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Higher-dimensional digraphs from cube complexes
and their spectral theory

Nadia S. Larsen and Alina Vdovina

Abstract. We define k-dimensional digraphs and initiate a study of their spectral theory. The k-
dimensional digraphs can be viewed as generating graphs for small categories called k-graphs.
Guided by geometric insight, we obtain several new series of k-graphs using cube complexes
covered by Cartesian products of trees, for k � 2. These k-graphs can not be presented as vir-
tual products and constitute novel models of such small categories. The constructions yield rank-k
Cuntz–Krieger algebras for all k � 2. We introduce Ramanujan k-graphs satisfying optimal spectral
gap property and show explicitly how to construct the underlying k-digraphs.

1. Introduction

The study of higher-rank graphs and theirC �-algebras originates in the work of Robertson
and Steger in [27] and expanded into a very active direction of research in operator algeb-
ras following the work of Kumjian–Pask [13], where the term k-graph was formalised.
A higher-rank graph, or k-graph, with k � 1, is a small category with a functor into the
monoid Nk that enjoys a unique factorisation property. While many important structural
results about higher-rank graph C �-algebras have been obtained, the supply of examples
of k-graphs for k � 3 is limited. The main contribution of the present paper is to provide
new, infinite series of examples of higher-rank graphs. Our main technical innovation is
the concept of a k-dimensional digraph, where k � 2. Using input from the geometric
group theory, we obtain several infinite series of explicit constructions of k-dimensional
digraphs for k � 3, and from these we obtain novel examples of higher-rank graphs with
rank at least 3 which are not of product type, in particular are not skew-products, as will
be explained.

A k-dimensional digraph is a generalisation of a directed graph, or digraph. It is known
that 1-graphs are free categories defined by directed graphs, see, e.g., [13] or [15, Propos-
ition 3.12]. Our definition of k-dimensional digraph is made so that the natural category
associated with it will be a k-graph. This definition is as follows.

Definition 1.1. Let k � 2 be a positive integer. A k-dimensional digraph

DG D .V;E; o; t; k; �/
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is a directed graph with V a finite set of vertices, E finite set of edges, maps o; t W E ! V

which determine the origin and terminus of each x 2 E, and the property that the edge set
decomposes as a disjoint unionE DE1 tE2 t � � � tEk withEi for i D 1; : : : ; k regarded
as edges of colour i , such that there is a bijection � W Y ! Y on the set Y WD YDG of all
directed paths of length two formed of edges of colours given by ordered pairs .i; j / with
i ¤ j in ¹1; 2; : : : ; kº, satisfying the following properties:

(F1) If xy is a path of length two with x of colour i and y of colour j , then �.xy/ D
y0x0 for a unique pair .y0; x0/ where y0 has colour j , x0 has colour i , and the
origin and terminus vertices of the paths xy and y0x0 coincide. We write this as
xy � y0x0 and note that �2 D 1.

(F2) For all x 2 Ei , y 2 Ej , and z 2 El so that xyz is a path on E, where i; j; l are
distinct colours, if x1;x2;x1;x2 2Ei , y1;y2;y1;y2 2Ej , and z1; z2; z1; z2 2El
satisfy

xy � y1x1; x1z � z1x2; y1z1 � z2y2

and
yz � z1y1; xz1 � z2x1; x1y1 � y2x2;

it follows that x2 D x2; y2 D y2, and z2 D z2.

One of the main motivations for this definition is to have a purely combinatorial finite
set of data to deal with as input to defining a C �-algebra. The definition of a k-graph in
[13] involves an infinite category. In [11], Hazlewood, Raeburn, Sims, and Webster present
an explicit construction of the (unique in the appropriate sense) k-graph associated with
the data of a combinatorial graph with a prescription of colouring of edges and a complete
and associative set of squares. While the complete and associative collection of squares
contains the same combinatorial information as our k-dimensional digraph, the advantage
of our concept of k-dimensional digraph is two-fold, as it involves only a finite number
of conditions to be checked without reference to graph morphisms in an infinite category,
and because it allows for providing a rich supply of examples from k-cube complexes via
the geometric group theory. More precisely, the latter appeals to the theory of finitely-
present groups with finite-index subgroups. When there are infinite-index subgroups, our
approach could be used to construct k-graphs on infinitely many vertices from finite data.

If we seek for an analogy from topology, we may talk about a CW-complex having
a simply-connected universal cover, so our k-dimensional digraph is an analogue of the
complex and the k-graph in the existing literature is an analogue of the universal cover.

The constructions in [27] provided a generalisation of the Cuntz–Krieger algebras
from topological Markov shifts introduced in [5]. They were motivated by an observation
of Spielberg [33] clarifying that a free group � on finitely many generators, viewed as
the fundamental group of a finite connected graph, acts on the boundary � of its Cayley
graph such that in the associated crossed product C.�/ Ì � , one finds generating par-
tial isometries for an ordinary Cuntz–Krieger algebra A associated with a matrix M that
records incidence in the universal covering graph. This provided the basis for defining a
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higher-rank Cuntz–Krieger algebra A in [27]: the input consists of a finite alphabet and
a family of commuting .0; 1/-matrices M1; M2; : : : ; Mk , with k � 1, having entries in
the alphabet, satisfying a number of conditions, and controlling the formation of words of
Nk-valued shape. Shortly after [27], Kumjian–Pask [13] defined a k-graph ƒ as a small
category with an Nk-valued degree of morphisms modelling the formation of words from
[27] and with an associated C �-algebra C �.ƒ/ generated by partial isometries subject to
Cuntz–Krieger type relations, recovering [27].

The explicit examples in [27] feature k D 2. There, the foundation for the construction
of the C �-algebra is a group action on the boundary of an affine zA2 building, from which
one extracts a suitable alphabet and defines two commuting matrices with the properties
(H0)–(H3) specified in [27]; see also [12]. Now, even though k-graphs were defined some
time ago, not many explicit examples are known for k � 3; see though [19].

Here, we construct infinite series of examples of k-graphs, with k � 3, from groups
acting freely and transitively on products of k regular trees of constant valencies, as were
explicitly found by Rungtanapirom, Stix, and Vdovina in [29]. One of our key tools is The-
orem 3.1 establishing that there is a k-graph, unique in the appropriate sense, associated
with every k-dimensional digraph.

Theorem 1.2 (Cf. Theorem 3.1). Suppose that DGD .V;E; o; t; k; �/ is a k-dimensional
digraph, k � 2. Then, there exist a small category ƒDG with V as a set of objects and a
functor d WƒDG!Nk which assigns value (degree) ei to morphisms determined by edges
in Ei , for all 1 � i � k. Moreover, the functor d has the unique factorisation property
and in particular, .ƒDG; d / is a higher-rank graph.

The other main tool shows that every k-cube complex gives rise to a k-dimensional
digraph, as follows.

Theorem 1.3 (Cf. Theorem 3.3). For any complex X with universal cover equal to the
product of k regular trees, where k � 2, there is a k-dimensional digraph DG.X/ defined
by sending a vertex of X to a vertex in DG.X/, and by sending each geometric edge in X

to two edges in the edge set of DG.X/, of the same colour and opposite orientations.

The k-graphs resulting from our constructions are not skew-products of a k-graph
by some finite group because such a setup would involve a fundamental group with tor-
sion elements, while all fundamental groups of complexes in our construction are infinite
torsion-free groups since they are fundamental groups of CAT.0/ spaces.

The examples of k-graphs we obtain by Corollary 3.4 and Theorem 4.7 differ from, for
example, the k-graphs constructed in [12, 26–28] since these papers only considered the
case k D 2. Moreover, our examples are new for k D 2; see Remark 3.9. Our construction
also differs from the more recent [18] when k D 2 and [19] for k � 3, both of which
emulate [12, 27]. The core idea in these references is as follows: given a cell complex X,
each k-dimensional cell in X becomes a vertex in a k-graph ƒ.X/, and for two such
cells, there is an edge in ƒ.X/ if the given cells are adjacent via a .k � 1/-cell, for k � 2.
In this construction, one may take pointed cells as vertices, or unpointed. Another way
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to distinguish our higher-rank graphs from the ones in [27] is to compute the products
of coordinate matrices. The products of coordinate matrices in [27] have to be .0; 1/-
matrices, but this is not necessarily the case in our construction (see Example 5.10).

To place our definition in the context of similar developments, we recall that a recipe
for constructing 2-graphs was proposed in [13, Section 6], starting from two distinct dir-
ected graphs on the same set of vertices with commuting vertex matrices. A step forward
was taken in [8]; see there Remark 2.3, where a certain associativity type condition was
identified as sufficient. In [11], the authors distilled these earlier attempts at construct-
ing higher-rank graphs and landed on a prescription requiring a skeleton, or a k-coloured
graph (where the colouring refers to edges and employs k distinct colours) and a collection
of building blocks termed squares that satisfy compatibility requirements; see [11, The-
orem 4.4]. The squares here are certain coloured-graph morphisms.

A further simplification of the prescription of a k-graph from its skeleton, seen as a k-
coloured graph, has been employed in concrete examples such as [14, Example 7.7] and
[15, Section 8.2]. In fact, this last example articulates the requirements on the coloured
graph that inspired our conditions (F1) and (F2) in Definition 1.1. It is interesting to note
that the validity of the associativity condition (F2), for k � 3, is a priori highly nontrivial.
There are connections to finding solutions of the Yang–Baxter equation; see for example
[35, 37].

There is a strong connection between the geometry of CW-complexes, group and
semigroup actions, higher-rank graphs, and the theory of C �-algebras. The difficulty is
that there are many ways to associate C �-algebras with groups, semigroups, and CW-
complexes, and this can lead to both isomorphic and non-isomorphic C �-algebras. For
the higher-rank graphs, there is a canonical way to associate a C �-algebra, cf. [13], but it
happens that non-isomorphic k-rank graphs lead to the same C �-algebra. This conclusion
is often achieved through the computation of K-theory and applications of the powerful
Kirchberg–Phillips classification machinery for purely infinite simple unital nuclear C �-
algebras.

One important question is what is a genuine higher-rank? This means that our k-rank
graph can not be obtained by some standard procedure from graphs of smaller ranks.
We address this question by introducing the spectral theory of combinatorial higher-rank
graphs. So far the spectrum of strongly connected higher-rank graphs was considered in
[1,14], through Perron–Frobenius theory, which leads to new explicit constructions of von
Neumann factors. We generalise the results of [14] by constructing infinite series of III�
factors for any k, and infinitely many values of �.

We want to stress the following simple but important point about our construction of
k-graphs: recall that for an undirected graph with (vertex) adjacency matrix A, we have
A.v; w/ D 1 D A.w; v/ if vertices v; w are connected by an edge. Thus, the adjacency
matrix is symmetric and the eigenvalues are real. In a k-graph, we have directed edges
in the various colours in its 1-skeleton. There is no reason why the adjacency matrix
should be symmetric. What can be said in general about a k-graph is that if it is strongly
connected, then its associated coordinate matrices jointly admit a unimodular Perron–
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Frobenius eigenvector [1]. Now, in our construction of the k-graph ƒ.P / from a k-cube
complex P , the procedure is such that it assigns to each undirected edge in the 1-skeleton
of P a pair of morphisms (arrows) with opposite orientation in ƒ.P /. As a consequence,
the adjacency matrix for the complex in direction i is the same as the coordinate matrix
Mi of ƒ.P / in colour i , for all i D 1; : : : ; k. Thus, all our constructions of k-graphs have
symmetric matrices.

With this in mind, we suggest a new class of higher-rank graphs, which we call
Ramanujan k-rank graphs; see Section 5.2. Their coordinate matrices are symmetric, so
all eigenvalues are real and it makes sense to consider the spectral gap. We show that our
k-graphs satisfy the optimal spectral gap condition, which distinguishes them from the
examples that have appeared in the literature so far.

The structure of the paper is the following: in a preliminary Section 2, we collect
conventions and results about categories, groups acting on products of trees, k-cube com-
plexes, in particular one-vertex k-cube complexes from k-cube groups, k-graphs and their
C �-algebras. Section 3 starts with one of our main results, Theorem 3.1, which prescribes
the construction of a k-graph from a given k-dimensional digraph. We then associate a k-
dimensional digraph with any complex covered by a product of k trees; see Theorem 3.3.
The ensuing Corollary 3.4 describes the new family of k-graphs from k-cube complexes.
In the case of a one-vertex complex P , or equivalently a k-cube group with complex P ,
we show that the resulting k-graphs are rigid in the sense of [16]; in particular, they are
aperiodic and yield classifiable C �-algebras in the sense of the Kirchberg–Phillips classi-
fication [22]. In Section 4, we construct k-cube complexes on N vertices from N -covers
of one-vertex complexes, with N � 2, and prove that the C �-algebras of the associated
k-graphs with N vertices are covered by the Kirchberg–Phillips classification theory. In
Corollary 5.3, we expand the scope of the constructions of 2-graphs in [14, Example 7.7]
leading to factors of type III1=2 and give an explicit infinite family giving type III1=.2L/2
factors, with L, an arbitrary integer. In Section 5.2, we introduce the notion of Ramanu-
jan k-graphs and show that there are infinite families of such k-graphs; see Theorem 5.9.
Example 5.10 details an explicit Ramanujan 3-graph on 25 vertices with optimal spectral
gap. We compute the associated 25� 25 incidence matrices and estimate the joint spectral
gap of the 3-dimensional digraph with the help of MAGMA. The 3-graph moreover fea-
tures the interesting property that while it arises from an infinite 3-cube group �1 which is
also an irreducible lattice, in the cover with 25 sheets, each of the three distinct alphabets
in �1 generates a finite group of order 25.

