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Abstract. We prove that the infinite family of asymptotic mapping class groups of
surfaces defined by Funar–Kapoudjian and Aramayona–Funar are of type F1, thus
answering a problem of Funar–Kapoudjian–Sergiescu and a question of Aramayona–
Funar. This result is a specific case of a more general theorem which allows us
to deduce that asymptotic mapping class groups of certain Cantor manifolds, also
introduced in this paper, are of type F1. As important examples, we obtain type F1
asymptotic mapping class groups that contain, respectively, the mapping class group
of every compact surface with non-empty boundary, the automorphism group of
every free group of finite rank, or infinite families of arithmetic groups.

In addition, for certain types of manifolds, the homology of our asymptotic map-
ping class groups coincides with the stable homology of the relevant mapping class
groups, as studied by Harer and Hatcher–Wahl.

1. Introduction

Asymptotic mapping class groups of surfaces were introduced by Funar–Kapoudjian [23]
with the original motivation of finding natural discrete analogues of the diffeomorphism
group of the circle. Since then, asymptotic mapping class groups of surfaces have received
considerable attention from multiple perspectives, as we now explain.

A first piece of motivation for the study of asymptotic mapping class groups is that
they are (countable) subgroups of mapping class groups of infinite-type surfaces, now
commonly known as big mapping class groups. In fact, a striking result of Funar–Neretin
(Corollary 2 in [27]) asserts that the smooth mapping class group of a closed surface
minus a Cantor set coincides with the group of half-twists, a particular instance of an
asymptotic mapping class group defined by Funar–Nguyen [28] and subsequently studied
in [2]. Moreover, for the same class of surfaces, the group of half-twists (as well as some
other groups of the same flavour) is dense in the topological mapping class group, see
Theorem 1.3 in [2], and also Theorem 3.19 in [61].
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A second source of interest stems from the classic theme of stable homology: indeed,
a result of Funar–Kapoudjian (Theorem 3.1 in [25]) proves that the (rational) homology
of an “infinite-genus” asymptotic mapping class group, which contains the mapping class
group of every compact surface with non-empty boundary, is precisely the (rational) stable
homology of the mapping class group, as computed by Harer [35]; see also Theorem 1.4
in [2] for an analogous result in the case of finite-genus surfaces.

Yet another example of the significance of asymptotic mapping class groups arises
from the fact that they are instances of Thompson-like groups, being extensions of direct
limits of mapping class groups of compact surfaces by Thompson groups (see, e.g., [2,23,
25, 31]) and related groups, including Houghton groups [22, 31, 32]. As such, asymptotic
mapping class groups are intimately related to other well-known Thompson-like groups,
with the braided Thompson groups of Brin [11] and Dehornoy [18] as notable examples.

A common feature of Thompson-like groups is that they often are of type F1, see,
e.g., [1, 15, 21, 31, 60, 67, 69]; here, recall that a group is said to be of type Fn it has a
classifying space with finite n-skeleton, and is of type F1 if it is of type Fn for all n.

In stark contrast, the situation with asymptotic mapping class groups of surfaces re-
mained mysterious. Funar–Kapoudjian proved in [23] that the genus-zero asymptotic
mapping class group is finitely presented, and Aramayona–Funar proved the analog for
surfaces of positive genus. Funar and Kapoudjian [22, 25] also proved the finite present-
ability of related asymptotic mapping class groups of surfaces that are obtained by thick-
ening planar trees, which include the so-called braided Houghton groups; very recently,
Genevois–Lonjou–Urech [31] have determined the finite properties of these groups, which
depend on the local branching of the underlying tree. In this direction, the following ques-
tion is implicit in [23,25], and appears explicitly in Problem 3 of [26] and in Question 5.32
of [4]:

Question ([4,23,26]). Study the finiteness properties of asymptotic mapping class groups.
Are they of type F1?

Our first objective is to answer the above question for the infinite family of asymptotic
mapping class groups of surfaces defined by Funar, Kapoudjian, and the first author in the
series of papers [2, 23, 25] .

Theorem 1.1. The asymptotic mapping class groups of surfaces defined in [2, 23, 25] are
of type F1.

However, the main aim of this paper is to develop a much more general framework
that will allow us to define asymptotic mapping class groups of Cantor manifolds of arbit-
rary dimension, not just surfaces. By translating the classical topological condition of
[2,23–25,31,32] for a mapping class to be asymptotically rigid into an algebraic one, we
will be able to prove that the asymptotic mapping class groups so obtained are of type F1
under general hypotheses on the underlying manifolds. As interesting special cases, we
will obtain examples of asymptotic mapping class groups that are of type F1 and contain,
respectively, the mapping class group of every compact surface with non-empty boundary,
the automorphism group of every free group of finite rank, or infinite families of arithmetic
groups.

We now offer an abridged overview of the main definitions and results, postponing
their precise versions until Section 3.
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Figure 1. Construction of the Cantor manifold C2;1.O;Y /, forO a closed surface of genus 2 and Y
a sphere (so that Y 2 is a pair of pants).

Cantor manifolds and their asymptotic mapping class groups

In what follows, we will work in the smooth category. LetO and Y be compact, connected,
oriented manifolds of the same dimension n � 2, and assume Y is closed. Let Y d be the
manifold obtained by removing d C 1 � 3 disjoint open balls from Y . Given this data and
an integer r � 1, we construct the Cantor manifold Cd;r .O;Y / by first removing a set of r
balls from O , then gluing a copy of Y d to each of the resulting boundary components,
and finally inductively gluing, according to a fixed diffeomorphism, copies of Y d to the
resulting manifold, in a tree-like manner; see Figure 1 for an explicit example.

Each of the glued copies of Y d is called a piece. A connected submanifold M �
Cd;r .O; Y / is suited if it is the union of O and finitely many pieces. A boundary sphere
of M which does not come from O is a suited sphere.

Remark 1.2. Throughout, we will restrict our attention to Cantor manifolds that satisfy
three natural properties, namely the cancellation, inclusion, and intersection properties;
see Definitions 3.5, 3.3 and 3.4, respectively. As we will see in Appendix B, these proper-
ties are satisfied in all our applications.

For each piece of Cd;r .O; Y /, we fix a preferred diffeomorphism to a “model” copy
of Y d , and refer to the collection of these diffeomorphisms as the preferred rigid structure
on Cd;r .O; Y /. The asymptotic mapping class group Bd;r .O; Y / is the group of (proper)
isotopy classes of self-diffeomorphisms of Cd;r .O; Y / that preserve the preferred rigid
structure outside some suited submanifold whose image is also suited – see Section 3 for
details. Generalizing the situation in two dimensions [2, 11, 18, 23, 25, 61], in Proposi-
tion 4.3 we will see that there is a short exact sequence

(1.3) 1! Mapc.Cd;r .O; Y //! Bd;r .O; Y /! Vd;r ! 1;

where Vd;r denotes the standard Higman–Thompson group of degree d and with r roots,
while Mapc.Cd;r .O;Y // stands for the compactly-supported mapping class group, which
is a direct limit of mapping class groups of suited submanifolds of Cd;r .O;Y /. The homo-
logy of Mapc.Cd;r .O;Y // sometimes coincides with that of the so-called stable mapping
class group; see Section 10.
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Remark 1.4. Let D be the 2-dimensional disk. Skipper–Wu proved that Bd;r .D;S
2/ is

isomorphic to the oriented ribbon Higman–Thompson groups RV C
d;r

, see Theorem 3.24
in [61], and the braided Higman–Thompson groups bVd;r naturally sit inside it, see the
introduction of [60]. However, note that, since groups bVd;r are centerless but the Dehn
twist along the boundary of Cd;r .D;S

2/ lies in the center of Bd;r .D;S
2/, the two groups

are actually not isomorphic.

Statement of results

In Section 5 below, we will construct an infinite-dimensional contractible cube complex
Xd;r .O; Y / on which Bd;r .O; Y / acts cellularly, similar in spirit to the classical Stein–
Farley complexes for Higman–Thompson groups [20, 63], and inspired by the complex
constructed in [31]. In short, the vertices of Xd;r .O; Y / are pairs .M; f /, where M is
a suited submanifold and f 2 Bd;r .O; Y /, subject to certain equivalence relation. The
group Bd;r .O; Y / acts on Xd;r .O; Y / by multiplication in the second component. Our
first result is as follows.

Theorem 1.5 (Section 5). For any Cantor manifold Cd;r .O;Y /, the complex Xd;r .O;Y /
is an infinite-dimensional contractible cube complex on which Bd;r .O;Y / acts cellularly,
in such way that cube stabilizers are finite extensions of mapping class groups of suited
submanifolds.

The complex Xd;r .O;Y / is equipped with a discrete Morse function hWXd;r .O;Y /!
R (which counts the number of pieces of the given suited submanifold), and gives rise to a
filtration of Xd;r .O;Y / by cocompact sets. In Section 6.1, we will show that the descend-
ing link (with respect to h) of every vertex is a complete join over a certain combinatorial
complex of pieces Pd .M;A/ built from isotopy classes of embedded copies of Y d inside a
suited submanifold M (which depends on the vertex) with suited spheres A; in particular,
the two complexes have the same connectivity properties. The piece complex is strongly
related (sometimes equal, even) to the complexes of destabilizations that appear in the
homology stability results of Hatcher–Vogtmann [40], Hatcher–Wahl [41] and Galatius–
Randal-Williams [30]. Combining Theorem 1.5, a celebrated result of Brown [12], plus
classical arguments in discrete Morse theory (discussed in Appendix A), we obtain:

Theorem 1.6 (Section 5). Let Cd;r .O; Y / be a Cantor manifold with the cancellation,
inclusion and intersection properties. Assume that

(i) the mapping class group of every suited submanifold is of type F1 ;
(ii) for every suited submanifoldM with p pieces, Pd .M;A/ ism.p/-connected, where

m tends to infinity as p does.

Then Bd;r .O; Y / is of type F1. Moreover, if Pd .M; A/ is flag for every M , then
Xd;r .O; Y / is CAT.0/.

1.1. Applications

We now give some applications of the results above to specific classes of manifolds, all
of which satisfy the cancellation, inclusion, and intersection properties; see Section 3 and
Appendix B.
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1.1.1. Surfaces. We first treat the classical case of asymptotic mapping class groups of
surfaces, discussed in the introduction. Suppose O and Y are surfaces, with Y either a
sphere or a torus. It is well known that mapping class groups of compact surfaces are of
type F1, see [36]. Also, building up on a result of Hatcher–Vogtmann [40], we will prove
in Section 9 that Pd .M;A/ has the desired connectivity properties. Thus, we have:

Theorem 1.7 (Section 9). Let O be a compact surface, and Y diffeomorphic to either S2

or S1 � S1. For every d � 2 and r � 1, Bd;r .O; Y / is of type F1.

We stress that the groups Bd;r .O;S
2/ coincide with the groups BVd;r .O/ defined by

Skipper–Wu in Section 3 of [61], and hence our above result implies that their groups are
of type F1.

Second, as discussed earlier, our family of groups contains the groups Bg of Aramayo-
na–Funar–Kapoudjian [2, 23, 25]. More concretely, the group B0 of [23] is B2;1.S2;S2/;
the group Bg of [2] is B2;1.Sg ;S2/, where Sg denotes the closed surface of genus g; and
the group B1 of [25] is B2;1.S2;S1 � S1/; see Proposition 3.11. Therefore, we see that
Theorem 1.1 above is a consequence of Theorem 1.6 above.

1.1.2. 3-manifolds. In Section 8, we will see that our methods also apply when O Š S3

and Y is diffeomorphic to S3 or S2 � S1. The combination of various well-known results
implies that the mapping class group of every suited submanifold of Cd;r .O; Y / is of
type F1; see Section 2. Moreover, extending a result of Hatcher–Wahl [41], we will be
able to deduce that the piece complex has the desired connectivity properties. Thus, we
will obtain the following.

Theorem 1.8 (Section 8). LetOŠS3, and let Y be diffeomorphic to either S3 or S2 � S1.
For every d � 2 and r � 1, Bd;r .O; Y / is of type F1.

The main motivation for the result above stems from a recent theorem of Brendle–
Broaddus–Putman [10], which yields the following result, see the discussion around Pro-
position 2.9 below for more details; here, Aut.Fk/ stands for the automorphism group of
the free group Fk .

Proposition 1.9. LetO Š S3 and Y Š S2 � S1. For every d � 2 and r � 1, Bd;r .O; Y /

contains Aut.Fk/ for all k.

For arbitrary compact 3-manifolds, mapping class groups are only known to be finitely
presented, see Conjecture F and the comments at the end of Section 4 of [46]. However,
the general form of Brown’s criterion [12] gives the following.

Theorem 1.10 (Section 8). Let O and Y be compact orientable 3-manifolds, such that
the boundary of O is a union of spheres and Y is closed and prime. Let d � 2 and r � 1.
Then Bd;r .O; Y / is finitely presented.

1.1.3. Higher-dimensional manifolds. In Section 7, we will treat the case where O Š
S2n and Y Š S2n or Y Š Sn � Sn, with d � 2 and r � 1. A celebrated theorem of Sulli-
van [65] implies that the mapping class group of every suited submanifold of Cd;r .O; Y /

is of type F1; see Proposition 2.12 below. Moreover, the complex of pieces has the cor-
rect connectivity properties, by a version of a theorem of Galatius–Randal-Williams [30]
proved in Appendix C. In particular, we will obtain the following.
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Theorem 1.11 (Section 7). For n�3, letOŠS2n and let Y be diffeomorphic to either S2n

or Sn � Sn. For every d � 2 and r � 1, Bd;r .O; Y / is of type F1.

As hinted above, when Y Š Sn � Sn, the group Bd;r .O; Y / contains infinite families
of groups that are, following the terminology of [50], commensurable (up to finite kernel)
to well-studied arithmetic groups. Here, commensurability up to finite kernel stands for the
equivalence relation generated by passing to finite-index subgroups and taking quotients
by finite normal subgroups.

More concretely, write Wg for the connected sum of g copies of Sn � Sn, and let Gg
be the group of automorphisms of the middle homology group Hg.Wg ;Z/ that preserve
both the intersection form and Wall’s quadratic form; see Section 1.2 in [49]. It is known
thatGg is (up to finite index) a symplectic or orthogonal group, see Section 1.2 in [49] for
details. In light of the discussion at the end of Section 2.1.3, we have:

Proposition 1.12 (Section 8). For n � 8, let O Š S2n and Y Š Sn � Sn. If d � 2 and
r � 1, then Bd;r .O; Y / contains a subgroup commensurable (up to finite kernel ) to Gg
for all g � 1.

A note on the hypotheses. Before continuing, we explain the restrictions on the manifolds
that appear in Theorems 1.7, 1.8, 1.10 and 1.11.

Firstly, as we mentioned above, the manifolds involved must satisfy the cancellation,
inclusion, and intersection properties; however, as remarked after Proposition 3.6 below,
it is not true that all manifolds satisfy the three properties.

Second, as discussed above, one needs to know the finiteness properties of mapping
class groups of suited submanifolds of Cd;r .O; Y /, which is the case for the classes of
manifolds appearing in our main theorems.

In addition, the main technical difficulty in our proofs is the analysis of the connectiv-
ity properties of the descending links of vertices in the complex Xd;r .O;Y /. This is carried
out through the use of various intermediate complexes, starting with complexes that appear
in the study of homology stability for precisely the different manifoldsO and Y that appear
in our applications, and whose connectivity properties are understood, thanks to the work
of Harer [35], Hatcher–Wahl [41], and Galatius–Randal-Williams [30], respectively.

1.1.4. A connection with Higman’s embedding theorem. By the celebrated Higman
embedding theorem [43], there exists a finitely presented group that contains all finitely
presented groups. The following immediate corollary of Theorems 1.7, 1.8 and 1.11 may
be regarded as a strong form of Higman embedding theorem for the family of map-
ping class groups of compact surfaces (respectively, automorphism groups of free groups
of finite rank, and the groups commensurable – up to finite kernel – to Gg of Proposi-
tion 1.12).

Corollary 1.13. There exists a group of type F1 that contains the mapping class group of
every compact orientable surface with non-empty boundary (respectively, the automorph-
ism group of every free group of finite rank, or a group commensurable – up to finite
kernel – to Gg for all g � 1/.
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1.2. Non-positive curvature

A natural question is whether the contractible cube complex Xd;r .O; Y / is non-positively
curved. In this direction, we will prove that in all the cases considered in the previous
subsection, the link of every vertex of X is flag. Since Xd;r .O; Y / contains no infinite-
dimensional cubes (see Proposition 6.11), we will obtain:

Theorem 1.14 (Section 6.2). Suppose O , Y , d and r satisfy the hypotheses of Theor-
ems 1.7, 1.8, 1.10 or 1.11. Then the cube complex Xd;r .O; Y / is complete and CAT.0/.

An intriguing research avenue is to explore the geometric structure of Xd;r .O; Y /
as a non-positively curved space, both as an intrinsically interesting object, and also
with the ultimate aim of deducing algebraic properties of Bd;r .O; Y / from its action on
Xd;r .O; Y /. We propose the following problem in this direction:

Problem. Describe the CAT.0/ boundary of Xd;r .O;Y / in terms of topological data from
Cd;r .O; Y /.

1.3. Homology

As mentioned above, our results are intimately linked to the different homological stability
phenomena, as we now explain. WriteWg for the connected sum of O and g copies of Y ,
and let W 1

g the manifold that results from removing an open ball from Wg . In the case
when O and Y are surfaces, Harer [35] proved that Hi .Map.W 1

g /;Z/ does not depend
on g, provided g is big enough with respect to i (see Section 10); for this reason, this
homology group is called the i -th stable homology group of Map.W 1

g /. An analogous
statement for 3-manifolds was established by Hatcher–Wahl [41], and Galatius–Randal-
Williams [30] proved a stability result for diffeomorphism groups of connected sums of
Y Š Sn � Sn.

In Section 10, we will adapt an argument of Funar–Kapoudjian ([25], Proposition 3.1)
to our setting to prove the following.

Theorem 1.15 (Section 10). Suppose that either O is any compact surface and Y Š
S1 � S1, orO Š S3 and Y Š S2 � S1. ThenHi .B2;1.O;Y /;Z/ is isomorphic to the i -th
stable homology group of Map.W 1

g /.

Remark 1.16. The reason that the result above is stated for d D 2 and r D 1 is that,
in this case, the corresponding Higman–Thompson group V2;1 (which in fact is just the
Thompson’s group V / is simple and acyclic [66], which is not the case for arbitrary d
and r . On the other hand, for any r � 1, the groups V2;r are pairwise isomorphic, and thus
acyclic and simple; therefore, our proof still applies to this case.

The topological vs the smooth categories. We have chosen to work in the differentiable
category in order to present our results in a unified manner. However, if M has dimen-
sion � 3, then by [19, 37, 38],

�0.HomeoC.M; @M// Š �0.DiffC.M; @M//;

and thus the results above remain valid in the topological category also. In higher dimen-
sions, however, the two categories are different.



J. Aramayona, K.-U. Bux, J. Flechsig, N. Petrosyan and X. Wu 8

2. Mapping class groups

LetM be a compact, connected, orientable manifold of dimension n�2, and let DiffC.M/

be the group of orientation-preserving self-diffeomorphisms of the manifold M . Denote
by DiffC.M; @M/ the subgroup consisting of those diffeomorphisms that restrict to the
identity on every connected component of @M . The mapping class group of M is

Map.M/ WD �0.DiffC.M; @M//:

We remark that every element of Map.M/ has a representative that restricts to the identity
on a collar neighborhood of every boundary component of M . In what follows, we will
be interested in manifolds that have some boundary components diffeomorphic to Sn�1,
and will need a version of the mapping class group that allows for these components to be
permuted. To this end, for every sphere S � @M we fix, once and for all, a diffeomorphism
hS W S ! Sn�1, called a parametrization of S . We say that f 2 DiffC.M/ respects the
boundary parametrization if hf .S/ ı fjS � hS for all S .

Definition 2.1 (Sphere-permuting mapping class group). Let M as above. The sphere-
permuting mapping class group Mapo.M/ is the group of isotopy classes of orientation-
preserving self-diffeomorphisms ofM that respect the boundary parametrization, modulo
isotopies that fix @M pointwise.

Observe that Mapo.M/ acts transitively on the set of boundary spheres of M . To see
this, first note that this is obvious if M is a ball; for arbitrary M , first choose a sphere
in M that cuts off a ball containing all of the boundary spheres of M , and apply the
previous case.

The following immediate observation will be important in what follows.

Lemma 2.2. Suppose that M has finitely many spherical boundary components. Then
Map.M/ is a normal subgroup of finite index in Mapo.M/

2.1. Finiteness properties of mapping class groups

Recall that a group G is of type Fn if it admits a K.G; 1/ with finite n-skeleton. We say
thatG has type F1 if it has type Fn for all n. We will use the following result; for a proof,
see e.g. Section 7 of [33].

Proposition 2.3. Let G;K and Q be groups.

(i) Let 1 ! K ! G ! Q ! 1 be a short exact sequence of groups. If K and Q
(respectively, K and G) are of type Fn, so is G (respectively, Q/.

(ii) If K � G has finite-index, then G is of type Fn if and only if K is.

We now examine the finiteness properties of mapping class groups of specific families
of manifolds.

2.1.1. Surfaces. A classical fact about mapping class groups of compact surfaces is that
they are of type F1. Indeed, work of Harvey [36] implies this for closed surfaces; when
the boundary is non-empty, one may combine the capping homomorphism (Section 4.2.5
in [19]) with part (i) of Proposition 2.3 to deduce the following well-known fact.
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Lemma 2.4. Let S be a compact connected orientable surface. Then Map.S/ (and thus
Mapo.S/ as well ) is of type F1.

2.1.2. 3-manifolds. Finiteness properties of mapping class groups of arbitrary 3-mani-
folds are more mysterious. In this direction, the following general statement appears in
Hong–McCullough [46].

Theorem 2.5 ([46]). LetM be a compact connected orientable 3-manifold whose bound-
ary is a union of spheres. Then Map.M/ is finitely presented.

For certain families of 3-manifolds, one can drastically improve the result above.
Indeed, the case of primary interest to us occurs for the connected sum Wg of a finite
number g � 2 of copies of S2 � S1. Since �1.Wg/ is isomorphic to the free group Fg ,
there is an obvious homomorphism

Map.Wg/! Out.Fg/;

where Out.Fg/ denotes the outer automorphism group of the free group. By a theorem of
Laudenbach [54], this homomorphism is surjective and its kernel is a finite abelian group
generated by twists along embedded spheres inWg . Now, Out.Fg/ is of type F1 by work
of Culler–Vogtmann [17], and hence Proposition 2.3 gives:

Theorem 2.6. LetWg be the connected sum of g � 2 copies of S1 � S2. Then Map.Wg/
is of type F1.

