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Slim curves, limit sets and spherical CR uniformisations

Elisha Falbel, Antonin Guilloux, and Pierre Will

Abstract. We consider the 3-sphere S3 seen as the boundary at infinity of the complex hyper-
bolic plane H2C . It comes equipped with a contact structure and two classes of special curves. First,
R-circles are boundaries at infinity of totally real totally geodesic subspaces and are tangent to
the contact distribution. Second, C-circles are boundaries of complex totally geodesic subspaces
and are transverse to the contact distribution. We define a quantitative notion, called slimness, that
measures to what extent a continuous path in the sphere S3 is near to being an R-circle. We analyse
the classical foliation of the complement of an R-circle by arcs of C-circles. Next, we consider
deformations of this situation where the R-circle becomes a slim curve. We apply these concepts to
the particular case where the slim curve is the limit set of a quasi-Fuchsian subgroup of PU.2; 1/. As
an application, we describe a class of spherical CR uniformisations of certain cusped 3-manifolds.

1. Introduction

The frame of this work is the study of quasi-Fuchsian deformations in complex hyperbolic
space H2

C , which can be thought of as the unit ball in C2. Using a projective model, the
biholomorphism isometry group of H2

C can be identified with PU.2; 1/, the subgroup of
PGL.3;C/ corresponding to those transformations preserving a Hermitian form of signa-
ture .2; 1/.

Complex hyperbolic space is a rank one Hermitian symmetric space and as such, it
is a Kähler manifold with negative 1

4
-pinched curvature. Totally geodesic real planes and

complex lines realise the extremal values of the sectional curvature (namely, �1 for com-
plex lines and �1

4
for real planes). The boundary at infinity of H2

C can be seen as the
3-sphere S3. Complex lines and totally geodesic real planes give rise to two distinguished
classes of curves in S3: C-circles and R-circles, respectively (see [23]). The sphere S3

inherits a CR structure from its embedding into C2. This CR structure defines a contact
structure for which C-circles are everywhere transverse (they are the chains of the CR
structure) and R-circles are Legendrian. We review these structures in Section 2.

We first consider PO.2; 1/ seen as the stabiliser of a totally real totally geodesic
subspace of H2

C . These subspaces are often called real planes for short, and the typical
example is H2

R � H2
C , which, in coordinates, is the set of real points of the complex unit

ball. This embedding PO.2; 1/ � PU.2; 1/ gives isometric actions of Fuchsian subgroups

Mathematics Subject Classification 2020: 22E40 (primary); 32V05, 32V15, 32Q45 (secondary).
Keywords: hyperconvexity, CR spherical geometries, limit sets.

https://creativecommons.org/licenses/by/4.0/


E. Falbel, A. Guilloux, and P. Will 1508

of PO.2; 1/ preserving H2
R. Such subgroups are called R-Fuchsian. The main theme we

address here is to study deformations of R-Fuchsian subgroups of PU.2; 1/.
The complex hyperbolic plane has another type of totally geodesic subspaces: complex

lines, which give rise to the notion of C-Fuchsian subgroups of PU.2; 1/. But, contrary to
the R-Fuchsian case, any deformation of a cocompact C-Fuchsian subgroup of PU.2; 1/
is still C-Fuchsian (see [39] for this rigidity result and [29] for a review and further gen-
eralisations).

For a discrete subgroup of PU.2; 1/, a most natural object to consider is its limit set
in S3, which is a topological circle in the quasi-Fuchsian case. We aim at understanding
the relative position of the limit set of a quasi-Fuchsian group and C-circles in S3.

1.1. Horizontality, hyperconvexity and slimness in the sphere

We consider three related notions for subsets of S3. For the definition of these notions,
we use the Cartan invariant A of triples of points in S3. It is a numerical invariant that
classifies oriented triples up to the action of PU.2; 1/. For now, let us only mention that the
Cartan invariant takes all values in Œ��

2
; �
2
�, and that a triple (of pairwise distinct points)

.p1; p2; p3/ is contained in an R-circle (resp. a C-circle) if and only if A.p1; p2; p3/D 0
(resp. A.p1; p2; p3/ D ˙

�
2

). In particular, we note that if jA.p1; p2; p3/j < �
2

and the
three points are distinct, then the triangle .p1; p2; p3/ does not belong to any C-circle. A
more detailed presentation is given in Section 2.3.

Though our initial interest was for limit sets, we will first drop the invariance by a
group assumption. In Section 3, we work with arbitrary compact subsets E of S3 and
consider the following three properties:

• Horizontality. This is an extension for arbitrary compact subsets of S3 of the concept
of Legendrian submanifolds and is a local property. It is defined in Definition 3.1. It
amounts to asking that convergence pn ! p in E only happens tangentially to the
contact structure; see Lemma 3.5. We describe in Section 3.2 some horizontal orbits
of one-parameter subgroups of PU.2; 1/.

• Hyperconvexity. A subset of S3 is called hyperconvex if its intersection with any C-
circle contains at most two points. This notion is a version of a central notion in the
theory of Anosov representations, stemming from [30] and, in a context similar to this
paper, [35].

• Slimness. This is a quantitative notion that implies hyperconvexity and horizontality.
For a closed subset E of S3, we define

A.E/ D sup
®ˇ̌

A.p; q; r/
ˇ̌
; p; q; r 2 E

¯
:

We say that E is ˛-slim whenever A.E/ 6 ˛ < �=2; see Definition 3.9. It directly
implies hyperconvexity, from the above mentioned properties of A. But it also implies
horizontality, as proven in Proposition 3.11. In case E is the limit set of a repres-
entation of a surface group, the quantity A.E/ can be interpreted using bounded
cohomology as a Gromov norm of a cohomology class; see Remark 3.10 (5).
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We give geometric interpretations of slimness in Section 3.4. The simplest examples to
study these three properties and their consequences are R-circles. They are Legendrian,
hyperconvex and 0-slim since any triple of distinct points in an R-circle has vanishing
Cartan invariant. We will describe other families of examples and non-examples in Sec-
tion 3.5. In particular, we show that slim deformations of R-circles do exist. We define
bent R-circles; see Section 3.5.1. In Heisenberg coordinates (¹Œz; t �; z 2 C; t 2 Rº), for
each 0 < � < � , the set

E� D
®
Œr; 0�; r 2 RC

¯
[
®
Œrei� ; 0�; r 2 RC

¯
[ ¹1º

is slim; see Proposition 3.19. Note that E� is in fact an R-circle.
Moreover, as explained in Section 3.5.4, if � � PO.2; 1/ is a cocompact R-Fuchsian

group, then it can be deformed in PU.2; 1/ and the limit sets will be slim along this
deformation, at least locally. This remark is essentially borrowed from [35].

1.2. A foliation on the complement of an R-circle

We relate the three properties above and a known identification between the complement
of an R-circle and the unit tangent bundle UTH2

R, as studied in [11]. Assume ƒ0 is the
R-circle @1H2

R and denote by �0 its complement in S3. Then, for any pair of distinct
points p ¤ q in ƒ0, denote by L.p; q/ � H2

C the unique complex line containing p
and q. The C-circle @1L.p; q/ � S3 is naturally oriented by the complex structure of
L.p;q/. Moreover, it intersectsƒ0 only at p and q sinceƒ0 is hyperconvex. It is therefore
divided into two connected components, which are oriented intervals. We will denote
these intervals by p Õ q and q Õ p. An important result for our work is the following
proposition [11, Proposition 6.7].

Proposition. The open set �0 is homeomorphic to the unit tangent bundle of H2
R. In this

homeomorphism, the arcs p Õ q correspond to the orbits of the geodesic flow on UTH2
R.

We refer to Section 2.6 for more details. This proposition also tells us that �0 is
foliated by the arcs p Õ q. All along this paper, we reinterpret it in various ways; see
Corollary 2.16, Proposition 2.17, Corollary 4.2, Proposition 4.7.

If H2
R is acted on by an R-Fuschsian subgroup of PO.2; 1/ � PU.2; 1/, then so is �0

and the above homeomorphism descends to a homeomorphism between �n�0 and the
unit tangent bundle UT.�nH2

R/ of �nH2
R where orbits of the geodesic flow correspond to

projection of arcs.

1.3. Deforming the foliation

Describing deformations of this foliation when deforming ƒ0 is one of the main points
of this article (Section 4). As explained before, there exist Hausdorff-continuous deform-
ations .ƒt / of ƒ0 such that all ƒt are slim. Denote by �t the complement of ƒt . First,
we prove that arcs of C-circles sweep out �t .
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Theorem (First point of Theorem 4.4). Let ƒt be a Hausdorff-continuous family of slim
circles, with ƒ0 an R-circle. Then, for all t , �t is the union of the family of arcs ¹p Õ q;

p; q 2 ƒt ; p ¤ qº.

The strategy to prove this theorem is interesting per se. We first prove in Section 4.2
that a horizontal and hyperconvex circleƒ can be continuously extended outside the com-
plex hyperbolic space: there is an explicit continuous embedding of the Möbius strip
in CP2 n H2

C whose intersection with @1H2
C is exactly ƒ. Our construction is flexible

enough to prove that, under deformations of ƒ, the Möbius strips deform by homotopy;
see Section 4.3. One can then apply an argument of intersection in homology to prove the
theorem.

Thanks to this theorem, we can exhibit an actual deformation ƒt such that arcs of
C-circles define a foliation of �t .

Theorem (Theorem 4.16). For any � 2 Œ�=2; 3�=2�, the set of arcs of C-circles with
endpoints in E� defines a foliation of S3 nE� .

A caveat is necessary here: not all bent R-circles give rise to a foliation. Indeed, if the
bending is too strong (j� � � j > �

2
), then some arcs do intersect.

However, it is hard to deform an R-circle into a slim circle ƒ invariant under a group
and such that the family of arcs p Õ q (for p; q 2 ƒ) defines a foliation. Indeed, the
invariance by a single non-real loxodromic element implies that some arcs intersect. Recall
that a loxodromic element of PU.2; 1/ is not real if the trace of its cube – which is well
defined – is not real.

Theorem (Second point of Theorem 4.4). Let ƒ be a slim circle, which is invariant by a
non-real loxodromic transformation. Then, there are arcs p Õ q, with p ¤ q 2 ƒ, that
intersect in the complement � of ƒ.

We get as a corollary that no non-R-Fuchsian deformation of a lattice in PO.2; 1/
determines a foliation of the complement of its limit set by arcs of C-circles. This can
also be interpreted as the following rigidity theorem.

Theorem (See Theorem 4.20). Let � be a cocompact lattice in PO.2; 1/ and � W � !
PU.2; 1/ a small deformation of the inclusion. Letƒ be its limit set and� its complement.

If � is foliated by the arcs p Õ q, for p ¤ q 2 ƒ, then � is R-Fuchsian.

1.4. Drilling and crown-type uniformisations

We will call here CR-spherical uniformisation of a manifold M a homeomorphism M '

�=�.�1.M//, where � is an open subset of the sphere on which �.�1.M// acts prop-
erly discontinuously (see [28]). One should be careful with this definition as, sometimes,
uniformisation refers to the case where � is assumed to be the domain of discontinuity
of �.�1.M//. This is for instance the definition taken by Deraux in [15, Definition 1.3].
In particular, when � is the domain of discontinuity of �.�1.M//, then the 3-manifold
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that is uniformised appears as the boundary at infinity of a quotient of the complex hyper-
bolic plane. This happens for most of the examples of CR-spherical uniformisations of
hyperbolic 3-manifolds that have been constructed (see for instance [16, 34, 37]), but we
will consider here examples where it is not the case. Note also that� needs not be simply
connected – and is not in our examples. As a consequence, � is not injective in general.

Going back to deformation of R-Fuchsian surface groups, general arguments about
geometric structures, namely, the Ehresmann–Thurston principle and work by Guichard–
Wienhard [25], imply that, when deforming � to a representation � close enough to the
inclusion, the complement � of the limit set ƒ of �.�/ still uniformizes UT†. We recall
these arguments in Proposition 5.9.

We can drill along closed orbits of the geodesic flow in UT†. For an oriented closed
geodesic �, denote by UT†.�/ the unit tangent bundle drilled out along the natural lift
of �. The uniformisations of UT† described above naturally give uniformisations of
UT†.�/. The manifolds constructed in this way cover in particular a number of hyper-
bolic cusped manifolds. We say that � is filling if its complement in † is a union of discs.
Then, by [21], as soon as � is filling, the drilled out unit tangent bundle is hyperbolic. We
sum up this discussion in the proposition.

Proposition 1.1 (Corollary 5.5). Every manifold obtained by drilling a closed orbit of
the geodesic flow in the unit tangent bundle of a hyperbolic surface admits a family of
CR-spherical uniformisations.

An infinite number of cusped hyperbolic 3-manifolds can be obtained this way.

We use the work done in the previous sections to describe explicitly these uniform-
isations. Having fixed a small deformation �, we want to describe an open subset whose
quotient by �.�/ is homeomorphic to UT†.�/. To achieve that goal, we consider an ele-
ment 
 in � whose oriented axis lifts �. A small deformation � satisfies that ı WD �.
/
is still a loxodromic transformation in � WD �.�/. So it has a repelling and an attracting
fixed point, denoted by ı� and ıC, both belonging to the limit setƒ of�. We call the axis
at infinity of ı the arc ˛ı D ı� Õ ıC. Then, we define in Section 5 the crown:

Crown�;ı D ƒ [
� [
g2�

�.g/ � ˛ı

�
:

The crown is a closed set containing the limit set and is invariant under the action of �.
We denote by��;ı its complement. We describe the following explicit family of uniform-
isations of UT†.�/.

Theorem (See Theorem 5.7). For a small enough deformation �, the quotient�n��;ı is
homeomorphic to UT†.�/.

The proof works by deformation: if � is R-Fuchsian, this proposition is only a rephras-
ing of the foliation property. By small deformations, everything varies continuously and
the family of axes �.g/ � ˛ı do not intersect.
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1.5. Further questions and open problems

As mentioned above, many of the previously known examples of spherical CR uniformisa-
tions of hyperbolic 3-manifolds have been constructed as quotients of the whole disconti-
nuity region of a discrete subgroup of PU.2;1/. Many of them also share another common
feature: the holonomy groups of the structures appear as degenerations of quasi-Fuchsian
deformations of discrete subgroups of PO.2; 1/, typically .p; q; r/-triangle groups. Note
that other uniformisations have been obtained by applying Dehn-filling techniques to uni-
formisations obtained from these degenerations [1, 3, 38]. The typical situation observed
is the following.

Let � be a Fuchsian group and �0 W � ! PO.2; 1/ � PU.2; 1/ an R-Fuchsian repres-
entation. For a variety of examples of 1-parameter families of deformations �t of �0, there
exists a word w in � which becomes parabolic for a critical value tw (for any t < tw , all
words are mapped to loxodromic transformations). The representation �t is discrete and
faithful on the interval Œ0; tw � and is either non-discrete or non-faithful for t > tw . It is in
particular the conjectured situation when � is a triangle group. Indeed, the Schwartz con-
jectures [36] predict precisely which word w should become parabolic. In all cases where
a detailed study of the long-time deformations of a triangle group has been achieved, the
manifold at infinity for the critical value t D tw is a hyperbolic knot or link complement
[16,27,31,34,37]. Note that in the case of triangle groups, the character variety has dimen-
sion 1; thus, the situation is relatively simple algebraically. However, even in this simpler
case, doing a complete analysis is a difficult and very technical task based on the construc-
tion of fundamental domains. Also, it is not completely clear to this day if one can predict
which 3-manifold is likely to appear as degeneration of a given triangle group deformation
(see for instance the ubiquity phenomenon described by Deraux in [15, Theorem 1.5] and
extended recently by Alexandre in [5]). The Schwartz conjectures have been generalised
to some extent for quasi-Fuchsian deformations of surface groups by Parker and Platis (see
[32, Problem 6.2]). We hope that this work could be a step toward a better understanding
of these long time deformations.

