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Topological models of abstract commensurators

Edgar A. Bering IV and Daniel Studenmund

Abstract. The full solenoid over a topological space X is the inverse limit of all finite covers.
WhenX is a compact Hausdorff space admitting a locally path-connected universal cover, we relate
the pointed homotopy equivalences of the full solenoid to the abstract commensurator of the fun-
damental group �1.X/. The relationship is an isomorphism when X is an aspherical CW complex.
If X is additionally a geodesic metric space and �1.X/ is residually finite, we show that this topo-
logical model is compatible with the realization of the abstract commensurator as a subgroup of
the quasi-isometry group of �1.X/. This is a general topological analog of work of Biswas, Nag,
Odden, Sullivan, and others on the universal hyperbolic solenoid, the full solenoid over a closed
surface of genus at least two.

1. Introduction

The abstract commensurator of a group G, denoted by Comm.G/, is the collection of
isomorphisms �WH ! K between finite-index subgroupsH;K � G, modulo the equiva-
lence relation which identifies isomorphisms that agree on a finite-index domain. WhenG
is infinite, Comm.G/ is a natural relaxation of the automorphism group Aut.G/, but is
often more difficult to study. For example, it is not known whether Comm.F2/ is simple,
where F2 is a two-generated free group. Our goal is to provide topological and metric
perspectives on Comm.G/ parallel to those used to study Aut.G/.

Given a group G with Eilenberg–MacLane space X D K.G; 1/, the automorphism
group Aut.G/ is topologically modeled by E.X;�/, the group of pointed homotopy classes
of pointed homotopy equivalences of X . When G is finitely generated, Aut.G/ is metri-
cally modeled by a natural map to QI.G/, the quasi-isometry group ofG. IfX is a compact
geodesic metric space, these two models of Aut.G/ are compatible: each pointed homo-
topy equivalence of X lifts to a proper homotopy equivalence of the universal cover zX ,
preserving the G-orbit of the basepoint, which determines an element of QI.G/ by the
Milnor–Schwarz lemma.

The metric model of Aut.G/ extends to a natural map Comm.G/! QI.G/, a metric
model of Comm.G/. This article develops a topological model of Comm.G/ compatible
with this metric model and analogous to the homotopy model of Aut.G/.
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1.1. Statement of results

Our results are applied to fundamental groups of compact Hausdorff spaces admitting
a locally path-connected universal cover; spaces satisfying the latter condition are called
unloopable. Following classic constructions of McCord [19], for any such space .X; �/
we construct the full solenoid overX as the inverse limit . yX;�/ of all finite-sheeted covers
of .X;�/.

Theorem 5.6. Suppose .X; �/ is an unloopable pointed compact Hausdorff space. Then
there is a homomorphism

C W E. yX;�/! Comm.�1.X;�//:

If X is homotopy equivalent to an aspherical CW complex, this map is an isomorphism.

For example, letX D T n be an n-dimensional torus withGD�1.X;�/ŠZn. There is
an isomorphism that Comm.Zn/ Š GLn.Q/, and so there is an isomorphism E.cT n;�/ Š
GLn.Q/.

After discussing abstract commensurators in Section 3 and reviewing the structure of
full solenoids in Section 4, we prove Theorem 5.6 in Section 5. The proof combines the
structure of the full solenoid as a fiber bundle over X with totally disconnected fibers with
standard facts in shape theory applied to the inverse system of covering spaces used to
define yX . We present the arguments with care, starting with a review of inverse systems
in Section 2, because the techniques may be unfamiliar to some readers.

Continuing the analogy with the automorphism group, for a residually finite group G
we connect the topological model of Comm.G/ to its realization in QI.G/ in Section 7.
To do so, we assume the base space X is a geodesic metric space and then use the metric
structure on yX as a space foliated by leaves quasi-isometric to G, which we develop in
Section 6.

Theorem 7.7. Suppose .X;�/ is an unloopable compact geodesic metric space with resid-
ually finite fundamental group G D �1.X; �/. There is a homomorphism QWE. yX; �/!

QI.G/ which factors through the homomorphism C W E. yX; �/ ! Comm.G/ of Theo-
rem 5.6.

We were motivated to study full solenoids by the work of Sullivan, with Biswas and
Nag, who initiated the study of the universal hyperbolic solenoid y† [2, 25, 26], the full
solenoid over a closed surface † of genus g � 2. Odden then proved that the pointed
mapping class group

Homeo.y†;�/=Homeo0.y†;�/ Š Comm.�1.†//

provides a topological model of the abstract commensurator of the fundamental group of
a closed surface [20]. Odden connected the homeomorphisms of the solenoid to the action
of Comm.�1.†// on the boundary of the hyperbolic plane. Section 8 records a general-
ization in the setting of hyperbolic groups, relating the action of Comm.G/ on @G to the
solenoid model.
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Corollary 8.4. Suppose G Š �1.X;�/, where .X;�/ is an unloopable compact geodesic
metric space homotopy equivalent to an aspherical CW complex. Suppose G is a resid-
ually finite, torsion-free, non-elementary hyperbolic group. Then the homomorphism QW

E. yX;�/! QI.G/ of Theorem 7.7 induces isomorphisms

E. yX;�/ Š Comm.G/ Š CommHomeo.@G/.G/:

1.2. Relationship with known commensurator computations

Corollary 8.4 fits into a familiar scheme of understanding Comm.G/ by finding a map
Comm.G/ ! Aut.X/ for some object X on which G acts faithfully, then proving the
map is an isomorphism onto the relative commensurator CommAut.X/.G/. When G is
a sufficiently nice branch group acting on a tree T , such as Grigorchuk’s group of interme-
diate growth, Röver [22] gave an isomorphism Comm.G/ Š CommHomeo.@T /.G/. When
G D F is Thompson’s group, Burillo, Cleary, and Röver [5] identified an isomorphism
Comm.F / Š CommPL˙2 .R/

.F /, where PL˙2 .R/ is a certain group of piecewise linear
homeomorphisms of R. When G D Mod.†/ is the extended mapping class group of
a closed surface of genus g � 3 and C.†/ is the curve complex of †, Ivanov [16] gave
an isomorphism Comm.Mod.†// Š CommAut.C.†//.Mod.†//. This has been general-
ized to other subgroups of mapping class groups, notably in recent work of Brendle and
Margalit [3].

In each of these cases, the structure of Aut.X/ has allowed for more information about
Comm.G/ to be determined. Obtaining the strongest possible conclusion, Ivanov proved
a rigidity statement Aut.C.†// Š Mod.†/, which has the consequence that the natural
map Mod.†/! Comm.Mod.†// is an isomorphism.