Consider now the manifold W b
g that results from Wg by removing b � 1 open balls

with pairwise disjoint closures. There is a short exact sequence

1! K ! Map.W b
g /! Map.W b�1

g /! 1;

where K is isomorphic to either Fg , if b D 1; or to Fg � Z2 if b � 2, see Theorem 4.1
in [53]. In any case, again in light of Proposition 2.3, one has:

Corollary 2.7. For all g � 1 and b � 0, the group Map.W b
g / is of type F1.

We end this subsection with a related discussion that sheds light on the relation be-
tween asymptotic mapping class groups of 3-manifolds and automorphisms of free groups
(cf. Theorem 1.9). Let Map.Wg ; �/ be the mapping class group of Wg with one marked
point, so that there is a homomorphism

(2.8) Map.Wg ;�/! Aut.Fg/

which, again by Laudenbach’s result [54], is surjective and has finite kernel. A recent
theorem of Brendle–Broaddus–Putman [10] asserts that the homomorphism (2.8) splits.
Now, Map.Wg ; �/ and Map.W 1

g / are isomorphic (see, for instance, Lemma 2.1 in [53]).
In particular, givenW b

g with g � 2 and b � 1, by choosing a separating sphere that bounds
a copy of W 1

g , we obtain:

Proposition 2.9 ([10]). For g � 2 and b � 1, Aut.Fg/ < Map.W b
g /.
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2.1.3. Higher dimensions. Mapping class groups of manifolds of dimension four and
higher can be rather wild: for instance, Map.S1 � S3/ is not finitely generated [14], and
the same holds for the mapping class group of the n-dimensional torus, for n � 6 (see,
e.g., Theorem 2.5 in [47]). However, Sullivan proved the following striking result [65].

Theorem 2.10 ([65]). LetM be a closed orientable simply-connected manifold of dimen-
sion at least five. Then Map.M/ is commensurable (up to finite kernel ) with an arithmetic
group.

As arithmetic groups are of type F1, the combination of Proposition 2.3 and The-
orem 2.10 yields:

Corollary 2.11. If M is a closed orientable simply-connected smooth manifold of dimen-
sion at least five, then Map.M/ is of type F1.

As in the lower-dimensional cases, we will need the following well-known analog of
the previous corollary for manifolds with spherical boundary.

Proposition 2.12. Let M be a compact orientable simply-connected manifold of dimen-
sion at least five, and whose boundary is a union of spheres. Then Map.M/ is of type F1.

Proof. We prove it by induction on k D �0.@M/. The case k D 0 is given by Sullivan’s
Theorem 2.10, so suppose k � 1. Denote by M 0 the manifold that results by capping a
fixed sphere in @M with a diskB . We have DiffC.M;@M/DDiffC.M 0; @M 0 tB/, where
the latter group stands for the group of orientation-preserving diffeomorphisms ofM 0 that
restrict to the identity on @M 0 and on B . There is a fiber bundle (see, e.g., the proof of
Lemma 2.4 in [68])

(2.13) DiffC.M 0; @M 0 t Bn/! DiffC.M 0; @M 0/! EmbC.Bn;M 0/;

where EmbC.Bn; M 0/ is the space of orientation-preserving smooth embeddings of Bn

into M 0. The long exact sequence of homotopy groups associated to the bundle contains
the following subsequence:

(2.14) �1.EmbC.Bn;M 0//! Map.M/! Map.M 0/! �0.EmbC.Bn;M 0//:

Fix an orientation on M 0 and consider the oriented frame bundle FrC.M 0/, that is the
bundle of positively oriented frames on M 0. One has (see, e.g., the proof of Lemma 2.4
in [68]) that EmbC.Bn; M 0/ is homotopy equivalent to FrC.M 0/. In particular, equa-
tion (2.14) reads

(2.15) �1.FrC.M 0//! Map.M/! Map.M 0/! �0.FrC.M 0//:

Consider the obvious fibration GLC.n;R/! FrC.M 0/!M 0, which yields

�1.GLC.n;R//! �1.FrC.M 0//! �1.M
0/! �0.GLC.n;R//:

Since M is simply-connected, so is M 0, and thus either Map.M 0/ Š Map.M/ or (2.15)
reads

(2.16) Z2 ! Map.M/! Map.M 0/! 1;

in which case the result follows from Proposition 2.3.
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In what follows, we will be mainly interested in the special case of manifolds con-
nected sums of Sn � Sn for n � 3. More concretely, let Wg denote the connected sum
of g copies of Sn � Sn, and let W b

g be the manifold that results by removing b open balls
from W b

g . The mapping class group Map.W b
g / has a very explicit description that stems

from the work of Kreck [51]; see Appendix B. In particular, the fact that Map.W b
g / is of

type F1 follows also from Kreck’s calculation [51].
As mentioned in the introduction, one of the main reasons we are interested in mapping

class groups of these manifolds is that they are commensurable (up to finite kernel) to well-
studied arithmetic groups. Indeed, write Gg for the subgroup of the automorphism group
of the homology group Hn.Wg ;Z/ whose elements preserve the intersection form and
Wall’s quadratic form, see Section 1.2 in [49] for a precise definition. It is known that Gg
is (a finite index subgroup of) a symplectic or orthogonal group, see Section 1.2 in [49]
for details. Combining Kreck’s calculation [51] (see also Appendix B), and a recent result
of Krannich [49] (see Theorem A and Table 1 therein), we obtain:

Theorem 2.17. For n � 8, Map.Wg/ contains a subgroup commensurable (up to finite
kernel ) to Gg .

Moreover, a theorem of Kreck (see [49], Lemma 1.1, for a proof) asserts that Map.W 1
g /

Š Map.Wg/. Thus, given W b
g with b � 1, by choosing a separating sphere that cuts off

all of the boundary components of W b
g , we obtain:

Corollary 2.18. For n � 8 and b � 1, Map.W b
g / contains a subgroup commensurable

(up to finite kernel ) to Gg .

3. Cantor manifolds and asymptotic mapping class groups

In this section, we detail the construction of Cantor manifolds and their asymptotic map-
ping class groups. It will be useful for the reader to keep Figure 1 in mind. Let Y be a
closed, connected, orientable manifold of dimension n � 2. For d � 2, denote by Y d the
manifold that results by removing d C 1 disjoint open n-balls from Y . We enumerate the
boundary spheres of Y d as S0; S1; : : : ; Sd , and fix diffeomorphisms �i WSn�1 ! Si . We
refer to S0 as the top boundary component of Y d . In fact, we regard Y d as a cobordism
with @0Y d D S0 at the top and @1Y d D ¹S1; : : : ; Sd º at the bottom; in particular, we
assume that �0 is orientation preserving, and that �i is orientation reversing for i � 1.

Now letO be a compact, connected, orientable manifold of the same dimension n, pos-
sibly with non-empty boundary, although this time not necessarily a collection of spheres.
For a fixed r � 1, define a sequence ¹Okºk�1 of compact, connected, orientable manifolds
as follows:

(i) O1 is the manifold that results from O by deleting the interior of r copies of Bn,
denoted (and ordered as) B1; : : : ; Br . We fix orientation preserving diffeomorph-
isms �i WSn�1 ! @Bi � O1.

(ii) The manifold O2 is the result of gluing r copies of Y d to O1, by identifying @Bi
with the top boundary sphere of the relevant copy of Y d . Here we use the maps
�0 ı �

�1
i for the gluing.
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(iii) For each k � 3, the manifold Ok is obtained from Ok�1 by gluing a copy of Y d ,
along its top boundary component, to each boundary sphere in Ok ∖ Ok�1. Here
we use the maps �0 ı ��1i for the gluing.

The spheres created in each step above are called suited spheres; observe that the set
of suited spheres of Ok has an induced total order from that of Y d and that of the Bi .
Finally, we call the boundary components of Ok that come from O the primary boundary
components of Ok .

Definition 3.1 (Cantor manifold). With respect to the above terminology, the Cantor man-
ifold Cd;r .O; Y / is the union of the manifolds Ok . Each of the connected components of
Ok ∖Ok�1 (for k � 2) is called a piece.

By construction, each piece is diffeomorphic to Y d , and each of its d C 1 boundary
components is a suited sphere. We remark that the name Cantor manifold is justified since
the space of ends of Cd;r .O; Y / is homeomorphic to a Cantor set. The following notion
will be key in our definition of asymptotic mapping class groups.

Definition 3.2 (Suited submanifold). Let Cd;r .O; Y / be a Cantor manifold. A connected
submanifold of Cd;r .O; Y / is suited if it is the union of O1 and finitely many pieces; in
particular, suited submanifolds are compact.

If M is a suited submanifold of Cd;r .O; Y /, we will refer to the collection of bound-
ary components coming from O as primary boundary components, and denote the set of
primary boundary components by @pM . Observe that every boundary component of M
which is not in @pM is a suited sphere; we will write @sM for the set of suited boundary
components of M . As mentioned above, there is a natural total order on @sM .

3.1. The cancellation, inclusion, and intersection properties

As mentioned in the introduction, we will restrict our attention to Cantor manifolds whose
suited submanifolds have mapping class groups with some particular properties, which
will play a central role in the construction of the cube complex in Section 5. The first
property is the following.

Definition 3.3 (Inclusion property). We say that Cd;r .O; Y / has the inclusion property
if the following holds. Let M be a suited submanifold, and let N � M be a connected
submanifold that is either suited or the complement of a suited submanifold with at least
two boundary spheres. Then the homomorphism Map.N / ! Map.M/ induced by the
inclusion map N ,!M is injective.

The next property allows us to “trim off” the trivial parts of a mapping class supported
on the intersection of two suited submanifolds.

Definition 3.4 (Intersection property). Let Cd;r .O; Y / be a Cantor manifold with the
inclusion property. We say that Cd;r .O; Y / satisfies the intersection property if, for every
suited submanifoldM , the following holds. Let L1 and L2 be disjoint submanifolds, each
diffeomorphic to Y d (not necessarily a piece, see Figure 4), and such that all but one
boundary components of Li are suited spheres ofM . WriteMi for the complement of Li
in M , and set N DM1 \M2. Then Map.N / D Map.M1/ \Map.M2/.
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In the above definition, we are making implicit use of the inclusion property in order to
view mapping class groups of submanifolds as subgroups of a given mapping class group.

Finally, we introduce the cancellation property alluded to in the introduction. Roughly
speaking, it asserts that if we remove, from a suited submanifold, a submanifold diffeo-
morphic to a piece, then its complement is diffeomorphic to some other suited submanifold
of smaller complexity.

Definition 3.5 (Cancellation property). We say that Cd;r .O; Y / has the cancellation
property if the following holds. LetM be a suited submanifold with at least one piece, and
let S be a separating sphere that cuts off a submanifold diffeomorphic to Y d and with d
suited boundary spheres. Then the remaining component N is again diffeomorphic to
some suited submanifold of Cd;r .O; Y /, where the diffeomorphism maps suited spheres
to suited spheres and the image of S is also suited.

In Appendix B, we will see that the above properties are satisfied by all manifolds that
appear in the concrete applications mentioned in the introduction.

Proposition 3.6. Let O and Y be manifolds as in Theorems 1.7, 1.8, 1.10 or 1.11. Then
Cd;r .O; Y / has the inclusion, intersection, and cancellation properties.

Before we continue, it should be stressed that the cancellation property is not satisfied
in general. For example, .S2 � S2/#CP 2 and CP 2#CP 2#CP 2 are diffeomorphic, but
S2 � S2 and CP 2#CP 2 are not even homotopy equivalent. See for example [9] for more
information on this topic.

3.2. Rigid structures on Cantor manifolds

We now abstract out a notion due to Funar–Kapoudjian [2, 23, 25] in the case of surfaces,
defined therein in terms of arcs and curves cutting the surface into finite-sided polygons.
Before introducing it, observe that, for each pieceZ of a the Cantor manifold Cd;r .O;Y /,
we have a canonical diffeomorphism �Z WZ! Y d which may be regarded as the “identity"
map between Y d and its copy Z.

Definition 3.7 (Preferred rigid structure). The set ¹�Z W Z is a pieceº is called the pre-
ferred rigid structure on Cd;r .O; Y /.

3.3. Asymptotic mapping class group

We are now in a position to introduce the central object of study of this work:

Definition 3.8 (Asymptotically rigid diffeomorphism). Let Cd;r .O; Y / be a Cantor man-
ifold equipped with the preferred rigid structure. A diffeomorphism f W Cd;r .O; Y / !

Cd;r .O; Y / is asymptotically rigid if there exists a suited submanifold M such that
(i) f .M/ is also suited;
(ii) f is rigid away from M : for every piece Z of Cd;r .O; Y /∖M , we have that f .Z/

is also a piece and �f .Z/ ı fjZ ı ��1Z D idY d .
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The suited submanifoldM is called a support of f . Note that the support of an asymp-
totically rigid diffeomorphism is by no means canonical: any suited submanifold which
contains M is also a support for f .

We need one final definition before introducing asymptotic mapping class groups.
Namely, two asymptotically rigid self-diffeomorphisms f and f 0 of Cd;r .O;Y / are prop-
erly isotopic if there are a suited submanifold M and an isotopy gWCd;r .O; Y / � Œ0; 1�!
Cd;r .O; Y / between f and f 0, such that gt .M/ DM and gt is rigid away from M .

Definition 3.9 (Asymptotic mapping class group). The asymptotic mapping class group
Bd;r .O; Y / is the set of asymptotically rigid self-diffeomorphisms of Cd;r .O; Y / up to
proper isotopy.

In order to keep notation as simple as possible, we will often blur the difference
between an element of Bd;r .O; Y / and any of its representatives. Note that, even if sup-
ports are not unique, the proper isotopy class of f is determined by the support M and
the restriction f jM .

As the reader may suspect, Bd;r .O; Y / turns into a group with respect to the obvious
operation induced by the composition of asymptotically rigid self-diffeomorphisms of
Cd;r .O; Y / representing proper isotopy classes.

Lemma 3.10. With respect to the above operation, Bd;r .O; Y / is a group.

Proof. Clearly, we have that the composition of asymptotically rigid self-diffeomorphisms
of Cd;r .O; Y / is again asymptotically rigid. Therefore, it suffices to show that the com-
position preserves proper isotopy.

For i D 1; 2, let Fi WCd;r .O; Y / � Œ0; 1�! Cd;r .O; Y / be a proper isotopy supported
on Mi (in the sense that it is the identity outside Mi ) such that Fi .x; 0/ D fi .x/ and
Fi .x; 1/ D f 0i .x/ for all x 2 Cd;r .O; Y /. Then F.x; t/ WD F2.F1.x; t/; t/ is a proper
isotopy supported on M1 [M2 between f2 ı f1 and f 02 ı f

0
1 .

3.4. A remark on the definition

Our definition of the asymptotic mapping class group a priori differs from the one of
Aramayona–Funar–Kapoudjian [2,23,25]. Indeed, in those papers an asymptotically rigid
mapping class is the (unrestricted) isotopy class of an asymptotically rigid diffeomorph-
ism. However, both definitions coincide:

Proposition 3.11. Let O and Y be compact connected orientable surfaces. If two asymp-
totically rigid self-diffeomorphisms of Cd;r .O;Y / are isotopic, then they are also properly
isotopic.

Proof. Let f and f 0 be two asymptotically rigid diffeomorphisms which are isotopic;
without loss of generality, we may assume that f 0 is the identity. Therefore, there exists
some suited subsurfaceM � Cd;r .O;Y / such that f .M/DM and f is the identity when
restricted to the complement of M . By the Alexander method, see Section 2.3 of [19], the
restriction of f to M is isotopic, via an isotopy defined on M , to the identity map on M .
We may extend this isotopy to the complement of M by the identity map; this gives the
desired proper isotopy between f and the identity.
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As an immediate consequence, we get:

Corollary 3.12. LetO and Y be compact connected orientable surfaces. Then Bd;r .O;Y /

is a subgroup of Map.Cd;r .O; Y //.

Remark 3.13. The analog of Proposition 3.11 is not true in higher dimensions. In dimen-
sion higher than 2, one may use the relation between sphere twists in a manifold with
spherical boundary (see Theorems B.3 and B.8) in order to write the twist about a suited
sphere in terms of twists about suited spheres that lie outside any given compact set. As a
consequence, this sphere twist will be isotopic to the identity, but not properly so.

Along similar lines, recall there are self-diffeomorphisms of the disk Dn that are
not isotopic to the identity, as long as n � 5, see [16]. Using this, one may find a self-
diffeomorphism of Cd;r .O; Y /, supported on a small disk, that is not properly isotopic
to the identity, see Theorem 2 in [51]; however, this diffeomorphism will be isotopic to
the identity by “pushing its support to infinity” in Cd;r .O; Y /. We are grateful to Oscar
Randal-Williams for explaining this to us.

4. The relation with Higman–Thompson groups

In this section, we discuss the relation between asymptotic mapping class groups and the
Higman–Thompson groups, establishing the short exact sequence (1.3) mentioned in the
introduction.

4.1. Higman–Thompson groups

Higman–Thompson groups were first introduced by Higman [44] as a generalization of
Thompson’s groups. We now briefly recall the definition of these groups.

A finite rooted d -ary tree is a finite tree such that every vertex has degree d C 1,
except the leaves which have degree 1, and the root, which has degree d . As usual, we
depict trees with the root at the top and the nodes descending from it, see Figure 2. A
vertex of the tree along with its d descendants is a caret. If the leaves of a caret are also
leaves of the tree, the caret is elementary.

A disjoint union of r many d -ary trees will be called an .d; r/-forest; when d is clear
from the context, we will just refer to it as an r-forest. A paired .d; r/-forest diagram is a
triple .F�; �; FC/ consisting of two .d; r/-forests F� and FC with the same number l of
leaves, and a permutation � 2 Sym.l/, the symmetric group on l elements. We label the
leaves of F� with 1; : : : ; l from left to right; the leaves of FC are labelled according to �,
see Figure 2.

Suppose there is an elementary caret inF� with leaves labeled by i; : : : ; i C d � 1 from
left to right, and an elementary caret in FC with leaves labeled by i; : : : ; i C d � 1 from
left to right. Then we can “reduce” the diagram by removing those carets, renumbering
the leaves and replacing � with the permutation �0 2 Sym.l � d C 1/ that sends the new
leaf of F� to the new leaf of FC, and otherwise behaves like �. The resulting paired forest
diagram .F 0�; �

0;F 0C/ is then said to be obtained by reducing .F�; �;FC/, and it is called a
reduction of it; see Figure 2. A paired forest diagram is called reduced if it does not admit
any reductions. The reverse operation to reduction is called expansion, so .F�; �; FC/ is
an expansion of .F 0�; �

0; F 0C/.
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1 3 42 5 6 7 8 2 7 548 3 61

1 2 3 4 5 6 2 56 3 41

Figure 2. Reduction, of the top paired .3; 2/-forest diagram to the bottom one.

Define an equivalence relation on the set of paired .d; r/-forest diagrams by declaring
two paired forest diagrams to be equivalent if one can be obtained from the other by a finite
sequence of reductions and expansions. Thus an equivalence class of paired forest dia-
grams consists of all diagrams having a common reduced representative; observe that such
reduced representatives are unique. We will denote the equivalence class of .F�; �; FC/
by ŒF�; �; FC�.

There is a natural binary operation � on the set of equivalence classes of paired
.d; r/-forest diagrams. Indeed, let .F�; �; FC/ and .E�; �; EC/ be reduced paired forest
diagrams. We can find representatives .F 0�; �

0; F 0C/ and .E 0�; �
0; E 0C/, of .F�; �; FC/ and

.E�; �; EC/, respectively, such that F 0C D E
0
�. Then we set

.F�; �; FC/ � .E�; �; EC/ WD .F
0
�; �
0 � 0; E 0C/:

One readily checks that this operation is well defined, and gives a group operation on the
set of equivalence classes.

Definition 4.1 (Higman–Thompson group). The Higman–Thompson group Vd;r is the
group of equivalence classes of paired .d; r/-forest diagrams, equipped with the multi-
plication �.

We remark that V2;1 is the classical Thompson’s group V . Observe that Vd;r is a
naturally a subgroup of the group of homeomorphisms of the Cantor set.

4.2. Compactly supported mapping class group

Let Cd;r .O; Y / be a Cantor manifold. Every inclusion M � M 0 of suited submanifolds
induces a homomorphism jM;M 0 WMap.M/! Map.M 0/, and we set the following.

Definition 4.2. The compactly supported mapping class group of Cd;r .O; Y / is

Mapc.Cd;r .O; Y // WD lim
�!

Map.M/;

where M ranges over the set of suited submanifolds of Cd;r .O; Y /. In particular,

Mapc.Cd;r .O; Y // WD lim
�!

Map.Ok/;

where Ok are the manifolds in Definition 3.1.

Note that Mapc.Cd;r .O; Y // is a subgroup of Bd;r .O; Y /; we denote the inclusion
map by � . In fact, given any homeomorphism of a suited submanifoldM , one extends it by
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the identity outsideM to a homeomorphism of Cd;r .O;Y /, so Map.M/ is naturally a sub-
group Mapc.Cd;r .O; Y // and hence lim

�!
Map.M/ is also a subgroup. It is immediate that

Mapc.Cd;r .O;Y // coincides with the subgroup of Bd;r .O;Y /whose elements have com-
pact support, i.e., they are the identity outside some compact submanifold of Cd;r .O; Y /.

4.3. Surjection to the Higman–Thompson groups

Recall from Definition 3.1 that Cd;r .O; Y / is the union of the compact manifolds Ok .
Choose an n-ball in O1 which contains the r suited boundary spheres of O1, and let O0
be the manifold obtained from O1 by removing this ball.

Let Fd;r be the infinite forest consisting of r copies of an infinite rooted d -ary tree,
and Td;r the infinite rooted tree obtained from Fd;r by adding an extra vertex to Fd;r
and r extra edges that connect this vertex to the root of the trees in Fd;r . There is a natural
projection

q W Cd;r .O; Y /! Td;r

which respects the order on the suited spheres of Cd;r .O; Y /, and such that the pullback
of the root is O0 and the pullback of the midpoint of every edge is a suited sphere. Let
f 2 Bd;r .O; Y / and let M be a support for f . Let F� (respectively, FC) be the smallest
subforest of Fd;r which contains q.@sM/\Fd;r (respectively, q.@sf .M//\Fd;r ). Note
that F� and FC have the same number of leaves, and that f induces a bijection � between
the two sets of leaves. The triple .F�; �; FC/ defines an element of Vd;r ; we call this
map q�, since it is induced from q. One readily shows that q� is well defined. Similar to
Proposition 2.4 in [23], Propositions 4.2 and 4.6 in [2], and Proposition 3.17 in [61], we
now have the following.