Let us describe the situation of the .3; 3; 4/-triangle group, generated by three reflec-
tions �1, �2, �3; see Example 5.6 for precise notation. It is a known fact that the degeneration
of the .3; 3; 4/-triangle group corresponds to the word w D �3�2�1�2 becoming parabolic
and yields a uniformisation of the figure eight knot complement by the even subgroup
of the triangle group (see [16, 33]). The trace of the image of w, denoted by � , can be
used (up to a 2-fold covering) as a coordinate for the deformation space. We thus have a
1-parameter family of representations �� of the .3; 3; 4/-triangle group in PU.2; 1/.

The R-Fuchsian representation corresponds to the value � D 2C 2
p
2, whereas the

degeneration corresponds to � D 3 (in that case, w is mapped to a unipotent parabolic). It
can happen that � becomes smaller than 3, in which case �� .w/ is elliptic, and the repres-
entation is either non-discrete or non-faithful in that case. One can estimate the supremum
of Cartan invariants A.ƒ�/ for the limit sets of these representations. Numerical experi-
mentations indicate that the supremum is strictly increasing from 0 to �=2 as � decreases
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Figure 1. Estimation of the supremum of Cartan invariant for the .3; 3; 4/-triangle groups.

from 2C 2
p
2 � 4:828 to 3, with �=2 being attained for the degeneration (see Figure 1,

where the horizontal coordinate is � ). In other words, the limit sets of the representations
�� seem to remain slim until the degeneration.

Applying techniques using fundamental domains (see [16, 33]), it is possible to prove
that the manifold uniformised by the action of the even subgroup of the .3; 3; 4/-triangle
group on its discontinuity region is as follows.

• For �0 D 2C 2
p
2, the group is R-Fuchsian, and the 3-manifold uniformised by the

action of the even subgroup of the .3; 3; 4/-triangle group on its discontinuity region
is the unit tangent bundle of the .3; 3; 4/-orbisurface.

• For � 2 �3; 2C 2
p
2Œ, the image of the group remains discrete and isomorphic to the

.3; 3; 4/-triangle group. The manifold at infinity remains the same.

• For � D 3, the word w becomes unipotent parabolic. This implies a pinching of the
limit set (the attracting and repelling fixed points of �� .w/ and of its conjugates
coalesce), and the manifold at infinity changes: it is the figure eight knot complement.

However, at the initial value �0 D 2C 2
p
2, the action of the group on the complement

of the crown associated with ��0.w/ already uniformizes the figure eight knot complement
(this follows from [14]). Here, the open subset giving the uniformisation is smaller than the
discontinuity region. So we conjecture that all along this deformation, the crowns remain
embedded and we have a family of uniformisations of the figure eight knot complement,
with the last one being by the actual domain of discontinuity of the represented group.

Our results show that, in general, the topological type of the uniformised 3-manifold
remains constant close to the R-Fuchsian crown-type uniformisation, without considering
explicit fundamental domains.

One can also consider larger deformation spaces. The website [4] presents experiment-
ations about the even subgroup of the .3; 3; 4/-triangle group, which has a 2-parameter
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family of deformations around the R-Fuchsian one, together with an estimation of the
supremum of the Cartan invariant. The following questions seem very natural, for any
R-Fuchsian group:

• Does the whole connected component of convex-cocompact (or, equivalently, Anosov)
deformations of the R-Fuchsian representations consist of slim ones (or, equivalently,
hyperconvex Anosov)?

• Which words in the group can become parabolic at the boundary of slim convex-
cocompact representations?

• In the case of a representation at the boundary of slim convex-cocompact deforma-
tions with a finite set of classes of words having become parabolic, is the topology
of the uniformised manifold related to the topology of a crown for the R-Fuchsian
representation?

2. PU.2 ; 1/-geometry of CP 2

One of the main thrusts behind this paper is that the geometry of some convex-cocompact
representations of surface groups in PU.2; 1/ is best understood considering the natural
action on the complex hyperbolic space H2

C and its 3-sphere at infinity @H2
C as well as on

its complement H1;1
C in CP2. We hope to illustrate how the whole PU.2; 1/-geometry of

CP2 helps understand these representations. In this section, we review necessary material
about this geometry.

We will constantly use points in the projective space CP2 and lifts to C3. In this
situation, we will denote the point and its lift by the same letter, but bolded for the lift. For
example, if p is a point (resp. A is a projective transformation), p is a lift of p (resp.A is
a matrix lift of A). We denote by PU.2; 1/ the projective unitary group associated with a
Hermitian form h�; �i of signature .2; 1/ on C3. At this stage, we do not specify this form.

2.1. Action of PU.2 ; 1/ on CP 2

The action of PU.2; 1/ on CP2 has three orbits which are the projections to CP2 of the
three cones in C3 defined by

V � D
®
Z 2 C3; hZ;Zi < 0

¯
;

V C D
®
Z 2 C3; hZ;Zi > 0

¯
;

V 0 D
®
Z 2 C3; hZ;Zi D 0

¯
:

(1)

Clearly the two orbits P .V ˙/ are open, and P .V 0/ is closed. We will say that a point
p 2CP2 has negative, null or positive type when it belongs respectively to P .V �/, P .V 0/
or P .V C/. As sets, the two open orbits identify respectively to the homogeneous spaces

P .V �/ � PU.2; 1/=P
�
U.2/ � U.1/

�
D H2

C;

P .V C/ � PU.2; 1/=P
�
U.1/ � U.1; 1/

�
D H1;1

C :
(2)
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We thus view these two homogeneous spaces as subsets of CP2, where each of them
appears as the complement of the closure of the other. These two spaces can be equipped
with metrics: a Hermitian one for H2

C and pseudo-Hermitian one for H1;1
C . Let us describe

these metrics (see also [40]). First, whenever p 2 CP2 does not have null type, we use
the identification of the tangent space at p given by

TpCP2 D Hom.Cp;p?/: (3)

Now, if ˛; ˇ are two linear maps Cp! p?, the metric is given by

hp.˛; ˇ/ D �4

˝
˛.p/; ˇ.p/

˛
hp;pi

: (4)

Choosing a lift p of p so that hp;pi D �1 if p 2 H2
C and hp;pi D C1 if p 2 H1;1

C , and
identifying ˛ and ˇ with the images of p denoted by ˛.p/ D u, ˇ.p/ D v, we obtain

hp.u; v/ D 4hu; vi if p 2 H2
C;

hp.u; v/ D �4hu; vi if p 2 H1;1
C :

(5)

If p 2 H2
C , the direction Cp has negative type, and the restriction of h�; �i to .Cp/? has

signature .C;C/. Thus, in this case, h is a Hermitian metric on TH2
C , whose real part

is Riemannian. This is the complex hyperbolic metric. The factor 4 in (4) corresponds
to normalising the sectional curvature of H2

C as being pinched between �1 and �1
4

. If
p 2 H1;1

C , the direction Cp has positive type, and the restriction of h�; �i to .Cp/? has
signature .C;�/. Therefore, in this case, h is a pseudo-Hermitian metric on TH1;1

C with
(Hermitian) signature .1; 1/, whose real part is pseudo-Riemannian with signature .2; 2/.

The complex hyperbolic distance on H2
C can be expressed in Hermitian terms by

cosh2
�
d.p; q/

2

�
D
hp; qihq;pi

hp;pihq; qi
: (6)

The third orbit P .V 0/ of the PU.2; 1/-action on CP2, the closed one, is the projection
to CP2 of the quadric ¹Z 2 C3; hZ;Zi D 0º. This orbit identifies with the boundary at
infinity of H2

C , and we will denote it by @H2
C (it is of course the boundary of H1;1

C as well).
It is a 3-sphere and we will also often denote it simply by S3. Once a lift p of p is chosen,
the tangent space Tp@H2

C can be identified with the 3-dimensional real vector subspace
of TpCP2 defined by the projection of ¹Z 2 C3; Re.hZ;pi/ D 0º. This tangent space
contains the complex 1-dimensional subspace which is the projection of ker.h�;pi/. This
defines a CR-structure on @H2

C , which is the homogeneous CR structure given by the field
of tangent complex lines .kerh�;pi/p2@H2C

; see [11]. The contact structure defined by this
field of planes allows one to define horizontal submanifolds

Definition 2.1. A smooth submanifold of @H2
C is horizontal if at each point its tangent

space is contained in the contact plane.

Such a manifold, if connected, can only be a point or a Legendrian curve. One of the
main points of Section 3 will be to extend this notion to non-smooth locally closed sets.
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2.2. Coordinate systems

Let us describe the objects considered in the previous section with the following two
special choices of Hermitian forms:

HB D

241 1

�1

35 or HS D

24 1

2

1

35 : (7)

Using the Hermitian form given by HB leads to the so-called ball model of H2
C . With this

choice of coordinates, H2
C identifies with the unit ball of C2, where C2 itself is seen as

the affine chart z3 D 1 of CP2. Any point in H2
C can be lifted to C3 in a unique way

as a vector Œz1; z2; 1�T , where zi 2 C and jz1j2 C jz2j2 < 1. In this model, the boundary
@H2

C is just the 3-sphere S3 defined by jz1j2 C jz2j2 D 1. In turn, H1;1
C identifies with the

complement in CP2 of the closed ball H2
C [ S3.

On the other hand, if one uses the formHS , then the projection of V � [ V0 to CP2 is
contained in the affine chart ¹Z3 D 1º, except for the projection of Œ1; 0; 0�T , which is at
infinity. Thus, any point in the closure of H2

C admits a unique lift to C3 which is given by

v.z;t;u/ D

264�jzj2 � uC i tz

1

375 and 1 D

26410
0

375 ; (8)

where z 2 C, t 2 R and u > 0. These coordinates are often called horospherical coordin-
ates since the level sets of u > 0 are the horospheres centred at1. When necessary, we
will call the vector given in (8) the standard lift of a point in H2

C . We will denote by Œz; t �
the point in @H2

C which is the projection of vz;t;0. Note that

hv.z;t;u/; v.z;t;u/i D �2u;

so that the vectors v.z;t;u/ for which u < 0 are lifts of those points of H1;1
C that belong to

the affine chart ¹Z3 D 1º. The line at infinity is the projection to CP2 of ker.h�;1i/. It
can be identified with the tangent complex line at1. Similarly, the tangent complex line
ker.h;pi/ at points p D Œx C iy; t � 2 @H2

C is easily seen to be the kernel of the 1-form

˛ D dt � 2xdy C 2ydx: (9)

The 1-form ˛ is the contact form of the Heisenberg group. A C 1 curve 
 in @H2
C is

horizontal, or Legendrian, if and only if its velocity belongs to the contact plane. This
condition can be written with lifts in a simple way: 
 is horizontal if and only if it satisfies

8s 2 R;
˝ �

.s/;
.s/

˛
D 0; (10)

where 
.s/ is the standard lift of 
.s/.
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2.3. Totally geodesic subspaces and the Cartan invariant

The maximal proper totally geodesic spaces of H2
C come in the following two types.

(1) The complex lines of H2
C are the non-empty intersections with H2

C of projective
lines in CP2. Note that a projective line intersects H2

C if and only if it is the
projectivisation of a hyperbolic 2-plane of C2;1 (that is, those where the restriction
of h�; �i has signature .C;�/). The sectional curvature along a complex line is
constant and equal to �1. Typical examples are the complex axes of coordinates
in the ball model of H2

C .

(2) The real planes of H2
C are the non-empty intersections with H2

C of real projective
planes. Real projective planes intersecting H2

C can be described as projectivisa-
tions of totally real subspaces of C2;1, that is, 3-dimensional real subspaces of
C2;1 for which the restriction of h�; �i is real. These real planes realise the other
bound �1=4 of the sectional curvature.

When clear from the context, we will often use the words complex line or real plane for
the complex hyperbolic or projective objects. When necessary, we will specify complex
hyperbolic lines or real hyperbolic planes, as opposed to complex projective lines and real
projective planes.

We will make a constant use of the curves defined in @H2
C by intersecting complex

lines and real planes with H2
C .

Definition 2.2. A C-circle in @H2
C is the intersection of a complex line of H2

C with @H2
C .

Similarly, an R-circle in @H2
C is the intersection of a real plane of H2

C with @H2
C .

Example 2.3. Examples of R- and C-circles in the Heisenberg space are depicted in
Figures 2 and 3. Their description is as follows:

(1) In Heisenberg coordinates, the two axes of coordinates in the plane C � ¹0º are
examples of R-circles, and more generally, so is any line through the origin in
that plane. The axis ¹Œ0; t �; t 2 Rº is a C-circle. More generally, the R-circles
that contain the point1 are the lines through a point p that are contained in the
contact plane at p. The C-circles through1 are the vertical lines.

(2) The R-circles that do not contain the point 1 are (compact) topological circles
whose projection onto C is a square lemniscate (the tangents at the double point
of the projection are orthogonal). The C-circles not containing 1 are ellipses
contained in contact planes, which are centred at the contact point.

Note in particular that R-circles are horizontal, whereas C-circles are everywhere
transverse to the contact distribution. The latter facts are clear in the situation where the
considered R or C-circle contains1, and they follow from the transitivity of the action
of PU.2; 1/ on the two families of complex hyperbolic lines and real hyperbolic planes.

Another notable difference between C-circles and R-circles is that C-circles have a
natural orientation which is induced by the complex structure of the complex line they
bound, whereas R-circles do not have a natural PU.2; 1/-invariant orientation.
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Figure 2. Two R-circles: the red line is the x axis of the Heisenberg coordinates. It is the boundary
of H2R D R2 \ H2C . The blue curve is the boundary of a real plane orthogonal to H2R. The left
picture is a view in perspective in Heisenberg space, and the right picture is the vertical projection
of the two R-circles on C.

Figure 3. Examples of C-circles in Heisenberg space. On both pictures, the black line is a C-circle
passing through1. Note that the pair of blue C-circles on the left is unlinked, whereas in the right
picture they are linked.

The Cartan invariant will play an important role from Section 3.3 on. It gives a simple
characterisation of triples of points that lie in a C-circle or in an R-circle.

Definition 2.4. Let .p;q; r/ be a triple of points in @H2
C . If the points are pairwise distinct,

we define the Cartan invariant of the triple .p; q; r/ to be

A.p; q; r/ D arg
�
�hp; qihq; rihr;pi

�
: (11)

If at least two of the points coincide, we define it to be A.p; q; r/ D 0.

The quantity (11) does not depend on the choices made for lifts and is PU.2; 1/-
invariant. The following statement sums up the main features of this invariant (see [23,
Chapter 7] for proofs).

Proposition 2.5. The Cartan invariant enjoys the following properties.