1.3. Bibliographic remarks

Solenoids are well-studied objects in classical topology, as a rich source of examples and
counterexamples, as well as in dynamics, where they arise naturally in the study of foli-
ations and actions on Cantor sets. Their appearance in dynamics goes back to the works
of Smale [23] and Williams [29], who studied solenoids arising as the inverse limit of
iterated self-immersions of branched manifolds.

McCord’s work, summarized in Theorem 4.5 in Section 4, identifies yX with the sus-
pension of the action of �1.X; �/ on its profinite completion by right translation. This is
an example of a minimal, equicontinuous group action on a Cantor set. From this point
of view, the full solenoid is an example of a foliated space called a matchbox manifold.
Such dynamical systems have been studied systematically by Clark, Dyer, Hurder, and
Lukina [7, 8, 10].

The structure of yX as a principal bundle over X , which is used in the proof of Theo-
rem 5.6, has been further studied by Clark and Fokkink [6] in the case that X is a closed
manifold. Weak solenoids over closed manifolds were shown by Fokkink and Oversteegen
to be fiber bundles with profinite group fiber [12, §7].
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2. Inverse systems and pro-categories

Solenoids are by definition inverse limits of certain topological spaces. In order to relate
their topology to the abstract commensurator, we start by recalling the relevant categorical
framework. We follow the language and conventions of Mardešić and Segal [18].

Given a category C , an inverse system in C consists of a directed set ƒ, a collection
of objects ¹X�º�2ƒ and bonding morphisms p��0 WX�0 ! X� for each � � �0 satisfying
p�� D idX� and p��0 ı p�0�00 D p��00 for all � � �0 � �00. To ease the burden of notation,
when referring to the entire system, we will use boldface without indexing information
when such information is not needed.

Given two inverse systems .¹X�º; p��0 ; ƒ/ and .¹Y�º; q��0 ; M/ a morphism f D
.f�; �/WX! Y is a function �WM ! ƒ and a collection of morphisms ¹f�WX�.�/ !
Y�º�2M that are compatible with the bonding morphisms. That is, for all � � �0 2 M ,
there exists � � �.�/; �.�0/ such that

f� ı p�.�/� D q��0 ı f�0 ı p�.�0/�0 :

Two morphisms .f�; �/; .g�;  /WX ! Y are equivalent if for all �, there exists � �
�.�/;  .�/ such that

f� ı p�.�/� D g� ı p .�/�:

Definition 2.1. A pro-category over a category C , denoted by pro-C , has as objects
inverse systems in C , and as morphisms equivalence classes of system morphisms.

Observe that there is a functor from C to pro-C that sends each object X to the rudi-
mentary system .X/ indexed by a singleton and that this allows us to treat C as a full
subcategory of pro-C . In the interests of easing notation, we will typically omit the sys-
tem notation from rudimentary systems.

If .ƒ;�/ is a directed set and M � ƒ, say that M is cofinal if, for every � 2 ƒ, there
is some � 2M such that � � �. Given any inverse system X D .¹X�º; p��0 ;ƒ/ in pro-C
and directed subset M � ƒ, then

XM D .¹X�º; p��0 ;M/

is an inverse system and there is a restriction map of inverse systems iWX! XM .

Lemma 2.2 ([18, Chapter I, §1.1, Theorem 1]). If X D .¹X�º; p��0 ; ƒ/ is an inverse
system in C and M � ƒ is cofinal, then the restriction iWX! XM is an isomorphism in
pro-C .

A directed set .ƒ;�/ is cofinite if, for each � 2 ƒ, the set ¹�0 2 ƒ j �0 � �º is finite.
All directed sets we consider are cofinite.

Lemma 2.3 ([18, Chapter I, §1.2, Lemma 2]). Suppose X D .¹X�º; p��0 ; ƒ/ and Y D
.¹Y�º; q��0 ;M/ are inverse systems in C and fD .f�;�/WX!Y is a morphism of inverse
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systems. If M is cofinite, then f is equivalent to a morphism of systems .g�;  /WX! Y
such that  WM ! ƒ increases and for any � � �0 the following diagram commutes:

X .�0/ Y�0

X .�/ Y�:

g�0

p .�/ .�0/ q��0

g�

We use the following notation for categories. Top is the category of topological spaces
and continuous maps, and Cpt is the category of compact Hausdorff spaces and continuous
maps. HTop is the category whose objects are topological spaces and whose morphisms are
homotopy classes of continuous maps. HCpt is defined analogously. We use Top�, Cpt�,
HTop�, and HCpt� to denote the respective pointed categories, in which each space is
equipped with a basepoint, and all continuous maps and homotopies preserve basepoints.
Grp is the category of groups with homomorphisms. The notation C.A;B/ is used for the
set of C -morphisms from A to B .

3. Abstract commensurators

Write H �f G to mean that H is a finite-index subgroup of a group G, and H Ef G to
mean moreover thatH is normal. A partial automorphism of a groupG is an isomorphism
between two finite-index subgroups of G. If �1WH1 ! K1 and �2WH2 ! K2 are partial
automorphisms, declare �1 equivalent to �2, denoted by�, if there existsH3 �f H1 \H2
such that �1 and �2 agree on H3.

The abstract commensurator of a groupG is the group of equivalence classes of partial
automorphisms,

Comm.G/ D ¹�WH ! K j � is an isomorphism between H;K �f Gº=�:

The group structure on Comm.G/ is defined by Œ�� ı Œ � D Œ�0 ı  0� for any � � �0 and
 �  0 such that �0 ı  0 is defined.

For any subgroup H � G, the relative commensurator of H in G is defined by

CommG.H/ D ¹g 2 G j ŒH W gHg
�1
\H� <1 and ŒgHg�1 W gHg�1 \H� <1º:

For any group G, there is a homomorphism G ! Aut.G/ defined by g 7! cg , where
cg.x/ D gxg�1 for all x 2 G. Let O�W G ! Comm.G/ denote the composition G !
Aut.G/! Comm.G/. The proof of the following lemma is straightforward.

Lemma 3.1. For any group G,

CommComm.G/.O�.G// D Comm.G/:
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3.1. Commensurations as pro-automorphisms

For any abstract group G, let F .G/ denote the collection of finite-index subgroups of G,
equipped with inclusions G1 ! G2 whenever G1 �f G2 �f G. The intersection of any
two finite-index subgroups has finite index in G, so F .G/ is the collection of groups of
an inverse system G in the category Grp, ordered by reverse inclusion.

Proposition 3.2. Let G be a group and G be the inverse system of finite-index subgroups
of G. Then there is an isomorphism

�W Comm.G/ Š Autpro-Grp.G/:

Proof. For any H �f G, the system of finite-index subgroups of H is cofinal in the
system of finite-index subgroups of G. By Lemma 2.2, the inverse of the restriction map
is a pro-Grp isomorphism iGH WH! G. The isomorphism iGH is represented by the map
of inverse systems that, for each finite-index subgroup K � G, includes K \H ! K.
These isomorphisms are functorial; if H1 �f H2 �f G, then

iGH1 D iGH2 ı iH2H1 :

Suppose H;K �f G and �WH ! K is an isomorphism. The map � induces a bijec-
tion between F .H/ and F .K/. The collection of isomorphisms ¹�jH 0 j H 0 �f H º is
a morphism of inverse systems, which induces a pro-Grp isomorphism ��WH! K.