2. Preliminaries
2.1. Categories

We follow the principles laid out in [17] but also keep in mind the interpretation in [6,
Chapter II, Sections 1.1 and 1.2]. A category C consists of objects Obj.C/ and morphisms
Hom.C/. We often blur the distinction between C and Hom.C/ and refer to the latter as
the elements or arrows of C . To each f 2 C , there are two objects associated, its origin
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and terminus, and the category is seen as a collection of elements endowed with a partial
product governed by compatibility of objects. Of interest to us are categories associated
with directed graphs, where the concatenation of edges on the graph will determine the
composition of arrows in the category, upon natural reversal of origin and terminus.

2.2. Directed graphs

By a directed graph D we mean a set D0 of vertices, a set D1 of edges, and maps o; t W
D1!D0 determining the origin and terminus of edges. Edges whose origin and terminus
coincide, also called loops, will be allowed. We shall assume that D0; D1 are finite. We
form a path ef when t .e/ D o.f / for e; f 2 D1 and extend this to finite directed paths
f1f2 � � �fm onD, and likewise in the case of a finite number of graphs on the same vertex
set; see Section 3.

2.3. Complexes covered by products of trees

We start by introducing our definition of k-cube complex. Then, we expand on the case of
one-vertex k-cube complexes, for which we follow the notation and approach of [19, 35].
We refer to [4, 36], and especially [25, Section 1.2], for an introduction to square com-
plexes and .2m; 2l/ groups, m; l � 1. We refer to [30] for details on CAT.0/ complexes
and to [10] for the basic theory of CW complexes. We use the letter T for an arbitrary
regular tree, and Tl for the regular l-valent tree, where l � 1.

Definition 2.1. Let k � 1 be a positive integer. A CW complex X is a k-dimensional
cube complex, or k-cube complex, if its universal cover is a Cartesian product of k trees
T1 �T2 � � � � � Tk , each of which has finite constant valency.

In the case of a one-vertex k-cube complex, for which we use the letter P , an equival-
ent definition is as the quotient space P D ZnG of a group G with a free and transitive
action on a product Z D T1 �T2 � � � � � Tk of k trees. Such G are called k-cube groups;
see Definition 2.3. For general k-cube complexes with more than one vertex, the similar
definition as a quotient space X D ZnG can be enforced upon replacing transitive action
with cocompact action.

We leave the case of trees with possibly non-constant and/or infinite valency for future
discussion.

To describe a k-cube complex for k � 2, it is useful to recall the formalism of 2-
complexes (or square complexes) covered by products of two trees; see, e.g., [35]. We
use the letter S to denote a generic 2-complex. A square complex S is a 2-dimensional
combinatorial cell complex with 1-skeleton consisting of a graph G .S/ D .V .S/; E.S//

with a set of vertices V.S/, and a set of oriented edges E.S/, and with 2-cells arising
from a set of squares that are combinatorially glued to the graph G .S/. More precisely, let
e 7! e�1 denote orientation reversal of an edge e 2 E.S/, and suppose that .e1; e2; e3; e4/
is a 4-tuple of oriented edges in E.S/ with the origin of eiC1 equal to the terminus of
ei (for i modulo 4). A square � D .e1; e2; e3; e4/ is the orbit of .e1; e2; e3; e4/ under
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the dihedral action generated by cyclically permuting the edges ei and by the reverse
orientation map

.e1; e2; e3; e4/ 7! .e�14 ; e�13 ; e�12 ; e�11 /: (2.1)

As customary, we think of a square-shaped 2-cell glued to the (topological realisation
of the) respective edges of the graph G .S/.

A vertical/horizontal structure (in short, a VH-structure) on a square complex is given
by a bipartite structure of the set of unoriented edges E.S/ D EV t EH such that for
every vertex v in V.S/ the link at v is the complete bipartite graph on the resulting parti-
tion E.v/D E.v/V tE.v/H , with E.v/ denoting the set of oriented edges with origin v.
Torsion-free cocompact lattices � in Aut.Tm/ � Aut.Tl / with m; l � 1, not interchan-
ging the factors and considered up to conjugation, correspond uniquely to finite square
complexes S with a VH-structure of partition size .2m; 2l/ up to isomorphism. Simply
transitive torsion-free lattices not interchanging the factors correspond to finite square
complexes with one vertex and a VH-structure, necessarily of constant partition size.

2.4. One-vertex k-cube complexes

We first look at the case when k D 2. Let S be a square complex with one vertex v 2 S
and a VH-structure E.S/D EV tEH . Pictorially, this consists of a collection of squares,
each of which has four vertices labelled v. Passing from the origin to the terminus of
an oriented edge e in a square corresponds to a fixed-point free involution e ! e�1 on
E.v/V and on E.v/H . Thus, the partition size is necessarily a tuple .2m; 2l/ of even
integers, m; l � 1. The lattice identified with �1.S; v/ admits a description in terms of
two generating subsets A;B; see [35, Definition 5].

Definition 2.2. A vertical/horizontal structure, or VH-structure, in a group G is an or-
dered pair .A;B/ of finite subsets A;B � G such that the following hold.

(1) Taking inverses induces fixed-point free involutions on A and B .

(2) The union A [ B generates G.

(3) The product sets AB and BA have size #A � #B and satisfy AB D BA.

(4) The sets AB and BA do not contain 2-torsion.

The tuple .#A; #B/ is called the valency vector of the VH-structure in G.

If a group G admits a VH-structure .A; B/ of valency vector .#A; #B/, then by [4,
Section 6.1], there is a square complex SA;B with one vertex and a VH-structure in the
sense of Section 2.3. The set of oriented edges of SA;B is the disjoint union E.SA;B/ D
A t B , with the orientation reversion map given by e 7! e�1, and with A; B labelling
the edges in vertical and horizontal direction, respectively. The link of SA;B in v is the
complete bipartite graph with vertices labelled by A and B , e.g. [35, Lemma 1], and
[2, Theorem C] implies that the universal cover of SA;B is a product of trees. Con-
versely, given a square complex S with a VH-structure .A; B/ and a single vertex, its
fundamental group (i.e., the fundamental group of its topological realisation) admits a
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VH-structure of valency .#A; #B/; see [29, Proposition 5.7]. We refer to it as a .#A; #B/-
group. Example 3.8 shows a .4; 4/-complex with associated .4; 4/-group.

To describe the geometric squares of SA;B , note that a relation ab D b0a0 in G with
a; a0 2 A and b; b0 2 B (not necessarily pairwise distinct), as prescribed by Definition 2.2,
leads to four algebraic relations obtained upon cyclic permutation and inversion; namely,

ab D b0a0; a�1b0 D ba0�1; a0�1b0�1 D b�1a�1; and a0b�1 D b0�1a: (2.2)

This leads to the definition of a geometric square as a tuple of four Euclidean squares. All
four vertices in each square coalesce into the single vertex v of SA;B when we glue the
edges according to labels and orientation. Before we introduce our convention, we recall
briefly two other (equivalent) conventions for describing geometric squares.

2.5. One convention – see, e.g., Rattaggi

The formalism of a geometric square seen as a 4-tuple of squares in Euclidean space is
well known. In [25, Figure 4.1, p. 182], for example, the group relation ab D b0a0 is
reflected by the 4-tuple of squares having edges labelled according to a one-way cyclic
permutation in counterclockwise direction; see below:

�

SOb0

��

�
a0oo �

SRb

��

�
aoo �

SH

a0 // �

b0

��

�

SV

a // �

b

��
�

a
// �

b

OO

�
a0
// �

b0

OO

�

b

OO

�
a
oo �

b0

OO

� :
a0
oo

(2.3)

The notation means that if SO is regarded as a reference square, then SH is obtained
by reflection in the horizontal direction (about b), SV by reflection in the vertical direc-
tion (about a), and, finally, SR arises from rotation counterclockwise by � . Our use of
SO ; SR; SH ; SV as notation for the squares is inspired by [19, Section 2].

The geometric square associated with ab D b0a0 in [25] and visualised in (2.3) is given
by ®

.a; b; a0; b0/; .a0; b0; a; b/; .a�1; b0
�1
; a0
�1
; b�1/; .a0

�1
; b�1; a�1; b0

�1
/
¯
:

2.6. A second convention – see Kimberley–Robertson

In [12], Kimberley–Robertson adopted a two-direction labelling of their squares which to
a group relation ab D b0a0 assigns a 4-tuple of squares according to the convention below:

�

SO

a0 // � �

SRb

��

�
aoo

b0

��

�

SH

�
a0oo �

SV

a //

b0

��

�

b

��
�

b0

OO

a
// �

b

OO

� �
a0
oo �

b

OO

�

b0

OO

a
oo �

a0
// � :

(2.4)

The geometric square associated with ab D b0a0 and visualised in (2.4) is given by®
.a; b; b0; a0/; .a0

�1
; b0
�1
; b�1; a�1/; .a�1; b0; b; a0

�1
/; .a0; b�1; b0

�1
; a/
¯
:
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2.7. Our convention

We choose a convention that will facilitate our constructions of k-graphs later on, and in
particular we swap the letters for vertical and horizontal directions, as follows: we keep
the cyclic permutation in counterclockwise direction from [25] but choose labelling of
edges as “starting” at one vertex by going out in both horizontal and vertical direction,
similar to [12].

�

SO

b // � �

SRa0

��

�
b0oo

a

��

�

SH

�
boo �

SV

b0 //

a

��

�

a0

��
�

a

OO

b0
// �

a0

OO

� �
b

oo �

a0

OO

�

a

OO

b0
oo �

b

// � :

(2.5)

Explicitly, we define a geometric square as visualised in (2.5) to be a tuple®
.a; b; a0�1; b0�1/; .a0�1; b0�1; a; b/; .a0; b�1; a�1; b0/; .a�1; b0; a0; b�1/

¯
; (2.6)

where any two squares are seen as equivalent.
Since for our purposes it will be important to keep track of how such squares arise, we

introduce the following more precise notation: for a 2 A and b 2 B , we let

S
a;b
O WD .a; b; a0�1; b0�1/; (2.7)

where a0; b0 are the unique elements in A and B , respectively, such that ab D b0a0. We
refer to ab as the vertical-horizontal pair of edges in Sa;bO and to b0a0 as the horizontal-
vertical pair of edges in Sa;bO .

In [35], the last named author generalised VH-structure to the k-dimensional case, as
follows.

Definition 2.3 (See [35, Definition 7]). A k-cube structure in a group G is an ordered
k-tuple .A1; : : : ; Ak/ of finite subsets Ai � G such that the following hold for all i; j D
1; : : : ; k, i ¤ j :

(1) Taking inverses induces fixed-point free involutions on Ai .

(2) The union [Ai generates G.

(3) The product sets AiAj and AjAi have size #Ai � #Aj and AiAj D AjAi .

(4) The sets AiAj and AjAi do not contain 2-torsion.

(5) The group G acts simply transitively on a Cartesian product of k trees.

The tuple .#A1; : : : ; #Ak/ is the valency vector of the k-cube structure in G, and A1; : : : ;
Ak are generating sets of G.

We note that each pair .Ai ; Aj / � G for i; j D 1; : : : ; k with i ¤ j forms a subgroup
Gi;j of G equipped with a VH-structure. This observation can be used to show that to
a given k-cube group G with generating family .A1; : : : ; Ak/, there is an associated k-
cube complex P.A1;:::;Ak/. Its 2-dimensional cells are prescribed by the square complexes
SAi ;Aj obtained from each .#Ai ; #Aj / group Gi;j for i ¤ j .
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Figure 1. A generic 3-cube.

Remark 2.4. In studying k-cube groups and one-vertex k-cube complexes, we will move
freely between two equivalent interpretations. Starting from a k-cube group G defined
algebraically through properties (1)–(5) in Definition 2.3, the associated quotient space
ZnG with Z a product of k trees is a k-cube complex with one vertex. Its construction as
a CW complex from j -cells for 0 � j � k is detailed in [19, Definition 2.3]. Conversely,
one may define a k-cube group G from combinatorial data by starting with k finite sets
of even cardinalities (encoding edges), and building up by induction (on dimension of
cells) a k-dimensional complex with the necessary compatibility to yield generating sets
A1; A2; : : : ; Ak for G; see [19, Definition 2.4].

We next introduce some notation for cubes in a one-vertex k-cube complex P for
k � 2, with motivation and inspiration drawn from [19, Section 2]. We let E be the set
of edges. Because P is the complex associated with a k-cube group, E partitions into k
subsets as E D E1 t � � � tEk in such a way that if an edge e is in Ej , then e�1 2 Ej for
j D 1; : : : ; k. We refer to Ei as the subset of edges of colour i , for i D 1; : : : ; k, where
the k colours are assumed distinct. The 2-cells of P are geometric squares of the form
SO D .a; b; a

0�1; b0�1/ regarded as the equivalence class ¹SO ; SR; SH ; SV º described in
(2.6), where a; a0 2 Ei and b; b0 2 Ej for i ¤ j . By a geometric square we mean any
square in ¹SO ; SR; SH ; SV º. Similar to [19], for distinct colours i ¤ j we let

F.i; j / D
®
S D .a; b; a0�1; b0�1/ j S is a geometric square with a; a0 2 Ei ; b; b0 2 Ej

¯
;

and we denote by S ij a generic square in F.i; j / for all i ¤ j in ¹1; : : : ; kº. The 3-cells
are determined by geometric cubes, all whose 6 faces are geometric squares; see Figure 1
for a (generic) cube.