(1) For any triple .p; q; r/, A.p; q; r/ 2 Œ��=2; �=2�.
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(2) Two triples of pairwise distinct points .p1; p2; p3/ and .q1; q2; q3/ have the same
Cartan invariant if and only if there exists a map g 2 PU.2;1/ such that g.pi /D qi
for i D 1; 2; 3.

(3) For a triple of distinct points, jA.p; q; r/j D �=2 if and only if the triple .p; q; r/
lies on the boundary of a complex line.

(4) A.p;q; r/D 0 if and only if the triple .p;q; r/ lies on the boundary of a real plane.

(5) A is a 3-cocycle. In particular, if p; q; r; s are four points, we have

A.p; q; r/ �A.p; q; s/CA.p; r; s/ �A.q; r; s/ D 0: (12)

2.4. The line map and the duality between H2
C

and H1;1

C

We will often work with projective lines in CP2. The set of lines in CP2 can be described
as the dual projective space, denoted by CP2�. The Hermitian form gives a natural identi-
fication between CP2 and CP2�, which in turn gives a polarity between points and lines
of CP2. We review here some basic properties of this notion of polarity.

Definition 2.6. Let p be a point in CP2 and L a projective complex line. We say that p
is polar to L if L D P .p?/.

The restriction of the Hermitian form on planes can be of signature .C;C/, .�;C/ or
degenerate. Using polarity, we can describe the situation as follows:

• Positive type directions are orthogonal to 2-planes with signature .C;�/. This means
that points in H1;1

C are polar to complex lines that intersect H2
C .

• Negative type directions are orthogonal to 2-planes with signature .C;C/. Thus,
points of H2

C are polar to complex lines contained in H1;1
C .

• Null type directions are orthogonal to 2-planes with signature .0;C/. In fact, a point p
in @H2

C is polar to its orthogonal complex line p? tangent to @H2
C at p. It is the only

case where p belongs to its polar line.

In particular, we observe that H1;1
C is in bijection with the Grassmanian of complex lines

of H2
C . This is indeed another usual definition of H1;1

C .
Let us denote by� the diagonal of CP2�CP2, and by�S3 the subset S3�S3��. For

any pair a; b of distinct points in CP2, we call L.a; b/ the (unique) complex line contain-
ing a and b. We note that this defines a PGL.3;C/-equivariant map on .CP2 �CP2/ n�,
where PGL.3;C/ acts diagonally on CP2 � CP2. We can extend this map to �S3 in a
PU.2; 1/-equivariant way by defining L.a; a/ to be the complex line tangent to S3 at a;
that is, L.a; a/D P .ker.h;ai//. This is the largest PU.2; 1/-equivariant extension of L to
a subset of CP2 �CP2 containing .CP2 �CP2/ n�.

Definition 2.7. The map

L W
�
.CP2 �CP2/ n�

�
[�S3 �! CP2� (13)

defined above is called the line map.
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The following proposition will play an important role in our work.

Proposition 2.8. The line map is continuous on CP2 �CP2 n�, but it is not continuous
at any point of �S3 .

Proof. Observe that for any neighbourhood U of a point p in ..CP2 �CP2/ n�/[�S3 ,
L.p;U /D CP1 identified to the set of all lines passing through p. But L.p;p/ is a point
in CP2�. This shows that the line map is not continuous at diagonal points.

As explained before, we can identify CP2� to CP2 using the Hermitian form. It leads
to a variant of the line map.

Definition 2.9. For any pair .a; b/ of distinct points in CP2, the point a� b is the inter-
section of the polar lines to a and b.

As a direct consequence of the above discussion and definitions, we have the follow-
ing.

Lemma 2.10. The line map L enjoys the following properties.

(1) For any pair .a; b/ of distinct points of CP2, the line L.a; b/ is polar to a� b.

(2) For any point a in S3, the line L.a; a/ is polar to a.

Given a and b as two vectors in C3, we denote by a ^ b the vector in C3 obtained by
the usual formula of the vector product of two vectors. By twisting the vector product, one
obtains a useful way of computing a� b (see also [23, Section 2.2.7]). This will allow us,
later on, to explicitly compute when working with the line map.

Definition 2.11. Let a and b be two vectors in C3, and let J be the matrix of the Hermitian
form in the canonical basis. We denote by a� b (the box product) the vector J�1a ^ b.

Remark that the vector a� b is orthogonal to a and b: this follows directly from

hX; a� bi D XT J � J�1a ^ b; (14)

which is clearly vanishing if X D a or X D b. The vector a� b vanishes if and only if a
and b are proportional. If a ¤ b, then a� b is a lift of a� b.

Computing with the box product is made easier by the following relations, where all
come from standard identities for the usual exterior product. For any vectors a; b; c;d 2
C3, we have (see also [23, Section 2.2.7])

ha� b; c � di D hd ; aihc;bi � hc; aihd ;bi; (15)

ha;b� ci D det.a;b; c/; (16)

.a� b/� .a� c/ D det.a;b; c/ � a: (17)

2.5. Geometry of H1;1

C

We will be most interested in this paper by C-circles, which are intersections of a pro-
jective line meeting H2

C with its sphere at infinity. As stated before, these lines are polar
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to points in H1;1
C . We thus describe here some properties of the geometry of H1;1

C about
C-circles and polarity that we will need later .

First, we can understand when two C-circles meet, using polarity.

Lemma 2.12. Let x ¤ y be two points of H1;1
C . Then, the C-circles polar to x and y meet

if and only if x � y 2 S3. Their intersection is then the point x � y.
In particular, if a¤b and c¤d are four points in S3, not belonging to the same com-

plex line, the C-circle through a; b and the one through c; d meet if and only if .a� b/�
.c � d/ 2 S3.

Proof. The lines polar to x and y meet exactly at the point x � y. So the C-circles meet
if and only if this point belongs to the sphere. The second part follows readily.

We denote by RP2 � CP2 the projection to CP2 of R3 � C3: it is the set of points
in CP2 fixed by complex conjugation. As we have seen above, the intersection of RP2

with H2
C is H2

R, and its intersection with S3 is the R-circle @H2
R.

Restricted to R3, the Hermitian form gives a scalar product. This comes with a notion
of polarity. These two notions are coherent.

Lemma 2.13. The following are equivalent:

(1) A point m 2 H1;1
C belongs to RP2.

(2) The complex line Lm polar to m intersects H2
R along a geodesic.

(3) The C-circle @Lm intersects @H2
R in exactly two points.

Proof. The last two items are equivalent since H2
R is totally geodesic.

AssumeLm intersects H2
R along a geodesic 
 , and pick two points p;q 2 
 . Then,mD

p � q by definition. As p and q belong to RP2, they are fixed by complex conjugation
and so does m. So m belongs to RP2.

Conversely, assume that m2RP2, and pick a lift m with real coefficients. Then, the
orthogonalm? intersects R3 along a 2-dimensional (real) vector subspace V . The projec-
tion of this subspace to CP2 intersects H2

C along a geodesic which is contained in H2
R.

We can look at intersections of tangent lines to the sphere with RP2. Elementary
projective geometry gives the following.

Proposition 2.14. Let p 2 S3 n @H2
R. Then, we have the following:

(1) The complex line L.p; p/ tangent to S3 at p intersects RP2 in exactly one point.

(2) The pointmDL.p;p/\RP2 is polar to a complex line whose C-circle intersects
@H2

R twice and contains p.

Proof. Let p be a point in S3 n @H2
R. It is not real, so distinct from its complex conjug-

ate Np. One gets that
L.p; p/ \RP2 D L.p; p/ \L. Np; Np/:

These two distinct complex lines intersect in exactly one point m, proving the first item.
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For the second item, observe that m is orthogonal to p and Np by construction. Hence,
the line L.p; Np/ is polar tom2RP2. The associated C-circle L.p; Np/\S3 goes through p.
The previous proposition gives that it intersects twice @H2

R.

We call an arc of C-circle any connected component of the complement of two distinct
points in a C-circle. For a ¤ b in S3, the unique C-circle through a and b decomposes
into two arcs with endpoints a and b. Note that these two arcs are naturally oriented by
the orientation of C . This leads to the following notation.

Definition 2.15. Let a ¤ b be two points of S3. We call (open) arc from a to b, denoted
by a Õ b, the portion of the C-circle through a and b oriented from a to b.

These arcs are chains in the CR-geometry. They interact with R-circles to define a nice
foliation, as we now review.

2.6. A foliation by arc of C-circles and unit tangent bundles

The geometry explained above may be used to describe the foliation of S3 n @H2
R by arcs

of C-circles [11, Proposition 6.7] – see Figure 5.

Corollary 2.16. Let R be an R-circle in S3. The set of arcs a Õ b of C-circles whose
endpoints a; b belong to R defines a foliation of S3 nR.

Proof. Since PU.2; 1/ acts transitively on the set of real planes of H2
C , we may assume

thatRD @H2
R. Now, let p 2 S3 n @H2

R. A complex line contains p if and only if it is polar
to a point n in the tangent complex line L.p; p/ and intersects @H2

R in two points if and
only if n 2 RP2. The result thus follows directly from Proposition 2.14.

Moreover, if two such arcs a Õ b and c Õ d meet at p 2 S3 n R, then the C-circles
supporting these arcs also meet at Np. Since p ¤ Np, they have two common points, so the
C-circles are indeed the same one. This C-circle has only two intersection point with R,
by Proposition 2.14. So ¹a; bº D ¹c; dº. As two opposite arcs of a single C-circle are
disjoint, we have .a; b/ D .c; d/.

The foliation given by Corollary 2.16 gives a natural homeomorphism between S3 n
@H2

R and the unit tangent bundle of H2
R, which we now describe. Denote by J the complex

structure on H2
C . Viewing H2

R as a subspace of H2
C gives an embedding UTH2

R � UTH2
C

and J acts on it. The homeomorphism is given by

' W UTH2
R �! S3 nH2

R

.p; Eu/ 7�! 
.p;�Jp Eu;C1/;

where, for any Ev tangent at p to H2
C , 
.p; Ev;C1/ is the point at infinity of the geodesic

ray from p in the direction Ev (see Figure 4). Note that ' is in fact defined on the whole
UTH2

C . If .p; Eu/ 2 UTH2
R, and 
 is the oriented spanned geodesic, the image of the orbit

of the geodesic flow is obtained by applying J to all unit tangent vectors along 
 . In
particular, it is contained in the boundary of the complex line of H2

C spanned by p and Eu.
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Figure 4. Identification between the complement in S3 of an R-circle R and the unit tangent bundle
of H2R.

Figure 5. A few leaves of the foliation of S3 n @H2R by arcs of C-circles (see Corollary 2.16).

In fact, it is exactly the arc of C-circle connecting 
.p;�Jp Eu;C1/ and 
.p; Jp Eu;C1/
on which the natural orientation (given by the complex structure) coincides with the one
given by Eu. On Figure 4, this arc is the “lower” one.

This foliation and its link to the unit tangent bundle UTH2
R may in turn be used to

understand CR-spherical structures on unit tangent bundles of hyperbolic surfaces. Let
us consider a cocompact R-Fuchsian group � � PO.2; 1/ � PU.2; 1/ acting on H2

C (pre-
serving H2

R). We note that the limit set of such a group isƒ� D @H2
R, and its discontinuity

region is�� D S3 n @H2
R. The homeomorphism ' constructed above is clearly PO.2; 1/-

equivariant; thus, ' descends to the quotient, and one easily obtains the following classical
result – see for instance [11, Proposition 6.7] and [24, Proposition 2.7], where the same
result is obtained by considering Euler numbers of circle bundles.

Proposition 2.17. Let � � PO.2;1/� PU.2;1/ be an R-Fuchsian group. Then, ' induces
a homeomorphism x' between the unit tangent bundle UT.�nH2

R/ and the quotient of ��
by the action of � .

Moreover, the map ' sends orbits of the geodesic flows in UTH2
R to arcs aÕ b where

a ¤ b 2 @H2
R.
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The main goal of this paper is first to understand what happens to this foliation when
deforming the R-circle and second, in the presence of a group action, to understand how
the map x' deforms. But, if we consider arbitrary deformation, no meaningful description
can be given. So, we first define in Section 3 a notion of horizontality for non-smooth
curves and a quantitative version called slimness. Under these conditions, we will be able
to understand how the foliation deforms in Section 4 and understand better the equivariant
case in Section 5.

3. Horizontality and slimness in the CR-sphere

From now on, we focus especially on the sphere at infinity S3 D @H2
C . So we will rather

work with R- and C-circles than complex hyperbolic lines and real hyperbolic planes. All
properties stated with R and C-circles can be equivalently stated with their supporting
complex lines and real planes.

Recall from Section 2.1 that the sphere comes with its contact structure and the notion
of horizontality for smooth submanifolds; see Definition 2.1. However, the typical sets we
want to describe are limit sets of discrete subgroups of PU.2; 1/. Those subsets are not
usually smooth: in fact they are smooth only when they are the whole sphere or the group
is not Zariski-dense. So we have to devise a notion of horizontality suitable for general
non-smooth subset of S3.

3.1. Horizontality for non-smooth subsets of S3 � CP 2

One property of horizontal submanifolds can be expressed in the following way: any C-
circle through two nearby points is entirely contained in a small neighbourhood of the two
points. We could try and write a definition using the topology on the set of C-circles. The
problem is that this set is not compact, as C-circles can degenerate to a single point. And
we exactly want to use this degeneration: the C-circle between two points in a horizontal
submanifold degenerates as the two points collapse. With the previous section in mind,
it appears more natural work instead in CP2 and use the line map. Indeed, a C-circle is
defined by a unique line in CP2. Moreover, when a family of C-circles converges to a
single point p 2 S3, then the family of associated lines converges to the line p? in CP2�

and their polar points converge to p.
Recall that the restriction of the line map L to S3 � S3 is defined in Definition 2.7 by

the following: for e ¤ f 2 S3, L.e; f / is the line through e and f and L.e; e/ is the line
e?. Using polarity, we will write equivalently L.e; f / D e � f and L.e; e/ D e. Note
in particular that this map is not continuous at the diagonal; see Proposition 2.8. We thus
propose the following definition.

Definition 3.1. Let E � S3 be a closed subset. We say that E is CR-horizontal if the
restriction LE of the line map L to E �E is continuous.

Away from the diagonal, the map LE is always continuous. So the previous definition
is in fact a local property. One could restate the continuity hypothesis by asking that for
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any e 2 E, for any sequences .en ¤ fn/ converging to e, the sequence of lines .enfn/
converges to e?.

We recover in the smooth case the usual definition.

Proposition 3.2. A submanifold E is CR-horizontal if and only if it is horizontal.

Proof. Consider the tangent space to the submanifold E at some point e 2 E. It contains
a vector v iff there are sequences .en/; .fn/ of points in E, which converge to e and such
that the real line .enfn/ converges to the real line ` through e containing v. The vector v
belongs to the contact plane if and only if the real line ` is included in the complex line
p?. After tensorising by C, v belongs to the contact plane if and only if the complex lines
.enfn/ converge to p?. This proves the proposition.

Remark 3.3. In contact geometry and, more generally, in CR-geometry, horizontal paths
are usually defined as absolutely continuous paths with tangent vectors in a fixed distribu-
tion. Here, we do not need existence of derivatives. On the other hand, we are using the
extrinsic geometry of the CR-structure of the sphere embedded in CP2. An intrinsic way
to define horizontality for arbitrary CR-structures is to use the special paths called chains.
We are saying that E is horizontal if for any converging sequence of points in E the dir-
ections defined by chains between the limit and the points in the sequence converges to a
direction in the contact plane.

