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Self-similarity and limit spaces of substitution tiling
semigroups

James Walton and Michael F. Whittaker

Abstract. We show that Kellendonk’s tiling semigroup of a finite local complexity substitution
tiling is self-similar, in the sense of Bartholdi, Grigorchuk and Nekrashevych. We extend the notion
of the limit space of a self-similar group to the setting of self-similar semigroups, and show that it is
homeomorphic to the Anderson–Putnam complex for such substitution tilings, with natural self-map
induced by the substitution. Thus, the inverse limit of the limit space, given by the limit solenoid of
the self-similar semigroup, is homeomorphic to the translational hull of the tiling.

Dedicated to our late colleague and friend Uwe Grimm

1. Introduction

We study aperiodic tilings of Euclidean space arising from a substitution rule. Aperi-
odic tilings provide important examples of topological dynamical systems, over spaces
of tilings called tiling spaces [17]. Since the seminal work of Kellendonk [9, 10] and
Anderson and Putnam [1], much is known about the topology of tiling spaces of substi-
tution tilings, including calculations of their topological invariants [1, 3, 9, 10, 17, 19]. A
beautiful result of Sadun and Williams [18] proves that the tiling space of a finite local
complexity (FLC) tiling is a fibre bundle over the torus, with totally disconnected fibres
(which are homeomorphic to the Cantor set, in the case of a repetitive, nonperiodic tiling).
Kellendonk’s work [9, 10] established an algebraic approach, by constructing an inverse
semigroup of partial translations for such a tiling. Tiling semigroups were extensively
studied by Kellendonk and Lawson [11], and their algebraic properties were determined
by Zhu [21]. In this paper, we show that tiling semigroups arising from a substitution are
self-similar and that the limit solenoid naturally associated with the tiling semigroup is
homeomorphic to the tiling space.

Self-similarity of groups has been a hugely fruitful mechanism with which to construct
groups enjoying certain properties, particularly growth properties. As such they have been
key in solving several important problems in group theory and geometric group theory,
most notably Grigorchuk’s famous group with intermediate growth [6, 7, 13]. Self-similar
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inverse semigroups acting on topological Markov shifts were introduced by Bartholdi,
Grigorchuk and Nekrashevych [4], and Nekrashevych [14] went on to show that they give
rise to Smale spaces. It has already been noted that self-similar groups and semigroups
can be associated with some substitution tilings. However, the general theory for sub-
stitution tilings is not worked out in either paper, which focus entirely on a quotient by
rotations and reflections of the Penrose tilings (see [4, p. 13–15] and [14, p. 859–861]).
Moreover, we outline a different, more global approach, which makes it implicit that the
full object constructed is Kellendonk’s tiling semigroup, rather than starting with gener-
ators and (self-similar) relations. Our constructions are easily modified to construct the
analogous object where translations are replaced with general rigid motions, but we con-
sider it important to present the theory in the translational case, which has remained a
major focus in Aperiodic Order owing to connections between translational dynamics of
aperiodic patterns and their spectral properties, which finds application to the study of
quasicrystals [2].

For a substitution tiling satisfying standard conditions, we show that Kellendonk’s
tiling semigroup acts self-similarly on a topological Markov chain that is naturally homeo-
morphic to the canonical transversal of the tiling space. We recall the substitution graph,
whose path-space is a topological Markov chain. Kellendonk [9] proved that this is conjug-
ate to his discrete hull of a tiling, with dynamics arising from (the inverse of) substitution.
The tiling semigroup acts on this space by translation. Indeed, an element of the tiling
semigroup specifies a patch of tiles with two distinguished tiles that specify the domain
and range of the translation between them. The self-similarity arises from the fact that
translation across patches of tiles can be lifted to translations between supertiles, with
these structures being analogous at all levels of the hierarchy in the topological Markov
chain.

Anderson–Putnam [1] define a branched manifold from a substitution tiling, now
called the Anderson–Putnam (AP) complex. Starting with a collection of prototiles, the
AP complex is the quotient space defined by the relation that two prototiles are glued along
their codimension-1 faces if those faces ever meet in a tiling. For a substitution tiling, one
can define addresses of points of prototiles by a left-infinite topological Markov shift. We
define the limit space of a general self-similar semigroup action, in an analogous way to
the self-similar group case [4], as a quotient space of such left-infinite topological Markov
shifts by asymptotic equivalence, which itself we modify for the semigroup case (Defini-
tion 4.1). We prove that the limit space of a tiling semigroup is homeomorphic to the AP
complex. The limit space naturally inherits a self-map from the shift map of the Markov
shift, which corresponds to the usual self-map by substitution on the AP complex, which
thus has inverse limit homeomorphic to the tiling space.

The paper is organised as follows. In Section 2, we recall the basic facts required
about aperiodic tilings, their tiling semigroups, tiling spaces and tiling substitutions. In
Section 3, we prove that tiling semigroups of substitution tilings (with standard restric-
tions) are self-similar. We give a general notion of a self-similar semigroup being con-
tracting (Definition 3.5) and show this property holds for substitution tiling semigroups.
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In Section 4, we introduce the asymptotic equivalence relation for self-similar semigroups
(Definition 4.1). The associated quotient space, called the limit space, is shown to be
homeomorphic to the AP complex (Theorem 4.7). Finally, in Section 5, we see how the
definitions given apply to various examples.

2. Nonperiodic tilings and their semigroups

Tilings will be built from a finite set P of prototiles, where a prototile consists of its sup-
port, which is a compact subset supp.p/ � Rd that is equal to the closure of its interior,
together with its label, which is simply an element from a finite set of possible labels for
P . Often, labels are not required and can be dropped (so that a tile may be identified
with its support); they are used simply to allow for different tiles that have the same geo-
metric shape. A translate of a prototile is called a tile, and a finite, connected set of tiles
which overlap only on their boundaries is called a patch. By connected here, we mean
that any two tiles can be connected through a path of meeting tiles. By tiles meeting we
allow two options: that the tiles are adjacent, meaning that they intersect nontrivially (on
their boundaries), or alternatively, if the tiles and patches have cell decompositions (e.g.,
the tiles are polyhedra), then the tiles meet along a shared codimension-1 face. When cells
have a cellular decomposition, the constructions to follow will hold for whichever of these
two conventions the reader prefers. The set of all finite patches is denoted P �. A tiling T
is a covering of Rd by tiles which intersect only on their boundaries. Given a tiling T and
bounded subset S � Rd , we define

T u S WD ¹t 2 T j supp.t/ \ S ¤ ¿º:

If S is a closed ball of radius r , then T u S is called an r-patch. If T is a tiling and
x 2 Rd , the translate of T by x is T C x WD ¹t C x j t 2 T º and the orbit of T is
O.T / WD ¹T C x j x 2 Rd º. We say that T is nonperiodic if T C x D T implies that
x D 0.

Definition 2.1. For tilings T , T 0 we define their distance in the tiling metric as

d.T; T 0/ WD inf¹"; 1 j .T � x/ u B1=" D .T 0 � x0/ u B1="; x; x0 2 Rd ; jxj; jx0j < "º;

where Br denotes the closed ball of radius r centred at 0 2 Rd .

Two tilings T , T 0 are close if T and T 0 have the same patch of tiles on a large ball
centred about the origin, up to a small translation. The continuous hull (or tiling space)�T
of a tiling T is the space of tilings whose finite patches all belong to T , up to translation,
with topology induced by the tiling metric (i.e., it is the space of tilings which are locally
indistinguishable from T ). Equivalently, �T may be regarded as the completion of O.T /

under the tiling metric. We call T repetitive if, for every finite patch P , there exists some
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r > 0 so that a translated copy of P can be found in every r-patch of T . In this case, every
element of �T has the same set of finite patches and thus �T D �T 0 for all T 0 2 �T . In
particular, if T is nonperiodic and repetitive, then T is strongly aperiodic, that is, every
element of �T is nonperiodic. A tiling T is said to have finite local complexity (FLC)
if there are only a finite number of two-tile patches in T , up to translation (equivalently,
there are finitely many r-patches for each r > 0). Of course, every repetitive tiling has
FLC. With the topology above, FLC is equivalent to compactness of �T [16, Lemma 2].

