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An elementary proof of the inequality � � ��

for conditional free entropy

David Jekel and Jennifer Pi

Abstract. Through the study of large deviations theory for matrix Brownian motion, Biane, Capi-
taine, and Guionnet proved the inequality �.X/ � ��.X/ that relates two analogs of entropy in free
probability defined by Voiculescu. We give a new proof of � � �� that is elementary in the sense
that it does not rely on stochastic differential equations and large deviations theory. Moreover, we
generalize the result to conditional microstates and non-microstates free entropy.

1. Introduction

Voiculescu developed free probability as a non-commutative analog to classical probabil-
ity that deals with free products rather than tensor products, and subsequent connections
to operator algebras and random matrices have been numerous (see, e.g. [36, Chapters 4
and 6]). While pursuing the analogy between classical and free probability, Voiculescu
developed several candidates for the analog of (continuous) entropy for non-commutative
random variables X [46, 47, 49]. The first candidate is microstates free entropy, �.X/,
which takes its inspiration from Boltzmann’s characterization of entropy via the counting
of microstates that may make up a single macrostate [50]. The second candidate, non-
microstates free entropy, ��.X/, is developed in direct analog to the classical relationship
between entropy and Fisher information [49]. Microstates free entropy has spawned sev-
eral variants (such as the 1-bounded entropy of Jung [32] and Hayes [23]) which have had
numerous applications to von Neumann algebras, see e.g. [9,14,17–19,24,25,39,41,48].

A major open question in the study of free entropy is the unification problem: are the
microstates and non-microstates notions of entropy the same? The recently announced
resolution of the Connes embedding problem (see [20, 31]) implies that there are non-
commutative random variablesX with �.X/D�1 and ��.X/ >�1, but the unification
problem is still largely open in the case of Connes-embeddable non-commutative random
variables (i.e. those that admit any matrix approximations). Biane–Capitaine–Guionnet
[4] proved in 2003 that the microstates free entropy is always bounded above by the non-
microstates free entropy as a consequence of their study of large-deviation principles for
matrix Brownian motion. In 2017, Dabrowski showed that � and �� agree for free Gibbs
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laws with convex potentials that satisfy certain regularity and growth conditions [11].
Another proof of this result was given by the first author in [27], which was more ele-
mentary in the sense that it did not rely as much on stochastic differential equations and
ultraproducts.

In this paper, we will revisit the �� �� result of Biane, Capitaine, and Guionnet. Their
work showed a lot more than simply � � ��, since they produced a large deviation upper
bound for matrix Brownian motion in the large N limit. However, as the intuitive sketch
by Shlyakhtenko suggests [40, Section 4.6] and we will prove, the result � � �� does
not require this machinery. Rather, in the spirit of [27], we make the analogy between
Fisher information in classical entropy and free Fisher information in free entropy into
precise limiting results. A key observation from [42, Proposition B.7] connecting free and
classical entropy is that microstates free entropy �.X/ can be realized as the supremum
of subsequential limits of normalized classical entropy h.n/.X.n// of all random matrix
models X.n/ for X satisfying certain conditions (this is also reminiscent of [5]). In this
paper, we will give a similar estimate relating free Fisher information and the large-n
limit of classical Fisher information, and with the combination of these tools we will
show � � ��.

Furthermore, we generalize this to the conditional setting, comparing Voiculescu’s
non-microstates entropy of X conditioned on a subalgebra B from [49] with Shlyakht-
enko’s free microstates entropy for X conditioned on B, called �.X j B/ [39]. Sim-
ilar to the non-conditional case, one key ingredient is that Shlyakhtenko’s conditional
microstates entropy can analogously be realized as the supremum of subsequential limits
of normalized conditional classical entropy h.n/.X.n/ j Y.n// over certain random matrix
models .X.n/;Y.n// for .X;Y/, where Y is a tuple of generators for B (see Theorem 4.15).

Our main results are as follows. We phrase some of our results in terms of ultrafilter
versions of � in order to highlight the connection between entropy and embeddings into
ultraproducts (see Section 4) as well as to avoid having to pass to subsequences. For an
m-tuple X in a tracial von Neumann algebra and a subalgebra B generated by a tuple Y,
we show the following:

(1) The conditional microstates free entropy �U.X jB/ is the supremum of the ultra-
limits of the normalized classical conditional entropy h.n/.X.n/ j Y.n// over ran-
dom matrix models .X.n/;Y.n// of .X;Y/ satisfying certain growth bounds (The-
orem 4.15).

(2) Shlyakhtenko’s conditional entropy x�.X jB/ is the supremum of �U.X jB/ over
choices of ultrafilter U (Lemma 4.9).

(3) Given a sequence of deterministic microstates for Y, the conditional free Fisher
information is bounded above by a limit of the classical Fisher information of
any sequence of microstates X.n/ for X satisfying some moment boundedness
conditions (Proposition 6.1).

(4) We prove that x�.X j B/ � ��.X W B/, where ��.X W B/ is Voiculescu’s non-
microstates free entropy relative to B (Theorem 6.4).



An elementary proof of the inequality � � �� for conditional free entropy 1087

The paper is organized as follows:

Section 2 We review background on operator algebras, free probability, and ultraprod-
ucts.

Section 3 We explain classical entropy and Fisher information as background and
motivation.

Section 4 We describe several versions of conditional microstates entropy and estab-
lish their relationships with each other and with classical conditional entropy.

Section 5 We review Voiculescu’s conditional free Fisher information, and give a
characterization of it that does not explicitly reference the free score functions,
which will be used for the main proof.

Section 6 We prove the main theorem that for any tracial von Neumann algebra .M;�/,
any W�-subalgebra B, and any m-tuple of self-adjoint random variables X from
M, we have x�.X j B/ � ��.X W B/.

2. Background on operator algebras and free probability

2.1. Tracial von Neumann algebras

We assume some familiarity with tracial von Neumann algebras; some standard references
for background on these objects are [2, 33, 37, 44]. Concise introductions can be found in
[26] and [16, Section 2]. We record some basic definitions and notations in this section for
usage in this paper.

First, we recall the notion of C�-algebras.