The reader may verify the following two properties. First, the assignment � 7! �� is
functorial in the sense that .� ı /�D �� ı � whenever the composition � ı is defined.
Second, if  WH 0 ! K 0 is the restriction of some isomorphism �WH ! K to a domain
H 0 �f H , then �� D iKK0 ı  � ı i�1HH 0 .

We now define �. Given any Œ�� 2 Comm.G/ represented by an isomorphism �W

H ! K, let �.Œ��/ D iGK ı �� ı i�1GH . To see that � is well defined, suppose �WH ! K

is an isomorphism and  WH 0! K 0 is the restriction of � to someH 0 �f H . Then by the
above observations, we have

iGK0 ı  � ı i
�1
GH 0 D .iGK ı iKK0/ ı  � ı .iGH ı iHH 0/

�1

D iGK ı .iKK0 ı  � ı i
�1
HH 0/ ı i

�1
GH

D iGK ı �� ı i
�1
GH :

The fact that � is a homomorphism follows from the functoriality of the assignment
� 7! ��.

To see that � is injective, suppose a partial automorphism �WH ! K satisfies

�.Œ��/ D id 2 Autpro-Grp.G/:

This implies that �� ı i�1GH and i�1GK are equivalent maps of inverse systems G ! K.
Because i�1GH and i�1GK are restriction maps, by definition of equivalence there is a finite-
index subgroup H0 �f H such that �jH0 D idH0 . Therefore, Œ�� is trivial in Comm.G/.
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To see that � is surjective, suppose Œf� 2 Autpro-Grp.G/ is represented by a collection
of homomorphisms ¹f�WG�.�/ ! G� j G� 2 F .G/º, where �Wƒ! ƒ is a function of
the indexing set of F .G/. Because Œf� is an isomorphism, it is both a monomorphism
and an epimorphism [18, Chapter II, §2.2, Theorem 6]. Because Œf� is a monomorphism,
there are an index �0 2 ƒ and a subgroup H0 �f G�.�0/ such that f�0 jH0 is injective
[18, Chapter II, §2.1, Theorem 2]. Because Œf� is an epimorphism, there is a finite-index
subgroup K0 �f G such that K0 �f f�0.H0/ [18, Chapter II, §2.1, Theorem 4]. Let
H DH0 andK D f�0.H/. Then f0 D f�0 jH WH !K is an isomorphism between finite-
index subgroups of G.

It remains to check that ŒiGK ı .f0/� ı i�1GH � D Œf�. Let f 0 D iGK ı .f0/� ı i�1GH be the
endomorphism of the inverse system F .G/, with associated indexing function �0Wƒ!ƒ.
By definition, for any � 2 ƒ, we have G�0.�/ D f �1�0 .G� \K/ and f 0

�
D f�0 jG�0.�/ .

Consider any G� 2 F .G/ and let �0 2 ƒ be the index such that G�0 D G� \ K.
Because G�0 �f G�, the fact that f is a morphism of inverse systems implies that there is
a subgroup S1 �f G such that f�S1D f�0 jS1 . Similarly, becauseG�0 �G�0 , there is some
S2 �f G such that f�0 jS2 D f�0 jS2 . Now let D D S1 \ S2 \ G�0.�/ �f G. Combining
the above observations, we have f�jD D f 0�jD , which completes the proof.

4. Full solenoids over unloopable spaces

The limit space of a sequence of finite-sheeted, regular covering maps appeared early in
the study of homogeneous topological spaces as a source of examples and counterexam-
ples. McCord [19] gave a general account of the structure of such a space, not requiring
coverings to be finite-sheeted, which he called a solenoidal space. Elsewhere in the lit-
erature, these spaces have simply been called solenoids, while some authors reserve the
name solenoid for inverse limits of systems of finite-sheeted coverings of closed mani-
folds, or of only the circle (the original solenoids of van Dantzig and Vietoris [27, 28]).
Limits of sequences of finite-sheeted covers, which are not necessarily regular, are often
called weak solenoids [21]. We are interested in the limit of the inverse system of all
finite-sheeted covers of a space, which we call the full solenoid (see Definition 4.2). After
introducing the definitions with care, we review McCord’s work in this setting.

Definition 4.1. A topological space X is unloopable if it is path-connected, locally path-
connected, and semi-locally simply connected.1 Equivalently, X is unloopable if it has
a locally path-connected universal cover.

We will typically work in categories whose objects are pointed topological spaces.
When there is no chance of confusion, we will use the same symbol to denote the base-
points in different spaces.

1McCord calls such spaces nice [19]. We borrow our terminology from Bourbaki, which uses the term
dèlaçables.
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Convention. When working with an unloopable pointed topological space .X;�/, we fix
a pointed universal cover . zX; �/! .X; �/ once and for all. The universal cover comes
equipped with a left action �1.X;�/ � zX ! zX written .g; x/ 7! gx. We then realize the
Galois correspondence between connected covers of .X; �/ and subgroups of its funda-
mental group by setting .XH ; �/ D Hn. zX; �/ for a subgroup H � �1.X; �/. We will
refer to constructions as canonical if they are canonical for a given choice of universal
cover.

Definition 4.2. Given an unloopable pointed topological space .X; �/, the full solenoid
over .X; �/, denoted by . yX; �/, is the inverse limit of the system of connected pointed
finite-sheeted covers of .X;�/ in Top�, where the bonding maps are the quotient covering
maps XH1 ! XH2 corresponding to subgroup inclusion H1 � H2:

. yX;�/ D lim
 �

H�f �1.X;�/

.XH ;�/:

The path-components of . yX;�/ are called leaves.

Example 4.3. The name “full solenoid” comes from McCord’s terminology “solenoidal
space”, inspired by the case X D S1. For each natural number n, the circle has one iso-
morphism class of covering space Xn, which is often visualized as an n-fold coil over
the circle. The inverse limit of all Xn is the full solenoid cS1 over the circle. It is a fiber
bundle over the circle with fibers homeomorphic to the Cantor set. The fiber structure is
transverse to a foliation by uncountably many path components. Each path component is
the image of the universal cover R under an injective continuous map R! cS1, and this
image is dense. The full solenoid cS1 is therefore visualized as a compact coil wound in
some complicated, dense way. (These properties are instances of the results described in
Theorem 4.5 below.)