A substitution on a set of prototiles P is a map 'WP ! P � for which there is a scal-
ing factor � > 1 with supp.'.p// D � � supp.p/ for each p 2 P . Since the support of
a substituted tile is exactly equal to (rather than just covering) its inflated tile, ' is more
specifically a stone inflation. This property is necessary in what follows, but the inflation
being a similarity x 7! �x is not and can instead be taken as an expansive linear map; we
assume an expansion constant merely for expository convenience. A substitution ' on a
tile t D p C x is defined to be '.t/ WD '.p/C �x. Then a substitution may be applied
to a patch, which by a slight abuse of notation we also denote 'WP � ! P �; similarly,
substitution may be applied to tilings. An n-supertile is a translate of the patch 'n.p/ for
some p 2 P . We will always assume that ' generates FLC tilings, which is to say that it
generates only finitely many two-tile patches (up to translation equivalence) under itera-
tion. We call ' primitive if there exists some k 2 N so that, for each a, b 2 P , we have
that 'k.a/ contains a translated copy of b.

A tiling T is admitted by the substitution if every finite patch of T is contained in some
n-supertile. The set of such tilings is denoted �' . It follows easily from FLC that �' is
non-empty and, if ' is primitive, then every admitted tiling is repetitive, so that�' D�T
for any T 2 �' .

The induced map 'W�' ! �' is always surjective, so that for each tiling T there is a
corresponding ‘supertiling’, which decomposes under ' to T . If ' is additionally inject-
ive, then we say that ' is recognisable. This means that, for any T 2�' , there is a unique
way to group tiles into supertiles, whose associated tiling in �' decomposes to T under
substitution. By continuity and compactness, this may always be done by a locally defined
rule for a recognisable substitution. Recognisability is equivalent to nonperiodicity of the
tilings of �' [20]. We will assume throughout that ' is recognisable.

We always assume that ' forces the border [9, p. 24]. This means that there is some
k 2N so that any k-supertile 'k.p/, for p 2P , extends uniquely to a valid patch contain-
ing 'k.p/ and any tiles intersecting the boundary of 'k.p/ (i.e., 'k.p/ uniquely extends
to its 1-corona). Border forcing may always be assumed by passing to a dynamically
equivalent substitution by collaring tiles (see [1, 17]).

The AP complex of a tiling is the compact Hausdorff topological space formed through
taking the transitive closure of gluing together prototiles in all ways their translations can
be adjacent in a tiling (see [1, Section 4]).

In this paper, we make use of the discrete hull of a tiling, a particular subset of the con-
tinuous hull. Let T be a tiling with prototile set P . Following Kellendonk [9, Section 2.1],
for each p 2 P , choose a point in the interior of supp.p/ called a puncture and denote it
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by x.p/. This naturally punctures tiles t D p C y by x.t/ WD x.p/C y and defines sets
of punctures for patches and tilings. The discrete hull of a tiling T is given by

�punc WD ¹T
0
2 �T j there exists t 2 T 0 with x.t/ D 0º � �T ;

that is, the subset of tilings with a puncture over the origin of Rd . If T is repetitive, non-
periodic and has FLC, then �punc is a Cantor set. In particular, �punc is a compact metric
space that has a basis of clopen sets. Indeed, for a patch P and a tile t in P , the set

U.P; t/ WD ¹T 0 2 �punc j P � x.t/ � T
0
º (2.1)

is clopen in �punc, and the set of all such sets forms a basis for the metric topology on
�punc.

2.1. The substitution graph and discrete hull

For p 2 P and t 2 '.p/, we call .t; p/ a supertile extension and denote the set of such
supertile extensions by � . If at most one copy of each prototile appears in each substituted
prototile, then the elements of � can be identified with all pairs .a; b/ 2 P 2 for which
a 2 '.b/, but we do not need to assume this in general (see Example 2.4). Given a super-
tile extension e D .t; p/ 2 � , we denote r.e/ WD t (considered as a prototile in P ) and
s.e/ WD p. We construct the substitution graphG with vertex set P , edge set � and source
and range maps s, r W � ! P . The associated set of right-infinite (left-pointing) paths is
denoted

F WD ¹e0e1e2 � � � j s.ei / D r.eiC1/º

and comes equipped with the left shift map � WF !F defined by �.e0e1e2 � � � /D e1e2 � � � .
Generally, given a finite graph G, the set F of right-infinite words as above is called a
topological Markov chain.

Remark 2.2. One could use the opposite convention to above, taking an arrow eW t ! p

as a ‘subtile inclusion’ of a tile t into a p supertile. In that case, all arrows on graphs would
be reversed and one could take F as right-infinite, right-pointing paths. The advantage of
the convention we take here instead is that a string e0e1 � � � en may be read analogously to
function composition (with range on the left, source on the right), and when introducing
semigroup elements, which also have domain/codomain or ‘in/out’ tiles, a valid string has
consistently matching adjacent tiles in the domain/codomain or source/range, whether the
term is a semigroup element or supertile extension term. By this convention, arrows point
in the direction of substitution application, which is also similar to standard conventions
on inverse limits defining the tiling space, as we shall see in Section 4.

Example 2.3. We illustrate supertile extensions and the substitution graph by studying
a border forcing version of the Fibonacci tiling, as defined in [1, Section 10.1] (see also
[17, Section 2.5]). Starting with the usual Fibonacci substitution 0 7! 01 and 1 7! 0, we
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define our tiles as a sliding block code, with aD 0Œ0�1, bD 1Œ0�0, cD 1Œ0�1 and d D 0Œ1�0.
This gives the list of all possible three-tile patches in a Fibonacci tiling, where we con-
sider the tile in square brackets as the one ‘collared’ with the information of its immediate
neighbours. Substitution acts on collared tiles in a natural way: The bracketed tile substi-
tutes to a sub-patch of the substitute of the three-tile patch, which is used to determine the
collaring information of each of the new collared tiles. For example, consider the substitu-
tion of aD 0Œ0�1. Carrying brackets through the substitution, let us write 0Œ0�1 7! 01Œ01�0,
so we see that a 7! cd , with c D 1Œ0�1 corresponding to the first collared tile in the new
bracket and d D 0Œ1�0 the second. From this, we obtain the substitution 'WP !P � given
by

'.a/ D cd; '.b/ D ad; '.c/ D ad and '.d/ D b: (2.2)

It is routine to check that this substitution is recognisable. Using (2.2), we immediately
obtain the supertile extensions:

.c; a/; .d; a/; .a; b/; .d; b/; .a; c/; .d; c/ and .b; d/;

which can unambiguously be labelled by pairs in P 2 since at most one copy of each
prototile appears in each supertile. The substitution appears in Figure 1, along with the
graph associated with this substitution, and its AP complex appears in Figure 2. Note that

a c d

b a d

c a d

d b b

d

.d; b/

.b; d/

c
.d; c/

a

.a; c/
.c; a/.d; a/

.a; b/

Figure 1. The border forcing Fibonacci substitution and its graph of supertile extensions.

d

ba

c

� �

�

Figure 2. The Anderson–Putnam complex for the border forcing Fibonacci tiling [1].
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a smaller substitution (on a three-letter alphabet) could be used to force the border for this
example, by only collaring tiles on the left, since every supertile is adjacent to a zero-tile
on the right.

Example 2.4. Consider the substitution on P D ¹a; bº defined by

'.a/ D abb and '.b/ D ab:

It is easy to see that this substitution is recognisable and forces the border since every
supertile is followed by an a tile to its right and is preceded by a b to its left. In this case,
there are two ways tile b is extended into an a supertile: by the b being included as either
the second or third letter. These could be distinguished by denoting them as, say, .b2; a/
and .b3; a/. The substitution graph is given in Figure 3.