(1) A (unital) �-algebra is an algebra A equipped with a conjugate linear involution �
such that .ab/� D b�a�.

(2) A unital C�-algebra is a �-algebra A equipped with a complete norm k�k such that
kabk � kakkbk and ka�ak D kak2 for a; b 2 A.

A collection of fundamental results in C�-algebra theory establishes that C�-algebras
can always be represented as algebras of operators on Hilbert spaces. If H is a Hilbert
space, the algebra of bounded operators B.H/ is a C�-algebra. Conversely, every unital
C�-algebra can be embedded intoB.H/ by some unital and isometric �-homomorphism �.

A von Neumann algebra M is a unital C�-algebra represented on some B.H/ that is
also closed in the strong operator topology (equivalently in the weak operator topology)
coming from B.H/. If M has a linear functional � WM! C which is:

(1) positive: �.X�X/ � 0 for all X 2M;

(2) unital: �.1/ D 1;

(3) faithful: �.X�X/ D 0 if and only if X D 0;

(4) normal: � WM! C is continuous in the weak-� topology;

(5) tracial: �.XY / D �.YX/ for all X; Y 2M,



D. Jekel and J. Pi 1088

then we call � a trace on M. We say that .M; �/ is a tracial von Neumann algebra. Also,
when the trace is implicit or clear, we often drop � from the notation and just refer to M

as a tracial von Neumann algebra. We write Msa for the collection of self-adjoint elements
of M.

For an element X 2 M, we use the 2-norm from von Neumann algebras: kXk2 D
�.X�X/1=2. Note in particular that for a matrix X 2Mn.C/, this means

kXk2 D trn.X�X/1=2 D
�
1

n

nX
i;jD1

jXi;j j
2

�1=2
:

More generally, for p 2 Œ1;1/ the non-commutative p-norm is given by

kXkp D �
�
jX jp

�1=p
;

where jX j D .X�X/1=2 and jX jp is defined by continuous functional calculus. We write
kXk1 D kXkop for the operator norm of X 2 M � B.H/. These non-commutative
p-norms satisfy an analog of Hölder’s inequality; for proof, see [12, Theorem 6], [10, The-
orem 2.1.5].

Fact 2.1 (Non-commutative Hölder’s inequality). Let M be a tracial von Neumann alge-
bra and let X1; : : : ;Xk 2M. Let p;p1; : : : ; pk 2 Œ1;1� with 1=p D 1=p1 C � � � C 1=pk .
Then

kX1 � � �Xkkp � kX1kp1 � � � kXkkpk :

Given M a tracial von Neumann algebra, we can form a Hilbert space L2.M/ by
taking the completion of M with respect to the inner product hx; yi� D �.x�y/, which
gives rise to the norm k�k2. Moreover, there is a �-homomorphism M!B.L2.M//which
maps x to the operator of left multiplication by x. For further information on this space,
we refer the reader to [2, Section 2.6].

If M is a tracial von Neumann algebra and X D .Xi /i2I is a self-adjoint tuple in M,
we denote by W�.X/ the smallest von Neumann subalgebra of M that contains X. This
is called the von Neumann subalgebra generated by X. It is easy to see that W�.X/ is
the closure in the weak-operator topology of the �-algebra generated by X. In fact, every
element in W�.X/ can be approximated by �-polynomials in X in a rather strong sense, a
fact we will need to use for Lemma 4.4.

Let Chxi W i 2 I i be the �-algebra of non-commutative polynomials in formal self-
adjoint variables xi for i in the index set I . Note that for every tracial von Neumann
algebra M and self-adjoint X D .Xi /i2I in M, there is a unique �-homomorphism

Chxi W i 2 I i !M

given by xi 7! Xi , which we call evaluation at X and denote p 7! p.X/.
The following lemma is a combination of well-known results; for instance, the argu-

ments in [39, Theorem 2.15] and [23, Lemma A.8] rely on this result without explaining
it in detail. It is also a key part of the proof of [29, Theorem 3.30, Proposition 3.32].
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Lemma 2.2. Let M be a tracial von Neumann algebra, let R D .Ri /i2I 2 .0;1/I , and
let X D .Xi /i2I a self-adjoint tuple with kXik � Ri . Let Z 2 W�.X/. Then for every
" > 0, there exists a p 2 Chxi W i 2 I i such thatZ � p.X/

2
< ";

and for all tracial von Neumann algebras N and all Y with kYik � Ri , we havep.Y/op � kZkop:

Proof. Let C�.X/ �M be the C�-algebra generated by X, that is, the operator norm clo-
sure of the �-algebra generated by X. By the Kaplansky density theorem (see for instance
[33, Theorem 5.3.5] or [34]), the ball of radius kZkop in C�.X/ generated by X is dense
in the ball of radius kZkop in W�.X/ with respect to the strong operator topology. Since
approximation in the strong operator topology implies approximation in the 2-norm asso-
ciated to the trace, it follows that there exists Z0 2 C�.X/ such that kZ0kop � kZkop and
kZ � Y k2 < "=2.

Next, we want to approximate Z0 by p.X/ for some non-commutative polynomial p,
but the challenge is to guarantee that kp.Y/kop � kZkop for Y in any tracial von Neumann
algebra M. To this end, we will complete the polynomial algebra to a certain “universal”
C�-algebra. For �-polynomials p in infinitely many variables .xi /i2I , let

kpkuD sup
®p.Y/op WN tracial von Neumann algebra, Y2N I

sa ; kYj k�Ri for i 2 I
¯
:

This defines a C�-norm on Chxi ; x�i W i 2 I i. Let A be the completion of Chxi ; x�i W i 2 I i
into a C�-algebra. If N is a tracial von Neumann algebra and Y 2 N I

sa , then kp.Y/kop �

kpku by definition, so there is a �-homomorphism � W A! C�.X/ mapping xi 2 A to
Xi 2 M for each i 2 I . The image of this homomorphism is dense, and therefore it is
surjective because the image of a C�-algebra under a �-homomorphism is closed [6, Sec-
tion II.5.1.2]. Moreover, by [6, Section II.5.1.5], there exists a 2 A such that �.a/ D Z0

and kakA D kZ0kop � kZkop. By definition of A, there exists p 2 Chxi W i 2 I i such that
kp � akA < "=2 and kpkA D kpku � kakA � kZkop. It follows thatp.X/ �Z0

2
�
p.X/ �Z0op �

�.p/ � �.a/op < "=2:

Hence, kp.X/ �Zk2 < " and kpku � kZkop, as desired.

