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Growth of quasi-convex subgroups in groups with
a constricting element

Xabier Legaspi

Abstract. Given a group G acting by isometries on a metric space X , we consider a preferred
collection of paths of the space X , a path system, and study the spectrum of relative exponential
growth rates and quotient exponential growth rates of the infinite index subgroups of G that are
quasi-convex with respect to this path system. If G contains a constricting element with respect to
the same path system, we are able to determine when the growth rates of the first kind are strictly
smaller than the growth rate of G, and when the growth rates of the second kind coincide with the
growth rate of G. Examples of applications include relatively hyperbolic groups, CAT.0/ groups,
and hierarchically hyperbolic groups containing a Morse element.

1. Introduction

The action of a group G on a metric space X is called proper if for every r > 0, and for
every x 2 X , the number of elements u 2 G moving x at distance at most r is finite. Let
G be a group acting properly by isometries on a metric space X . The relative exponential
growth rate of the action of a subset U � G on X is the number

!.U;X/ D lim sup
r!1

1

r
log

ˇ̌®
u 2 U W juo � oj 6 r

¯ˇ̌
;

whose value is independent of the point o 2 X . Let H be a subgroup of G. Let HL and
HR be respectively minimal left and right transversals of H at o, i.e., such that for every
u 2 HL and v 2 HR,

juo � oj D inf
h2H
juho � oj; and jvo � oj D inf

h2H
jhvo � oj:

In this article, we study the numbers

!.H/ WD !.H;X/; !.G=H/ WD !.HL; X/; and !.HnG/ WD !.HR; X/:

The values of !.G=H/ and !.HnG/ do not depend on the choice of the minimal trans-
versal. Consider the following general problem. When do G and H determine a solution
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to the system of equations below?8̂̂<̂
:̂
!.H/ < !.G/;

!.G=H/ D !.G/;

!.HnG/ D !.G/:

We see from the definitions that

!.H=G/ D !.HnG/; and 0 6 max
®
!.H/; !.G=H/

¯
6 !.G/:

In the extreme case in which H has finite index in G, one can easily prove that´
!.H/ D !.G/;

!.G=H/ D 0:

In general, it is a hard problem to obtain precise estimations of relative exponential growth
rates of infinite index subgroups. However, it is known, [2, 18, 22], that if G is a non-
virtually cyclic group acting geometrically on a hyperbolic space X and H is an infinite
index quasi-convex subgroup of G, then´

!.H/ < !.G/;

!.G=H/ D !.G/:

The arguments of [2, 18] are based on automatic structures and regular languages, with
influence of the works of J. Cannon [12, 13]. This fact also influenced other authors
that partially extended the hyperbolic case result [16]. In Section 1, we go beyond the
hyperbolic case and we obtain two main results (Theorem 1.8 and Theorem 1.13) with
elementary proofs that do not require the theory of regular languages and automata. We
will be interested in groups acting properly on metric spaces conditioned by a very general
notion of “non-positive curvature” introduced by A. Sisto in [36]—containing a constrict-
ing element with respect to a path system—while the infinite index subgroups object of
our study will satisfy a very general notion of “convex cocompactness”—quasi-convexity
with respect to a path system.

The remaining of this section is structured as follows. First of all, we will mention
two applications. Later, we will give an informal explanation of our general setting as the
result of a natural generalisation of these applications. We expect that this will be enough
to understand our main theorems stated right after that. We will give another application
at the end.

Groups acting properly with a strongly contracting element. Members of this class
contain elements that “behave like” a loxodromic isometry in a hyperbolic space—in a
strong sense. Let ı > 0. A subset A of X is ı-strongly contracting if the diameter of the
nearest-point projection on A of any metric ball of X not intersecting A is less than ı.
An element g of G is ı-strongly contracting if it has infinite order and there exists an
orbit of the cyclic subgroup generated by g that is ı-strongly contracting. In his seminal
paper, M. Gromov introduced the concept of ı-hyperbolic space [23]. He observed that
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most of the large scale features of negative curvature can be described in terms of thin tri-
angles. Nowadays, there are plenty of reformulations of the ı-hyperbolicity. In particular,
H. Masur and Y. Minsky gave one by describing geodesics in terms of strong contraction.

Example 1.1. A geodesic metric space X is hyperbolic if and only if there exists ı > 0
such that any geodesic segment of X is ı-strongly contracting [29, Theorem 2.3].

The following are some subclasses of groups acting properly with a strongly contract-
ing element:

(i) H D “G is a group acting properly with a loxodromic element on a hyperbolic
spaceX .” In H, an element is loxodromic if and only if it is strongly contracting.
See [15].

(ii) RH D “G is a relatively hyperbolic group acting with a hyperbolic element on
a locally finite Cayley graph X of G.” In RH, hyperbolic elements are strongly
contracting. See [31, Corollary 1.7] and [35, Theorem 2.14].

(iii) CAT0 D “G is a group acting properly with a rank-one element on a proper
CAT.0/ space X .” In CAT0, rank-one elements are strongly contracting. See
[10, Theorem 5.4] and [14].

(iv) ModT D “G is the mapping class group of an orientable surface of genus g and
p marked points of complexity 3gC p � 4 > 0 acting on its Teichmüller space
endowed with the Teichmüller metric.” In ModT, pseudo-Anosov elements are
strongly contracting. See [30] and [29, Proposition 4.6].

(v) GSCD “G is an infinite graphical small cancellation group associated with a
Gr 0.1=6/-labeled graph with finite components labeled by a finite set S , acting
on the Cayley graph X of G with respect to S .” In GSC, loxodromic WPD ele-
ments for the action of G on the hyperbolic coned-off Cayley graph constructed
by D. Gruber and A. Sisto in [24] are strongly contracting. See [4, Theorem 5.1].

(vi) Gar D “G is the quotient of a �-pure Garside group of finite type by its center,
acting with a Morse element on the Cayley graph X of G with respect to the
Garside generating set.” In Gar, Morse elements are strongly contracting. See
[11, Theorem 5.5].

(vii) InjD “G is a group acting properly with a Morse element on an injective metric
space X .” In Inj, an element is Morse if and only if it is strongly contracting.
See [37].

(viii) wMd D “G is a group acting geometrically with a Morse element on a weakly
Morse-dichotomous space X .” In wMd, an element is strongly contracting if
and only if it is loxodromic or WPD for the action on the contraction space yX
constructed by S. Zbinden in [40].

An appropriate notion of convex cocompactness in this setting is just the usual quasi-
convexity. Let � > 0. A subset Y of X is �-quasi-convex if any geodesic of X with
endpoints in Y is contained in the �-neighbourhood of Y . A subgroup H of G is �-quasi-
convex if there exists an orbit of H that is �-quasi-convex.
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Our theorem below generalises [39, Theorem 4.8] and [18, Theorems 1.1 and 1.3].

Theorem 1.2. If G is a non-virtually cyclic group acting properly with a strongly con-
tracting element on a geodesic metric space X , and H is an infinite index quasi-convex
subgroup of G, then ´

!.H/ < !.G/;

!.G=H/ D !.G/:

Hierarchically hyperbolic groups. Let Mod.†g;p/ be the mapping class group of an
orientable surface†g;p of genus g and p marked points of complexity 3gCp�4>0. We
would like to apply Theorem 1.2 to Mod.†g;p/ with respect to the word metric. How-
ever, we do not know whether Mod.†g;p/ acts with a strongly contracting element on
any of its locally finite Cayley graphs or not. Maybe the candidates that come to mind
are the pseudo-Anosov elements, and evidence suggests that not all of them are strongly
contracting: K. Rafi and Y. Verberne constructed a generating set U of Mod.†0;5/ and
a pseudo-Anosov element which is not strongly contracting for the action of Mod.†0;5/
on the Cayley graph of Mod.†0;5/ with respect to U [32, Theorem 1.3]. We were able to
avoid this setback by looking into the class of hierarchically hyperbolic groups, introduced
by J. Behrstock, M. Hagen and A. Sisto in [7,8] as a generalisation of the Masur and Min-
sky hierarchy machinery of mapping class groups. Below we provide some examples of
hierarchically hyperbolic groups. The reader should note that the metric space where they
act with a hierarchically hyperbolic structure is any of their locally finite Cayley graphs:

(i) Mapping class groups of finite type surfaces [8].
(ii) Right-angled Artin groups [7].
(iii) Right-angled Coxeter groups [7].
(iv) Fundamental groups of 3-manifolds without NIL or SOL components [8].

Now consider the following notion of convex cocompactness. A subset Y of X is
Morse if for every � > 1, � > 0, there exists � > 0 such that any .�; l/-quasi-geodesic of
X with endpoints in Y is contained in the � -neighbourhood of Y . A subgroup H of G is
Morse if there exists an orbit of H that is Morse. An element g of G is Morse if it has
infinite order and the cyclic subgroup generated by g is Morse.

We have obtained the next result, partially generalising [16, Theorem A].

Theorem 1.3. If G is a non-virtually cyclic hierarchically hyperbolic group acting on a
locally finite Cayley graphX ofG with a Morse element, andH is an infinite index Morse
subgroup of G, then ´

!.H/ < !.G/;

!.G=H/ D !.G/:

We know that pseudo-Anosov elements of mapping class groups are Morse with
respect to any word metric [6], and that the infinite index Morse subgroups of the mapping
class group are precisely the convex cocompact subgroups in the sense of mapping class
groups [27, Theorem A], which allows us to obtain a more concrete statement.
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Corollary 1.4. If G is the mapping class group of a surface of genus g and p marked
points such that 3gC p � 4 > 0 acting on a locally finite Cayley graph X of G, andH is
a convex cocompact subgroup of G, then²

!.H/ < !.G/;

!.G=H/ D !.G/:

Remark 1.5. Under the hypothesis of the previous corollary, we remark that the inequal-
ity !.H/ < !.G/ was also obtained independently in [16, Corollary C].

Main results. Now that we gave the big picture, we will give a technical definition that
encapsulates the classes discussed so far. In order to do so, we make two observations. On
the one hand, the strong contraction property can be reformulated in the following way.
A subset A of X is strongly contracting if and only if any geodesic segment of X joining
any pair of points x; y 2 X whose projections p and q via a nearest-point projection are
far away passes next to p and q [5, Proposition 2.9]. On the other hand, mapping class
groups—or more generally, hierarchically hyperbolic groups—come with hierarchy paths,
a family of special quasi-geodesics encoding substantial information about the geometry
of the space and easier to work with than the set of all (quasi-)geodesics. For these reasons,
in order to define very general notions of non-positive curvature and convex cocompact-
ness, we will be considering path systems, introduced by A. Sisto in [36].

Definition 1.6 (Path system group). Let�>1, �>0. A .�;�/-path system group .G;X;P/

is a group G acting properly on a geodesic metric space X together with a G-invariant
collection P of paths of X satisfying the following:

(PS1) P is closed under taking subpaths.
(PS2) For every x; y 2 X , there exists  2P joining x to y.
(PS3) Every element of P is a .�; �/-quasi-geodesic.

We refer to P as .�; �/-path system.