We have a natural bijection between the space of right-infinite sequences of supertile
extensions

.t0; t1/.t1; t2/.t2; t3/ � � � 2 F (2.3)

and the discrete hull �punc of all substitution tilings T generated by ' (where here,
and later, we allow a very minor abuse of notation by denoting a supertile extension by
.tn; tnC1/ with each tn simultaneously denoting a subtile of '.tnC1/ and also its corres-
ponding prototile in P ). Indeed, to such a string (2.3), the puncture of tile t0 is placed on
the origin and we obtain a sequence of inclusions t0 � '.t1/ � '2.t2/ � '3.t3/ � � � � .
The nested patches 'n.tn/ determine the entire tiling by the border forcing property. Con-
versely, a punctured tiling determines such a string by recognisability (which itself follows
from FLC and aperiodicity).

There is a natural topology on F whose basis consists of clopen cylinder sets of all
infinite strings starting with some given finite initial string. Under this topology, the above
bijection induces a homeomorphism

� WF
Š
�! �punc (2.4)

to the discrete hull �punc with the topology generated by (2.1). The map � above con-
structs an infinite tiling with a puncture on the origin from an infinite string. We may also
define � on a finite string s D .t0; t1/.t1; t2/ � � � .tn�1; tn/ to obtain a finite marked patch

a b

.b2; a/

.b3; a/

.a; b/

.a; a/ .b; b/

Figure 3. The supertile extension graph of Example 2.4.
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'n.tn/, where the location of t0 is positioned in this supertile according to how the super-
tile extensions embed into each other. In fact, we will define �.s/ to be the finite marked
patch containing this one as well as any tiles that are forced by it. More precisely, �.s/
may be taken as the largest marked patch contained in every tiling of the form �.sw/, for
sw 2 F . In particular, for any w 2 F , any tile of �.w/ is eventually contained in one
of the (nested sequence of) patches �.w0/, �.w0w1/, �.w0w1w2/; : : : , due to border for-
cing. The homeomorphism (2.4) was a breakthrough result of Kellendonk [9] and was the
primary motivation for the notion of border forcing.

The discrete hull �punc is the object space of the (discrete) translation groupoid [9]:

Rpunc WD ¹.T � x.t/; T / 2 �punc ��punc j t 2 T º:

We take a non-relatively compact topology on the above: It is not the subspace topo-
logy of �punc � �punc but rather from the subspace topology of �punc � Rd , using the
natural identification of elements of Rpunc and �punc � Rd via Rpunc 3 .T � x.t/; T /$

.T; x.t// 2 �punc �Rd . This makes Rpunc a principal topological groupoid, with product

.T 00; T 0/.T 0; T / D .T 00; T /. Given a patch P and tiles t; t 0 in P , the sets

V.t 0; P; t/ WD ¹.T 0; T / 2 Rpunc j P � x.t/ � T and P � x.t 0/ � T 0º (2.5)

are open in Rpunc, and the set of all such sets forms a basis for the product topology. In
this topology, Rpunc is an étale equivalence relation. See [9] for further details.

The open set V.t 0; P; t/ � Rpunc defines a bijection from U.P; t/ to U.P; t 0/, which
may be thought of as the ‘partial translation’ which shifts the origin tile from t to t 0, within
any tiling of �punc with t 2 P centred over the origin. For example, moving across a cer-
tain face from one prototile to an adjacent one may be interpreted as such an open subset
of the discrete groupoid, or as a partial bijection within �punc (or, via the identification � ,
within the Markov shift F for a substitution tiling). This collection of partial translations
naturally leads us to the tiling semigroup.

2.2. The tiling semigroup

We recall Kellendonk’s construction of the inverse semigroup associated with an FLC
tiling [11, 12]. We use notation similar to [11] for the elements of this semigroup, the
doubly pointed patches.

A semigroup S is an inverse semigroup if for each s 2 S there exists a unique ele-
ment s� 2 S such that ss�s D s and s�ss� D s�. According to the Wagner–Preston
representation theorem [8, Theorem V.1.10], every inverse semigroup is isomorphic to
a subsemigroup of 	.X/, the inverse semigroup of partial bijections on a set X . An
action of an inverse semigroup S on a set X is a homomorphism � W S ! 	.X/. If the
homomorphism � is fixed, we usually write g � x for �g.x/. See [5] for further details.

Definition 2.5. A doubly pointed patch Œb; P; a� is given by a finite patch P , which can
occur in a given tiling, and tiles a;b 2P , where we take the tuple .b;P;a/ up to translation
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equivalence. Let T be the set of all doubly pointed patches along with a ‘zero element’
0 2 T .

Let Œd;Q; c�, Œb; P; a� 2 T be two doubly pointed patches which, without loss of gen-
erality (by translating each, if necessary), have x.b/ D x.c/. If P and Q agree on any
tiles with intersecting interiors and P [Q is a valid patch, then we define

Œd;Q; c�Œb; P; a� D Œd; P [Q; a�:

Otherwise, we define Œd;Q; c�Œb; P; a� D 0. Any product with 0 is defined as 0. We call
T D .T ; �/ the tiling semigroup.

Remark 2.6. One could also define the tiling semigroup for a space � of tilings, consid-
ering patches over all tilings in �. For � D �T with T a repetitive tiling, all tilings of
� have the same finite patches, up to translation, so this does not affect the construction.
However, if we consider �' with ' non-primitive then the sets of finite patches can differ
between orbits. We take the full collection of patches over all of �' in such a case. We
note, typically we are most interested in the case where ' is primitive and �' D �T for
any T 2 �' , with each such being repetitive.

Notice that, again, our notation here mirrors function composition: The element
Œb; P; a� has ‘in tile’ a and ‘out tile’ b, with a product of elements Œd;Q; c�Œb; P; a� inter-
preted as applying the right then the left-hand term and requiring that the intermediate tiles
b and c agree. There is a bijective correspondence between elements of T and basis ele-
ments of the étale topology for Rpunc as described in (2.5) via Œb; P; a� 7! V.b;P; a/ (and
where 0 has empty (co)domain). The product of semigroup elements is identified with the
composition of partial bijections on the largest compatible domain. Thus, the tiling semi-
group T naturally acts by partial bijections on the discrete hull �punc, where a doubly
pointed patch g D Œb; P; a� has domain U.P; a/ � �punc and codomain U.P; b/ � �punc.

It is easy to establish that T is an inverse semigroup. In particular, note that for
s D Œb;P; a� 2 T , the unique t 2 T with s D sts and t D tst is given by t D Œa;P; b�. We
interpret Œb; P; a� as a translation from a to b, within P , where the product of two such
translations is allowed when the union is itself a valid patch. The idempotents (or ‘partial
identities’) are of the form Œa;P; a�, along with the 0 element. Since T is an inverse semi-
group, it naturally inherits a partial ordering: We have that Œb;P; a� � Œd;Q; c� if and only
if, up to translation, we have an inclusion .d;Q; c/ � .b;P; a/ of doubly pointed patches;
that is, P extendsQ as a doubly pointed patch with a D c and b D d . It is not hard to see
that T is generated by idempotents Œp; ¹pº; p� for p 2 P , where ¹pº is a single-tile patch,
and elements Œb; P; a�, where P is a connected two-tile patch containing distinct a and b.

3. Self-similarity of substitution tiling semigroups

We now show that the above semigroup action of T on F Š �punc is self-similar.
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Definition 3.1 ([4, Definition 3.6]). Let F be a topological Markov chain over an alpha-
bet X . An inverse semigroup S acting on F is called self-similar if for every g 2 S and
x 2 X , there exist y1; : : : ; yk 2 X and h1; : : : ; hk 2 S such that the sets dom.hi / are
disjoint,

Sk
iD1 xdom.hi / D xF \ dom.g/, and for every xw 2 dom.g/, we have

g � xw D yi .hi � w/; (3.1)

where i is such that w 2 dom.hi /.

Often in the context of self-similar groups and semigroups, the action of g on w is
denoted by wg , but here we choose to use g � w. Note that the hi in (3.1) is not uniquely
defined. Indeed, given a partial bijection hi , one could partition its domain and use instead
the restrictions of hi to each such subset. From the opposite perspective, one may always
replace the expression g �w with h �w whenever h is an extension of g to a larger domain.
This will be useful later in simplifying the semigroup elements hi generated by successive
application of (3.1).