One more fact needed later for Lemma 4.4 is the following.

Fact 2.3. Let p 2 Chxi W i 2 I i, and let R 2 .0;1/I . Let " > 0. Then there exists a
finite F � I and ı > 0 such that for all tracial von Neumann algebras N and all X,
Y 2MI with max.kXik; kYik/ � Ri for i 2 I and kXi � Yik2 < ı for i 2 F , we have
kp.X/ � p.Y/k2 < ".

We leave the proof as an exercise. It suffices to check the claim for monomials, and
this can be done using the non-commutative Hölder’s inequality and triangle inequality.
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2.2. Non-commutative laws, free independence, and random matrices

A non-commutative analog of the probability distribution of a random variable is the non-
commutative law described as follows.

Definition 2.4. Let Chxi W i 2 I i be the �-algebra of non-commutative polynomials in
formal self-adjoint variables xi for i in the index set I (usually, we take I to be ¹1; : : : ; nº
or N). For any positive numbers R D .Ri /i2I , we define the space of non-commutative
laws in I variables bounded by R, denoted †I;R, as the space of tracial positive linear
functionals � W Chxi W i 2 I i ! C such that for all ` 2 N and i1; : : : ; i` 2 I , we have
j�.xi1 � � �xi`/j � Ri1 � � �Ri` . We equip †I;R with the weak-� topology, viewed as a subset
of the dual of the vector space Chxi W i 2 I i. Let †I D

S
R †I;R and equip it also with

the weak-� topology.
For a self-adjoint I -tuple X from M, define the law of X as the map

�X W Chxi W i 2 I i ! C

given by
p.x/ 7! �

�
p.X/

�
:

Definition 2.5. Given XD .Xi /i2I a tuple of self-adjoint elements of .M; �/, we say that
a sequence of I -tuples X.n/ converges to X in non-commutative law if �X.n/ ! �X. Note
that the elements of the sequence X.n/ are from some tracial W�-algebras .M.n/; �n/, but
these may all be different from .M; �/.

We now describe an analog of independence in the non-commutative setting: free inde-
pendence, which is closely related to free products of von Neumann algebras. We present
some definitions and facts relevant to free independence; for further background, see for
instance [1, Section 5] and [36, 51].

Definition 2.6. Let M be a tracial von Neumann algebra, and let .Mi /i2I be a family
of von Neumann subalgebras. We say that .Mi /i2I are freely independent if for every
i1; : : : ; i` 2 I with ij ¤ ijC1, whenever aj 2Mij , then

�
��
a1 � �.a1/

�
� � �
�
a` � �.a`/

��
D 0:

Moreover, if Xi for i 2 I are tuples (each with their own index set) from M, we say that Xi
are freely independent if the von Neumann subalgebras W�.Xi / are freely independent.

Given any .Mi /i2I , there exists a free product M D �i2IMi , that is, a tracial von
Neumann algebra M containing Mi ’s as subalgebras that are freely independent of each
other; see e.g. [1, pp. 351–352]. Moreover, if X and Y are freely independent self-adjoint
tuples, then the non-commutative law of the joint tuple .X;Y/ is uniquely determined by
those of X and Y; see e.g. [36, Section 1.12, Proposition 13].

The analog in free probability of a tuple of Gaussian random variables is a standard
free semicircular family. We say that S D .S1; : : : ; Sm/ is a standard free semicircular
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family if S1; : : : ; Sm are freely independent from each other and each Si has the standard
Wigner semicircular distribution, i.e.,

�
�
p.Si /

�
D

1

2�

Z 2

�2

p.x/
p

4 � x2 dx

for every polynomial p.
Voiculescu’s asymptotic freeness theory shows how free independence arises in the

large-n limit from independence of certain random n � n matrices. Correspondingly, the
free semicircular family arises from certain Gaussian family of random matrices.

Notation 2.7. Here we use the following notation and terminology.

(1) Note that Mn.C/msa can be equipped with a real inner product

hX;Yitrn D
mX
jD1

trn.X�j Yj /;

where trn is the normalized trace on Mn.C/.

(2) As Mn.C/msa is a real inner product space of dimension mn2, there is a linear
isometry

Mn.C/
m
sa ! Rmn

2

:

The Lebesgue measure on Mn.C/msa is the measure obtained by transferring the
Lebesgue measure on Rn

2
by such an isometry (this is independent of the choice

of isometry by invariance of Lebesgue measure). We denote the Lebesgue measure
by �n.

(3) A self-adjoint random matrix means a random variable on some probability space,
taking values in Mn.C/sa.

(4) A GUE matrix is a random self-adjoint matrix whose probability density with
respect to Lebesgue measure is .1=Zn/e�n

2kxk22=2, where Zn is a normalizing
constant. The GUE matrix is self-adjoint, with diagonal entries real normal ran-
dom variables of mean zero and variance 1=n, and the off-diagonal entries have
real and imaginary parts that are normal random variables of mean zero and vari-
ance 1=2n. See also Section 3.3.

The main results that we will need about asymptotic freeness can be summarized as
follows.

Theorem 2.8. Let M be a tracial von Neumann algebra and Y a self-adjoint N-tuple
from M. Let S1; : : : ; Sm be a standard free semicircular family freely independent from Y.

Let Y .n/1 ; Y
.n/
2 ; : : : be random self-adjoint matrices such that

(1) Almost surely lim supn!1kY
.n/
j kop <1.

(2) Almost surely Y.n/ converges to Y in non-commutative law.
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Let S .n/1 ; : : : ; S
.n/
m be independent n � n GUE matrices. Then

(a) limn!1 EkS .n/j k
j
op D 2

j .

(b) Almost surely .S.n/;Y.n// converges to .S;Y/ in non-commutative law.

This theorem combines several known statements in random matrix theory. Theo-
rem 2.8 (b) is [45, Theorem 2.2].