Remark 3.4. Thanks to the previous definition, our notion of CR-horizontal manifold is
an extension of the usual notion of horizontality to non-smooth sets. So from now on, we
will drop the specification of “CR-” and just call this notion horizontality.

The following lemma translates in coordinates the local condition at a point p: to first
order, points arrive at p along the orthogonal line L.p; p/ or equivalently tangentially to
the contact structure. Recall from Definition 2.11 that p � q is a specific lift of p � q,
even if in the following statement any lift could be used.

Lemma 3.5. Let E be a horizontal subset of S3 containing a point p. Let q be another
point in S3. Fix lifts p and q for p and q. Then, any point a 2 E n ¹qº admits a unique
lift to C3 of the form

a D p C xp � q C yq; for some x; y in C:

Moreover, y D o.x/ in a neighbourhood of p.

Proof. Any point in CP2 has a unique lift of this kind but for points in the line through q
and p� q. This line is orthogonal to q, so is L.q; q/. Its intersection with the sphere is q,
so the first point of the lemma is proven.

Suppose now by contradiction that there is a sequence of points an in E, converging
to p, with lifts an D pC xnp� q C ynq, such that yn is not negligible compared to xn.
Up to passing to a subsequence, this implies that there exist x1 2 C, y1 2 C n ¹0º and a
sequence tn ! 0 of positive real numbers such that, to first order,

an D p C tn.x1p � q C y1q/C o.tn/:
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Then, the point p � an polar to the line L.p; an/ can be computed with box-product:

p � an D p �
�
p C tn.x1p � q C y1q/

�
C o.tn/

D tn
�
x1p � .p � q/C y1p � q

�
C o.tn/:

This implies that p � an converges to the projection of x1p � .p � q/ C y1p � q.
Note that p� .p� q/ is a multiple of p. So p � an is a point in p?, different from p as
y1 ¤ 0. This contradicts the horizontality condition on E: p � an should converge to p
as an goes to p.

The non-continuity of L at the diagonal has an interesting consequence in terms of
Cartan invariants. We will make a repeated use of the following lemma.

Lemma 3.6. Let e be a point in S3, and let .en/, .fn/ be two sequences of points both
converging to e and such that L.en; fn/ converge to some complex line ` ¤ e?. Then, for
any point x 2 S3 distinct from e, it holds thatˇ̌

A.x; en; fn/
ˇ̌
�! �=2:

Proof. It suffices to prove the result for enD e. Indeed, one can make xD1 and enD 0 in
Heisenberg coordinates by translating through PU.2; 1/. We have fn! e and we suppose
by contradiction that jA.x; e; fn/j does not converge to �=2. There is a subsequence of
A.x; e; fn/ converging to A 2 � � �=2; �=2Œ. Using standard lifts, one writes in coordin-
ates the corresponding subsequence of fn as

fn D

264j�nj2.�1C ian/�n

1

375 ;
where an D A.x; e; fn/! tanA and �n ! 0 as fn ! e. Now, the line between e D 0
and fn is generated by two points whose lifts are

e D

2400
1

35 and fn D

264j�nj2.�1C ian/�n

0

375 D �n
264x�n.�1C ian/1

0

375 :
The complex lines determined by these vectors converge to the line e?, which is a contra-
diction with the assumption.

3.2. Smooth horizontal curves, characteristic foliations and one-parameter
subgroups

We exhibit in this section smooth horizontal curves that are invariant under one-parameter
subgroups of PU.2; 1/. A common general construction of smooth horizontal curves is
through the characteristic foliation induced in an embedded surface in a contact mani-



Slim curves, limit sets and spherical CR uniformisations 1527

fold. One defines that foliation (generically with singular points) by the field of directions
given by the intersection of the contact plane with the tangent space of the surface [17,
Chapter I].

For example, if the surface is the complex plane through0 in theSiegel model union1,
which is a sphere, the foliation has two singularities, at 0 and1, where the contact plane is
tangent to the surface. Closure of leaves of this foliation is exactly the half-lines between
0 and 1, so half of R-circles. Note that one can glue two such half-lines at the two
singularities, obtaining what we call bent R-circles (see Section 3.5.1).

Given a one-parameter subgroup L of PU.2; 1/, one can consider a 2-dimensional
abelian groupG containingL. Any 2-dimensional orbit ofG is foliated by orbits ofL. The
characteristic foliation coincides with this one if and only if the orbits of L are horizontal.
Observe that inside an orbit of G, G acts transitively on the leaves of the characteristic
foliation because it preserves the contact plane. Therefore, if one of the leaves is an orbit
of L of G, the same holds for every other leaf.

The following question is natural: for which pair L � G is there an orbit of G whose
characteristic foliation is given by horizontal orbits of L? We postpone the complete
answer to this question to a forthcoming paper. We only treat here the loxodromic case,
which will lead to examples of slim curves; see Section 3.5.3. In this case, we prove that
all characteristic leaves are indeed orbits of a one-parameter subgroup. Recall that if L
is a one-parameter loxodromic subgroup fixing two points, then its centraliser is the 2-
dimensional group G ' C� of transformations fixing exactly these two points. The orbits
of G are each of the fixed points, the two arcs of C-circles between the two points and a
family of surfaces. In the Siegel model, if the two points are 0 and1, the surfaces are the
paraboloids t D kjzj2, .z; t/ ¤ .0; 0/, for k real (including the horizontal plane C�).

Proposition 3.7. Let G be a 2-dimensional subgroup G of PU.2; 1/ fixing exactly two
points in H2

C . Then, in any 2-dimensional orbit of G, the characteristic foliation is given
by orbits of a one-parameter loxodromic subgroup L.

Conversely, for a given one-parameter subgroup L of G, there is exactly one 2-
dimensional orbit of G where the characteristic foliation is given by orbits of L.

Proof. Up to conjugation, we work in the Siegel model, with the two fixed points being 0
and1. The group G consists of those elements of PU.2; 1/ that lift to diagonal matrices
diag.�; x�=�; 1=x�/. It acts simply transitively on any sheet of any paraboloid t D kjzj2,
.z; t/ ¤ .0; 0/, for k real. Loxodromic 1-parameter subgroups are given by the following
matrices, for some ˛ 2 C n iR:

L˛ W s 7�!

24es˛ es.x̨�˛/

e�s x̨

35 : (18)

Remark that multiplying alpha by a non-zero real factor amounts to changing the para-
metrisation of the 1-parameter subgroup, whereas a purely imaginary ˛ corresponds to
elements fixing pointwise the whole C-circle through 0 and1.
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Now, if p0 D Œz0; t0� is a point in @1H2
C , represented by the null vector

p D
�
� jz0j

2
C i t0; z0; 1

�T
;

then the orbit of p0 underL˛ is the curve Œz0es.2x̨�˛/; t0e2s Re.˛/� in the Heisenberg group,
which is a spiral inscribed on the pararaboloid with equation t jz0j2 D jzj2t0.

Next, we remark that if p is a point in @H2
C and s 7! 
.s/ is the orbit of p under a

1-parameter subgroup .Gs/s of PU.2; 1/, then 
 is horizontal if and only if�
d

ds

ˇ̌̌
sD0


.s/;p

�
D 0: (19)

Indeed, the contact plane at p is the kernel of h�;pi and horizontality is preserved by the
action of the 1-parameter subgroup.

To conclude, consider the point in @H2
C given in Heisenberg coordinates by p D Œz; t �.

Then, using (19), we see that the orbit of p under L˛ is horizontal if and only if

t

jzj2
D 3

Im.˛/
Re.˛/

: (20)

So the orbits of L˛ in the paraboloid t D kjzj2 are horizontal if and only if we have
k D 3 Im.˛/

Re.˛/ . This proves the proposition.

Note that in the case k D 0, ˛ is real and one recovers the half-line between 0 and1.

3.3. Slimness in the sphere

The notion of horizontality captures a local property of subsets of S3. We would like
a quantitative and global version of this property. We define the relevant notion in this
section using the Cartan invariant to guarantee quantitatively that no C-circle intersects
the subset three times. We first recall this global property which is independent of hori-
zontality. This is a particular case of one of the central notions of the theory of Anosov
representations [30, 35].

Definition 3.8. We say a subset E � S3 is hyperconvex if no three points in E are con-
tained in the same complex line.

3.3.1. A quantitative version of horizontality. We define now the central notion of this
paper.

Definition 3.9. Let 0 6 ˛ < �
2

. We call ˛-slim any subset E of S3 such that the absolute
value of the Cartan invariant of any triple of points is bounded above by ˛:

sup
®ˇ̌

A.a; b; c/
ˇ̌
; .a; b; c/ 2 E3

¯
6 ˛: (21)

As a shortcut, we say that a subset E is slim if it is ˛-slim for some ˛ < �
2

. Moreover,
we denote by A.E/ the supremum A.E/ D sup.jA.a; b; c/j; .a; b; c/ 2 E3/.
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This condition will prove to be a strong constraint on subsets of S3. A first point to be
proven is that this assumption indeed implies horizontality – see Proposition 3.11. Some
preliminary remarks, though, follow from the definition.

Remark 3.10.
(1) If a subset E is 0-slim, then it is contained in an R-circle.

(2) If a subset E is slim, then its intersection with any C-circle has cardinality at
most 2: if E had 3 points on a C-circle, then this triple of points would have
Cartan invariant �=2 and thus we would have A.E/ D �=2.

(3) One could likewise define the notion of ˛-thickness by asking that every Cartan
invariant of three distinct points has absolute value at least ˛. A �

2
-thick set is then

included inside a C-circle.

(4) If t ! Et is a Hausdorff-continuous family of closed subsets in S3, then t !
A.Et / is upper semi-continuous. It is not continuous in general, cf. Section 3.5.5.

(5) The Cartan (measurable bounded) cocycle A determines a bounded cohomology
class on PU.2; 1/ which coincides with the continuous bounded Kähler class �.
Let � W �! PU.2;1/ be a representation and ��.�/ 2H 2.�;R/ the corresponding
bounded cohomology class of � . One should observe that if E D ƒ� is the limit
set of �.�/, we obtain that the Gromov norm of this class coincides with the
supremum of the Cartan cocycle restricted to the limit set (see [9, Proposition 3.1],
see also [10]). That is, 

��.�/

 D A.E/:

We now use Lemma 3.6 to prove that ˛-slimness implies horizontality. However, in a
different setting, the following proposition is almost the same as [35, Theorem B].

Proposition 3.11. If E is a slim subset of S3, then it is horizontal.

Proof. LetE be a slim set. Suppose that it is not horizontal. This means there exist a point
e and two sequences en ¤ fn converging to e such that the sequence of lines .enfn/ in
CP2 converges to a line l with l ¤ e?.

Note that E \ l contains at most two points, as noted in the previous Remark 3.10 (2).
So we fix an arbitrary x 2 E n l . By Lemma 3.6, we haveˇ̌

A.en; fn; x/
ˇ̌
!

�

2
:

The assumption that .enfn/! l ¤ p? implies therefore that the sup of Cartan invariant
is �
2

and this contradicts the slimness assumption.

For a submanifold, slimness implies that it is a Legendrian smooth curve.

Corollary 3.12. A connected slim submanifold of S3 is a smooth Legendrian curve.

This applies for absolutely continuous paths as well: their tangent vectors are hori-
zontal wherever they are defined.
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·
c(s)

Pα

|t| = tan(α)|z|2

o

Figure 6. Local aspect of a ˛-slim curve close to the point Œ0; 0�.

3.3.2. Local picture in Heisenberg space. A first geometric way of seeing the horizont-
ality of a slim subset is the following. AssumeE is ˛-slim and the points oD Œ0; 0� and1
belong to E. Then, any point in E satisfies jA.1;o; p/j 6 ˛. In Heisenberg coordinates,
the point p is Œz; t �. Lifting the three points of C3, we have

1 D

2410
0

35 ; o D

2400
1

35 ; p D

24�jzj2 C i tz

1

35 where z 2 C and t 2 R: (22)

A straightforward computation leads directly toˇ̌
A.1; o;p/

ˇ̌
� ˛ ” jt j 6 tan.˛/jzj2: (23)

This means that E n ¹o;1º is contained in the complement of the union of the two open
solid paraboloids defined by jt j > tan.˛/jzj2. We denote by P˛ this region.

The paraboloids are illustrated in Figure 6. It makes visible that, if E is a slim sub-
manifold of S3, then it is CR-horizontal (see Proposition 3.11). Moreover, Condition (23)
may be used to strengthen Lemma 3.5 under the hypothesis of slimness rather than hori-
zontality: in this case and with the notation of the lemma, y is easily seen to be in fact
O.jxj2/ instead of o.x/. We will not use this fact here, so we do not go into details.

3.4. Projections of slim subsets

Before going on with the properties of slim subsets, one can give a few geometric inter-
pretations of the slimness condition.
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a

La,b

b
γa,b

c

Πa,b(c)

Figure 7. Orthogonal projection onto the complex line La;b . The region bounded by dashed lines
in La;b is a k-tubular neighbourhood of 
a;b .

In this section, we fix an ˛-slim subset E of S3 D @H2
C and two points a ¤ b in E.

Recall that the complex line through a and b is denoted by L.a; b/, and that L.a; a/ is the
complex line tangent to S3 at the point a. We are now going to interpret the ˛-slimness
condition in terms of different projections on L.a; b/ and L.a; a/.

3.4.1. Projections to L.a; b/, a ¤ b in E . (See Figure 8.) One can define two natural
projections of S3 n ¹a; bº to L.a; b/: the first one …a;b is the orthogonal projection in
hyperbolic geometry and lands inside the complex hyperbolic lineLa;b WDL.a; b/\H2

C;
the second one…�

a;b
using projective geometry and landing in L.a; b/\H1;1

C is defined by

…�a;b W S3 n ¹a; bº ! L.a; b/

e 7! L.e/ \L.a; b/:
(24)

This second projection is more adapted to projective geometry and inspired by considera-
tions for generalised Hilbert distance in [18]. We will see shortly that our two projections
…a;b and …�

a;b
are closely related, but they serve different purposes.

The first projection explains the terminology: the maximum of the Cartan invariant is
a measure of the width of the orthogonal projection of E on hyperbolic discs defined by
pairs of points in the set. Indeed, for any c in S3 n ¹a; bº, the Cartan invariant of .a; b; c/
satisfies the following relation (see [23, Theorem 7.1.2]):

sinh�1
�ˇ̌

tan
�
A.a; b; c/

�ˇ̌�
D d

�
…a;b.c/; 
a;b

�
: (25)

Denote by k˛ the number sinh�1 .tan.˛//. Observe that k˛ D ˛ C o.˛2/. We obtain
directly the following proposition, illustrated in Figure 7.

Proposition 3.13. Let E be an ˛-slim subset of @H2
C . Then,

8a; b 2 E; …a;b.E/ � N
k˛ .
a;b/; (26)

where N k˛ .
a;b/ is the k˛-tubular neighbourhood in La;b of the geodesic 
a;b .



E. Falbel, A. Guilloux, and P. Will 1532

b = ∞
Π∗
a,b(E)a

Π⊥
a,b(E)

2α

L(a, b) ∩H2
C

Figure 8. Projections of an ˛-slim set E on the complex line through two of its points.