Given an unloopable pointed space .X;�/ with full solenoid . yX;�/, let .X;�/ denote
the inverse system of finite-sheeted covers of .X;�/with respect to a given universal cover.
For any finite-index subgroup H �f �1.X; �/, there is a projection map pH W . yX; �/!
.XH ;�/. The collection of all such pH determines a map of inverse systems, hence a mor-
phism pW . yX;�/! .X;�/ in pro-Top�.

The construction of . yX; �/ is independent of the choice of universal cover in the fol-
lowing senses. First, any two universal covers of an unloopable pointed space .X; �/ are
homeomorphic by a unique morphism of pointed covering spaces. Any such homeomor-
phism induces homeomorphisms between covering spaces .XH ; �/ compatible with the
covering maps. It follows that . yX; �/ is well defined up to homeomorphism commut-
ing with the projection . yX; �/! .X; �/. Second, for a given choice of universal cover,
the collection ¹.XH ;�/ j H �f �1.X;�/º contains exactly one representative from each
equivalence class of connected, finite-sheeted pointed cover of .X;�/. Therefore, the full
solenoid . yX; �/ is homeomorphic to the inverse limit of the collection of all connected,
finite-sheeted pointed covers of .X;�/.
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McCord [19] described the structure of inverse limits of sequences of regular covers
of an unloopable base space. The results of his original paper apply to inverse limits of
general directed systems of regular covers of an unloopable base space with essentially no
change to the arguments. The system of finite-sheeted, regular covers of .X; �/ is cofinal
in the system of finite-sheeted covers of .X;�/, so McCord’s results apply to full solenoids
over unloopable spaces.

Definition 4.4. Given an unloopable pointed topological space .X; �/, the baseleaf of
. yX; �/ is the image of the canonical map `W . zX; �/ ! . yX; �/ induced by the covering
maps zX ! XH for H �f �1.X;�/.

For any unloopable pointed topological space .X;�/, the collection of finite quotients
�1.X;�/=H for H Ef �1.X;�/ forms an inverse system in Grp under the quotient maps
�1.X;�/=H ! �1.X;�/=K whenever H � K. The profinite completion is

3�1.X;�/ D lim
 �

HEf �1.X;�/

�1.X;�/=H:

The actions �1.X; �/=H Õ XH determine an effective topological group action
3�1.X;�/ Õ yX [19, Lemma 5.2].

There is a continuous surjective map …W3�1.X;�/ � zX ! yX defined by ….t; x/ D
t`.x/, where ` is the canonical baseleaf map. There is a continuous left action of �1.X;�/
on 3�1.X;�/ � zX defined by

g � .; x/ D .�.g/�1; gx/;

where �W�1.X; �/! 3�1.X;�/ is the canonical map. McCord proves that …W3�1.X;�/ �
zX ! yX is a (generalized) covering map whose covering transformations are precisely

those homeomorphisms given by the action of �1.X;�/.
Let 3�1.X;�/��1.X;�/ zX denote the quotient of 3�1.X;�/� zX by the action of �1.X;�/.

We summarize the consequences of the above in the following theorem.

Theorem 4.5 ([19, Theorems 5.5, 5.6, 5.8 and 5.12]). Suppose .X; �/ is an unloopable
pointed topological space.

(1) There is a homeomorphism

.3�1.X;�/ ��1.X;�/ zX; Œid;��/ Š . yX;�/:

The canonical baseleaf map `W zX ! yX is the composition of zX ! ¹idº � zX with
the quotient.

(2) Let K D `. zX/ be the baseleaf. A subset of yX is a path component if and only if it
is of the form K for some  23�1.X;�/.

(3) The baseleaf map `W zX! yX descends to a mapNn zX! yX which is a bijection onto
its image, whereND

T
HEf �1.X;�/

H is the residual finiteness kernel of �1.X;�/.

(4) The canonical projection . yX;�/! .X;�/ is a principal 3�1.X;�/-bundle.
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Corollary 4.6. Suppose .X;�/ is an unloopable pointed topological space with residually
finite fundamental group. The baseleaf map `W zX ! yX is injective with dense image.

5. The shape of solenoids

Our first main result, Theorem 5.6, is proved using the language of shape theory. The nat-
ural approach to shape for this setting is that of inverse systems, as described by Mardešić
and Segal [18]. The inverse system approach to shape associates certain inverse systems,
known as expansions, to an object in a category.

Definition 5.1 ([18, Chapter I, §2.1, p. 19]). Given a category T and an object X in T ,
a pro-T morphism pWX ! X is a T -expansion2 of X if X is an object of pro-T and p
satisfies a universal property: for any pro-T morphism hWX ! Y with Y in pro-T , there
is a unique pro-T morphism f making the following diagram commute:

X Y:

X

h

p
f

As we are primarily interested in morphisms, the following representation property of
expansions is central.

Fact 5.2 ([18, Chapter I, §2.3, p. 25]). Given T -expansions pWX ! X and qWY ! Y and
a T morphism f WX ! Y , there exists a unique pro-T morphism f such that the following
square commutes in pro-T :

X Y

X Y:

f

p q

f

It follows from uniqueness that the function

T .X; Y /! pro-T .X;Y/

is natural in the sense that it respects composition; if f ı g D h in T , then f ı g D h
in pro-T . In general, though, the assignment may be neither injective nor surjective [18,
Chapter I, §2.3, Remark 9].

Specializing to full solenoids over unloopable pointed compact Hausdorff spaces,
we are able to apply these facts to study self-homotopy equivalences in light of the fol-
lowing theorem.

2Mardešić and Segal also treat the more general notion of a P -expansion for a full subcategory P

of T . We only need to consider T -expansions.
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Theorem 5.3 ([18, Chapter I, §5.4, Theorem 13]). Suppose .X;�/ is an inverse system of
pointed compact Hausdorff spaces. If .X1; �/ is the inverse limit of .X; �/ in Cpt�, then
pW .X1;�/! .X;�/ is an HTop�-expansion of .X1;�/.

The proof of Theorem 5.6 relies on the following proposition. Compare, for example,
to improvability results of Geoghegan and Krasinkiewicz [13].

Proposition 5.4. Suppose .X; �/ and .Y; ?/ are unloopable pointed compact Hausdorff
spaces with full solenoids . yX;�/ and . yY ; ?/. Let .X;�/ and .Y; ?/ be the inverse systems
of connected, finite-sheeted pointed covers. Then there is a natural bijection

HCpt�. yX; yY /! pro-HCpt�.X;Y/:

Lemma 5.5. Suppose that .X; �/ and .Y; ?/ are unloopable pointed compact Hausdorff
spaces. Let .X; �/ and .Y; ?/ be the inverse systems of connected, finite-sheeted pointed
covers. Then for every morphism Œf� 2 pro-HCpt�.X;Y/, there is a representative g that
has a limit in Cpt�

Proof. Suppose that the inverse system X is indexed by ƒ with bonding morphisms
p�2�1 WX�1!X�2 , and let Y be indexed byM with bonding morphisms q�2�1 WY�1!Y�2 .
Both ƒ and M are cofinite directed sets with unique minimum elements. Let m 2 M
denote the minimum index, so that Ym D Y .