More precisely, the 6 faces of the cube are geometric squares .S ij1 ;S
il
2 ;S

jl
3 ;S

jl
4 ;S

il
5 ;S

ij
6 /,

with
S
ij
1 D .a1; b1; a

�1
2 ; b�12 / .front face/;

S il2 D .a2; c3; a
�1
3 ; c�12 / .right face/;

S
jl
3 D .b2; c2; b

�1
3 ; c�11 / .bottom face/;

S
jl
4 D .b1; c3; b

�1
4 ; c�14 / .top face/;

S il5 D .a1; c4; a
�1
4 ; c�11 / .left face/;

S
ij
6 D .a4; b4; a

�1
3 ; b�13 / .back face/:
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In particular, any one of the 6 geometric squares in this list is given subject to the equival-
ence relation (2.6), and the geometric cube can be equivalently presented with any one of
the 8 vertices in the bottom-left position. We stress that the labels a1; : : : ; a4, b1; : : : ; b4,
c1; : : : ; c4 here are formal symbols that keep track of how the cubes are glued in the com-
plex. As already mentioned, if e is a label for an edge, then e�1 is the label recording
orientation reversal.

For 4 � l � k, the l-dimensional cells are l-cubes; see [19].
A given k-cell in a k-cube complex P has a topological realisation as the product of

intervals Œ0; 1�k . Denoting by "i the standard basis elements in Rk , for i D 1; : : : ; k, we
view a geometric edge in P as having degree "i if it lies in the span of the generator "i
in its topological realisation. This agrees with the degree of paths in higher-rank graphs in
Section 3.

2.8. Examples of cube groups

The cube groups in this section were introduced in [35]. They contain as a particular case
arithmetic lattices and non-residually finite CAT.0/ groups constructed in [29]. We refer
to them as RSV-groups. They are the first explicit examples of arithmetic groups acting
freely and transitively on products of k trees of constant valencies, for k � 3, as well as
non-residually finite CAT.0/ groups of dimensions k � 3. RSV groups are irreducible in
the sense that they can not be presented as virtual products of group actions on products
of smaller number of trees.

We recall here a construction of an explicit series of RSV lattices, which is infinite in
several parameters, k, q, and ı. The significance of the irreducibility of these groups is
that the associated k-graphs can not be presented as virtual products, so are entirely new.

For q, an odd prime, let ı 2 F�
q2

be a generator of the multiplicative group of the field
with q2 elements. If i; j 2 Z=.q2 � 1/Z satisfy i 6� j .mod q � 1/, then 1C ıj�i 6D 0,
and it follows that there is a unique xi;j 2 Z=.q2 � 1/Z with ıxi;j D 1C ıj�i :

Set yi;j WD xi;j C i � j , and note that

ıyi;j D ıxi;jCi�j D .1C ıj�i / � ıi�j D 1C ıi�j :

Define

l.i; j / WD i � xi;j .q � 1/;

k.i; j / WD j � yi;j .q � 1/;

and further let M � Z=.q2 � 1/Z be a union of cosets under .q � 1/Z=.q2 � 1/Z with
#M D k.

If q is odd, it was shown in [29] that the following groups act freely and transitively
on a product of k trees:

�M;ı D

�
ai ; i 2M

ˇ̌̌ aiC.q2�1/=2ai D 1 for all i 2M;

aiaj D ak.i;j /al.i;j / for all i; j 2M with i 6� j .mod q � 1/

�
:
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Example 2.5. The smallest example in dimension k D 3 arises with q D 5 and M equal
to the collection of cosets i 2 Z=24Z with i not dividing 4. This group, denoted �1,
acts vertex transitively on the product of three regular trees T6 � T6 � T6 and has the
presentation

�1 D

*a1; a5; a9; a13; a17; a21;
b2; b6; b10; b14; b18; b22;

c3; c7; c11; c15; c19; c23

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

aiaiC12 D bibiC12 D ciciC12 D 1 for all i ;

a1b2a17b22; a1b6a9b10; a1b10a9b6; a1b14a21b14;

a1b18a5b18; a1b22a17b2; a5b2a21b6; a5b6a21b2;

a5b22a9b22; a1c3a17c3; a1c7a13c19; a1c11a9c11;

a1c15a1c23; a5c3a5c19; a5c7a21c7; a5c11a17c23;

a9c3a21c15; a9c7a9c23; b2c3b18c23; b2c7b10c11;

b2c11b10c7; b2c15b22c15; b2c19b6c19; b2c23b18c3;

b6c3b22c7; b6c7b22c3; b6c23b10c23:

+

Thus, �1 is a 3-cube group with A1 D ¹a1; a5; a9; a13; a17; a21º and similar descrip-
tions for A2 and A3. It is an arithmetic group, so it is residually finite. Of interest to us is
the fact that it admits quotients of order 5l , l 2 N; see Example 5.10.

In [29], the authors also constructed k-cube groups acting on a product of trees of dis-
tinct constant valencies. Explicitly, for any set of size k of distinct odd primes p1; : : : ; pk ,
there is a group acting simply transitively on a product of k trees of valencies p1 C
1; : : : ; pk C 1, obtained using Hamiltonian quaternion algebras.

Example 2.6. For p1 D 3; p2 D 5; p3 D 7, there is an explicit presentation of a group
acting simply transitively on a product of three trees T4 � T6 � T8; see [29]. Indeed, with
i; j;k denoting the quaternions, let

a1 D 1C jC k; a2 D 1C j � k; a3 D 1 � j � k; a4 D 1 � jC k;
b1 D 1C 2i; b2 D 1C 2j; b3 D 1C 2k; b4 D 1 � 2i; b5 D 1 � 2j; b6 D 1 � 2k;
c1 D 1C 2iC jC k; c2 D 1 � 2iC jC k; c3 D 1C 2i � jC k; c4 D 1C 2iC j � k;
c5 D 1 � 2i � j � k; c6 D 1C 2i � j � k; c7 D 1 � 2iC j � k; c8 D 1 � 2i � jC k:

Then, a�1
l
D alC2, b�1

l
D blC3, and c�1

l
D clC4. The required group is given by

�2 D

* a1; : : : a4
b1; : : : ; b6

c1; : : : ; c8

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
a1b1a4b2; a1b2a4b4; a1b3a2b1; a1b4a2b3; a1b5a1b6;

a2b2a2b6; a1c1a2c8; a1c2a4c4; a1c3a2c2; a1c4a3c3;

a1c5a1c6; a1c7a4c1; a2c1a4c6; a2c4a2c7;

b1c1b5c4; b1c2b1c5; b1c3b6c1; b1c4b3c6; b1c6b2c3; b1c7b1c8;

b2c1b3c2; b2c2b5c5; b2c4b5c3; b2c7b6c4; b3c1b6c6; b3c4b6c3

+
:

This is also denoted �3;5;7; see [29].



Higher-dimensional digraphs from cube complexes and their spectral theory 1439

2.9. Higher-rank graphs

We recall the definition of a k-graph due to Kumjian–Pask, cf. [13], see also [24]. For an
integer k � 1, we view Nk as a monoid under pointwise addition. A k-graph is a countable
small category ƒ together with an assignment of a degree d.�/ 2 Nk to every morphism
� 2 ƒ such that for all �; �; � 2 ƒ the following hold:

(1) d.��/ D d.�/C d.�/;

(2) whenever d.�/ D mC n for m; n 2 Nk , there is a unique factorisation � D ��
such that d.�/ D m and d.�/ D n.

Condition (2) is known as the factorisation property in the k-graph. The composition in
�� is understood in the sense of morphisms; thus, the source s.�/ of � equals the range
r.�/ of �. Note that the morphisms of degree 0 (in Nk) are the identity morphisms in the
category. Denote this set byƒ0, and refer to its elements as vertices ofƒ. With e1; : : : ; ek
denoting the generators of Nk , the set ƒei D ¹� 2 ƒ j d.�/ D eiº consists of edges (or
morphisms) of degree ei , for i D 1; : : : ; k. We write vƒn for the set of morphisms of
degree n 2 Nk with range v.

Throughout this paper, we are concerned with k-graphs where ƒ0 and all ƒei , i D
1; : : : ; k, are finite. A k-graph ƒ so that 0 < #vƒn <1 for all v 2 ƒ0 and all n 2 Nk

is source-free and row-finite. Following [1], a finite k-graph ƒ is strongly connected if
vƒw 6D ; for all vertices v;w 2 ƒ0.

The coordinate matrices M1; : : : ;Mk 2 Matƒ0.N/ of ƒ are ƒ0 �ƒ0 matrices with

Mi .v; w/ D jvƒ
eiwj:

By the factorisation property, the matrices Mi pairwise commute for i D 1; : : : ; k. For
n D .ni /iD1;:::;k 2 Nk , we define

M n
WD

kY
iD1

M
ni
i :

We denote the spectral radius of a square matrix B by �.B/, and we let

�.ƒ/ WD
�
�.M1/; �.M2/; : : : ; �.Mk/

�
2 Œ0;1/k :

For m 2 Zk , we write �.ƒ/m for the product
Qk
iD1 �.Mi /

mi .
Given a row-finite, source-free k-graph ƒ, its associated C �-algebra C �.ƒ/ is the

universal C �-algebra generated by a family ¹s� j � 2 ƒº of partial isometries satisfying

(CK1) ¹sv j v 2 ƒ0º is a family of mutually orthogonal projections;

(CK2) s�s� D s�� whenever s.�/ D r.�/;

(CK3) s��s� D ss.�/ for all �;

(CK4) sv D
P
�2vƒn s�s�� for all v 2 ƒ0, n 2 Nk .
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3. Construction of k-graphs from k-cube groups: The one-vertex case

In this section, we construct k-graphs with one vertex, for k � 2. There are two main steps.
The first is a general procedure by which we associate a category with a k-dimensional
digraph as introduced in Definition 1.1 and prove that the conditions (F1) and (F2) inherent
to the k-dimensional digraph imply the existence of a degree functor from the category to
Nk that satisfies the required factorisation property. This step will be reminiscent of the
construction of Artin monoids as quotients of free monoids by an equivalence relation on
the collection of positive words identifying braid strings; see [3]. The degree functor will
be similar to the degree map on an Artin monoid, cf. [31]. The second step is to provide
k-dimensional digraphs, and here we shall use one-vertex cube complexes associated with
k-cube groups as a source from which to construct such digraphs.

In Section 4, we use the results of this section combined with concrete constructions
of covering maps in the context of complexes to produce higher-rank graphs with more
than one vertex. We stress that our constructions are performed on the complexes, which
depend on finite combinatorial data, and not on the k-graphs, which are categories with
additional structure.

The next result is the abstract construction of the category associated with a k-dimen-
sional digraph.

Theorem 3.1. Suppose that DG D .V; E; o; t; k; �/ is a k-dimensional digraph, k � 2.
Then, there exist a small categoryƒDG with V as a set of objects and a functor d WƒDG!

Nk which assigns value (degree) ei to morphisms determined by edges in Ei , for all
1� i � k. Moreover, the functor d has the unique factorisation property, and in particular,
.ƒDG; d / is a higher-rank graph.

Proof. First, let C WD CDG be the free category associated with the directed graph DG D
.V;E;o; t/, where we disregard the colouring of the edges; see, e.g., [17, Theorem 1, p. 49].
The object set of C is V and the arrows are given by finite strings, or paths, consisting of
finite sequences v1; : : : ; vm of objects connected bym� 1 arrows xs W vs! vsC1 with the
compatibility of objects o.xsC1/ D t .xs/ for 1 � s � m � 1, where m > 1 is arbitrary.

To conform later with the conventions of higher-rank graphs, we assign length 0 to
identity morphisms, or arrows hv1i, as opposed to length 1 in [17]. An arrow hv1; x1; v2i
of length 1will be called an elementary arrow, where we again shift the value of the length
by �1 compared to [17]. For m > 1, an arrow A WD hv1; x1; v2; : : : ; vm�1; xm�1; vmi is
determined by the finite path x1x2 � � � xm�1 of length m � 1 on the graph, and we shall
often regard it as such, by disregarding the contribution of the objects in the notation. In
the category, the same arrow is equal to a composition

A D Am�1 ı Am�2 ı � � � ı A2 ı A1 (3.1)

of m � 1 elementary arrows As D hvs; xs; vsC1i, 1 � s � m. For short, we write it as
xm�1 ı � � � ı x2 ı x1. The category underlying the k-graph will be obtained as a quotient
category of C , as in [17, Proposition 1, p. 51].
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We let CY be the collection of arrows in C arising from paths on the digraph DG
belonging to Y ,

CY D
®
hv; x; u; y; wi j v; u;w 2 V; x 2 Ei ; y 2 Ej ; 1 � i ¤ j � k

¯
: (3.2)

We refer to elements in CY as bicoloured arrows.
For objects v; w in C , we let C.v; w/ be the set of morphisms in C which are arrows

from v to w. For each pair of objects v; w 2 C , we will define a binary relation Rv;w on
the set of morphisms C.v; w/. For this purpose, we introduce the following terminology:
Given two arrows A;A0 in C , we say that A0 is obtained from A by diverting in CY over
� if we have

A WD hv1; x1; v2; : : : ; vs; xs; vsC1; xsC1; vsC2; : : : ; vm�1; xm�1; vmi; (3.3)

A0 WD hv1; x1; v2; : : : ; vs; x
0
sC1; v

0
sC1; x

0
s; vsC2; : : : ; vm�1; xm�1; vmi (3.4)

with hvs;xs;vsC1;xsC1;vsC2i; hvs;x0sC1;v
0
sC1;x

0
s;vsC2i 2CY , and x0sC1x

0
s D�.xsxsC1/,

for some 1�s�m� 1 andm>1. Note that this makes sense on arrows of length at least 2.
Note also that diverting A to A0 over � does not change the number of edges of given
colour in A. Further, since �2 D 1, if A0 is obtained from A by diverting over �, then also
A is obtained from A0 by diverting in CY over �: simply use that xsxsC1 D �.x0sC1x

0
s/.