For claim (a), since the behavior of the largest eigenvalue of a GUE matrix has been
studied in depth, there are several sources we could deduce this from. For instance, [1,
p. 24] shows the following: Let k.n/ be an integer such that

k.n/c1=n! 0 and k.n/= logn!1 as n!1;

where c1 is a certain positive constant. Then we have for sufficiently large n that

P
�

Trn
��
S .n/

�2k.n/�
> .2C ı/2k.n/

�
� 2n4k.n/:

Then by applying Hölder’s inequality on the underlying probability space

E
�
kS .n/kjop

�
� E

�
kS .n/k2k.n/op

�j=2k.n/
� E

�
Trn

��
S .n/

�2k.n/��j=2k.n/
� .2n4k.n//j=2k.n/ D .2n/j=2k.n/2j :

Taking the limit as n!1, we obtain Theorem 2.8 (a).

2.3. Ultrafilters, ultralimits, and ultraproducts

As mentioned in the introduction, we define conditional microstates free entropy using
ultrafilters to highlight the connection with embeddings into matrix ultraproducts. Here
we quickly review the notions of ultrafilters, ultralimits, and the tracial ultraproduct con-
struction for von Neumann algebras. For further reference, see [21], [7, Appendix A],
[16, Section 5.3], [26, Section 5.7].

A filter U on an index set I is a collection of subsets of I such that

(1) ; 62 U, I 2 U;

(2) whenever A;B 2 U, then A \ B 2 U;

(3) whenever A � B and A 2 U, then B 2 U;

(4) If in addition U is maximal, i.e. for anyA� I , we have eitherA2U or I nA2U,
then we say U is an ultrafilter.

We say that U is principal if U D ¹A � I W i 2 Aº for some i 2 I . Otherwise we say U

is non-principal.
Later on in some proofs, we will need the following easy consequence for ultrafilters

on N. This fact is well-known, but we provide a self-contained proof for the reader’s
convenience.
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Fact 2.9. Suppose ¹Anºn2N is a nested decreasing sequence of non-empty subsets of N
such that

T
n2N An D ;. Then there exists a non-principal ultrafilter U such that An 2U

for all n.

Proof. Consider F D ¹Anºn2N [ ¹B � N W B � An for some nº. Then F is a filter by
construction, so one can find an ultrafilter U extending F by Zorn’s lemma. Note that the
ultrafilter U cannot be principal, because An 2 U for all n, but

T
n2N An D ; 62 U.

In this paper, all ultrafilters will be on N. Given a sequence .xn/n2N � R, we say that
xn converges to x along the ultrafilter U, denoted limn!U xn D x, if for every " > 0, we
have ®

k 2 N W jxk � xj < "
¯
2 U:

This generalizes the notions of the usual limit, lim sup, and lim inf.
Finally, we discuss the tracial ultraproduct construction. Given a sequence of tracial

von Neumann algebras .Mn; �n/, we consider the set

`1
�
.Mn/n2N

�
D

°
.xn/ 2

Y
N

Mn W sup
n
kxnk <1

±
of uniformly bounded sequences. We then take the separation-completion of `1..Mn/n2N/

with respect to the norm kxk2 D �.x�x/1=2, where �..xn/n2N/ D limn!U �n.xn/. The
resulting object is denoted by .

Q
U Mn; �/ and is again a tracial von Neumann alge-

bra, whose elements we write as .xn/U for a representing sequence .xn/n2N . For further
details on this construction, see [21, Section 14.4].

In this paper, we only focus on matrix ultraproducts MU WD
Q

U Mn.C/. Our moti-
vation for phrasing the main results in terms of ultraproducts stems from the fact that they
make approximate embeddings exact:

Fact 2.10 (See also [16, Lemma 5.10]). Fix a tracial von Neumann algebra .M; �/ and a
non-principal ultrafilter U. Let XD.X1;X2; : : :/ be a tuple from Msa. Let .

Q
UMn.C/; tr/

be a matrix ultraproduct with trace trD limn!U trn. If .X.n//n2N D .X
.n/
1 ;X

.n/
2 ; : : :/n2N

is a sequence of m-tuples of self-adjoint matrices in Mn.C/sa such that supnkXj kop <1

for each j and X.n/ converges in non-commutative law to X, then there is a unique trace-
preserving embedding

� W
�
W�.X/; �

�
!

�Y
U

Mn.C/; tr
�

which sends X to .X.n//U.

This is easy to check: indeed, since traces are normal linear functionals, it is enough to
consider monomials xi1 � � �xik . But then simply note that by convergence of joint moments
we have that

�.Xi1 � � �Xik / D lim
n!U

trn
�
X
.n/
i1
� � �X

.n/
ik

�
D tr

��
X
.n/
i1
� � �X

.n/
ik

�
U

�
D tr

�
�.Xi1 � � �Xik /

�
:
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3. Background on classical entropy

3.1. Classical entropy and Fisher information

We briefly review only basic definitions of classical entropy and Fisher information. Many
of these facts are from [3,38,43], and an exposition of entropy suited to the random matrix
context is given in [36, Chapters 7 and 8].

Definition 3.1. Let � be a measure on Rm with absolutely continuous density � with
respect to Lebesgue measure, i.e. d� D � dx. The entropy of � is defined to be

h.�/ WD

Z
Rm

�� log � dx;

whenever the integral is defined. If � does not have a density �, then we set h.�/ WD �1.
If X is a random variable with distribution �, then we also write h.X/ in place of h.�/.

We will need some facts about classical entropy in some of the proofs to follow. We
list these facts here for the readers convenience; they come from [42, Lemma B.5 (i), (ii)].

Fact 3.2 (Entropy controlled by partition). Let X be a random variable in Rm with law
�, and let .Sj /1jD1 be a measurable partition of Rm. Then

h.�/ �

1X
jD0

�.Sj / log Leb.Sj / �
1X
jD0

�.Sj / log�.Sj /;

where Leb denotes the Lebesgue measure.

Fact 3.3 (Entropy controlled by variance). If X is a random variable taking values in Rm

with finite variance Var.X/, then

h.X/ �
d

2
log

�
2�eVar.X/=d

�
:

We recall the classical Fisher information of �, denoted 	.�/, which is defined below
as the derivative at time zero of a Brownian motion starting at �.