In coordinates, we can always assume that a D Œ0; 0� and b D 1 in the Heisenberg
group, so that the complex line through a and b corresponds to those vectors Œz; 0; 1�T ,
where Re.z/ < 0. The orthogonal projection of a point c D Œz1; z2; 1�

T in S3 is just
Œz1; 0; 1�

T , and the Cartan invariant is A.a; b; c/ D arg.�z1/. Thus, the projection of c
belongs to the cone arg.z/ 6 ˛.

One can use the same coordinates to write down the second projection. If eDŒz1; z2;1�T

is a point in S3, the intersection of L.e/ and L.a; b/ is the point Œ�z1; 0; 1�T . We obtain
thus a link between … and …� (see Figure 8).

Lemma 3.14. We have �…a;b D …
�
a;b

.

The previous discussion translates into the following.

Proposition 3.15. Let E � S3 be ˛-slim for some 0 6 ˛ < �
2

and containing at least
two distinct points a and b. Then, in the line .ab/ equipped with the previous coordinates,
both coordinates are contained in positive cones of angle 2˛:

• …�
a;b
.E/ is contained in ¹z 2 C; j arg.z/j � ˛º.

• …a;b.E/ is contained in ¹z 2 C; j arg.�z/j � ˛º.

3.4.2. Projection to a tangent line at e 2 E . This last geometric interpretation uses the
line map and in fact only relies on hyperconvexity. Indeed, let E be a hyperconvex subset
of S3 and e 2 E. We can project E to the line L.e; e/ D e? via the map …e defined on
S3 by

…e.p/ D p � e if p ¤ e and …e.e/ D e:

Geometrically, for p ¤ e, …e.p/ is the intersection point of the two lines e? and p?. We
have the following.

Proposition 3.16. The map …e W S3 ! L.e; e/ is surjective. Moreover, if E � S3 is
hyperconvex, then …e restricted to E is injective.

Proof. The preimage of any x 2 e? by …e is the intersection between the polar line to x
and S3. This preimage is non-empty for any point x 2 e?.
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More precisely, the preimage of e 2 e? in S3 is the singleton ¹eº. On the other hand,
the preimage of x D…e.q/¤ e is exactly the C-circle through e and q. WhenE is hyper-
convex, this C-circle can intersectE at most twice. And we already know two intersection
points: e and q. This proves that …e W E ! e? is injective.

The projections …e.E/ play the role of space-like geodesics on L.E;E/. In the case
where E D @1H2

R, they are exactly these geodesics.

Remark 3.17. Assume that e D 1. Then, if a point m 2 E has Heisenberg coordinates
Œz; t �, it is easy to see that…1.m/ lifts to the vector Œ2 Nz; 1; 0�T . In particular, the slimness
of E cannot be deduced from its projection on L.e; e/ for e 2 E, as the coordinate t
disappears. In the case where eD1, the map…e corresponds up to a factor 2 and complex
conjugation to the vertical projection onto C, and the fact that it is one-to-one says that
two points of E cannot be vertically aligned if E contains1.

3.5. Examples and non-examples

We describe here examples of slim or non-slim subsets. We also introduce limit sets of
surface groups, on which we will further focus in the next sections.

3.5.1. R-circles and bent R-circles. As recalled in Proposition 2.5, three points are on a
common R-circle if and only if their Cartan invariant is 0. As such, any R-circle is 0-slim.
Those are maximal slim subsets.

Proposition 3.18. Let E be a slim subset of S3 containing an R-circle R. Then, E
equals R.

Proof. The set of arcs of C-circles connecting two points of R defines a foliation of the
complement of R in S3, as stated in Corollary 2.16.

Therefore, if E contains a point outside R, this point belongs to (exactly) one of these
arcs. This gives three points in E that lie on a C-circle, thus having Cartan invariant equal
to˙�=2. So if E strictly contains R, E is not slim.

A simple example of a slim set which is not an R-circle is given by the union of two
half R-circles through 2 points; see the beginning of Section 3.2. In coordinates, we may
write the following.

Proposition 3.19. For all 0 < � < 2� , the union

E� D
®
Œx; 0�; x 2 RC

¯
[
®
Œyei� ; 0�; y 2 RC

¯
is ˛-slim for ˛ D j���

2
j.

Proof. Let R1 and R2 be the two sets appearing in the union E� . We want to compute the
maximum of A.p; q; r/ for .p; q; r/ in E3

�
. First, if they all belong to R1 or all to R2, as

they are halves of R-circles, this Cartan invariant is 0. So we may assume, up to permuta-
tions, that p; q are in R1 and r in R2. Denote by 0 the point Œ0; 0�.
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Using the last point of Proposition 2.5 and the fact that p; q and 0 belong to R1, we
have the equality:

A.p; q; r/ D A.p; q; 0/ �A.p; r; 0/CA.q; r; 0/ D A.q; r; 0/ �A.p; r; 0/:

We first estimate A.q; r; 0/. Write q D Œx; 0� and r D Œyei� ; 0� where x and y are positive.
We can write x C iy D �eit with 0 < t < �=2. Then, a direct computation in Heisenberg
coordinates gives

A.q; r; 0/ D arg
�
� hq; ri

�
D arg

�
1 � sin.2t/e�i�

�
:

Note that 0 < sin.2t/ � 1. It is easily seen that 0 < A.q; r; 0/ � ���
2

with the maximum
attained at t D �=4 or equivalently x D y.

This implies that the difference

A.p; q; r/ D A.q; r; 0/ �A.p; r; 0/

(where p and q are in R1 and r in R2) is bounded between ���
2

and ���
2

, proving the
proposition.

3.5.2. Slim circles are unknotted. We will from now on be especially interested in slim
subsets homeomorphic to circles. We give a straightforward name to these sets.

Definition 3.20. A subset E � S3 is a slim circle if it is both homeomorphic to the circle
and a slim subset of S3.

We remark here that slim circles are unknotted. This rules out a non-trivial knot in
the sphere being slim. We prove it by constructing a diagram of the knot without self-
intersection.

Proposition 3.21. A slim circle is unknotted.

Proof. Let E be a knot in S3 and e a point in E. Without loss of generality, choose
coordinates such that eD1. The projection…e is then the one described in Remark 3.17,
which is given by

Œz; t � 7�! 2 Nz:

In these coordinates, the projection …e appears as an affine (vertical) projection fol-
lowed by a symmetry and a dilation by a factor of 2. In particular, …e.E/ is a (dilated)
diagram of a symmetric of the image of the knot E by Œz; t � 7! Œ Nz; t �, which we denote
by xE. By slimness and Proposition 3.16,…e is injective onE, so…e.E/ has no crossings.
In particular, xE is trivial, and so is E.

The following corollary is proven in the same way.

Corollary 3.22. Suppose E is a slim subset of S3. Let F � E be a subset homeomorphic
to a disjoint union of circles. Then, F is an unknotted link.

For example, if E is an immersion of a circle with several double points, E contains
disjoint circles. They cannot be knotted nor linked.
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3.5.3. Slim orbits of 1-parameter subgroups. Section 3.2 describes some very spe-
cific families of horizontal orbits of 1-parameter subgroups. Proposition 3.11 implies that
among all 1-parameter orbits, those are the only ones that can be slim. We will prove that
horizontal orbits of 1-parameter loxodromic subgroups are indeed slim. This gives con-
crete examples that are not R-circles. On the contrary, horizontal orbits of 1-parameter
parabolic subgroups are not slim unless the group is horizontal unipotent. In this last case,
the orbit is an R-circle.

Let us first look at the parabolic case. We indeed prove that invariance by a single para-
bolic transformation is compatible with slimness only if this transformation is horizontal
unipotent, that is, a Heisenberg translation which is not in the centre of the Heisenberg
group.

Proposition 3.23. Let E be a closed slim subset of S3 with at least two distinct points
which is invariant under the action of a parabolic element u of PU.2; 1/. Then, u is hori-
zontal unipotent.

Proof. We prove it by a case disjunction. Note that in any case, E contains the fixed point
p of u and another point q 2 E.

• If u is vertical unipotent, then the orbit un.q/ completely lies inside the C-circle
through p and q. So A.p; q; u.q// D ˙�

2
, which prevents the slimness of E.

• If u is ellipo-parabolic, then the orbit un.q/ is contained in a cylinder foliated by C-
circles. Let L be the compact set of lines in CP2� supported by these C-circles. Note
that L does not contain p?. We can extract a subsequence qj D unj .q/ such that the
lines .qj qjC1/ converge to one of the lines in L. Then, the sequence .qj / of points in
E converges to p and the line .qj qjC1/ does not converge to p?. Lemma 3.6 proves
that the supremum of Cartan invariants is �

2
.

The only remaining case is that u is horizontal parabolic. It is of course possible, as an
R-circle is invariant under some horizontal parabolic elements.

A direct corollary reads the following.

Corollary 3.24. A horizontal orbit of a 1-parameter parabolic subgroup is slim if and
only if the subgroup is horizontal unipotent. In this case, it is an R-circle.

The proof of slimness in the loxodromic case, however, is more involved. Moreover,
we are not able to estimate the parameter of slimness, leaving us with an indirect proof.
We will just give a detailed sketch of the proof and spare some technicalities. Recall from
Equation (18) that the one-parameter loxodromic subgroups can be parametrised by

L˛ W s 7�!

24es˛ es.x̨�˛/

e�s x̨

35 ; where ˛ 2 C� satisfies Re.˛/ ¤ 0.

Their horizontal orbits are described in Section 3.2. We now prove the following.
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Proposition 3.25. If an orbit of L˛ is horizontal, then it is slim.

Proof. Recall from Section 3.2 that the orbit ps D Ls � p is horizontal if and only if the
Heisenberg coordinates Œz; t � of p satisfy condition (20); that is,

t D 3jzj2
Im.˛/
Re.˛/

:

Denote by P˛ the paraboloid defined by the above condition. It is a simple computation
in Heisenberg coordinates to verify that a C-circle is either contained in P˛ or intersects
P˛ in at most two points. Moreover, C-circles contained in P˛ are all contained in hori-
zontal planes (on which t is constant). Since the orbits of L˛ are never contained in such
planes, this implies that the orbit we consider never intersects a C-circle thrice; i.e., it is
hyperconvex. Therefore, no triple of points in the orbit has Cartan invariant equal to �=2.
This means in particular that if the orbit were not slim, then the supremum of the Cartan
invariant (which would be equal to �=2) would not be attained.

Up to a reparametrisation of the 1-parameter subgroup, and conjugating ˛ if necessary,
we may assume that ˛ D 1C ia for some a > 0. Applying an element of the normaliser of
L˛ , we may moreover assume that the z-coordinate of p is equal to 1. The horizontality
condition becomes then p D Œ1; 3a�. Denote by p� D Œ0; 0� D lims!�1 ps . Taking lifts,
we have

p� D

2400
1

35 ; p D

24�1C 3ia1

1

35 and ps D

24es.�1C 3ia/e�3isa

e�s

35 : (27)

We obtain then directly

A.p�; p; ps/ D arg
�
es.1C 3ia/C e�s.1 � 3ia/ � 2e3isa

�
:

Denote the latter quantity by

P .s/ D arg
�
es.1C 3ia/C e�s.1 � 3ia/ � e�isa

�
:

When s ! 0, P .s/ goes to 0. When s ! ˙1, then P .s/ goes to ˙ arctan.3a/. As the
real part of the complex number inside the argument does not vanish, jP j < �

2
. So jP j

admits a maximum ma <
�
2

. Note moreover that P .�s/ D �P .s/.
Recall from (12) the cocycle property for the Cartan invariant, with p; q; r; s being

four points in S3:

A.p; q; r/CA.p; q; s/CA.p; r; s/CA.q; r; s/ D 0:

Let s<x<t be three real numbers. We want to estimate the Cartan invariant A.ps;px ;pt/.
By invariance of the Cartan invariant under the action of L˛.�s/, one may assume that
x D 0, so that p0 D p. Using the cocycle equality to introduce p�, we deduce that

A.ps; p; pt / D �P .�s/ �P .t � s/ �P .t/:
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To prove that the supremum of the Cartan invariant is strictly less than �
2

, we have to
control the boundary behaviour. So we are left to understand what happens when s goes
to 0 or �1 and/or t to 0 or C1. In each case, one proves that at the limit, the absolute
value of the Cartan invariant remains bounded above by ma.

3.5.4. Deformations of R-Fuchsian limit sets. Limit sets ƒ� of convex cocompact rep-
resentations � of surface groups � give rise to topological circles in the sphere. A natural
question is whether ƒ� is slim. A first observation is the following.

Lemma 3.26. Let � be a subgroup of PU.2; 1/ whose limit set ƒ is ˛-slim for some
0 < ˛ < �=2, but not 0-slim. Then, � is Zariski-dense and discrete.

Proof. A subgroup � of PU.2; 1/ is Zariski dense if and only if it is not contained in a
proper closed Lie subgroup of PU.2; 1/. This means that � is Zariski dense if and only
if it does not preserve a complex line or a real plane, and it does not have a global fixed
point in the closure of H2

C . Now, consider the following.

• If � preserves a real plane P , then ƒ is contained in an R-circle (the boundary of P ),
so it is 0-slim.

• If � preserves a complex line L, then ƒ is contained in the boundary of L and cannot
be ˛-slim for any ˛ < �=2.

• If � fixes a point, then ƒ is empty.

Therefore, the condition thatƒ is ˛-slim for some 0 < ˛ < �=2 but not 0-slim implies
that � is Zariski dense.

On the other hand, a Zariski dense subgroup of PU.n;1/ is either dense or discrete (see
for instance [13, Corollary 4.5.1] or [41, Theorem 6.1]). In case � is dense, its limit set is
the whole sphere and is thus not ˛-slim for any ˛ < �=2. Therefore, � is discrete.

Note that a group � with 0-slim limit set preserves a real plane since its limit set
is contained in an R-circle. It may or may not be discrete (consider for instance an R-
Fuschsian group, or the embedding in PU.2; 1/ of a dense subgroup of PO.2; 1/).

We next show that in the case of a convex-cocompact representation of a surface group,
the sup of the Cartan invariant is actually a maximum.

Proposition 3.27. Let ƒ� be the limit set of a convex cocompact representation � of the
fundamental group � of a compact hyperbolic surface. Then, the supremum of the Cartan
invariant A.ƒ�/ on the limit set ƒ� is attained at a triple of distinct points.

Proof. For any convex-cocompact representation � as in the statement, there exists a
unique �-equivariant homeomorphism

B� W @1�
�
��! ƒ�

called the boundary map [6]. For any �, denote by A� the map defined on the set of triples
of distinct points @1�.3/ by

A�.p; q; r/ D A
�
B�.p/; B�.q/; B�.r/

�
:
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As B� is a bijection between @1� and ƒ�, we deduce that

A.ƒ�/ D sup
.p;q;r/2@1�.3/

A�.p; q; r/:

As moreover B� is �-equivariant, we have for all 
 2 � and for all .p; q; r/ 2 @1�.3/, the
equalityA�.p;q; r/DA�.
 �p;
 � q;
 � r/. The action of � on the set of triples of distinct
points @1�.3/ is cocompact: the quotientX may be identified with the unit tangent bundle
to the surface (see for instance [8]).