Let v;w 2 C . For A;A0 2 C.v; w/, we let

ARv;wA
0

if A0 D A or there is a finite sequence A0 D A;A1; : : : ; An D A0 of elements in C so that
ApC1 for 1 � p � n � 1 is obtained from Ap by diverting over �. The number of edges
of the same colour stays the same in each Ap .

We claim that Rv;w is an equivalence relation. The reflexivity ARv;wA is clear for
each A.

To see that the relation is symmetric, let A0 D A; A1; : : : ; An D A0 be a sequence
of morphisms in C implementing the relation ARv;wA

0. Then, the sequence A00 D A0,
A01 D An�1; : : : ; A

0
n�1 D A1, A0n D A0 will implement A0Rv;wA.

For transitivity, suppose thatARv;wA
0 andA0Rv;wA

00 are represented by the sequences

A0 D A; A1; : : : ; An D A
0; B0 D A

0; B1; : : : ; Bp D A
00:

Then, it is clear thatA0 DA,A1; : : : ;An DA0,AnC1 DB1,AnC2 DB2; : : : ;AnCp DBp
implements ARv;wA

00.
We next claim that the equivalence relation R is preserved by the composition of

morphisms. Suppose that B 2 C.v0; v/ and ARv;wA
0. Let A0 D A; A1; : : : ; An D A0

implement the equivalence between A;A0. Then C0 D A0 ı B , C1 D A1 ı B; : : : ; Cn D
An ı B implements the relation

.A ı B/Rv0;w.A
0
ı B/:
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If now D 2 C.w; w0/, then similarly we have .D ı A/Rv;w 0.D ı A
0/. In all, R is a con-

gruence in the sense of [17, p. 52]. Hence, there is a category C=R with object set V , the
object set of C , and the set of morphisms .C=R/.v;w/ equal to the quotient C.v;w/=Rv;w ,
for v;w 2 V . We denote the class in C.v; w/=Rv;w of a morphism A 2 C.v; w/ by PA.

Next, we show the existence of the functor d W C=R! Nk . For an object v in C=R,
we let d.v/ D 0. For an elementary arrow A in C with A 2 C.v;w/ for v;w 2 V , there is
a unique colour i 2 ¹1; : : : ; kº of the edge underlying the arrow. We set d.A/ WD ei .

We extend this to an arbitrary arrow A in C by

d.A/ WD ei1 C ei2 C � � � C ein if A D hv1; x1; v2; : : : ; xn; vnC1i; xs 2 Eis ; 1 � s � n;

where is are not necessarily distinct. If two arrows A; A0 are given as in (3.3) and (3.4)
with ARv;wA

0, we have that d.A/ D d.A0/ because at the vertex vs where the path in A
is diverted, we have eis C eisC1 D eisC1 C eis . Let

nK D

´
#¹s j 1 � s � n; is D Kº if K 2 ¹i1; i2; : : : ; inº

0 if K 62 ¹i1; i2; : : : ; inº
(3.5)

for K D 1; : : : ; k. Then,

d. PA/ WD .n1; n2; : : : ; nk/ 2 Nk

is well defined. Moreover, it satisfies d. PA PB/ D d. PA/C d. PB/ for PA 2 C.v;w/=Rv;w and
PB 2 C.v0; v/=Rv0;v . This is similar for composition on the right. This defines the functor
d W C=R!Nk . We will show that d enjoys the unique factorisation property required of
a higher-rank graph.

For this we fix an ordering of the colours and show, as an intermediate step, that
every morphism PA has a representative A in C with all edges of the same colour grouped
together. For simplicity of notation, we assume that the colours appear in the order

¹1; 2; : : : ; kº:

We claim that each class PA contains a representative

A D hv1; x1; : : : ; xn1 ; vn1C1; xn1C1; : : : ; xn1Cn2 ; : : : ; vmi; (3.6)

where x1; : : : ; xn1 are edges of colour i1, followed by edges xn1C1; : : : ; xn1Cn2 of col-
our i2, and so on, with nK edges of colour iK at the end, where i1 > i2 > � � � > iK are
distinct colours in ¹1; : : : ; kº. Thus, the largest colour appears nearest to the origin of the
path on the digraph that determines the arrow, and the colours appear in decreasing order
along the path towards it terminus.

Note that (3.6) is trivially satisfied if PA is the class of an arrow A on the digraph
that only follows one colour. Assume next that there are only two colours i > j in a
representative A for PA. Let vs be the first vertex at which we have a bicoloured path
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hvs;xs; vsC1;xsC1; vsC2iwith xs 2Ej ;xsC1 2Ei . Then, we divert this into the equivalent
path hvs; x0sC1; v

0
sC1; x

0
s; vsC2i for unique x0s 2 Ej and x0sC1 2 Ei . If there are no more

edges from Ei past the vertex vsC2, we are done. If not, continue the process until we are
left with a representative for PA of the form required in (3.6).

Assume now that there are three distinct colours l > j > i in a representative A for
PA. If all three colours appear in decreasing order l; j; i in the path supporting A, there

is nothing to prove. If two colours appear in reverse order at a time, we reduce to the
previous case. Assume now that a tricoloured path appears in increasing order of colours.
For simplicity of notation, we may assume that this is an arrow in C of the form

hv1; x; v2; y; v3; z; v4i; v1; : : : ; v4 2 V; x 2 Ei ; y 2 Ej ; z 2 El :

This is the composition hv3; z; v4i ı hv2; y; v3i ı hv1; x; v2i (or z ı y ı x) of elementary
arrows in colours l > j > i , and we claim that it is the same in C=R as a (unique) arrow
of the form

hv1; Nz; v
0
2; Ny; v

0
3; Nx; v4i; Nz 2 El ; Ny 2 Ej ; Nx 2 Ei ; (3.7)

where v02; v
0
3 2 V . By successive application of this reversing of order, it will follow that

PA admits a representative with the colours appearing as in (3.6).
Since hv1; x; v2; y; v3i 2 C.v1; v3/\CY , there are unique x1 2 Ei ; y1 2 Ej such that

hv1; x; v2; y; v3iRv1;v3hv1; y
1; u1; x

1; v3i;

with u1 D t .y1/ D o.x1/. For simplicity, write this as .y ı x/Rv1;v3.x
1 ı y1/. Con-

tinuing this way, the bijection � prescribes edges x1; x2; x2 2 Ei , y1; y2; y2 2 Ej , and
z1; z

1; z2; z
2 2 El such that

.z ı x1/Ru1;v4 .x
2
ı z1/; with o.x2/ D t .z1/ D u2;

.z1 ı y1/Rv1;u2 .y
2
ı z2/; with o.y2/ D t .z2/ D u3;

.z ı y/Rv2;v4 .y1 ı z1/; with o.y1/ D t .z1/ D u4;

.z1 ı x/Rv1;u4 .x1 ı z2/; with o.x1/ D t .z2/ D u5;

.y1 ı x1/Ru3;v4 .x2 ı y2/; with o.x2/ D t .y2/ D u6;

where u1 D o.z1/ and u4 D t .x1/. By our assumption (F2) on DG, we have u2 D u6 and
u3 D u5 and

Nx WD x2 D x
2;

Ny WD y2 D y
2;

Nz WD z2 D z
2:

With v02 WD u3 and v03 WD u2, this gives the claimed representative in (3.7), where we have
used that the relation R preserves the composition of morphisms. Successive applications
of this reversing of order in a tricoloured path show that PA admits a representative as in
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(3.6). Note at the same time that the class in C=R of the morphism Nx ı Ny ı Nz decom-
poses uniquely as products of two morphisms along any choice in Rv1;v4 which involves
tricoloured paths. More precisely, the decompositions are

z ı .y ı x/ corresponding to el C .ej C ei /; (3.8)

z ı .x1 ı y1/ corresponding to el C .ei C ej /; (3.9)

Nx ı .z1 ı y1/ corresponding to ei C .el C ej /; (3.10)

Nx ı . Ny ı Nz/ corresponding to ei C .ej C el /; (3.11)

y1 ı .x1 ı Nz/ corresponding to ej C .ei C el /; (3.12)

y1 ı .z1 ı x/ corresponding to ej C .el C ei /: (3.13)

If more than three colours appear in a representative A for PA, say i1 < i2 < � � � < iK
with K � 4, and if a path supporting A has colours in increasing order, then we resort to
the previous cases. Thus, if K D 4 and a path appears with colours in the order i1 < i2 <
i3 < i4, we first reverse the path onto colours i1; i4; i3; i2, working from the terminus of
the path (source of its arrow in the category) to the left towards its origin. Then, we move
the edges of colour i1 past the ones of colours i4; i3; i2, using the previous cases. This is
the same for K > 4. In all, (3.6) follows.

Now, we are ready to prove the factorisation property of d . Suppose that PA is in C=R

with d. PA/ D .n1; n2; : : : ; nk/ 2 N
k . We must show that whenever .n1; n2; : : : ; nk/ D

.m1; m2; : : : ; mk/C .p1; p2; : : : ; pk/ in Nk , there are unique morphisms PB; PC in C=R

so that

PA D PB PC ; d. PB/ D .m1; m2; : : : ; mk/; and d. PC/ D .p1; p2; : : : ; pk/:

The proof is structured into cases determined by the number of non-zero entries ns ,
that is, by the number of colours that appear in a morphism in the class PA.

Case 1: single colour. Thus, ni > 0 for a unique 1� i � k. If ni D 1, then by our construc-
tion of C=R and d we know that PA is the class of an elementary arrow A D hv1; x1; v2i

with x1 2 Ei and only the trivial decomposition involving identities at v1; v2 is possible.
If ni > 1, then a representative for A consists of a path of length ni along the edges in
Ei , and so we can decompose PA D PB PC with d. PB/ D mi , d. PC/ D pi for any choice
ni D mi C pi in N.

Case 2: two colours. By our earlier claim (3.6), we may assume that

d. PA/ D .n1; n2; : : : ; nk/

with ni � 1; nj � 1 at i > j in ¹1; : : : ; kº, and nl D 0 at all other entries.

Case 2.1: ni D nj D 1. By the definition of C=R, the morphism PA is the class of a
bicoloured arrow hv1; x1; v2; x2; v3i, with x1 2 Ei and x2 2 Ej . Let x02 2 Ej and x01 2 Ei
so that �.x1x2/ D x02x

0
1, and put v02 D t .x

0
2/ D o.x

0
1/. Then,

A D hv02; x
0
1; v3ihv1; x

0
2; v
0
2i D hv2; x2; v3ihv1; x1; v2i
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give the unique decompositions PA D PB PC according to the decompositions ei C ej and
ej C ei of d. PA/.

Case 2.2: ni > 1; nj � 1. Without loss of generality, we may assume that ni � nj .
The given morphism PA is the class of an arrow following a path with ni edges of colour

i and nj edges of colour nj . Let ni D mi C pi and nj D mj C pj , and consider first the
case that mi ; pj � 1. We then divert the path in A after pi Cmi � 1 edges of colour i by
applying Case 2.1 to obtain a representative for PA in the form of a path with pi Cmi � 1
edges of colour i , then one edge of colour j followed by an edge of colour i , and finally
with pj Cmj � 1 edges of colour j at the end. If pi Cmi � 2D 0 and pj Cmj � 2D 0,
we are done, having recovered Case 2.1. Otherwise, if for example pi C mi � 2 � 1,
then apply Case 2.1 to divert an edge of colour j onto one of colour i , thus obtaining a
representative with pi Cmi � 2 edges of colour i , then one edge of colour j followed by
two of colour i , and finally mj C pj � 1 edges of colour j . If also mj C pj � 2 � 1, we
divert another edge of colour j successively past the two of colour i to get pi Cmi � 2 of
colour i , two of colour j , two of colour i , and finally pj Cmj � 2 of colour j . Continuing
this process, we divert all mi edges of colour i followed by the pj edges of colour j into
a path where there are pj edges of colour j first, followed by mi edges of colour i . This
determines the required decomposition of PA D PB PC , where d. PB/ D miei C mj ej and
d. PC/ D piei C pj ej .

The remaining cases where only two colours are present are treated similarly.

Case 3: three colours. By our earlier claim, we may assume that

d. PA/ D .n1; n2; : : : ; nk/

with ni � 1, nj � 1, nl � 1 at i > j > l in ¹1; : : : ; kº, and nh D 0 at all other entries h 2
¹1; : : : ; kº. Assuming ni D mi C pi , nj D mj C pj , and nl D ml C pl , then considering
cases as before and applying the factorisations (3.8)–(3.13) accordingly results in a fac-
torisation PAD PB PC with d. PB/D miei Cmj ej Cmlel and d. PC/D piei C pj ej C plel .
We omit the details.

In the general case where d. PA/ has nonzero entries in more than three distinct colours
i1 > i2 > � � � > iK , K � 4, the problem reduces to decomposing along any expression of
.n1; n2; : : : ; nK/ where at least one of the entries nis , s D 1; : : : ;K, is expressed as a sum
mis C pis for mis ; pis � 1. This reduces to Cases 2 and 3.

We remark that an alternative argument to construct a higher-rank graph from the
input of a k-dimensional digraph could be obtained by appealing to [11]. The main step
is to identify a complete collection of squares that is associative based on DG and then an
application of [11, Theorem 4.4] provides the desired k-graph.

Remark 3.2. It is possible to express the bijection � using the notation from [13]. If C
and D are directed 1-graphs with a common set of vertices V D C 0 D D0, distinct sets
of edges C 1, D1, and commuting vertex matrices, let

C 1 �D1
D
®
.x; y/ 2 C 1 �D1

j t .x/ D o.y/
¯
:
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Then, the bijection � in (F1) is given by its restrictions �i;j W E1i � E
1
j ! E1j � E

1
i , for

all i ¤ j in ¹1; 2; : : : ; kº. This construction is reminiscent of an older idea of a product of
two (possibly directed) graphs, as described in Ore’s monograph [21].