Let t be the multivariate Gaussian measure on Rm with covariance matrix tI . Sup-
pose� is a measure with smooth density � > 0 on Rm, and set�t D� � t with associated
density �t . We may compute via integration by parts that @th.�t / D

R
kr�t=�tk

2 d�t .
Evaluating this at t D 0, we obtain that

	.�/ D

Z
kr�=�k2 d� D E

�
k�r�=�k2

�
:

Rewriting the integral above as the expected value on the right hand side helps with mov-
ing to the non-commutative case. Namely, „ WD �r�

�
.X/ satisfies the relation

E
�˝
„; f .X/

˛
Cm

�
D E

�
r � f .X/

�
for all f 2 C1c .R

m
ICm/; (3.1)
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see [30, Section 12] for details. This latter notion makes sense even when � does not have
a smooth density, and motivates the following definition.

Definition 3.4. Suppose X is an Rm-valued random variable on the probability space
.�;P /. If there is a random variable „ 2 L2.�;P / satisfying (3.1) and each „j is in the
closure of ¹f .X/ W f 2 C1c .Rm/º in L2.�;P /, then we say„ is the score function for X.

Definition 3.5. The Fisher information 	.�/ is defined as EŒj„j2� if X � � and „ is a
score function for X. If no score function for X exists, then we set 	.�/ WD 1.

Note that the definition of Fisher information aligns with the integral
R
kr�=�k2 d�

if � has smooth density �, but the given definition is more general and will be directly
analogous to the free Fisher information given in Definition 5.7.

We remark that the integration-by-parts relation can be extended to more general func-
tions than C1c . Specifically, if � has finite moments, then we can use test functions of
polynomial growth. This will become important later when we relate classical and free
Fisher information (see Corollary 5.5 and Proposition 6.1).

Lemma 3.6. Let X be an Rm-valued random variable with finite moments and score
function „. Let f W Rm ! Cm be a smooth function such that jf .x/j � A.1 C jxj2/k

and kDf.x/k � B.1C jxj2/k for some A; B > 0 and k 2 N. Then EŒh„; f .X/iCm � D

EŒr � f .X/�.

Proof. Let � W Rm ! Œ0; 1� be a C1c function such that �.0/ D 1, and for t 2 .0; 1�, let

ft .x/ D f .x/�.tx/:

Note that jft .x/j � A.1C jxj2/k and limt!0 ft .x/ D f .x/. Also,

Dft .x/ D Df.x/�.tx/C tf .x/
�
r�.x/

��
;

where .r�.x//� is the row vector obtained by transposing �.x/, and henceDft .x/ � Df.x/C t ˇ̌f .x/ˇ̌kr�kL1 � �B C Akr�kL1��1C jxj2�k ;
and limt!0Dft .x/ D Df.x/. Since ft 2 C1c .R

mICm/, we have

E
�˝
„; ft .X/

˛
Cm

�
D E

�
r � ft .X/

�
:

Now we will take t! 0 and apply the dominated convergence theorem (on the underlying
probability space). Note thatˇ̌˝

„; ft .X/
˛
Cm

ˇ̌
� Aj„j

�
1C jXj2

�k
;

and the function on the right is in L1 because „ and .1 C jXj2/k are in L2; indeed,
E.1C jX2j/2k <1 because we assumed X has finite moments. Hence, by the dominated
convergence theorem,

lim
t!0

E
�˝
„; ft .X/

˛
Cm

�
D E

�˝
„; f .X/

˛
Cm

�
:
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Similarly, ˇ̌
r � ft .X/

ˇ̌
� m

Dft .X/ � m�B C Akr�kL1��1C jXj2�k ;
and the latter has finite expectation because X has finite moments. Therefore, by domi-
nated convergence,

E
�
r � f .X/

�
D lim

t!0
E
�
r � ft .X/

�
D lim

t!0
E
�˝
„; ft .X/

˛
Cm

�
D E

�˝
„; f .X/

˛
Cm

�
:

Finally, the classical entropy can be recovered from an appropriate integral of 	.�t /,
where �t is the convolution of � with a Gaussian measure t with covariance matrix tI .
This formula motivated Voiculescu’s definition of �� (we give a conditional version of this
in Definition 5.10), and it will be important for the proof of the main result. The following
fact is standard and a proof can be found for instance in [30, Lemma 12.1.4].

Lemma 3.7. Let � be a probability measure on Rm with finite variance and density �,
and let t be the centered Gaussian measure with covariance matrix tI . Then,

h.� � t / � h.�/ D
1

2

Z t

0

	.� � s/ds;

and

h.�/ D
1

2

Z 1
0

�
m

1C t
� 	.� � t /

�
dt C

m

2
log.2�e/:

Fisher information has the following property with respect to sums of independent
random variables. This fact is standard and quick to prove (see e.g. [30, Lemma 12.1.3]).

Lemma 3.8. Let � and � be measures in Rm. Then 	.� � �/ � min.	.�/;	.�//.

Corollary 3.9. Let� be a probability measure on Rm and let t be the standard Gaussian
measure with covariance matrix tI . Then t 7! 	.� � t / is decreasing.

This follows immediately from the previous lemma since if s < t , then

	.� � t / D 	.� � s � t�s/ � 	.� � s/:

3.2. Classical conditional entropy and Fisher information

Definition 3.10. Suppose that X D .X1; : : : ; Xm/ and Y D .Y1; Y2; : : :/ are random vari-
ables on some probability space �. If the joint distribution of .X;Y/ has a disintegration
as �.x j y/dx1 : : : dxm d�.y/ for some measure � on RN , then we define the conditional
entropy

h.X j Y/ D �
Z
�Y

Z
�X

�.x j y/ log �.x j y/ dx1 : : : dxm d�.y/:

If no such disintegration exists, we set h.X j Y/ D �1.
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Definition 3.11. If there is a random vector „ 2 L2.�/m satisfying the integration-by-
parts relation: for any n 2 N, any smooth compactly supported function

f W Rm �Rn ! Rm;

and any indices i1; : : : ; in,

E
˝
„; f .X; Yi1 ; : : : ; Yin/

˛
D E

�
divX f .X; Yi1 ; : : : ; Yin/

�
;

then „ is unique in L2.�/m and is defined by evaluating �rX log.�XjY/ on the random
variable .X;Y/. In this case, we call „ the score function for X given Y. We also define
the conditional Fisher information by

	.X j Y / D Ej„j2;

whenever the above quantity exists, and1 otherwise.

