i is the inverse limit of the finite graphs �i , then it induces the inverse sys-

tem ¹�1.�i / D y�abs1 .�i /º of the pro-p completions of the abstract (usual) fundamental
groups �abs1 .�i /. So the pro-p fundamental group �1.�/ can be defined as �1.�/ D
lim
 �

i�1.�i /. If �1.�/ D 1, then � is called a pro-p tree.

If T is a pro-p tree, then we say that a pro-p group G acts on T if it acts continuously
on T and the action commutes with d0 and d1.

1It is called a quasimorphism in [14].
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If t 2 V.T / [ E.T /, we denote by Gt the stabilizer of t in G. For a pro-p group G
acting on a pro-p tree T , we let zG denote the subgroup generated by all vertex stabilizers.
Moreover, for any two vertices v and w of T , we let Œv; w� denote the geodesic connect-
ing v to w in T , i.e., the (unique) smallest pro-p subtree of T that contains v and w. The
geodesic connecting two vertices might not be a finite segment. By length of a geodesic
we will mean the number of edges in the geodesic, which in general may be infinite.
The fundamental group �1.�/ acts freely on a pro-p tree z� (universal cover) such that
�1.�/ n z� D � (see [26, Section 3] or [14, Chapter 3] for details).

An action of a pro-p group on a pro-p tree T is called k-acylindrical if the stabilizer
of any geodesic in T of length greater than k is trivial. For instance, 0-acylindrical refers
to an action with trivial edge stabilizers, and 1-acylindrical implies that edge stabilizers
are malnormal in vertex-groups.

Lemma 2.8. Let G be a pro-p group acting k-acylindrically on a pro-p tree T . Then
every polycyclic subgroup A of G of Hirsch length > 1 fixes a vertex.

Proof. Let A � G be a polycyclic group of Hirsch length > 1. By contradiction, assume
that A does not fix any vertex of T . By [15, Theorem 3.18], there exists a normal sub-
group N of A stabilizing some vertex v 2 V.T /. Since A ¤ Av , the minimal subtree TA
containing Av is fixed by N (see [15, Theorem 3.7]). Since T is k-acylindrical, TA has
diameter at most k, so A stabilizes a vertex.

2.3. Finite graphs of pro-p groups

In this subsection, we recall the definition of a finite graph of pro-p groups .G ; �/ and
its fundamental pro-p group …1.G ; �/. When we say that G is a finite graph of pro-p
groups, we mean that it contains the data of the underlying finite graph, the edge pro-p
groups, the vertex pro-p groups and the attaching continuous maps. More precisely, one
gives the following definitions.

Definition 2.9. Let � be a connected finite graph. A graph of pro-p groups .G ; �/ over �
consists of specifying a pro-p group G .m/ for each m 2 � (i.e., G D �

S
m2� G .m/), and

continuous monomorphisms @i WG .e/! G .di .e// for each edge e 2 E.�/, i D 1; 2.

Definition 2.10. (1) A morphism of graphs of pro-p groups .G ; �/! .H ; �/ is a pair
.˛; x̨/ of maps, with ˛WG ! H a continuous map, and x̨W� ! � a morphism of graphs,
and such that ˛G .m/W G .m/! H .x̨.m// is a homomorphism for each m 2 � and which
commutes with the appropriate @i . Thus the diagram

G
˛ //

@i
��

H

@i
��

G
˛ // H

is commutative.
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(2) We say that .˛; x̨/ is a monomorphism if both ˛, x̨ are injective. In this case, its
image will be called a subgraph of groups of .H ;�/. In other words, a subgraph of groups
of a graph of pro-p-groups .G ; �/ is a graph of groups .H ; �/, where � is a subgraph
of � (i.e., E.�/ � E.�/ and V.�/ � V.�/, the maps di on � are the restrictions of the
maps di on �), and for each m 2 �, H .m/ � G .m/.

2.11. Definition of the fundamental pro-p group. In [27, §3.3], the fundamental groupG
is defined explicitly in terms of generators and relations associated to a chosen subtreeD.
Namely,

G D hG .v/; te j v 2 V.�/; nE.�/; te D 1 for e 2 D;

@0.g/ D te@1.g/t
�1
e for g 2 G .e/i: (1)

That is, if one takes the abstract fundamental group G0 D �1.G ; �/, then …1.G ; �/ D

lim
 �

NG0=N , where N ranges over all normal subgroups of G0 of index being a power
of p and with N \ G .v/ open in G .v/ for all v 2 V.�/. Note that this last condition is
automatic if G .v/ is finitely generated (as a pro-p group) by [16, Theorem 4.2.8]. It is also
proved in [27] that the definition given above is independent on the choice of the maximal
subtree D.

The main examples of …1.G ; �/ are an amalgamated free pro-p product G1 qH G2
and an HNN-extension HNN.G;H; t/ that correspond to the cases of � having one edge
and either two vertices or only one vertex, respectively.

Definition 2.12. We call the graph of groups .G ; �/ proper (injective in the terminology
of [14]) if the natural map G .v/! …1.G ; �/ is an embedding for all v 2 V.�/.

Remark 2.13. In the pro-p case, a graph of groups .G ; �/ is not always proper. However,
the vertex- and edge-groups can always be replaced by their images in …1.G ; �/, so that
.G ; �/ becomes proper and …1.G ; �/ does not change. Thus throughout the paper, we
shall only consider proper graphs of pro-p groups. In particular, all our free amalgam-
ated pro-p products are proper. Thus we shall always identify vertex- and edge-groups of
.G ; �/ with their images in …1.G ; �/.