By Lemma 2.3, any given morphism Œf� 2 pro-HCpt�.X;Y/ is represented by an order-
preserving function �WM ! ƒ and a collection of continuous maps f�W .X�.�/; �/ !
.Y�;?/ such that if ���0, then there is a pointed homotopy f� ıp�.�/�.�0/ � q��0 ı f�0 .
To construct the desired morphism of inverse systems, let gm D fmWX�.m/ ! Ym. Given
any ��m, the existence of the pointed homotopy fm ı p�.m/�.�/ � qm� ı f� guarantees
that fm ı p�.m/�.�/ uniquely lifts to a map g�WX�.�/ ! Y� satisfying the equality of
continuous maps fm ı p�.m/�.�/ D qm� ı g�.

By construction, for any � 2M we have pointed homotopies

qm� ı f� � fm ı p�.m/�.�/ � qm� ı g�:

The homotopy lifting property provides a pointed homotopy f� � g�. It follows that
the collection of maps .g�/ defines a map g of inverse systems in HCpt� and Œg� D Œf� 2
pro-HCpt�.X;Y/.

In fact, it follows from uniqueness of liftings that we may consider g as a morphism
of systems in Cpt�. To see this, consider indices � � �0 2M . Then

qm�0 ı g�0 D fm ıp�.m/�.�0/D .fm ıp�.m/�.�// ıp�.�/�.�0/D qm� ı .g� ıp�.�/�.�0//;

while on the other hand

qm�0 ı g�0 D qm� ı .q��0 ı g�0/:

Then the uniqueness of lifts implies g� ı p�.�/�.�0/ D q��0 ı g�0 .
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For each � 2 ƒ, let p�W yX ! X� be the system of projections. For each �, definecg�W yX ! Y� by cg� D g�.�/ ı p�.�/. These determine a continuous function ygW yX ! yY ,
the limit of g.

Proof of Proposition 5.4. By Theorem 5.3, both . yX;�/! .X;�/ and . yY ;?/! .Y; ?/ are
HTop�-expansions. It follows from Fact 5.2 that there is a natural function

HCpt�. yX; yY /! pro-HTop�.X;Y/:

Because .X; �/ and .Y; ?/ are systems of compact Hausdorff spaces and HCpt� is a full
subcategory of HTop�, this determines a natural function

HCpt�. yX; yY /! pro-HCpt�.X;Y/:

By Lemma 5.5, this map is surjective.
Now suppose f;gW . yX;�/! . yY ;?/ are pointed continuous maps whose pointed homo-

topy classes map to the same element Œh� of pro-HCpt�.X;Y/. Let Œq�W yY ! Y be the
expansion morphism. Since f and g both map to h, by Fact 5.2, the morphisms q ı f
and q ı g are representatives of the same element of pro-HCpt�. yX;Y/. Consequently, the
maps q ı f and q ı g are pointed homotopic as maps . yX;�/! .Y; ?/, where qW yY ! Y

is the projection.
By Theorem 4.5, the map q is a fiber bundle over a compact Hausdorff space and

therefore a fibration [24, §2.7, Corollary 14]. Therefore, the pointed homotopy q ı f �
q ı g lifts to a homotopy f � F for some F W yX ! yY . Because fibers of q are totally
disconnected, q has the unique path lifting property [24, §2.2, Theorem 5]. This implies
that both F and the homotopy f � F are pointed. Moreover, because the baseleaf of yX
is path-connected, F and g agree on the baseleaf of yX . Indeed, if  is a based path of zX
starting at the basepoint, then q ı F./ D q ı g./, so that F./ is the unique lift of
q ı g./, and therefore equal to g./. But the baseleaf is dense in yX , so we conclude that
F D g as pointed continuous maps.

Combining these facts, we arrive at a topological description of the abstract com-
mensurator of �1.X; �/. For any pointed topological space .Y; ?/, let E.Y; ?/ be the
automorphism group of .Y; ?/ in HTop�. Elements of E.Y; ?/ are equivalence classes
of pointed homotopy equivalences, modulo pointed homotopy.

Theorem 5.6. Suppose .X; �/ is an unloopable pointed compact Hausdorff space. Then
there is a homomorphism

C W E. yX;�/! Comm.�1.X;�//:

If X is homotopy equivalent to an aspherical CW complex, this map is an isomorphism.

Proof. Let .X;�/ be the full system of finite-sheeted pointed covers of .X;�/. By Propo-
sition 5.4, there is a natural bijection

HCpt�. yX; yX/! pro-HCpt�.X;X/:
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A standard characterization of pro-morphisms is the natural bijection [18, Chapter I,
§1.1, p. 8, Remark 4],

pro-HCpt�..X;�/; .X;�// ' lim
 �
H

lim
�!
K

HCpt�.XH ; XK/;

where H and K range over all finite-index subgroups of �1.X;�/. Since �1 is functorial,
there is a natural function

lim
 �
H

lim
�!
K

HCpt�.XH ; XK/! lim
 �
H

lim
�!
K

Grp.�1.XH ;�/; �1.XK ;�//:

WhenX is homotopy equivalent to an aspherical CW complex, eachXH is also homotopy
equivalent to an aspherical CW complex, and so this function is a term-by-term bijection
by the Whitehead theorem.

Let �1.X; �/ be the pro-group obtained by applying the �1 functor to the inverse
system .X;�/. As noted above, there is a natural bijection

lim
 �
H

lim
�!
K

Grp.�1.XH ;�/; �1.XK ;�// ' pro-Grp..�1.X;�//; .�1.X;�///:

Combining these natural morphisms, restricting to the automorphism groups in each cat-
egory, and applying Proposition 3.2, we arrive at a homomorphism of groups

E. yX;�/ Š Autpro-HCpt�.X;�/! Autpro-Grp.�1.X;�// Š Comm.�1.X;�//

that is an isomorphism when X is homotopy equivalent to an aspherical CW complex.

Remark 5.7. Suppose .X;�/ is a finite connected CW complex. Let .X;�/ be the system
of finite covers and . yX;�/ be the full solenoid over .X;�/. Then �1.X;�/ is equal to the
pro-fundamental group pro-ı1. yX;�/ [18, Chapter II, §3.3].