We fix � > 1, � > 0, and a .�; �/-path system group .G; X;P/ for the following
definitions. Let ı > 0. We say that a subset A of X is ı-constricting if there exist a coarse
nearest-point projection of X on A with the property that any  2 P joining any two
pair of points x; y 2 X whose projections p and q are ı-far away passes through the
ı-neighbourhoods of p and q (Definition 2.8). An element g of G is ı-constricting if it
has infinite order and there exists a ı-constricting orbit of the cyclic subgroup generated
by g. Let � > 0. A subgroup Y of X is �-quasi-convex if any  2 P with endpoints
in Y is contained in the �-neighbourhood of Y (Definition 2.7). A subgroup H of G is
�-quasi-convex if there exists an �-quasi-convex orbit of H .

Example 1.7. The following example illustrates the strong contraction and constriction
properties.

(i) Assume that the metric space X is geodesic. An infinite order element of G is
strongly contracting if and only if it is constricting with respect to the set of all
the geodesic segments of X [5, Proposition 2.9].
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(ii) Assume that the group G is hierarchically hyperbolic. An infinite order element
g of G is Morse if and only if for every � > 1, there exists ı > 0 such that
g is ı-constricting with respect to the set of all the �-hierarchy paths. See [34,
Theorem 1.5] and [9, Lemma 1.27].

Finally, we state the main results of Section 1. Theorems 1.2 and 1.3 are special cases.
Our first result generalises the work of W. Yang [39, Theorem 4.8] and F. Dahmani, D.
Futer, and D. Wise [18, Theorems 1.1 and 1.3]. The Poincaré series PU .s/ based at o 2X
of a subset U of G is defined as

8 s > 0; PU .s/ D
X
u2U

e�sjuo�oj

and modifies its behaviour at the relative exponential growth rate !.U; X/: the series
diverges if s < !.U; X/ and converges if s > !.U; X/. At s D !.U; X/, the series can
converge or diverge depending on the nature of U . This behaviour is independent of the
point o 2 X . We say that the action of U on X is divergent if PU .s/ diverges at s D
!.U;X/.

Theorem 1.8 (Theorem 8.2). Let .G; X;P/ be a path system group. Assume that G
contains a constricting element. Let H be an infinite index subgroup of G satisfying the
following:

(i) !.H/ <1.

(ii) The action of H on X is divergent.

(iii) H is quasi-convex.

Then, !.H/ < !.G/.

Remark 1.9. Under the hypothesis of Theorem 1.8, one may ask if there is a growth gap,
i.e., if

sup
H

!.H/ < !.G/;

where the supremum is taken among the infinite index subgroups H of G satisfying (i),
(ii), and (iii). In our context, the answer is yes: there is a growth gap whenG is a hyperbolic
group with Kazhdan’s property (T) [17, Theorem 1.2]. However, one can show that there
is no growth gap among free groups [18, Theorem 9.4], or fundamental groups of compact
special cube complexes [28, Theorem 1.5]. The answer to our context could be different
if one studied semigroups instead of subgroups [39, Theorem A].

In [23, Section 5.3.C], M. Gromov stated that in a torsion-free hyperbolic group G,
any infinite index quasi-convex subgroup H is a free factor of a larger quasi-convex sub-
group. Gromov’s ideas were later developed by G. N. Arzhantseva in [3, Theorem 1].
More recently, J. Russell, D. Spriano, and H. C. Tran generalised her result to the con-
text of groups with the “Morse local-to-global property” [33, Corollary 3.5]. Further, the
problem seems connected to the “Pnaive property” studied by C. Abbott and F. Dahmani
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in the context of groups acting acylindrically on a hyperbolic space [1]. In our context,
we have obtained the following, in which there is no torsion-free assumption. We will see
that Theorem 1.8 is, in part, a consequence of this result.

Theorem 1.10 (Proposition 8.3). Let .G; X;P/ be a path system group. Assume that
G contains a constricting element g0. Let H be an infinite index quasi-convex subgroup
of G. Then, there exist an element g 2 G conjugate to a large power of g0 and a finite
extension E of hgi such that the intersection H \ E is finite and the natural morphism
H �H\E hg;H \Ei ! G is injective.

According to Proposition 2.5 (6), the subgroup generated by a constricting element
is always Morse, and in particular quasi-convex. Hence, Theorem 1.10, for the choice of
H D hg0i, implies the following weak Tits alternative.

Corollary 1.11. Let .G; X;P/ be a path system group. Assume that G contains a con-
stricting element. Then, either G is virtually cyclic or it contains a free subgroup of rank
two.

Remark 1.12. To the best of our knowledge, the previous corollary has not been recor-
ded for the class of groups acting properly with a strongly contracting element. The Tits
alternative is known for hierarchically hyperbolic groups [21, Theorem 9.15], which is a
much stronger result.

In our second result, we generalise the work of Y. Antolín [2, Theorem 3] and R. Gitik
and E. Rips [22, Theorem 2].

Theorem 1.13. Let .G; X;P/ be a path system group. Assume that G contains a con-
stricting element. Let H be an infinite index quasi-convex subgroup of G. Then,

!.G=H/ D !.G/:

Note that the study of [22, Theorem 2] concerns double cosets in the hyperbolic group
case. We remark that in [20, VII D 39], P. de la Harpe says about the growth of double
cosets: “this theme has not received yet too much attention, but probably should”. In our
context, for the sake of simplicity, we decided to study single cosets instead, but one could
possibly extend our result. Further, we remark that our result is connected to the study of
I. Kapovich on the hyperbolicity and amenability of the Schreier graphs of infinite index
quasi-convex subgroups of hyperbolic groups [25,26]. There is also the work of A. Vonseel
concerning the number of ends [38].

Remark 1.14. The following remark is reminiscent of the hypothesis on !.G/ for The-
orems 1.8 and 1.13.

(i) Our main results, Theorems 1.8 and 1.13, hold in the case !.G/ D 1. For
instance, if G is a group acting properly on a metric space .X; j � j/, then we can
define a new metric j � j0 on X by

8 x; y 2 X; jx � yj0 D e�jx�yj � jx � yj:
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The metric distorts the growth of the orbit ofG exponentially. If !.G/ > 0 with
respect to j � j, then !.G/ D1 with respect to j � j0.

(ii) If G is a group acting geometrically on a metric space X , then !.G/ <1.

Now we are going to record a joint corollary to Theorems 1.8 and 1.13. In general,
it is not easy to decide whether the action of a group is divergent or not. However, the
following is a well-known consequence of Fekete’s subadditive lemma.

Lemma 1.15 ([19, Proposition 4.1 (1)]). Let G be a group acting properly on a geodesic
metric space X . Let o 2 X . Let H 6 G be a quasi-convex subgroup (in the classical
sense). Then,

!.H/ D inf
n>1

1

n
log

ˇ̌®
h 2 H W jho � oj 6 n

¯ˇ̌
D lim
n!1

1

n
log

ˇ̌®
h 2 H W jho � oj 6 n

¯ˇ̌
:

In particular, !.H/ <1. If in addition H is infinite, then the action of H on X is diver-
gent.

Combining Lemma 1.15 with Corollary 1.11, we obtain the following.

Corollary 1.16. Let .G; X;P/ be a path system group. Assume that G is non-virtually
cyclic and contains a constricting element.

(i) If P is the set of all the geodesic segments of X , then for every infinite index
quasi-convex subgroup H of G, we have´

!.H/ < !.G/;

!.G=H/ D !.G/:

(ii) For every infinite index Morse subgroup H of G, we have´
!.H/ < !.G/;

!.G=H/ D !.G/:

Remark 1.17. One can prove that the class of groups acting properly with a constrict-
ing element with respect to a path system is invariant under equivariant quasi-isometries.
However, strongly contracting elements are not preserved under equivariant quasi-isomet-
ries [4, Theorem 4.19]. In particular, Corollary 1.16 applies for instance to the action on
a locally finite Cayley graph of any group acting geometrically on a CAT.0/ space with a
rank-one element.

Remark 1.18. The proofs of Theorems 1.2, 1.3 and Corollary 1.4 now follow from our
main results (Theorems 1.8 and 1.13) in view of Example 1.7 and Remark 1.14 (ii).

Hierarchical quasi-convexity. In hierarchically hyperbolic groups, there is a notion of
convex cocompactness more natural than Morseness. LetG be a hierarchically hyperbolic
group. A subgroup H of G is hierarchically quasi-convex if and only if for every �>1,



Growth of quasi-convex subgroups in groups with a constricting element 1477

there exists � > 0 such that H is �-quasi-convex with respect to the set of all the �-
hierarchy paths of G [34, Proposition 5.7]. Finally, in view of Remark 1.14 (ii) and Ex-
ample 1.7 (ii), we deduce two more applications from Theorems 1.8 and 1.13.

Theorem 1.19. If G is a hierarchically hyperbolic group acting on a locally finite Cayley
graph X of G with a Morse element, and H is an infinite index subgroup of G satisfying
that

(i) the action of H on X is divergent,

(ii) H is hierarchically quasi-convex,

then !.H/ < !.G/.

Theorem 1.20. If G is a hierarchically hyperbolic group acting on a locally finite Cayley
graphX ofG with a Morse element, andH is an infinite index hierarchically quasi-convex
subgroup of G, then !.G=H/ D !.G/.

Outline of the paper. In Section 2, we will introduce the definitions of path system
group, quasi-convex subgroup, and constricting element. In Section 3, we will explain
the two criteria that we will use to estimate the growth of quasi-convex subgroups. The
rest of the section is devoted to the development of our geometric framework so that we
can apply these criteria. In Section 4, we will introduce the notion of buffering sequence
and we will give a version of Behrstock inequality. In Section 5, we will prove a version of
the bounded geodesic image property of hyperbolic spaces. In Section 6, given an infinite
index quasi-convex subgroup and a quasi-convex element, we will produce another quasi-
convex element whose orbit is “transversal” to the given subgroup. The proofs of both of
our main results (Theorems 1.8 and 1.13) share this argument. In Section 7, we will study
the elementary closures of constricting elements apart from some geometric separation
properties. Finally, in Section 8, we will prove our main results (including Theorem 1.10)
by constructing an appropriate buffering sequence for each problem.

2. Path system geometry
This section is devoted to present the notations and vocabulary of the main geometric
objects of this section. We formalise our notions of “convex cocompactness” and “non-
positive curvature”.