Proposition 4.3. There is a short exact sequence

1! Mapc.Cd;r .O; Y //
�
�! Bd;r .O; Y /

q�
�! Vd;r ! 1:

Proof. First we show q� is surjective. Given any element ŒF�; �; FC� 2 Vd;r , let T�
(respectively, TC) be the tree obtained from F� (respectively, FC) by adding a single root
on the top and r edges connecting to each root of the trees in F� (respectively, FC). Fur-
thermore, let T 0� (respectively, T 0C) be the result of removing from T� (respectively, TC)
the leaves and each of the open half edges from the leaves. Consider M� D q�1.T 0C/ and
MC D q

�1.T 0C/, which are both suited submanifolds of Cd;r .O; Y /, and a diffeomorph-
ism f WM�!MC whose restriction to each component of @pM� is the identity, and such
that it maps the suited spheres of M� to the spheres of MC according to the pattern spe-
cified by �. Moreover, f can be chosen so that .�f .Z/ ı fjZ ı ��1Z /jS D idS for each suited
sphere S ofM�, where Z is the piece right below S . From here, we extend f to (abusing
notation) f 2 Bd;r .O; Y /, as desired.

Next, suppose q�.f / is the identity for some f 2 Bd;r .O; Y /. Let M be a support
off . We have that f .M/ D M and f induces the identity permutation on the set of
suited boundary spheres. Thus f 2 Mapc.Cd;r .O; Y //.

Finally, given g 2 Mapc.Cd;r .O; Y //, it is immediate that q� ı �.g/ D 1, and thus
the result follows.
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5. The complex

In this section, we will construct the cube complex Xd;r .O; Y /. We remark that our com-
plex is similar in spirit to the one introduced by Genevois–Lonjou–Urech in [31] for
establishing the finiteness properties of a related family of groups, and is inspired by the
Stein–Farley complexes associated to Higman–Thompson groups [20, 63].

Throughout this section, Cd;r .O; Y / will be assumed to be a Cantor manifold satisfy-
ing the cancellation, inclusion and intersection properties, and endowed with the preferred
rigid structure. The particular manifolds O and Y , as well as the integers d and r , will
play no particular role in the discussion, and so we will simply write C D Cd;r .O; Y / for
the Cantor manifold, and B D Bd;r .O; Y / for the associated asymptotic mapping class
group.

5.1. Stein complex

Consider all ordered pairs .M; f /, where M is a suited submanifold of C and f 2 B.
We deem two such pairs .M1; f1/ and .M2; f2/ to be equivalent, and write .M1; f1/ �

.M2; f2/, if and only if there are representing diffeomorphisms (abusing notation) f1
and f2 such that f �12 ı f1 mapsM1 diffeomorphically ontoM2 and is rigid away fromM1

(cf. Definition 3.8). Useful examples to keep in mind about this equivalence relation are
the following:

(i) if f 2 B has support M , then .M; g/ � .f .M/; f ı g/, for all g 2 B;
(ii) if f 2 B is the identity outside M , then .M; f / � .M; id/.

We will denote by ŒM; f � the equivalence class of the pair .M; f / with respect to this
relation, and write P for the set of all equivalence classes. Observe that B acts on P by
left multiplication, namely g � ŒN; f � D ŒN; g ı f �.

Consider a pair .M; f /. Since M is a suited submanifold, it is uniquely expressed as
the union of finitely many pieces and O1. We define the complexity h..M; f // of .M; f /
as the number of pieces of M . Note that if .M1; f1/ � .M2; f2/, then h..M1; f1// D

h..M2; f2//, and thus h descends to a well-defined function (abusing notation) hWP !N.
Hence we set the following.

Definition 5.1. The complexity of ŒM; f � 2 P is defined as h..M; f //, for some, and
hence any, representative of ŒM; f �.

We introduce a relation � on the elements of P by deeming x1 � x2 if and only if
x1 D ŒM1; f � and x2 D ŒM2; f � for some suited submanifold M1 �M2; if the inclusion
is proper, we will write x1 < x2. We are going to prove that the relation � turns P into a
directed poset. Before doing so, we need the following immediate observation.

Lemma 5.2. Suppose that .M1; f1/ � .M2; f2/.

(i) If N1 is a union of pieces such that M1 [N1 is connected, then there exists a union
of pieces N2 such that ŒM1 [N1; f1� D ŒM2 [N2; f2�.

(ii) If ŒM1[N1; f1�D ŒM2[N2; f2� andN1 is a disjoint union of pieces, then so isN2.

Proof. The first part of the claim follows by taking N2 D .f �12 ı f1/.N1/.
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For the second part, setting N 02 D .f
�1
2 ı f1/.N1/, we have ŒM1 [N1; f1� D ŒM2 [

N 02; f2�. ThenM2 [N
0
2 is isotopic and hence equal toM2 [N2 since they are both suited.

It follows that N2 D N 02.

With the above result in hand, we prove:

Lemma 5.3. .P ;�/ is a directed poset. Moreover, if x < y 2 P , then h.x/ < h.y/.

Proof. First, we show that P is a poset. To see transitivity, let x � y � z. Then x D
ŒN;f �, y D ŒN [M;f �D ŒN 0; f 0�, and z D ŒN 0 [M 0; f 0�, for some unions of piecesM
andM 0. By the first part of Lemma 5.2, there is a union of piecesM 00 such that ŒN [M [
M 00; f � D z, and hence x � z. If z D x, then ŒN [M [M 00; f � D ŒN; f �. This implies
that N [M [M 00 and N are equal, since they are both suited. Thus x D y, and P is
indeed a poset.

Now we show that P is directed. Consider two elements x1 D ŒN1; f1� and x2 D
ŒN2; f2�. By definition, f �12 ı f1 is asymptotically rigid, so we may choose a supportM1

that containsN1 [ .f �11 ı f2/.N2/. ThenM2 D .f
�1
2 ı f1/.M1/ is a support of f �11 ı f2

containing N2. By construction, ŒM1; f1� D ŒM2; f2� and Ni � Mi for i D 1; 2. Thus it
follows that x1; x2 � ŒM1; f1�.

Finally, the last claim is an immediate consequence of the definition of the complexity
function h.

Consider now the geometric realization jP j, which is the simplicial complex with a
k-simplex for every chain x0 < � � �< xk in P , and where xk is called the top vertex and x0
the bottom vertex of the simplex.

Corollary 5.4. jP j is contractible.

Proof. By Lemma 5.3, P is directed. It is well known that the geometric realization of
any directed set is contractible; for a proof, see Proposition 9.3.14 in [33].

We are now going to introduce a finer relation� on P . Given two vertices x1; x2 2P ,
we will say that x1 � x2 if x1 D ŒN; f �, x2 D ŒN [M; f � and M is a disjoint union of
pieces. If x1 � x2 and x1 ¤ x2, we will write x1 � x2. Note that, contrary to �, the finer
relation � is not a partial ordering on P as it is not transitive. However, as a consequence
of Lemma 5.2, it is true that if x1 � x3 and x1 � x2 � x3, then x1 � x2 � x3.

We are now going to restrict our attention to a particular subfamily of simplices. To
this end, we say that a simplex x0 < � � � < xk is elementary if x0 � xk ; see Figure 3.

Definition 5.5 (Stein complex). The Stein complex X is the full subcomplex of jP j con-
sisting only of elementary simplices.

Note that the action of B on P preserves the relation �, and thus restricts to a sim-
plicial action of B on X. Our next aim is to show that X is also contractible. For x � y,
define the closed interval Œx; y� D ¹z j x � z � yº. Similarly, define .x; y/, .x; y� and
Œx; y/. A similar reasoning to that of Section 4 in [13] yields:

Lemma 5.6. For x < y with x ⊀ y, the geometric realization of the interval j.x; y/j is
contractible.



J. Aramayona, K.-U. Bux, J. Flechsig, N. Petrosyan and X. Wu 20

Figure 3. The difference between elementary and non-elementary simplices in the poset for
C2;2.O; Y /, where O is a closed surface of genus 2 and Y is a sphere. While O1 [ Z and
O1 [ Z [ Z

00 define an elementary 1-simplex, the simplex defined by O1 [ Z and O1 [ Z [ Z0

is non-elementary.

Proof. By Lemma 5.2, for any ŒN; f � � v � ŒN [M; f � 2 P , there exists a union of
piecesM 0 �M such that v D ŒN [M 0; f �. Thus, for any z 2 .x; y� there exists a largest
element z0 2 .x; z� such that x � z0. So, z0 2 .x; y/. Also, z0 � y for any z 2 .x; y/.
The inequalities z � z0 � y0 then imply that j.x; y/j is contractible using the “conical”
contraction in Section 1.5 of [59].

Proposition 5.7. The complex X is contractible.

Proof. First, jP j is contractible by Corollary 5.4. It suffices to show that jP j can be built
inductively from X without changing the homotopy type at each stage. To this end, given
a closed interval Œx; y� in jP j, define

r.Œx; y�/ WD h.y/ � h.x/;

where recall that h denotes the complexity of a vertex. We attach the contractible subcom-
plexes jŒx; y�j for x ⪯̸ y to X in increasing order of r-value. The subcomplex jŒx; y�j is
attached along j.x;y�j [ jŒx;y/j, which is the suspension of j.x;y/j, and hence is contract-
ible by Lemma 5.6. This shows that attaching jŒx; y�j to X does not change the homotopy
type of X. Since the result of gluing all such intervals is jP j, the claim follows.

5.2. Stein–Farley cube complex

We now explain how to obtain a cube complex from X. Recall that a Boolean lattice (also
called a Boolean algebra) is a distributive lattice in which every element has a comple-
ment. We first have:

Lemma 5.8. If x � y, then Œx; y� is a finite Boolean lattice.

Proof. Let x D ŒN; f � and y D ŒN [M;f �, where M is a disjoint union of pieces, and
let z 2 Œx; y�. By Lemma 5.2, there exists a union of pieces M 0 so that z D ŒN [M 0; f �.
Again by Lemma 5.2,M 0 is a submanifold ofM . It follows that Œx; y� is a Boolean lattice
on the set of pieces of M .
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As a consequence, if x � y, then the simplices in the geometric realization of Œx; y�
piece together into a cube of dimension r.Œx; y�/. Before doing so, we need the following
technical result, which rests upon the fact that the Cantor manifold has the intersection
property.

Lemma 5.9. Let f1 and f2 be asymptotically rigid diffeomorphisms which represent the
same element of B. Let Mi be a support for fi , with i D 1; 2, and write Ni D fi .Mi /.
Then:

(i) For i D 1; 2, one has fi .M1 [M2/ D N1 [N2.

(ii) There is an asymptotically rigid diffeomorphism g with support M1 \M2, repres-
enting the same element of B as fi .

Proof. The manifolds f1.M1 [M2/ and f2.M1 [M2/ are suited and isotopic, and there-
fore equal. In particular, N1 [ N2 � fi .M1 [M2/, i D 1; 2. Similarly, M1 [M2 �

f �1i .N1 [N2/, i D 1; 2. Thus, f1.M1 [M2/ D f2.M1 [M2/ D N1 [N2.
To establish the second part, we proceed as follows. First, note that M1 \M2 and

N1 \ N2 are suited submanifolds that have the same number of pieces, since M1 [M2

and N1 [ N2 have the same number of pieces, and Mi and Ni , for i D 1; 2, also have
the same number of pieces. Hence, there is a diffeomorphism f mapping N1 \ N2 to
M1 \M2 which is rigid away from N1 \ N2. By applying a self-diffeomorphism of
M1 \M2 that permutes the boundary spheres, we can further assume that f maps Ni
to Mi , i D 1; 2. Then f ı fi has support Mi and is the identity outside M1 [M2. By
making iterated use of the intersection property, we get that there exists an asymptotically
rigid diffeomorphism g supported onM1 \M2 such that g is properly isotopic to f ı fi .
Then f �1 ı g is properly isotopic to fi and is supported on M1 \M2, as claimed.

We now prove the following lemma, which will be key in order to endow X with the
structure of a cube complex.

Lemma 5.10. Suppose x � y and z � w. Denote S D Œx; y� \ Œz; w�. For any p; q 2 S ,
there are s; t 2 S such that s � p; q � t .

Proof. Since the conclusion is trivially satisfied if p D q, we assume p ¤ q. Let

x D ŒN1; f1�; y D ŒN1 [M1; f1� and z D ŒN2; f2�; w D ŒN2 [M2; f2�:

There are unions of disjoint pieces M 0i ;M
00
i �Mi , for i D 1; 2, such that

p D ŒN1 [M
0
1; f1� D ŒN2 [M

0
2; f2� and q D ŒN1 [M

00
1 ; f1� D ŒN2 [M

00
2 ; f2�:

We then get diffeomorphisms

f �12 ı f1 W N1 [M
0
1 ! N2 [M

0
2

such that f �12 ı f1 is rigid away from N1 [M
0
1, and

g�12 ı g1 W N1 [M
00
1 ! N2 [M

00
2

such that g�12 ı g1 is rigid away from N1 [M
00
1 , where Œfi � D Œgi � 2 B, i D 1; 2.
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By Lemma 5.9, there exists an asymptotically rigid diffeomorphism g, with Œg� D
Œf �12 ı f1� D Œg

�1
2 ı g1� 2 B, such that

g.N1 [M
0
1 [M

00
1 / D N2 [M

0
2 [M

00
2 ;

g.N1 [ .M
0
1 \M

00
1 // D N2 [ .M

0
2 \M

00
2 /;

and g is rigid away from N1 [ .M
0
1 \M

00
1 /. By setting s D ŒN1 [ .M 01 \M

00
1 /; f1� and

t D ŒN1 [M
0
1 [M

00
1 ; f1�, it follows that s � p; q � t . It remains to prove that s; t 2 S .

Clearly, s; t 2 Œx; y�. Also, by the above,

ŒN1 [ .M
0
1 \M

00
1 /; f1� D ŒN2 [ .M

0
2 \M

00
2 /; f2�;

ŒN1 [M
0
1 [M

00
1 ; f1� D ŒN2 [M

0
2 [M

00
2 ; f2�;

which shows that s; t 2 Œz; w�.

Finally, we show:

Proposition 5.11. The complex X has the structure of a cube complex, with each cube
defined by an interval Œx; y�, where x � y.

Proof. It suffices to show that the intersection of two cubes Œx; y� and Œz; w� is again a
cube which is a face of both. To see this, denote S D Œx; y� \ Œz; w�, and assume S ¤ ∅.
By Lemma 5.10, there are s; t 2 S such that S � Œs; t �. Since Œs; t � is a subinterval of both
Œx; y� and Œz; w�, it follows that S D Œs; t �. As s � t , Œs; t � is a cube and is a face of both
Œx; y� and Œz; w�.

Definition 5.12 (Stein–Farley complex). We will refer to the complex X equipped with
the above cubical structure as the Stein–Farley cube complex associated to the Cantor
manifold C .

Note that the action of B on X respects the cubical structure.

6. Discrete Morse theory on the Stein–Farley cube complex

In order to deduce the desired finiteness properties for asymptotic mapping class groups,
we will apply the following classical criterion of Brown [12].

Theorem 6.1 (Brown’s criterion). Let G be a group and let K be a contractible G-CW-
complex such that the stabilizer of every cell is of type F1. Let ¹Knºn�1 be a filtration
of K , and such that each Kn is G-invariant and Kn=G is compact. Suppose the con-
nectivity of the pair .KnC1;Kn/ tends to1 as n tends to1. Then G is of type F1.

In the theorem above, recall that a pair of spaces .L;K/ withK � L is k-connected if
the inclusion map K ,! L induces an isomorphism in �j for j < k and an epimorphism
in �k .

Our aim is to prove that the action of B on the contractible cube complex X satisfies
the hypotheses of Brown’s criterion above. First, note that the complexity function of
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Definition 5.1 yields a function hWX.0/! N, which we may extend affinely on each cube
to obtain a height function

h W X! R;

which is B-equivariant with respect to the trivial action of B on R. Each cube has a
unique vertex at which h is minimized (respectively, maximized), which we call the bot-
tom (respectively, top) of the cube. Given an integer k, write X�k for the subcomplex of X
spanned by those vertices with height at most k.

Lemma 6.2. B acts cocompactly on X�k for all 1 � k <1.

Proof. Let x D ŒN; f � be the bottom vertex of anm-cube, whereN has l � k pieces. The
manifold N has finitely many boundary components, and extending all of them by the
adjacent pieces from the rigid structure defines the maximal cube with the given bottom
vertex x. Therefore, it suffices to show that there are finitely many B-orbits of bottom
vertices of m-cubes. Since f �1x D ŒN; id �, we can assume that f D id. But there are
finitely many suited submanifolds containing O1 with complexity at most k, and hence
the result follows.

We now identify the cube stabilizers of the B-action. Recall the definition of the
sphere-permuting mapping class group (cf. Definition 2.1):

Lemma 6.3. The cube stabilizers of the action of B on X are isomorphic to a finite index
subgroup of the sphere-permuting mapping class groups of suited submanifolds.

Proof. Let C be a k-cube in X, and denote by x D ŒN; g� its bottom vertex. Multiplying
by g�1, we can assume that gD id. Note thatC is spanned by vertices formed by attaching
pieces to a set A of exactly k boundary components ofN . An element f 2B stabilizes C
if and only if f .N /D N , f .A/D A andN is a support of f . It follows that the stabilizer
of C is a subgroup of Mapo.N /. In addition, Map.N / preserves C , and thus the result
follows.

6.1. Descending links and piece complexes

After Proposition 5.7 and Lemma 6.2, and provided mapping class groups of suited sub-
manifolds are of type F1 (cf. Section 2), all that remains is to check the connectivity
properties of the pair .XnC1;Xn/, where Xn WD X�n. In turn, this boils down, using a
well-known argument in discrete Morse theory, to analyzing the connectivity of the des-
cending links; we refer the reader to Appendix A.1 for a discussion on this. The advantage
of working with descending links is that they may be identified with a simplicial com-
plex built from topological information on (suited submanifolds of) C , called the piece
complex, and which we introduce next. Before doing so, we need the following.

Definition 6.4 (Essential sphere). Let M be a connected, orientable smooth n-manifold,
and let S be a smoothly embedded .n � 1/-dimensional sphere in M . We say that S is
essential if it does not bound an n-dimensional ball and is not isotopic to a boundary
component of M .

We now define the piece complex; see Figure 4 for an illustration.
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Figure 4. A 2-simplex in Pd .M;A/ with M a surface of genus 5 and A D @M with 7 spheres.

Definition 6.5 (Piece complex). Let M � C be a suited submanifold, and A a subset of
the set of suited spheres of M . The piece complex Pd .M; A/ is the simplicial complex
whose vertices are isotopy classes of submanifolds of M diffeomorphic to Y d (but not
necessarily pieces) with one essential boundary sphere and all other boundary spheres
in A. A k-simplex is given by k C 1 vertices which can be realized in pairwise disjoint
manner.

As mentioned in the introduction, piece complexes (and some close relatives) have
been used in the homological stability results of Hatcher–Wahl [41], Hatcher–Vogtmann
[40] and Galatius–Randal-Williams [30].

We now explain the promised relation between descending links and piece complexes.
We remark that the remainder of this section rests upon on arguments that were suggested
by Chris Leininger and Rachel Skipper, to whom we are grateful.

Let x be a vertex of X. By precomposing with an element of B, we can write x D
ŒX; id �. We now define a map

… W lk#.x/! P .X;A/;

where A is the set of all suited boundary spheres of X . Let z be a p-simplex in lk#.x/; as
such, it is determined by a cube, which in turn is determined by its top ŒZ0; g� and bottom
ŒZ; g� vertices, where the manifold Z0 is obtained from Z by adding pairwise disjoint
pieces Y0; : : : ; Yp so that g maps Z0 to X , and Z0 is a support for g. We then set

….z/ D ¹g.Y0/; : : : ; g.Yp/º:

First, we claim that … is well-defined; to this end, let .W; h/ be another representat-
ive of z. As before, this implies there exists a manifold W 0 obtained from W by adding
pairwise disjoint pieces Y 00; : : : ; Y

0
p so that h maps W 0 to X . By the definition of the equi-

valence relation, this means h�1 ı g maps Z to W and in particular, g.Z/ D h.W / � X .
Therefore, ¹g.Y0/; : : : ; g.Yp/º D ¹h.Y 00/; : : : ; h.Y

0
p/º, and we are done.

As we now prove, the relevance of the map … is that it makes of descending links
complete join complexes (see Definition A.12 in Appendix A.4) over the relevant piece
complexes.
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Proposition 6.6. Suppose that C has the cancellation property. Then the map … is a
complete join.

Proof. Write x D ŒX; id �, and let ¹Z0; : : : ;Zpº be a p-simplex in P .X;A/. By the cancel-
lation property, there are a suited manifold X 0, a collection ¹Y 00; : : : ; Y

0
pº of disjoint pieces

inX 0 and a diffeomorphism g WC!C that takes the suited manifoldW 0 WDX 0∖
Sp
iD0Y

0
i

toW WDX ∖
Sp
iD0Zi , g.Y

0
i /DZi and is rigid away fromX 0. Note that .X 0;g/� .X; id/.

Setting Wi D X 0 ∖ Y 0i , we have that

….¹.W0; g/; : : : ; .Wp; g/º/ D ¹Z0; : : : ; ZpºI

in particular,… is surjective. The fact that… is simplex-wise injective is obvious from the
definitions of the two complexes.

It remains to show that the preimage of a simplex is the join of the preimages of
its vertices. Clearly, the preimage of a simplex is contained in the join of the preimages
of its vertices, and so we only need to show the reverse inclusion. To this end, let � D
¹Z0; : : : ; Zpº be a p-simplex in P .X;A/. Take vertices

ŒW0; g0�; : : : ; ŒWp; gp�

of X such that….ŒWi ;gi �/DZi ; we want to see that these vertices in fact span a p-simplex
in lk#.x/.

Without a loss of generality, we can assume that, for all i D 0; : : : ; p, we have Wi [
Y 0i D X

0 and gi D g. To see this, let Yi D g�1i .Zi /, which by construction is a piece, and
consider g�1 ı gi 2 B, which takes Wi [ Yi to X 0, Yi to Y 0i , and is rigid away from Wi .
Now we see that .Wi ; gi /� .g�1 ı gi .Wi /; g/, and this new representative has the desired
properties.

By construction,W 0 D
Tp
iD0Wi , and thus ŒW 0; g� is the bottom vertex of the .pC 1/-

cube whose top vertex is ŒX 0; g�. In particular, the collection ¹ŒWi ; g�º
iDp
iD0 spans a simplex

in lk#.x/.

After Hatcher–Wahl [41], a simplicial complex is weakly Cohen–Macaulay (wCM,
for short) of dimension n if it is .n � 1/-connected and the link of each p-simplex is
.n� p � 2/-connected (see Appendix A). As a consequence of the result of Hatcher-Wahl
stated as Proposition A.13 in Appendix A.4, we have:

Corollary 6.7. Let x D ŒX; id �, and let A be the set of suited boundary components of X .
If P .X;A/ is wCM of dimension n, then so is lk#.x/.

The remainder of the paper is devoted to proving the following general theorem, in the
different settings required by Theorems 1.7, 1.8, 1.10 and 1.11. Before stating the result,
let Wg be the connected sum of O and g copies of Y , and W b

g the result of removing
from Wg a collection of b � 0 open n-balls with pairwise disjoint closures. Observe that
every suited submanifold of Cd;r .O; Y / is diffeomorphic to W b

g , for some g and b.