Suppose further that .Y; ?/ is a pointed aspherical finite connected CW complex. The
proof of Theorem 5.6 can be modified in a straightforward way to prove that there is
a natural bijection of hom-sets

HTop�. yX; yY / ' pro-Grp.pro-ı1. yX;�/; pro-ı1. yY ; ?//:

In particular, there is a group isomorphism

E. yY ; ?/ Š Aut.pro-ı1. yY ; ?//:

6. Metric notions

We now turn to the task of relating the topology of the full solenoid . yX;�/ to the geometry
of the group �1.X;�/ in the case that X is an unloopable compact geodesic metric space
and �1.X; �/ is residually finite. In this section, we summarize the basic results used to
metrize yX in this case.
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6.1. Metric spaces

When X is an unloopable length metric space with metric dX , X determines a metric
on zX , which will also be denoted by dX . The metric on zX is also a length metric [4,
Proposition I.3.25], and the covering projection is a local isometry with respect to this
metric. If X is additionally compact, then it follows from the metric Hopf–Rinow theo-
rem [4, Proposition I.3.7] that bothX and zX are proper geodesic metric spaces. Moreover,
�1.X/ is finitely presented and every finitely presented group arises this way [4, Corol-
lary I.8.11].

6.2. Quasi-isometries

For metric spaces .X; dX / and .Y; dY /, a map f WX ! Y is a quasi-isometry if there are
constants K � 1 and C > 0 such that

1

K
dX .x1; x2/ � C � dY .f .x1/; f .x2// � KdX .x1; x2/C C

for any x1;x2 2X , and for any y 2Y there is some x 2X such that dY .f .x/; y/ � C . The
quasi-isometry group of X is the group QI.X/ of equivalence classes of quasi-isometries
f WX ! X , where f1; f2WX ! X are equivalent if there is some D � 0 so that

d.f1.x/; f2.x// � D

for all x 2 X .
If G is a finitely generated group, let QI.G/ be the quasi-isometry group of G with

respect to the word metric of some finite generating set. The quasi-isometry group is
independent of the chosen finite generating set. There is a natural map Comm.G/ !
QI.G/, where Œ�� 2 Comm.G/ determines a quasi-isometry of G by precomposing with
any closest-point projection fromG to the domain of �. Whyte proved that this is injective,
as recorded by Farb and Mosher [11, Proposition 7.5].

Lemma 6.1. For any unloopable compact geodesic metric space .X;�/ with fundamental
group G D �1.X; �/, the orbit map G ! . zX; �/ defined by g 7! g� induces an isomor-
phism

QI.G/ Š QI. zX/:

Proof. By the Milnor–Schwarz lemma [4, Proposition I.8.19], the orbit map g 7! g�

is a quasi-isometry G ! zX . This induces an isomorphism QI.G/ Š QI. zX/ [4, Exer-
cise I.8.16.3].

In order to relate the topology of the full solenoid . yX; �/ over .X; �/ to the coarse
geometry of G D �1.X; �/ in Section 7, we will further require that the baseleaf map
`W zX ! yX be an injective map of sets. By Corollary 4.6, this is equivalent to requiring
that G be residually finite.
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6.3. Profinite completions

When a group G is finitely generated, for each n � 1 there is a finite-index characteristic
subgroup

G�n D
\

ŒGWH��n

H:

The subgroupsG�n are a neighborhood basis of the identity for the topology onG induced
by the pseudometric yd defined by

yd.g1; g2/ D exp.�max¹n j g1g�12 2 G�nº/

if such a maximum exists, and yd.g1; g2/ D 0 if g1g�12 2 H for all H �f G.
If G is residually finite, then yd is an ultrametric, and the induced topology is Haus-

dorff. In this case, the profinite completion yG is the metric completion of G with respect
to yd [14, Theorem 3.5], the natural homomorphism �WG ! yG is an inclusion, and G acts
freely by isometries on yG by both left and right multiplication.

6.4. Solenoid metric

Now suppose X is an unloopable compact geodesic metric space with residually finite
fundamental groupGD �1.X;�/. ThenG is finitely presented, so by the above discussion
there are a profinite metric yd on yG and a proper, geodesic metric dX on zX . Equip yG � zX
with the `1 product metric

d1..1; x1/; .2; x2// D max¹ yd.1; 2/; dX .x1; x2/º:

Both the action of G on . yG; yd/ by right multiplication and the left action of G on
. zX; dX / are isometric. Hence the left action of G on yG � zX defined in Section 4 is iso-
metric with respect to d1.

Definition 6.2. Suppose X is an unloopable compact geodesic metric space with resid-
ually finite fundamental group G D �1.X; �/. The solenoid metric � on yX is the metric
induced from the quotient metric on yG �G zX , obtained by taking the infimum of d1 over
orbit representatives, under the identification yX � yG �G zX .

6.5. Metric balls in a full solenoid

Continue to consider an unloopable compact geodesic metric space X with residually
finite fundamental group G D �1.X;�/.

Definition 6.3. The injectivity radius of an unloopable metric space .Y; dY /, denoted by
inj: rad.Y /, is the supremum of all R such that for all x 2 zY , the covering projection of
BdY .x;R/ is an isometry onto its image.

IfX is an unloopable compact geodesic metric space, then 0 < inj: rad.X/ <1. Note
that for all g 2 �1.X;�/ and x 2 zX , the inequality dX .g � x; x/ � inj: rad.X/ holds.
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Lemma 6.4. Suppose X is an unloopable compact geodesic metric space with residually
finite fundamental groupG D �1.X;�/, and suppose 0 < " < inj: rad.X/=4. Then for any
yx D Œ.; x/� 2 yG �G zX , there is an isometry

B� .yx; "/ Š B yd .; "/ � Bd zX .x; "/:

In particular, each path component of B� .yx; "/ is isometrically identified with BdX .x; "/.

Proof. Take any .; x/ 2 yG � zX . Consider B D Bd1..; x/; "/ D B yd .; "/ � BdX .x; "/.
Then for any y 2 BdX .x; "/ and any g 2 G, we have dX .y; gy/ � inj: rad.X/ > 4" > 2"
and therefore gy … BdX .x; "/. It follows that the ball B maps injectively into yX .

To see that the inclusion B ! yX is isometric onto its image, it suffices to show that
if y; z 2 BdX .x; "/ and g 2 G is non-trivial, then dX .y; gz/ � 2". This follows from the
reverse triangle inequality

dX .y; gz/ � dX .z; gz/ � dX .y; z/ � inj: rad.X/ � 2" > 2":

7. Homotopy and baseleaf quasi-isometry

In general, compactness improves the behavior of continuous functions between metric
spaces. In the setting of full solenoids over spaces with residually finite fundamental
groups, compactness allows one to translate from the topology of the solenoid to the coarse
geometry of the baseleaf. This has been studied in the context of foliated manifolds, for
example, in the work of Hurder [15, §2.4].