When .X;Y/ is a random variable in Rm � Rn, the conditional Fisher information
describes the rate of change of h.XC t1=2S j Y/, where S is a Gaussian random variable
in Rm with covariance matrix Im, independent from .X;Y/. More concretely, one can
show that 	.XC t1=2S j Y/ is well-defined and finite for t > 0 and

d

dt
h.XC t1=2S j Y/ D

1

2
	.XC t1=2S j Y/:

3.3. Normalization for random matrix theory

In random matrix theory, we consider probability measures on Mn.C/msa , the space of m-
tuples of self-adjoint matrices. Per Notation 2.7,Mn.C/msa is viewed as a real inner product
space of dimension mn2 with the inner product h�; �itrn . Thus, concepts such as Lebesgue
measure, gradient, divergence, entropy, and Fisher’s information are defined for random
matrices by coordinatizing Mn.C/msa using an orthonormal basis with respect to h�; �itrn .
We remark that coordinatizing using h�; �iTrn versus h�; �itrn yields different normalizations
for some of these quantities. Indeed, an orthonormal basis for Mn.C/sa with respect to
h�; �itrn would be

E D
®p
nEj;j

¯n
jD1
[
®p
n=2.Ej;k CEk;j /

¯
1�j<k�n

[
®
i
p
n=2.Ej;k �Ek;j /

¯
1�j<k�n

;

while an orthonormal basis with respect to h�; �iTrn would remove the
p
n factors. Thus,

the convention using Trn is most convenient for entrywise computations in random matrix
theory, but we will follow the convention using trn because the normalized trace is what
relates to the free probabilistic limit as n!1, and most of our computations are coordi-
nate-free, i.e. we work with inner products and linear transformations and do not need to
refer to the matrix entries.

In any case, a dimensional renormalization of the entropy, score function, and Fisher
information are needed in order to discuss the large-n limit. One can see this for instance
from computing the entropy of a GUE; see [42, Appendix B].
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Definition 3.12. Let .X;Y/ be a random variable in Mn.C/msa �Mn.C/Nsa, with density
�X;Y. Then, define the normalized conditional entropy by

h.n/.X j Y/ WD
1

n2
h.X j Y/Cm logn;

and the normalized conditional Fisher information as 	.n/.X j Y/ WD n�4	.X j Y/, where
h and 	 are understood with respect to the inner product h�; �itrn coming from the normal-
ized trace.

Further detail about this normalization can be found in [30, Section 16] and [42,
Appendix B], which both take the classical quantities to be defined based on h�; �itrn . If
the classical quantities are instead defined based on h�; �iTrn , the equations change slightly.
Denoting (for the moment) the two versions of classical entropy and Fisher information
by subscripts of trn and Trn respectively, we have

h.n/ D
1

n2
htrn Cm logn D

1

n2
hTrn C

m

2
logn;

	.n/ D
1

n4
	trn D

1

n3
	Trn :

For the Trn version, see for instance [28, Section 6.2]. An advantage of basing everything
on h�; �itrn as we do here is that n2 D dimR Mn.C/sa appears in a natural way in the
formula.

Using the normalized versions, the relationship between entropy and Fisher informa-
tion can be stated as follows:

@th
.n/.XC t1=2S j Y/ D

1

2n4
	.XC t1=2S j Y/ D

1

2
	.n/.XC t1=2S j Y/;

assuming X has finite variance and t > 0. To prove this, we must relate the GUE tuple
S with the standard Gaussian vector in the inner product space Mn.C/msa with h�; �itrn . A
standard Gaussian vector G can be constructed as

G D
X
E2E

ZEE;

where E is an orthonormal basis for Mn.C/msa with h�; �itrn , and ZE are independent stan-
dard normal random variables.1 One thus has that the total variance

EkGk22 D dimRMn.C/
m
sa D mn

2:

A GUE m-tuple is thus obtained as S D .1=n/G. Hence,

@th
.n/.XC t1=2S j Y/ D

1

n2
@th

�
XC .t=n2/1=2G j Y

�
D

1

2n4
	
�
XC .t=n2/1=2G j Y

�
:

1Note that the definition of standard Gaussian vector depends on the choice of inner product. When
working with h�; �itrn rather than h�; �iTrn , the standard Gaussian vector G will have matrix entries with
variance n. That is, the standard Gaussian vector inMn.C/sa with h�; �itrn is

p
n times the standard Gaussian

vector in Mn.C/msa with h�; �iTrn which would have entries of variance 1.
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As a consequence,

h.n/.XC t1=2S j Y/ � h.n/.X j Y/ D
1

2

Z t

0

	.n/.XC u1=2S j Y/ du; (3.2)

and we may also recover the conditional entropy from the conditional Fisher information
via the following integral formula, exactly as in Lemma 3.7:

h.n/.X j Y/ D
1

2

Z 1
0

�
m

1C t
� 	.n/.XC t1=2S j Y/

�
dt C

m

2
log 2�e: (3.3)

4. Conditional microstates free entropy

4.1. Definition and properties

Conditional microstates entropy

�.X1; : : : ; Xn j Y1; : : : ; Ym/

was first defined by Voiculescu [47]. Later Shlyakhtenko [39] gave a different defini-
tion using the supremum of measures of relative microstate spaces over the microstates
for Y , rather than the average as Voiculescu had done. We will define the conditional
entropy with respect to a fixed embedding into a matrix ultraproduct, and we will show
that taking the supremum over the embedding and the ultrafilter gives Shlyakhtenko’s
conditional microstates entropy (Lemma 4.9). Moreover, in Section 4.2 we will describe
the relationship between conditional microstates entropy and conditional classical entropy
analogously to the random matrix interpretation of microstates free entropy given in [42,
Proposition B.7].