Metric geometry. LetX be a metric space. Given two points x;x0 2X , we write jx � x0j
for the distance between them. The ball of X of center x 2 X and radius r > 0 is

BX .x; r/ D
®
y 2 X W jx � yj 6 r

¯
:

The distance between a point x 2 X and a subset Y � X is

d.x; Y / D inf
®
jx � yj W y 2 Y

¯
:

Let � > 0. The �-neighbourhood of a subset Y � X is

Y C� D
®
x 2 X W d.x; Y / 6 �

¯
:
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The distance between two subsets Y;Z � X is

d.Y;Z/ D inf
®
jy � zj W y 2 Y; z 2 Z

¯
:

The Hausdorff distance between two subsets Y;Z � X is

dHaus.Y;Z/ D inf¹" > 0 W Y � ZC" and Z � Y C"º:

Path system spaces. Let X be a metric space. A path is a continuous map ˛W Œa; b�!X .
The initial and terminal points of ˛ are ˛.a/ and ˛.b/, respectively. They form the end-
points of ˛. We will frequently identify a path and its image. A subpath of ˛ is a restriction
of ˛ to a subinterval of Œa; b�. The path ˛ joins the point x 2 X to the point y 2 X if
˛.a/ D x and ˛.b/ D y. Note that for every x; y 2 ˛, there may be more than one sub-
path of ˛ joining x to y, unless the points are given by the parametrisation of ˛. The length
of a path ˛ is denoted by `.˛/. Unless otherwise stated, a path is a rectifiable path para-
metrised by arc length. Let � > 1, l > 0. A path ˛W Œa; b�! X is a .�; l/-quasi-geodesic
if for every t; t 0 2 Œa; b�,ˇ̌

˛.t/ � ˛.t 0/
ˇ̌
6 jt � t 0j 6 �

ˇ̌
˛.t/ � ˛.t 0/

ˇ̌
C l:

Note that `.˛jŒt;t 0�/D jt � t 0j. The following captures the idea of endowing a metric space
with a collection of preferred paths.

Definition 2.1 (Path system space). Let �> 1, � > 0. A .�; �/-path system space .X;P/

is a metric space X together with a collection P of paths of X satisfying the following:

(PS1) P is closed under taking subpaths.

(PS2) For every x; y 2 X , there exists  2P joining x to y.

(PS3) Every element of P is a .�; �/-quasi-geodesic.

We refer to P as .�; �/-path system.

We fix � > 1, � > 0, and a .�; �/-path system space .X;P/.

Definition 2.2 (Quasi-convex subset). Let � > 0. A subset Y � X is �-quasi-convex if
every  2P with endpoints in Y is contained in the �-neighbourhood of Y .

Definition 2.3 (Constricting subset). Let ı > 0. A subset A � X is ı-constricting if there
exists a map �AWX ! A satisfying the following:

(CS1) Coarse retraction.
For every x 2 A, we have jx � �A.x/j 6 ı.

(CS2) Constriction.
For every x; y 2 X and for every  2P joining x to y, if we haveˇ̌

�A.x/ � �A.y/
ˇ̌
> ı;

then  \ BX .�A.x/; ı/ ¤ ¿ and  \ BX .�A.y/; ı/ ¤ ¿.

We refer to �AWX ! A as ı-constricting map.
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x

�A.x/ �A.y/

y



A
6 ı

> ı

6 ı

Figure 1. The constriction property.

Figure 1 illustrates the intuition behind Definition 2.3.

Notation 2.4. Let �AWX ! A be a map between X and a subset A � X . For every
x; y 2 X , we denote jx � yjA D j�A.x/ � �A.y/j. For every subset Y � X , we denote
diamA.Y / D diam.�A.Y //. For every x 2 X and for every pair of subsets Y;Z � X , we
denote

dA.x; Y / D d
�
�A.x/; �A.Y /

�
and dA.Y;Z/ D d

�
�A.Y /; �A.Z/

�
:

Note that dA may not be a distance over the collection of subsets of X : it may not satisfy
the triangle inequality. We will keep this notation for the rest of the paper.

The following are some standard properties.

Proposition 2.5. For every ı > 0, there exist a constant � > 0 and a pair of maps,
� WR>1 � R>0 ! R>0 and �WR>0 ! R>0, such that any ı-constricting map �AWX ! A

satisfies the following properties:

(1) Coarse nearest-point projection.
For every x 2 X , we have jx � �A.x/j 6 �d.x;A/C � .

(2) Coarse equivariance.
Let H be a group acting by isometries on X such that A and P are H -invariant.
Then, for every h 2 H and for every x 2 X , we have j�A.hx/ � h�A.x/j 6 � .

(3) Coarse Lipschitz map.
For every x; y 2 X , we have jx � yjA 6 �jx � yj C � .

(4) Intersection-image.
For every  2P , we have j diam.ACı \ / � diamA./j 6 � .

(5) Behrstock inequality.
Let �B WX ! B be a ı-constricting map. Then, for every x 2 X , we have

min
®
dA.x; B/; dB.x; A/

¯
6 �:
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(6) Morseness.
Let � > 1, l > 0. Let ˛ be a .�; l/-quasi-geodesic of X with endpoints in A. Then,
˛ � AC�.�;l/.

(7) Coarse invariance.
Let " > 0. Let B � X be a subset such that dHaus.A; B/ 6 ". Then, B is �."/-
constricting.

Proof. We give some references. For (1), (3), and (4), see [36, Lemma 2.4]. For (5), see
[36, Lemma 2.5]. For (6), see [36, Lemma 2.8 (1)]. We leave the proof of the properties
(2) and (7) as an exercise.

Path system groups. Let G be a group acting by isometries on a metric space X . The
quasi-stabiliser StabG.x; r/ of x 2 X of radius r > 0 is defined as

StabG.x; r/ D
®
g 2 GW jx � gxj 6 r

¯
:

The action of G on X is proper if for every x 2 X and for every r > 0, we haveˇ̌
StabG.x; r/

ˇ̌
<1:

Let � > 0. The action ofG on X is �-cobounded if for every x; x0 2 X , there exists g 2 G
such that jx � gx0j 6 �.

Definition 2.6 (Path system group). Let�>1, �>0. A .�;�/-path system group .G;X;P/

is a group G acting properly on a metric space X together with a G-invariant collection
P of paths of X such that .X;P/ is a .�; �/-path system space.

We fix � > 1, � > 0, and a .�; �/-path system group .G;X;P/.

Definition 2.7 (Quasi-convex subgroup). A subgroup H 6 G is �-quasi-convex if there
exists an H -invariant �-quasi-convex subset Y � X such that the action of H on Y is
�-cobounded. We will write .H; Y / when we need to stress the �-quasi-convex subset Y
that H is preserving.

Definition 2.8 (Constricting element). Let ı > 0. An element g 2 G is ı-constricting if
the following holds:

(CE1) g has infinite order.

(CE2) There exists a hgi-invariant ı-constricting subset A � X so that the action of
hgi on A is ı-cobounded.

We will write .g; A/ when we need to stress the ı-constricting subset A that hgi is pre-
serving.

Remark 2.9. Note that Definitions 2.7 and 2.8 imply the corresponding definitions of the
introduction. The converse implication is also true for Definition 2.8, but the argument
requires Proposition 2.5 (7) Coarse invariance.
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3. Growth estimation criteria
In this section, we fix a group G acting properly on a metric space X and a subgroup
H 6 G. The goal is to establish simple criteria so that we can check if H is a solution to
the system of equations ´

!.H/ < !.G/;

!.G=H/ D !.G/:

Our criterion to estimate the relative exponential growth rate is basically [19, Cri-
terion 2.4]. The statement that we actually need is more specific, so we will give a proof
for the convenience of the reader. Recall that the action of a subgroup H 6 G on X is
divergent if its Poincaré series PH .s/ diverges at s D !.H/.

Proposition 3.1 ([19, Criterion 2.4]). Assume that the following conditions are true:

(i) !.H/ <1.

(ii) The action of H on X is divergent.

(iii) There exist subgroups K 6 G and F 6 H \ K so that F is a proper finite
subgroup of K and the natural homomorphism �WH �F K ! G is injective.

Then, !.H/ < !.G/.

Remark 3.2. In the proof below, note that the relative exponential growth rate makes
sense for any subset of G, as it does the notion of Poincaré series.

Proof. Since the action of H on X is divergent, in particular, H is infinite and hence
H � F is non-empty. Since F is a proper subgroup ofK, there exists k 2 K � F . Denote
by U the set of elements of H �F K that can be written as words that alternate elements
of H � F and k, always with an element of H � F at the beginning and with a k at the
end. The inequality !.�.U // 6 !.G/ can be deduced from the definition. It is enough
to prove that there exists s0 > 0 such that !.H/ < s0 6 !.�.U //. Let o 2 X . Since
!.H/<1, the interval .!.H/;1/ is non-empty. Since the action ofH onX is divergent,
there exists s0 2 .!.H/;1/ such that

P
h2H�F e

�s0jo�hkoj > 1; otherwise, one obtains
a contradiction with the divergence of the action of H on X .

In order to obtain the inequality s0 6 !.�.U //, it suffices to show that the Poincaré
series P�.U/.s/ D

P
g2�.U/ e

�sjo�goj diverges at s D s0. Since �WH �F K ! G is
injective, we have

P�.U/.s/ >
X
m>1

X
h1;:::;hm2H�F

e�sjo�h1kh2k���hmkoj:

By the triangle inequality, for every m > 1 and for every h1; : : : ; hm 2 H � F , we have
jo � h1kh2k � � � hmkoj 6

Pm
iD1 jo � hikoj. Thus,X

h1;:::;hm2H�F

e�sjo�h1kh2k���hmkoj >
h X
h2H�F

e�sjo�hkoj
im
:

We see that PH .s0/ D1 follows from the claim.
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Our criterion to estimate the quotient exponential growth rate is the following.

Definition 3.3. Let �WG! G. We say that G is �-coarsely G=H if there exist � > 0 and
x 2 X satisfying the following conditions:

(CQ1) For every u; v 2 G, if �.u/H D �.v/H , then j�.u/x � �.v/xj 6 � .

(CQ2) For every u 2 G, jux � �.u/xj 6 � .

Proposition 3.4. If there exist �WG ! G such that G is �-coarsely G=H , then !.G/ D
!.G=H/.

Proof. The inequality !.G=H/ 6 !.G/ can be deduced from the definition. Assume that
there exist �WG ! G such that G is �-coarsely G=H for x 2 X and � > 0.

Claim 3.5. There exist � > 1 such that for every r > 0,ˇ̌
StabG.x; r/

ˇ̌
6 �

ˇ̌
p
�

StabG.x; r C �/
�ˇ̌
:

Let � D j StabG.x; 3�/j. Let r > 0. Let pWG� G=H be the natural projection. Let
qWG!G=H be the map that sends u to �.u/H . Note that the quasi-stabiliser StabG.x; r/
can be decomposed as the disjoint union of the sets q�1.q.u// such that

q.u/ 2 q
�

StabG.x; r/
�
:

Hence, ˇ̌
StabG.x; r/

ˇ̌
6

X
q.u/2q.StabG.x;r//

ˇ̌
q�1

�
q.u/

�ˇ̌
:

It suffices to estimate the size of q.StabG.x;r// and the size of q�1.q.u//, for every u2G.
First, we prove that jq.StabG.x; r//j6 jp.StabG.x; r C �//j. Let u 2 StabG.x; r/. By the
triangle inequality, ˇ̌

x � �.u/x
ˇ̌
6 jx � uxj C

ˇ̌
ux � �.u/x

ˇ̌
:

By the hypothesis (CQ2), we have jux � �.u/xj 6 � . Hence, jx � �.u/xj 6 r C � . Con-
sequently, q.StabG.x; r// � p.StabG.x; r C �//. Now, we prove that for every u 2 G,
we have jq�1.q.u//j 6 �. Let u 2 G. Since juStabG.x; 3�/j D jStabG.x; 3�/j D �, it is
enough to prove that u�1q�1.q.u// � StabG.x; 3�/. Let v 2 q�1.q.u//. By the triangle
inequality,

jx � u�1vxj D jux � vxj 6
ˇ̌
ux � �.u/x

ˇ̌
C
ˇ̌
�.u/x � �.v/x

ˇ̌
C
ˇ̌
�.v/x � vx

ˇ̌
:

Since q.u/D q.v/, we have that �.u/H D �.v/H . It follows from the hypothesis (CQ1)
that j�.u/x � �.v/xj 6 � . By the hypothesis (CQ2), we have

max
®ˇ̌
ux � �.u/x

ˇ̌
;
ˇ̌
vx � �.v/x

ˇ̌¯
6 �:

Thus, jx � u�1vxj 6 3� . This proves the claim.
Consequently,

!.G/ 6 lim sup
r!1

1

r
log

ˇ̌
p
�

StabG.x; r C �/
�ˇ̌
:
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Finally, observe that

lim sup
r!1

1

r
log

ˇ̌
p
�

StabG.x; r C �/
�ˇ̌
D lim sup

r!1

r C �

r

1

r C �
log

ˇ̌
p
�

StabG.x; r C �/
�ˇ̌
:

Hence, !.G/ 6 !.G=H/.