Remark 3.2. We briefly explain here an equivalent description of self-similarity to high-
light its algorithmic quality (and note that one may equivalently define self-similarity
of inverse semigroup actions by automata, see [14]). We make the standing assumption
throughout that all semigroup elements have clopen domains. For each g 2 S , there is
some N.g/ D N 2 N, given by the distance required to ‘read forwards’ in the sequence
to evaluate the first letter of g � w, for an infinite word w 2 F , as well as determining the
necessary semigroup element to apply to the remainder of the string. Let F N denote the
set of words of length N . Self-similarity means that there exist letters y1; : : : ; y` 2 X ,
elements h1; : : : ; h` 2 S and subsets Fi � F N so that:

(1) dom.g/ D
S`
iD1 FiF , where FiF denotes the set of infinite words with initial

N -letter string in Fi ;

(2) Fi \ Fj D ¿ for i ¤ j (so the above is a disjoint union);

(3) for each i D 1; : : : ; `, we have FiF D xidom.hi / for some xi 2 X .

Then given an infinite wordw 2 F , to evaluate g �w we first determine the initialN -letter
string s of w. We have that s 2 Fi for a unique i , and then we have the rule:

g � w D yi .hi � �.w//;

where � WF ! F is the left shift (i.e., the map removing the initial letter xi from w).
Thus, the first letter of g �w is yi . To apply hi to the remainder, we look forward distance
N.hi / in �.w/ to determine the second letter of g � w, as well as the next element of S to
apply to �2.w/. This may be repeated indefinitely. This is best demonstrated here through
Example 3.4, which may help the reader with the following proof.

Theorem 3.3. The tiling semigroup T of a recognisable substitution tiling is self-similar.



Self-similarity and limit spaces of substitution tiling semigroups 1211

Proof. Let g D Œb; P; a� be a doubly pointed patch and recall that the domain of g
is U.P; a/ corresponding to tilings with patch P at the origin centred at the puncture
x.a/ of tile a. Since ' forces the border, for sufficiently large N 2 N we have that
supp.P / � supp.�.s// for all s 2 F N . Thus, there is a finite set S D ¹s1; : : : ; skº � F N

of all possible length-N strings for which P � �.si /, where of course P has a specific
position over the origin at tile a.

Fix si 2 � with N > 1. Writing si D xis0i , for xi 2 � and s0i D �.si / 2 F N�1, the
patch '.�.s0i // is naturally identified with a sub-patch P 0 � �.si /, positioned according
to the initial supertile extension xi (note that P 0 could be a proper sub-patch of �.si /,
since border forcing may determine more tiles in �.si / than the appropriate positioning
of '.�.s0i //). It follows from border forcing that, by increasing N if necessary, we may
assume that not only P � �.si / but also P � P 0. In particular, the tiles a and b 2 P are
contained in, what may be identified with, the substitutes of tiles a0 and b0 2 �.s0i /. We
then define hi 2 T by

hi D Œb
0; �.s0i /; a

0�:

Let yi 2 � denote the unique supertile extension that includes b 2 P � �.si / into
b0 2 �.s0i /.

We may now check that the above assignments fulfil the definition of self-similarity.
Take any w 2 dom.g/. Then w has initial N -letter string si 2 S . We must check that

g � w D yi .hi � �.w//: (3.2)

By definition, �.w/ is a tiling T 2 U.P; a/ and �.g � w/ D T � x.b/ so that T � x.b/ 2
U.P; b/. Let T 0 D �.�.w// which is the 1-supertiling of T with the puncture of tile a0 at
the origin. Note that although T corresponds to (an appropriate shift of) the substitution
of T 0, we refer to T 0 as the ‘1-supertiling’ since its tiles can be naturally viewed as com-
binations of tiles in T ; it is instructive to think of the tiles of T 0 as ‘larger’ than those of
T and that substitution breaks these tiles up to the tiles of T . Then our definition of hi
implies that �.hi � �.w// is the 1-supertiling with the puncture of tile b0 at the origin. Pre-
appending yi corresponds to substituting this tiling, translated appropriately to position
the puncture of b over the origin. Thus (3.2) holds, as required.

Example 3.4. We consider the Fibonacci substitution from Example 2.3. We denote by
xy the connected two-tile patch consisting of x, y 2 P , with x on the left and y on the
right. Later, in Example 5.1, we give a complete set of rules on applying doubly pointed
two-tile patches to strings. To be applied, such elements need to look at either the next term
or the next two terms. However, we quickly give an example application to give the fla-
vour of the definitions above, where one sees the group element working algorithmically
through the string:

Take the infinite word

w D .b; d/.d; a/.a; c/z 2 F ;
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where .b;d/, .d;a/ and .a; c/ are specified supertile extensions in � and z 2F is an infin-
ite tail. We apply the element Œa; ba; b� to w according to the rules found in Example 2.3,
which corresponds to moving one tile to the right in the tiling formed by w. It is important
to note that all these relations can be deduced from the information given, as depicted in
Figure 4.

Œa; ba; b� � .b; d/.d; a/.a; c/z D .a; b/
�
Œb; db; d � � .d; a/.a; c/z

�
D .a; b/.b; d/

�
Œd; ad; a� � .a; c/z

�
D .a; b/.b; d/.d; c/

�
Œc; c; c� � z

�
D .a; b/.b; d/.d; c/z; (3.3)

where the last line is fully evaluated, since the idempotent Œc; c; c� is the identity on its
domain.

If we translate left one tile instead, by applying Œd; db; b� to w, then we find

Œd; db; b� � .b; d/.d; a/.a; c/z D .d; c/
�
Œc; cd; d � � .d; a/.a; c/z

�
D .d; c/.c; a/

�
Œa; a; a� � .a; c/z

�
D .d; c/.c; a/.a; c/z

and the application is fully evaluated, again because Œa; a; a� is an idempotent. As an
enjoyable and informative exercise, we encourage the reader to try some further examples
for themselves.

Notice the necessary consistency in the above strings: There is agreement between
adjacent tile types of both the supertile extension pairs .y; x/ and the ‘in/out’ tiles of
the doubly pointed patches Œy; P; x�. As in Remark 2.2, this follows from the convention
of orientation in the substitution graph and writing strings in an order corresponding to
function composition.

One should observe that, in terms of the action of T on F , there is some degree of
superfluous information in the semigroup elements: For g 2 T and T 2 dom.g/, all that is
required to evaluate g.T / is the relative displacement of the ‘in and out’ tiles. This fact is
also reflected algebraically in terms of the inverse semigroup: For a general inverse semi-
group, one has the partial ordering defined by letting x � y if there is an idempotent e for
which x D ey. For the tiling semigroup T , this says that Œb; P; a� � Œd;Q; c� if and only
if, up to translation, we have an inclusion of doubly pointed patches .d;Q; c/ � .b; P; a/
(i.e., P extends Q with a D c and b D d ). If x � y, then dom.x/ � dom.y/ and
x � ��1.T / D y � ��1.T / for all T 2 U.P; a/.

A consequence of the above is that there is significant choice of semigroup elements
satisfying the self-similarity rule (3.1). This is easily dealt with in practice since, if we
ignore the domain and range of elements, we may always replace a term such as hi � w
with j �w for any j � hi in (3.1). In fact, after enough iterations, we see that we may take
j to be a ‘small’ patch. This is made precise via the following more general definition.
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Definition 3.5. Let .S;F / be a self-similar inverse semigroup. We call S contracting if
there exists some finite N � S satisfying the following: For any g 2 S , there exists some
k 2 N for which, for any uw 2 dom.g/ with u 2 F k , there exists some v 2 F k and
h 2 N with

g � .uw/ D v.h � w/: (3.4)

Remark 3.6. We can write the above definition in the following alternative way. There
exists some finiteN � S satisfying the following: For any g 2 S , there exists some k 2N
for which, for every w 2 dom.g/, there is some v 2 F k and h 2 N with

g � w D v.h � .�kw//: (3.5)

In the standard language of self-similar group actions, the above says that after suf-
ficiently many applications of the ‘restriction’ of g (the elements hi of (3.1)), the new
semigroup element to apply to the remainder of the string may be taken in the finite set
N , at least after an appropriate adjustment of its domain and range.