We note that condition (F2) in Definition 1.1 is vacuous when k D 2. We shall refer to
E D E1 tE2 t � � � tEk as the 1-skeleton of ƒDG.

Theorem 3.3. For any complex X with universal cover equal to the product of k regular
trees, where k � 2, there is a k-dimensional digraph DG.X/ defined by sending a vertex
of X to a vertex in DG.X/, and by sending each geometric edge in X to two edges in the
edge set of DG.X/, of the same colour and opposite orientations.

We prove this theorem in stages. First, we prove the one-vertex case for k D 2, where
the statement is a consequence of the description of a one-vertex 2-complex as SA;B for a
VH-structure A;B . Then, we prove the case k D 3 by employing geometric cubes. First,
we record a key consequence whose proof is immediate from Theorems 3.1 and 3.3.

Corollary 3.4. Given X a k-cube complex with k � 2, there is a k-graph ƒDG.X/ with
a vertex set equal to the vertex set of X and whose 1-skeleton contains two edges for
each geometric edge of X, in a colour preserving and orientation reversing assignment.
Further, ƒDG.X/ is row-finite.

Definition 3.5. Given a k-cube complex X, its associated C �-algebra is the higher-rank
graph C �-algebra C �.ƒDG.X//.

To simplify the notation, we write ƒ.X/ in place of ƒDG.X/. Continuing our conven-
tion from the proof of Theorem 3.1, we use letters such as x; y to denote both generic ele-
ments in the edge setE of DG.X/ and their corresponding morphisms inƒ.X/ associated
with elementary arrows. In particular, a bicoloured path xy on the digraph with x2Ei ,
y2Ej for distinct colours i¤j will be y ı x as composition as morphisms in the k-graph.

As another point of notation, in the proof of the next result and that of Theorem 3.3 in
the one-vertex case, we shall distinguish between labels such as a in a generating subset
A of a k-cube group G and the label of the edge it defines in the associated k-digraph, for
which we reserve a notation of the form a. In the group we have aa�1 D 1 D 1G , so in
the one-vertex complex a�1 means orientation reversal of the edge labelled with a, while
in the k-dimensional digraph the edge labelled a is sent into distinct directed edges a1, a2
(with no cancellation inherited from the group).

Lemma 3.6. Assume that SA;B is a one-vertex square complex with associated group G
given by a VH-structure .A;B/ with #A and #B both even positive integers. Suppose that

A D ¹a1; : : : ; aL; aLC1; : : : ; a2Lº and B D ¹b1; : : : ; bK ; bKC1; : : : ; b2Kº; (3.14)

with araLCr D 1 in G for all r D 1; : : : ; L and bsbKCs D 1 in G for all s D 1; : : : ; K,
with K;L � 1. In particular, for each r D 1; : : : ; L, we have that ar and aLCr label the
same geometric edge in SA;B , but with opposite orientations. Similarly for bs , bKCs with
s D 1; : : : ; K.
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a1 a1

b1

b2

a1 a2

b1

b1

a1 a2

b2

b2

a2 a2

b1

b2
Figure 2. A concrete example of .4; 4/-group from four squares.

Then, there is a 2-dimensional digraph in the sense of Definition 1.1 with the edge set
E.SA;B/ D E1 t E2 obtained by associating with each ar for r D 1; : : : ; 2L a directed
edge ar in E1, and with each bs for s D 1; : : : ; 2K a directed edge bs in E2.

Proof. We have that for each ar 2A and bs 2B , with r D 1; : : : ; 2L, s D 1; : : : ; 2K, there
are unique al.r;s/ 2A and bm.r;s/ 2B , with l.r; s/2 ¹1; : : : ; 2Lº andm.r; s/2 ¹1; : : : ; 2Kº,
such that

arbs D bm.r;s/al.r;s/:

In particular, arbs is contained as a vertical-horizontal pair of edges in a unique geometric
square in the family

Sar ;bs� ; r D 1; : : : ; 2L; s D 1; : : : ; 2K; � D O;H; V;R;

with bm.r;s/al.r;s/ forming the horizontal-vertical pair of edges in Sar ;bs� starting and end-
ing at the same vertices as arbs (which we recall coalesce to the single vertex v of SA;B ).

Let xy be a path of length two with x 2 E1 and y 2 E2. Then, xy is uniquely determ-
ined by x D ar for some r D 1; : : : ; 2L and y D bs for some s D 1; : : : ; 2K. Let now
ar ; bs; al.r;s/, and bm.r;s/ be as above. Then, y0 WD bm.r;s/ 2 E2 and x0 WD al.r;s/ 2 E1
determine a unique path of length two y0x0 so that xy � y0x0.

This defines the required bijection � W Y ! Y with �.xy/ D y0x0 on the set Y of all
paths of length two of distinct colours.

Example 3.7. A simple construction of a 2-graph based on the procedure of Corollary 3.4
recovers a known example; see [23,37] and [16, Example 11.1 (1)], where �.i; j /D .i; j /
is the identity permutation of the set ¹1; 2º � ¹1; 2º. Consider the .2; 2/-group G D Z�Z
with generating sets A D ¹a; a�1º corresponding to the first copy of Z and B D ¹b; b�1º
for the second copy. We have the commutation relation ab D ba as the basis for a geo-
metric square Sa;bO . The one-vertex complex has two loops. An application of Lemma 3.6
yields a 2-dimensional digraph with edge set a disjoint union of E1 D ¹a1; a2º and
E2 D ¹b1; b2º, thus four loops, with the bijection � on the set of paths of length two
of distinct colours read off from S

a;b
O , Sa;bH , Sa;bV , and Sa;bR as follows:

a1b1 � b1a1; a1b2 � b2a1; a2b1 � b1a2 and a2b2 � b2a2:

Example 3.8. We now present a 2-graph from this recipe where the group G is not of
product type. As we will explain, Figure 2 shows an example of a .4; 4/-groupG, cf. [35].



N. S. Larsen and A. Vdovina 1448

The four squares are geometric squares representing the 2-cells of an associated com-
plex SA;B , whereAD¹a1;a2;a3;a4º for a3D a�11 and a4D a�12 , andB D¹b1;b2;b3;b4º
for b3 D b�11 and b4 D b�12 . Here, L D K D 2, cf. Lemma 3.6. With our convention in
(2.7) we have, from left to right, Sa1;b1O , Sa1;b3O , Sa1;b4O , and Sa2;b1O .

The associated 2-graph ƒ.SA;B/ from Corollary 3.4 has 1-skeleton determined by the
2-dimensional digraph whose edges are given by the disjoint union of

E1 D ¹a1; a2; a3; a4º and E2 D ¹b1;b2;b3;b4ºI

see Lemma 3.6. Let us now describe explicitly the bijection � W Y ! Y . Note that the
digraph has 4 loops of one colour (red) and 4 loops of the second colour (blue).

We have 16 paths of length two of the form xy, where x 2 E1 and y 2 E2, given by
all the possible aibj with i; j D 1; : : : ; 4. Correspondingly, we have all possible vertical-
horizontal pairs of edges aibj in the collection of geometric squares

S
aj ;bj
� ; i; j D 1; : : : ; 4; � D O;V;R;H:

Pick for each aibj the unique al.i;j / 2 A and bm.i;j / 2 B such that bm.i;j /al.i;j / is the
corresponding horizontal-vertical pair of edges in the same square, and let y0 D bm.i;j /,
x0 D al.i;j / as prescribed by the proof of Lemma 3.6.

Explicitly, corresponding to the horizontal-vertical pairs of edges in the geometric
square

¹S
a1;b1
O ; S

a1;b1
V ; S

a1;b1
R ; S

a1;b1
H º;

it is seen that �.a1b1/D b4a3, �.a3b4/D b1a1, �.a1b2/D b3a3, and �.a3b3/D b2a1.
Similarly, from the geometric square

¹S
a1;b3
O ; S

a1;b3
V ; S

a1;b3
R ; S

a1;b3
H º

we get �.a1b3/ D b1a4, �.a3b1/ D b3a2, �.a2b3/ D b1a3, and �.a4b1/ D b3a1; from

¹S
a1;b4
O ; S

a1;b4
V ; S

a1;b4
R ; S

a1;b4
H º

we get �.a1b4/D b2a2, �.a3b2/D b4a4, �.a4b4/D b2a3, and �.a2b2/D b4a1; finally,
from the geometric square

¹S
a2;b1
O ; S

a2;b1
V ; S

a2;b1
R ; S

a2;b1
H º

we get �.a2b1/ D b2a4, �.a4b2/ D b1a2, �.a2b4/ D b3a4, and �.a4b3/ D b4a2; this
describes the bijection � completely.

The link of SA;B at its vertex v is the complete bipartite graph of type .4; 4/; see
Figure 3.

It follows that G WD �1.SA;B ; v/ is a .4; 4/-group. In fact, G is the fundamental group
of a CAT.0/ complex with Gromov link condition; see [9]. We recall that every edge of
the complex belongs to four squares; see Figure 4 for a fragment of the universal cover of
the complex showing the edge a1 belonging to four squares (in the universal cover).
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Figure 3. The link of the complex.

a1a2

b1

b2 b1

a1

b1

b2

a2

b2

b2

a1

b1

Figure 4. Fragment of the universal cover showing the edge a1.

Remark 3.9. The group with the same VH-structure as in Figure 2 appears also in [12,
Section 7], as the group 2 � 2:37 in their list. However, their 2-graph is different from
the one in Example 3.8, since, if we translate the notions of [12] into higher-rank graphs,
the 2-graph corresponding to the group 2 � 2:37 would have sixteen vertices. In general,
the 2-graphs of [12] corresponding to .2m; 2n/ groups give 2-graphs with 4mn vertices,
4.m � 1/mn edges of one colour, and 4mn.n � 1/ edges of another colour. The 2-graphs
of [26, 28] have 3.q2 C q C 1/ vertices and 3.q2 C q C 1/q edges of each colour for q
being a prime power different from 3.

Proof of Theorem 3.3, the general case. Fix k � 3. Assume first that we have a one-vertex
k-cube complex P ; thus we may take it of form PA1;:::;Ak associated with a k-cube group
G with underlying structure determined by the ordered tuple .A1; : : : ; Ak/. As explained,
the edges of the complex are labelled by the generators of G. For each i D 1; : : : ; k we
write

Ai D ¹a
i
1; : : : ; a

i
Li
; aiLiC1; : : : ; a

i
2Li
º;

with the convention that aira
i
LiCr

D 1 inG for 1� r � Li . Define a digraph with the edge
set E D E1 t E2 t � � � t Ek by the assignment that to each air corresponds a directed
edge air in Ei , with i D 1; : : : ; k and r D 1; : : : ; 2Li . We must identify a bijection � on
the set of bicoloured edges and establish conditions (F1) and (F2) of Definition 1.1.
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Suppose that xy is a path of length two in E with x 2 Ei and y 2 Ej for distinct
i; j in ¹1; : : : ; kº. Then, there are air 2 Ai and bjs 2 Aj for unique r D 1; : : : ; 2Li and
s D 1; : : : ; 2Lj , such that x D air and y D a

j
s . Since we have a cube complex, there is an

associated square complex PAi ;Aj with corresponding groupGAi ;Aj , where we choose the
convention that Ai is vertical and Aj is horizontal direction. Lemma 3.6 implies that there
is a unique path of length two y0x0 with y0 2 Aj and x0 2 Ai , corresponding to a unique
square with vertical-horizontal and horizontal-vertical pairs given by

aira
j
s D a

j

m.r;s/
ail.r;s/

such that xy � y0x0. Here, aj
m.r;s/

2 Aj and ai
l.r;s/

2 Ai are uniquely determined. This
provides the desired bijection � and settles requirement (F1).

Next, suppose that we are given a path xyz with x 2Ei , y 2Ej , z 2El for distinct col-
ours i; j; l in ¹1; : : : ; kº. The key ingredient is that by condition (5) in Definition 2.3, each
directed cube, in the sense of (F2), arises as a directed copy of one of the 3-dimensional
cubes of the complex. We now identify a directed cube satisfying the hypotheses of (F2)
and an associated geometric 3-cube.

First, there is a unique square S ij1 which contains a vertical-horizontal pair aira
j
s

with air 2 Ai ; a
j
s 2 Aj so that x D air and y D a

j
s . Upon completing the square S ij1

to aira
j
s D a

j

s1
ai
r1

, as in the beginning of the proof, for unique r1 2 ¹1; : : : ; 2Liº and
s1 2 ¹1; : : : ; 2Lj º, we have

xy � y1x1 for x1 D ai
r1

and y1 D a
j

s1
:

Next, we use x1 and z to extract a geometric square S il2 , determined by ai
r1
alt D

al
t1
ai
r2

, for unique t1 2 ¹1; : : : ; 2Llº and r2 2 ¹1; : : : ; 2Liº, so that

x1z � z1x2 for z D alt ; z
1
D al

t1
and x2 D ai

r2
:

Finally, by using y1; z1 we extract a geometric square Sjl3 , determined by aj
s1
al
t1
D

al
t2
a
j

s2
, for unique s2 2 ¹1; : : : ; 2Lj º and t2 2 ¹1; : : : ; 2Llº, so that

y1z1 � z2y2 for y2 D a
j

s2
and z2 D al

t2
:

There is a unique geometric cube containing the squares S ij1 , S il2 , and Sjl3 , where the
notation follows the convention after Figure 1, and aira

j
s a
l
t is a path joining two vertices

in the cube at longest possible distance due to condition (5) in Definition 2.3. Thus, in this
geometric cube, we have also obtained the path al

t2
a
j

s2
ai
r2

opposite to aira
j
s a
l
t and joining

the same vertices in the cube.
If we perform the same argument starting with y; z to obtain yz � z1y1, followed

by x; z1 to obtain xz1 � z2x1 and finally x1; y1 to get x1y1 � y2x2, we find unique
squares Sjl4 ; S

il
5 ; S

ij
6 determined by ajs alt D a

l
t1
a
j
s1 , aira

l
t1
D alt2a

i
r1

, and air1a
j
s1 D a

j
s2a

i
r2

,
respectively, for r2 2 ¹1; : : : ; 2Liº, s2 2 ¹1; : : : ; 2Lj º, and t2 2 ¹1; : : : ; 2Llº. So

x2 D air2 ; y2 D ajs2 ; and z2 D alt2 :
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Figure 5. A geometric cube for the �2 group.