4. Buffering sequences

In this section, we fix constants � > 1, � > 0, and a .�; �/-path system space .X;P/.
Despite the fact that our space X does not carry any global geometric condition, we still
can obtain some control through constricting subsets. We could ignore the “wild regions”
if, for instance, we were able to “jump” from one constricting subset to another. The buf-
fering sequences below encapsulate this idea. In fact, the proofs of our main results consist
essentially in building up some particular buffering sequences. W. Yang had already intro-
duced this concept for piece-wise geodesics in [39].

Definition 4.1. Let ı, ", L > 0. Let A be a collection of subsets of X . A finite sequence
of subsets Y0; A1; Y1; : : : ; An; Yn � X where Y0 and Yn are the only possible empty sets
is .ı; ";L/-buffering on A if for every i 2 J1; nK, the set Ai belongs to A and there exists
a ı-constricting map �Ai WX ! Ai with the following properties whenever Yi and Yi�1
are non-empty:

(BS1) max¹diamAi .AiC1/; diamAiC1.Ai /º 6 " if i ¤ n.

(BS2) max¹diamAi .Yi�1/; diamAi .Yi /º 6 ".
(BS3) max¹d.Ai ; Yi�1/; d.Ai ; Yi /º 6 ".
(BS4) dAi .Yi�1; Yi / > L.

Figure 2 illustrates the intuition behind Definition 4.1.
What makes buffering sequences remarkable is that they satisfy a variant of Behrstock

inequality. We will find a direct application of the following inequality later in the study
of the quotient exponential growth rates.

Proposition 4.2. For every ı, " > 0, there exists � > 0 with the following property. Let
A; Y;B � X be a .ı; "; 0/-buffering sequence on ¹A;Bº. Then, for every x 2 X ,

min
®
dA.x; Y /; dB.x; Y /

¯
6 �:

Proof. Let ı, "> 0. Let �0 D �0.ı/> 0 be the constant of Proposition 2.5. Let � > �0C 1.
Its exact value will be precised below. LetA;Y;B �X be a .ı; "; 0/-buffering sequence on
¹A;Bº. Let x 2X . By symmetry, it suffices to show that if dA.x;Y / > � , then dB.x;Y /6
� . Assume that dA.x;Y / > � . Let a 2A such that jx � ajB 6 dB.x;A/C 1. Let b 2B . Let
y 2 Y . By (BS3), we have max¹d.A;Y /;d.B;Y /º6 "; hence, there exist p 2AC"C1 \ Y
and q 2 BC"C1 \ Y . It follows from the definition of buffering sequence that

max
®ˇ̌
b � �B.q/

ˇ̌
A
; jq � pjA;

ˇ̌
a � �A.p/

ˇ̌
B
; jp � yjB

¯
6 ":
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Y1

Y2

Y3

A1 A2 A3 A4

≥ L ≥ L ≥ L ≥ L

Figure 2. An example of a buffering sequence in the Poincaré disk model. In this example, the
sets Ai are subpaths of length > L of a given bi-infinite geodesic ˛. Each set Yi is the collection
of geodesics that are orthogonal to the geodesic segment of ˛ that is between Ai and AiC1. In
particular, the sets Yi are quasi-convex. For more intuition, one could interpret this picture on a tree.

Applying together Proposition 2.5 (1) Coarse nearest-point projection and (3) Coarse
Lipschitz map, we obtain

max
®ˇ̌
�B.q/ � q

ˇ̌
A
;
ˇ̌
�A.p/ � p

ˇ̌
B

¯
6 �2."C 1/C ��0 C �0:

Claim 4.3. dA.x; B/ > �0.

By the triangle inequality,

jx � bjA > jx � pjA �
ˇ̌
b � �B.q/

ˇ̌
A
�
ˇ̌
�B.q/ � q

ˇ̌
A
� jq � pjA:

Moreover, jx � pjA > dA.x; Y /. Since the element b is arbitrary and we have dA.x; Y / >
�0 C 1, we obtain dA.x; B/ > �0. This proves the claim.

Finally, we are going to estimate dB.x; Y /. By the triangle inequality,

jx � yjB 6 jx � ajB C
ˇ̌
a � �A.p/

ˇ̌
B
C
ˇ̌
�A.p/ � p

ˇ̌
B
C jp � yjB :

Since dA.x; B/ > �0, it follows from Proposition 2.5 (5) Behrstock inequality and the
definition of a that jx � ajB 6 �0C 1. Since the element y is arbitrary, we obtain dB.x;Y /
6 � for � D 2�0 C 1C 2"C �2."C 1/C ��0.

The corollary below will be applied to the study of the relative exponential growth
rates.
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Corollary 4.4. For every ı, ", � > 0, there exists L > 0 with the following property. Let
Y0; A1; Y1; : : : ; An; Yn � X be an .ı; "; L/-buffering sequence on ¹Aiº. Then, for every
i 2 J1; nK,

dAi .Y0; Yi / > �:

Proof. Let ı, ", � > 0. Let �0 D �0.ı; "/ > 0 be the constant of Proposition 4.2. We put
L D � C �0 C 1. Let y0 2 Y0. Let i 2 J1; nK.

Claim 4.5. dAi .y0; Yi / > dAi .Yi�1; Yi / � dAi .y0; Yi�1/.

Let yi�1 2 Yi�1 and yi 2 Yi . By the triangle inequality,

jy0 � yi jAi > jyi�1 � yi jAi � jy0 � yi�1jAi :

Note that jyi�1 � yi jAi > dAi .Yi�1; Yi /. Since the elements yi�1; yi are arbitrary, this
proves the claim.

Finally, we prove by induction on i 2 J1; nK that dAi .Y0; Yi / > � . If i D 1, then

dA1.Y0; Y1/ > �

follows from (BS4) since L > � . Assume that i 2 J1; n � 1K and dAi .Y0; Yi / > � . Then,
dAi .y0; Yi / > �0. It follows from Proposition 4.2 that dAiC1.y0; Yi / 6 �0. By (BS4),
dAiC1.Yi ; YiC1/ > L. Applying the previous claim, we obtain dAiC1.y0; YiC1/ > � . Since
the element y0 is arbitrary, dAiC1.Y0; YiC1/ > � . This concludes the inductive step.

5. Quasi-convexity in the intersection-image property

In this section, we fix constants � > 1, � > 0, and a .�; �/-path system space .X;P/.
In this section, we prove a variant of Proposition 2.5 (4) Intersection–Image. Basically,
we will be exchanging paths of P for quasi-convex subsets of X , further thickening the
involved sets.

Proposition 5.1. For every ı, � > 0, there exist � > 0 and �WR>0 �R>0! R>0 with the
following property. Let �AWX ! A be a ı-constricting map. Let Y be an �-quasi-convex
subset of X . Let "1 > 0, "2 > 0. Then,ˇ̌

diam.AC�C"1 \ Y C"2/ � diamA.Y /
ˇ̌
6 �."1; "2/:

Proof. Let ı, � > 0. Let �0 D �0.ı/ > 0 be the constant of Proposition 2.5. We put � D
ı C �C 1. Let �WR>0 � R>0 ! R>0 depending on ı; �. Its exact value will be precised
below. Let �AWX ! A be a ı-constricting map. Let Y be an �-quasi-convex subset of X .
Let "1 > 0, "2 > 0.

First, we prove that diamA.Y / 6 diam.AC�C"1 \ Y C"2/ C �."1; "2/. Let x; y 2 Y .
It suffices to assume that jx � yjA > ı. Let  2P joining x to y. By (CS2), there exist
p; q 2  such that

max
®ˇ̌
�A.x/ � p

ˇ̌
;
ˇ̌
�A.y/ � q

ˇ̌¯
6 ı:
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Since the subset Y is �-quasi-convex, there exist p0; q0 2 Y such that

max
®
jp � p0j; jq � q0j

¯
6 �C 1:

By the triangle inequality,

jx � yjA 6
ˇ̌
�A.x/ � p

ˇ̌
C jp � p0j C jp0 � q0j C jq0 � qj C

ˇ̌
q � �A.y/

ˇ̌
:

Since p0; q0 2 AC�C"1 \ Y C"2 , we have jp0 � q0j 6 diam.AC�C"1 \ Y C"2/. Hence,

jx � yjA 6 diam.AC�C"1 \ Y C"2/C 2ı C 2�C 1:

Now, we prove that

diam.AC�C"1 \ Y C"2/ 6 diamA.Y /C �."1; "2/:

Let x; y 2 AC�C"1 \ Y C"2 . Since x; y 2 Y C"2 , there exist x0; y0 2 Y such that

max
®
jx � x0j; jy � y0j

¯
6 "2 C 1:

By the triangle inequality,

jx � yj 6
ˇ̌
x � �A.x/

ˇ̌
C jx � x0j C jx0 � y0jA C jy

0
� yjA C

ˇ̌
�A.y/ � y

ˇ̌
:

Since x; y 2 AC�C"1 , it follows from Proposition 2.5 (1) Coarse nearest-point projection
that

max
®ˇ̌
x � �A.x/

ˇ̌
;
ˇ̌
y � �A.y/

ˇ̌¯
6 �.� C "1/C �0:

It follows from Proposition 2.5 (3) Coarse Lipschitz Map that

max
®
jx � x0jA; jy � y

0
jA

¯
6 �."2 C 1/C �0:

Since �A.x0/; �A.y0/ 2 �A.Y /, we have jx0 � y0jA 6 diamA.Y /. Hence,

jx � yj 6 diamA.Y /C 2�.� C "1/C 2�."2 C 1/C 4�0:

Finally, we put �."1; "2/ D max¹2ı C 2�C 1; 2�.� C "1/C 2�."2 C 1/C 4�0º.

Applying the symmetry of Proposition 5.1 in combination with Proposition 2.5 (6)
Morseness and (7) Coarse invariance, we deduce the following.