If .G ;�/ is a finite graph of finitely generated pro-p groups, then by a theorem of Serre
(stating that every finite index subgroup of a finitely generated pro-p group is open, cf. [16,
Theorem 4.2.8]), the fundamental pro-p group G D …1.G ; �/ of .G ; �/ is the pro-p
completion of the usual fundamental group �1.G ; �/ (cf. [20, §5.1]). Note that .G ; �/ is
proper if and only if �1.G ; �/ is residually p. In particular, edge- and vertex-groups will
be subgroups of …1.G ; �/.

Proposition 2.14. Let G D …1.G ; �/ be the fundamental pro-p group of a finite proper
graph of pro-p groups and U a normal subgroup of G. Put zU D hG .v/g \ U j g 2 G;
v 2 V.�/i. Then zU is normal in G and G= zU D…1.GU ; �/, where GU .m/ D G .m/U=U

for each m 2 � with @0; @1 being natural inclusions in G=U .
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Proof. The fundamental group …1.GU ; �/ has a presentation

hGU .v/; te j v 2 V.�/; e 2 E.�/; te D 1 for e 2 D;

@0.g/ D te@1.g/t
�1
e ; for g 2 GU .e/i: (2)

Therefore, the kernel of the epimorphism…1.G ; �/!…1.GU ; �/ induced by the natural
morphism .G ; �/! .GU ; �/ is generated as a normal subgroup by G .v/ \ U; v 2 V.�/

as needed.

Let .G ;�/ be a profinite graph of pro-p groups and� a subgraph of � . Then by .G ;�/
we shall denote the graph of groups restricted to �. We shall often use the following
assertion.

Lemma 2.15 ([21, Lemma 2.4]). Let .G ; �/ be a proper finite graph of pro-p groups,
and let � be a connected subgraph of � . Then the natural homomorphism …1.G ; �/!

…1.G ; �/ is a monomorphism.

Proposition 2.16. Let G D …1.G ; �/ be the fundamental group of a proper finite graph
of pro-p groups. Suppose there exists an edge e such that G.e/D 1 and G.di .e//¤ 1 for
i D 0; 1. Then G splits as a free pro-p product.

Proof. Suppose � n ¹eº is not connected. Then …1.G ; �/ D G1qG2, where G1 and G2
are the fundamental groups of the graphs of groups restricted to the connected components
C1, C2 of � n ¹eº (cf. Lemma 2.15). So the result holds in this case.

Otherwise, let D be a maximal subtree of � not containing an edge e. Then G D
HNN.G1; G.e/; t/, where G1 is the fundamental group of the graph of groups restricted
to � n ¹eº (cf. Lemma 2.15). But since G.e/ D 1, we have G D G1 q hti.

Definition 2.17. A finite graph of pro-p groups .G ; �/ is said to be reduced, if for every
edge e which is not a loop, neither @1.e/WG .e/! G .d1.e// nor @0.e/WG .e/! G .d0.e//

is an isomorphism.

Remark 2.18. Any finite graph of pro-p groups can be transformed into a reduced finite
graph of pro-p groups by the following procedure: If ¹eº is an edge which is not a loop and
for which one of @0, @1 is an isomorphism, we can collapse ¹eº to a vertex y (as explained
in §2.5). Let � 0 be the finite graph given by V.� 0/ D ¹yº �[ V.�/ n ¹d0.e/; d1.e/º and
E.� 0/ D E.�/ n ¹eº, and let .G 0; � 0/ denote the finite graph of groups based on � 0 given
by G 0.y/ D G .d1.e// if @0.e/ is an isomorphism, and G 0.y/ D G .d0.e// if @0.e/ is not
an isomorphism.

This procedure can be continued until @0.e/, @1.e/ are not surjective for all edges not
defining loops. Note that the reduction process does not change the fundamental pro-p
group, i.e., one has a canonical isomorphism …1.G ; �/ '…1.Gred; �red/. So, if the pro-p
group G is the fundamental group of a finite graph of pro-p groups, we may assume that
the finite graph of pro-p groups is reduced.
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Remark 2.19. The procedure of collapsing in the graph of pro-p groups .G ; �/ can be
generalized using Lemma 2.15. If � is a connected subgraph, then we can collapse �
to a vertex v and put G.v/ D …1.G ; �/ leaving the rest of edge- and vertex-groups
unchanged. The fundamental group …1.G�; �=�/ D …1.G ; �/. The graph of groups
.G�; �=�/ will be called collapsed.

Lemma 2.20. LetG D…1.G ; �/ be the fundamental pro-p group of a finite reduced tree
of pro-p groups .G ; �/, and let d.G/ be the minimal number of generators of G. Then
a minimal subset V of V.�/ with G D hG .v/ j v 2 V i contains all pending vertices of �
and has no more than d.G/ elements.

Proof. For every pending vertex v of � and the (unique) edge e 2 � connected to it,
xG .v/ D G .v/=G .e/G .v/ is non-trivial, because the tree of groups .G ; �/ is reduced, and
the groups are pro-p. Define the quotient tree of groups . xG ; �/ by putting xG .m/ D 1 if
m 2 � is not a pending vertex, and xG .v/ D G .v/=G .e/G .v/ ¤ 1 if v is a pending vertex.
Then from presentation (1) for …1. xG ; �/, it follows that

…1. xG ; �/ D
a

v2V.�/

xG .v/ D
a
v2P�

xG .v/;

where P� is the set of pending vertices of � . The natural morphism .G ; �/ ! . xG ; �/

induces then the epimorphismGD…1.G ;�/! xGD…1. xG ;�/. This shows thatP� � V .
To show that jV j � d.G/, consider the Frattini quotient xGDG=ˆ.G/ and use overline

for the images of subgroups of G in xG. Since d.G/ D d. xG/ and xG is finite elementary
abelian, one can choose finite Vi �V with jV1j D 1 and jViC1j D jVi j C 1 such that h xG .v/ j
v 2 Vi i is strictly increasing sequence of subgroups of xG. Then the number of terms in
this sequence is � d.G/. Hence the number of vertices of V is at most d. xG/ � d.G/.