Since aira
j
s a
l
t is a common ij l-path, the squares S ij1 ; S

il
2 ; S

jl
3 ; S

jl
4 ; S

il
5 ; S

ij
6 determine the

same geometric cube. We have that alt2a
j
s2a

i
r2

is another path in this 3-dimensional cube
opposite to aira

j
s a
l
t and joining vertices at the longest possible distance. Since there only is

one path of the longest distance opposite to aira
j
s a
l
t in a 3-dimensional cube, we must have

a
j

s2
D ajs2 ; al

t2
D alt2 ; and ai

r2
D air2 :

Then, x2 D x2, y2 D y2, and z2 D z2, as required to fulfill condition (F2).
We now assume that X has N vertices, with N � 2, and we declare these to be the

vertices of DG.X/. As prescribed, each geometric edge in the complex is sent into two
edges with opposite orientation in the edge set E of DG.X/. For every path of length two
xy with x 2 Ei and y 2 Ej for i ¤ j so that o.y/ D t .x/, there is a unique geometric
square S1 in X in which xy corresponds to a vertical-horizontal pair of edges. Then, the
corresponding horizontal-vertical pair of edges gives rise to x0 2 Ei and y0 2 Ej such that
xy � y0x0, and this defines uniquely the bijection � on the set Y of paths of length two
of distinct colours required in (F1). The condition (F2) holds by the same argument as the
one-vertex case because any ij l-coloured path xyz will be contained in a unique 3-cube
in X, determined through unique squares S ij1 ; S

il
2 ; S

jl
3 ; S

jl
4 ; S

il
5 ; S

ij
6 . The difference is

that since the complex has more than one vertex, we do not have a labelling of the edges
by elements of the groupG acting cocompactly on X, but this does not affect the existence
of the squares and of the 3-cube in which xyz determines a path with unique opposite path
at the longest distance between the same vertices of the 3-dimensional cube.

To visualise the argument in the proof of Theorem 3.3, we refer to Figure 1 and the
generic geometric cube there. Let x D a1 (or, for consistency, x is a directed edge in Ei
labelled with a1 2 Ai ), y D b1, and z D c3. The argument produces the path al

t2
a
j

j 2
ai
r2

given by c1b3a3 following the squares

S
ij
1 D .a1; b1; a

�1
2 ; b�12 /; S il2 D .a2; c3; a

�1
3 ; c�12 /; and S

jl
3 D .b2; c2; b

�1
3 ; c�11 /:

Alternatively, it produces the path alt2a
j
j2
air2 following the squares .b1; c3; b�14 ; c�14 /,

.a1; c4; a
�1
4 ; c�11 /, and .a4; b4; a�13 ; b�13 /.

Example 3.10. In Figure 5, we present a geometric cube which is part of the data of the
3-cube group �2 from Section 2.8.
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The generating sets of �2 areA1D¹a1;a2;a�11 ;a�12 º,A2D¹b1;b2;b3;b
�1
1 ;b�12 ;b�13 º,

and A3 D ¹c1; c2; c3; c4; c�11 ; c�12 ; c�13 ; c�14 º. There are .jA1j � jA2j � jA3/j=23 D 24 cubes
in total, where the factor 23 in the denominator corresponds to the fact that there are 8
vertices in the cube, and we can complete the cube starting with three edges of distinct
colours from any one of them.

The cube in Figure 5 is obtained from the triple .a1; b1; c2/ of edges in the three alpha-
bets by completing its faces with geometric squares. With the notation of Figure 1, the
faces S121 , S132 , and S233 arise, respectively, from the group relations a1b1a4b2, a2c2a1c3,
and b2c4b5c3 (identified with b�12 c�13 b2c

�1
4 ). The remaining three faces correspond to the

geometric squares b1c2b1c5, a1c1a2c8 (identified with a1c1a2c�14 ) and a4b4a1b2 (iden-
tified with a�12 b�11 a1b2).

3.1. Aperiodicity

In C �-algebra theory, the classification of purely infinite, simple, unital, nuclear, C �-
algebras is a landmark result by Kirchberg–Phillips; see [22]. The aperiodicity of a higher-
rank graph is an important property because together with cofinality it implies the simpli-
city of the associated C �-algebra and further implies pure infiniteness if every vertex can
be reached from a loop with an entrance. We next investigate the aperiodicity of ƒ.P /
from Corollary 3.4.

We recall the necessary facts and notation from [13]. Letƒ be a k-graph. IfmD .mi /i ,
q D .qi /i 2 Nk , we write m � q if mi � qi for all i D 1; : : : ; k. By �k we denote the
k-graph with vertex set �0

k
D Nk and a set of elements (morphisms) consisting of pairs

.m;n/ 2Nk �Nk withm� n and d.m;n/D n�m. The setƒ1 of infinite paths consists
of degree preserving functors ! W �k ! ƒ. An infinite path ! is aperiodic provided that
for every q 2 Nk and all p 2 Zk n ¹0º, there is .m; n/ 2 �k such that mC p � 0 and
!.mC p C q; nC p C q/ ¤ !.mC p; nC p/. The k-graph ƒ satisfies the aperiodicity
condition (A) provided that for every v 2 ƒ0 there is an aperiodic path ! with r.!/ D v.

In our case, the existence of an aperiodic infinite path will be provided by the theory
of rigid k-monoids from [16]. Guided by the work of Lawson–Vdovina, we first extend
the notion of left and right rigid to k-dimensional digraphs with one vertex. We note that
the idea of rigidity below appeared in a first form in [34, Definition on p. 3, items (2), (3)].

Definition 3.11. Let DG be a k-dimensional digraph with one vertex and edge set E D
E1 tE2 t � � � tEk for k � 2. We say that

(1) DG is right rigid if for every x0 2Ei , y0 2Ej with i ¤ j there are unique x 2Ei ,
y 2 Ej such that xy0 � yx0.

(2) DG is left rigid if for every x 2 Ei , y 2 Ej , i ¤ j , there are unique x0 2 Ei ,
y0 2 Ej such that xy0 � yx0.

Lemma 3.12. Suppose that P is a one-vertex k-cube complex with underlying structure
.A1; : : : ;Ak/ for i D 1; : : : ; k, where eachAi is of the form ¹ai1; : : : ; a

i
2Li
º and aira

i
LiCr

D

1 in the associated group for all 1 � r � Li . Let DG.P / be the associated k-dimensional
digraph from Theorem 3.3. Then, DG.P / is left and right rigid.
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Proof. The two properties of being rigid above arise from the fact that the link of the
vertex v in P has no multiple edges. Therefore, every top-left corner and every bottom-
right corner appear exactly once in a geometric square. The formal proof is below.

Suppose that x0 2 Ei and y0 2 Ej for i ¤ j in ¹1; : : : ; kº. Since we have a cube
complex, there is an associated square complex PAi ;Aj . By our construction of DG.P /,
there are air 2 Ai and bjs 2 Aj for unique r D 1; : : : ; 2Li and s D 1; : : : ; 2Lj such that
x0 D air and y0 D b

j
s . In the square complex PAi ;Aj , there is a unique square of the form

SO D
�
air ; .b

j
s /
�1; .aig/

�1; b
j

h

�
for g 2 ¹1; : : : ; 2Liº and h 2 ¹1; : : : ; 2Lj º. The associated SH is .aig ; b

j
s ; .a

i
r /
�1; .b

j

h
/�1/,

and thus aigb
j
s D b

j

h
air inGAi ;Aj . Letting x D aig and y D b

j

h
gives xy0 � yx0 in DG.P /,

as claimed.
Left rigidity is similar. Starting this time with x 2 Ei and y 2 Ej for distinct i; j in

¹1; : : : ; kº, we find air 2 Ai and bjs 2 Aj for unique r 2 ¹1; : : : ; 2Liº and s 2 ¹1; : : : ; 2Lj º
so that x D air and y D b

j
s . Consider the unique square

SO D
�
.air /

�1; bjs ; a
i
m; .b

j
n/
�1
�

in PAi ;Aj , and form its associated SV , which is .air ; b
j
n ; .a

i
m/
�1; .b

j
s /
�1/. Then, airb

j
n D

b
j
s a
i
m in GAi ;Aj , so letting x0 D aim and y0 D b

j
n leads to xy0 � yx0 in the digraph, as

claimed.

Given a one-vertex k-cube complex P , the associated k-graph ƒ.P / is a monoid,
being a category with a single object. It is a k-monoid in the sense of [16], with alphabets
Ei D ¹a

i
1; : : : ; a

i
2Li
º for i D 1; : : : ; k where each Li � 1.

Corollary 3.13. Given a one-vertex k-cube complex P , the graph ƒ.P / is left and right
rigid and satisfies the aperiodicity condition. In particular, C �.ƒ.P // is simple.

Proof. Let P be a one-vertex k-complex, which we may assume as in the hypothesis of
Lemma 3.12. Let ƒ.P / D ƒ.DG.P // be the associated k-graph from Corollary 3.4. The
right rigidity of the digraph implies that for any choice of elements y0; x0 with y0 in the
alphabetEj and x0 inEi , where i ¤ j , there are unique elements x and y in the alphabets
Ei and Ej , respectively, so that y0 ı x D x0 ı y. This means that ƒ.P / is right rigid. Left
rigid follows in a similar way. We conclude from [16, Corollary 11.10 and Lemma 4.15]
that ƒ.P / is effective and hence admits an aperiodic infinite path. As there is only one
vertex, the aperiodicity condition is satisfied. Since ƒ.P / is also cofinal, C �.ƒ.P // is
simple by [13, Proposition 4.8].

The constructions of [27] produce a purely infinite simple rank two Cuntz–Krieger
algebra A. This uses in a crucial way the fact that every word w of a given shape m D
.m1; m2/ 2 N2 admits at least two distinct extensions w0; w00, in the sense that the origin
of w0; w00 (with suitable interpretation) equals the terminus of w, and both have the same
shape ej for all j D 1; 2.
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For a row-finite and source-free k-graph ƒ, [13, Proposition 4.9] puts forward con-
ditions that would imply C �.ƒ/ is purely infinite simple. A correct version of these
conditions was identified in [32, Proposition 8.8], which we present here (writing cycle
instead of loop): given a finitely aligned k-graph ƒ, a morphism � 2 ƒ n ƒ0 is a cycle
with an entrance if s.�/ D r.�/ and there exists ˛ 2 s.�/ƒ having d.˛/ � d.�/ and
being distinct from the initial segment of � of degree d.˛/. Thus, for some factorisation
� D �1�2 where d.�1/ D n � d.�/, there exists ˛ ¤ �1 with d.˛/ D n and r.˛/ D
r.�1/. Therefore, upon interpreting the concatenation of edges on the digraph DG.P / as
the composition of morphisms in the associated ƒ.P /, see (3.1), and by interpreting the
constructions of [27] in terms of higher-rank graphs, the existence of a cycle with an entry
requires that for a given �2 there are two distinct extensions, with the additional property
that the origin of �2 is the terminus of one of the extensions. As we will show below, our
k-graphs satisfy the stronger aperiodicity condition used in [27].

Proposition 3.14. Let P be a one-vertex k-complex as in the hypothesis of Lemma 3.12
for k � 2 and let ƒ.P / be the associated one-vertex k-graph. If Li � 2 for i D 1; : : : ; k,
then the vertex in ƒ.P / supports at least two distinct cycles of length two in colour i ;
hence, C �.ƒ.P // is purely infinite. Furthermore, C �.ƒ.P // falls under the Kirchberg–
Phillips classification theory and is thus determined by its K-theory.

Proof. Fix i 2 ¹1; : : : ; kº with Li � 2. Then, we can form the length-two cycles � D
ai1a

i
LiC1

and �D ai2a
i
LiC2

based at v with d.�/i D 2D d.�/i . Now, ai2 provides an edge ˛
with nontrivial degree d.˛/ � d.�/ which is an entry to � not already contained in �. We
conclude that C �.ƒ.P // is purely infinite. The last claim follows by [32, Corollary 8.15],
see also [7, Remark 5.2], by appealing to the classification result in [22].

4. Construction of k-graphs with several vertices

In this section, we present our construction of k-graphs with several vertices, for k � 2,
and provide examples and applications.

Towards this aim, we need a procedure to get k-cube complexes with several vertices.
It is known that in a complex with several vertices one cannot consistently identify the
label of an edge with the label as a generator in the fundamental group. We come around
this challenge by introducing additional layers of labels, corresponding to covers with N
sheets, similar to what is done for N D 2 in [15, Section 8.1]. In general, this is a hard
problem since there exist complexes without nontrivial finite covers, cf. [4]. Even when
the complexes are known to admit N -covers, corresponding to subgroups of index N of
the fundamental group, see, e.g., [10, Theorem 1.38], it is difficult to construct covers
explicitly. One challenge is that the subgroups can be defined in many different ways. For
us a cover will be defined by picture, meaning that it is explicitly defined by the images of
vertices, edges, faces, and so on. In all our pictures, the covering map amounts to forgetting
the upper indexes, and we can explicitly see that we have a local homeomorphism at each
point.
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Figure 6. A double cover of the torus.