To sum up, the map A� descends to a continuous map defined on the compact set
�n@1�

.3/ and the supremum is attained.

As a corollary, if the limit set of a convex cocompact representation is hyperconvex,
then it is slim: the attained supremum cannot be �

2
by hyperconvexity. The following pro-

position gives a rich family of examples of slim circles that are not R-circles. It is proven
by Pozzetti–Sambarino–Wienhard [35, Proposition 6.2]. They work with the notion of
.1; 1; 2/-hyperconvex representations. But note, by the previous proposition, that the limit
setƒ of a convex-cocompact representation � of � is slim if and only if the representation
is .1; 1; 2/-hyperconvex Anosov: if x; y; z are in the limit set, then the projective complex
line generated by x; y does not contain the point z.

Proposition 3.28 (Pozzetti–Sambarino–Wienhard). Let � be the fundamental group of a
compact hyperbolic surface and let �0 W �!PO.2; 1/�PU.2; 1/ be a representation of � .
Then, for any sufficiently small deformation � of �0, the limit set of �.�/ is a slim circle.

We nevertheless give a proof of this proposition as it is important for our work. In fact,
we prove the following proposition, which implies the previous one.

Proposition 3.29. If � is the fundamental group of a compact hyperbolic surface, then
the sup of the Cartan invariant A.ƒ�/ on the limit set ƒ� of a convex cocompact rep-
resentation � varies continuously with � in the set of convex-cocompact representations
of � .

Proof. [6, Lemma 5.5.4 and Remark 5.5.7] proves that the boundary mapB� W @1�
�
�!ƒ�

varies continuously for the compact-open topology with the convex-cocompact represent-
ation �. Therefore, the map � 7! A� is continuous, where A� is defined in the previous
proof.

The max on the compact set �n@1�.3/ of the continuous function A� depends con-
tinuously on �. Therefore, the dependance on � of

A.ƒ�/ D max
�n@1�.3/

A�

is continuous.

This gives examples of slim circles having low regularity. We will come back to these
examples in Section 5.
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3.5.5. Deformation of the Farey triangulation and (non)-slimness. We explore here
another family .ƒ˛/��=2�˛��=2 of limit sets of surface groups in a geometrically finite
setting. We prove that the supremum A.ƒ˛/ is always �=2 except for ˛ D 0 where it
vanishes. This proves that, in general, the semicontinuity of E 7! A.E/ is the best we can
hope for. It also makes clear that in the previous section, the cocompactness assumption
was crucial.

Let us describe the explicit construction that appeared in the works on PU.2; 1/-
representations of the modular group PSL.2; Z/ by Falbel–Koseleff [19], Gusevskii–
Parker [26] and Falbel–Parker [20] (see also [41, Section 8] for a survey).

Let � be the group .Z2/�3 D h�1; �2; �3j�2k D 1i. We fix .T˛/˛2Œ��=2;�=2�, a continuous
family of ideal triangles such that A.T˛/ D ˛. We denote by p1; p2; p3 2 S3 the ideal
vertices of T˛ and by qk the projection of pk onto the geodesic .pkC1pk�1/ (indices are
taken mod. 3). Consider the half-turns Rk about qk . The Rk’s are conjugate to the trans-
formation given by .z1; z2/ 7! .�z1;�z2/ in ball model coordinates. Then, one defines a
representation �˛ W � ! PU.2; 1/ by setting

�A.�k/ D Rk ; k D 1; 2; 3:

This gives rise to a continuous 1-parameter family of representations of � in PU.2; 1/.
The groups �0.�/ and �˙�=2.�/ are respectively R and C-Fuchsian: they are discrete,
isomorphic to � and preserve totally geodesic disc, which are real if ˛ D 0 and complex if
˛D˙�=2. The orbits of the geodesics connecting the pk’s generate the Farey tessellation
in the R or C-Fuchsian case. The striking result of the aforementioned works is as follows.

Theorem (Falbel–Koseleff, Gusevskii–Parker). For any value of ˛, the representation �˛
is discrete and faithful. Moreover, the type of elements remains the same all along the
deformation.

The limit set ƒ˛ of �˛.�/ is a C-circle when ˛ D ˙�=2, an R-circle if ˛ D 0, and it
remains a topological circle when 0 < j˛j < �=2. It is not slim unless ˛ D 0.

Proposition 3.30. We have A.ƒ˛/ D
�
2

unless ˛ D 0, in which case A.ƒ˛/ D 0.

Proof. The group �˛.�/ contains a primitive class of parabolic elements, unique up to
conjugation in � , which is the one of R1R2R3. It follows from the above works that this
parabolic element is screw-parabolic for any value ˛ ¤ 0, and 2-step unipotent if ˛ D 0.
By Proposition 3.23, this proves that ƒ˛ is not slim unless ˛ D 0, in which case it is an
R-circle, so 0-slim.

4. Deforming the foliation by arcs of C-circles

We now come back to the foliation described in Corollary 2.16. Recall that it expresses that
the complement of an R-circle R is foliated by arcs of C-circles with endpoints on R. We
study in this section how this picture deforms when R is deformed among slim curves.
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One important tool to understand this is to realise any slim circle as the boundary of a
Möbius band in H1;1

C .

4.1. The foliation and the unit tangent bundle over H2
R

Before actually deforming slim circles, we explain another way to look at the foliation
described in Section 2.6, which will be more adapted to the study of deformations. Along
the way, we will come back to the natural isomorphism between the foliation and the unit
tangent bundle UTH2

R over H2
R. This last point will be useful for studying limit sets of

surface groups.

4.1.1. Reinterpretation of the foliation property. Consider a subsetE in the sphere S3.
We first define a notation for its complement and the subset of the sphere swept by arcs of
C-circles with endpoints in E.

Definition 4.1. For any subset E of the sphere, we define the sets

�E D S3 nE and ME D
®
.x; y; p/ 2 .S3/3 such that x ¤ y 2 E; p 2 x Õ y

¯
:

Moreover, let FE WME ! S3 be the forgetful map .x; y; p/ 7! p.

When the context makes things clear, we may drop the notation of the dependence
in E, considering the sets �, M and the map F . Corollary 2.16 may be rephrased as the
following equivalent statement.

Corollary 4.2. If R is an R-circle, the map FR realises a homeomorphism MR
�
�! �R.

The previous corollary splits in fact into three substatements, which we will study for
slim circles:

• The map FR takes values inside �R,

• it is actually surjective on �R,

• it is injective with continuous inverse.

The first point generalises readily in the context of slim subsets.

Lemma 4.3. Let E be a slim subset of S3. Then, the map

FE WME ! S3

takes values inside �E .

Proof. Let .x; y; p/ be an element of ME . Then, p is a point of the C-circle through x
and y, distinct from x and y. This C-circle meets E at x and y. As E is slim, it cannot
meet E also in p. So p belongs to the complement �E of E.

The goal of this whole Section 4 is to understand what happens with the last two
points when E is a slim circle more general than an R-circle. We will prove the following
theorem.
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Theorem 4.4. Let E be a slim circle and consider the map FE WME ! �E . We have:

• [Surjectivity] If there is a Hausdorff-continuous family of slim circles .Et /, for 0 �
t � 1, with E D E1 and E0 a R-circle, then FE is surjective.

• [Non-Injectivity] If E is invariant by a non-real loxodromic transformation, then FE
is not injective.

We will prove the two parts of this theorem independently and with arguments of
very distinct flavor. The surjectivity property will be proven in Section 4.3; see Proposi-
tion 4.13. The non-injectivity statement will be proven in Section 4.5. This theorem raises
in particular the following question: is FE always surjective onto �E for any slim circle
E? Before going further, we continue to review the case of Corollary 2.16 and its link
with the unit tangent bundle UTH2

R.

4.1.2. Back to the unit tangent bundle. The relevance of the set ME is made clearer
when we see how closely it is related to the unit tangent bundle UTH2

R over H2
R. Recall

that the latter is homeomorphic to the set of triples .x; y; z/ of distinct points in @H2
R

that are cyclically positively oriented: a triple .x; y; z/ is associated with the unit tangent
vector to the geodesic from x to y in H2

R with base point the orthogonal projection of z
on this geodesic.

LetE be a slim circle. Using a parametrisation ' W @H2
R

�
�!E, we now define a natural

map UTH2
R !ME . A straightforward geometric lemma will prove useful.

Lemma 4.5. Let x; y and z be distinct points in S3. Then, there exists a unique point
p 2 x Õ y such that the projections of p and z on the (real) geodesic xy coincide.

This lemma is used in the following construction.

Definition 4.6. Let E be a slim circle in S3 and ' W @H2
R ! E a homeomorphism.

Then, we define the map ˆE;' W UTH2
R ! ME by sending a point .x; y; z/ to the point

.'.x/; '.y/; p/ in ME where p 2 x Õ y is the unique point whose projection on the real
geodesic '.x/; '.y/ coincides with the one of '.z/.

We will often denote this map simply by ˆ. This map is natural: if ' is equivariant for
a representation � of a group � � Isom.H2

R/ to PU.2; 1/, then so is ˆ.
In the case where R is an R-circle, R is the boundary of a real hyperbolic plane. So

one can parametrise it by a map ' W @H2
R ! R which is Isom.H2

R/-equivariant. Denote
for simplicity M D MR, � D S3 n R, F D FR the forgetful map and ˆ D ˆR;' the
map we just defined. The following proposition then expresses the foliation described in
Section 2.6 using this map ˆ.

Proposition 4.7. LetR be an R-circle. Then, the mapˆ WUTH2
R!MR is an Isom.H2

R/-
equivariant homeomorphism.

Moreover, the composition FR ı ˆ induces an Isom.H2
R/-equivariant homeomorph-

ism UTH2
R ' �R. This homeomorphism sends orbits of the geodesic flow to arcs aÕ b,

a ¤ b 2 R.
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Note that for an R-Fuchsian representation � of a surface group � � Isom.H2
R/, the

map F ıˆ descends to a CR-spherical uniformisation U.�nH2
R/ ' �.�/n�.

With the foliation reinterpreted, we can move on and see how each of its aspects vary
when deforming the R-circle into a slim circle E. The first tool is the construction of a
surface RP.E/ in CP2, homeomorphic to RP2 and that extends E outside the sphere.

4.2. Extensions of slim circles

In this section, we will use extensively the identification between a line L.x; y/ and its
polar point x � y. Recall that for p 2 S3, the polar point to L.p; p/ D p? is p itself.

Consider the simplest example of a slim circle, i.e. an R-circle R. By definition, it is
the intersection of a copy of a real projective plane RP2 � CP2 with the sphere S3. The
part outside of the ball H2

C is the projective plane minus an open disc: it is a Möbius band.
Moreover, we have a natural parametrisation of this closed Möbius band by

.R �R/=Œ.x; y/ � .y; x/�;

given by the map .x; y/! L.x; y/ from R �R to CP2.
The goal of this section is to extend this construction to any slim circleE and define an

extension RP.E/ to CP2 similar to the case of R-circles. Our construction of the exten-
sion outside the ball H2

C is canonical, whereas inside we make some arbitrary choices. We
will mainly focus on what happens outside later on, so this will not be a problem. Recall
that a subset of the sphere is hyperconvex if no three points are contained in a C-circle;
see Definition 3.8.

Proposition 4.8. Let E be a horizontal and hyperconvex circle. Then, the map L from
E � E to CP2 defines an embedding of the Möbius band E � E=Œ.x; y/ � .y; x/� into
H1;1

C whose intersection with the sphere S3 is E.

Proof. As E is horizontal, L is continuous on E �E. Moreover, for any x ¤ y in E, we
have L.x;y/D x� y, which is a point outside the closed ball, whereas L.x;x/D x 2E.
So L descends into a continuous map of E � E=Œ.x; y/ � .y; x/� into CP2 nH2

C whose
intersection with the sphere S3 is E.

As E � E=.x; y/ � .y; x/ is compact, the last point to prove is the injectivity of
our map. The proof is similar to Corollary 2.16: we have to check that x � y D x0 � y0
implies ¹x; yº D ¹x0; y0º. Suppose x � y D x0 � y0. If this point belongs to S3, then
x D y D x0 D y0 and ¹x; yº D ¹x0; y0º. If not, then x ¤ y and x0 ¤ y0 and x; y; x0; y0 all
lie in E and in the C-circle .x � y/? \ S3. As E is hyperconvex, there are at most two
intersection points, which are ¹x; yº D ¹x0; y0º.

We also want to extend E inside the complex hyperbolic space. We do not have a
natural construction as above, so we will arbitrarily choose a good enough extension.
From now on, we choose an arbitrary origin o in H2

C . We denote byD.E/ the union of all
(real) geodesics from o to a point x 2 E. As two distinct geodesics from o cannot meet
again in H2

C , the set D.E/ is a disc inside the ball H2
C , whose closure meets the sphere

S3 exactly at E.
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Definition 4.9. For a slim circleE, we denote by RP.E/ the union ofD.E/ and L.E;E/.

The Möbius band L.E; E/ is invariant by any PU.2; 1/-transformation leaving E
invariant, by construction. Moreover, we will see that it varies continuously as E varies
among slim circles. But the disc D.E/ does not enjoy the first property. This raises the
question: Is it possible to construct a natural disc D.E/ bounded by E, i.e. such that it
is invariant by any PU.2; 1/-transformation leaving E invariant and it varies continuously
with E?

From the previous discussion, we deduce that RP.E/ is topologically a projective
plane RP2.

Proposition 4.10. For any slim circle E, the set RP.E/ is homeomorphic to RP2.

Proof. The disc D.E/ is a disc whose boundary is E. L.E; E/ is a Möbius band whose
boundary is alsoE. Their union is thus homeomorphic to the gluing of a disc and a Möbius
band along their boundary: it is a real projective plane.

Now, we want to understand how these surfaces RP.E/ deform when deforming E
inside the set of slim circles.

4.3. Deformations of slim subsets and surjectivity

We investigate in this section C0-deformations of horizontal sets, i.e. continuous deform-
ations of a parametrisation of horizontal sets. It is easily seen that C0-deformations do not
preserve horizontality. For example, fix a loxodromic one-parameter subgroupL, and take
a continuous family pt of points in the sphere such that only p0 belongs to the surface
singled out by Proposition 3.7. Then, the family of sets .L � pt /t is C0-continuous but
only L � p0 is horizontal.

But the additional quantitative information given by slimness guarantees that deforma-
tions remain horizontal and the projective lines given by the line map L vary continuously.
We will consider a deformation as a map ft W E ! S3 where f0 is the identity map and
t 2 .�"; "/. The continuity of the deformation is, by definition, the continuity of ft as a
function on E � .�"; "/.

Proposition 4.11. Let E � S3 be a horizontal subset and " > 0. For t 2 .�"; "/, let
Et D ft .E/ be a continuous deformation of E. We assume that there is 0 � ˛ < �

2
such

that all the sets Et are ˛-slim.
Then, the sets Et are all horizontal and the map .t; p; q/ 7! L.ft .p/; ft .q// is con-

tinuous on .�"; "/ �E2.

Proof. The horizontality of Et is granted by the assumption that they are slim. What we
really want to control is the second point.