Proposition 2.21. Let G D …1.G ; �/ be a finite graph of pro-p groups, and let D be
a maximal subtree of � . Suppose G is finitely generated. If G .e/ is finitely generated
for every e 2 � nD, then …1.G ; D/ is finitely generated with d.…1.G ; D// � d.G/CP
e2�nD.d.G .e// � 1/.

Proof. Since � is finite, we can think ofG asG D HNN.…1.G ;D/;G .e/; te/, e 2 � nD.
Let A D …1.G ; D/=ˆ.…1.G ; D// and let B be a subgroup generated by the images

of G .e/ in A for e 2 � n D. Since G .e/ is finitely generated for each e 2 � n D, the
group B is finite. Then there exists an epimorphism G D HNN.…1.G ; D/; G .e/; te/!

A=B ˚ FpŒ� nD� that sends…1.G ;D/ to A=B and te to e in the vector space FpŒ� nD�.
Since A=B ˚ FpŒ� nD� is finite, A=B is finite, and so A is finite implying that…1.G ;D/

is finitely generated. Since d.…1.G ;D//D d.A/D d.A=B/C d.B/, d.G/� d.A=B/C
j� nDj D d.A/ � d.B/C j� nDj, one deduces

d.…1.G ;D// D d.A/ � d.G/ � j� nDj C d.B/ � d.G/C
X
e2�nD

.d.G .e// � 1/:
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2.22. Standard (universal) pro-p tree. Associated with the finite graph of pro-p groups
.G ; �/, there is a corresponding standard pro-p tree (or universal covering graph) T D
T .G/ D �

S
m2� G=G .m/ (cf. [27, Proposition 3.8]). The vertices of T are those cosets of

the form gG .v/, with v 2 V.�/ and g 2 G; its edges are the cosets of the form gG .e/,
with e 2 E.�/; and the incidence maps of T are given by the formulas

d0.gG .e// D gG .d0.e//; d1.gG .e// D gteG .d1.e// e 2 E.�/; te D 1 if e 2 D:

There is a natural continuous action of G on T , and clearly G n T D � . Remark also
that since � is finite, E.T / is compact.

3. Acylindrical accessibility

In this section, we shall prove a pro-p version of Sela’s accessibility. Note that Sela used
R-trees for the proof; later Weidmann [22, Theorem 4] found another proof using Nielsen
method and established a bound. Both methods are not available in the pro-p case.

We shall start with two auxiliary results on free amalgamated product and its general-
ization for abstract groups.

Lemma 3.1. LetGDG1 �H G2 be a splitting of a group as an amalgamated free product,
and H1 � G1, H2 � G2. Then hH1; H2i D L1 �K L2, where L1 D hH1; H2 \H i and
L2 D hH2; H1 \ H i and K D hH1 \ H;H2 \ H i. In particular, if H1 \ H � U �
H \H2 for some normal subgroup U ofG, then L1 �H1.U \G1/, L2 �H2.U \G2/,
K � H \ U .

Proof. First note that it follows from the Bass–Serre theory [20] that hH1; H2i is a free
amalgamated product whose factors are contained in G1 and G2, respectively. To see
this, it suffices to consider the Bass–Serre tree T associated to G and denote by e the
edge whose vertices have stabilizers G1 and G2, respectively. Now one notices that the
hH1; H2i-orbit of e in T is connected, and it provides a tree acted on by hH1; H2i with
a single edge orbit.

Therefore, we need to prove that the factors of the splitting are L1 and L2, and the
amalgamated subgroup is K. To this end, we claim that an element x 2 hH1; H2i has
a reduced form h D x1x2 � � � xn with xi 2 L1 [ L2. Suppose not, and x D a1a2 � � � am is
an expression as a product of the minimal length of alternating elements from H1 or H2
(i.e., if ai 2 H1, then aiC1 2 H2) such that a reduced word of it is not of the desired
form. Then a reduced word for a2 � � � an has a reduced form a2 � � � am D l1 � � � lk with
li 2 L1 [ L2.

Recall that a1 2 Hi � Li for i D 1 or 2. Since the word a1l1 � � � lk is not reduced and
l1 � � � lk is, the reduction happens in a1l1 that can occur in the free amalgamated product
G D G1 �H G2 only if a1; l1 2 H . In particular, either a1 2 H1 \H or a1 2 H2 \H ,
and so a1l1 � � � lk is a reduced word of needed form if a1 and l1 belong to different Li ’s;
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if a1 and l1 belong to the same Li ’s, then the consolidated word .a1l1/ � � � lk has entries
from L1 [ L2 and is reduced. This gives a contradiction.

It remains to prove that K D hH1 \H;H2 \H i. For k 2 K, write minimal expres-
sions k D x1 � � �xn and k D y1 � � �ym as alternating products of elements ofH1,H2 \H
and H2, H1 \H , respectively. Thus x1 � � � xn D y1 � � � ym. If k 62 hH1 \H;H2 \H i,
then there are xi ; yj 62H for some i , j , and we can choose i maximal and j minimal with
this property. But then the product y�1m � � �y

�1
1 x1 � � �xm cannot be reduced to 1, since y�1j

and xi cannot be cancelled.