Definition 4.1 (Conditional microstates free entropy via fixed relative microstates). Let
.M; �/ be a tracial von Neumann algebra, with B �M a separable von Neumann subalge-
bra. Let XD .X1; : : : ;Xm/ be anm-tuple of self-adjoint elements in .M; �/, and fix a tuple
of generators YD .Yj /j2N for B. Let� WD law.X;Y/, and fix a sequence Y.n/ 2Mn.C/Nsa

that converges in non-commutative law to Y with supnkY
.n/
j kop <1 for each j . Then for

any neighborhood O of �, and any tuple RD .R1;R2; : : : ;Rm/ 2 .0;1/m, we define the
conditional microstate spaces:

�R.O j Y.n/ Y/

WD

°
X.n/ 2Mn.C/

m
sa j

X .n/j


op � Rj for all 1 � j � m; and law .X.n/;Y.n// 2 O

±
;

where �n denotes the Lebesgue measure on Mn.C/msa given in Notation 2.7.
We define the conditional microstates free entropy of X given Y.n/  Y, denoted

�.X j Y.n/ Y/ via:

�R.X j Y.n/ Y/ WD inf
O nbhd of �

lim sup
n!1

�
1

n2
log �n

�
�
.n/
R .O j Y.n/ Y/

�
Cm logn

�
:
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Finally, define

�.X j Y.n/ Y/ WD sup
R2.0;1/m

�R.X j Y.n/ Y/:

Also, for any non-principal ultrafilter U of N, we define �U.X j Y.n/  Y/ to be the
same expression as above, with the lim supn!1 replaced with limn!U.

We now show that the value of �R.X j Y.n/  Y/ does not depend on the parameter
R as long as kXj kop � Rj .

Lemma 4.2. Set rj D kXj kop and r D .r1; : : : ; rm/. Then if R;R0 2 .0;1/m are such
that rj < Rj < R0j for each j D 1; : : : ; m, then

�R.X j Y.n/ Y/ D �R0.X j Y.n/ Y/:

Hence if Rj > rj for all j , then

�R.X j Y.n/ Y/ D �.X j Y.n/ Y/:

Proof. This is the conditional analogue to [47, Proposition 2.4]; since the approximating
sequence Y.n/ is fixed, the same argument showing inclusion of microstate spaces works:
one can define an appropriate piecewise linear function g such that for any n 2 N and
neighborhood O of �, there is some n0 2 N and another neighborhood O0 of � such that

G
�
�
.n0/
R .O0 j Y.n/ Y/

�
� �

.n/
R0 .O j Y

.n/ Y/;

where G.X1; : : : ; Xn/ D .g.X1/; : : : ; g.Xn// is applied componentwise in the matrices.
This establishes that �R0.X j Y.n/  Y/ � �R.X j Y.n/  Y/. The opposite inequality
follows from the fact that R < R0 implies �.n/R .O j Y.n/ Y/ � �.n/R0 .O j Y

.n/ Y/ for
any fixed O and n 2 N.

In the rest of the paper, we write R > kXkop as shorthand for Rj > kXj kop for all
j D 1; : : : ; m. We now show that the value of the conditional microstates free entropy
does not depend upon the choice of approximating microstates Y.n/, but rather only on
the choice of induced embedding.

Definition 4.3 (Induced embedding). Let MU WD
Q

U Mn.C/ be a matrix ultraproduct
(as in Fact 2.10). Given Y a tuple of generators for a von Neumann subalgebra .B; �/ �
.M; �/, and a sequence of approximating matrix tuples Y.n/ 2Mn.C/Nsa converging to Y
in non-commutative law, we define the induced embedding �Y.n/ Y as the unique trace-
preserving �-homomorphism B !MU such that Yj 7! ŒY

.n/
j �U, which is well defined

by Fact 2.10.

We want to show, similarly to [39, Theorem 2.15], that our conditional microstates free
entropy does not depend upon the choice of generators for the subalgebra B. However, our
definition of conditional microstates free entropy works with fixed microstates Y.n/ for the
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generators Y, while the relative entropy in [39] takes a supremum over possible values of
Y.n/. Thus, we record that our conditional microstates free entropy �U.X j Y.n/  Y/
depends only on the induced embedding rather than the specific choice of Y.n/ and Y.

Lemma 4.4 (Conditional microstates free entropy depends only on the subalgebra and the
embedding). Let Y and Z be countably infinite tuples of generators for the same subalge-
bra .B; �/ of .M; �/. For any sequences of approximating microstates Y.n/ and Z.n/ for
Y and Z respectively that give rise to the same induced embedding, i.e. � WD �Y.n/ Y D

�Z.n/ Z, we have
�U.X j Y.n/ Y/ D �U.X j Z.n/ Z/:

In other words, the conditional microstates free entropy depends only on the subalgebra
B and the choice of embedding � W B !MU.

Proof. Since the hypotheses on Y and Z are symmetric, it suffices to establish the inequal-
ity

�U.X j Y.n/ Y/ � �U.X j Z.n/ Z/:

From the definitions of these quantities, it is enough to show that for any neighborhood O

of law.X;Z/, and any R > kXkop there is some neighborhood zO of law.X;Y/ satisfying

�
.n/
R . zO j Y.n/ Y/ � �.n/R .O j Z.n/ Z/: (4.1)

Without loss of generality, we can take O to be an element of the neighborhood basis
for the weak-� topology on the space of laws; in other words, assume there is some finite
collection of non-commutative �-polynomials ¹q1.x;y/; : : : ;qk.x;y/º and some tolerances
"j > 0 so that

�
.n/
R .O j Z.n/ Z/ D

°
X.n/ 2Mn.C/

m
sa W

ˇ̌
trn
�
qj .X.n/;Z.n//

�
� �

�
qj .X;Z/

�ˇ̌
< "j

for all 1 � j � k; and kX.n/kop � R
±
:

Set " D min1�j�k "j .
By Fact 2.3, there exists some ı > 0 and finite set F of indices such that for every

tracial von Neumann algebra N , for all X0 2N m
sa , Z0 2N N

sa , W0 2N N
sa satisfying kX 0ikop�

R and max.kZ0ikop; kW0ikop/ � kZikop, whenever kZ0i �W0ik2 < ı for i 2 F , thenqi .X0;Z0/ � qi .X0;W0/2 < "