Theorem 6.8. LetW b
g an n-dimensional manifold as in Theorems 1.7, 1.8, 1.10 and 1.11,

and let A be a (not necessarily proper) subset of boundary spheres. Then there exist expli-
cit increasing linear functions 
; ıWN ! N such that Pd .W

b
g ; A/ is a flag wCM complex

of dimension m, provided g � 
.m/ and jAj � ı.m/.
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Assuming the validity of the above theorem, we can give a proof of our main Theor-
ems 1.7, 1.8, 1.10 and 1.11.

Proof of Theorems 1.7, 1.8, 1.10 and 1.11. We apply Brown’s criterion, Theorem 6.1, to
the action of B on the cube complex X, equipped with the height function hWX ! R
defined above. As explained at the beginning of Section 6.1, we do so through the language
of discrete Morse theory.

By Proposition 5.7, the cube complex X is contractible. Now, Lemma 6.2 yields
that cube stabilizers are sphere permutting mapping class groups of suited submanifolds,
which contain the corresponding mapping class groups as groups of finite index, and there-
fore have the correct finiteness properties in light of Proposition 2.3 and Lemma 2.4,
Theorems 2.5 and 2.6, and Proposition 2.12. Finally, Theorem 6.8 yields that descending
links have the desired connectivity properties for the application of Brown’s criterion.

The remainder of the paper is devoted to proving Theorem 6.8. As will become appar-
ent, the spirit of the proof of Theorem 6.8 is the same in all cases, and proceeds to establish
the desired connectivity bounds of the piece complex from known connectivity results of
related complexes that appear in the literature. However, some particular arguments of the
proofs become easier in higher dimensions, notably because arcs on a manifold of suf-
ficiently high dimension have trivial combinatorics. For this reason, we will present the
higher dimensional case first in all detail, and then highlight the similarities and differ-
ences with dimensions 2 and 3.

6.2. The CAT(0) property

We end this section by addressing the question of when the cube complex X is a complete
CAT(0) space. From here on, we endow X with the usual path metric in which all cubes
are standard Euclidean unit cubes. Say that an infinite-dimensional cube complex has the
ascending cube property (or is locally finite-dimensional) if every sequence .xi /i2N of
cubes, with xi a face of xiC1, is eventually constant.

Proposition 6.9 (Leary, Theorem A.6 in [56]). Let X be a cube complex. We have that X
is complete if and only if X satisfies the ascending cube property.

The following is a version of the celebrated Gromov’s link condition, which also
applies to infinite-dimensional cube complexes; for a proof, see Theorem B.8 in [56]:

Proposition 6.10 (Gromov). Let X be a simply-connected cube complex. We have that X
is CAT(0) if and only if the link of every vertex is flag.

We now want to see that our (contractible) complex X satisfies the hypotheses of the
above propositions. First, since every suited submanifold has a finite number of boundary
components, we immediately get:

Proposition 6.11. The complex X has the ascending cube property.

Next, we prove:

Proposition 6.12. Let x be a vertex in X. Then lk.x/ is flag if and only if lk# x is flag.
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Proof. The forward direction is clear because lk# x is a complete subcomplex of lk.x/.
So, assume that lk# x is flag. Let � be an n-simplex in the flag completion of lk.x/ whose
boundary belongs to lk.x/. We will show that � is in lk.x/.

Suppose � \ lk# x is non-empty. Since lk# x is flag, this intersection is a k-simplex
of lk.x/, which we denote by � . Denote by C� the corresponding .k C 1/-cube in X
and its bottom vertex by y D ŒN; f �. Then there are disjoint pieces ¹YiºkiD0 such that
x D ŒN [ Y0 [ � � � [ Yk ; f �. The vertices of � that are not in lk# x span an .n � k � 1/-
face � of � and � �� D � . The corresponding .n � k/-cube C� � X has x as its bottom
vertex and there are disjoint pieces ¹Ziºn�k�1iD0 such that

z D ŒN [ Y0 [ � � � [ Yk [Z0 [ � � � [Zn�k�1; f �

is the top vertex of C�. Since � is a join of � and �, the pieces ¹YiºkiD0 and ¹Ziºn�k�1iD0 are
disjoint. It follows that there is an .nC 1/-cube C such that y and z are its bottom and top
vertices, respectively. Since the cubes C� and C� are faces of C having x as a common
vertex, we have � � lk.x/ and C� D C .

Suppose now � \ lk# x D ∅. In this case, we set � to be the empty simplex and repeat
the above argument with x D y as the bottom vertex of C .

Applying Gromov’s link condition and Proposition 6.12, we immediately obtain:

Corollary 6.13. If the descending links of all the vertices in X are flag, then X is a com-
plete CAT(0) cube complex.

In the next sections, we will prove that piece complexes are flag, for the concrete
families of manifolds listed in our applications. Once this is done, we will be able to
deduce that descending links are also flag, and in particular deduce Corollary 6.13, from
the following general observation.

Lemma 6.14. Let � WL!K be a complete join of simplicial complexes. If K is flag, then
so is L.

Proof. Let y0; : : : ;yd be pairwise adjacent vertices inL; we have to show that ¹y0; : : : ;ydº
is a simplex. The images �.yi / are also pairwise adjacent, since � is injective on sim-
plices, and therefore span a simplex in K, as K is flag. Since � is a complete join, the yi
span a simplex in L, as claimed.

7. The piece complex in high dimensions

Throughout this section, n � 3, O Š S2n, and Y Š Sn � Sn or Y Š S2n. Assume first
Y Š Sn � Sn; the case Y Š S2n follows from a simplified version of our arguments, and
will be dealt with at the end of the section.

As above,Wg denotes the connected sum ofO and g copies of Y , andW b
g is the result

of removing from Wg a collection of b � 0 open 2n-balls with pairwise disjoint closures.
Our aim is to prove the following result.
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Theorem 7.1. Let W b
g be as above, and let A be a (not necessarily proper) subset of

boundary spheres of W b
g . Then Pd .W

b
g ; A/ is flag. Moreover, Pd .W

b
g ; A/ is wCM of

dimension m, provided that m � .g � 2/=2 and m � .jAj � d/=.d C 1/.

We will prove Theorem 7.1 by relating Pd .W
b
g ; A/ to several other complexes, which

we proceed to introduce.

The ball complex

First, consider the simplicial complex B .W b
g ; A/ whose vertices are isotopy classes B

of 2n-balls with d holes in W b
g , all contained in the set A. A k-simplex in B.W b

g ; A/

corresponds to a set of k C 1 vertices with pairwise disjoint representatives. We denote
by @0B the .2n � 1/-dimensional sphere which cuts off B from W b

g , observing that @0B
is essential.

We stress that we will encounter the same construction in dimensions 3 and 2 as well;
in all cases, the complex B .W b

g ; A/ is closely related to the so-called d -hypergraph com-
plex MjAj.d/, namely the simplicial complex whose vertices are subsets of ¹1; : : : ; jAjº
with d elements, and whose faces correspond to pairwise disjoint d -sets. There is a natural
map ˛ WB.W b

g ; A/!MjAj.d/; in high dimensions, it is even an isomorphism:

Lemma 7.2. The map ˛ WB.W b
g ; A/!MjAj.d/ is an isomorphism.

Proof. Given d distinct spheres S1; : : : ; Sd in A, one can find a ball containing them
by first connecting Si to SiC1 for i � ¹1; : : : ; d � 1º using d � 1 disjointly embedded
arcs, and then taking a small neighborhood of the union of these arcs together with the d
spheres. Since W b

g is simply-connected, these arcs are unique up to isotopy, and can be
chosen to be pairwise disjoint. As a consequence, ˛ is a surjective simplicial map.

To see that ˛ is injective, suppose there are two embedded balls B and B 0 each con-
taining d spheres S1; : : : ; Sd in A. Roughly as above, we choose a set of d � 1 arcs ai
(respectively, a0i ) in B (respectively, B 0) connecting Si to SiC1 for i � ¹1; : : : ; d � 1º.
We can now choose a small neighborhood of the union of the d spheres and the arc ai
(respectively, a0i ) so that it lies in the interior of B (respectively, B 0). Since W b

g is simply-
connected, we may isotope ai to a0i . Applying a further isotopy that shrinks B , we can
assume that B lies in the interior of B 0. By the h-cobordism theorem [58], the manifold
between the boundary of B and B 0 must be a and B 0 are in fact isotopic inside W b

g .

The d -hypergraph complex MjAj.d/ is a flag complex, known to be weakly Cohen–
Macaulay of dimension b jAj�d

dC1
c, see [5]. Thus, we have:

Corollary 7.3. The complex B.W b
g ; A/ is flag, and wCM of dimension b jAj�d

dC1
c.

The handle complex

The second complex we will consider is the handle complex, which we denote by H .W b
g /.

The vertices of H .W b
g / are isotopy classes of smoothly embedded separating spheres

which bound a handle, i.e., a copy of Sn � Sn minus one ball, and k-simplices correspond
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Figure 5. A 1-simplex in H .M/ with M a surface of genus 4 with 6 boundary spheres.

to sets of k C 1 vertices which can be realized in a pairwise disjoint manner, see Fig-
ure 5. (This can be interpreted in two ways: the spheres can be realized disjointly, or the
handles which they bound can be realized disjointly. By Lemma C.1, these are the same.)
In what follows, we will blur the distinction between vertices in the handle complex, their
representatives, and the handles cut off by them.

We shall make use of three main pieces of information about H .W b
g /. The first is a

cancellation result due to Kreck [52]; see also Corollary 6.4 in [30].

Theorem 7.4. Let W b
g as above, and let S be a separating .2n � 1/ sphere that cuts off

a handle. Then, the other connected component of the complement of S is diffeomorphic
to W bC1

g�1 .

Remark 7.5. An immediate consequence of Theorem 7.4 is that Cd;r .O; Y / has the can-
cellation property, where Y Š Sn � Sn and O is any closed, simply-connected orientable
manifold of dimension 2n.

The other two are provided to us by Randal-Williams (see Appendix C).

Lemma 7.6. The complex H .W b
g / is a flag complex.

Together with Theorem 7.4, this implies that the link of a k-simplex in H .W b
g / is

isomorphic to H .W bCkC1
g�k�1

/. Thus, we have:

Theorem 7.7. The complex H .W b
g / is b.g � 4/=2c-connected, and wCM of dimension

b.g � 2/=2c.

In what follows, we will not distinguish between vertices of H .W b
g / or Pd .W

b
g ; A/

and the manifolds representing them.

The handle-tether-ball complex

Let H be a vertex of H .W b
g / and let B be a vertex in B.W b

g ; A/. Following the termino-
logy of Hatcher–Vogtmann [40], a tether connectingH and B is an arc with one endpoint
in @H (an essential sphere cutting off a handle) and the other in @0B (an essential sphere
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cutting off a ball with d boundary components from A), and whose interior does not
intersect neither H nor B . We refer to the union of H , the arc, and B as a handle-tether-
ball. Let HTB.W b

g ; A/ be the handle-tether-ball complex, whose k-simplices are isotopy
classes of pairwise disjoint systems of k C 1 handle-tether-balls; in particular, we require
the tethers to be disjoint. There is a natural projection map

� W HTB.W b
g ; A/! Pd .W

b
g ; A/

given by mapping a handle-tether-ball to the copy of Sn � Sn minus d C 1 balls obtained
by taking a small tubular neighborhood of the handle-tether-ball.

Again, we will encounter this construction also in dimensions 3 and 2. Generally,
� WHTB.W b

g ; A/! Pd .W
b
g ; A/ is a complete join complex in the sense of Appendix A.

In high dimensions, we encounter an even simpler situation. Very much for the same
reason that the ball complex is isomorphic to the hypergraph complex, the map � is an
isomorphism.

Lemma 7.8. The map � WHTB.W b
g ;A/!Pd .W

b
g ;A/ is a an isomorphism. In particular,

if HTB.W b
g ; A/ is wCM of dimension m, then so is Pd .W

b
g ; A/.

Proof. First, we show that � is a complete join. This part of the argument is worded so
that it applies in dimension 3 and 2, as well. It will be referenced there.

Let � D hP0; : : : ; Pki be a k-simplex in Pd .W
b
g ; A/. Choose an essential sphere

Si � Pi which cuts a ball Bi � Pi containing exactly the d boundary spheres contained
in A, a submanifold P 0i � Pi diffeomorphic to .Sn � Sn/ ∖ B2n and disjoint from Bi ,
and a tether ti connecting Bi and P 0i . Then, thickening the tether yields a submanifold
of W b

g diffeomorphic to Pi . Since the P0; : : : ; Pk have pairwise disjoint representatives,
the same holds for the handle-tether-balls P 0i t ti tBi for 0� i � k; in other words, these
handle-tether-balls span a k-simplex in HTB.W b

g ; A/. Hence the map � is surjective and
in particular, ��1.�/ D �kiD0�

�1.Pi /.
Further, if v0; : : : ; vk form a k-simplex in HTB.W b

g ; A/, the Bi contain pairwise dis-
tinct and disjoint boundary spheres, all contained in A. Thus �.vi / are pairwise distinct
and � is injective on simplices; in particular, � is a complete join.

To see that � is actually an isomorphism, observe that, within the submanifold Pi , the
essential sphere Si is unique up to isotopy for the same reason as in Lemma 7.2. Also up
to isotopy, there is a unique embedded arc connecting Si to the boundary @0Pi . Now, P 0i
is isotopic to the complement of a regular neighborhood (inside Pi ) of the union of the
arc, Si , and @0Pi . Therefore, Pi determines the ball and the handle. Finally, the tether
is unique up to isotopy. Thus, the handle-tether-ball data describing Pi is unique and �
is injective.

Again, we stress that, in the high dimensional case, the tether in a handle-tether-ball
system is uniquely determined (up to isotopy) by the handle and the ball: the ambient
manifold and all pieces involved have trivial fundamental groups. Even more is true: in
dimension 4 and higher, arcs do not form obstructions for the movement of other arcs, as
all braids are trivial. Observe also that a ballB 2HTB.W b

g ;A/may be realized as follows:
first, we connect the d boundary spheres of W b

g that B cuts off by a collection of d � 1
arcs so that the union of the arcs and the spheres is connected. Then, B is isotopic to the
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boundary of a regular neighborhood of the union of the spheres and the arcs. From this,
the following description of the handle-tether-ball complex in the high-dimensional case
is immediate.

Observation 7.9. Vertices in HTB.W b
g ; A/ can be uniquely described as pairs .H;B/ of

verticesH 2H .W b
g / andB 2B.W b

g ;A/. In this description, a k-simplex in HTB.W b
g ;A/

is given by a set � D ¹.H0; B0/; : : : ; .Hk ; Bk/º of vertex pairs such that ¹H0; : : : ; Hkº
is a k-simplex in the handle complex H .W b

g / and ¹B0; : : : ; Bkº is a k-simplex in the ball
complex B.W b

g ; A/.
In particular, there are simplicial projection maps

�h W HTB.W b
g ; A/! H .W b

g /

onto the handle complex, and

�b W HTB.W b
g ; A/! B.W b

g ; A/

onto the ball complex, such that every k-simplex in B.W b
g ; A/ and every k-simplex in

H .W b
g / may be combined into a k-simplex in HTB.W b

g ; A/.

As H .W b
g / and B.W b

g ;A/ are both flag complexes (see Lemma 7.6 and Corollary 7.3),
we deduce from the description of HTB.W b

g ; A/ above the following.

Corollary 7.10. The complex Pd .W
b
g ; A/ Š HTB.W b

g ; A/ is a flag complex.

As another consequence of Observation 7.9, we can determine links within the handle-
tether-ball complex.

Lemma 7.11. Let us consider a k-simplex � D ¹.H0; B0/; : : : ; .Hk ; Bk/º in the complex
HTB.W b

g ; A/. Then lk.�/ is isomorphic to HTB.W b�.kC1/.d�1/

g�k�1
; A�/, where A� is ob-

tained from A by removing the .k C 1/d boundary spheres in � .

In the above lemma, the number of boundary components of W changes only by
.kC1/.d � 1/, as we also get a new boundary sphere for each of the k C 1 handles
that we cut out.

Proof. A coface of � has the form � D � [ � 0 with � 0 D ¹.H 00; B
0
0/; : : : ; .H

0
l
; B 0

l
/º where

¹H 00; : : : ;H
0
l
º is an l-simplex in the link of �h.�/ and ¹B 00; : : : ; B

0
l
º is an l-simplex in the

link of �b.�/. The claim follows as the link of �h.�/ in the handle complex is of the form
H .W

b�.kC1/.d�1/

g�k�1
/ and the link of �b.�/ in the d -hypergraph complex based on A is the

d -hypergraph complex based on A�.

The extended handle-tether-ball complex

In order to investigate the connectivity properties of the handle-tether-ball complex, we
embed it in a larger complex HTBe.W

b
g ; A/, which we call the extended handle-tether-

ball complex HTBe.W
b
g ; A/, whose connectivity is easier to analyze. More concretely,

HTBe.W
b
g ; A/ is the simplicial complex with the same vertex set as HTB.W b

g ; A/, and
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where we add more simplices by allowing multiple tethers connecting different handles
to the same d -holed ball. In light of Observation 7.9 we can give a purely combinatorial
description of HTBe.W

b
g ; A/ in this case.

Observation 7.12. A k-simplex in HTBe.W
b
g ; A/ is given by a set

� D ¹.H0; B0/; : : : ; .Hk ; Bk/º

of vertices .Hi ; Bi / such that ¹H0; : : : ; Hkº is a k-simplex in the handle complex and
¹B0; : : : ; Bkº is a simplex (of arbitrary dimension! ) in the ball complex.

The extended complex HTBe.W
b
g ; A/ is easier to analyze because the canonical pro-

jection (using a slight abuse of notation)

�b W HTBe.W
b
g ; A/ �! B.W b

g ; A/

has well-behaved fibers. Combinatorially, �b is the projection on the second coordinate;
geometrically, �b is the map that forgets the handle-tether part of a handle-tether-ball
datum.

Lemma 7.13. If m � .g � 4/=2 andm � jAj�d
dC1

� 1, then HTBe.W
b
g ;A/ ism-connected.

Proof. Let ˇD¹B0; : : : ;Bj º be a j -simplex in B.W b
g ;A/. The fiber ��1

b
.ˇ/ is spanned by

the vertices .H;B/withB 2 ˇ. Restricted to the fiber, the projection �hWHTBe.W
b
g ;A/!

H .W b
g / is a complete join with all fibers isomorphic to ˇ. It follows from Lemma 7.7 that

the fiber ��1
b
.ˇ/ is m-connected.

The base space B.W b
g ; A/ of the projection �b is also m-connected. It follows from

Quillen’s fiber theorem (stated as Proposition A.17 in Appendix A) that the total space
HTBe.W

b
g ; A/ is also m-connected.

The connectivity of the handle-tether-ball-complex

Next, we use the bad simplex argument of Section 2.1 in [40] in order to deduce the con-
nectivity of the handle-tether-ball complex. We give an account of the argument via Morse
theory in Proposition A.7 of the appendix. The particular flavor used here is explained in
Example A.8; and we shall use the projection �b WHTBe.W

b
g ; A/! B.W b

g ; A/ as the col-
oring.

Observe that HTB.W b
g ; A/ is the subcomplex of HTBe.W

b
g ; A/ consisting of those

simplices on which �b is injective, i.e., the good simplices. Further, we can also describe
the good links:

Lemma 7.14. Let � D¹.H0;B0/; : : : ; .Hk ;Bk/º be a bad simplex. Its good linkG� is iso-
morphic to a handle-tether-ball complex HTB.W c

g�k�1
; A�/, where W c

g�k�1
is obtained

from W b
g by excising the handles Hi and the balls Bi . The set A� of admissible boundary

spheres is induced by removing from A those s � kd boundary spheres of W b
g contained

within the Bi .

Proof. The proof is very similar to the proof of Lemma 7.11. The only difference is that �b
is not injective on � . Thus the simplex �b.�/ has strictly smaller dimension than � . Thus,
s � kd elements of A are used in � .
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Consider a simplex � D ¹.H 00; B
0
0/; : : : ; .H

0
l
; B 0

l
/º in the link of � . As seen above, �

belongs to the good link of � if and only if ¹B 00; : : : ; B
0
l
º is an l-simplex in the link of

�B.�/ in B.W b
g ; A/, which is the d -hypergraph complex on A�.

For the handle part, the condition is that ¹H 00; : : : ;H
0
l
º lies in the link of ¹H0; : : : ;Hkº.

The link in the handle complex is isomorphic to H .W c
g�k�1

/.

Proposition 7.15. If m � .g � 4/=2 and m � jAj�d
dC1

� 1, then HTB.W b
g ; A/ is m-con-

nected.

Proof. We induct on m. By Lemma 7.13, the extended complex HTBe.W
b
g ; A/ is m-con-

nected. The complex HTB.W b
g ;A/ is the complex of good simplices in HTBe.W

b
g ;A/. By

Proposition A.7, it suffices to show that good linksG� of bad simplices are .m� dim.�//-
connected. Let � be a bad k-simplex. Then k � 1 and G� Š HTB.W c

g�k�1
; A�/, by the

preceding lemma.
For the induction hypothesis to apply, we need to verify that

m � k �
.g � k � 1/ � 4

2
and m � k �

jA�j � d

d C 1
� 1:

For the first estimate, note that m � k � .g � 2k � 4/=2 follows from the assumption
m � .g � 4/=2. As k � 1, we have 2k � k C 1, whence m � k � .g � .k C 1/ � 4/=2
follows. Turning to the second inequality, note that jA�j � jAj � kd . Thus, we find

jA�j � d

d C 1
� 1 �

jAj � kd � d

d C 1
� 1 �

jAj � d

d C 1
� 1 � k � m � k:

Corollary 7.16. Assume that m � .g � 2/=2 and m � jAj�d
dC1

. Then the handle-tether-
ball complex HTB.W b

g ; A/ is wCM of dimension m. Consequently, the piece complex
Pd .W

b
g ; A/ is also wCM of dimension m.

Proof. This follows from the description of links in HTB.W b
g ; A/ given in Lemma 7.11

and the isomorphy of HTB.W b
g ; A/ and Pd .W

b
g ; A/.

We conclude this section with a diagram showing the main actors involved:

(7.17)

HTBe.W
b
g ; A/ HTB.W b

g ; A/ Pd .W
b
g ; A/

B.W b
g ; A/ MjAj.d/:

�b

�

�

˛

Finally, we prove Theorem 7.1.