Proposition 3.2. Let G D �1.G ; �/ be the fundamental group of a finite tree of groups,
and let Hv � G.v/ be a subgroup of G.v/ for each v 2 V.�/. Then H D hHv j v 2
V.�/i D �1.L; �/ such that L.v/ D hHv; G.e/ \Hwi and L.e/ D hHv \G.e/;Hw \
G.e/i, where e ranges over the edges incident to v, and w is the other vertex of e. In
particular, if U is a normal subgroup of G and, for each edge e and its vertex v, one has
Hv \G.e/ � U , then L.v/ � HvU and L.e/ � U \G.e/.

Proof. We use induction on j�j. If � has one edge only, the result follows from Lem-
ma 3.1. Let e be an edge of � having w as a pending vertex. Then G D G1 �Ge Gw .
Let v be the other vertex of e and put H 0v D hHv; Hw \ G.e/i. Let H1 D hHu; H 0v j
u 2 V.�/ n ¹wºi. By the induction hypothesis,H1D�1.L1;�/, with�D� n ¹e;wº and
vertex- and edge-groups satisfying the statement of the proposition. Applying Lemma 3.1,
we get hH1;Hwi D L1 �K L.w/, where L1 D hH1;G.w/\G.e/i, L.w/ D hHw ;H1 \
G.e/i and K D hH1 \ G.e/; Hw \ G.e/i. It follows that H D hHv j v 2 V.�/i D
hH1;Hwi D hH1; hHu;Hw \G.e/ii D �1.L;�/qK L.w/D �1.L;�/with the desired
properties.

Lemma 3.3. LetG D G1qH G2 be a splitting of the pro-p groupG as an amalgamated
free pro-p product of pro-p groups G1, G2 and H1 � G1, H2 � G2 be subgroups such
thatH1 \H � U �H \H2 for some open normal subgroup U of G. Then hH1;H2i D
L1 qK L2 with L1 � H1U , L2 � H2U , K � HU .

Proof. By [28, Proposition 4.4], hH1;H2i DL1qK L2 withL1 �G1,L2 �G2,K �H .
By Lemma 3.1 combined with §2.11, L1 � H1U , L2 � H2U , K � HU .

Corollary 3.4. Let G D G1 qH G2 be a splitting of the pro-p group G as an amalgam-
ated free pro-p product of pro-p groups G1, G2 and H1 � G1, H2 � G2 be subgroups
such that H1 \H D 1 D H2 \H . Then hH1;H2i D H1 qH2.

Proof. Since U in the preceding lemma is arbitrary, the result follows.

Proposition 3.5. Let G D …1.G ; �/ be the fundamental pro-p group of a finite tree of
pro-p groups andHv �G.v/ for v 2 V.�/. Let U be an open normal subgroup ofG, and
suppose that for each edge e, one has Hv \ G.e/ � U � Hw \ G.e/. Then H D hHv j
v 2 V i D…1.H ; �/ such thatH.v/ �HvU for all v 2 V.�/ andH.e/ � U \ G .e/ for
all e 2 E.�/.
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Proof. By [28, Proposition 4.4], hHv j v 2 V.�/i D …1.H ; �/ with H.m/ � G.m/.
By Proposition 3.2 combined with §2.11, H.v/ � HvU and H.e/ � U \G.e/.

Corollary 3.6. SupposeHv \G.e/D 1 for all v 2 V.�/ and each e 2 E.�/. ThenH D`
v2V.�/Hv .

Proof. Since U in Proposition 3.5 is an arbitrary open normal subgroup, H.v/ D Hv and
H .e/ D 1 for each e 2 D. Hence H D

`
v2V.�/Hv by [14, Example 6.2.3].

Definition 3.7. We say that a profinite graph of pro-p groups .G ; �/ is k-acylindrical if
the action of the fundamental group…1.G ; �/ on its standard pro-p tree is k-acylindrical.

Proposition 3.8. Let G D …1.G ; �/ be the fundamental pro-p group of a k-acylindrical
finite graph of pro-p groups. Let v, w be vertices at distance � 2k C 1. Then

hG.v/;G.w/i D G.v/qG.w/:

Proof. Let Œv; w� be a shortest path between v and w. Let G.v; w/ be the fundamental
group of the graph of pro-p groups restricted to Œv; w�. By Lemma 2.15, G.v; w/ is
a subgroup of G generated by vertex stabilizers of Œv; w�. Let e be an edge of Œv; w�
at distance> k from w and v. ThenG.v/\G.e/D 1DG.w/\G.e/. Note thatG.v;w/
splits over G.e/ as a free amalgamated pro-p product G.v; w/ D G1 qG.e/ G2, where
G1, G2 are pro-p groups generated by vertex-groups of the connected components of
Œv; w� n e (see Lemma 2.15), so that G.v/ � G1 and G.w/ � G2. By Corollary 3.4,
hG.v/;G.w/i D G.v/qG.w/ as required.

Proposition 3.9. Suppose � D Œv;w� is a line of pro-p groups such thatG D…1.G ;�/D

G.v/qG.w/. Let .G ; �red/ be a reduced graph of pro-p groups obtained from .G ; �/ by
the procedure described in Remark 2.18. If �red is not a vertex, then one of the follow-
ing holds:

(i) �red has only two edges e1, e2 with pending vertices v, w and one middle vertex u
such that G.u/ D G.e1/qG.e2/;

(ii) �red has only one edge, a trivial edge-group and G.v/, G.w/ as vertex-groups.

Proof. Let U be an open normal subgroup of G and GU .v/ D G.v/U=U , GU .w/ D
G.w/U=U . LetU.v;w/D .hU \G.v/;U \G.w/i/G andGU DG=U.v;w/DGU .v/q
GU .w/ (cf. Proposition 2.14). Then G D lim

 �
UGU , where GU D …1.GU ; �red/ and

GU D [G.m/U.v; w/=U.v; w/ for every m 2 � . Starting with some U , the graph of
groups .GU ; �red/ is reduced, and without loss of generality, we may assume that it is
reduced for every U .