Definition 3.7. Let .S;F / be a contracting self-similar inverse semigroup. Call N a semi-
nucleus if it satisfies the contracting condition above and is such that for all g 2 N and
ew 2 dom.g/ with e 2 � D F 1, there is some f 2 � and h 2 N so that

g � .ew/ D f .h � w/: (3.6)

The above says that not only do all semigroup elements eventually ‘restrict’ to ele-
ments in N (possibly after extending the domain and range), we also have that a single
iteration of restriction of an element of N can be chosen to remain in N . That is, we may
take k D 1 for any g 2 N in Definition 3.5.

Lemma 3.8. A contractive self-similar inverse semigroup has a semi-nucleus.

Proof. Let N � S be as required for the definition of contractivity and g 2 N , satisfying
(3.5) for k D k.g/ 2 N. Let u D u1 � � �uk 2 F k and w 2 F with uw 2 dom.g/.

Consider the elements h11, h12; : : : ; h
1
n 2 S arising from (3.1) for g and x D u1. For

each h1i , apply (3.1) again with x D u2 to obtain elements h21, h22; : : : ; h
2
m. We continue

this procedure to generate elements hji for j D 1; : : : ; k.
Iteratively applying self-similarity, we have

g � .u1u2 � � �ukw/ D � � � D y1 � � �yk�1.h
k�1
` � .uk � w// D y1 � � �yk.h

k
j � w/ D v.h � w/;

for v D y1 � � �yk 2 F k and h 2 N , by (3.4). This shows, at least in the above expression,
that we may replace hkj with h 2N . In fact, again by repeated application of self-similarity
and with more careful consideration of the domains, we have

dom.g/ \ uF D
G
`

u.dom.hk` //;
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where the above is a disjoint union and g � .uw/ D v.hk
`
� w/ for all w 2 dom.hk

`
/. Thus,

for all w 2 dom.hk
`
/, we have hk

`
� w D h � w for some h 2 N .

Thus, let N be the union ofN and all elements hji , for j <k.g/, generated by k.g/� 1
applications of the self-similar rule for each g 2N . Then (3.6) holds for g 2N using some
h D h1i 2 N , by construction. Similarly, for j < k.g/ � 1, each hji 2 N satisfies (3.6)
with h D h

jC1

`
2 N for some `. Finally, for j D k.g/ � 1, (3.6) is satisfied for each

h
k.g/�1

`
2 N using some h 2 N � N , as above, so that N is a semi-nucleus.

Remark 3.9. For the tiling semigroup, we could define a larger inverse semigroup which
does not demand that patches are connected. Then for every (non-zero) g 2 T , we have
g � z for some z D Œb; P; a� with P a two-tile patch containing a and b (or a one-tile
patch, if a D b). We will sometimes make temporary use of such partial translations not
in T , such as in the proof below.

Proposition 3.10. Let .T ;F / be the self-similar tiling semigroup of an aperiodic substi-
tution tiling. Then for each g 2 T , there is some kD k.g/2N so that, for all uw 2 dom.g/
with u 2 F k , we have that

g � .uw/ D v.h � w/

for some v 2 F k and h D Œb; P; a� for which a D b or a and b are adjacent. Hence,
T defines a contractive action on F . We may choose N to be a semi-nucleus consisting
of all doubly pointed star patches Œb; P; a�, that is, with P a patch of tiles all sharing a
common point.

Proof. Without loss of generality, we can take g D Œb; P; a� where P is a two-tile patch
containing only tiles a and b (but with P possibly disconnected, see Remark 3.9). Let
g D h0 and consider any element w 2 dom.g/ along with a sequence ¹hiº � T arising
from recursively applying the self-similar relation (3.1) to g � w. We may choose each
hi D Œbi ; Pi ; ai � using a one- or (possibly disconnected) two-tile patch.

Consider the sequence of tile pairs ¹.ai ; bi /º coming from the doubly pointed patches
hi D Œbi ; Pi ; ai �. Let ri WD inf¹jx � yj j x 2 supp.ai / and y 2 supp.bi /º be the distance
between tiles ai and bi ; that is, the infimum of distances between points of ai and bi .
It follows from the proof of Theorem 3.3 that the supertile extensions (of ai�1 into ai
and bi�1 into bi ) arising from the self-similar relation (3.1) geometrically embed the two-
tile patch .ai�1; bi�1/ as a sub-patch of the substitution of .ai ; bi /. It follows immediately
that ri � ��1ri�1 for all i 2N since pairs of supertile extensions within a patch uniformly
scale tiles by ��1 between the range and source, and the support of the source covers the
support of the range.

We claim the sequence .ri / is eventually zero. If not, then this would provide an infin-
ite sequence of two-tile patches with arbitrarily small distance apart. But it follows from
FLC that ri can only take finitely many values less than r0, so this cannot happen. Hence,
we have that ri D 0 for i > k where, by FLC, k can be taken to only depend on .a; b/ and
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thus on g. Since ri D 0 if and only if ai and bi are equal or adjacent, it follows that hi
may be given by a doubly pointed one- or two-tile patch of intersecting tiles for i > k.

Let N be the set of doubly pointed star patches. By the above, for each g 2 T there is
some k 2 N satisfying (3.4) with h 2 N . Since the source and range tiles of the hi inter-
sect also for i > k, further restrictions may be taken in N , which is thus a semi-nucleus
for T .

Remark 3.11. For self-similar groups, one defines the nucleus of a contracting group S
to be the minimal N so that all elements eventually restrict to N . In [14], a notion of
contractivity and (minimal, uniquely defined) nucleus is given in the case of self-similar
semigroups. However, in this setup, self-similar semigroups are treated via automatons
which are !-deterministic, which amounts to declaring fixed restrictions of partial bijec-
tions in (3.1) as part of the structure. In our setup, we have allowed this to remain flexible,
which is an alternative approach which we feel may be of further interest. Indeed, it was
beneficial in the proof above that it was not necessary to manage the shapes of patches
under restriction down to the semi-nucleus. It is also clear that, in this setting, it may be
impossible and unnatural to have a unique and minimal semi-nucleus N . For example, for
a cellular two-dimensional tiling, if we define connected patches via meeting tiles merely
being adjacent, then we only need one and two-tile doubly pointed patches in N . If we
instead define tiles to be meeting when they meet over a shared edge, then star patches
Œb; P; a� with a and b meeting at a shared vertex (but not over an edge) can be removed,
and replaced with star patches Œb; P 0; a�, with P 0 � P connected, for which there is some
degree of arbitrary choice.

In the case of a d -dimensional cellular tiling, it is not hard to see that T is generated
by idempotents (which may be identified with P ) together with P2, defined as the finite
set of elements Œb; P; a� for a ¤ b and P a two-tile patch consisting of a and b meeting
over a particular shared .d � 1/-dimensional face. Idempotents restrict to idempotents,
and elements of P2 restrict to elements of P [P2 (after possibly extending domains). So
the action of T on F may be completely described by the action of the finite set P2 on
strings of sufficiently large length, together with how they restrict to elements of P [P2.
However, the semi-nucleus still requires more elements for tilings of dimension greater
than 1, since the restriction of a ‘diagonally adjacent doubly pointed patch’ can remain as
such after arbitrarily many restrictions.

4. The limit space

Let G be a finite graph with associated topological Markov shift F (the right-infinite,
left-pointing paths). We define

F � WD ¹� � � e�3e�2e�1 j r.ei / D s.ei�1/ºI
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that is, the space of left-infinite, left-pointing paths, which is equipped with the product
topology. The following is a natural adaptation of the asymptotic equivalence relation
from the case of self-similar groups to semigroups.