Proof of Theorem 7.1. For Y ŠSn�Sn, the claim follows from Corollaries 7.16 and 7.10.
The case of Y Š S2n is a lot simpler: observe that in this case,

Pd .W
b
g ; A/ Š B.W b

g ; A/ ŠMjAj.d/;

and we can apply Corollary 7.3.
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8. The piece complex for 3-manifolds

In this section, we prove a version of Theorem 6.8 for 3-dimensional manifolds. In this
setting,Wg D O#Y # � � �.g/ #Y , whereO and Y are compact, connected, oriented, smooth
3-manifolds, with Y either irreducible or diffeomorphic to S2 � S1. The manifold W b

g

is then obtained by removing a collection of b � 0 open balls (with pairwise disjoint
closures) from Wg . With this notation, we will show:

Theorem 8.1. Let W b
g be as above, and let A be a (not necessarily proper) subset of

boundary spheres of W b
g . Then Pd .W

b
g ; A/ is flag. Moreover, Pd .W

b
g ; A/ is wCM of

dimension m provided that m � g=4 and m � jAj�d
dC1
�

The proof proceeds along the exact same lines as in the previous subsection, although
certain steps become more intricate; for instance, the manifolds are no longer assumed
to be simply-connected and therefore one has to be careful when dealing with systems
of arcs up to isotopy. We now proceed to give a complete account of the ideas needed;
however, we will omit the proofs of some results if these can be directly transplanted from
the previous subsection without any modification.

The ball complex

As was the case in higher dimensions, we have a map

˛ W B.W b
g ; A/!MjAj.d/

induced by mapping any given 3-ball with d holes, all of them elements ofA, to the corres-
ponding d points in the set ¹1; 2; : : : ; jAjº. For this map, the same proof as in Lemma 7.2
gives the following.

Lemma 8.2. The map ˛ WB.W b
g ; A/!MjAj.d/ is a complete join.

As mentioned in the previous section, we cannot expect this map to be an isomorphism
as W b

g need not be simply-connected; so even for d D 2 there may be many ways to
enclose two boundary spheres from A in a “sausage.”

Next, since MjAj.d/ is flag and wCM of dimension b jAj�d
dC1
c, we deduce:

Corollary 8.3. The complex B.W b
g ; A/ is flag and wCM of dimension b jAj�d

dC1
c.

Note that this is the same statement as Corollary 7.3, including the bounds.

The handle complex

For the sake of notational consistency with the previous section, we define a handle to
be a submanifold of W b

g diffeomorphic to Y ∖ B3. The handle complex H .W b
g / is the

simplicial complex whose k-simplices are sets of k C 1 isotopy classes of handles in W b
g

that can be represented in a pairwise disjoint manner.
As in the previous section, our goal is to establish connectivity properties of the handle

complex. We do that by relating the handle complex to the (non-separating) sphere com-
plex, whose connectivity is known after the work of Hatcher–Wahl [41]. Recall that an
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l-simplex in the sphere complex �.W b
g / is a set of l C 1 isotopy classes of essential

spheres in W b
g with pairwise disjoint representatives. The non-separating sphere complex

�ns.W b
g / is the full subcomplex of �.W b

g / spanned by those systems of spheres whose
complement is still connected. We will need the following result of Hatcher–Wahl, see
Proposition 3.2 of [41].

Theorem 8.4 ([41]). Let W b
g be as above. Then �ns.W b

g / is .g � 2/-connected.

Armed with this, we have the following:

Proposition 8.5. With the notation above, H .W b
g / is

(i) .g � 2/-connected, if Y ¤ S2 � S1;
(ii) b.g � 3/=2c-connected, if Y D S2 � S1.

Proof. If Y ¤ S2 � S1, the handle complex is the complex X in Section 4.1 of [41], and
the connectivity bound is established in Proposition 4.1 of [41]. Therefore, from now on
we will assume that Y D S2 � S1; in this case, our complex is an unbased version of the
complex called XA in Section 4.2 of [41]; in fact, our connectivity bound coincides with
that of Proposition 4.5 in [41].

We argue by induction on g again. First, H .W b
g / is non-empty as long as g � 1, so

we assume g � 2 and that the statement is true for any g0 < g.
Observe that there is a unique isotopy class of essential spheres contained in S2 �

S1 ∖ B3. Therefore, we have a forgetful map

F W H .W b
g /! �ns.W b

g /;

which maps each vertex of H .W b
g / to the corresponding essential sphere contained in it.

At this point, we want to use Theorem 8.4 to deduce a connectivity bound for H .W b
g /

from that of �ns.W b
g /, showing that the map F is a join complex, again in the sense of

Appendix A. To this end, we first need to check that �ns.W b
g / is wCM. To see this, let

� D hS0; : : : ; Spi be a p-simplex in �ns.W b
g /, whose link lk

�ns.W b
g /
.�/ is isomorphic

to �ns.W b
g ∖ �/. By the prime decomposition theorem, the number of summands dif-

feomorphic to S2 � S1 in W b
g ∖ � is g � .p � 1/. Combining this with Theorem 8.4,

we obtain that lk
�ns.W b

g /
.�/ is .g � p � 3/-connected. Thus �ns.W b

g / is wCM of dimen-
sion g � 1.

We now prove that F is a join complex. For every non-separating sphere Si in � ,
we choose a point xi in Si , which gives rise to two points when we cut W b

g along � .
Recall that, by the definition of the non-separating sphere complex, the manifoldW b

g ∖ �
is connected, and thus we can connect the two copies of xi by an embedded path for each
0 � i � k. Moreover, up to modifying the paths by an isotopy, we may assume that no
two of them intersect. Upon regluing, the paths yield loops ˛i that intersect transversely
with Si exactly once. Taking a tubular neighborhood of ˛i [ Si , we get a manifold diffeo-
morphic to S2 � S1 ∖ B3 which maps to � under F , and so F is surjective.

Further, F is injective on individual simplices since if two handles are disjoint in W b
g ,

the non-separating spheres contained in their interior are non-isotopic. In fact, given any
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handle H , we have an embedded loop intersecting the non-separating sphere transversely
with algebraic intersection number 1 in H . If F.H/ D F.H 0/ for another handle H 0,
then this loop of H must also intersect the non-separating sphere of H 0 with algebraic
intersection number 1. In particular, H and H 0 cannot be disjoint.

Next, let � 0 D hH0; : : : ;Hpi be a p-simplex in H .W b
g / such that F.Hi / D Si . Since

each Hi is a handle, we may assume that the essential spheres contained in the Hi are
pairwise disjoint. Using that � 0 is a p-simplex, we can isotope the S1 parts of theHi such
that they do not intersect with any other Hj . Moreover, since W b

g is three-dimensional,
we may apply an isotopy to further assume that the S1 parts of the Hi are disjoint. Con-
sequently, part (3) of the Definition A.12 is also satisfied.

This discussion proves that F is a join complex over the wCM complex �ns.W b
g /.

Further we check that F.lk.� 0// D lk.F.� 0//. The handles in a simplex � 00 of lk.� 0/ may
be isotoped such that they do not intersect � 0. In particular, the interior spheres in � 00 can
be chosen to avoid intersecting the interior spheres in � 0, hence

F.lk.� 0// � lk.F.� 0//:

Using the same argument as for proving that F is surjective, we deduce the reverse inclu-
sion, and thus

F.lk.� 0// D lk.F.� 0//

and, since � 0 is a p-simplex, it follows that F.� 0/ is also of dimension p. Hence F.lk.� 0//
is wCM of dimension g � p � 2. Now Theorem A.15 implies that H .W

p
g / is bg�1

2
� 1c-

connected if Y D S2 � S1.

Worsening the bounds allows us to formulate a unified statement that has the same
connectivity estimate as Theorem 7.7:

Corollary 8.6. For any Y as above, H .W b
g / is b.g � 4/=2c-connected. In fact, H .W b

g /

is wCM of dimension b.g � 2/=2c.

Proof. The connectivity bound follows from Proposition 8.5. The observation that the link
of a k-simplex � in the handle complex H .W b

g / is again a handle complex establishes the
connectivity of links.

The handle-tether-ball complex

As in the previous section, a handle-tether-ball consists of a handle H representing a
vertex in the handle complex H .W b

g /, a d -holed ball B disjoint from H and represent-
ing a vertex in B.W b

g ; A/, and a tether connecting H to B disjoint from both. A vertex
in HTB.W b

g ; A/ is the isotopy class of a handle-tether-ball, and k C 1 vertices from a
k-simplex if they can be represented by pairwise disjoint handle-tether-balls. Passage to a
regular neighborhood defines a projection

� W HTB.M b
g ; A/! Pd .W

b
g ; A/:

Lemma 8.7. The map � WHTB.M b
g ; A/! Pd .W

b
g ; A/ is a complete join. In particular,

if HTB.W b
g ; A/ is m-connected, so is Pd .W

b
g ; A/.
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Proof. The claim that � is a complete join follows as in the first step in the proof of
Lemma 7.8. The connectivity then follows from Remark A.14.

Observation 8.8. Let M be a 3-manifold with a submanifold N cut off by an essential
2-sphere @0N . Since any two simple arcs on the sphere @0N are isotopic in @0N , we can
push any isotopy of paths that passes through N off N . More formally: let P and Q be
two disjoint subsets of M not intersecting N ; if two simple arcs ˛ and ˇ from P to Q
that do not intersect N are isotopic in M relative to P and Q, then they are also isotopic
in M relative to P , Q, and N . This also applies to a finite collection of submanifolds
N0; : : : ; Nk whose boundaries @Ni are 2-spheres.

Let � be a k-simplex in HTB.W b
g ; A/ and let X0; : : : ; Xk be pairwise disjoint handle-

tether-balls that represent the vertices of � . Let X 00; : : : ; X
0
k

be another such collection.
A priori, it is not clear whether the two handle-tether-ball systems are isotopic or not; equi-
valently, the geometric realization of HTB.W b

g ;A/might not be the same as the geometric
realization of the poset of isotopy classes of handle-tether-ball systems with deletion of
components as the face relation. The issue is that the isotopy from Xi to X 0i witnessing
that they represent the same vertex may pass through some of the other Xj .

As it is the tether part which is causing the trouble, we can apply Observation 8.8 (P
andQ being a handle and a ball connected by the tether we need to move). Not only does it
follow that simplices in HTB.W b

g ;A/ can be viewed as isotopy classes of pairwise disjoint
handle-tether-ball systems; it also implies that the link of a simplex � D ¹X0; : : : ; Xkº
represented by pairwise disjoint Xi can be recognized as the handle-tether-ball complex
of the manifold after excising regular neighborhoods of the Xi . Summarizing:

Lemma 8.9. Let � D ¹X0; : : : ; Xkº be a k-simplex in HTB.W b
g ; A/. The link of � in

HTB.W b
g ; A/ is isomorphic to HTB.W b�.kC1/.d�1/

g�k�1
; A�/, where A� is obtained from A

by removing the .k C 1/d boundary spheres used in � .

Proof. The manifold W b�.kC1/.d�1/

g�k�1
is obtained from W b

g by excising regular neigh-
borhoods of the handle-tether-balls Xi each leaving a single new boundary sphere that
previously was essential. The set A� contains those elements from A that have not been
lost due to this excision.

The extended handle-tether-ball complex

As in the previous section, the extended handle-tether-ball complex HTBe.W
b
g ; A/ has

the same vertex set as HTB.W b
g ; A/, but now k C 1 vertices form a k-simplex if there

are handle-tether-balls X0; : : : ;Xk representing the vertices whose handle-tether parts are
pairwise disjoint and whose ball parts are pairwise disjoint-or-equal. Again, we have two
projections, namely

�h W HTBe.W
b
g ; A/! H .W b

g /

to the handle complex and

�b W HTBe.W
b
g ; A/! B.W b

g ; A/

to the ball complex, defined by forgetting the tether-ball parts or the handle-tether parts,
respectively.
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Once more, we shall derive the connectivity of HTBe.W
b
g ; A/ by understanding the

connectivity of fibers for �b which, in turn, are understood by restricting �h. First, we
describe the fibers of closed simplices in B.W b

g ; A/ under �b . Before doing so, we need
some definitions. First, as in the previous section, given a vertex B 2 B.W b

g ; A/, we write
@0B for the boundary sphere that is essential in W b

g . Next, for a subset Q of boundary
spheres of W b

g , define TH.W b
g ; Q/ to be the complex whose vertices are isotopy classes

of handles tethered to elements of Q and where k C 1 such vertices form a k-simplex
if they can be simultaneously realized in a way that the handle-tether parts are pairwise
disjoint.

Lemma 8.10. Let � D ¹B0; : : : ; Bkº be a k-simplex in B.W b
g ;A/. LetW b�.kC1/.d�1/

g be
the manifold obtained fromW b

g by cutting out theBi . Then the fiber ��1
b
.�/ is isomorphic

to TH.W c
g ;Q/, where Q WD ¹@0B0; : : : ; @0Bkº.

Proof. Gluing the balls Bi back in defines an obvious map


 W TH.W c
g ;Q/ �! ��1b .�/;

which we claim is an isomorphism. For vertices this amounts to the observation that a
handle-tether-ball X in W b

g connecting to the ball Bi can be isotoped off B0 [ � � � [
Bi�1 [ BiC1 [ � � � [ Bk . One can do this by shrinking the handle and moving the tether.
The case of a simplex does not pose additional difficulties: isotoping a single arc off Bj is
not different from moving a (possibly braiding) collection of arcs off Bj .

Lemma 8.11. The map �h WTH.W c
g ;Q/! H .W c

g / forgetting the tethers is a join com-
plex.

Proof. Given a simplex � D¹X0; : : : ;Xpº in TH.W c
g ;Q/, the handles �h.Xi / are pairwise

distinct as they can be realized pairwise disjointly. Hence � is injective on simplices.
Let � D ¹H0; : : : ;Hkº be a k-simplex in H .W c

g / realized by pairwise disjoint handles
Hi . We can tether the handles Hi to boundary spheres from Q by pairwise disjoint teth-
ers that do not intersect the handles (away from the point of attachment). Thus, �h is
surjective.

Before checking the final condition, it is helpful to clarify why �h is not a complete
join. To this end, letXi represent vertices in TH.W c

g ;Q/withHi D �h.Xi /. In a complete
join, these vertices Xi would span a simplex in TH.W c

g ; Q/, i.e., we would be able to
choose pairwise disjoint representativesXi . However, if the tether part ofX0 runs through
the handle part of X1 in an essential way (i.e., so that it cannot be pushed off the handle),
we would not be able to not realize X0 and X1 disjointly.

The definition of a join complex (see Section A.4) deals with this kind of obstruction:
we only need to show that vertices Xi above the Hi span a simplex, provided each of
theXi can be extended to a k-simplex �i mapping to � under �h. The extending simplex �i
shows that the tether part of Xi can be pushed off all handles Hj . Now, it only remains
to resolve intersections among tethers. As the ambient manifold has dimension 3, this can
easily be arranged via a small perturbation within each isotopy class.

Lemma 8.12. For any simplex � in TH.W c
g ;Q/, we have �h.lk.�// D lk.�h.�//.
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Proof. The inclusion �h.lk.�// � lk.�h.�// holds because �h is injective on simplices.
The reversed inclusion follows from the same reasoning as the surjectivity of �h in the
previous lemma.

Corollary 8.13. If 2m � .g � 4/=2, then ��1
b
.�/ is m-connected for each simplex � in

B.W b
g ; A/. If, in addition, m � jAj�d

dC1
� 1, then HTBe.W

b
g ; A/ is also m-connected.

Proof. For any closed simplex � in B.W b
g ;A/, the fiber ��1

b
.�/ can be described as com-

plex TH.W c
g ;Q/ by Lemma 8.10. By Lemma 8.11, the fiber ��1

b
.�/ Š TH.W c

g ;Q/ is a
join complex over the base H .W c

g /, which is wCM of dimension 2mC 1 by Corollary 8.6.
By Lemma 8.12, the link condition of Theorem A.15 is satisfied, and we conclude that the
fiber ��1

b
.�/ is m-connected.

By Corollary 8.3, the ball complex B.W b
g ; A/ is m-connected. We have just seen that

the fiber above each closed simplex is also m-connected. It follows from Quillen’s fiber
Theorem A.17 that the total space HTBe.W

b
g ; A/ is m-connected.

The connectivity of the handle-tether-ball-complex

Again, we use the bad simplex argument in the setting of Example A.8. We regard the
vertices in B.W b

g ; A/ as colors and the projection �b WHTBe.W
b
g ; A/! B.W b

g ; A/ as a
coloring. Then HTB.W b

g ; A/ is the subcomplex of good simplices. As in the previous
section, induction works as we know good links of bad simplices are handle-tether-ball
complexes of simpler manifolds.

Lemma 8.14. Let � be a bad k-simplex of HTBe.W
b
g ; A/. Then the good link G� is iso-

morphic to a complex HTB.W c
g�k�1

;A�/, for some (explicit) c � b, where A� is obtained
from A by removing those up to kd boundary spheres used in �b.�/.

Proof. In HTBe.W
b
g ; A/, we allow several handles to be tethered to the same ball. Non-

etheless, the regular neighborhood of such a “spider” is a 2-sphere. Hence, Observation 8.8
still applies because the components we add to � while staying in the good link contain
just one tether each.

Proposition 8.15. Assume m � jAj�d
dC1

� 1 and 2m � .g � 4/=2. Then the handle-tether-
ball complex HTB.W b

g ; A/ is m-connected.

Proof. We recreate the induction argument given for Proposition 7.15. Everything carries
over, only the bounds differ. Again, we consider a bad k-simplex and show that its good
link is .m � k/-connected. In view of the preceding lemma, we need to verify that

2.m � k/ �
.g � k � 1/ � 4

2
and m � k �

jA�j � d

d C 1
� 1:

Using that k � 1, as vertices are not bad, we calculate as follows:

2.m � k/ �
g � 4

2
� 2k D

.g � k � 1/ � 4

2
C
�3k C 1

2
�
.g � k � 1/ � 4

2
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and

m � k �
jAj � d

d C 1
� 1 � k D

jAj � kd � d

d C 1
� 1 �

k

d C 1
�
jA�j � d

d C 1
� 1:

The claim follows.

After Lemma 8.14 and Proposition 8.15, we have:

Corollary 8.16. Assume m � jAj�d
dC1

and m � g=4. Then the handle-tether-ball complex
HTB.W b

g ; A/ is wCM of dimensionm. Consequently, Pd .W
b
g ; A/ is also wCM of dimen-

sion m.

The flag property

Finally, we prove that the piece complex is flag.

Theorem 8.17. The complex Pd .W
b
g ; A/ is a flag complex.

Proof. We begin with the following consequence of the prime decomposition theorem for
3-manifolds. SupposeZ andZ0 are distinct vertices of Pd .W

b
g ;A/, and let S (respective-

ly, S 0) be the unique boundary sphere of Z (respectively, Z0) that is essential in W b
g . If S

and S 0 are disjoint, then Z and Z0 are also disjoint.
Now letZ0; : : : ;Zk be vertices that define the 1-skeleton of a k-simplex in Pd .W

b
g ;A/,

and let Si be the unique essential boundary sphere of Zi .
Since the sphere complex of W b

g is flag (see Lemma 3 in [3] which, although is stated
for connected sums of S2 � S1, works in all generality), there is an isotopy �t WW b

g !W b
g

such that the spheres S 0i D �1.Si / are all simultaneously disjoint. By the observation in
the first paragraph, the submanifolds Z0i D �1.Zi / are simultaneously disjoint also, and
hence define a k-simplex in Pd .W

b
g ; A/, as desired.

Proof of Theorem 8.1. Combine Theorem 8.17 and Corollary 8.16.

Remark 8.18. The statement of Theorem 8.1 remains valid if Y is the 3-sphere S3

because in that case, we have Pd .W
b
g ; A/ Š B.W b

g ; A/, and Corollary 8.3 applies.

9. The piece complexes in dimension two

Finally, in this section we will prove a two-dimensional incarnation of Theorem 6.8. In this
case,O is a compact connected orientable surface and Y is either a sphere or a torus. Here
we will use slightly different notation than in the previous two sections, and will writeW b

g

for the compact surface of genus g with b boundary components. Observe, however, that
O#Y # � � �.k/ #Y is diffeomorphic to Wg , with g D genus.O/ C k � genus.Y /. We will
prove the following.

Theorem 9.1. Let W b
g be the compact, connected surface of genus g with b bound-

ary circles, and let A a (not necessarily proper) subset of these boundary circles. Then
Pd .W

b
g ; A/ is flag. Moreover, Pd .W

b
g ; A/ is wCM of dimension m provided that m �

.g � 1/=2 and m � jAjC2d
2d�1

�
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Remark 9.2. As we will see below, the genus bound in the statement above is not needed
when Y is a sphere.

Yet again, we proceed along the same lines as in Section 7. Once more, the topological
analysis becomes a bit more involved: in two dimensions, an arc can be separating, and
cutting a surface open along an arc affects the fundamental group.

The ball complex

In the surface case, we will not analyze the connectivity properties of the ball complex
B.W b

g ; A/ by means of its projection to the d -hypergraph complex. Instead, we appeal
to work by Skipper–Wu, see Theorem 3.12 in [60], who have calculated the connectivity
of the d -holed disk complex of a punctured surface. Capping each boundary component
with a once-punctured disk yields an isomorphism between the ball complex (of the sur-
face with boundary) and the d -holed disk complex (of the punctured surface). Thus, we
conclude:

Lemma 9.3 ([60]). B.W b
g ; A/ is m-connected for m � jAjC1

2d�1
� 2.

Since links in the ball complex are again ball complexes, we can also deduce the weak
Cohen–Macaulay property.

Corollary 9.4. B.W b
g ; A/ is wCM of dimension b jAjC1

2d�1
� 1c.

Proof of Theorem 9.1 for Y Š S2. If Y is a 2-sphere, the geometric piece complex is iso-
morphic to the ball complex, which is a flag complex. Thus, Corollary 9.4 establishes this
case of Theorem 9.1.

From now on, we assume that Y Š S1 � S1.

The handle complex

As in the previous sections, the handle complex H .W b
g / has as vertices isotopy classes of

handles (i.e., embedded copies of S1 � S1 ∖ B2) and the adjacency relation is given by
disjointness. To analyze the handle complex in the surface case, we will make use of the
so-called complex of chains introduced by Hatcher–Vogtmann [40].

A chain is an unordered pair of simple closed curves intersecting transversely at a
single point; in particular, both curves are non-separating. The complex of chains Ch.W b

g /

has simplices corresponding to isotopy classes of systems of pairwise disjoint chains
in W b

g ; observe that every such system is coconnected, i.e., its complement has exactly
one connected component. The following was proved by Hatcher–Vogtmann, see Propo-
sition 5.6 in [40]:

Theorem 9.5 ([40]). The complex of chains Ch.W b
g / is b.g � 3/=2c-connected.

Observe that every chain has a tubular neighborhood diffeomorphic to S1 � S1 ∖ B2.
As a consequence, the link of a k-simplex � in Ch.W b

g / is isomorphic to Ch.W bCkC1
g�k�1

/,
and so we deduce the following.

Corollary 9.6. The complex of chains Ch.W b
g / is wCM of dimension b.g � 1/=2c.
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Similarly, given a k-simplex ¹ch0; : : : ;chkº in Ch.W b
g /, we get a k-simplexH0; : : : ;Hk

by considering (sufficiently small) neighborhoodsHi . In other words, there is a simplicial
map

˛ch W Ch.W b
g /! H .W b

g /:

We observe:

Lemma 9.7. The map ˛ch is a complete join. Therefore, H .W b
g / is wCM of dimension

b.g � 1/=2c.