Suppose that �red has one edge. Then GU D GU .v/qGU .e/ GU .w/. It follows that
GU .e/ D 1 for each U and therefore so is G.e/.

Suppose now that �red has more than one edge; we shall use induction on the sum
jGU .v/j C jGU .w/j of the orders of the free factors of GU D GU .v/q GU .w/ to show
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that �red satisfies (i) or (ii). Let e1, e2 be edges of � incident to v and w respectively, and
v1,w1 the other vertices of e1 and e2. Since we have only finitely many vertices in Œv1;w1�,
we can apply the pro-p version of the Kurosh subgroup theorem [14, Theorem 9.6.1 (a)],
and so

…1.GU ; Œv1; w1�/ D .GU .v/ \…1.GU ; Œv1; w1�//q .…1.GU ; Œv1; w1�/ \GU .w//q L

D GU .e1/qGU .e2/q L:

Thus, GU D GU .v/q Lq GU .w/. Hence L D 1 and …1.GU ; Œv1; w1�/ D GU .e1/q

GU .e2/. If v1 D w1, then we are in case (i). Suppose v1 ¤ w1. By induction hypothesis,
.GU ; Œv1; w1�/ satisfy (i) or (ii), and so in either case GU .v1/ D GU .e1/ and GU .w1/ D
GU .e2/. Hence edges e1 and e2 are fictitious, a contradiction. Therefore, v1 D w1. Thus
putting u D v1 D w1, we have GU .u/ D GU .e1/q GU .e2/, and so G.u/ D G.e1/q

G.e2/.

Proposition 3.10. LetG D…1.G ;�/ be the fundamental pro-p group of a k-acylindrical
finite tree of pro-p groups. Suppose there exists a subset V � V.�/ such that

(i) Œv; w� has at least 2k C 1 edges whenever v ¤ w 2 V ;

(ii) G D hG.v/ j v 2 V i.

Then G D
`
v2V G.v/.

Proof. For every v 2 V , we collapse the ball of radius k centered at v to the vertex v itself
and consider the collapsed graph of groups � 0 obtained in this way from Remark 2.19.
SettingHv D Gv for v 2 V andHv D 1 for v … V , we achieve premises of Corollary 3.6,
since the action is k-acylindrical, deducing from it the result.

Corollary 3.11. Let G D …1.G ; �/ be the fundamental pro-p group of a reduced k-
acylindrical finite line of pro-p groups (k > 0). Let V be the minimal subset of V.�/ such
that G D hG.v/ j v 2 V i. If G is finitely generated, then jE.�/j � 2kjV j.

Proof. We just need to show that the distance between two vertices of V is at most 2k.
Suppose on the contrary v, w are vertices of V such that Œv; w� has at least 2k C 1 edges.
Let �v; wŒD Œv; w� n ¹v; wº. Collapsing connected components Cv and Cw of � n �v; wŒ
and considering the collapsed graph of pro-p groups (see Remark 2.19) instead of .G ; �/,
we may assume that � D Œv; w�. By Proposition 3.8, G D G.v/q G.w/. But then Pro-
position 3.9 forces Œv; w� to have at most two edges, a contradiction.

Corollary 3.12. Let G D…1.G ; �/ be the fundamental group of a proper finite k-acylin-
drical tree of pro-p groups. Let V be the minimal subset of V.�/ such that G D hG.v/ j
v 2 V i. Suppose there exists a vertex v 2 V such that the distance l.v; w/ is at least
2k C 1 for every w 2 V . Then G splits as a free pro-p product.
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Proof. Divide V as the disjoint union ¹vº [
Sl
iD1 Vi , where the sets Vi are defined as

follows: Vi D V \ Ci , where Ci is a connected component of � n B.v; 2k/ and B.v; 2k/
is the ball of radius 2k with the centre in v. Denote by �i the span of Vi , and let Gi D
…1.G; �i / be the fundamental group of a graph of groups restricted to �i . Using Re-
mark 2.19, we can collapse all �i . The obtained graph of groups satisfies premises of
Proposition 3.10 and by hypothesis possesses more then one vertex. Hence, by Proposi-
tion 3.10, it is a non-trivial free pro-p product.

Theorem 3.13. Let G D …1.G ; �/ be the fundamental group of a finite reduced k-
acylindrical graph of pro-p groups. Then jE.�/j � d.G/.4k C 1/ � 1 and jV.�/j �
4kd.G/.

Proof. SupposeG is a non-trivial free pro-p product, i.e.,G DG1
`
G2. In this case, one

proceeds by induction on d.G/. Indeed, d.G/ D d.G1/C d.G2/ and one computes

E.�/ D jE.�1/j C jE.�2/j C 1 � d.G1/.4k C 1/ � 1C d.G2/.4k C 1/ � 1C 1

� .d.G1/C d.G2//.4k � 1/ � 1 D d.G/.4k � 1/ � 1;

V .�/ D jV.�1/j C jV.�2/j � 4kd.G1/C 4kd.G2/ D 4kd.G/:

Thus, we can assume that G does not split as non-trivial free pro-p product. Let D be
a maximal subtree of � . By [2, Lemma 3.6], there are at most d.G/ edges in � nD. Let V
be a minimal subset of V.�/ such that G D hG.v/; te j v 2 V; e 2 � nDi. Looking at
G=ˆ.G/, one easily deduces that jV j � d.G/. Let V 0 be the set of vertices connected to
vertices of V by an edge e 2 � nD. Then jV [ V 0j � 2d.G/ as follows from presentation
of…1.G ;D/D hG.v/ j v 2 V [ V

0i; indeed if not, then we can factor out all theseG.v/’s
and get a non-trivial free product �1.�/qL for some L that contradicts G D hG.v/; te j
v 2 V; e 2 � nDi. For every v 2 V [ V 0, we collapse the ball of radius k centred at v
to the vertex v itself, and we consider the tree of groups � 0 obtained in this way from
Remark 2.19. Now we are left with a minimal set of vertices of � 0, say xV (which is the
image in � 0 of the set V [ V 0). But xV consists of a single vertex because otherwise, by
Corollary 3.12, G is a non-trivial free pro-p product. This means that, for every v; w 2
V [ V 0, the geodesic Œv; w� � D has length � 2k if it does not contain a middle vertex
from V [ V 0; hence the number of vertices in D is at most 4kd.G/, and therefore the
number of edges of � is at most 4kd.G/ � 1C d.G/ D d.G/.4k C 1/ � 1.