Definition 4.1. Two elements xD � � �e�3e�2e�1 and y D � � �f�3f�2f�1 2F � are called
asymptotically equivalent with respect to the action of the semigroup S if there is a
sequence .gn/ of S , with ¹gnº � S finite, and some w 2 F so that for each n 2 N,
the element

gn � .e�n � � � e�3e�2e�1w/ 2 F (4.1)

has initial string of n terms given by f�n � � � f�3f�2f�1 2 F n. In this case, we write
x �ae y. We define the asymptotic equivalence relation � on F � to be the equivalence
relation generated by �ae.

The main difference between the above definition and the case of self-similar groups
is that we need to append the infinite word w to the right of the finite string e�n � � � e�1 so
that gn may be unambiguously applied to it. However, by self-similarity, it is in fact only
necessary to append a finite string of sufficiently large length.

In Lemma 4.2, and henceforth, we will always assume that for each x 2 F , there is
some gx 2 S with x 2 dom.gx/ and dom.gx/ open.

Lemma 4.2. Let S be a self-similar inverse semigroup acting on the Markov chain F .
Then �ae is reflexive. Suppose that S is contractive and e �ae f . Then we may take
each gn 2 N in (4.1) for N some semi-nucleus, and there exists w 2 F and h 2 N ,
not depending on n, such that

gn � .e�n � � � e�3e�2e�1w/ D f�n � � � f�3f�2f�1.h � w/: (4.2)

In particular, �ae is symmetric.

Proof. By compactness, one can choose a finite number of xi 2 F , i D 1; : : : ; k, with the
union of dom.gi / covering F , where gi WD gxi , as defined above. Thus, we have idem-
potents hi D g�1i gi which still have domains dom.hi / D dom.gi / covering F . Given
e D � � � e�2e�1 2 F � take any w 2 F with r.w/ D s.e1/. Then we may take each gn to
be some hi , with e�n � � � e�1w 2 dom.hi /. Since each hi is an idempotent, we have that
gn.e�n � � � e�1w/D e�n � � � e�1w, so e �ae e. This only requires our earlier assumption of
open domains of elements covering F and does not need self-similarity.

Suppose now that S is contractive. By Lemma 3.8, we may choose a semi-nucleus N

for S . Given gn, we have some k.gn/ 2 N as required from Definition 3.5. By finiteness
of ¹gnº, we may take K D maxn k.gn/ <1. Then

gnCK � .e�.nCK/ � � � � � � e�1w/ D f�.nCK/ � � � f�.nC1/h � .e�n � � � e�1w/

D f�.nCK/ � � � f�1w
0;
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for some w0 2 F and h 2 N , so we may suppose without loss of generality that
gn D h 2 N . Since this applies for each n 2 N, and N is finite, we see that we may
take ¹gnº as a sequence in N .

By repeated application of (3.6), for each n 2 N we may write

gn � .e�n � � � e�3e�2e�1w/ D f�n � � � f�3f�2f�1.h � w/; (4.3)

where h 2 N . By finiteness of N , some h 2 N as above occurs for infinitely many n. For
each n in this subsequence, we similarly have

gn � .e�n � � � e�3e�2e�1w/ D f�n � � � f�3f�2h1 � .e�1w/

for some h1 2N . Some such h1 occurs infinitely often, and we may take g1D h1. Repeat-
ing for each n 2 N, the resulting Cantor diagonalisation argument implies that we may
take each gn so that application of (3.6) restricts each gn to gn�1, with the final restriction
to the right-infinite tail h � w not depending on n, as required.

Finally, applying g�1n to both sides of (4.2), we see that f �ae e.

Whilst the above shows that �ae is reflexive and symmetric in the contractive case, it
need not be transitive, as we will see for the tiling semigroup. So� is the transitive closure
of �ae.

Remark 4.3. Lemma 4.2 implies that, in the contractive case, we may equivalently define
�ae by demanding that the right-infinite tail w0 D h �w of (4.2) remains constant in n and
that each gn 2 N .

Definition 4.4. The limit space J of a self-similar semigroup action is defined as the quo-
tient space F �=�. The shift map � WF �!F �, given by � � �e�3e�2e�1 7! � � �e�4e�3e�2,
induces a map � WJ ! J. We denote its inverse limit by

� WD lim
 �
.J

�
 � J

�
 � J

�
 � � � � /: (4.4)

We now return to the case of the tiling semigroup T acting on F Š�punc. We construct
a map

˛WF � �! Y WD
G
p2P

supp.p/; (4.5)

where the range of the map is the disjoint union of (supports of) prototiles. Since each
supp.p/ � Rd , we will occasionally abuse notation by considering a point of Y as also a
point of Rd . Let us recall the following elementary lemma.

Lemma 4.5. Let � � � � S�3 � S�2 � S�1 be a sequence of nested non-empty compact
subsets of Rd such that the corresponding diameters di WD supx1;x22Si jx1 � x2j ! 0 as
i ! �1. Then

T�1
iD�1 Si is a single point in Rd .
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We will construct such a nested sequence from elements of F �. This is done using
successively finer partitions of Y under substitution: Given e D � � � e�2e�1 2 F �, we
let S�1 WD supp.s.e�1//. For n > 1, each supertile extension e�n embeds supp.r.e�n//
into supp.s.e�n// as subtiles of scale ��1 of the original size. Thus, letting S�n WD
supp.r.e�n// be the corresponding subset of S�.n�1/, we get a nested sequence of
subtile inclusions � � � � S�2 � S�1. By Lemma 4.5, their intersection is some point
x�1 2 S�n � Y for each n, and we define a continuous map ˛WF �! Y by ˛.e/ WD x�1.

Lemma 4.6. Suppose .T ;F / is a self-similar inverse semigroup associated with a recog-
nisable substitution. We have that e �ae f if and only if there is some tiling T 2�punc, and
tiles t DpC x and t 0D qC y in T with p, q 2P and x, y 2Rd such that ˛.e/2 supp.p/,
˛.f / 2 supp.q/ and ˛.e/C x D ˛.f /C y 2 Rd . That is, ˛.e/ and ˛.f / are identical
points of a prototile, or points on two different prototile boundaries which can coincide in
adjacent tiles in a tiling.

Proof. Suppose that such T 2 �punc exists with ˛.e/C x D ˛.f /C y 2 Rd considered
as points in the supports of neighbouring tiles t and t 0 in T . Using the homeomorphism
� WF ! �punc from (2.4), let we D ��1.T � x.t// and wf D ��1.T � x.t 0//. For each
n 2 N, consider the tilings En D �.e�n � � � e�2e�1we/ and Fn D �.f�n � � � f�2f�1wf /,
respectively. Notice that the sequences of tilings .En/ and .Fn/ are given by successive
substitution (with initial letters e�n and f�n determining the exact placement by giving
the tiles over the origin that are in the substitutions of the tiles over the origin in En�1
and Fn�1). It follows from the definition of ˛ that En and Fn continue to be equal as n
increases, up to a shift from the origin tile of En to the adjacent origin tile of Fn, because
these tilings (once scaled down by ��n and viewed as having tiles decomposingEn�1 and
Fn�1) are chosen as those with tiles over the origin still containing ˛.e/C x D ˛.f /C y.
It follows that we may choose semigroup elements gn 2 T corresponding to translations
between adjacent tiles and so that gn � ��1.En/ D ��1.Fn/. This shows that (4.2) is sat-
isfied with h D Œq; Ppq; p�, where Ppq may be taken as a star patch with p, q meeting
analogously to t and t 0. By FLC, there are only finitely many such patches, so e �ae f .

Conversely, suppose that e �ae f , and take w, .gn/ and h as in (4.2). We have that

gn � .e�n � � � e�3e�2e�1w/ D f�n � � � f�1.h � w/; (4.6)

where each gn 2N and h 2N . Hence, we have tilings T D �.w/ and T 0D �.h �w/which
are equal up to a translation between adjacent origin tiles t D t0 2 T and t 0 D t 00 2 T

0.
Moreover, for each level n of substitution, the tilings En D �.e�n � � � e�2e�1w/ and
Fn D �.f�n � � � f�2f�1w/ remain equal up to translation between adjacent origin tiles
tn 2 '.tn�1/ and t 0n 2 '.t

0
n�1/. So we have T � x.t 0/ D T 0 and, letting t D p C x and

t 0 D q C y for p, q 2 P , by definition of ˛ we have that ˛.e/ C x D ˛.f / C y, as
required.
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Theorem 4.7. Suppose .T ; F / is a self-similar inverse semigroup associated with a
recognisable substitution '. The limit space J is homeomorphic to the AP complex of
the substitution, and the inverse limit � in (4.4) is conjugate to the continuous hull �' .