Corollary 5.2. For every ı>0, there exists �>0 with the following property. Let �AWX!
A and �B WX ! B be ı-constricting maps. Then,ˇ̌

diamA.B/ � diamB.A/
ˇ̌
6 �:

6. Finding a quasi-convex element
Given a torsion-free hyperbolic groupG containing a loxodromic element g0 and an infin-
ite index quasi-convex subgroup H , one can find another loxodromic element g 2 G
conjugate to g0 so that H has trivial intersection with hgi [3, Theorem 1]. The goal of
this section is to reimplement this fact in our setting, using a “quasi-convex element”
instead of a loxodromic element.
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Convention 6.1. In this section, we fix

• constants � > 1, � > 0,

• a .�; �/-path system group .G;X;P/.

Definition 6.2 (Quasi-convex element). Let � > 0. An element g 2 G is �-quasi-convex
if the following holds:

(QE1) g has infinite order.

(QE2) hgi is an �-quasi-convex subgroup of G.

We will write .g; A/ when we need to stress the �-quasi-convex subset A that hgi is
preserving.

The main result of this section is the following.

Proposition 6.3. Let � > 0. Assume that G contains an �-quasi-convex element .g; A/.
There exists � D �.�; g;A/ > 1 satisfying the following. Let .H; Y / be an �-quasi-convex
subgroup of G. Then, consider the following:

(i) For every u 2 G, if diam.uA \ Y / > � , then uA � Y C� .

(ii) Let H 6 K 6 G. If ŒK W H� > � , then there exist k 2 K such that

diam.kA \ Y / 6 �:

Remark 6.4. Under the notation of (ii), whenK DG, the element kgk�1 has the desired
property that we were looking for. Note that .kgk�1; kA/ is quasi-convex since P is
G-invariant.

The rest of the section is devoted to the proof of Proposition 6.3.

Definition 6.5. Let � > 1, l > 0. A map �W .Y;dY /! .Z;dZ/ between two metric spaces
is a .�; l/-quasi-isometric embedding if for every y; y0 2 Y ,

1

�
dY .y; y

0/ � l 6 dZ
�
�.y/; �.y0/

�
6 �dY .y; y0/C l:

We start with a variant of Milnor–Schwarz theorem. If U is a generating set of a
group H , we denote by dU the word metric of H with respect to U .

Lemma 6.6. For every � > 0, there exist � > 1 with the following property. Let .H; Y /
be an �-quasi-convex subgroup of G. For every y 2 Y , there exists a finite generating
set U of H such that the orbit map .H; dU /! X , h 7! hy is a .�; �/-quasi-isometric
embedding.

For the proof, one can use the same kind of argument as that of Milnor–Schwarz
theorem, but bearing in mind that Y might not be a length metric space, which is required
by the original statement. The only difference here is that one uses the paths of P with
endpoints in Y . They are enough for the proof since they approximate sufficiently well the
distances, at least in this situation.



X. Legaspi 1488

Lemma 6.7. Let �> 0. LetH 6G be an abelian subgroup. Let Y �X be anH -invariant
subset so that the action of H on Y is �-cobounded. Then, for every h 2 H and for every
y; z 2 Y , ˇ̌

jy � hyj � jz � hzj
ˇ̌
6 2�:

Proof. Let h 2 H . Let y; z 2 Y . Since the action of H on Y is �-cobounded, there exists
k 2 H such that jz � kyj 6 �. By the triangle inequality,

jy � hyj 6 jky � khyj 6 jky � zj C jz � hzj C jhz � khyj:

Since the subgroupH is abelian, jhz � khyj D jz � kyj. Thus, jy � hyj6 jz � hzj C 2�.
Finally, exchanging the roles of y and z, we obtain jy � hyj > jz � hzj � 2�.

Next, we are going to check that we can obtain uniform quasi-isometric embeddings
of Z in X via the orbit maps of quasi-convex elements of G that share the same constant.
For this reason, we introduce the following definition.

Definition 6.8. Let g 2 G. Let x 2 X . The stable translation length of g is

kgk1 D lim sup
m!1

1

m
jgmx � xj:

Note that kgk1 does not depend on the choice of the point x 2 X .

Remark 6.9. Let g 2 G. By subadditivity, for every x 2 X , we have

kgk1 D inf
m>1

1

m
jgmx � xj D lim

m!1

1

m
jgmx � xj:

Lemma 6.10. Let � > 0. Let g 2 G. Let A � X be a hgi-invariant subset so that the
action of hgi on A is �-cobounded. The following statements are equivalent:

(i) There exists x 2 X such that the orbit map Z ! X , m 7! gmx is a quasi-
isometric embedding.

(ii) kgk1 > 0.

(iii) There exists � D �.�;g;A/> 1 such that for every a 2A, the orbit map Z!X ,
m 7! gma is a .�; 0/-quasi-isometric embedding.

Proof. The implication (iii))(i) already holds.
(i))(ii). Assume that there exists x 2 X such that the orbit map Z! X , m 7! gmx

is a quasi-isometric embedding. Then, there exist � > 1, l > 0 such that for every m > 1,

1

�
�
l

m
6
1

m
jx � gmxj 6 � C

l

m
:

Therefore, kgk1 > 1
�
> 0.

(ii))(iii). Assume that kgk1 > 0. Let kgkA D infa2A ja � gaj. Then, we can define
� Dmax¹kgkAC 2�; 1

kgk1
; 1º. Let a 2A. Applying the triangle inequality, we obtain that
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for every m 2 Z, ja � gmaj 6 ja � gajjmj. It follows from Lemma 6.7 that ja � gaj 6
kgkA C 2�. Since kgk1 D infn2Z�¹0º

1
jnj
ja � gjnjaj, we obtain that for every m 2 Z,

ja� gmaj> kgk1jmj. Hence, the orbit map Z!X ,m 7! gma is a .�;0/-quasi-isometric
embedding.

Lemma 6.11. Let � > 0. Let .g; A/ be an �-quasi-convex element of G. There exists
� D �.�; g; A/ > 1 such that for every a 2 A, the orbit map Z ! X , m 7! gma is a
.�; 0/-quasi-isometric embedding. Moreover, kgk1 > 0.

Proof. We are going to apply Lemmas 6.6 and 6.10. Let a 2 A. According to Lemma 6.6,
there exists a finite generating set U of hgi such that the orbit map �W .hgi; dU /! X ,
h 7! ha is a quasi-isometric embedding. Furthermore, since g has infinite order, the map
�WZ! hgi, m 7! gm is an isomorphism. Let V D ��1.U /. In particular, �W .Z; dV /!
.hgi; dU / is an isometry. Moreover, the map  WZ! .Z; dV / is a quasi-isometric embed-
ding. Hence, the composition � ı � ı  is a quasi-isometric embedding. Now, both of the
statements of the lemma follow from Lemma 6.10.

We continue by upper bounding the length of a quasi-geodesic of X by the number
of points of an orbit of a subgroup H of G that fall inside a precise neighbourhood of
this quasi-geodesic, whenever the quasi-geodesic falls also inside a neighbourhood of that
orbit.

Lemma 6.12. For every �> 0, � > 1, l > 0, there exists � > 1 with the following property.
Let H 6 G. Let Y � X be an H -invariant subset such that the action of H on Y is �-
cobounded. Let y 2 Y . Let  be a .�; l/-quasi-geodesic of X such that  � Y C� . Let
U D ¹u 2 H W uy 2 C2�C1º. Then,

`./ 6 � jU j:

Proof. Let � > 0, � > 1, l > 0. Let � D �.�; �; l/ > 1. Its exact value will be precised
below. Let H , Y , y,  W Œ0; L�! X and U as in the statement. Let m D bL

�
c C 1. We fix

a partition 0 D t0 6 t1 6 � � � 6 tm D L of Œ0; L� such that jtm�1 � tmj 6 � and such that
ifm > 2, then for every i 2 J0;m� 2K, we have jti � tiC1j D � . Hence, `./ D L 6 �m.
We prove that m 6 jU j. Let i 2 J0;m � 1K. Denote xi D .ti /. Since the action of H on
Y is �-cobounded and  � Y C� , for every i 2 J0;m � 1K, there exists hi 2 H such that
jxi � hiyj 6 2�C 1. In particular, hi 2 U . From now on, we may assume that m > 2;
otherwise, there is nothing to show. Let i; j 2 J0;m � 1K such that i ¤ j . We claim that
hi ¤ hj . The claim will follow when we show that jhiy � hjyj > 0. By the triangle
inequality,

jhiy � hjyj > jxi � xj j � jxi � hiyj � jxj � hjyj:

Since  is a .�; l/-quasi-geodesic,

jxi � xj j >
1

�
jti � tj j �

l

�
:
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Since i; j 2 J0;m � 1K, we have that jti � tj j > � . To sum up,

jhiy � hjyj >
�

�
�
l

�
� 4� � 2:

Finally, we put � D �. l
�
C 4�C 2/C 1. Hence, jhiy � hjyj > 0. In particular, we obtain

m 6 jU j.

The following fact is a direct consequence of the triangle inequality.

Lemma 6.13. Let � > 0. Let H 6 G. Let Y � X be an H -invariant subset so that the
action of H on Y is �-cobounded. Then, for every y; z 2 Y , there exists h 2 H such that
for every r > 0,

h�1 StabG.y; r/h � StabG.z; r C 2�/:

Finally, we show that there is a uniform threshold that ensures the existence of a uni-
formly short element in the intersection of any pair of quasi-convex subgroups of G that
share the same constant.

Lemma 6.14. For every � > 0, there exists � > 1 with the following property. Let .H; Y /
and .K; Z/ be �-quasi-convex subgroups of G. If diam.Y \ Z/ > � , then there exist
y 2 Y \Z and h 2 H \K \ StabG.y; �/ � ¹1Gº.

Proof. Let � > 0. Let �0 D �0.�;�; �/ > 1 be the constant of Lemma 6.12. Let o 2 Y . We
denote W D StabG.o; 6�C 2/. Let �1 D �0jW j C �0. Note that the constant �1 is finite
since the action ofG onX is proper. We put � D 2�1C 4�C 2. Let .H;Y / and .K;Z/ be
�-quasi-convex subgroups ofG. Assume that diam.Y \Z/> � . Since diam.Y \Z/> �1,
there exist y;z 2 Y \Z such that jy � zj> �1. Let ˇ 2P joining y to z. Since `.ˇ/ > �1,
there exist z0 2 ˇ and a subpath  of ˇ joining y to z0 such that `./ D �1. We denote
U D ¹u 2 H W uy 2 C2�C1º and V D StabG.y; 4�C 2/.

The first step is to construct a map �WU ! V . Let u 2 U . By definition of U , there
exists x 2  such that juy � xj 6 2�C 1. Since the subgroup .K;Z/ is �-quasi-convex,
there exists ku 2 K such that jx � kuyj 6 2�C 1. By the triangle inequality,

juy � kuyj 6 juy � xj C jx � kuyj:

Consequently, ju�1kuy � yj 6 4�C 2. Hence, u�1ku 2 V . We define �WU ! V to be
the map that sends every u 2 U to u�1ku 2 V .