We argue by contradiction. Suppose there exist converging sequences pn!p, qn! q

in E and tn ! t in .�"; "/ such that the sequence of lines ln D L.ftn.pn/; ftn.qn// does
not converge to l D L.ft .p/; ft .q//.
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We first note that this cannot happen if p ¤ q, by the assumption that Et is a con-
tinuous deformation: we have ftn.pn/! ft .p/ and ftn.qn/! ft .q/. ft is still a homeo-
morphism, so ft .p/ ¤ ft .q/ and the lines ln converge to l by continuity of L outside the
diagonal.

Assume now p D q. Fix a sequence rn of points in E such that ftn.rn/! r ¤ p.
Suppose for the sake of contradiction that ln! l1 ¤ l D L.p;p/. Then, by Lemma 3.6,
A.ftn.pn/; ftn.qn/; ftn.rn// goes to ˙�=2. This is impossible, as all the fs.E/ are ˛-
slim. This concludes the proof.

A corollary is that the surfaces RP.Et / vary continuously.

Corollary 4.12. Under the hypothesis of the previous proposition, the map .t;p/ 7! ft .p/

can be extended to a homotopy .t; p/ 7! Ft .p/ between RP.E/ and RP.Es/.

Proof. Fix t 2 .�"; "/ and let us define the map Ft W RP.E/! RP.Et /. Let p be a point
in RP.E/. We shall consider three cases:

(1) If p is in E, then we set Ft .p/ D ft .p/.

(2) If p is in D.E/, then it is on a geodesic ox for a unique x 2 E, at distance d � 0
from o. We set Ft .p/ to be the point at distance d from o in the geodesic oft .x/.

(3) If p is outside the ball, then the C-circle polar to p meets E in two points ¹x; yº,
so that p D L.x; y/. We define Ft .p/ to be the point L.ft .x/; ft .y//.

From the previous section and proposition, we see that t; p ! Ft .p/ is continuous, that
F0 is the identity map and that for each t , Ft realises a homeomorphism fromE toEt .

This corollary is the crucial point to prove that for slim deformationsE of an R-circle,
the map FE is still surjective or, equivalently, they still are maximal slim subsets of S3.
The following proposition rephrases the Surjectivity item of Theorem 4.4.

Proposition 4.13. Fix 0 < ˛ < �
2

. For t 2 Œ0; 1�, let 't W S1! S3 be a continuous deform-
ation such that, for each t , the setEt D 't .S1/ is ˛-slim, and moreoverE0 is an R-circle.

Then, for all t , the map FEt WMEt ! �Et is surjective. Equivalently, the set Et is a
maximal slim circle of S3: any slim set containing Et is Et itself.

The proof uses that the surfaces RP.Et / intersect any (complex) line in CP2, as shown
in the following lemma.

Lemma 4.14. Under the assumption of the theorem, for any line l � CP2, and any 0 �
t � 1, the intersection between l and RP.Et / is non-empty.

Proof. Any complex line l meets the usual RP2 at any point inside l \ Nl . The intersection
is moreover transverse unless l is a real line.

Now, we work in the homology groupH2.CP2; Z
2Z/, with its intersection form denoted

by i . The previous remark translates in this setting into the property

i
�
Œl �; ŒRP2�

�
D 1 2

Z

2Z
:
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Note that working with Z
2Z -coefficients avoids problems related to the non-orientability of

RP2.
The previous Corollary 4.12 proves that, for any t , the surface RP.Et / is a continuous

deformation of RP.E0/. By assumption, E0 is an R-circle so that RP.E0/ is a copy of
RP2. So we obtain ŒRP.Et /�D ŒRP2�. This in turn translates into the intersection property
i.Œl �; ŒRP.Et /�/ D 1.

We conclude that any line l intersects RPt . Moreover, if the intersection is transverse,
it is an odd number of points.

We can now conclude the proof of the theorem.

Proof. Fix t 2 Œ0; 1�, and p 2 S3 nEt . We want to prove that p belongs to an arc x Õ y,
with x ¤ y 2 Et . This implies that p belongs to the image of FEt .

Consider the line p? in CP2. By the previous lemma, it intersects RP.Et /. This inter-
section can only happen in H1;1

C , as p is not in Et D RP.Et / \ S3. This means, by
construction, that p is a point x � y for some x ¤ y 2 Et , which in turn implies that
one of the arcs x Õ y or y Õ x contains p.

Remark 4.15. The proof of Proposition 4.13 is valid as soon as E0 satisfies that

i
��
RP.E0/

�
; Œl �

�
D 1:

Before moving on and proving the last point of Theorem 4.4, we exhibit in the next
subsection a simple example where the foliation does indeed deform as a new foliation.

4.4. A one-parameter deformation of the foliation by arcs of C-circles

Let us come back to the example we have studied in Section 3.5.1. For any angle 0 < � <
2� , we consider the subset of S3 defined in Heisenberg coordinates by

E� D
®
Œx; 0�; x 2 RC

¯
[
®
Œyei� ; 0�; y 2 RC

¯
:

Note that when � D � , the curve E� is the boundary of H2
R in S3.

Theorem 4.16. For any � 2 Œ�=2; 3�=2�, the set of arcs of C-circles with endpoints in
E� defines a foliation of S3 nE� .

Proof. To prove Theorem 4.16, we need to

(1) prove that any point p 2 S3 outside E� belongs to some arc of C-circle hitting
E� twice;

(2) prove that any two arcs of C-circle both hitting E� twice never meet unless they
share at least one endpoint in E� .

The first point follows directly from Proposition 4.13 and Proposition 3.19: E� is
j� � � j=2-slim, and it is obtained from an R-circle by a homotopy which is given by the
bending.
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To prove the second point, we use a computational criterion to determine when two
C-circles are disjoint. From Lemma 2.12, we know that, given four points a; b; c; d in
S3 such that a ¤ b and c ¤ d , the C-circles Cab and Ccd spanned by .a; b/ and .c; d/
respectively are disjoint if and only if˝

.a� b/� .c � d/; .a� b/� .c � d/
˛
¤ 0: (28)

So what we need to do is to take a; b; c; d as above in E� and prove the left-hand side
of (28) does not vanish when j� � �j 6 �=2 unless one of a D c, a D d , b D c, b D d
happens. We denote by �1 D ¹Œx; 0�; x 2 RCº and �2 D ¹Œyei� ; 0�; y 2 RCº the two
half-lines whose union is E� .

Considering the possible relative positions of the two arcs of C-circles, we are left
with the following four cases.

(1) The four endpoints all belong to one of the �i ’s,

(2) Three of the endpoints lie in �1 and one lies in �2,

(3) One of the two arcs has its endpoints in �1 and the other in �2,

(4) Both arcs have one endpoint in �1 and one in �2.

The first case follows directly from Corollary 2.16. We will not give details for each
of the other three cases, but let us consider the fourth one, which is the most intricate.
Assume that a and c are in �1 and that b and d are in �2. We may then choose lifts as in
(8) so that there exist four non-negative real numbers x, y, z, t , such that (x ¤ 0 or z ¤ 0)
and (y ¤ 0 or t ¤ 0), for which we have

a D

24�x2x
1

35 ; b D

24�y2yei�

1

35 ; c D

24�z2z
1

35 ; d D

24�t2tei�

1

35 : (29)

Plugging these values into the left-hand side of (28) and reorganising, the condition
becomes

0 ¤ .x � z/.t � y/.�˛ cos2 � C ˇ cos � � 
/ (30)

where

˛ D 16xyzt.x C z/.y C t /;

ˇ D 4
�
.xt C yz/2 C .ty C xz/2 C 2.tx C yz/.xy C tz/

�
.ty C xz/;


 D 4
�
.t2 C 2ty C z2/ty2z C .t2 C 2xz C z2/tx2z;

C .x2 C 2ty C y2/t2xy C .x2 C y2 C 2xz/xyz2
�
:

The conditions on x, y, z and t impose that ˛ > 0, ˇ > 0 and 
 > 0. Since cos � 6 0
the right-hand side of (30) can only vanish if x D z or t D y, which is the expected result
in this case.

The remaining two cases are treated in the same way, only simpler since the analogue
of (30) has degree 1 in cos � .
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4.5. Obstruction to the foliation property and rigidity

We prove in this section the second part of Theorem 4.4, namely, the non-injectivity. It
shows that the deformation of the previous subsection is very specific and we cannot
hope to deform the foliation in general. First of all, we introduce a bit of vocabulary
for loxodromic transformations. Let 
 2 PU.2; 1/ be loxodromic. Let � D rei� be its
eigenvalue of greatest modulus, with � 2 .��; �� and r > 1. � is well-defined only up to
multiplication by e

2i�
3 , so we normalise by choosing��=3 < � � �=3. Up to conjugation,

we choose the representative of 
 in SU.2; 1/ to be the diagonal matrix with diagonal
entries .�; x�=�; 1=x�/. The trace of this matrix is real if and only if � is real. Equivalently,
the trace of 
3 is well-defined for 
 2 PU.2; 1/ and it is real if and only if the trace of the
chosen lift is real.

Definition 4.17. A loxodromic element 
 is non-real if its trace is non-real.
Its rotation factor is the angle 3� 2 .��;�� where � is the normalised argument of its

eigenvalue of greatest modulus.

Note that 3� D � corresponds to a real loxodromic element even if its rotation factor
is not 0. With this definition, we can state the following slightly more general version of
the non-injectivity property. Note in particular that the slimness assumption is not fully
needed and the hyperconvexity property is enough.

Theorem 4.18. Let E be a hyperconvex circle which is invariant under the action of a
non-real loxodromic map 
 2 PU.2; 1/ with fixed repelling and attracting fixed points
p�; pC 2 E. Then, there exists an infinite family of C-circles Cn such that

(1) for all n, Cn meets E twice,

(2) for all n, Cn meets the C-circle through p� and pC outside ¹p�; pCº.

Let us make a series of reductions before actually proving the theorem. First, note that
E n ¹p�; pCº has two connected components. So, up to passing to the action of 
2, we
may assume that 
 preserves each of these components. Note that if 
 is non-real, 
2 has
a rotation factor different from 0. Moreover, up to conjugation, one can suppose that 
 is
diagonal with fixed points 0 and1 in the Heisenberg model. The action of 
 then forces
E to spiral around 0. This can be stated, in Heisenberg coordinates.

Lemma 4.19. Let 
 be a loxodromic map fixing 0 and1 with rotation factor ˇD 3� ¤ 0.
Let c W Œ0;C1� be a path c.s/ D Œz.s/; t.s/� that is a homeomorphism onto its image.
Assume that this image is 
 -invariant and hyperconvex, and moreover c.0/ D 0 and
c.C1/ D1.

Then, any continuous lift s 7! zarg.z.s// of the argument of z over 0 < s <C1 is onto
R and proper.

Proof. Since c is hyperconvex, the vertical projection s 7! z.s/D 1
2
…1.c.s// is injective;

see Remark 3.17. As c.s/ is never 0 for 0 < s < C1, the quantity z.s/ never vanishes,
and the lift of argument is well-defined once the lift of the argument of c.1/ is chosen.
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Applying the loxodromic element in coordinates, we compute that


 � c.s/ D
�
re�3i�z.s/; r2t .s/

�
D c.s0/:

The lift zarg.z.s0// of the argument of z.s0/ is of the form zarg.z.s//� 3� C 2k� for some
k 2 Z. Note that, by our assumption on the rotation factor, we have �3� C 2k� ¤ 0. So
the image of zarg.z.s// is invariant by translation by �3� C 2k� ¤ 0. This proves it is
onto R and proper.

Proof of Theorem 4.18. Following the discussions above, we can assume that p� D 0,
pCD1with their usual lifts, and 
 preserves both connected components ofEn¹p�;pCº.

Let a be close to p� and b to pC. Using the local parametrisation given by Lemma 3.5,
we can write for lifts:

a D p� C xp� � pC C o.x/ and b D pC C yp� � pC C o.y/:

These coordinates are directly linked to the Heisenberg coordinates:

a D
�
z.a/; t.a/

�
and b D

�
z.b/; t.b/

�
;

where
z.a/ D �

x

2
C o.x/ and

2

Nz.b/
D y C o.y/:

In particular, Lemma 4.19 implies that the arguments mod. 2� of x and y oscillate infin-
itely as a goes to p� and b to pC.

By Lemma 2.12, the fact that the C-circle through a; b intersects the one through
p�; pC is equivalent to the equality .a� b/� .p��pC/D 0. We can compute directly,
once noticing that p� � .p� � pC/ D 1

2
p� and .p� � pC/� pC D 1

2
pC. Indeed, we

have

a� b D p� � pC C
xpC C yp�

2
C o

�p
jxj2 C jyj2

�
:

Computing the box-product with p� � pC leads to

.a� b/� .p� � pC/ D
yp� � xpC

2
CCo

�p
jxj2 C jyj2

�
:

One can now compute the square of the Hermitian norm of this last vector, getting˝
.a� b/� .p� � pC/; .a� b/� .p� � pC/

˛
D �Re.x Ny/C o.x2 C y2/:

Since the arguments of x and y oscillate, this last value has an infinite number of
change of signs as a goes to p� and b to pC. Hence, it vanishes infinitely many times:
this gives an infinite number of C-circles hitting the one through p�; pC.

This concludes the proof of Theorem 4.4. It is the main ingredient in the following
rigidity theorem. Recall that a representation � is a convex-cocompact and slim deform-
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ation of an R-Fuchsian representation �0 if there exists a continuous path of convex-
cocompact and slim representations connecting � to �0. The following result characterises
those deformations of an R-Fuchsian representation remain R-Fuchsian among convex-
cocompact slim deformations, in terms of the persistence of the foliation by arcs of C-
circles.

Theorem 4.20. Let† be a closed hyperbolic surface. Denote by � the fundamental group
of †. Consider �0 W � ! PO.2; 1/ � PU.2; 1/ an R-Fuchsian representation. Let � be a
convex-cocompact and slim deformation of �0, whose limit set is denoted by ƒ�. We have
the following:

(1) The limit set ƒ� is a maximal slim circle.

(2) The following two conditions are equivalent:

(a) The arcs x Õ y, for x ¤ y 2 ƒ�, are pairwise disjoint.

(b) The representation � is R-Fuchsian.

Proof. The first item follows from Proposition 4.13: the map F is surjective on��, which
means that any point in �� WD S3 nƒ� belongs to an arc with endpoints in ƒ�. In partic-
ular, any superset of ƒ� has 3 points on a C-circle, so it is not slim.

The second point is a corollary of Theorem 4.18. Indeed, from [2] the fact that all loxo-
dromic elements in the �.�/ have real trace implies that �.�/ preserves a totally geodesic
real plane and therefore � is R-Fuchsian. So, let � be a non-R-Fuchsian deformation of
�0. Then, some element �.
/ is a non-real loxodromic transformation. The limit setƒ� is
invariant under this element. Then, Theorem 4.18 implies that some arcs x Õ y intersect.
The other implication is direct.

5. Crown-type spherical CR uniformisation of 3-manifolds

We now look at the geometric meaning of slimness and the deformed foliation in the
equivariant case, i.e. assuming that the slim circle is the limit set of a convex-cocompact
group. We will see that it gives CR-spherical uniformisations on unit tangent bundles and
drilled unit tangent bundles.

So let � be a lattice in PO.2; 1/ and denote by �0 the R-Fuchsian representation given
by � � PO.2; 1/ � PU.2; 1/. Let ƒ0 be the R-circles which is the limit set of �0.�/ and
�0 its complement. We have seen in Proposition 2.17 that we have a natural identification
�0.�/n�0 ' UT.�nH2

R/. This is a CR-uniformisation of the unit tangent bundle to the
surface.