Definition 7.1. A function f W .X; dX / ! .Y; dY / on metric spaces is .L; C /-coarsely
Lipschitz if for all x; y 2 X

dY .f .x/; f .y// � LdX .x; y/C C:

Given an unloopable pointed space .X; �/, any pointed continuous map f W . yX; �/!
. yX; �/ preserves the baseleaf. When �1.X; �/ is residually finite, the baseleaf map
`W zX ! yX is a bijection onto its image by Corollary 4.6. Identifying the set zX with its
image in yX , say that f restricts to a function of pointed sets f zX W . zX;�/! . zX;�/.

Lemma 7.2. Suppose .X;�/ is an unloopable compact geodesic metric space with residu-
ally finite fundamental groupGD�1.X;�/. Suppose f W . yX;�/! . yX;�/ is a pointed con-
tinuous function. Then for any C > 0, there exists fLipC .f / > 0 such that f zX W . zX;dX /!
. zX; dX / is .fLipC .f /; C /-coarsely Lipschitz.

Proof. Since X is compact and Hausdorff, yG �G zX is compact. Therefore, since f is
continuous, it is uniformly continuous in the � metric on yX .

Take 0 < " < min¹inj: rad.X/=4; C º and choose 0 < ı < " such that for all x; y 2 yX
if �.x; y/ < ı, then �.f .x/; f .y// < ". Now suppose x; y 2 zX and dX .x; y/ < ı. This
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implies �.x; y/ < ı by definition. Let  be a dX geodesic joining x to y. Since  is
a geodesic,  � BdX .x; ı/ � B� .x; ı/. Therefore, by uniform continuity,

f ./ � B� .f .x/; "/;

so f .x/ and f .y/ are in the same path component of B� .f .x/; "/. The path component
of B� .f .x/; "/ containing f .x/ is simply BdX .f .x/; "/ by Lemma 6.4. Therefore, if
dX .x; y/ < ı, then dX .f .x/; f .y// < ".

Next, suppose x; y 2 zX and M D dX .x; y/ � ı. Divide a geodesic between x and y
intoN D bM=ıc � 1 length ı segments, with endpoints x D t0; t1; : : : ; tN D y. By repeat-
edly applying the triangle inequality, we estimate

dX .f .x/; f .y// � N" �
"

ı
dX .x; y/:

Since " < C , by setting fLipC .f / D "=ı, we conclude that for all x; y 2 zX

dX .f .x/; f .y// < fLipC .f /dX .x; y/C C:

Lemma 7.3. Suppose .X;�/ is an unloopable compact geodesic metric space with resid-
ually finite fundamental group. Given continuous pointed functions f; gW . yX;�/! . yX;�/

such that f � g, there exists a constant C such that for all p 2 zX ,

dX .f zX .p/; g zX .p// � C:

Proof. Take 0 < " < inj: rad.X/=4. Let F be a homotopy witnessing f � g. As yX � Œ0; 1�
is compact, F is uniformly continuous with respect to the `1 product metric d

yX�Œ0;1�
1 .

Choose ı > 0 such that for all .x; t/; .y; s/ 2 yX � Œ0; 1�,

d
yX�Œ0;1�
1 ..x; t/; .y; s// < ı) �.F.x; t/; F .y; s// < ":

Choose 0D t0 < t1 < � � �< tL D 1 in Œ0; 1� such that jtnC1 � tnj< ı. Given any p 2 zX ,
the image F.¹pº � Œtn; tnC1�/ is a path-connected subset ofB� .F.p; tn/; "/. By our choice
of ", Lemma 6.4 implies that F.¹pº � Œtn; tnC1�/ is in fact contained in BdX .F.p; tn/; "/
in . zX; dX /, thus

dX .F.p; tn/; F .p; tnC1// < ":

Therefore, for any p 2 zX , repeated application of the triangle inequality gives

dX .f zX .p/; g zX .p// � L � ":

Let HE. yX; �/ be the collection of all pointed homotopy equivalences f W . yX; �/ !
. yX; �/. Note that HE. yX; �/ is a monoid, and E. yX; �/ is the quotient group consisting of
pointed homotopy classes.

Corollary 7.4. Given f;g 2HE. yX;�/ such that g is a homotopy inverse of f , there exists
a C such that for all p 2 zX ,

dX .f ı g.p/; p/ � C and dX .g ı f .p/; p/ � C:
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Combining this corollary with Lemma 7.2, we arrive at an exact description of the
coarse behavior of pointed homotopy equivalences.

Lemma 7.5. Suppose .X;�/ is an unloopable compact geodesic metric space with resid-
ually finite fundamental group. For each f 2 HE. yX; �/, the restriction f zX is a quasi-
isometry of . zX; dX /.

Proof. Given any f 2 HE. yX;�/, fix a homotopy inverse g. By Corollary 7.4, there exists
a C such that for all p 2 zX , we have dX .f ı g.p/; p/ � C and dX .g ı f .p/; p/ � C .

Next, by Lemma 7.2 with L D max¹fLipC .f /; fLipC .g/º, both f and g are .L; C /-
coarse Lipschitz on . zX; dX /. This is a characterization of an .L; C /-quasi-isometry of
. zX; dX / [9, Corollary 8.13], and we are done.

Proposition 7.6. Suppose .X; �/ is an unloopable compact geodesic metric space with
residually finite fundamental group G D �1.X;�/. There is a group homomorphism

QW E. yX;�/! QI. zX/ Š QI.G/

given by Œf � 7! f zX for a representative f 2 HE. yX;�/.

Proof. By Lemma 7.5, given f 2 HE. yX;�/, the restriction f zX is a quasi-isometry of zX .
The assignment f 7! f zX is a monoid homomorphism

HE. yX;�/! QI. zX/:

Next, if f; g 2 HE. yX; �/ and f � g, then by Lemma 7.3 there exists a constant C
such that for all p 2 zX , the distance dX .f .p/; g.p// � C . Thus, f zX and g zX represent the
same element of QI. zX/. Therefore, we obtain a monoid homomorphism

QW E. yX;�/! QI. zX/:

Every monoid homomorphism of groups is a group homomorphism. The conclusion fol-
lows by composing with the isomorphism QI. zX/ Š QI.G/ of Lemma 6.1.

Theorem 7.7. Suppose .X;�/ is an unloopable compact geodesic metric space with resid-
ually finite fundamental group G D �1.X;�/. The homomorphism QWE. yX;�/! QI.G/
factors through the map C WE. yX;�/! Comm.G/ of Theorem 5.6.

Proof. Suppose Œf �2E. yX;�/. By Lemma 5.5, there is a morphism of the covering system
¹f˛WX�.˛/ ! X˛º with limit yf homotopic to f . As in the proof of Theorem 5.6, the
collection of induced maps .f˛�/ is a pro-Grp automorphism of the inverse system of
finite-index subgroups of G.