Next, we show that the map �WU ! V is not injective. Since Y is �-quasi-convex,
we have that  � ˇ � Y C� . It follows from Lemma 6.12 that jU j > 1

�0
`./. By hypo-

thesis, `./ D �0jW j C �0. Since the action of H on Y is �-cobounded, it follows from
Lemma 6.13 that there exists h 2 H such that h�1V h � W and hence

jW j > jh�1V hj D jV j:

Consequently, jU j > jV j. Therefore, the map �WU ! V is not injective.
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Now, we claim that U � StabG.y; �1 C 2�C 1/. Let u 2 U . By definition of U , there
exists x 2  such that d jx � uyj 6 2�C 1. By the triangle inequality,

jy � uyj 6 jy � xj C jx � uyj:

Moreover, jy � xj 6 `./ D �1. Hence, jy � uyj 6 �1 C 2�C 1.
Finally, since the map �WU ! V is not injective, there exist u1; u2 2 U such that

u1 ¤ u2 and u�11 ku1 D u
�1
2 ku2 . In particular, u2u�11 2H \K � ¹1Gº. Further, according

to the triangle inequality,

jy � u2u
�1
1 yj 6 jy � u2yj C ju2y � u2u

�1
1 yj:

It follows from the claim above that jy � u2u�11 yj 6 � . Therefore,

u2u
�1
1 2 H \K \ StabG.y; �/ � ¹1Gº:

We are ready to prove the proposition.

Proof of Proposition 6.3. Let � > 0. Assume that G contains an �-quasi-convex element
.g;A/. We are going to determine the value of � D �.�; g;A/ > 1. By Lemma 6.11, there
exists �0 D �0.�;g;A/> 1 such that for every a 2A, the orbit map Z!X ,m 7! gma is a
.�0;0/-quasi-isometric embedding. Let �1D �1.�/> 1 be the constant of Lemma 6.14. Let
�2 D �C �

2
0 �1. Let o 2A. We denote U D StabG.o; 2�2C �C 1/. Let � Dmax¹�2; jU jº.

Note that the constant � is finite since the action of G on X is proper. Let .H; Y / be an
�-quasi-convex subgroup of G.

(i) Let u 2 G. Assume that diam.uA \ Y / > � . Let a 2 A. We prove that ua 2
Y C�2 . Since P is G-invariant, the element .ugu�1; uA/ is �-quasi-convex.
Since diam.uA \ Y / > �1, according to Lemma 6.14, there exist b 2 A and
M 2 Z � ¹0º such that ub 2 uA \ Y and ugMu�1 2 H \ StabG.ub; �1/.
Since the action of hgi on A is �-cobounded, there exists m 2 Z such that
ja � gmbj 6 �. By Euclid’s division Lemma, there exist q; r 2 Z such that
m D qM C r and 0 6 r 6 jM j � 1. By the triangle inequality,

d.ua; Y / 6 jua � ugqMbj 6 jua � ugmbj C jugmb � ugqMbj:

Note that jua�ugmbj D ja� gmbj6 �. Moreover, it follows from Lemma 6.11
that

jugmb � ugqMbj D jgrb � bj 6 �0jr j:

Note also that jr j 6 jM j. Applying again Lemma 6.11, we obtain that jM j 6
�0jg

Mb � bj. By Lemma 6.14,

jgMb � bj D jugMu�1ub � ubj 6 �1:

Hence,
d.ua; Y / 6 �2 6 �:
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(ii) Let H 6 K 6 G. We argue by contraposition. Assume that for every k 2 K,
we have diam.kA \ Y / > � . We prove that ŒK W H� 6 jU j. It follows from (i)
that KA � Y C�2 . Then, there exists y 2 Y such that jo � yj 6 �2 C 1. Since
the action ofH on Y is �-cobounded, we have that Y � .Hy/C� . Hence,Ko �
.Hy/C�2C� . In particular, for every k 2 K, there exists hk 2 H such that

jko � hkyj 6 �2 C �:

Let K 0 be a set of representatives of the set HnK of right cosets of H . Then,
the set K 00 D ¹h�1

k
kW k 2 K 0º is a set of representatives of HnK. We claim that

K 00 � U . Let k 2 K 0. By the triangle inequality,

jh�1k ko � oj D jko � hkoj 6 jko � hkyj C jhky � hkoj:

Thus, jh�1
k
ko � oj 6 2�2 C �C 1. This proves the claim. Consequently,

ŒK W H� 6 jK 00j 6 jU j 6 �:

7. Constricting elements

Convention 7.1. In this section, we fix

• constants � > 1 and �, ı > 0,

• a .�; �/-path system group .G;X;P/,

• a ı-constricting element .g; A/,

• a ı-constricting map �AWX ! A.

7.1. A G -invariant family

The set of G-translates of A is a G-invariant family of ı-constricting subsets. Indeed,
consider the stabiliser Stab.A/ of A and fix a set Rg of representatives of G=Stab.A/. Let
u 2 G and u0 2 Rg such that uA D u0A. The map �uAWX ! uA defined as

8 x 2 X; �uA.x/ D u0�A.u
�1
0 x/;

is then ı-constricting since P is G-invariant. Moreover, the element .ugu�1; uA/ is ı-
constricting. To cope with the possible lack of hugu�1i-equivariance of the map

�uAWX ! uA;

we make the following observation.

Proposition 7.2. There exists � > 0 satisfying the following. Let u 2 G. Then, consider
the following:

(i) For every x 2 X , we have j�uA.x/ � u�A.u�1x/j 6 ı.
(ii) For every Y � X , we have j diamuA.Y / � diam.u�A.u�1Y //j 6 � .
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Proof. Let �0 D �0.ı/> 0 be the constant of Proposition 2.5. We put � D 2�0. Let u 2G.

(i) Let x 2 X . Denote y D u�1x. Let u0 2 Rg such that uA D u0A. We see thatˇ̌
�uA.x/ � u�A.u

�1x/
ˇ̌
D
ˇ̌
u0�A.u

�1
0 x/ � u�A.u

�1x/
ˇ̌

D
ˇ̌
�A.u

�1
0 uy/ � u

�1
0 u�A.y/

ˇ̌
:

Since u�10 u2 Stab.A/, it follows from Proposition 2.5 (2) Coarse equivariance
that j�uA.x/ � u�A.u�1x/j 6 �0.

(ii) Let Y � X . Let y; y0 2 Y . By the triangle inequality,ˇ̌ˇ̌
�uA.y/ � �uA.y

0/
ˇ̌
�
ˇ̌
u�A.u

�1y/ � u�A.u
�1y0/

ˇ̌ˇ̌
6
ˇ̌
�uA.y/ � u�A.u

�1y/
ˇ̌
C
ˇ̌
u�A.u

�1y0/ � �uA.y
0/
ˇ̌
:

It follows from (i) that

max
®ˇ̌
u�uA.y/ � u�A.u

�1y/
ˇ̌
;
ˇ̌
u�A.u

�1y0/ � �uA.y
0/
ˇ̌¯
6 �0:

Hence, we have ˇ̌
diamuA.Y / � diam

�
u�A.u

�1Y /
�ˇ̌
6 2�0:

7.2. Finding a constricting element

The goal of this subsection is to combine Propositions 6.3 and 5.1. We suggest to compare
(ii) below with the property (BS2) of the buffering sequences.

Proposition 7.3. Let � > 0. There exists � > 1 satisfying the following. Let .H; Y / be an
�-quasi-convex subgroup of G. Then, consider the following:

(i) For every u 2 G, if diamuA.Y / > � , then uA � Y C� .

(ii) Let H 6 K 6 G. If ŒK W H� > � , then there exists k 2 K such that

diamkA.Y / 6 �:

Proof. Let �> 0. Let � D �.�/> 1. Its exact value will be precised below. It follows from
Proposition 2.5 (6) Morseness and (7) Coarse invariance that there exists �0 > 0 such that
the element .g;A/ is �0-quasi-convex. Let �1Dmax¹�;�0º. By Proposition 5.1, there exist
�2 > 0, � > 0 depending on �1 such that for every u 2 G and for every �1-quasi-convex
subset Y � X , we have

diamuA.Y / � � 6 diam.uAC�2 \ Y / 6 diamuA.Y /C �:

According to Proposition 2.5 (6) Morseness and (7) Coarse invariance, there exist �3 D
�3.�2/ > 0 such that the element .g; AC�2/ is �3-quasi-convex. Let �4 D max¹�; �3º. Let
�5 D �5.�4; g;A/ > 1 be the constant of Proposition 6.3. Finally, we put � D �5 C �. Let
.H; Y / be an �-quasi-convex subgroup of G.
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(i) Let u 2G. Assume that diamuA.Y / > � . According to Proposition 5.1, we have
diam.uAC�2 \ Y / > �5, and according to Proposition 6.3 (i), this implies that
uA � Y C�5 � Y C� .

(ii) LetH 6K 6 G. We argue by contraposition. Assume that for every k 2K, we
have diamkA.Y / > � . According to Proposition 5.1, for every k 2 K, we have
diam.kAC�2 \ Y / > �5, and according to Proposition 6.3 (ii), this implies that
ŒK W H� 6 �5 6 � .

7.3. Elementary closures

The elementary closure of .g; A/ could be thought of as the set of elements u 2 G such
that uA is “parallel” to A.

Definition 7.4. The elementary closure of .g; A/ in G is defined as

E.g;A/ D
®
u 2 G W dHaus.uA;A/ <1

¯
:

Observe that E.g;A/ is a subgroup of G since dHaus is a pseudo-distance.

This subsection is devoted to provide a further description of E.g; A/. We suggest to
compare the proposition below with the property (BS1) of the buffering sequences.

Proposition 7.5. There exists � > 1 satisfying the following:

(i) For every u 2 G, we have

max
®

diamuA.A/; diamA.uA/
¯
> � ” dHaus.uA;A/ 6 �:

(ii) E.g;A/ D ¹u 2 G W dHaus.uA;A/ 6 �º.
(iii) ŒE.g;A/ W hgi� 6 � .

Proof. Let �0 > 0 be the constant of Proposition 7.2. According to Proposition 2.5 (6)
Morseness, there exists �1 > 0 such that the element .g; A/ is �1-quasi-convex. Let �2 D
�2.�1/ > 1 be the constant of Proposition 7.3. We put � D �0 C �2.

Claim 7.6. Let u 2 G. If dHaus.uA;A/ <1, then diamuA.A/ D1.

Let u 2 G. Assume that dHaus.uA; A/ < 1 and denote " D dHaus.uA; A/ C 1. By
Proposition 5.1, there exist �3, � > 0 such that for every u 2 G, we have

diamuA.A/ � � 6 diam.uAC�3 \ AC"/ 6 diamuA.A/C �:

Note that uA � uAC�3 \ AC" and diam.uA/ D diam.A/. Since the action of G on X
is proper and since the element g has infinite order, we have that diam.A/ D 1. Con-
sequently, we have

diam.uAC�3 \ AC"/ D1:

Finally, it follows from Proposition 5.1 that diamuA.A/ D1. This proves the claim.
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(i) Let u 2G. Assume that max¹diamuA.A/;diamA.uA/º> � . By Proposition 7.2,

diamu�1A.A/ > diamA
�
u�1�A.uA/

�
� �0:

Hence, diamu�1A.A/ > �2. It follows from Proposition 7.3 (i) that uA � AC�

and u�1A � AC� . Hence, dHaus.uA; A/ 6 � . The converse follows from the
claim above.