Corollary 3.14. Let G be a free amalgamated pro-p product G D G1 qH G2 of coher-
ent pro-p groups over an analytic pro-p group H . If H is malnormal in G1, then G is
coherent.

Proof. LetK be a finitely generated subgroup of G. ThenK acts at most 2-acylindrically
on the standard pro-p tree T .G/. By Theorem 3.13, K is 2-acylindrically accessible.
By [2, Theorem 3.6], K D …1.H ; �/ is the fundamental group of a finite graph of finite
pro-p groups with edge-groups being conjugate to subgroups of H . Hence, for each edge



I. Castellano and P. A. Zalesskii 1362

e 2 � , one has d.H .e// � rank.H/, where rank.H/ means the Prüfer rank. Therefore,
K is finitely presented (cf. (1)).

Theorem 3.15. Let G D …1.G ; �/ be the fundamental group of a finite reduced k-
acylindrical graph of pro-p groups. If H is a finitely generated pro-p subgroup of G,
then H is the fundamental group of a finite graph .H ; ƒ/ where all edge- and vertex-
groups of H are conjugate into edge- and vertex-groups of G , respectively.

Proof. Let T be the standard pro-p tree associated to the finite graph .G ; ƒ/. Given
a finitely generated subgroup H of G, denote by FH the family consisting of all sub-
groups of H which are conjugate to subgroups of edge-groups in G . Since H acts on T ,
by [2, Corollary 4.4], H splits as the pro-p fundamental group of a reduced finite graph
.H ; �/ of pro-p groups with edge-groups in FH . Hence, by Theorem 3.13, H is FH -
accessible and the size of � is bounded.

Theorem 3.16. Let G D …1.G ; �/ be the fundamental group of a finite reduced k-
acylindrical graph of pro-p groups with d.G.e// � n for each e 2 E.�/. Suppose G
is finitely generated. Then jE.�/j � .2knC 1/d.G/.

Proof. Let D be a maximal subtree of � . By [2, Lemma 3.6], there are at most d.G/
edges in � nD. By Proposition 2.21, d.…1.G ; D// � d.G/C .n � 1/d.G/ D nd.G/.
By Lemma 2.20, D has at most nd.G/ pending vertices in D. Let V be a minimal set
of vertices such that …1.G ; D/ D hG.v/ j v 2 V i. Then jV j � d.…1.G ; D// and so, by
Corollary 3.11, jE.D/j � 2knd.G/. So jE.�/j � .2knC 1/d.G/.

Corollary 3.17. Suppose all edge-groups are 2-generated and k D 1. Then jE.�/j �
5d.G/.

We finish the section with a pro-p version of the Karras–Solitar theorem [10, The-
orem 6] but we start with the lemma below where generation symbols h i mean abstract
generation, unlike in the rest of the paper where h i means topological generation.

Lemma 3.18. LetG D G1qH G2 be a non-fictitious free pro-p product with malnormal
amalgamation. Suppose G is 2-generated. Then H is trivial and G1, G2 are cyclic.

Proof. Let x 2 G1; y 2 G2 such that G is generated by x and y. Consider the abstract
subgroup hx;yi of the abstract free amalgamated productG1 �H G2. By [10, Theorem 6],
hx; yi is a free product hxi � hyi. By Lemma 3.1, hxi \H D 1 DH \ hyi. Hence hxi \
H D 1 D hyi \H and, by Corollary 3.4, G D hxi q hyi. Thus the result follows from
Proposition 3.10 (ii).

Theorem 3.19. Let G D G1qH G2 be a free pro-p product with malnormal amalgama-
tion, and letK be a 2-generated subgroup ofG. IfK is not conjugate to a subgroup ofG1
or G2, then K is a free pro-p product of two cyclic groups.
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Proof. Consider the action of K on the standard pro-p tree T .G/. Then the action is
acylindrical. We assume that K does not stabilize a vertex (if it does it is conjugate
intoG1 orG2). Suppose first thatK is generated by vertex stabilizers. By [2, Theorem 4.2,
Case 1 of the proof], there exists a non-trivial splitting K D K1 qKe K2 as a free pro-p
product with amalgamation over an edge stabilizer. Then the result follows from Corol-
lary 3.18.

Suppose now K is not generated by vertex stabilizers. By [2, Theorem 4.2, Case 2
of the proof], there exists a non-trivial splitting K D HNN.L; Ke; t / as a pro-p HNN-
extension over an edge stabilizer. Note thatK D hx; ti, where x 2Gv , for some v 2 V.T /,
and t is a stable letter that is not conjugate into G1 [ G2. Then from the acylindricity of
the action, we deduce that x and xt cannot stabilize the same vertex of T . So, by [2, The-
orem 4.2, Case 1 of the proof], R D hx; xt i D R1 qRe R2, and every vertex-group of R
belongs either to R1 or R2 up to conjugation. It follows that x and xt belong to different
factors. Then, by Corollary 3.18, R D hxi q hxt i is a free pro-p product. It follows that
K D hxi q hti as needed.