Proof. First, any two disjoint non-isotopic chains have non-isotopic neighborhoods, and
so ˛ch injective on individual simplices. Next, given any simplex � D ¹H0; : : : ; Hkº in
H .W b

g /, we can choose a chain chi in each Hi . Since these chains are pairwise disjoint,
they form a simplex ¹ch0; : : : ; chkº in Ch.W b

g / that maps to � under ˛ch, and thus ˛ch

is surjective. Moreover, any element in ˛�1ch .Hi / can be realized as a chain in Hi . Hence
˛�1ch .�/ D �

k
iD1 ˛

�1
ch .Hi /, and thus ˛ch is a complete join. The connectivity of H .W b

g /

now follows from Remark A.14 and Theorem 9.5.

The handle-tether-ball complex

The complex HTB.W b
g ; A/ is defined as in the previous sections. The same argument as

in the proof of Lemma 7.8 yields:

Lemma 9.8. The map � WHTB.W b
g ; A/! Pd .W

b
g ; A/ is a complete join. In particular,

if HTB.W b
g ; A/ is m-connected, so is Pd .W

b
g ; A/.

Also, the proof of Lemma 8.9 also applies in two dimensions:

Lemma 9.9. Let � be a k-simplex in HTB.W b
g ; A/. The link of � in HTB.W b

g ; A/ is

isomorphic to a complex HTB.W b�.kC1/.d�1/

g�k�1
; A�/, where A� is obtained from A by

removing those .k C 1/d boundary circles used in � .

The extended handle-tether-ball complex

As was the case in previous sections, allowing multiple handles to be tethered to the same
ball leads to the complex HTBe.W

b
g ; A/, which contains HTB.W b

g ; A/ as a subcomplex.
Both complexes have the same vertex set, although HTBe.W

b
g ; A/ may contain additional

simplices. The goal of this section is to prove the m-connectivity of HTBe.W
b
g ; A/ if m is

bounded as an (explicit) linear function of g and jAj. As in the higher dimensional cases
we will use the projection

�b W HTBe.W
b
g ; A/! B.W b

g ; A/:

Recall that we know the connectivity of the base space B.W b
g ; A/ (see Corollary 9.4).

Thus it remains to determine the connectivity of the fibers ��1
b
.�/ of simplices � ; for this,

we use tethered handle complexes TH.W b
g ;Q/.

Even if the outline of the proof is similar, the technical differences between the sur-
face case and the cases of higher-dimensional manifolds are most pronounced in this step.
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Figure 6. Tethered handles whose tethers necessarily cross.

Since there is no room to isotope two arbitrary arcs off each other, we cannot prove an
analogue of Lemma 8.10. Instead, we will consider an inductive argument, which requires
to cutW b

g along tethered handles. This procedure may cutW b
g into components, as well as

cut boundary loops of W b
g into intervals. Therefore we start with a more general descrip-

tion of tethered handle complexes: we will drop the subscripts and use W to denote a
connected surface andQ to denote a collection of pairwise disjoint circles and open inter-
vals (with pairwise disjoint closures) contained in the boundary of W . A k-simplex of
TH.W;Q/ is given by k C 1 isotopy classes of tethered-handles in W with disjoint rep-
resentatives.

Remark 9.10. We emphasize that even if we allow the surface W to be a subsurface
of W b

g and the collection Q to contain intervals, we are still interested in the following
situation: let � D ¹B0; : : : ; Bkº be a k-simplex in B.W b

g ; A/. We excise the balls Bi
from W b

g to obtain a new surface W D W c
g (where c D b � .k C 1/.d � 1/, although the

exact value is of no importance), and letQ be the set of those boundary circles inW c
g that

come from the essential boundary spheres @0Bi .

Another departure from the case of higher dimensions is that the projection �h W
TH.W; Q/ ! H .W / is not a join complex, in stark contrast to Lemma 8.11; see Fig-
ure 6. Instead, we use a bad simplex argument to understand the connectivity properties
of TH.W;Q/ as the subcomplex of THe.W;Q/, which is a complex with the same vertex
set as TH.W;Q/, but whose simplices are tethered-handle systems where we allow mul-
tiple tethers at each handle and multiple tethers at each boundary loop. In other words:
we only insist that tethers are pairwise disjoint; however, their heads and tails (handles or
boundary loops, respectively) are either pairwise disjoint or equal.

Lemma 9.11. The complex THe.W;Q/ is b.g.W / � 3/=2c-connected. In particular, the
complex THe.W

b
g ;Q/ is b.g � 3/=2c-connected.

Proof. We consider the projection �hWTHe.W;Q/! H .W / forgetting tethers and balls.
Let � D ¹H0; : : : ; Hkº be a k-simplex in H .W /. We claim that the preimage ��1

h
.�ı/

above the barycenter �ı of � is contractible. To see this, we identify ��1
h
.�ı/ with the

complexAı
k
.S;P;P;Q/ from Proposition A.11. Namely, we obtain the surface S fromW

by first collapsing the handles Ti to punctures in P , and then collapsing the boundary
circles and intervals in Q to punctures. Now, the complex Aı.S; P; P; Q/ consists of
those collections of tethers that connect P to Q and make use of all punctures in P . It is
this last condition that identifies Aı.S; P; P;Q/ as the barycentric fiber ��1

h
.�ı/.
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Figure 7. Removing the two tethered handles on the left yields the surface on the right. Note how a
boundary circle from Q splits into two intervals.

Now, Proposition A.11 tells us that the barycentric fibers are all contractible, and
Lemma A.18 implies that THe.W; Q/ inherits the connectivity properties of the base
H .W /. The claim then follows from Lemma 9.7.

Lemma 9.12. The complex TH.W;Q/ is b.g.W / � 3/=2c-connected. In particular, the
complex TH.W b

g ;Q/ is b.g � 3/=2c-connected.

Proof. We induct on g, using a bad simplex argument on the inclusion TH.W; Q/ �
THe.W;Q/. If g � 1 and jQj � 1 the complex TH.W;Q/ is non-empty. By induction,
we assume that the result is true for surfaces with g0 < g and b0 � 1. The bad simplex
argument follows Example A.8. We use the projection to the handle complex as our col-
oring map; i.e., we call a simplex � in THe.W;Q/ bad if each handle used in � hosts at
least two tethers. In particular, vertices cannot be bad. A simplex � in THe.W;Q/ is called
good if at most one tether attaches to each handle. The good link G� of a bad simplex �
consists of those systems of tethered handles whose handles are pairwise distinct and not
used in � .

We can give an explicit description of the good links. Let � be a bad simplex and let
W1; : : : ; Wl be the connected components of W ∖ � , obtained from W by cutting out a
regular neighborhood of � . Further, .W ∖ �/ \Q splits into a non-empty collection of
circles and intervals Qi D Wi \Q, see Figure 7. The good link G� is isomorphic to the
join�TH.Wi ;Qi /. Ifm� k is the number of handles in � , we have gDmC

P
g.Wi /�

k C
P
g.Wi /. In particular, the components Wi have genus strictly less than g so we can

apply the induction hypothesis to deduce that G� is
�Pl

iD1b.g.Wi / � 3/=2c C 2l � 2
�
-

connected. Recall that vertices cannot be bad, and hence k � 1. A direct calculation now
yields

lX
iD1

jg.Wi / � 3
2

k
C 2l � 2 �

j lX
iD1

g.Wi / � 3

2
�
l

2

k
C 2l � 2

D

jPl
iD1 g.Wi / � 3

2
�
3

2
.l � 1/ �

l

2
C 2l � 2

k
�

jg � k � 3
2

�
1

2

k
D

jg � 3
2
�
k C 1

2

k
.since k � 1/

�

jg � 3
2
� k

k
:



Asymptotic mapping class groups of Cantor manifolds and their finiteness properties 45

HenceG� is at least b.g � 3/=2� kc-connected, at which point Theorem A.7 implies that
TH.W;Q/ is b.g � 3/=2c-connected.

Lemma 9.13. Assume thatm� .g � 3/=2 andm� jAjC1
2d�1

� 2. Then the extended handle-
tether-ball complex HTBe.W

b
g ; A/ is m-connected.

Proof. We consider the projection �b W HTBe.W
b
g ; A/ ! B.W b

g ; A/ forgetting handles
and tethers. As previously, we are interested in the connectivity of fibers above closed
simplices. So let � D ¹B0; : : : ;Bkº be a k-simplex in B.W b

g ;A/. The final difference with
the situation in the previous two sections is that the fiber ��1

b
.�/ is not isomorphic to the

tethered-handle complex TH.W c
g ; ¹@

0B0; : : : ; @
0Bkº/. In other words, the statement of

Lemma 8.10 fails in the surface case. The reason is that a tether connecting a handle to,
say, B0 may run through B1; and while we were able to push the tether off the d -holed
ball in three dimensions, we may not be able to push it of the d -holed disk B1 in two
dimensions. The holes are obstacles to moving arcs.

Nonetheless, we can describe the fiber ��1
b
.�/ in terms of tethered-handle complexes.

For an inclusion chain � � � � � , denote by S� the surface obtained fromW b
g by excising

the balls B in � , and by Q� the collection of @0B for B 2 �. Note that Q� can be
interpreted in as a collection of boundary circles in S� . Also, observe that all S� has
genus g. The tethered-handle complex TH.S� ;Q�/ consists of those tethered handles that
are tethered to a balls in � and can be pushed off all the balls � .

With this notation, the fiber ��1
b
.�/ can be described as the following union:

(9.14) ��1b .�/ D
[

∅¤���

TH.S� ;Q� /:

By Lemma 9.12, all terms in the union arem-connected complexes. We want to apply
a nerve-cover argument (see Proposition A.16). We therefore have to consider the inter-
section of the terms, as well. Let �0; : : : ; �j be a collection of faces of � . We observe that

(9.15)
j\
iD0

TH.S�i ;Q�i / D TH.S�0[���[�j ;Q�0\���\�j /:

This just states that a tethered handle belongs to the intersection if and only if it is tethered
to a ball that lies in all the �i and if it can be pushed off all the balls that lie in any of
the �i .

From the description (9.15), we see that intersections are again m-connected unless
they are empty. The latter happens if and only if the intersection �0 \ � � � \ �j is empty.
Therefore, the nerve of the cover (9.14) is isomorphic to the barycentric subdivision of
a standard simplex and hence contractible. From Proposition A.16, we deduce that the
fiber ��1

b
.�/ is m-connected for each simplex � in B.W b

g ; A/. Finally, by Quillen’s fiber
Theorem A.17, the total space HTBe.W

b
g ; A/ is m-connected.

Connectivity of the handle-tether-ball complex

Again, we make use of the bad simplex argument as stated in Proposition A.7 in the flavor
presented in Example A.8. We consider the projection �b WHTBe.W

b
g ; A/! B.W b

g ; A/
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as a coloring of the vertices in HTBe.W
b
g ; A/. The good simplices form the subcom-

plex HTB.W b
g ; A/ and then, as before, the good link of a bad k-simplex is of the form

HTB.W c
g�k�1

; A�/. As in the previous sections, we have:

Lemma 9.16. Let � be a bad k-simplex of HTBe.W
b
g ; A/. The good link G� is iso-

morphic to a complex HTB.W c
g�k�1

; A�/, for some (explicit, albeit unimportant) c � b,
and where A� is obtained from A by removing those up to kd boundary spheres used
in �b.�/.

We use this to deduce the connectivity of the handle-tether-ball complex.

Proposition 9.17. Assumem� jAjC1
2d�1

� 2 andm� .g� 4/=2. Then the handle-tether-ball
complex HTB.W b

g ; A/ is m-connected.

Proof. The induction will apply once we show that the good link G� of a bad k-simplex
is .m � k/-connected. In view of the preceding lemma, we have to verify that

m � k �
.g � k � 1/ � 3

2
and m � k �

jA�j C 1

2d � 1
� 2:

As vertices are good, we find k � 1. For the first inequality, we deduce fromm� .g� 3/=2

and 2k � k C 1 that m � k � g�2k�3
2
�

.g�k�1/�3
2

holds. For the second estimate, we
find

jA�j C 1

2d � 1
�
jAj � kd C 1

2d � 1
�
jAj C 1

2d � 1
�

kd

2d � 1
� m � k:

Thus, the induction hypothesis applies and the claim follows.

Using Lemma 9.9, we also obtain the following.

Corollary 9.18. Assume m � jAjC1
2d�1

� 1 and m � .g � 1/=2. Then the handle-tether-ball
complex HTB.W b

g ; A/ is wCM of dimension m. Consequently, Pd .W
b
g ; A/ is also wCM

of dimension m.

The flag property

Finally, we prove that the piece complex is flag.

Proposition 9.19. The complex Pd .W
b
g ; A/ is a flag complex.

Proof. Suppose Z0; : : : ; Zk are vertices of Pd .W
b
g ; A/ that define the 1-skeleton of a

k-simplex in Pd .W
b
g ; A/, and let Si be the unique boundary component of Zi that is

essential inW b
g . At this point, there is an isotopy �t WW b

g !W b
g such that the curves S 0i D

�1.Si / are all simultaneously disjoint; this follows immediately from the fact that W b
g

supports a hyperbolic metric. But then the subsurfaces Z0i D �1.Zi / are simultaneously
disjoint also, and hence define a k-simplex in Pd .W

b
g ; A/, as desired.

Proof of Theorem 9.1 for Y D S1 � S1. We have just seen that Pd .W
b
g ;A/ is a flag com-

plex. The claim about being wCM follows from Corollary 8.16.
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10. Homology of asymptotic mapping class groups

We study the homology of asymptotic mapping class groups Bd;r .O; Y / following the
ideas in the proof of Theorem 3.1 in [25]. We will focus solely on the case d D 2 and r D 1;
for this reason, we will simply write C.O; Y / and B.O; Y /. Our proof uses crucially the
fact that V D V2;1 is simple [44] and acyclic [66]; we remark that neither fact is true for
all Higman–Thompson groups. Recall from Definition 4.2 that

Mapc.C.O; Y // D
1[
kD1

Map.Ok/;

where Ok are the compact n-manifolds used in the construction of C.O; Y /. Recall
that OkC1 is constructed from Ok by gluing 2k copies of Y 2 along the suited bound-
aries of Ok , where Y d denotes the result of removing d C 1 open balls from Y . It will be
interesting for our discussion to further divide this gluing map as follows:

Step 1. Gluing Y 1 to a suited boundary of Ok .
Step 2. Gluing S3 to the remaining boundary of Y 1, where S3 denotes the manifold

obtained from the standard sphere Sn by deleting three disjoint open balls.
In the presence of the inclusion property, the inclusion map Ok ,! OkC1 induces an

injective homomorphism j WMap.Ok/! Map.OkC1/. In turn, the injective homomorph-
ism j induces a homomorphism j� WHi .Map.Ok// ! Hi .Map.OkC1//, which is well
studied in the literature about homological stability of mapping class groups; in short, this
asserts that the map j� is in fact an isomorphism for certain values of i (known as the
stable range) in terms of k. The following result summarizes the results on homological
stability of mapping class groups that are relevant to our purposes.

Theorem 10.1. (i) Let O be a compact surface, and let Y Š S1 � S1. Then j� is an
isomorphism when i � b.2kC1 � 4/=3c.

(ii) LetO be any compact 3-manifold, and let Y Š S2 � S1. Then j� is an isomorphism
when i � b.2k � 3/=2c.

Proof. Part (i) follows from [35]; here, note that the genus ofOk is at least 2k � 1. Part (ii)
follows from Theorem 6.1 in [42] and Corollary 6.2 in [42]. We remark that the map in
Theorem 6.1 of [42] is defined in terms boundary connected sum, although it applies just
the same to the gluing construction detailed above. Again, it is important the number of
S2 � S1 summands is at least 2k � 1 in the calculation of the stable range.

Since the compactly supported mapping class group is the direct limit of the mapping
class groups of the Ok , we immediate obtain:

Corollary 10.2. Let O and Y be as in Theorem 10.1. Then Hi .Mapc.C.O; Y /// is the
i -th stable homology group of Map.Wg/.

Note also the following.

Theorem 10.3. Hi .Mapc.C.O; Y //;Z/ is finitely generated for all i , if

(i) O is a compact surface and Y is a torus.

(ii) O Š S3, and Y Š S2 � S1.
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Proof. By Theorem 10.1, it suffices to show that Hi .Ok ;Z/ is finitely generated for all i .
At this point, (i) follows from Lemma 2.4, and (ii) from Corollary 2.7.

Remark 10.4. Hi .Mapc.C.O; Y //;Z/ need not be necessarily finitely generated, for
example whenO Š S2n; Y Š Sn � Sn (n� 3). In fact, by Lemma B.9 in Appendix B, the
number of Z2 summands generated by Dehn twists around boundaries in Map.Ok/ will
grow exponentially. A similar phenomenon happens in dimension 2 when one takes O to
be a disk and Y Š S2.

We finally prove our desired result about the relation between stable homology and
the homology of asymptotic mapping class groups, using the same argument as in Propos-
ition 4.3 of [25]:

Proposition 10.5. Suppose Hi .Mapc.C.O; Y //;Z/ is finitely generated for all i . Then
Hi .B.O; Y // Š Hi .Mapc.C.O; Y /;Z/ for all i .

Proof. After Proposition 4.3, we have

1! Mapc.C.O; Y //! B.O; Y /! V ! 1:

Now apply the Lyndon–Hochschild–Serre spectral sequence, getting

E2p;q D Hp.V;Hq.Mapc.C.O; Y /;Z// ) Hi .B.O; Y /;Z/

For convenience, write Aq D Hq.Mapc.C.O; Y //;Z/. By assumption, we have Aq is a
finitely generated abelian group for all q. In particular, Aut.Aq/ is residually finite [6].
Since V is simple, we have any homomorphism V ! Aut.Aq/ must be trivial. Thus the
action of V on Aq is trivial. Furthermore, since V is acyclic [66], we haveHp.V;Aq/Š 0
if p > 0 and H0.V; Aq/ Š Aq . Therefore the spectral sequence collapses, and we have
Hi .B.O; Y /;Z/ Š Hi .Mapc.C.O; Y /;Z/ for all i , as claimed.

Remark 10.6. One might try to use the same argument to calculate the homology of the
braided Thompson’s group Vbr using the short exact sequence 1!PB1!Vbr!V ! 1.
However,H1.PB1;Z/ is already not finitely generated which one can prove using wind-
ing numbers.

After all this, we arrive at the proof of Theorem 1.15.

Proof of Theorem 1.15. The result follows at once from the combination of Corollary 10.2
and Proposition 10.5.

Finally, we record the following, which may be of independent interest.

Corollary 10.7. B.S3;S2 � S1/ is rationally acyclic.

Proof. We only need to show that Mapc.C.O; Y // is rationally acyclic. In turn, by The-
orem 10.1, it suffices to prove that the stable homology of Map.Ok/ is rationally acyclic.
Using Theorem 1.1 in [41] and the Lyndon–Hochschild–Serre spectral sequence, it is
enough to show the groups Asn;0 of [41] are stably rationally acyclic; this is proved in The-
orem A.2 of [62] based on the fact that the automorphism group of free group is rationally
acyclic [29].
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A. Connectivity tools

The purpose of this section is to give some details on some connectivity tools that are
essential for calculating the connectivity of our spaces. A good reference is Section 2
of [40], although not all the tools we use can be found there.

A.1. Combinatorial Morse theory

As will have become apparent by now, we make extensive use of combinatorial Morse
theory. For simplicial complexes, that is mostly a modern name for techniques to establish
connectivity that have been employed for a long time. Let X be a simplicial complex with
a subcomplex L. Consider X with L coned off, i.e., consider the space Y WD X [L C.L/
obtained by gluing the coneC.L/ to the spaceX along the common subspaceL. Using the
long exact sequence of homotopy groups for the pair .Y;X/, one deduces the following.

Observation A.1. If L ism-connected, then the inclusionX ,! Y DX [L C.L/ induces
isomorphisms in homotopy groups �d for d � m and an epimorphism in �mC1.

One may also cone off several subcomplexes Li at the same time:

Observation A.2. Let X be a simplicial complex, ¹Liºi2I a family of m-connected sub-
complexes, and Y the space obtained by gluing each cone C.Li / to X along Li . Then
the inclusion X ,! Y induces isomorphisms in homotopy groups �d for d � m and an
epimorphism in �mC1.

Now, consider a map hWX .0/! T defined on the vertex set of a simplicial complexX
with values in a totally ordered set .T;</. We say that h is a combinatorial Morse function,
or a height function, if adjacent vertices are mapped to different values (the slogan is: h
is non-constant on edges). For any t 2 T , denote by X<t the subcomplex spanned by
vertices v with h.v/ < t , and denote by X�t the subcomplex of those v with h.v/ � t .
The descending link lk#.v/ of the vertex v is the subcomplex of the link lk.v/ spanned by
those neighbors w of v below v, i.e., satisfying h.w/ < h.v/. From h being non-constant
on edges and Observation A.2, we deduce:

Corollary A.3. The subcomplex X�t is obtained from X<t by coning off the descending
links lk#.v/ of all vertices of height h.v/D t . If all these descending links arem-connected,
the inclusion X<t ,! X�t induces isomorphisms in homotopy groups �d for d � m and
an epimorphism in �mC1.

We call the height function h discrete if for any pair s; t 2 T the interval of values

¹h.v/ j v 2 X and s � h.v/ � tº

is finite. In that case, we can compare the homotopy type of a sublevel set to the whole
complex.

Proposition A.4 (Morse lemma for simplicial complexes). If h is a discrete height func-
tion on X , and if all descending links above level s 2 T are m-connected, then the
inclusion X�s ,! X induces isomorphisms in homotopy groups �d for d � m and an
epimorphism in �mC1.
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Proof. For any inclusionX�s ,!X�t , the claim follows from Corollary A.3, as the inter-
val of values between s and t is finite. The whole complex X is the direct limit of the Xt ,
and the homotopy group functor commutes with taking direct limits.

Bestvina–Brady [7] applied this line of reasoning to piecewise Euclidean complexes
in such a way that its parallels with Morse theory become apparent. Let K be a piece-
wise Euclidean cell complex, and denote its vertex set by K.0/. A function hWK ! R
is called a discrete Morse function or a height function provided that the image h.K.0//
is a discrete subset of R and that h is affine on closed cells and non-constant on edges.
Since all cells carry a Euclidean structure, we can think of links geometrically as spaces
of directions. A direction based at v pointing into the coface c is an equivalence class of
straight line segments starting at v with the other endpoint in c (the Euclidean structure of
the cell c tells us what such straight line segments are). Two such segments are equivalent
if one is an initial segment of the other. The directions based at v pointing into c form
a spherical polyhedron lkc.v/. For instance, if c is a cube, directions based at a corner v
of c pointing into c form a spherical simplex. The cofaces of v form a partially ordered set
ordered by inclusion. This poset encodes the intersection pattern of the complex K in the
neighborhood of v. The link lkK.v/ of v is the spherical CW complex obtained by gluing
the pieces lkc.v/ for all cofaces c of v along their intersections.