(ii) This follows from (i) and the claim above.

(iii) This follows from (i), (ii), and Proposition 7.3 (ii).

Finally, we obtain an algebraic description of E.g;A/.

Corollary 7.7. There exist � > 1 andM 2 J1; �K such that for every u 2 G, the following
statements are equivalent:

(i) u 2 E.g;A/.

(ii) There exists p 2 ¹�1; 1º such that ugMu�1 D gpM .

(iii) There exist m; n 2 Z � ¹0º such that ugmu�1 D gn.

Further, let EC.g; A/ D ¹u 2 GWugMu�1 D gM º. Then, ŒE.g;A/ W EC.g; A/� 6 2.

Proof. By Proposition 7.5 .i i/, there exists �0 > 1 such that ŒE.g; A/ W hgi� 6 �0. Let
� D �0ŠWe constructM 2 J1;�K. First, we claim that there exists a subgroupK 6 hgi such
thatK E E.g;A/ and ŒE.g;A/ W K� 6 � . Consider the natural action of E.g;A/ by right
multiplication on the set hginE.g;A/ of right cosets of hgi. This gives a homomorphism

�WE.g;A/! Sym
�
hginE.g;A/

�
:

Choose K D Ker.�/. Note that hgi D ¹h 2 E.g; A/W �.h/.hgi/º D hgi. Thus, K 6 hgi.
Moreover, K E E.g; A/. Further, we have that j Sym.hginE.g; A//j D ŒE.g; A/ W hgi�Š
and hence ŒE.g;A/ WK� divides ŒE.g;A/ W hgi�Š Therefore, ŒE.g;A/ WK�6 � . This proves
the claim. Now, since the element g has infinite order, the subgroup E.g; A/ is infinite.
Hence, since ŒE.g; A/ W K� <1, there exists M > 1 such that K D hgM i. Finally, we
remark that M is equal to the order of the element �.g/. Hence, M 6 � .

Let u 2 G. The implication (ii))(iii) already holds.
(i))(ii). Assume that u 2 E.g; A/. Since the subgroup hgM i is normal in E.g; A/,

there exists p 2 Z such that ugMu�1 D gpM . In particular,

hgM i D uhgM iu�1 D hugMu�1i D hgpM i:

Hence, if p 62 ¹�1;C1º, then hgM i 6� hgpM i. Contradiction.
(iii))(i). Assume that there exist m; n 2 Z � ¹0º such that ugmu�1 D gn. Since

both hgmi and hgni have finite index in hgi, there exist � > 0 such that the actions of
hugmu�1i on uA and of hgni on A are both �-cobounded. Let x 2 uA and y 2 A. We
obtain dHaus.uA;A/ 6 � C jx � yj. Hence, dHaus.uA;A/ <1.
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Finally, let EC.g; A/ D ¹u 2 G W ugMu�1 D gM º. We prove that�
E.g;A/ W EC.g; A/

�
6 2:

It is enough to assume thatE.g;A/¤EC.g;A/. Let u;v 2E.g;A/�EC.g;A/. We show
that v�1u 2 EC.g; A/. Since ugMu�1 D vgMv�1 D g�M , we have v�1ugMu�1v D
v�1g�Mv D gM and therefore v�1u 2 EC.g;A/. Hence, ŒE.g;A/ W EC.g;A/� D 2.

7.4. Forcing a geometric separation

In this subsection, we build large powers of our constricting element .g; A/ to produce
a translate Y 0 of a subset Y so that the distance between their projections to a preferred
G-translate ofA is large. We will do it in two different ways. We will apply these results to
verify (BS4) in the construction of buffering sequences. Our main tool will be as follows.

Lemma 7.8. There exists � > 0 such that for every x; x0 2 X and for every m 2 Z,

jx � gmx0jA > jmjkgk1 � jx � x0jA � �:

Proof. Let � D �.ı/ > 0 be the constant of Proposition 2.5. Let x; x0 2 X . Let m 2 Z. If
m D 0, then there is nothing to do. Assume that m ¤ 0. By the triangle inequality,

jx � gmx0jA >
ˇ̌
�A.x/ � g

m�A.x/
ˇ̌
� jx � x0jA �

ˇ̌
gm�A.x

0/ � �A.g
mx0/

ˇ̌
:

Note that

1

jmj

ˇ̌
�A.x/ � g

m�A.x/
ˇ̌
> inf
n>1

1

n

ˇ̌
�A.x/ � g

n�A.x/
ˇ̌
D kgk1:

By Proposition 2.5 (2) Coarse equivariance, we have jgm�A.x0/��A.gmx0/j6 � . There-
fore, we have jx � gmx0jA > jmjkgk1 � jx � x0jA � � .

The first way of forcing a geometric separation will be applied to the study of the
relative exponential growth rates.

Proposition 7.9. For every ", � > 0, there exists M > 1 with the following property. Let
H 6 G be a subgroup. Let Y � X be an H -invariant subset. If diamA.Y / 6 ", then for
every u 2 hgM ;H \E.g;A/i �H \E.g;A/, we have dA.Y; uY / > � .

Proof. Let ", � > 0. Let �0 > 0 be the constant of Proposition 2.5. By Lemma 7.8, there
exists �1 > 0 such that for every x; x0 2 X and for every m 2 Z,

jx � gmx0jA > jmjkgk1 � jx � x0jA � �1:

Combining Lemma 6.11 and Proposition 2.5 (6) Morseness, we obtain kgk1 >0. Accord-
ing to Corollary 7.7, there exists M0 > 1 such that

E.g;A/ D
®
u 2 G W 9p 2 ¹�1;C1º ugM0u�1 D gpM0

¯
:

Let m0 > ��2"�2�0��1
M0kgk1

. We put M DM0m0.
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Let H 6 G be a subgroup. Let Y � X be an H -invariant subset. Assume that

diamA.Y / 6 ":

Let u 2 hgM ;H \E.g;A/i �H \E.g;A/ and y; y0 2 Y . It follows from Corollary 7.7
that there exists n 2 Z multiple of M and f 2 H \ E.g; A/ such that u D gnf . By the
triangle inequality,

jy � gnfy0jA > jy � gny0jA �
ˇ̌
�A.g

ny0/ � gn�A.y
0/
ˇ̌
� jy0 � fy0jA

�
ˇ̌
gn�A.fy

0/ � �A.g
nfy0/

ˇ̌
:

By Lemma 7.8,
jy � gny0jA > jnjkgk1 � jy � y0jA � �1:

Note that u 62H\E.g;A/ implies n¤0. Hence, jnj>jM j. Since f 2H and diamA.Y /6",

max
®
jy � y0jA; jy

0
� fy0jA

¯
6 ":

By Proposition 2.5 (2) Coarse equivariance,

max
®ˇ̌
�A.g

ny0/ � gn�A.y
0/
ˇ̌
;
ˇ̌
gn�A.fy

0/ � �A.g
nfy0/

ˇ̌¯
6 �0:

Since the elements y; y0 are arbitrary, we obtain dA.Y; uY / > � .

The second way of forcing a geometric separation will be applied to the study of the
quotient exponential growth rates.

Proposition 7.10. For every ", � > 0, there existM > 1 and f WG �X ! ¹1G ; gM º with
the following property. Let Y � X be subset. If diamA.Y / 6 ", then for every u 2 G and
for every y 2 Y , we have duA.y; uf .u; y/Y / > � .

Proof. Let ", � > 0. Let �0 > 0 be the constant of Proposition 7.2. By Lemma 7.8, there
exists �1 > 0 such that for every x; x0 2 X and for every m 2 Z,

jx � gmx0jA > jmjkgk1 � jx � x0jA � �1:

Combining Lemma 6.11 and Proposition 2.5 (6) Morseness, we obtain kgk1 > 0. We put

M >
2� C 2"C 8�0 C �1

kgk1
:

Then, for every u 2 G and for every x 2 X , there exists f .u; x/ 2 ¹1G ; gM º such that
ju�1x � f .u;x/jA >� C "C 4�0: if ju�1x�xjA>�C"C4�0, we choose f .u; x/D 1G ;
otherwise, we choose f .u; x/ D gM . This defines f WG �X ! ¹1G ; gM º.

Let Y � X be a subset. Assume that diamA.Y / 6 ". Let u 2 G. Let y; y0 2 Y . By
abuse of notation, we write f instead of f .u; y/. By the triangle inequality,

jy � ufy0juA > jy � ufyjuA � jufy � ufy0juA;
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jy � ufyjuA > ju�1y � fyjA �
ˇ̌
�uA.y/ � u�A.u

�1y/
ˇ̌
�
ˇ̌
�uA.ufy/ � u�A.fy/

ˇ̌
;

jufy � ufy0juA 6
ˇ̌
�uA.ufy/ � uf�A.y/

ˇ̌
C jy � y0jA C

ˇ̌
uf�A.y

0/ � �uA.ufy
0/
ˇ̌
:

By hypothesis, ju�1y � fyjA > � C "C 4�0 and jy � y0jA 6 diamA.Y / 6 ". By Propos-
ition 7.2,

max
®ˇ̌
�uA.y/ � u�A.u

�1y/
ˇ̌
;
ˇ̌
�uA.ufy/ � u�A.fy/

ˇ̌¯
6 �0;

max
®ˇ̌
�uA.ufy/ � uf�A.y/

ˇ̌
;
ˇ̌
uf�A.y

0/ � �uA.ufy
0/
ˇ̌¯
6 �0:

Since the element y0 is arbitrary, we obtain duA.y; uf Y / > � .

8. Growth of quasi-convex subgroups

The goal of this section is to prove Theorems 1.8 and 1.13.

Convention 8.1. In this section, we fix

• constants � > 1 and �, ı, � > 0,

• a .�; �/-path system group .G;X;P/,

• a ı-constricting element .g0; A0/,

• an infinite index �-quasi-convex subgroup .H; Y / of G.

We are going to replace the axisA0 forA00 DE.g0;A0/A0. Note that dHaus.A0;A
0
0/ <

1 (Proposition 7.5 (ii)). Up to replacing ı for a larger constant, it follows from Proposi-
tion 2.5 (7) Coarse invariance and Corollary 7.7 that the element .g0;A00/ is ı-constricting.
By abuse of notation, we still denote A0 D A00. In this new setting, we have kA0 D A0,
for every k 2 E.g0; A0/. Let �0 D �0.ı; �/ > 1 be the constant of Proposition 7.3. Since
ŒG W H� D 1, there exist u 2 G such that diamuA0.Y / 6 �0 (Proposition 7.3 (ii)). We
denote .g; A/ D .ug0u�1; uA0/.

8.1. Case !.H / < !.G/

In this subsection, we prove the following.

Theorem 8.2 (Theorem 1.8). Assume that

(i) !.H/ <1,

(ii) the action of H on X is divergent.

Then, !.H/ < !.G/.

We require the following.