Pick an index ˛ and set H0 D �1.X�.˛/; �/. As in the proof of Proposition 3.2, there
are finite-index subgroupsH;K �f G such that � D f˛�jH WH ! K is an isomorphism.
By definition, C.Œf �/ D Œ�� 2 Comm.G/.
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The inclusion of Œ�� into QI.G/ is the composition of nearest point projection to H
and �WH !K. Let . zX;p/! .X;�/ be the universal cover ofX . Under the identification
QI.G/ Š QI. zX/ induced by the orbit map g 7! gp, the image of Œ�� in QI. zX/ is the map
hp 7! �.h/p, which bijectively maps the H -orbit of the basepoint p to the K-orbit of p,
precomposed with a closest-point projection zX ! Hp.

Let ff˛W . zX; p/! . zX; p/ be the unique lift of f˛ . Since yf is the limit of f˛ , for any
point hp in the H -orbit of the basepoint p 2 zX , we have

yf .hp/ Dff˛.hp/ D .f˛�.h//p D �.h/p:
Since H and K are finite-index subgroups of G, this implies that yf is a bounded distance
from the image of � in QI. zX/. Therefore, by Lemma 7.3, f and � are bounded distance
maps, and we are done.

8. Hyperbolicity and the boundary realization

For a closed hyperbolic surface †, Odden proved the existence of an isomorphism

Comm.�1.†;�// Š Homeo.y†;�/=Homeo0.y†;�/

by proving that both groups are isomorphic to the relative commensurator of �1.†/ in
Homeo.@H2/ [20, Theorems 4.6 and 4.12]. We will prove that the abstract commensura-
tor of any torsion-free, non-elementary hyperbolic group G is isomorphic to its relative
commensurator in the group of homeomorphisms of its boundary, generalizing half of
Odden’s proof. We then provide a topological analog of the other half of the proof in the
case when G acts on a sufficiently nice metric space X which is homotopy equivalent to
a finite aspherical CW complex.

Suppose G is a Gromov hyperbolic group. Its boundary @G is well defined up to G-
equivariant homeomorphism. There is a well-defined map QI.G/! Homeo.@G/, which
is injective in the case j@Gj > 3 [9, Corollary 11.115].3 When j@Gj > 3, we say G is non-
elementary. The next lemma follows from composition with the inclusion Comm.G/!
QI.G/ described in Section 6.

Lemma 8.1. Suppose G is a torsion-free, non-elementary hyperbolic group. The compo-
sition Comm.G/! QI.G/! Homeo.@G/ is an injective map

ˆW Comm.G/! Homeo.@G/:

A groupG has the unique root property if gn D hn implies g D h for all g; h 2 G and
all non-zero n 2Z. IfG has the unique root property and �1WH1!K1 and �2WH2 ! K2

3Note that there is a typo in the cited corollary. To see injectivity in the case that G is non-elementary,
read comments after Lemma 11.112 and in the proof of Lemma 11.130 in the same reference.
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are equivalent partial automorphisms of G, then �1 and �2 agree on H1 \H2 [1, Lem-
ma 2.4]. Note that if G satisfies the unique root property then for anyH �f G the natural
map Aut.H/! Comm.G/ is injective.

Lemma 8.2. Suppose G is a torsion-free, non-elementary hyperbolic group. Then G has
the unique root property and trivial center. In particular, the map O�WG ! Comm.G/
defined in Section 3 is injective.

Proof. Any non-trivial element g 2 G in a hyperbolic group has virtually cyclic central-
izer CG.g/ [4, Corollary III.R� .3.10]. Since G is torsion-free, CG.g/ is infinite cyclic.
It follows that the center of G is trivial, so the conjugation map G ! Aut.G/ is injective.
Further, it follows that G has the unique root property [1, Lemma 2.2], and so the natural
map Aut.G/! Comm.G/ is injective.

Theorem 8.3. Suppose G is a torsion-free, non-elementary hyperbolic group. Then the
inclusion ˆWComm.G/! Homeo.@G/ induces an isomorphism

Comm.G/ Š CommHomeo.@G/.G/;

where G � Homeo.@G/ is identified with its image under the injective map ˆ ı O�.

Proof. According to Lemma 3.1, we know Comm.G/ D CommComm.G/.O�.G//. If K is
a group containing a subgroup H and � is any homomorphism with domain K, then
�.CommK.H// � Comm�.K/.�.H//. This implies

ˆ.Comm.G// � Commˆ.Comm.G//.ˆ.O�.G/// � CommHomeo.@G/.G/:

Therefore, it suffices to show that ˆ has image CommHomeo.@G/.G/.
Define a function

‰W CommHomeo.@G/.G/! Comm.G/

as follows: Given f 2 CommHomeo.@G/.G/, let G1 D f �1Gf \ G and G2 D f G1f �1.
According to definition, bothG1 andG2 are finite-index subgroups ofG, and conjugation
cf WG1 ! G2 is an isomorphism. Let ‰.f / D Œcf � 2 Comm.G/.

To finish the proof, it suffices to show .ˆ ı ‰/.f / D f for any homeomorphism
f 2 CommHomeo.@G/.G/. To this end, fix f 2 CommHomeo.@G/.G/ and let

yf D .ˆ ı‰/.f /:

Find finite-index subgroups G1; G2 � G such that f Gf �1 D G2. Applying the above
definitions, yf g yf �1 D fgf �1 for any g 2 G1. Equivalently, for any g 2 G1,

.f �1 yf /g.f �1 yf /�1 D g: (8.1)

We now appeal to basic facts about the action of a hyperbolic group on its boundary—
see the survey of Kapovich and Benakli for a reference [17, §4]. Every g 2 G has exactly
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two fixed points on @G, an attracting fixed point gC and a repelling fixed point g�, and
attracting fixed points of elements of G are dense in @G. Suppose x 2 @G is an attracting
fixed point gC for g 2 G. Replacing g with a sufficiently large positive power, we may
assume g 2 G1. It follows from (8.1) that f �1. yf .gC// is a fixed point of g with the
same dynamical properties as gC, therefore f �1. yf .gC// D gC. By density of the set of
attracting fixed points, this implies yf D f .

Corollary 8.4. Suppose .X;�/ is an unloopable compact geodesic metric space which is
homotopy equivalent to an aspherical CW complex. SupposeG D �1.X;�/ is a residually
finite, torsion-free, non-elementary hyperbolic group. Then the mapQWE. yX;�/! QI.G/
of Proposition 7.6 induces an isomorphism

E. yX;�/ Š CommHomeo.@G/.G/:

Proof. By Theorem 7.7, the image ofQ lies in Comm.G/ � QI.G/. Because X is homo-
topy equivalent to an aspherical CW complex, Q defines an isomorphism E. yX; �/ !

Comm.G/ by Theorem 5.6. The result follows from Theorem 8.3.
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