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Corrigendum to “Morse boundaries of proper geodesic
metric spaces”

Matthew Cordes, Alessandro Sisto, and Stefanie Zbinden

Abstract. We introduce refined Morse gauges to correct the proof and statement of Lemma 2.10 of
[Groups Geom. Dyn. 11, 1281–1306 (2017)] written by the first author.

1. Introduction

We adopt the notation of [1]. In [1, Lemma 2.10], the first author claimed that if a sequence
of N -Morse geodesic rays converged uniformly on compact sets to a geodesic ray, then
that ray would beN -Morse. This does not follow and we provide a counterexample below
(Example 2.3). This corrigendum will do three things: We first introduce the notion of
refined Morse gauge and (quasi)-geodesics and use them to prove a corrected version
of [1, Lemma 2.10]. We then reprove [1, Corollary 3.2] without using [1, Lemma 2.10]
of the same paper so that one can define the Morse boundary without reference to refined
Morse gauges. Finally, we show that for any proper geodesic metric space, the Morse
boundary defined with Morse gauges and the refined Morse boundary, defined by refined
Morse gauges only, are homeomorphic. A key step in this is Lemma 2.4, which associates
with any Morse gauge N and a refined Morse gauge yN such that all N -Morse geodesics
are yN -Morse; essentially, the lemma says that one can always replace Morse gauges with
refined Morse gauges.

A major consequence of the incorrectness of [1, Lemma 2.10] is that the N -Morse
strata, @NMX , are not necessarily compact. Many papers which use the Morse boundary
rely on [1, Lemma 2.10] either directly or by using [2, Theorem 3.14]. Thankfully, by
Theorem 2.11 anywhere where these results are called upon, unless relying specifically
on Morse gauges that are not refined, one may simply substitute Morse gauges for refined
Morse gauges and the same conclusion will follow. For instance, [2, Theorem 3.14] holds
if one considers only refined Morse gauges.
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2. Refined Morse boundary

We now introduce the notion of refined Morse gauge and geodesic.

Definition 2.1. A refined Morse gauge is a Morse gauge N WR�1 �R�0! R�0 with the
following additional properties:

(1) N is non-decreasing.

(2) N is continuous in the second coordinate.

We denote the collection of refined Morse gauges yM.

To correct the proof of [1, Lemma 2.10], we do not actually need that a Morse gaugeN
is non-decreasing, but it is generally useful. In particular, given a Morse gaugeN , one has
an associated constant ıN (to be thought of as a hyperbolicity constant) which is useful in
several ways. If N � N 0 are non-decreasing Morse gauges, then ıN � ıN 0 , which does
not hold in general otherwise (unless one redefines ıN as proposed in Remark 2.8). Fur-
thermore, it is an intermediate step in the proof of Lemma 2.4. We now define a refined
Morse quasi-geodesic.

Definition 2.2. Let X be a metric space, N a refined Morse gauge, and I a closed
interval of R. The quasi-geodesic 
 W I ! X is a refined N -Morse geodesic if for any
.�; "/-quasi-geodesic � with endpoints on 
 , the image of � is contained in the closed
N.�; "/-neighborhood of 
 .

There are two differences between the definition of Morse geodesics and refined-
Morse geodesics. The first is that we require the use of a refined Morse gauge. The second
is that we ask for the quasi-geodesic � to be in the closed neighborhood of 
 .

We now present the counterexample to [1, Lemma 2.10].

Example 2.3. Consider the spaceX formed by taking the hyperbolic plane H2 and gluing
in a line segment connecting two points p; q 2 H2 of length d.p; q/. Thus in X there are
two geodesics between p and q, one in H2 and the other along the line segment. Let ˛ be
a geodesic ray with basepoint p passing through q whose image is in H2 and let ¹˛iº be
a collection of geodesic rays with image in H2 and basepoint p converging to ˛. Since X
is hyperbolic, every geodesic is uniformly N -Morse for some N , and because of the extra
segment we glued on, N.1; 0/ ¤ 0. Define

N 0.�; "/ D

´
0 � D 1; " D 0;

N.�; "/ else:

Since X is uniquely geodesic except for geodesics passing through p and q, we know that
the ˛i are N 0-Morse. Since ˛ is not N 0-Morse, we have our counterexample.

The Morse gauge N 0 is not a refined Morse gauge because it is not continuous in the
second coordinate. To see this, we note that N 0.1; "/ D N.1; "/ must be at least 1

2
d.p; q/

since a geodesic is a .1; "/-quasi-geodesic. So N 0 is discontinuous at 0.
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The following lemma can be used in several contexts to harmlessly pass from Morse
gauges to refined Morse gauges.

Lemma 2.4. For every Morse gauge N , there exists a refined Morse gauge yN with the
property that every N -Morse geodesic is also an yN -Morse geodesic.

Proof. We will first construct a non-decreasing Morse gauge from N . This is done by
setting

N 0.�; "/ D inf
�0; "0
¹N.�0; "0/ j �0 � �; "0 � "º C 1:

We see that by construction N 0 is non-decreasing.
To arrange that N 0 is continuous in the second coordinate, we first note that since

we have arranged that N 0 is non-decreasing, then if we fix a � 2 R�1, the function
N 0.�; "/WR�0 ! R�0 is non-decreasing and thus (Riemann) integrable. We then set

yN.�; "/ D

Z "C1

"

N 0.�; t/ dt:

A standard calculation using that yN.�; �/ is bounded on compact intervals shows that yN
is continuous in the second coordinate. We also note that, since N 0 is non-decreasing, we
have N 0 � yN .