The descending link of v consists of the contributions of those proper cofaces c such
that h attains its maximum on c at v. The ascending link of v comes from those proper
cofaces such that h attains its minimum on c at v. We can give an interpretation of the
geometric realization of the descending and ascending links of v as subspaces of the real-
ization jKj of K as follows. Choose " > 0 so that

" � jh.w/ � h.v/j

for all vertices w adjacent to v. The descending link of v is the intersection of the level set

jKjDh.v/�" WD ¹x 2 jKj W h.x/ D h.v/ � "º

with the descending star of v, i.e., the union of all cells containing v as their top vertex.
The homeomorphism is given as follows: let � 2 lkc.v/ be a direction based at v pointing
into c and assume that v is the top vertex of c. Then the line segment starting at v in the
direction � intersects the level set

jcjDh.v/�" WD ¹x 2 jcj W h.x/ D h.v/ � "º

in a unique point. This defines a homeomorphism from the spherical polyhedron lkc.v/ to
the Euclidean polyhedron jcjDh.v/�".

If u and v are vertices of the same height t , they are not connected by an edge, as h
would be constant on such an edge. It follows that there is no cell c that has both u and v
as vertices of maximum height. In particular, the descending links of u and v are disjoint
subspaces of the sublevel set

jKj�s WD ¹x 2 jKj W h.x/ � sº;

where s < t is chosen so that no vertex w satisfies h.w/ 2 .s; t/.
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Proposition A.5 (Morse lemma for piecewise Euclidean complexes). Let K be a piece-
wise Euclidean complex, and let hWK ! R be a discrete Morse function. Assume that
the descending links of all vertices v with h.v/ 2 .s; t � are m-connected. Then the inclu-
sion jKj�s ,! jKj�t induces isomorphisms in homotopy groups �d for d � m and an
epimorphism in �mC1.

We remark that the inclusion of jK�sj into jKj�s is a homotopy equivalence. Thus,
under the hypotheses of the Morse lemma, one obtains that also the inclusionK�s ,!K�t

induces isomorphisms in homotopy groups �d for d � m and an epimorphism in �mC1.

A.2. Morse theory on the barycentric subdivision

We will use the bad simplex argument of Section 2.1 in [40]. Here, we shall provide a
treatment in terms of combinatorial Morse theory. Let X be a simplicial complex. By Xı

we denote its barycentric subdivision, and by �ı we denote the barycenter of the sim-
plex � . Note that �ı is a vertex in Xı. Simplices in Xı correspond to chains of simplices
inX . In particular, if �ı and �ı are adjacent inXı, the dimensions of � and � differ. Thus,
on the barycentric subdivisionXı, we can use dimension as a secondary function to break
ties. Instead of making this generic, we shall illustrate the method by means of example.

Assume that for each simplex � , we are given a subset N� � � of vertices such that the
following two conditions hold:

(i) (Monotonicity) For � � � , we have N� � N� .
(ii) (Idempotence) For any simplex, NN� D N� .

The simplex � is good if N� is empty, and bad if N� D � . The monotonicity condition
implies that faces of good simplices are good. In particular, the good simplices form a sub-
complex Xgood of X . The good link G� of a simplex � is induced by its proper cofaces �
with N� D N� . It follows also from monotonicity that the good link is a subcomplex of the
link, i.e., it is closed with respect to taking faces.

In Section 2.1 of [40], Hatcher–Vogtmann phrase the bad simplex argument in terms
of the collection of bad simplices. The equivalence to our approach is seen as follows:

Remark A.6. If two bad simplices � and � span a simplex, then the span � [ � will
also be bad by monotonicity. Conversely, consider a collection � of simplices with the
property that if � [ � is a simplex, �; � 2 � implies � [ � 2 � . Then defining N� as the
union of all faces of � that belong to � satisfies monotonicity and idempotence. With this
definition, � coincides with the class of bad simplices, i.e., � 2 � if and only if � D N� .

Proposition A.7 (Bad simplex argument). Suppose there is m such that for all bad sim-
plices � , the good link G� is .m � dim.�//-connected. Then the inclusion Xgood ,! X

induces an isomorphism in homotopy groups �d for d �m and an epimorphism in �mC1.

Proof. We want to use the cardinality # N� as a Morse function, noting that it is integer-
valued on the vertices �ı of the barycentric subdivisionXı. However, we may have N� D N�
for a simplex � and a proper face � of � . Thus, we use the dimension to break ties. More
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precisely, on the barycentric subdivision Xı, we consider the following height function:

h W Xı ! Z � Z

�ı 7! h# N�;� dim.�/i

We use the lexicographic order on Z � Z.
If X has infinite dimension, the height function h may not be discrete. However, by

passing to the .mC 1/-skeleton, we may assume without loss of generality that X is of
finite dimension at most mC 1.

A simplex � is good if and only if N� is empty, i.e., exactly when # N� D 0. Thus, if �
is bad, h.�ı/ < .1;�m � 1/. Conversely, assume h.�ı/ < .1;�m � 1/. Then � is good
or N� consists of a single vertex and � dim.�/ < �m � 1. The latter case does not occur
as X is assumed to be of dimension at most mC 1. Thus, the barycentric subdivision of
the subcomplex Xgood of good simplices is the h-sublevel complex Xı

<.1;�m�1/
.

In the barycentric subdivision, the link of a vertex �ı is best described by recalling
that � is a simplex in X . Then, adjacent vertices are faces and cofaces of � ; correspond-
ingly, the link of �ı in X is the join lk�.�/ � lkC.�/ of the down-link lk�.�/, spanned
by the barycenters of proper faces of � ; and the up-link lkC.�/, spanned by the barycen-
ters of proper cofaces of � . The down-link is the barycentric subdivision of the boundary
sphere @� whereas the up-link is the geometric realization of the poset of proper cofaces
of � , i.e., it can be thought of as barycentric subdivision of the ordinary link of the sim-
plex � in the complex X . The join decomposition lk.�ı/ D lk�.�/ � lkC.�/ is inherited
by the descending link lk#.�ı/ D lk#�.�/� lk#C.�/, where

lk#
˙
.�/ WD lk˙.�/ \ lk#.�ı/

is the descending part of the up-link or down-link.
Let � be a proper face of � . The vertex �ı lies in the down-link of �ı and it is descend-

ing if and only if N� is strictly smaller than N� since the second coordinate of h increases.
Note that N� � N� follows from monotonicity. On the other hand, N� � � implies N� D NN� � N�
whence N� D N�; and conversely, N� D N� implies N� � �. Thus, �ı 62 lk#�.�/ if and only if
N� � �. This translates as

lk#�.�/ D ¹ �
ı
2 lk�.�/ j N� 6� � º:

If � is good, lk#�.�/ D ∅ since there is no proper face � that does not contain the empty
set N� . If � is bad, lk#�.�/ is the entire boundary sphere @� since no proper face � con-
tains all of N� D � . If � is neither good nor bad, lk#�.�/ contractible as it is the boundary
sphere @� with the star of N� removed.

The descending up-link lk#C.�/ is spanned by those �ı 2 lkC.�/ for which the first
coordinate of h does not increase (it cannot decrease by monotonicity). Thus lk#C.�/ is the
barycentric subdivision of the good linkG� . Hence lk#C.�/ is .m� dim.�//-connected by
hypothesis, provided that � is bad.

Hence, for any vertex �ı outside the sublevel set, the descending link lk#.�ı/ D
lk#�.�/ � lk#C.�/ is at least m-connected: if � is bad, the descending down-link is the
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.dim.�/�2/-connected sphere @� and the descending up-link in .m�dim.�//-connected;
if � is not bad, the descending link is even contractible and the descending up-link does
not matter. The claim now follows from the Morse lemma.

In the main body of the paper, we make use of the bad simplex argument in two
particular incarnations.

Example A.8. Assume that the vertices of X are colored. We consider a simplex � bad
if no vertex has a unique color among the vertices of � . Then N� is the set of vertices in �
whose color features in � at least twice. The conditions of monotonicity and idempotence
are clearly satisfied. The subcomplex Xgood then consists precisely of those simplices
wherein each vertex has a unique color. The good link G� of � is induced by those
cofaces � such that � ∖ � is a good simplex and uses no color that is already used in � .

For concreteness, let � WX ! Y be a simplicial map and consider the vertices of Y as
the colors. ThenXgood consists precisely of those simplices � such that the restriction �j�
is injective. The good link G� of a bad simplex � consists of those simplices � 2 lk.�/
such that �j� is injective and such that the images �.�/ and �.�/ are disjoint.

Example A.9. Partition the vertices of X into good vertices and bad vertices. For a
simplex � , let N� denote the set of bad vertices in � . Clearly, this definition satisfies
monotonicity and idempotence. Equivalently, a simplex is bad if all its vertices are bad.
Then Xgood is the full subcomplex spanned by the good vertices. The good link of a sim-
plex is also easily seen to be G� D lk.�/ \Xgood.

A.3. A variation of the arc complex

Let S be a surface of negative Euler characteristic with two disjoint sets of marked points
P D ¹p0; : : : ; pmº andQ D ¹q0; : : : ; qnº. We regard interior marked points as punctures.
An arc is a simple curve with one endpoint in P , the other endpoint in Q, and otherwise
disjoint from P [Q. We consider arcs up to isotopy relative to P [Q [ @S , i.e., iso-
topic arcs will define the same vertex in the arc complex. We endow S with a complete
hyperbolic metric, so that interior marked points form the set of cusps. Then each arc
can be represented by a unique geodesic. Let A.S; P;Q/ be a simplicial complex whose
k-simplices are collections ¹˛0; : : : ; ˛kº of (isotopy classes of) arcs that are pairwise
non-isotopic and disjoint except possibly at the endpoints (thinking of arcs as geodesics
connecting cusps, this amounts to the geodesics being pairwise disjoint). One might call
A.S; P;Q/ the bipartite arc complex to distinguish it from the arc complex of a surface.

Proposition A.10. The complex A.S; P;Q/ is contractible.

This is a variation on Theorem 1.6 of [35]. The difference is that our punctures P are
not located on the boundary. Instead of recycling Harer’s proof, we give a proof using
more modern technology, namely the surgery flow method introduced by Hatcher [39].

Proof. Hatcher and Vogtmann (Lemma 2.9 in [40]) have turned Hatcher’s idea of surgery
flow into a fairly generic method. In establishing the hypotheses, we shall already employ
their notation.
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Fix an arc w from P to Q. For any other arc v, we define the complexity c.v/ as
the geometric intersection number of v and w. The geometric intersection number will
be realized if the representatives v and w are chosen to be geodesic with respect to a
hyperbolic metric. For a simplex � in the arc complex, we define c.�/ as the sum of the
complexities over all vertices of � . Note that the star Y of w in X WDA.S;P;Q/ consists
precisely of the zero-complexity simplices.

For an arc v that intersects w, we consider the point of intersection closest along w to
the Q-end of w. We surger v along the final segment of w and obtain two new arcs: one,
which we call �v from the P -end of v to the Q-end of w; and another one, which we
discard, connecting Q to Q. Note that �v and v do not intersect and therefore span an
edge in the arc complex. Moreover, we find c.�v/ < c.v/.

For a simplex � not in Y , there is at least one vertex (arc) that intersects w. Let v� be
that intersecting arc whose point of intersection withw is closest to theQ-end. Note that �
and �v� span a simplex. Also note that v� D v� for any face � of � that contains v� .

In this situation, Lemma 2.9 in [40] applies, and we conclude that the (contractible)
star Y of w is a deformation retract of X D A.S;P;Q/. Hence, the complex A.S;P;Q/

is contractible.

Now, we fix a subset P 0 � P and consider the subcomplex Aı.S; P; P 0; Q/ of the
barycentric subdivision Aı.S;P;Q/ spanned by those vertices �ı where the P -endpoints
of the arcs in � form a superset of P 0. We make use of the following result in the analysis
of the extended tethered-handle complex THe.W;Q/ in the surface setting.

Proposition A.11. The complex Aı.S; P; P 0;Q/ is contractible.

Proof. For a simplex � of A.S;P;Q/, we denote by P.�/ the set of P -points issuing arcs
in � . For non-empty sets A� B � P , letX.A;B/ denote the subcomplex of Aı.S;P;Q/

spanned by ¹�ı j A � P.�/ � Bº. By Y.A;B/ we denote the complex spanned by ¹�ı j
P.�/ � B and A \ P.�/ ¤ ∅ º. Note that X.A;B/ is a subcomplex of Y.A;B/.

For a subset A � P , we denote by � jA the restriction of � to A, i.e., the collection of
those arcs in � issuing from A. For A � B � C , restriction to B defines simplicial retrac-
tions jB WX.A;C /! X.A;B/ and jB WY.B;C /! Y.B;B/: By the homotopy property of
Section 1.3 in [59], these restriction maps are deformation retractions, i.e., they are homo-
topic to the identity map on their respective domains of definition. Note that Y.B;B/ can
be identified with the barycentric subdivision of an arc complex A.S 0; B;Q/, where S 0

is obtained by puncturing S at P ∖ B . In particular, the complexes Y.B; C / are all con-
tractible.

We show by induction on the cardinality of A that the complexes X.A; B/ are con-
tractible. If A contains just a single element, we find X.A;B/ D Y.A;B/, and Y.A;B/ is
contractible.

To complete the induction step, we need to consider a puncture b 2 B with b 62A
and put A0 WD A [ ¹bº. We want to understand the inclusion X.A0; B/ ,! X.A; B/ by
means of a bad simplex argument as in Example A.9. In particular, we call a vertex �ı

bad if b 62 P.�/. Then X.A0; B/ is the good subcomplex of X.A;B/. Let ¹�ı0 ; : : : ; �
ı
l
º be

a bad l-simplex with �0 � �1 � � � � � �l . Note that for a good vertex �ı, we never have
� � �l because b is used in � . Therefore, the good linkG of ¹�ı0 ; : : : ; �

ı
l
º consists of good
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simplices ¹�ı0 ; : : : ; �
ı
k
º with �l � �i . Restriction to ¹bº defines a deformation retraction

ofG onto the subcomplex spanned by those �ı where � contains �l and P.� ∖ �l /D ¹bº.
This complex can be identified with the contractible complex Aı.S 0; ¹bº;Q/, where S 0 is
obtained from S by cutting along �l .

The claim now follows as Aı.S; P; P 0;Q/ D X.P 0; P /.

A.4. Join complexes

The concept of a join complex, introduced by Hatcher–Wahl in Section 3 of [42], will be
another useful tool for us in order to analyze connectivity properties. We review the basics
here, referring the reader to [42] for more details.

Definition A.12 (Join complex). A join complex over a simplicial complex L is a sim-
plicial complex K together with a simplicial map � WK ! L satisfying the following
properties:

(1) � is surjective.

(2) � is injective on individual simplices.

(3) For each p-simplex � D hx0; : : : ; xpi of L, the subcomplex K.�/ of K consisting
of all the p-simplices that project to � is the joinKx0.�/� � � � �Kxp .�/ of the vertex
sets of Kxi .�/ WD K.�/ \ �

�1.xi /.
Note that K.�/ need not be equal to ��1.�/. If all the inclusions Kxi .�/ � �

�1.xi /

are in fact equalities, then we will callK a complete join complex over L. A reformulation
of (3) which sometimes is helpful is the following condition; see [42] for a proof of their
equivalence:

(30) A collection of vertices .y0; : : : ; yp/ of K spans a p-simplex if and only if for each
yi there exists a p-simplex �i ofK such that yi 2�i and �.�i /Dh�.y0/; : : : ;�.yp/i.

As mentioned above, it is possible to use the concept of join in order to analyze the
connectivity of a given complex, if this belongs to the weakly Cohen–Macaulay class of
complexes, introduced by Hatcher–Wahl [42]. Recall that a simplicial complex is weakly
Cohen–Macaulay (wCM for short) of dimension n if it is .n � 1/-connected and the link
of each p-simplex is .n � p � 2/-connected.

Armed with this definition, one has the following result in the case of a join complex.

Proposition A.13 (Proposition 3.5 in [42]). If K is a complete join complex over a wCM
complex L of dimension n, then K is also wCM of dimension n.

Remark A.14. If � WK ! L is a complete join, then L is a retract of K. In fact, we can
define a simplicial map sWL! K with � ı s D idL, by sending a vertex v 2 L to any
vertex in ��1.v/ and then extending it over to all simplices, which can be done since � is
a complete join. In particular, if K is n-connected, so is L.

However, we will encounter situations when we will only have a join complex instead
of a complete one. In these cases we will make use of the following theorem, also due to
Hatcher–Wahl [42].
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Theorem A.15 (Theorem 3.6 in [42]). Let K be a join complex over a wCM complex L
of dimension n. Suppose that, for each p-simplex � �K, one has that �.lkK.�// is wCM
of dimension n � p � 2. Then K is .n=2 � 1/-connected.

A.5. Nerve covers

The nerve of a family of sets .Ki /i2I is the simplicial complex N .Ki / defined on the
vertex set I which contains a simplex J � I if

T
j2J Kj is non-empty. The following

result allows to identify the homotopy groups of certain simplicial complexes with those
of a nerve complex, up to a fixed dimension.

Proposition A.16 (Theorem 6 in [8]). Let K be a connected simplicial complex, and let
.Ki /i2I be a family of subcomplexes that covers K. Suppose that every non-empty finite
intersectionKi1 \Ki2 \ � � � \Kil is .k � l C 1/-connected for l � 1. Then there is a map
f W kKk ! kN .Ki /k which induces isomorphisms of homotopy groups f �j W �j .K/ !
�j .N .Ki // for all j � k.

A.6. Fiber connectivity

Given a simplicial map f WX ! Y , there are several results relating the connectivity of X
and Y provided that we have information about the connectivity of the fibers. A useful
instance is due to Quillen, see Proposition 7.6 in [59], who stated his result in the more
general terms of posets and their geometric realizations. Here, we state the proposition
specialized for simplicial maps.

Proposition A.17 (Quillen’s fiber theorem for simplicial complexes). Let f WX ! Y be
a simplicial map, and assume that the preimage f �1.�/ of each closed simplex � in Y is
an n-connected subcomplex of X . Then X is n-connected if and only if Y is n-connected.

One can also make use of fibers above open simplices. Technically, it is convenient to
phrase the statement in terms of the barycentric subdivision.

Lemma A.18 (Lemma 2.8 in [40]). Let f WL ! K be a simplicial map of simplicial
complexes. Suppose thatK is n-connected and the fibers f �1.�ı/ over the barycenters �ı

of all k-simplices in K are .n � k/-connected. Then L is n-connected.

B. The inclusion and intersection properties

In this section, we prove the inclusion, intersection, and cancellation properties for suited
submanifolds of the Cantor manifolds that appear in the statements of Theorems 1.7, 1.8,
1.10 and 1.11. None of the material here is new, and the arguments will be well known to
the appropriate community of experts.

B.1. Dimension 2

The two-dimensional case is by far the easiest, so we deal with it first. First, the inclusion
property appears, for example, in Section 3.6 of [19]. In turn, the intersection property
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is a direct consequence of the Alexander method, see Section 2.3 in [19]. Finally, the
cancellation property boils down to the classification theorem of compact surfaces.

We now move onto the cases of Cantor manifolds of dimension bigger than two. First,
the cancellation property in dimension 3 is afforded by the prime decomposition theorem
for 3-manifolds, while the fact that the Cantor manifolds of Theorem 1.11 also have this
property is an immediate consequence of a result of Kreck [52] (see also Corollary 6.4
in [30]), stated as Theorem 7.4 above.

We commence by briefly recalling the definition and properties of a Dehn twist along
a sphere; see [10, 51]. Let M be a connected, orientable smooth manifold of dimension
nC 1 � 3, let S be a smoothly embedded n-sphere in M , and let U Š S � Œ0; 1� be a
tubular neighborhood of S . Let 
 be a generator of �1.SO.nC 1// Š Z2. The Dehn twist
TS 2Map.M/ is the isotopy class of the diffeomorphism which is the identity onM ∖U
and is given by .x; t/ ! .
.t/x; t/ on U . The mapping class TS depends only on the
isotopy class of S ; moreover, TS has order at most 2.

Recall that an n-dimensional manifold M is stably parallelizable if

�M ˚ � ŠM �RnC1;

where �M is the tangent bundle of M and � is the trivial line bundle. We have:

Lemma B.1. Let n � 2 and let M D N #.S1 � Sn/ be a smooth closed stably paralleliz-
able manifold. Let TS be the Dehn twist along the n-sphere S D 0 � Sn � N #.S1 � Sn/.
Then TS is a nontrivial element of order 2 in Map.M/.

Proof. When n D 2, this is due to Laudenbach [54]. The proof we give here follows
closely to Sections 4 and 5 in [10]. As discussed above, TS has order at most 2, so it
suffices to show TS is nontrivial.

Any diffeomorphism f 2 Diff.M/ induces a bundle map Df W TM ! TM by taking
its differential. Fix a parallelization of the stable tangent bundle TM ˚ "k , where " is
the trivial line bundle. The differential Df then induces a map Nf WM ! SO.nC k C 1/.
If f is isotopic to the identity map, we would have that Nf is homotopic to the constant
map. In particular, Nf jS1�0 is homotopic to a constant path in SO.n C k C 1/, contrary
to the construction of the twist TS . Indeed, since TS is defined via a nontrivial element
in �1.SO.nC 1//, and the stabilization map SO.nC 1/ ,! SO.nC k C 1/ induces an
isomorphism at the level of fundamental groups, we deduce that Nf jS1�0 must be nontrivial
in �1.SO.nC k C 1//.

Now following the same proof of Lemma 2.2 in [53], we have the following.

Corollary B.2. Let N be a manifold with at least two sphere boundaries S1 and S2, and
suppose that the manifold M obtained by gluing together S1 and S2 is stably paralleliz-
able. Then TSi is nontrivial in Map.N /.

Proof. First, note that M is the connected sum of some manifold with S1 � Sn. Now,
there is an induced map �WMap.N /!Map.M/. By Lemma B.1, �.TSi / is nontrivial, and
hence the same holds for TSi .
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B.2. Dimension 3

The inclusion property for 3-manifolds appears as Proposition 2.3 in [42], and so we focus
on the intersection property. We start with the following well-known result, which gives
information about the subgroup of Map.M/ generated by Dehn twists about boundary
spheres. Recall that a manifold has spherical boundary if every boundary component is
diffeomorphic to a sphere. We have:

Theorem B.3. Let M be a closed orientable 3-manifold and let Mb D M #b B3 be the
connected sum of M with b copies of 3-dimensional balls. Denote the boundary spheres
by S1; : : : ; Sb , and write TSi for the corresponding sphere twist. Let Tb � Map.Mb/ be
the subgroup generated by the twists TSi , for 1 � i � b. Then

(i) if T1 D 1, then for any b > 1, one has Tb D .Z2/b�2, where the only relation is
given by TS1 � � �TSb D 1;

(ii) if T1 D Z2, then for any b > 1, one has Tb D .Z2/
b .