Proposition 8.3 (Theorem 1.10). There exist M > 1 satisfying the following:

(i) E.g;A/ is a finite extension of hgi.
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(ii) H \E.g;A/ is a finite proper subgroup of hgM ;H \E.g;A/i.

(iii) The natural homomorphismH �H\E.g;A/ hgM ;H \E.g;A/i!G is injective.

Proof. The subgroup E.g; A/ is a finite extension of hgi (Proposition 7.5 (iii)). This
proves (i). Since diamA.Y / 6 �0 and the action of H \ E.g; A/ on Y \ AC� for � D
d.A; Y / is proper and cobounded, the subgroup H \ E.g; A/ is finite (Proposition 5.1).
Further, since g has infinite order,

H \E.g;A/

must be a proper subgroup of hgM ;H \E.g;A/i. This proves (ii).
The rest of the proof is devoted to establish (iii). Let �1 D �1.ı/ > 0 be the constant of

Proposition 7.2. Let " D max¹�0 C 2�1; d.A; Y /º. Let L D L.ı; "; 0/ > 0 be the constant
of Corollary 4.4. By Proposition 7.9, there exists

M > 1

such that for every u 2 hgM ;H \E.g;A/i �H \E.g;A/, we have

dA.Y; uY / > L � 2�1:

Let �W H �H\E.g;A/ hgM ; H \ E.g; A/i ! G be the natural homomorphism. Let
w 2 H �H\E.g;A/ hg

M ; H \ E.g; A/i such that w ¤ 1. We are going to prove that
�.w/ ¤ 1. Note that the homomorphisms �jH and �jhgM ;H\E.g;A/i are injective. If w 2
H [ hgM ; H \ E.g; A/i, then �.w/ ¤ 1. Assume that w 62 H [ hgM ; H \ E.g; A/i.
Note that if there exists a conjugate w0 of w such that �.w0/ ¤ 1, then �.w/ ¤ 1. Up to
replacingw by a cyclic conjugate, there exist n> 1 and a sequence h1; k1; : : : ; hn; kn 2G
such thatwD h1k1 � � �hnkn, and such that for every i 2 ¹1; : : : ; nºwe have hi 2H �H \
E.g; A/ and ki 2 hgM ; H \ E.g; A/i �H \ E.g; A/. For every i 2 J1; nK, we denote
ui D h1k1 � � � hi and vi D h1k1 � � � hiki . We also denote v0 D 1G .

We are going to prove that the sequence v0Y; u1A; v1Y; : : : ; unA; vnY is .ı; "; L/-
buffering on ¹uiAº and then apply Corollary 4.4. Let i 2 J1; nK. Let us prove (BS1).
Assume for a moment that i ¤ n. Since we had modified the axis A0 above, for every
j 2 J1; nK, we have kjA D A. Hence,

�uiA.uiC1A/ D �viA.uiC1A/;

�uiC1A.uiA/ D �uiC1A.viA/:

By Proposition 7.2,

diamviA.uiC1A/ 6 diam
�
vi�A.hiA/

�
C �1;

diamuiC1A.viA/ 6 diam
�
uiC1�A.h

�1
i A/

�
C �1;

diamA.h�1i A/ 6 diamhiA.A/C �1:
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By Proposition 7.5 (i) and (ii), for every u 62 E.g;A/, we have

max
®

diamA.uA/; diamuA.A/
¯
6 �0:

Consequently,

max
®

diamuiA.uiC1A/; diamuiC1A.uiA/
¯
6 �0 C 2�1 6 ":

Let us prove (BS2). Note that

�uiA.vi�1Y / D �uiA.uiY /;

�uiA.viY / D �viA.viY /:

By Proposition 7.2,

diamuiA.uiY / 6 diam
�
ui�A.Y /

�
C �1;

diamviA.viY / 6 diam
�
vi�A.Y /

�
C �1:

Since diamA.Y / 6 �0, we obtain

max
®

diamuiA.vi�1Y /; diamuiA.viY /
¯
6 �0 C �1 6 ":

Let us prove (BS3). We have

max
®
d.uiA; vi�1Y /; d.uiA; viY /

¯
D max

®
d.uiA;uiY /; d.viA; viY /

¯
6 d.A; Y / 6 ":

Let us prove (BS4). It follows from Proposition 7.2 (i) that

duiA.vi�1Y; viY / > dA.Y; kiY / � 2�1:

By the choice of M , we have dA.Y; kiY / > LC 2�1. Hence, we have duiA.vi�1Y; viY /
> L. This proves that the sequence v0Y;u1A;v1Y; : : : ; unA;vnY is .ı; ";L/-buffering on
¹uiAº. It follows from Corollary 4.4 that dunA.Y; �.w/Y / > 0. Hence, �.w/ ¤ 1.

Proof of Theorem 8.2. Theorem 8.2 is an immediate consequence of Propositions 3.1 and
8.3.

8.2. Case !.G=H / D !.G/

In this subsection, we prove the following.

Theorem 8.4 (Theorem 1.13). !.G=H/ D !.G/.

Recall that given �WG ! G, we say that G is �-coarsely G=H if there exist � > 0,
x 2 X satisfying the following conditions:

(CQ1) For every u; v 2 G, if �.u/H D �.v/H , then j�.u/x � �.v/xj 6 � .

(CQ2) For every u 2 G, jux � �.u/xj 6 � .



Growth of quasi-convex subgroups in groups with a constricting element 1501

We require the following.

Proposition 8.5. There exist M > 1 and a map f WG ! ¹1G ; gM º with the following
property. Let �WG ! G, u 7! ufu. Then, G is �-coarsely G=H .

We prove some preliminary lemmas.

Lemma 8.6. There exists � > 0 such that for every m 2 Z, we have diamA.gmY / 6 � .

Proof. Let �1 > 0 be the constant of Proposition 2.5. We put � D �0 C 2�1. Let m 2 Z.
Let x; x0 2 Y . By the triangle inequality,

jgmx � gmx0jA 6 j�A.gmx/ � gm�A.x/j C jx � x0jA C jgm�A.x0/ � �A.gmx0/j:

By Proposition 2.5 (2) Coarse equivariance,

max
®ˇ̌
�A.g

mx/ � gm�A.x/
ˇ̌
;
ˇ̌
gm�A.x

0/ � �A.g
mx0/

ˇ̌¯
6 �1:

Moreover, we have jx � x0jA 6 diamA.Y / 6 �0. Since x; x0 are arbitrary, we obtain
diamA.gmY / 6 �0 C 2�1.

Lemma 8.7. For every "> 0, there exists � > 0 with the following property. Let A1;A2 �
X be ı-constricting subsets such that dHaus.A1; A2/ 6 ". Let x 2 AC"1 and y 2 AC"2 such
that jx � yjA1 6 ". Then, jx � yj 6 � .

Proof. Let �1 > 0 be the constant of Proposition 2.5. Let " > 0. Let � > 0. Its exact value
will be precised below. Let A1; A2 � X be ı-constricting subsets such that dHaus.A1; A2/

6 ". Let x 2 AC"1 and y 2 AC"2 such that jx � yjA1 6 ". By the triangle inequality,

jx � yj 6
ˇ̌
x � �A1.x/

ˇ̌
C jx � yjA1 C

ˇ̌
�A1.y/ � y

ˇ̌
:

Since x; y 2 AC2"C11 , it follows from Proposition 2.5 (1) Coarse nearest-point projection
that

max
®ˇ̌
x � �A1.x/

ˇ̌
;
ˇ̌
�A1.y/ � y

ˇ̌¯
6 �.2"C 1/C �1:

Finally, we put � D "C 2�.2"C 1/C 2�1.

We are ready to prove Proposition 8.5.

Proof of Proposition 8.5. Let �1 > 0 be the constant of Proposition 7.2. Let �2 > 0 be the
constant of Proposition 7.5. Let �3>0 be the constant of Lemma 8.6. Let "Dmax¹�2C2�1;
�1C �3;d.A;Y /C 1º. In particular, there exists y 2AC" \ Y . Let �4D �4.ı; "/> 0 be the
constant of Proposition 4.2. By Proposition 7.10, there existM > 1 and f WG!¹1G ;gM º
such that for every u 2 G, we have duA.y; uf .u/Y / > �4. For every u 2 G, we denote
fu D f .u/ and we put �WG ! G, u 7! ufu. Let �5 D �5."/ > 0 be the constant of
Lemma 8.7. We put � D max¹jy � gMyj; �5º. We are going to prove that G is �-coarsely
G=H with respect to y and � .
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In order to prove (CQ1), we just need to observe that for every u 2 G, we have

juy � ufuyj D jy � fuyj 6 jy � gMyj 6 �:

Let us prove (CQ2). Let u; v 2 G. Assume that ufuH D vfvH . We claim that

dHaus.uA; vA/ 6 �2:

By Proposition 7.5 (i), it suffices to prove that

max
®

diamv�1uA.A/; diamA.v�1uA/
¯
> �2:

We argue by contradiction. Assume instead that max¹diamv�1uA.A/; diamA.v�1uA/º 6
�2. We are going to prove that the sequence uA;ufuY;vA is .ı;";0/-buffering on ¹uA;vAº
and then apply Proposition 4.2. Note that the condition (BS4) is void in this case. Let us
prove (BS1). By Proposition 7.2,

diamuA.vA/ 6 diam
�
u�A.u

�1vA/
�
C �1;

diamvA.uA/ 6 diam
�
v�A.v

�1uA/
�
C �1;

diamA.u�1vA/ 6 diamv�1uA.A/C �1:

Hence,
max

®
diamuA.vA/; diamvA.uA/

¯
6 �2 C 2�1 6 ":

Let us prove (BS2). By Proposition 7.2,

diamuA.ufuY / 6 diam
�
u�A.fuY /

�
C �1;

diamvA.vfvY / 6 diam
�
v�A.fvY /

�
C �1:

By Lemma 8.6, we have max¹diamA.fuY /; diamA.fvY /º 6 �3. Hence,

max
®

diamuA.ufuY /; diamvA.vfvY /
¯
6 �1 C �3 6 ":

Let us prove (BS3). The hypothesis ufuH D vfvH implies ufuY D vfvY and therefore

max
®
d.uA; ufuY /; d.vA; ufuY /

¯
D max

®
d.uA; ufuY /; d.vA; vfvY /

¯
D d.A; Y / 6 ":

Hence, the sequence uA; ufuY; vA is .ı; "; 0/-buffering on ¹uA; vAº. It follows from
Proposition 4.2 that

min
®
duA.y; ufuY /; dvA.y; ufuY /

¯
6 �4:

However, by construction,

min
®
duA.y; ufuY /; dvA.y; ufuY /

¯
> �4:
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Contradiction. Therefore, dHaus.uA; vA/ 6 �2. This proves the claim. In particular,

dHaus.uA; vA/ 6 ":

Since y 2 AC", we have ufuy 2 uAC" and vfvy 2 vAC". Since ufuy; vfvy 2 ufuY , we
have jufuy � vfvyjuA 6 diamuA.ufuY / 6 ". According to Lemma 8.7,

jufuy � vfvyj 6 �:

This proves (CQ2).

Proof of Theorem 8.4. Theorem 8.4 is an immediate consequence of Propositions 3.4 and
8.5.
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