Proof. Let x �AP y be the relation on Y that identifies points of prototiles that coincide
in some tiling. The AP complex �0 [1] is defined as the quotient of Y under the transitive
closure of�AP. Let us denote the quotient map by qAPWY ! �0. We have that ˛WF �! Y

is also a quotient map, since it is a surjective map between compact Hausdorff spaces. By
Lemma 4.6, we have that e �ae f in F � if and only if ˛.e/ �AP ˛.f /. It follows that
the quotient map qWF � ! J may be identified with composition qAP ı ˛ and hence J is
homeomorphic to the AP complex �0.

Given e 2 F �, its shift in the limit space may be identified with qAP.˛.�.e///. By the
definition of ˛, the point ˛.�.e// 2 Y is given by substituting ˛.e/, considered as a point
of a prototile in Y . Hence � WJ ! J agrees with the map induced by substitution on the
AP complex, so � is the continuous hull by [1, Theorem 4.3].

Remark 4.8. Definition 4.4 generalises the notion of the limit space and associated
inverse limit (the limit solenoid) for self-similar groups. In the case of self-similar semig-
roups, a notion of the limit solenoid has already been defined without use of the inter-
mediary limit space, as a quotient on the bi-infinite Markov shift FZ by an equivalence
relation similar to the asymptotic equivalence relation above [14, Definition 3.4]. In the
case considered here, there is a natural map ˇW FZ ! �' , defined as follows. Given
w D w�wC 2 FZ, where w� D � � � e�2e�1 2 F� and wC D e0e1 � � � 2 F , we define
ˇ.w/ to be the tiling �.wC/, translated with the origin over the point corresponding to
˛.w�/ in the origin tile r.wC/ D s.w�/. This defines a quotient map to the tiling space,
and it is easy to see that it identifies points of the Markov shift if and only if they corres-
pond to addresses which are adjacent at all levels, that is, they may be related by a finite
sequence of elements gn 2 N .

5. Examples

In this section, we study several well-known one- and two-dimensional examples of tiling
semigroups and their self-similar actions.

Example 5.1. We return to the border forcing Fibonacci tiling of Examples 2.3 and 3.4.
The self-similar inverse semigroup is generated by doubly pointed patches consisting
of all possible single tile patches and connected pair patches appearing anywhere in
a Fibonacci tiling. Note that Figures 5 and 6 show how we geometrically deduce the
self-similar relation on a selection of generating elements. The following doubly pointed
patches, represented here along with their self-similar action, generate the semigroup of
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the Fibonacci tiling:

Œa; ad; d � � .d; b/w D .a; b/wI (5.1)

Œa; ad; d � � .d; c/w D .a; c/wI

Œb; ba; a� � .a; b/w D .b; d/ Œd; db; b� � wI

Œb; ba; a� � .a; c/w D .b; d/ Œd; dc; c� � wI

Œc; cd; d � � .d; a/w D .c; a/wI

Œd; db; b� � .b; d/.d; a/w D .d; c/ Œc; cd; d � � .d; a/wI

Œd; db; b� � .b; d/.d; b/w D .d; a/ Œa; ad; d � � .d; b/wI

Œd; db; b� � .b; d/.d; c/w D .d; a/ Œa; ad; d � � .d; c/wI

Œd; dc; c� � .c; a/w D .d; b/ Œb; ba; a� � wI

Œa; ba; b� � .b; d/.d; a/w D .a; b/ Œb; db; d � � .d; a/wI (5.2)

Œa; ba; b� � .b; d/.d; b/w D .a; c/ Œc; dc; d � � .d; b/wI

Œa; ba; b� � .b; d/.d; c/w D .a; b/ Œb; db; d � � .d; c/wI

Œb; db; d � � .d; a/w D .b; d/ Œd; ad; a� � wI

Œb; db; d � � .d; c/w D .b; d/ Œd; cd; c� � wI

Œc; dc; d � � .d; b/w D .c; a/ Œa; ba; b� � wI

Œd; ad; a� � .a; b/w D .d; b/wI

Œd; ad; a� � .a; c/w D .d; c/wI

Œd; cd; c� � .c; a/w D .d; a/ � w:

Example 5.2. The simplest border forcing two-dimensional example comes from the
half-hex tiling. We note that there are six prototiles ¹p0; p1; p2; p3; p4; p5º, where the
subscript denotes the number of rotations of p0 by �=3. Similarly, the substitution of each
prototile is equivalent up to rotations by n�=3 (see Figure 7). Thus, always taking addition
to be mod 6, the supertile extensions can be written as follows:

¹.pi ; pi /; .piC2; pi /; .piC3; pi /; .piC4; pi / j i D 0; 1; 2; 3; 4; 5º:

p2

p3

p4

p5

p0

p1

p0

p0
p2

p3

p4

'

Figure 7. The half-hex prototiles are on the left and the substitution of p0 is on the right. All other
substitutions are rotations of p0 by n�=3.
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The substitution of p0 appears in Figure 7. The graph associated with this substitution
appears in Figure 8.

The self-similar inverse semigroup is generated by the collection of doubly pointed
patches consisting of all single tile patches and connected pair patches appearing in a
half-hex tiling. All such tile pairs appear in Figure 9 up to rotation. Since we cannot
unambiguously represent two tile patches by a pair of tiles, like in the Fibonacci case,
we take a new tact. Here we represent a doubly pointed patch simply by Eqp , where qp
represents a two-tile patch q [ p and E is the edge of p connecting p to q. Note also that
we are ordering by function composition. So, Eqp represents the translation vector from
x.p/ to x.q/ across edge E of tile p. For p0, we set edges A–D to be the four edges
starting from the bottom and rotating counterclockwise. See Figure 9 for clarity.

We begin by describing the self-similar relation for the generating doubly pointed
patches across the long edge of tile pi , labelled A. Note that all subscripts are treated
mod 6 and w 2 F .

ApiC3pi � .pi ; pi /w D .piC3; piC3/ ApiC3pi � wI (5.3)

ApiC3pi � .pi ; piC2/.piC2; piC5/w D .piC3; piC1/ DpiC1piC2 � .piC2; piC5/wI

ApiC3pi � .pi ; piC2/.piC2; piC2/w D .piC3; pi / DpipiC2 � .piC2; piC2/wI

ApiC3pi � .pi ; piC3/.piC3; piC5/w D .piC3; piC5/ CpiC5piC3 � .piC3; piC5/wI

ApiC3pi � .pi ; piC3/.piC3; piC1/w D .piC3; piC1/ CpiC1piC3 � .piC3; piC1/wI

ApiC3pi � .pi ; piC3/.piC3; pi /w D .piC3; pi / CpipiC3 � .piC3; pi /wI

ApiC3pi � .pi ; piC4/.piC4; piC1/w D .piC3; piC5/ BpiC5piC4 � .piC4; piC1/wI

ApiC3pi � .pi ; piC4/.piC4; piC4/w D .piC3; pi / BpipiC4 � .piC4; piC4/w:

p0

p1

p2

p3

p4

p5

Figure 8. The substitution graph of the half-hex tiling.
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pi

piC3

ApiC3pi

pi

piC1
BpiC1pi

pi

piC2
BpiC2pi

pi

piC3

CpiC3pi

pi

piC4

CpiC4pi

pi

piC2

CpiC2pi

pi

piC5

DpiC5pi

pi

piC4
DpiC4pi

Figure 9. The possible two-tile patches with respect to reference tile pi .