Proof. First of all, by Corollary B.2, sphere twists have order 2 when b � 2. On the other
hand, when b D 1 the sphere twist could either be trivial or of order 2, see Remark 2.4
in [42] for more details.

If T1 D 0, we would have TS1 � � � TSb D 1; see the proof of Lemma 2.1 in [53] or
Lemma B.8 below. We need to show there is no further relation when b � 3. Suppose
that some partial product TSi1 � � � TSik were equal to the identity in Map.Mb/. Let S 0 be
a sphere which cuts off a ball containing exactly Si1 ; : : : ; Sik , and write Mb0 for the other
component of the complement of S 0. Note that b0 � 2. Hence TS 0 is nontrivial in Mb0 by
Corollary B.2. On the other hand, in Map.Mb/we have TS 0 D TS1 � � �TSk , which equals 1.
But by the inclusion property, this means TS 0 D 1 in Map.Mb0/, which is a contradiction.

Finally, the same argument works when T1 D Z2, with the only difference that in this
case there is no product relation.

We will now use the ideas in Sections 4 and 5 of [10] in order to deduce that a given
mapping class is a product of Dehn twists about boundary spheres.

We need some preliminaries first. Again, let M be a compact connected orientable 3-
manifold with spherical boundary. A diffeomorphism f 2 Diff.M; @M/ induces a bundle
map Df W TM ! TM . Since every 3-manifold is parallelizable [64], Df further induces
a map M ! SO.3/. Now, if C is a closed curve on M , or an arc connecting two bound-
ary components, then Df .C / 2 �1.SO.3// Š Z2. Moreover, the value of Df .C / only
depends on the isotopy class (relative to endpoints, if any) of C . The following result may
be deduced from the description of Map.M/ in terms of automorphisms of �1.M/; see
Theorem 1.5 in [57] or Proposition 2.1 in [42].

Theorem B.4. LetM be a 3-manifold with spherical boundary and at least two boundary
components. Let f 2 Diff.M; @M/ such that

(i) for every curve C , we have that Df .C / D 0 and f fixes the homotopy class of C ;
(ii) for every arcA connecting two distinct boundary spheres, f fixes the homotopy class

(relative to endpoints) of A.

Then f is the Dehn twist along a separating sphere in M .
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Now letN be a connected orientable 3-manifold with spherical boundary, and assume
that M is obtained from N by attaching P1 and P2 along two of its sphere boundaries,
where Pi D P #dC1B3, with P a fixed closed prime 3-manifold or S3 and d � 2. Let
Mi D N [ Pi . By the inclusion property (see, e.g., Proposition 2.3 in [42]), we regard
Map.N /;Map.M1/ and Map.M2/ as subgroups of Map.M/. We finally prove:

Theorem B.5. Map.M1/ \Map.M2/ D Map.N /.

Proof. The “�" part is obvious, so it suffices to show the “�" part. For i D 1; 2, let Si
be the boundary sphere of N to which Pi is glued, and write P 0i D Pi ∖ Si . An ele-
ment f 2 Map.M1/ \Map.M2/ fixes the isotopy class of Si , and hence the homotopy
class of S1 [ S2. By Laudenbach’s theorem (Theorem III.1.3 in [55]), homotopic sys-
tems of spheres are isotopic. Thus, up to isotopy, we can assume that f jSiD id and, as
a consequence, f .Pi / D Pi . Hence f decomposes as f1fNf2 where fi 2 Map.Pi / and
fN 2Map.N /. Since the three maps commute with each other, we have ff �1N D f1f2 2

Map.M1/ \Map.M2/. Thus it suffices to show that f1f2 2 Map.N /.
Note that if two arcs or curves in P 0i are isotopic in M , they are already isotopic

in P 0i . Since f 2 Map.Mi /, we have that Df values trivially at every curve and arc in P 0i .
Moreover, as f induces the identity map on �1.Pi /, for i D 1; 2, it follows that fi is the
product of Dehn twists around all boundary spheres of Pi . Furthermore, since the Dehn
twist around Si can be pushed to N , we may assume fi is the product of Dehn twists
along all boundaries of P 0i , denoted Ti .

At this point it suffices to show that following: if T1bT2 2Map.M1/\Map.M2/, then
T1T2 2Map.N /. Observe that if T1T2 2Map.Mi /, we would also have Ti 2Map.M3�i /

since T3�i 2 Map.M3�i /. Thus the theorem finally boils down to the following claim.

Claim. Fix i D 1; 2. If Ti 2 Map.M3�i /, then Ti D 1 or T1T2 2 Map.N /.

We prove the claim for i D 2. Suppose that T2 ¤ 1. As an element in Diff.M1; @M1/,
T2 fixes the homotopy class of every curve on M1 and DT1T2 values trivially at every
curve. Moreover, T2 fixes the homotopy class of every arc in M1 connecting boundaries,
because �1.N / D �1.M1/ � �1.M2/. Thus by Theorem B.4, T2 is a Dehn twist about a
separating sphere in M1. We can decompose this sphere further as the connected sum of
two separating spheres SP1 and SN with SP1 � P1 and SN � N . If SP1 is parallel to S1,
then we are done. If not, then it is the connected sum of some boundary spheres in P 01.
Note that TSP1 � TN � T2 D 1.

Assume that TSP1 ¤ T1. In particular, TSP1 is not the product of Dehn twists along
all spheres of P 01. Now, SN cuts off M into two components K1 and K2, where assume
that P1; P2 � K2. By choosing an appropriate separating sphere,K2 may be expressed as
the connected sum of a .2d C 1/-holed sphere H2dC1 with another 3-manifold K3, such
that the boundary components of H2dC1 correspond to SN and the 2d boundaries of P 01
and P 02. Now we can decompose the inclusion map K1 �M as

K1 � K1 [SN H2dC1 � .K1 [SN H2dC1/#K3:

Again, the inclusion property tells us that both inclusion maps induce injective maps
between the corresponding mapping class groups. But restricting to K1 [SN H2dC1, we
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have TSP1 � T2 � TN ¤ 1 by Theorem B.3. Thus TSP1 � TN � T2 ¤ 1 in Map.M/. Therefore
we must have TSP1 D T1, which implies T1T2 D TN 2 Map.N /, as desired.

B.3. High dimensions

Finally, we settle the intersection and inclusion properties in higher-dimensional mani-
folds. LetW b

g D #g Sn � Sn #b B2n, where n � 3. When b D 0, we will simply writeWg .
Before getting started, we need to quickly review Kreck’s calculation of Map.Wg/ [51];
see also Section 1.3 in [49]. Let Hn.Wg/ Š Z2g be the integral n-th homology group
ofWg , and let Gg be the group of automorphisms ofHn.Wg/ that preserve both the inter-
section form and Wall’s quadratic form; see Section 1.2 in [49] for an explicit description
of Gg as a finite index subgroup of a symplectic or orthogonal group. Kreck [51] showed:

Theorem B.6. The natural homomorphism hWMap.Wg/! Gg is surjective.

The kernel of the above surjective homomorphism is called the Torelli subgroup Tg of
Map.Wg/, so we have a short exact sequence

1! Tg ! Map.Wg/
h
�! Gg ! 1:

The Torelli subgroup Tg is further described by Kreck [51] through another short exact
sequence, which we now recall. Let

† W �n.SO.n//! �n.SO.nC 1//

be the map associated to the natural inclusion homomorphism SO.n/ ,! SO.n C 1/.
Building up on results of Haefliger [34], Kreck [51] proved that there is a short exact
sequence

1! ‚2nC1 ! Tg ! Hom.Z2g ; †.�n.SO.n////! 1;

where ‚2nC1 is the group of homotopy .2nC 1/-spheres up to h-cobordism, which is a
finite abelian group after the work of Kervaire and Milnor [48].

Recall that the capping homomorphism

�b W Map.W b
g /! Map.Wg/

is the surjective homomorphism induced by attaching a disk to every boundary component
of W b

g . The kernel of �b is generated by the twists along the boundary spheres of W b
g , by

a result of Kreck (see Lemma 1.1 in [49] for a proof. In the special case when b D 1, a
result of Kreck (see also Lemma 1.1 in [49]) �1 is an isomorphism. By making repeated
use of the capping homomorphism, we deduce the following.

Lemma B.7 (Inclusion property, I). LetW bCb0

g be obtained fromW b
g by attachingW b0C2

0

along one of its boundary components, where b; b0 � 1. Then, the associated homomorph-
ism Map.W b

g /! Map.W bCb0

g / is injective.

Sketch of proof. It suffices to prove the case b0 D 2, as the general case follows by induc-
tion. In this case, the lemma follows from the observation that the composition of inclusion
map W b

g ! W bC1
g and the capping map (i.e., attaching a disk to a newly created bound-

ary) W bC1
g ! W b

g induces identity map on mapping class groups.
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After the above description, we have the following high-dimensional analog of The-
orem B.3.

Theorem B.8. Let S1; : : : ; Sb �W b
g be embedded spheres parallel to the b � 1 boundary

components of W b
g . Then the product TS1 � � �TSb is trivial in Map.W b

g /, and the subgroup
generated by the twists along boundary spheres is isomorphic to .Z2/b�1.

Proof. First, assume b D 1. If g D 0, the result is trivial. If g � 1, it holds, because of
Kreck’s theorem, that �1 is an isomorphism.

Hence we assume b � 2, so that Corollary B.2 gives that TSi is a nontrivial element of
order 2 in Map.W b

g /, sinceW b
g is stably parallelizable for any g and b. In fact,W 0

g bounds
the boundary sum of g copies of Sn �DnC1 which is parallelizable, hence W 0

g and W b
g

are stably parallelizable. We claim that TS1 � � � TSb D 1. If g D 0, then the claim follows
as in [42], pp. 214–215. If g � 1, let S be a sphere cutting W b

g into W bC1
0 and W 1

g . Since
TS D TS1 � � � TSb in Map.W bC1

0 /, then the same relation holds in Map.W b
g /. But as TS

vanishes in Map.W 1
g /, it vanishes in Map.W b

g / too. This establishes the claim, and also
the result for b � 2.

Finally, we need to show there is no further relation when b � 3. Suppose that some
partial product TSi1 � � � TSik were equal to the identity in Map.W b

g /. Let S 0 be a sphere
which cuts off a disk containing exactly Si1 ; : : : ; Sik , and write W b0

g for the other com-
ponent of the complement of S 0. Note that b0 � 2. Hence TS 0 is nontrivial in W b0

g by
Corollary B.2. On the other hand, in Map.W b

g /we have TS 0 D TS1 � � �TSk , which equals 1.
But by Lemma B.7, this means TS 0 D 1 in Map.W b0

g /, which is a contradiction.

As a consequence, we obtain:

Corollary B.9. There is a split short exact sequence

1! .Z2/
b�1
! Map.W b

g /
�b
�! Map.Wg/! 1;

where .Z2/b�1 is generated by the twists along b � 1 boundary spheres. In particular, we
have

Map.W b
g / Š Map.Wg/ � .Z2/b�1:

Proof. After Theorem B.8, we only need to show that �b splits. To this end, first recall
that Map.Wg/ Š Map.W 1

g /. Now, realize W 1
g inside W b

g as a connected component of
the complement of a separating sphere that cuts off the b boundary spheres of W b

g . In this
way, we obtain a map Map.W 1

g /! Map.W b
g / which provides the desired splitting.

The general case of the inclusion property now follows immediately from Lemma B.7,
Corollary B.9 and Kreck’s calculation of Map.Wg/:

Theorem B.10 (Inclusion property, II). Let W b2
g2 be obtained from W

b1
g1 by attaching a

copy of W n
h
.n � 2/ along a boundary component. Then the associated homomorphism

Map.W b1
g1 /! Map.W b2

g2 / is injective.
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Finally, we settle the intersection property for the class of manifoldsW b
g . For conveni-

ence, let N D W b
g with b � 2, h 2 ¹0; 1º, and let M be the result of gluing two copies

of W dC1
h

along two distinct boundary spheres of N . Write M1 and M2 for the submani-
folds ofM resulting from attaching to N one copy ofW dC1

1 . Again, we use the inclusion
property to regard Map.N /, Map.M1/ and Map.M2/ as subgroups of Map.M/. We have:

Theorem B.11. Map.N / D Map.M1/ \Map.M2/.

Proof. As in the previous subsections, it suffices to prove � is surjective. We have the
following composition of maps:

Map.N /
�
�! Map.M1/ \Map.M2/

�b
�! �.Map.M1// \ �.Map.M2//

We know that �b is surjective by Proposition B.9; similarly, �b ı � is surjective by Kreck’s
description of the mapping class group, as described above. At this point, a direct calcula-
tion based on Theorem B.8 and Corollary B.9 shows that the kernel of �b lies in the image
of �. Hence we are done.

C. The handle complex in high dimensions (by Oscar
Randal-Williams)

The purpose of this section is to study the handle complex in high dimensions, and in
particular prove Theorem 7.7 in Section 7. Following the notation therein, O is a com-
pact, simply-connected orientable manifold of even dimension 2n � 6. Write Wg for the
connected sum of O and g copies of Sn � Sn, where n � 3, and W b

g for the result of
removing b � 1 disjoint 2n-dimensional open balls from Wg .

Let H .W b
g / be the handle complex. Recall that a handle is a manifold diffeomorphic

to H WD Sn � Sn ∖ B2n; its boundary @H is then identified with S2n�1. The simplicial
complex H .W b

g / has vertices given by isotopy classes of smoothly embedded separating
.2n� 1/-spheres inW b

g which bound, to one side, a manifold diffeomorphic toH . A col-
lection of k C 1 distinct vertices span a simplex if they can be realized disjointly. The
following lemma shows that it is equivalent to ask for the spheres to be realized disjointly,
or the handles which they bound to be realized disjointly.

Lemma C.1. If a collection of disjoint .2n� 1/-spheres inW b
g each bound a handle, and

no two are isotopic, then they bound disjoint handles.

Proof. Let ¹ei W H ,! W b
g º
k
iD0 be a collection of embeddings such that the submanifolds

¹ei .@H/º
k
iD0 are disjoint and distinct up to isotopy. We claim that then the ei have mutu-

ally disjoint images.
If the images of ei and ej intersect then, as their boundaries are disjoint, the image

of one is contained in the image of the other: suppose ei .H/ � ej .H/, so that e�1j ı ei W
H ,! H is an embedding. Then by Lemma C.2 below, this self-embedding is isotopic to
a diffeomorphism, and so ei is isotopic to an embedding with the same image as ej , and
hence the spheres ei .@H/ and ej .@H/ are isotopic. But we supposed that such spheres
were not isotopic, giving a contradiction.
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Lemma C.2. Any embedding eWH ,! H is isotopic to a diffeomorphism.

Proof. First note that the map e�WHn.H IZ/!Hn.H IZ/ induced by such an embedding
is an isomorphism, as it respects the intersection form and the intersection form of H is
non-degenerate.

Given such an embedding, by pushing inwards along a collar we can suppose that it
has image in the interior of H . Then the difference K WD H ∖ int.e.H// is a cobordism
from e.@H/ to @H . It is easy to see, using the Seifert–van Kampen theorem, that K is
simply-connected, and by excision we haveH�.K; e.@H/IZ/ŠH�.H; e.H/IZ/, which
vanishes by the discussion above. Thus K is a simply-connected h-cobordism, so by
the h-cobordism theorem [58], there is a diffeomorphism K Š Œ0; 1� � e.@H/ relative
to e.@H/. Using this product structure, and a collar of H , we can find an isotopy from e

to a diffeomorphism.

In view of this discussion, we adopt the view that simplices of H .W b
g / are tuples of

vertices which can be realised to bound disjoint handles. The purpose of this appendix is
to prove the following.

Theorem C.3. The complex H .W b
g / is b.g � 4/=2c-connected.

Let H 0.W b
g / be simplicial complex whose vertices are isotopy classes of embeddings

eWH !W b
g . Its k-simplices are sets of kC 1 vertices which can be represented disjointly

in W b
g . There is a map of simplicial complexes

 W H 0.W b
g / �! H .W b

g /

given on vertices by sending an isotopy class of embeddings Œe WH !W b
g � to the isotopy

class of submanifolds Œe.@H/ � W b
g �; this clearly sends simplices to simplices.

Lemma C.4. The map  has a section.

Proof. For each vertex v 2 H .W b
g /, we choose a representative v D ŒS � W b

g �. As S
bounds a manifold diffeomorphic toH , choosing such a diffeomorphism gives an embed-
ding eWH ! W b

g with

Œe.@H/ � W b
g � D ŒS � W

b
g � D v:

We make such a choice for each vertex v, and attempt to define a simplicial map by

N .v/ WD Œe W H ! W b
g �I

if this does define a simplicial map then it will be a section as required.
To see that N defines a simplicial map, it suffices to show that if ¹eiºkiD0 is a collec-

tion of embeddings H ,! W b
g such that the submanifolds ¹ei .@H/ºkiD0 are distinct up to

isotopy and may be isotoped to be mutually disjoint, then the ei may be isotoped to be
mutually disjoint. By applying isotopy extension to the isotopies which make the ei .@H/
mutually disjoint, we may suppose that the maps @ei have mutually disjoint images. But
then, by Lemma C.1, the ei have mutually disjoint images.
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Lemma C.5. The complexes H .W b
g / and H 0.W b

g / are flag complexes.

Proof. We first show that H 0.W b
g / is a flag complex. Let ¹Œei �ºkiD0 be a set of vertices of

H 0.W b
g / which pairwise span 1-simplices, i.e., each pair ei and ej may be made disjoint

up to isotopy. It suffices to show that if e0; : : : ; ei�1 are disjoint embeddings and ei is
disjoint up to isotopy from each of them, then it may be changed by an isotopy to be
simultaneously disjoint from all of them. This follows by an application of the Whitney
trick.

In more detail, let us construct H D Sn � Sn ∖ B2n by taking the ball B2n to lie
inside the product Dn

C � Dn
C of the two upper hemispheres. We call the submanifolds

Sn � Dn
� and Dn

� � Sn of H the thickened cores of H , and the submanifolds Sn � ¹�º
and ¹�º � Sn given by the centre of Dn

�, the cores of H . As ei is disjoint up to isotopy
from each e0; : : : ; ei�1, the algebraic intersection number of the cores of ei .H/ with those
of each ej .H/ are zero. As W b

g is simply-connected, we may therefore use the Whitney
trick (Theorem 6.6 in [58]) to isotope ei so that the cores of ei .H/ are disjoint from those
of each ej .H/. Now H may be isotoped into an arbitrarily small neighborhood of its
cores, so we may isotope ei so that its image is disjoint from the cores of each ej .H/.
Finally, using an isotopy of each ej .H/ to a small neighborhood of its cores, and using
isotopy extension, we may find an isotopy of ei to an embedding which misses the ej .H/
as required.

To see that H .W b
g / is also a flag complex, we use Lemma C.4. Let v0; : : : ; vk 2

H .W b
g / be a set of distinct vertices such that each pair spans a 1-simplex. Using the

section N from Lemma C.4, it follows that N .v0/; : : : ; N .vk/ 2H 0.W b
g / is a set of distinct

vertices in which each pair spans a 1-simplex, and as we have seen above, H 0.W b
g / is a

flag complex, so this collection of vertices spans a k-simplex. Applying  shows that
v0; : : : ; vk spans a k-simplex in H .W b

g / as required.

Proof of Theorem C.3. As the map  has a section, it suffices to prove that H 0.W b
g / is

b.g � 4/=2c-connected, and to show this we follow Section 5 of [30]. We first construct
an algebraic avatar of the simplicial complex H 0.W b

g / as follows. Let Ifr
n .W

b
g / denote the

set of regular homotopy classes of immersions i WSn � Dn ↬ W b
g . Choose once and for

all a framing of Sn � Dn. Assigning to such an immersion i the image of this framing
under Di at each point of Sn � ¹�º gives a function

Ifr
n .W

b
g / �! ŒSn;Fr.W b

g /�

to the set of homotopy classes of maps from Sn to Fr.W b
g /. The Hirsch–Smale theory of

immersions (Section 5 in [45]) says that this function is a bijection. As W b
g is simply-

connected, the frame bundle Fr.W b
g / is simple, and so based and unbased homotopy

classes of maps to this space agree: thus Ifr
n .W

b
g / agrees with Definition 5.2 in [30], and

in particular has the structure of an abelian group. This abelian group is equipped with a
.�1/n-symmetric bilinear form

� W Ifr
n .W

b
g /˝ Ifr

n .W
b
g /! Z
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given by the algebraic intersection number, and with a function

� W Ifr
n .W

b
g / �!

´
Z; for n even,
Z2; for n odd,

given by counting self-intersections; � is a quadratic refinement of �, and this data forms
a quadratic module in the sense of Section 3 of [30].

Let H denote the hyperbolic quadratic module, i.e., Z¹e; f º with � given in this
basis by

�
0 1

.�1/n 0

�
and � determined by �.e/ D �.f / D 0 and the quadratic property.

For a quadratic module M, let Q.M/ denote the simplicial complex having vertices the
morphisms of quadratic modules H! M (which are automatically injective, as H is non-
degenerate), and where a collection of such morphisms spans a simplex if their images are
mutually orthogonal. As orthogonality of submodules can be tested pairwise, this is a flag
complex.

There is a map of simplicial complexes

� W H 0.W b
g / �! Q.Ifr

n .W
b
g /; �; �/

given as follows. If Œs W H ,! W b
g � is an isotopy class of embedding, then restricting this

embedding to the two thickened cores

e; f W Sn �Dn ,! H

determines a hyperbolic pair Œs ı e�; Œs ı f � 2 Ifr
n .W

b
g /, and hence a map

salg W H! Ifr
n .W

b
g /;

and we declare �.Œs WH ,!W b
g �/ to be salg. If we change s by an isotopy, then the regular

homotopy classes Œs ı e� and Œs ı f � do not change, so � is well-defined on vertices. If
a pair of embeddings s and s0 have disjoint images up to isotopy, then the submodules
salg.H/ and s0alg.H/ of Ifr

n .W
b
g / are clearly orthogonal: as both are flag complexes (using

Lemma C.5), it follows that � is a simplicial map.
Now Ifr

n .W
b
g / contains H˚g as a quadratic submodule, using the g disjoint copies

ofH , so by Theorem 3.2 in [30] the complexQ.Ifr
n .W

b
g /;�;�/ is b.g � 4/=2c-connected,

and is locally wCM of dimension � b.g � 1/=2c. One can then repeat the argument of
Lemma 5.5 in [30] on the map �. We note that there is a mild difference in that
(i) we are considering isotopy classes of embeddings, rather than actual embeddings,
(ii) and our embeddings do not come with a tether to the boundary;

however, these two differences simplify rather than complicate the argument.
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