4. Decomposing PDn pro-p groups

4.1. Pro-p PDn-pairs

In [25], Wilkes defined the profinite version of group pairs but we shall need only a simple
version of it. A pro-p group pair .G;�/ consists of a pro-p groupG and of a finite family �

of closed subgroups Sx ofG indexed over a set (we allow repetitions in this family). Given
a closed subgroup H of G, let �H denote the family of subgroups

¹H \ �.y/Sx�.y/
�1
j x 2 X; y 2 H nG=Sxº; (3)

indexed over
H nG=� WD

G
x2X

H nG=Sx ;

where � WG=H ! G is a section2 of the quotient map G ! G=H .
In [25], the author develops the theory of the cohomology of a profinite group relative

to a collection of closed subgroups and defines profinite Poincaré duality pairs (or PDn-
pairs for short), and the reader is referred to [25, Section 5] for rigorous definitions and
basic results. A pro-p group pair .G;�/ is a pro-p PDn-pair, for some n 2N, if the double
of G over the groups in � is a pro-p PDn-group. Here the double of G over � refers to
the fundamental group of a graph of groups with two vertices and j� j edges, where a copy
of G is over each vertex and groups of � are over the edges, with natural boundary maps.

2A different section only affects the family �H by changing its members by conjugacy in H .
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Example 4.1. Let G be a PDn pro-p group isomorphic to the fundamental group of
a reduced proper finite graph of pro-p groups .G ; �/ whose edge-groups are PDn�1

subgroups of G. For each vertex v 2 V.�/, denote by Ev the collection of all the sub-
groups of G.v/ which are images @i .G.e// of those edge-groups such that di .e/ D v.
Then .G.v/;Ev/ is a pro-p PDn-pair by [25, Theorem 5.18 (2)] for � D ;.

We say that a pro-p PDn-pair .G; �/ splits as an amalgamated free pro-p product
G D G1 qH G2 (resp. as HNN-extension HNN.G1; H; t/) if each Si is conjugate to
either G1 or G2 (resp. G1).

The following proposition was communicated to us by Gareth Wilkes.

Proposition 4.2 (Wilkes). Let .G; �/ be a pro-p PDn-pair with � D ¹S1; : : : ; Snº. Then,
for every i D 1; : : : ; n, .G; �/ does not split over Si as a pair.

The proof relies on the following.

Lemma 4.3. Let G be a pro-p group such that .G; �/ is a PDn-pair. Suppose S1 D S2.
Then m D 2 and S1 D S2 D G.

Proof. By [25, Theorem 5.17 (1)], the pro-p HNN-extension zG D HNN.G; S1 D S2; t /
with st D s for s 2 S1 is a PDn-pair relative to the collection ¹S3; : : : ; Snº. Since zG
contains the pro-p PDn-group S1 � hti (cf. [25, Proposition 5.9]), one has cdp. zG/ D n.
By [25, Corollary 5.8], ¹S3; : : : ; Snº is empty and m D 2.

If G ¤ S1, take an open subgroup U containing S1. If �U is the collection defined
in (3), then .U; �U / is a PDn-pair (see the proof of [25, Proposition 5.11]). But j�U j D
2jU nG=S1j > 2 and ¹S1; S2º � �U , contradicting the first part.

Proof of Proposition 4.2. Suppose by contradiction that .G; �/ does split over some Si .
Assume without loss of generality i D 1. Up to changing � by conjugacy, G is either
isomorphic to HNN.G1; S1; t /, with Sk � G1 for every k D 1; : : : ; n, or isomorphic to
G1 qH G2 with Sk � G1 or Sk � G2 for every k D 1; : : : ; n. In the latter case, � can
be decomposed as �1 t �2, where each �j , j D 1; 2, contains only elements from �

which are also subgroups of Gj . Assume without loss of generality that S1 2 �1. Then
by [25, Theorem 5.16 (2)] for G Š G1 qH G2 and by [25, Theorem 5.17 (2)] if G Š
HNN.G1;H; t/ the pair .G1; � t ¹H º/ is a PDn-pair which contradicts Lemma 4.3.

4.2. Splitting over polycyclic subgroups

Here we collect some results that will be used later in the proof of the main theorem.
We say that a pro-p group G admits a k-acylindrical splitting if G is isomorphic to

the fundamental pro-p group …1.G ; �/ of a k-acylindrical proper reduced finite graph of
pro-p groups.

Proposition 4.4. Let G be a pro-p PDn-group which is the fundamental group…1.G ; �/

of a finite reduced graph of pro-p groups with PDn�1 edge-subgroup of G. Then the
stabilizers of two adjacent edges of T are not commensurable.
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Proof. We just need to show that two adjacent edge-groups G.e1/, G.e2/ do not intersect
by a subgroup of finite index. Suppose they do. Then there exists an open subgroup U
ofG such that U \G.e1/D G.e1/\G.e2/D U \G.e2/. So replacingG by U , we may
assume that G.e1/ D G.e2/. Let v be their common vertex. By Example 4.1, .G.v/;Ev/
is a pro-p PDn pair with G.e1/; G.e2/ 2 Ev contradicting Lemma 4.3.

The following theorem establishes a JSJ-decomposition for PDn pro-p groups analog-
ous to one from [12, Theorem A2].

Theorem 4.5. For every PDn pro-p group G, n > 2, there exists a (possibly trivial) k-
acylindrical pro-p G-tree T satisfying the following properties:

(i) every edge stabilizer is a maximal polycyclic subgroup of G of Hirsch length
n � 1;

(ii) a polycyclic subgroup of G of Hirsch length > 1 stabilizes a vertex;

(iii) the underlying graph of groups does not split further k-acylindrically over a
polycyclic subgroup of G of Hirsch length n � 1.