.p0; p0/

.p3; p3/

Ap3p0

.p0; x/

.p3; x/

Ap3p0

Figure 10. An illustration of the first formula Ap3p0 � .p0; p0/w D .p3; p3/ Ap3p0 � w in (5.3)
with i D 0. The left-hand side shows the action Ap3p0 � .p0; p0/D .p3; p3/ and the right-hand side
shows that the element Ap3p0 comes from the relationship between one-supertiles.

In order to geometrically understand these relations, we illustrate the first two
self-similar relations from (5.3) in Figures 10 and 11.
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.p0; p2/

.p3; p1/

Ap3p0

.p2; x/

.p1; x/

Dp1p2

Figure 11. An illustration of the second formula Ap3p0 � .p0; p2/.p2; p5/w D .p3; p1/ Dp1p2 �
.p2; p5/w in (5.3) with i D 0. The left-hand side shows the action Ap3p0 � .p0; p2/ D .p3; p1/

and the right-hand side shows that the element Dp1p2 comes from the relationship between one-
supertiles.

We now describe the semigroup elements Bqp , Cqp and Dqp across the shorter edges
of tile p. Again, we note that all subscripts are treated mod 6 and w 2 F :

BpiC1pi � .pi ; piC2/w D .piC1; piC5/ ApiC5piC2 � wI

BpiC1pi � .pi ; piC3/w D .piC1; piC3/wI

BpiC1pi � .pi ; piC4/w D .piC1; piC4/wI

BpiC2pi � .pi ; pi /w D .piC2; pi /wI

CpiC2pi � .pi ; piC2/w D .piC2; piC2/wI

CpiC3pi � .pi ; pi /w D .piC3; pi /wI

CpiC3pi � .pi ; piC3/w D .piC3; piC3/wI

CpiC4pi � .pi ; piC4/w D .piC4; piC4/wI

DpiC4pi � .pi ; pi /w D .piC4; pi /wI

DpiC5pi � .pi ; piC2/w D .piC5; piC2/wI

DpiC5pi � .pi ; piC3/w D .piC5; piC3/wI

DpiC5pi � .pi ; piC4/w D .piC5; piC1/ ApiC1piC4 � w:

Let us note that some relations here could have been omitted by also exploiting
the reflective equivariance of substitution. We shall make use of this in the following
example.
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Example 5.3. The most well-known two-dimensional example was given by Penrose
[15], represented here as Robinson triangles. We note that there are 40 prototiles
¹ai ; bi ; rai ; rbi j i D 0; : : : ; 9º, where the subscript denotes the number of rotations by
�=5. By rai , we mean the reflection of the tile a0 across the vertical, followed by rota-
tion by i�=5, and analogously for rbi (we emphasise that we reflect the tile a0 first and
then rotate). The substitutions of a0 and b0 appear in Figure 13. We have not attempted
to display the graph of the substitution. All other prototiles are rigid motions of these, and
substitution on them is determined by equivariance of the substitution '. For example,
we have that '.ra4/ D '.�4.�a0// D �4 ı �.'.a0//, where �4 is rotation by 4�=5 and �
is reflection across the vertical. Thus, always taking addition to be mod 10, the supertile
extensions can be written as

.aiC7; ai /; .biC3; ai /; .rbi ; bi /; .raiC6; bi /; .biC4; bi /

along with the required rigid motions of the above (thus, there are 20 � 5 D 100 in total).
A patch of the Penrose tiling appears in Figure 12.

The self-similar inverse semigroup is generated by the collection of doubly pointed
patches consisting of all single tile patches and adjacent pair patches appearing anywhere
in a Penrose tiling. The AP complex [1, Section 10.4], copied in Figure 14, neatly illus-
trates each possible two-tile patch using the edge identifications. As per the previous

Figure 12. A patch of a Penrose tiling.
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example, we will denote doubly pointed patches by Eqp , which denotes the semigroup
element transitioning from tile p to q across edge E of tile p. Here the edges will be
given by ¹B; L; Rº, denoting the edges on the Bottom, Left or Right of prototile p with
orientation from Figure 13. Thus, Lra9a0 represents the translation across edge L from
tile a0 to tile ra9; see the top left of Figure 14 to see this pair (within a 10-gon of tiles).

a0

'

a7

b3

b0

'

rb0 b4

ra6

Figure 13. Penrose substitution.

a0

a2

a4a6

a8

ra1

ra3

ra5

ra7

ra9 ra0

ra2

ra4ra6

ra8

a1

a3

a5

a7

a9

rb0

rb2 rb4

rb6

rb8

b5

b7

b9

b1b3

b4

b6 b8

b0

b2

rb1

rb3

rb5

rb7rb9

Figure 14. The Anderson–Putnam complex of the Penrose tiling [1].
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We now describe the generating two-tile patch elements associated with moving across
an edge of ai . Again, we note that all subscripts are treated mod 10 and w 2 F :

BraiC5ai � .ai ; aiC3/w D .raiC5; biC9/ LbiC9aiC3 � wI

LbiC6ai � .ai ; aiC3/w D .biC6; aiC3/wI

RraiC1ai � .ai ; aiC3/w D .raiC1; raiC8/ BraiC8aiC3 � wI

BraiC5ai � .ai ; rbiC6/.rbiC6; raiC2/w D .raiC5; raiC2/ RraiC2rbiC6 � .rbiC6; raiC2/wI

BraiC5ai � .ai ; rbiC6/.rbiC6; biC6/w D .raiC5; raiC2/ RraiC2rbiC6 � .rbiC6; biC6/wI

BraiC5ai � .ai ; rbiC6/.rbiC6; rbi /w D .raiC5; biC9/ LbiC9rbiC6 � .rbiC6; rbi /wI

LbiC6ai � .ai ; rbiC6/w D .biC6; rbiC6/wI

RrbiC2ai � .ai ; rbiC6/w D .rbiC2; rbiC6/w:

Note that reflection acts on tiles by ai $ ra�i , bi $ rb�i and edge types by B $ B ,
L$ R. Therefore, the above relations determine also those for reflections. For example,
the last row determines the relation LbiC8rai � .rai ; biC4/w D .biC8; biC4/w, where we
apply the above conversions, write �2 � 8 mod 10, etc., and also substitute �i with i .

The following relations describe the generating two-tile patch inverse semigroup
elements associated with moving across an edge of bi :

BrbiC5bi � .bi ; aiC7/.aiC7; ai /w D .rbiC5; raiC8/ RraiC8aiC7 � .aiC7; ai /wI

BrbiC5bi � .bi ; aiC7/.aiC7; rbiC3/w D .rbiC5; rbiC9/ RrbiC9aiC7 � .aiC7; rbiC3/wI

LaiC4bi � .bi ; aiC7/w D .aiC4; aiC7/wI

RrbiC3bi � .bi ; aiC7/w D .rbiC3; biC3/ LbiC3aiC7 � wI

BrbiC5bi � .bi ; biC6/.biC6; aiC3/w D .rbiC5; rbiC9/ RrbiC9biC6 � .biC6; aiC3/wI

BrbiC5bi � .bi ; biC6/.biC6; biC2/w D .rbiC5; raiC8/ RraiC8biC6 � .biC6; biC2/wI

BrbiC5bi � .bi ; biC6/.biC6; rbiC6/w D .rbiC5; rbiC9/ RrbiC9biC6 � .biC6; rbiC6/wI

LrbiC7bi � .bi ; biC6/w D .rbiC7; rbiC1/ BrbiC1biC6 � wI

RraiC2bi � .bi ; biC6/w D .raiC2; biC6/wI

BrbiC5bi � .bi ; rbi /w D .rbiC5; biC5/ BbiC5rbi � wI

LaiC4bi � .bi ; rbi /w D .aiC4; rbi /wI

RrbiC3bi � .bi ; rbi /.rbi ; raiC3/w D .rbiC3; raiC6/ RraiC6rbi � .rbi ; raiC3/wI

RrbiC3bi � .bi ; rbi /.rbi ; bi /w D .rbiC3; raiC6/ RraiC6rbi � .rbi ; bi /wI

RrbiC3bi � .bi ; rbi /.rbi ; rbiC4/w D .rbiC3; biC3/ RbiC3rbi � .rbi ; rbiC4/w:
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