Now, let us deform �0 into a convex cocompact representation �. Denote by ƒ� the
limit set of �.�/ and by �� its complement. In fact, �.�/n�� is still homeomorphic to
UT.�nH2

R/ (see Proposition 5.9). We want to use arcs of C-circles to construct natural
CR-uniformisation on the unit tangent bundle drilled along a geodesic. For that, we need
to define supersets of the limit set, which we call crowns.
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Figure 9. Two views of an approximation of the crown Crown�;
 , where � is the R-Fuchsian
.3; 3; 4/-triangle group, and 
 is the word �3�2�1�2 (see Example 5.6). Here, the (thick) blue curve
is the R-circle which is the limit set of the group � . The red (thin) curves form the orbit of the axis
at infinity of 
 .

5.1. Crowns

Let 
 2 PO.2; 1/ be a loxodromic element. The axis of 
 in H2
R is naturally oriented. We

call again the axis of 
 and denote by axis.
/ the oriented lift of the H2
R-axis of 
 to the

unit tangent bundle UTH2
R. The goal of this section is to explore the analogy between this

notion of axis in UTH2
R and arcs of C-circles in S3. This analogy has already been noticed

in the discussion following Corollary 2.16, and in Proposition 4.7.
For any loxodromic element ı 2 PU.2; 1/, we denote by ˛ı the arc of C-circle a� Õ

aC, where aC and a� are the attracting and repelling fixed points of ı. Note that ˛ı is
naturally oriented toward aC. We call ˛ı the axis at infinity of ı.

Definition 5.1. Let� be a convex-cocompact subgroup of PU.2; 1/whose limit setƒ� is
a topological circle, and let ı 2 � be a loxodromic element. We call the crown associated
with ı the subset of S3 defined as

Crown�;ı D ƒ� [
� [
g2�

g � ˛ı

�
: (31)

We denote by ��;ı � �� the complement of Crown�;ı in S3 (see Figure 9).

Note that by construction Crown�;ı and��;ı are�-invariant. These two objects only
depend on the �-conjugacy class of ı. Moreover, the action of � on ��;ı is properly
discontinuous. In fact, the stabiliser in � of ˛ı is the cyclic group generated by ı, so that
the union may be rewritten: [

g2�

g � ˛ı D
[

Œg�2�=<ı>

Œg� � ˛ı :

Definition 5.2. We say that Crown�;ı is embedded whenever the arcs of C-circles g � ˛ı
are pairwise disjoint.
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For a cocompact R-Fuchsian group � � PO.2; 1/ � PU.2; 1/, the situation is clear.

Proposition 5.3. Let � � PO.2; 1/ � PU.2; 1/ be a cocompact R-Fuchsian group with
limit set ƒ D @H2

R � S3. Denote by † the surface �nH2
R. Then, for any loxodromic

element 
 2 � , we have the following:

(1) Crown�;
 is embedded.

(2) The quotient �n��;
 is homeomorphic to the 3-manifold obtained by drilling out
from the unit tangent bundle UT† the orbit of the geodesic flow corresponding
to ˛.

Proof. The first item follows directly from Corollary 2.16. The second item follows from
Proposition 4.7. Using the notation therein, the map Fƒ ı ˆ restricts as a �-equivariant
homeomorphism from the complement in UTH2

R of the union of all axes of elements
conjugate to 
 in � to ��;
 . The result is obtained by taking quotients.

In a more general setting, we first see that the horizontality of the limit set implies that
crowns are closed.

Lemma 5.4. Let � be a convex-cocompact subgroup of PU.2; 1/ whose limit set ƒ� is
a horizontal circle, and let ı 2 � be a loxodromic element. Then, the crown Crown�;ı is
closed and its complement ��;ı open.

The lemma is stated for convex-cocompact groups, but the proof below actually works
for geometrically finite groups.

Proof. Using convex-cocompactness, we know that the projection of the axis in H2
C of ı

is a closed geodesic in the convex-core of �nH2
C . This means that the orbit of the pair

.ı�; ıC/ of fixed points of ı in ƒ� is discrete in the set ƒ.2/� of pairs of distinct points
in ƒ�.

So let .xn/ be a sequence of points in the crown Crown�;ı converging to a point x
in S3. We want to prove that x belongs to the crown. As the limit set ƒ� is closed, one
may assume up to extraction that each xn belongs to an arc an Õ bn. Let, up to another
extraction, a1, b1 be the limits in ƒ� of the sequences an; bn.

If a1 ¤ b1, then by discreteness, the sequences an and bn are stationary and for n
big enough xn 2 a1 Õ b1. The closed arc a1 Õ b1 is included in the crown, which
implies that x belong to the crown as well.

If a1 D b1, then by horizontality, the whole C-circle through an and bn converges
to the point a1. So x D a1 belongs to the limit set and to the crown.

Let † be a closed hyperbolic surface and � a closed oriented geodesic of †. We say
that � is filling whenever the complement of � in † is a union of topological discs. We
denote by UT†.�/ the unit tangent bundle drilled out along the natural lift of the oriented
geodesic �. A direct corollary of Proposition 5.3 reads as follows.
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Corollary 5.5. For any hyperbolic surface † and any closed oriented geodesic �, the 3-
manifold UT†.�/ admits a CR-spherical uniformisation with an R-Fuchsian holonomy.

Proof. Let � � PO.2; 1/� PU.2; 1/ be the fundamental group of† and 
 2 � a primitive
element whose oriented axis is �. Then, Proposition 5.3 states that UT†.�/ is homeo-
morphic to �n��;
 .

Note that one can construct a lot of cusped hyperbolic 3-manifolds in that way: The-
orem 1.12 in [21] states that UT†.�/ is hyperbolic as soon as � is filling (see also
Calegari’s blog [12]).

Example 5.6. Let 2 � p � q � r be three integers, with 1
p
C

1
q
C

1
r
< 1. Consider the

group
� D

˝
�1; �2; �3j�

2
k D .�1�2/

p
D .�2�3/

q
D .�3�1/

r
D 1

˛
:

It is the .p; q; r/-triangle group, which is hyperbolic. It can be seen uniquely – up
to conjugacy – as a subgroup of PO.2; 1/ � PU.2; 1/. Each of the �k’s is a complex
reflection of order two that fixes pointwise a complex line of H2

C which intersects H2
R

along the geodesic 
k . Let �2 be the even subgroup of � , and let 
 be the geodesic in H2
R

which is the axis of a (hyperbolic) element w 2 �2. By Proposition 5.3, the quotient of
S3 n Crown�2;
 is homeomorphic to the complement of the axis of 
 in the unit tangent
bundle of the orbisurface �2nH2

R.
In the special case where .p; q; r/ D .3; 3; 4/ and w is the word �3�2�1�2, then the

resulting 3-manifold is the figure eight knot complement. This fact is proved in [14].

5.2. Deformations

We now prove that, after a small deformation of �0, the crown deforms and gives rise to
new CR-spherical uniformisations of the drilled unit tangent bundle, with non-R-Fuchsian
holonomies. By the analysis of the previous Section 4, the arcs of C-circles in the crown
could intersect. We prove that it is not the case, at least locally.

Theorem 5.7. Let † be a closed hyperbolic surface and � an oriented closed geodesic.
Denote by � its fundamental group and by 
 a primitive element whose axis lifts �. Con-
sider �0 W � ! PO.2; 1/ � PU.2; 1/ an R-Fuchsian representation.

Then, there exists a neighbourhood U of �0 (of convex-cocompact and slim deforma-
tions � of �0) such that for any � in U , we have the following:

(1) Crown�.�/;�.
/ is embedded and homotopic in S3 to Crown�0.�/;�0.
/.

(2) The quotient �.�/n��.�/;�.
/ is homeomorphic to UT†.�/.

In order to prove this theorem, we need two different arguments: first that the crowns
Crown�.�/;�.
/ remain embedded along a small deformation of �0 and second that the
whole quotient �.�/n�� is always homeomorphic to the unit tangent bundle UT†.

For the first argument, we prove in the following lemma that we have indeed only a
finite number of arcs to watch to ensure that no intersections happen.
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Lemma 5.8. Let � W � ! PU.2; 1/ be a convex-cocompact and slim representation of a
surface group, with limit set ƒ�. Fix a compact subset K of ��.

Then, for all 
 2 � with 
 loxodromic, the following set is finite:®
Œı� 2 �=h
i such that �.ı/ � ˛�.
/ \K ¤ ;

¯
:

For the proof of this lemma, we use the polarity that identifies any C-circle with a
point in H1;1

C . Recall from Section 4.2 that the Möbius band L.ƒ�; ƒ�/ in RP.ƒ�/ is
exactly the set of points in H1;1

C polar to C-circles that hit ƒ� twice.

Proof. Let H � H1;1
C be the set of points polar to C-circles meeting K:

H WD ¹p 2 H1;1
C j p? \K ¤ ;º:

Step 1. Let us prove that the intersection H \L.ƒ�; ƒ�/ is compact.
Note that H is closed in H1;1

C , by compacity of K. Moreover, the intersection of
xH with S3 is exactly K: indeed, it consists of points p in S3 whose polar line p?

meets K. But the only point in S3 \ p? is p itself, so p 2 K. Therefore, the closure
of H \ L.ƒ�; ƒ�/ in S3 [ H1;1

C is .K [ H/ \ L.ƒ�; ƒ�/. But K \ L.ƒ�; ƒ�/ D

K \ƒ� D; because L.ƒ�;ƒ�/\S3Dƒ�. SoH \L.ƒ�;ƒ�/ is closed in the compact
set S3 [H1;1

C , hence compact.

Step 2. The set of points polar to the axes in the orbit of ˛�.
/ is discrete in L.ƒ�; ƒ�/.
Indeed, the orbit of the geodesic axis.
/ in H2

R is discrete in the space of geodesic
of H2

R. Equivalently, using polarity in the real case, the orbit O0 of points polar to these
geodesic axes in RP2 is discrete in the Möbius band

H1;1
R D @1�

2=.x; y/ � .y; x/:

Denote by p
 the polar point to the axis at infinity ˛�.
/ of �.
/. By construction, we
have p
 D �.
/�� �.
/C. For any ı 2 � , the polar to �.ı/ � ˛�.
/ is the point �.ı/ � p
 D
.�.ı/ � �.
/�/� .�.ı/ � �.
/C/. One can express this in other, more adapted, terms. Recall
from Section 3.5.4 that we have a boundary map B� W @1H2

R ! ƒ�. This boundary map
induces an embedding .x; y/! L.B�.x/; B�.y// of H1;1

R into H1;1
C whose image is the

Möbius band L.ƒ�; ƒ�/; see Proposition 4.8.
The above expression of �.ı/ � p
 means that the orbit O� of p
 in RP.ƒ�/ is exactly

the image of O0 by this embedding. This implies that this orbit O� is discrete in the
Möbius band L.ƒ�; ƒ�/.

Step 3. The set of the statement is in natural bijection through polarity with the intersection
of O� and H . We have proven that O� is discrete in L.ƒ�;ƒ�/ and that H \L.ƒ�;ƒ�/

is compact. So the intersection between the orbit O� and H is finite.

The second argument is classical in the world of geometric structure and follows from
the Ehresmann–Thurston principle. The next proposition is a consequence of a theorem of
Guichard and Wienhard [25, Theorem 9.12]. The language in which [25] states and proves
this theorem is quite different from ours, so we provide a short proof.
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Proposition 5.9. Let � be a convex cocompact deformation of �0. Then, �.�/n�� is dif-
feomorphic to UT†.

Proof. For any convex-cocompact representation �, let X� denote the quotient �.�/n��.
Note that ƒ� is a circle in the sphere, so the quotient X� is connected. We prove, fol-
lowing Guichard–Wienhard, that the diffeomorphism class of X� is constant under small
deformation.

We first note that X� is compact as follows from convex-cocompactness: in the geo-
metrically finite setting [7, Definition F1], the orbifold with boundary

�.�/n.H2
C [��/ D

�
�.�/nH2

C

�
[X�

has a finite number of ends, each associated with a class of maximal parabolic subgroups
of �.�/. Under the convex-cocompact assumption, �.�/ has no parabolic subgroup, so
there are no ends: X� is a closed subset of a compact set.

Let us now prove that after a small deformation �0 of �, the quotient X�0 is homeo-
morphic to X�. Indeed, by construction, � is the holonomy representation of a spherical
CR uniformisation of X�. Let yX ' �� be the �-covering of X� and fix a compact funda-
mental domain D � yX . The developing map s� W yX ! �� � S3 sends D to a compact
set disjoint from the compact set ƒ�. By the Ehresmann–Thurston principle [22], any
small deformation �0 is also a holonomy representation of a spherical CR structure on
X�. The developing map s�0 W yX ! S3 is close to s�. As ƒ�0 varies continuously (Pro-
position 3.29), the two compact sets s�0.D/ and ƒ�0 remain disjoint for small enough
deformations. Hence, the image of s�0 avoids ƒ0� and s�0 is a local diffeomorphism from
yX to ��0 . By �-equivariance, it descends to a local diffeomorphism '�0 from X� to X�0 .

Both X� and X�0 are compact and connected, so '�0 is a covering. As '�0 deforms to
'� D IdX� when �0 deforms to �, '�0 is actually a homeomorphism isotopic to the identity.

We finally prove that for any � in the connected component of �0, the space X� is
homeomorphic toX�0 'UT†. This is a connectedness argument: the homeomorphy class
of X� is fixed under small deformations. So, the set of representations � in this connected
component such that

X� ' X�0

is a non-empty open subset of this connected component. But its complement is also open.
So the complement is empty. This proves the proposition.

With these two preliminary results at hand, we may proceed with the proof of The-
orem 5.7.

Proof of Theorem 5.7. In order to prove the first point, we have to prove that the arcs of
C-circles �.ı/ � ˛�.
/ are pairwise disjoint for � close to �0.

We can choose a compact K � S3 such that for all small enough deformations � of
�0, K avoids ƒ� and contains a fundamental domain for �.�/ acting on ��. So, if some
intersection happens between two arcs �.ı/ � ˛�.
/ and �.ı0/ � ˛�.
/, one such intersection
also happens inside K. So we just have to control the behaviour of arcs that meet K.
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If the deformations are small enough, ƒ� is always slim (Proposition 3.28). This
implies that the set of arcs �.ı/ � ˛�.
/ intersectingK is finite, by the previous Lemma 5.8.
Moreover, this set is locally constant. So there is an open neighbourhood U of �0, for
which the following set is finite:®

ı 2 �; 9� 2 U; �.ı/ � ˛�.
/ intersects K
¯
:

So we have to control a finite set of arcs of C-circles. At �0, from Proposition 5.3, we
know that these finite number of arcs do not meet. As they vary continuously with �, it
remains true in a small neighbourhood.

The second point follows: in the quotient �.�/n��.�/'UT†, the projection of the set
of arcs ı � ˛
 is a curve, which varies continuously with � from the first point. For the R-
Fuchsian representation �0, the axis at infinity ˛
 identifies with the geodesic axis.
/ D
� in UT†, so its projection remains homotopic to � throughout the deformation. As a
consequence, the quotient �.�/n��.�/;�.
/ is homeomorphic to UT†.�/.
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