Moreover, every two pro-p G-trees satisfying the properties above are G-isomorphic.

Proof. By Theorem 3.16, a k-acylindrical decomposition as fundamental group of a re-
duced finite graph of pro-p groups .G ;ƒ/ with polycyclic subgroup ofG of Hirsch length
n � 1 has a bound, so we can choose one with a maximal number of edge-groups. In par-
ticular, the edge-groups satisfy property (i).

By Lemma 2.8, the standard pro-p tree T also satisfies property (ii). We shall show
now property (iii).

First notice that the vertex-stabilizers of T cannot decompose k-acylindrically over
polycyclic subgroups of Hirsch length>1 at all. Indeed, suppose on the contrary that some
vertex-groupG.v/ of .G ;ƒ/ splits k-acylindrically either asG0qAG1 or HNN.G0;A; t/,
where A is polycyclic of Hirsch length > 1. Then, by Lemma 2.8, the edge-groups of all
adjacent edges to G.v/ are conjugate into either G0 or G1. Denote by Ei the set of edges
in starƒ.v/, whose edge-group is conjugate into Gi with i D 0; 1. Thus we can replace
the vertex v by an edge e with two vertices v1 and v2, connecting the edges ei 2 Ei to vi ,
together with boundary maps @i WG.ei /! G.vi / given by correspondent conjugation for
every ei 2 Ei . Note that the construction of this map is continuous because starƒ.v/ is
finite. This contradicts the maximality of the decomposition.

Given any two pro-p trees T and xT satisfying the properties (i)–(iii), we claim that
there exists a G-equivariant morphism �W T ! xT . Let us prove the claim. In order to
construct �, we need to map G-equivariantly each edge e of T to an edge xe of xT . Let
v D d0.e/ and w D d1.e/. Therefore, there exist vertices xv and xw such that Gv � Gxv and
Gw � G xw . Hence it suffices to prove that xv and xw are at distance 1 in the tree xT and set
�.e/ D xe, where xe denotes the edge connecting xv to xw. By Proposition 4.4 , edge-groups
of distinct edges in ƒ are not commensurable. Therefore, one sees that G.v1/ \G.v2/ is
a polycyclic subgroup of G of Hirsch length n � 1 that implies adjacency.
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The uniqueness of T in Theorem 1.2 induces an action on it by the automorphism
group Aut.G/. This gives a splitting structure on Aut.G/ if T is non-trivial. We state this
as the following assertion.

Corollary 4.6. The automorphism group Aut.G/ acts on T . Moreover, if T is not a ver-
tex, then Aut.G/ splits as non-trivial amalgamated free pro-p product or pro-p HNN-
extension.

5. Example

Theorem 5.1. Let G be an abstract PDn group and H its PDn�1 subgroup.

(i) .[13, Theorem B]/ Suppose that cd.H \Hg/ ¤ n � 2 for each g 2 G. Then G
splits as an amalgamated free product or HNN-extension over a group commen-
surable with H .

(ii) .[13, Theorem C]/ SupposeH is polycyclic. Then some finite index subgroup ofG
splits as an amalgamated free product or HNN-extension over a group commen-
surable with H .

The following example shows that both Kropholler–Roller theorems do not hold in the
pro-p case, i.e., neither of the statements of the theorems above.

Example 5.2. Let G be an open pro-p subgroup of SL2.Zp/, say the first principal con-
gruence pro-p subgroup if p > 2, and the second principal congruence pro-p subgroup if
p D 2. Let H D B \G be the intersection of the Borel subgroup B of SL2.Zp/ with G.
Then H is a maximal metacyclic subgroup of G and therefore is a PD2 pro-p group.
Moreover, H is malnormal. Indeed, the group of upper unipotent matrices is a normal
subgroup of H which is isomorphic to Zp on which a subgroup of diagonal matrices�
t 0
0 t�1

�
acts as multiplication by t2; recalling that the group of units of Zp is isomorphic

to Zp � Cp�1 (if p > 2) and to Z2 � C2 (if p D 2), we see that H is metacyclic, say
H D U Ì T , where U consists of unipotent elements and T consists of diagonal ele-
ments.

To see that H is malnormal in G, consider A D H \Hg for some g 2 G n B . First
observe that a straightforward calculation shows that for the unipotent upper triangle
group U , one has U \ U g D 1 for g 62 B . Now if B \ Bg intersects U non-trivially,
then this intersection is cyclic, since otherwise it is open in B contradicting the pre-
ceding sentence. Therefore, it is normal in hB; gi since it is normal in both B and Bg

(cf. [14, Lemma 15.2.1 (a)]); so B \ Bg \ U � U g \ U D 1. It follows that B \ Bg is
generated by a semisimple element s and, as it is not scalar (the scalars have order 2), its
eigenvalues are disjoint t , t�1. This matrix s has two 1-dimensional eigen submodules of
Zp ˚Zp: Vt associated with eigenvalue t and Vt�1 associated with eigenvalue t�1. Hence
Vt \ Vt�1 D 0. Note that if v 2 Vt , then v=p 2 Zp ˚ Zp implies v=p 2 Vt . This means
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that Vt=p ¤ Vt�1=p in Fp ˚ Fp . But g is trivial modulo p and so gVt=p D Vt�1=p,
a contradiction.

The group G is an analytic pro-p group of dimension 3 and so is a PD3 pro-p group.
It has no non-abelian pro-p subgroups, and it is not soluble. So by [15, Theorems 4.7
and 4.8], it does not split as an amalgamated free pro-p product or HNN-extension.
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