Recall that in a one-vertex k-cube complex with generating structure A1; : : : ; Ak , we
view edges as being coloured, with each Ai for i D 1; : : : ; k endowed with a distinct
colour. For a complex X D zP obtained as an N -cover of a one-vertex k-cube complex
PA1;:::;Ak , the coloured edges are given by p�1.Ai / for i D 1; : : : ; k, where p W X D
zP ! PA1;:::;Ak is the covering map. A k-complex, when viewed as undirected, is always

connected.

Proposition 4.1. Suppose that G is a k-cube group with associated k-cube complex
PA1;:::;Ak . Then, PA1;:::;Ak admits a double cover p W zP ! PA1;:::;Ak with zP a complex
with 2 vertices.

We establish this proposition by writing down an explicit double cover, which will be
prescribed “by picture” on 2-cells and 3-cells of the complexes under consideration; see
Lemmas 4.3 and 4.4. Before presenting the proof, we point out a consequence.

Corollary 4.2. Each k-cube group G admits a subgroup of index 2.

Proof. By, e.g., [10, Theorem 1.38], for a given path-connected, locally path-connected,
and semilocally simply connected spaceX, there is a bijection between the set of basepoint
preserving isomorphism classes of path-connected covering spaces p W . zX; ex0/! .X;x0/

and the set of subgroups of �1.X; x0/. The correspondence associates the subgroup
p�.�1. zX; ex0// with the covering . zX; ex0/, and the number of sheets of the covering equals
the index of p�.�1. zX; ex0// in �1.X; x0/; see [10, Proposition 1.32]. Applying this to the
2-cover from Proposition 4.1 yields the existence of a subgroup of G of index 2.

In order to motivate our constructions of coverings, we review a construction of a
2-cover of the complex associated with the torus T2.

Recall from, for example, [10, p. 14] that T2 is obtained from a 2-cell given by a
square with pairs of opposite edges having the same orientation and label a (vertically)
or b (horizontally), by gluing it onto the wedge of two circles. A double cover with two
vertices arises from two squares with oriented edges having distinct labels a1, a2, b1, and
b2, with the upper index 1 or 2 indicating the source vertex, as shown in Figure 6. The
complex is obtained by attaching the two squares (the 2-cells) to the graph with vertices
1 and 2 in Figure 6. If P is the complex associated with the .2; 2/-group in Example 3.7,
then the cover zP just described will lead to a 2-graph with two vertices; see Theorem 4.7
and [15, Figure 2, Section 8.1].
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The proof of Proposition 4.1 relies on two lemmas, with the first one detailing an
explicit double cover for the 2-cells of the given k-cube complex.

Lemma 4.3. Suppose that we have a one-vertex square complex S D SA;B with VH-
structure .A; B/ and vertex v. Then, there is a 2-cover p W zS ! S given by a square
complex zS with two vertices v1 and v2 whose squares are given by the prescription:
the inverse image of a geometric square Sa;bO D .a; b; c�1; d�1/ in SA;B consists of two
geometric squares, S1 D .a1; b2; .c2/�1; .d1/�1/ and S2 D .a2; b1; .c1/�1; .d2/�1/ in zS ,
and the covering map is determined by

p.�1/ D p.�2/ D � for � D a; b; c; d:

Equivalently, if we denote v1D 1 and v2D 2, the covering p is depicted on the squares
by

2

S1

b2 // 1 1

S2

b1 // 2 1

S
a;b
O

b // 1

1

a1

OO

d1
// 2

c2

OO

2

a2

OO

d2
// 1

c1

OO

1

a

OO

d

// 1 :

c

OO

(4.1)

Note that in the 2-cover there are two geometric edges for each geometric edge in
SA;B , so for example to a2SA;B having origin and terminus vertex 1 (identified with v),
there will correspond a1 and a2 in zS , with a1 having origin 1 and terminus 2, and a2 with
origin 2 and terminus 1.

Proof. We need only to observe that

p.Sa
1;b2

� / D Sa;b� D p.Sa
2;b1

� / for � D O;H; V;R:

Thus, the square complex zS is well defined. The map p is a local homeomorphism because
it is defined on the cells and sends edges to edges and vertices to vertices.

Lemma 4.4. Let PA1;:::;Ak be a k-cube complex associated with a k-cube group G with
underlying structure determined by the ordered tuple .A1; : : : ; Ak/, with #Ai D 2Li for
every i D 1; : : : ; k. There is a 2-cover zP of PA1;:::;Ak determined as follows: On each 2-
dimensional cell, the covering p is defined in Lemma 4.3. On a 3-dimensional geometric
cube C , such as is described in Figure 1 where we assume ar 2 Ai , bs 2 Aj , and ct 2 Al ,
for r; s; t D 1; : : : ; 4 and i; j; l 2 ¹1; : : : ; kº, the cover zC of C consists of two geometric
cubes, see Figure 7, with labelling of edges ¹a"rº, ¹b

"
s º, and ¹c"t º for " D 1; 2, and with the

covering map given by

p W zC ! C; p.a1r / D p.a
2
r / D ar ; r D 1; : : : ; 4; (4.2)

and similarly for p.b"s / and p.c"t /. For 4 � l � k, the map p is defined on an arbitrary
l-cube by its prescription on the underlying 3-cubes.
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Figure 7. A two-cover of a generic geometric cube.

Proof. At k D 3, it suffices to verify that p on zC is well defined. But this is clear from
the construction of the map p in (4.2). The map p is constructed recursively on higher-
dimensional cubes: if C is an l-cube for 4 � l � k, then p is prescribed consistently on
all .l � 1/-dimensional faces of C , similarly to how (4.2) is obtained on 3-cubes from its
prescription in (4.1) on squares.

Proof of Proposition 4.1. This follows by applying Lemmas 4.3 and 4.4.

To obtain k-complexes with N vertices for N > 2, there are several ways to use k-
cube groups. Many of the k-cube groups are residually finite, so, because of the 1-to-1
correspondence between the subgroups of index N and N -covers of the corresponding k-
cube complex, we can get infinitely many k-cube complexes withN vertices. In principle,
different subgroups of the same index N can lead to different coverings. If N � 3, then
the labelling of vertices is hard to sort out and we do not know of an explicit prescription
similar to (4.2). We shall use the following general procedure.

Proposition 4.5. Suppose that G is a residually finite k-cube group with k � 2. To each
normal subgroup H of G of finite index N there is a k-complex X with N vertices
obtained by the following prescription: let Q W G ! SN the homomorphism obtained
by composing the embedding of G=H into the symmetric group on N letters SN given by
Cayley’s theorem with the quotient map q W G! G=H . For a 2 G, the permutationQ.a/
in SN encodes the edges in the complex, with an labelling an edge from the vertex n to
the vertex n0 D Q.a/.n/ for n D 1; : : : ; N .

Proof. Let P be the one-vertex complex determined by G. Suppose that H is a subgroup
ofG so that .G WH/DN . The complex X is constructed by associating with each square
SO D .a; b; .a

0/�1; .b0/�1/ in P a total of N squares�
Q.a/;Q.b/;Q

�
.a0/�1

�
;Q
�
.b0/�1/

�
in the new,N -vertex complex, with vertices labelled by elements in ¹1; 2; : : : ;N º. Indeed,
applying Q to the relation ab D b0a0 in G gives the identity Q.a/Q.b/ DQ.b0/Q.a0/ in
SN , which in turn yields N squares in the complex X determined by

Q.a/Q.b/.n/ D Q.b0/Q.a0/.n/; for all n D 1; : : : ; N:
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More precisely, for each n, let m D Q.a/Q.b/.n/ D Q.b0/Q.a0/.n/ and consider the
square with labelling .a0/n.b0/s in vertical-horizontal direction from vertex n to vertex m
via vertex s, and with labelling bnar in horizontal-vertical direction via vertex r , where
mDQ.a/.r/, r DQ.b/.n/,Q.a0/.n/D s, andQ.b0/.s/Dm; see the following diagram,
where 1 in the right square denotes the vertex in the complex of G:

s

S

.b0/s
// m 1

S
a;b
O

b // 1

n
bn
//

.a0/n

OO

r

ar

OO

1

a

OO

b0
// 1 :

a0

OO

(4.3)

The covering map p W X ! P is defined by collapsing all squares of the form S onto the
given square Sa;bO in P , for each square in P .

We extend the notions of left and right rigid to k-dimensional digraphs and k-graphs
with more than one vertex in the natural way. The idea is that being rigid means that if
two edges can form a corner (either bottom-left or top-right), then they do form a unique
corner.

Definition 4.6. (a) Suppose that DG is a k-dimensional digraph. Then, DG is right rigid
if for x 2 Ei and y 2 Ej edges of distinct colours i ¤ j so that o.x/ D o.y/, there are
unique x0 2 Ei and y0 2 Ej with xy0 � yx0. Left rigid is defined in a similar way.

(b) Suppose that .ƒ; d/ is a k-graph, and let Ei D d�1.¹eiº/ be its alphabets, for
1 � i � k. We say that ƒ is right rigid if for x 2 Ei and y 2 Ej with the same origin, for
i ¤ j , there are unique x0 2 Ei and y0 2 Ej with the property that y0 ı x D x0 ı y. Left
rigidity of ƒ is defined in a similar manner.

Theorem 4.7. Suppose that P is a one-vertex k-cube complex that admits an N -cover
p W zP ! P as in Proposition 4.5, with X D zP the associated k-cube complex with N
vertices, for k � 2 and N � 2. The following are valid.

(a) The k-dimensional digraph DG.X/ determined in Theorem 3.3 is left and right
rigid.

(b) The k-graph ƒ.X/ WD ƒ.DG.X// associated with DG.X/ by Corollary 3.4 is
strongly connected, left rigid, and right rigid.

Proof. Part (a) follows from Theorem 3.3. Turning to part (b), to show that ƒ.X/ is
strongly connected, let v; w be distinct vertices. By the construction of cover in Proposi-
tion 4.5, there is an element of the k-cube group whose action on v gives w. Associated
with this element, there is a path y1y2 � � �ym in the 1-skeleton of the k-complexP , and this
has a unique lift to a path in X from v D o.y1/ to w D t .ym/. In particular, vs D t .ys/,
vsC1 D o.ys/ are adjacent vertices in the complex for each 1 � s � m � 1 (identify-
ing v D v1). Our definition of the k-dimensional digraph gives two directed edges, with
opposite orientation, having source vs and terminus vsC1, respectively the opposite, for
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each s D 1; : : : ; m � 1. This allows forming directed paths in DG.X/, hence in ƒ.X/,
from v to w and from w to v, as needed.

To see that ƒ.X/ is rigid, it suffices to note that every vertex in the cover zP has the
same link as the one vertex of P , and in particular its link contains no multiple edges.
Therefore, the proof of Lemma 3.12 carries through.

Corollary 4.8. The k-graph ƒ.X/ from Theorem 4.7 satisfies the aperiodicity condition.

Proof. Since ƒ.X/ is rigid, the existence of an aperiodic path in ƒ.X/ based at a given
vertex is guaranteed as in the one-vertex case; see [16, Lemma 4.15 and Corollary 11.10].

Proposition 4.9. Assume the hypotheses of Theorem 4.7, where P D PA1;:::;Ak with Ai
given as in Lemma 3.12 for i D 1; : : : ; k. If jAi j � 2 for all i D 1; : : : ; k, then every vertex
ƒ.X/ supports at least two cycles of each colour. In particular, C �.ƒ.X// is purely
infinite and therefore classifiable by the Kirchberg–Phillips classification theory.

Proof. Let ƒ.X/0 denote the vertices, or identities, in our k-graph. Since every geo-
metric edge in P gives rise to N geometric edges in zP , we have that for each colour
i 2 ¹1; : : : ; kº, every vertex v 2 ƒ.X/0 admits N jAi j incident edges, namely edges with
origin or terminus v. Furthermore, by our construction of ƒ.X/, we also know that each
edge is contained in a length-two cycle. Thus, for a given v 2ƒ.X/0, there are at least two
cycles � D x2 ı x1 and � D x4 ı x3 based at v and consisting of edges of colour i , with
the terminus of x1 possibly distinct from the terminus of x3. Then, x4 is an entry to � of
smaller degree and not already contained in �. In this consideration, the vertex v already
supports a cycle with an entrance, but since our k-graph is strongly connected, we could
have chosen a cycle � based at a different vertex w and apply the same consideration.
Now, [32, Proposition 8.8 and Corollary 8.15] apply to give the claimed conclusion.

We next illustrate our construction of k-graphs with more than one vertex with an
explicit example of an infinite family of k-graphs with two vertices, for all k � 2. The
construction was partly outlined in [15, Section 8.1], as corresponding to the uniform
labelling lu, and explicit factorisation rules of the 2-vertex graph were given in the case
of the mixed labelling lm. Here, we describe completely the case lu as an application of
Theorem 4.7.

Proposition 4.10. For k� 2 and any k-tuple .L1; : : : ;Lk/ of positive integers, there exists
an aperiodic strongly connected 2-vertex k-rank graph ƒ with jvƒeiwj D 2Li , where v
and w are the vertices in ƒ and i D 1; : : : ; k.

Proof. Fix k � 2 and for each i D 1; : : : ; k let Li be an alphabet with Li letters. Let
Fi D FLi be the free group generated by Li for each i D 1; : : : ; k. The product group
F1 � � � � � Fk acts simply and transitively on the product of trees T2L1 � � � � � T2Lk and
yields in the quotient a complex P with one vertex and skeleton a wedge of

Pk
iD1 Li

circles. The 2-cells in P arise from pairs a 2 Li , b 2 Lj for i ¤ j with the commutation
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relation ab D ba as in Example 3.7; for each such pair, there is a torus glued to the wedge
of circles.