Let ˛ be anN -Morse geodesic and let � be a .�; "/-geodesic with endpoints on ˛. We
note that � is also an N.�0; "0/-quasi-geodesic for any �0 � � and "0 � ". Thus by con-
struction, we know that � must be in the N 0.�; "/-neighborhood of ˛ and since N 0 � yN ,
we conclude that � is in the yN.�; "/-neighborhood of ˛.

We now state and prove the corrected version of [1, Lemma 2.10].

Lemma 2.5 ([1, Lemma 2.10] redux). LetX be a geodesic metric space and suppose that
¹
i WR�0 ! Xº is a sequence of refined N -Morse geodesic rays that converge uniformly
on compact sets to a geodesic ray 
 . Then 
 is refined N -Morse.

Proof. Let � > 0. Let � be a .�; "/-quasi-geodesic with endpoints 
.s/ and 
.t/ on 
 .
Since the 
i converge uniformly on compact sets and are refined N -Morse, there exists
an I 2 N such that for any i � I , we have d.
i .t/; 
.t// � � on 
 jŒs;t�. It follows that 

is N 0-Morse where N 0.�; "/ D N.�; "C �/C �. Since this is true for all � > 0 and N
is continuous in the second coordinate, we can conclude that � is in the closed N.�; "/
neighborhood of 
 jŒs;t�. It follows that 
 is refined N -Morse.

We wish to reprove [1, Corollary 3.2] to avoid using [1, Lemma 2.10] from the same
paper so that we may define the Morse boundary without reference to refined Morse
geodesics.
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Lemma 2.6. Let X be a geodesic metric space and let ˛W Œ0; A�! X be an N -Morse
geodesic and ˇW Œ0; A�! X be any geodesic. Also assume that ˛.0/ D ˇ.0/. Then for
t 2 Œ0; A � d.˛.A/; ˇ.A//� we have d.˛.t/; ˇ.t// < 4N.3; 0/.

Proof. Let ˛.x/ be the closest point on ˛ to ˇ.b/. By the triangle inequality x �

A � d.˛.A/; ˇ.A//. It follows as in the proof of Case 1 of [1, Proposition 2.4] that
the concatenation � D ˇ.Œ0; A�/ [ Œˇ.A/; ˛.x/� is a .3; 0/-quasi-geodesic. Since ˛ is
N -Morse, we know that � is in the N.3; 0/-neighborhood of ˛.Œ0; y�/, and by [1,
Lemma 2.1] we can bound the Hausdorff distance between ˛Œ0; y� and � by 2N.3; 0/.
By a standard argument we may conclude that for all t 2 Œ0;A� d.˛.A/;ˇ.A//�, we have
d.˛.t/; ˇ.t// < 4N.3; 0/.

We now reprove [1, Corollary 3.2].

Lemma 2.7 (Corollary 3.2 redux). Let N and N 0 be Morse gauges such that every
N -Morse geodesic is also N 0-Morse. Then the natural inclusion i W @NMXp ! @N

0

M Xp is
continuous. In particular, if N � N 0 then this condition is satisfied.

Proof. Let U be an open set in @N
0

M Xp . We wish to show that i�1.U / is open. Let
x 2 i�1.U / and ˛x a geodesic ray representing x. Since i is an inclusion and U is open
in @N

0

M Xp , then there exists an j 2 N so that V N
0

j .˛x/ � U . Let k D j C 3ıN . Applying
Lemma 2.6 thinking of ˛x as an N 0-Morse geodesic, we know that for any y 2 V N

k
.˛x/

and any geodesic ˛y representing y, that d.˛x.t/; ˛y.t// < 4N 0.3; 0/ for t 2 Œ0; j �. So
i.V N

k
.˛x// � V

N 0

j .˛x/ � U . Since we can do this for any x 2 i�1.U /, we can conclude
that i�1.U / is open.

Remark 2.8. We note that one can also prove this using [1, Corollary 2.5], but we prove
Lemma 2.6 because it is a useful lemma of independent interest. In fact, in future research
on the Morse boundary, one might wish to redefine ıN to be 4N.3; 0/.

Definition 2.9. Let X be a proper geodesic metric space and let p 2 X . Let ˛W Œ0;1/!
X be an N -Morse geodesic ray with ˛.0/ D p and for each positive integer n, let
Vn.˛/ be the set of geodesic rays 
 such that d.˛.t/; 
.t// < ıN for all t < n.
Then by [1, Lemma 3.1], this forms a fundamental system of neighborhoods of Œ˛� in
@NMXp . We topologize @NMXp with the topology arising from this fundamental system of
neighborhoods.

Let M be the set of all Morse gauges with the usual partial order. The Morse boundary
is

@MXp D lim
�!
M

@NMXp

with the induced direct limit topology.
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Definition 2.10. The refined Morse boundary, denoted @ yMXp , is defined the same way as
the Morse boundary in [1] but rather than considering all Morse gauges M, we consider
only refined Morse gauges yM.

Theorem 2.11. Let X be a proper geodesic metric space. Then the inclusion @ yMX ,!

@MX induces a homeomorphism.

Proof. This follows from Lemmas 2.4 and 2.7, and the universal property of direct
limits.
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