Let zP be the associated 2-cover from Proposition 4.1. By Theorem 4.7 and Corol-
lary 4.8, there is a k-graphƒ WDƒ. zP / with the desired property: for each geometric edge
in P , say having label a 2 Li , there are two geometric edges labelled a1 and a2 in zP ,
and each of these gives exactly one edge in the associated k-graph ƒ between the two
vertices.

Example 4.11. To illustrate Proposition 4.9 and Proposition 4.10, suppose that k D 2 and
L1 D L2 D 1. The associatedƒ has as 1-skeleton the graph with two vertices in Figure 6,
where we identify v as vertex 1 and w as vertex 2. If we view the coloured edges in
direction e1 2 N2 as labelled by L1 and in direction e2 2 N2 to be labelled by L2, then
by Proposition 4.10, we have

wƒe1v D ¹a1; xa2º; wƒe2v D ¹b1; xb2º; vƒe1w D ¹a2; xa1º; vƒe1w D ¹b2; xb1º:

The 8 factorisation rules are as follows:

a1b2 D b1a2; a2 xb2 D xb1a1; xa1b1 D b2 xa2; xa2 xb2 D xb1 xa1;

a2b1 D b2a1; a1 xb1 D xb2a2; xa2b2 D b1 xa1; xa1 xb1 D xb2 xa2:

If k D 2 and L1 D L2 D 2, then the corresponding 2-graph on two vertices has the same
1-skeleton, and for example jvƒe1wj D jwƒe1vj D 4, and similarly in colour e2.

5. Applications

5.1. Von Neumann algebras from strongly connected k-graphs

We now present a large supply of von Neumann type III� factors from k-graphs as in [14],
for infinitely many values of � in .0; 1�. We start with some preparation.

We refer to [29, Section 6] for the notion of adjacency operator in i -direction for a
k-cube complex, where i 2 ¹1; : : : ; kº. The basic ingredients are as follows: let X be a
k-cube complex with a vertex set (of its 1-skeleton) denoted X0 and with universal cover,
a product T1 �T2 � � � � � Tk of regular trees. For each i D 1; : : : ; k and V;W 2 X0, we
write V �i W if the two vertices in the complex are adjacent in the i -direction of X . The
adjacency operator Ai in i -direction is defined on L2.X0/ by

Ai .f /.V / D
X
W�iV

f .W /:

Since all complexes considered here are locally finite in a strong sense, meaning that at
every vertex there are finitely many edges in each direction i , or of each colour i , for
i 2 ¹1; : : : ; kº, the operators Ai become jX0j � jX0j matrices. It was further observed in
[29, Remark 6.4] that whenever each pair of edges starting at a vertex of X in direction
i; j , with i ¤ j , belong to a unique square in X , then Ai and Aj commute.
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Proposition 5.1. Let X be a k-cube complex with N vertices covered by a cartesian
product of k trees with valencies n1; n2; : : : ; nk 2 ZC, respectively, where k � 2 and
N � 1. Let ƒ.X/ be the associated k-graph as in Theorem 4.7. Then, with the notation
of subsection 2.9, we have

�
�
ƒ.X/

�
D .n1; n2; : : : ; nk/: (5.1)

Proof. The assumption on X says that there are ni edges (disregarding orientation) of
colour i for each i D 1; : : : ; k. The graph ƒ.X/ is constructed by assigning two edges
in its skeleton, of opposite orientation, for each geometric edge in X. Therefore, if Mi

denotes the coordinate matrix of ƒ.X/ in colour i , we have that Mi is the same as the
adjacency operator in i -direction Ai . Thus, it is a symmetric matrix with the largest pos-
itive eigenvalue equal to the valency of the tree in colour i . Hence, �.Mi / D ni for each
i D 1; : : : ; k, as claimed.

Remark 5.2. The graph of Proposition 4.10 satisfies �.ƒ/ D .2L1; : : : ; 2Lk/.

Given a strongly connected k-graph ƒ, it was shown in [1, Corollary 4.6] that C �.ƒ/
admits KMS states at inverse temperature ˇ D 1 for the one-parameter action ˛WR !
AutC �.ƒ/, the so-called preferred dynamics, characterised by ˛t .s�/D eit log�.ƒ/�d.�/s�,
t 2 R, � 2 ƒ. Following [14], define � WD ¹�.ƒ/d.�/�d.�/ j �; � 2 ƒ are cyclesº and let
� WD sup¹s 2 � j s < 1º. By the main result of [14], Theorem 3.1, we have � 2 .0; 1� and
the von Neumann algebra generated by the image of C �.ƒ/ in the GNS representation �'
corresponding to an extremal KMS state ' is the injective type III� factor.

Our application here is motivated by [14, Example 7.7]; see also [20,38]. It consists of
producing an infinite family of von Neumann factors .�'.C �.ƒ///00 of type III� associ-
ated with k-graphs in this fashion. Recall from [14, Section 6] that the group of periods of
a strongly connected graphƒ is defined as Pƒ DPCv �PCv , where for an arbitrary vertex
v 2 ƒ0, PCv is the subsemigroup d.vƒv/ of Nk . Equivalently, Pƒ is the subgroup of Zk

determined as ¹d.�/ � d.�/ j �; � are cycles in ƒº. As shown in [14, Theorem 7.3], the
set � above is the closure inside the positive real half-line of the set ¹�.ƒ/g j g 2 Pƒº.

Corollary 5.3. For k � 2 and any k-tuple .L1; : : : ; Lk/ of positive integers, let ƒ be
the k-graph with two vertices from Proposition 4.10. There is a III� von Neumann factor
.�'.C

�.ƒ///00, where �' is the GNS representation of C �.ƒ/ corresponding to an ex-
tremal KMS1 state �, and the type is determined as

� D sup
®
.2L1/

m1.2L2/
m2 � � � .2Lk/

mk j .m1; m2; : : : ; mk/ 2 Pƒ
¯
\ .0; 1�:

In particular, if L1 D � � � D Lk D L, then � D .2L/�2.

Proof. Fix k � 2 and positive integers L1; : : : ; Lk , and let ƒ be as specified. Then, ƒ
is strongly connected, and we may apply [14, Theorem 3.1] to obtain the claimed von
Neumann factors.

The remaining task is to compute Pƒ. By our construction of ƒ, it is not hard to see
that Pƒ is generated by m 2 Zk where either mi D 2 for a unique i 2 ¹1; : : : ; kº while
ml D 0 at l ¤ i or mi D mj D 1 for some i ¤ j in ¹1; : : : ; kº and ml D 0 for l … ¹i; j º.
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If L1 D L2 D � � � D Lk D L, then �.ƒ/m D .2L/
Pk
iD1mi with m 2 Pƒ, and becausePk

iD1mi 2 2Z, the required type is attained as � D .2L/�2.

It was pointed out in [14, Remark 7.6] that the type of the von Neumann factors arising
from extremal KMS1 states depends only on the skeleton of the k-graph, and not on its
factorisation rules. In our examples in Corollary 5.3, this means that the type of the von
Neumann factor depends only on the complex zP built up as a 2-cover of the one-vertex
complex .T2L1 � � � � � T2Lk /n.F1 � � � � � Fk/.

5.2. Spectral theory of k-graphs

Alon and Boppana prove that asymptotically in families of finite .q C 1/-regular graphs
Xn with diameter tending to1, the largest absolute value of a nontrivial eigenvalue �.Xn/
of the adjacency operator AXn has limes inferior limn!1 �.Xn/ � 2

p
q.

Now, instead of graphs we may consider cube complexes covered by products of trees
T1 � � � � � Tk , such that Ti has valency qi , and look at adjacency operators Ai in direction
i corresponding to an individual tree Ti .

Definition 5.4. Let X be a finite k-cube complex that has constant valency qi C 1 in all
directions i D 1; : : : ;k. Then,X is a cubical Ramanujan complex if for each i 2 ¹1; : : : ;kº,
the eigenvalues � of Ai satisfy either the equality � D ˙.qi C 1/ or the bound

� � 2
p
qi :

Each such complex yields a k-graph� such that �.�/D .q1C 1;q2C 1; : : : ; qk C 1/.
There are explicit constructions of Ramanujan cube complexes for several infinite fam-

ilies in [29]. We consider next the complexes from [29], corresponding to congruence
subgroups of arithmetic lattices. We reformulate some results of [29] in the light of the
present paper.

Theorem 5.5 (Cf. [29, Section 6]). For p, a prime, l , a positive integer, and N � 2,
there are infinitely many k-cube complexes with N vertices covered by products of k
trees, where k � p � 1 and each tree is of valency pl C 1, satisfying optimal spectral
properties, namely with a spectral gap, the interval Œ2

p
q; q C 1�, for q D pl .

Proof. Such k-cube complexes were constructed in [29, Section 6]. They correspond to
congruence quotients of arithmetic groups. The number of vertices of such complexes is
given by the order of the group PGL.2; pl /.

Remark 5.6. There are also non-residually finite complexes which have interesting k-
graphs although they do not necessarily exhibit the optimal spectral gap. Such complexes
with one vertex were constructed in [29, Section 5]. Applying Lemma 4.4, we get such
complexes with 2 vertices for all values k � 1.

Now, we extend the notion of the Ramanujan cube complexes to higher-rank graphs.

Definition 5.7. We say that a coordinate matrix of a k-graph is L-regular for L 2N if the
sum of all row entries is equal to L.
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Definition 5.8. Let ƒ be a k-graph with Li -regular coordinate matrices Mi having posit-
ive second eigenvalue �i , for iD1; : : : ; k. We say that the k-graph ƒ is Ramanujan if

�i � 2
p
Li � 1 for all i D 1; : : : ; k:

Theorem 5.9. For each k � 2, there is an infinite family of Ramanujan k-graphs with
N � 2 vertices. More precisely, N is determined as the index of congruence subgroups of
the RSV-groups �M;ı from Section 2.8.

Proof. This is a direct application of Theorem 5.5 in conjunction with Theorem 4.7. For
a complex X with N vertices, there is a k-graph ƒ.X/ with N vertices by an application
of Theorem 4.7.

We note that both one-vertex cube complexes covered by the product of k trees and
one-vertex higher-rank graphs are trivially Ramanujan, so we will require in addition
the number of vertices to be greater than, for example, the maximum of .Li � 1/2, i D
1; : : : ; k.

Example 5.10. We now describe an explicit Ramanujan 3-graph with 25 vertices in the
above infinite family. Let p D 5 and consider the group �1 from Section 2.8 acting on
a product of three trees with valencies .6; 6; 6/. Let P denote the one-vertex 3-complex
associated withG. The existence of the claimed 3-graph is assured by Proposition 4.5 and
Theorem 4.7 because �1 has a quotient L of order 25 (indeed, it has quotients of order
5l for all l � 1). Let X denote the resulting complex with 25 vertices, and let ƒ be its
associated 3-graph.

Certain subsets of generators of �1 already generate a group of order 25 in the cover,
as may be verified using MAGMA. For example, the image Q.a1/ in S25 is the product
of disjoint cycles

Q.a1/

D .1; 15; 24; 8; 17/.2; 11; 25; 9; 18/.3; 12; 21; 10; 19/.4; 13; 22; 6; 20/.5; 14; 23; 7; 16/:

With the notation of Proposition 4.5, we have isomorphisms of groups

L Š
˝
Q.a1/;Q.a5/;Q.a9/

˛
;

L Š
˝
Q.b2/;Q.b6/;Q.b10/

˛
;

L Š
˝
Q.c3/;Q.c7/;Q.c11/

˛
;

and thus all three groups in the right-hand side are abstractly isomorphic to a finite group
of order 25. LetK1,K2, andK3, respectively, denote the Cayley graphs of the finite group
of order 25 coming from the three preceding isomorphisms.

This means that while the presentation of the infinite group �1 requires generators of
all three colours ai ; bj ; ck (as �1 is irreducible), in the presentation of the finite group of
order 25, generators of only one colour suffice. The finite cover is the complex X, and
fixing each colour yields the Cayley graph of a finite group of order 25. In other words,
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each of the generating sets A1, A2, and A3 gives Cayley graphs in three different sets of
generators (colours) of the same finite group.

The adjacency matrices Mi of the Cayley graphs Ki , i D 1; 2; 3, may be computed
using MAGMA, using thatQ.G/ acts as permutations in S25. It turns out thatM1;M2;M3

are equal. As noted in the proof of Proposition 5.1, the adjacency matrices M1; M2; M3

of the complex are also the adjacency matrices of the 3-graph ƒ. Each Mi is 6-regular in
the sense of Definition 5.7, for i D 1; 2; 3, as may be seen from the concrete description
of the matrices obtained with MAGMA. An application of Theorem 5.9 gives that ƒ is a
Ramanujan 3-graph, so the second-largest eigenvalue �i of Mi is dominated by 2

p
5, for

i D 1; 2; 3.
In this example, the spectral gap is strictly in the optimal bound; namely, the second

eigenvalue ofM1 is dominated by 3:24, according to MAGMA computations. This bound
is lower than the theoretically predicted 2

p
5.

In addition, using MAGMA shows that the product M1M2M3 is not a .0; 1/-matrix,
which distinguishes this example from [27] and all papers inspired by it. For example, the
diagonal entries in M1M2M3 are all equal to 12. The remaining entries are 6, 7, or 15.

6. Matrices of the Cayley graph of an order 25-group266666666666666666666666666666666666666666664

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0

0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1

0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0

377777777777777777777777777777777777777777775

:
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