3
:

By Lemma 2.2, for each i , there exists a polynomial pi such that kpi .Y/ � Zik2 < "
and such that for every tracial von Neumann algebra N and every Y0 with kY 0i kop �

kYikop, we have kpi .Y0i /kop � kZikop. Because the embeddings induced by Y.n/ and
Z.n/ are the same, we have that for U-many n, for all i 2 F ,pi .Y.n// �Z.n/i 

2
< ı:
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This implies that for all X.n/ 2 Mn.C/msa with kX.n/kop � R, we have kpi .Y.n//kop �

kZikop and henceˇ̌
trn
�
qi .X.n/;Z.n//

�
� trn

�
qi
�
X.n/; pi .Y.n//

��ˇ̌
�
qi .X.n/;Z.n// � qi�X.n/; pi .Y.n//�2 < "

3
:

Similarly, ˇ̌
�
�
qi .X;Z/

�
� �

�
qi
�
X; pi .Y/

��ˇ̌
<
"

3
:

In particular, this means that for all X.n/ 2Mn.C/msa with kX.n/kop � R, we haveˇ̌
trn
�
qj .X.n/;Z.n//

�
� �

�
qj .X;Z/

�ˇ̌
�
ˇ̌
�
�
qj
�
X; p.Y/

��
� �

�
qj .X;Z/

�ˇ̌
C
ˇ̌
trn
�
qj .X.n/;Z.n//

�
� trn

�
qj
�
X.n/; p.Y.n//

��ˇ̌
C
ˇ̌
trn
�
qj
�
X.n/; p.Y.n//

��
� �

�
qj
�
X; p.Y/

��ˇ̌
�
2"

3
C
ˇ̌
trn
�
qj
�
X.n/; p.Y.n//

��
� �

�
qj
�
X; p.Y/

��ˇ̌
: (4.2)

Finally, to make this last term less than "=3, we choose zO. Let Qqj .x; y/ D qj .x; p.y//.
Then set zO to be the neighborhood of law.X;Y/ defined by approximating ¹ Qq1; : : : ; Qqkº
up to tolerance "=3. Then by construction, the last term appearing on the left-hand side
of (4.2) is less than "=3.

Combining these estimates, we obtain thatˇ̌
trn
�
qj .X.n/;Z.n//

�
� �

�
qj .X;Z/

�ˇ̌
< "

for U-many nwhenever X.n/ 2�.n/R . zO jY.n/ Y/. Thus, the claimed set inclusion in 4.1
holds and we establish �U.X j Y.n/ Y/ � �U.X j Z.n/ Z/ as desired.

This lemma allows us to make the following definition.

Definition 4.5. We define the conditional microstates entropy of X D .X1; : : : ; Xm/ 2

.M; �/msa given the embedding � W B !MU to be

�U.X j B; �/ WD �U.X j Y.n/ Y/;

whereY is any set of generators ofB and Y.n/ is anysequence of approximating microstates
such that �Y.n/ Y D �.

This definition still depends on the choice of embedding �. We remark that if B is not
strongly 1-bounded in the sense of Jung [32] and Hayes [23], then there are embeddings
of B into a matrix ultraproduct that are not equivalent by an automorphism of the matrix
ultraproduct [29, Theorem 1.1, Corollary 1.4]. However, if we are not concerned with the
particular embedding, we may also consider the supremum over all embeddings.
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Definition 4.6. We define the conditional microstates entropy of X D .X1; : : : ; Xm/ 2

.M; �/msa given B, with respect to the ultrafilter U, as

�U.X j B/ WD sup
�WB!MU

�U.X j B; �/:

Shlyakhtenko [39] defined a version of conditional microstates entropy, which we will
denote by x�.X j Y/, where the microstate Y.n/ is not fixed beforehand but rather chosen
to maximize the volume of the microstate sets �.n/R .X j Y.n/ Y/.

Definition 4.7 (Shlyakhtenko [39]). Let .M; �/ be a tracial von Neumann algebra and
X D .X1; : : : ; Xm/ and Y D .Y1; Y2; : : :/ be self-adjoint elements of M with operator
norm � R. For a neighborhood O of law.X;Y/, let �2.O/ be the set of laws �jChyi where
� W Chx; yi ! C is a law in O. Define

x�R.X j Y/ D inf
O3law.X;Y/

lim sup
n!1

1

n2
log

�
sup

Y.n/2�.n/R .�2.O//

�n
�
�
.n/
R .O j Y.n/ Y/

��
Cm logn:

Let x�.X j Y/ be the supremum over R.

Remark 4.8. In fact, Shlyakhtenko considered only a finite tuple Y D .Y1; : : : ; Ym0/ and
wrote the definition in terms of specific neighborhoods of matrices approximating (up to
some tolerance " > 0) the moments of .X;Y/ with order bounded by ` 2 N. For a finite
tuple Y, this definition agrees with what we wrote above; indeed, the quantity is monotone
under inclusions of neighborhoods O, so it suffices to consider a neighborhood basis for
the space of laws †mCm0;R at the point law.X;Y/. In the case where Y is an infinite tuple,
a neighborhood basis could instead be given by neighborhoods that test the moments up
to a certain order in each finite subset of the variables.

Shlyakhtenko also showed that the entropy x�R.X j Y/ depends only on X and B D

W�.Y/, provided that R > kXkop.2 Therefore, one can define x�.X j B/ as the x�.X j Y/
for a generating tuple Y of B.

We will show that x�R.X j Y/ represents the supremum of the entropies �U.X j B; �/,
i.e. the supremum over embeddings � W B !MU and over non-principal ultrafilters U.

Lemma 4.9. Let .M; �/ be a tracial von Neumann algebra. Let X be an m-tuple and Y
an infinite tuple with kXkop and kYkop � R. Let B DW�.Y/. Then

x�.X j Y/ D x�R.X j Y/ D sup
U

�U.X j B/ D sup
U

sup
�WB!MU

�U.X j B; �/;

where supU denotes the supremum over all non-principal ultrafilters on N.

2Technically, he proved this under the assumption that Y is a finite tuple, but this does not materially
affect the proof.
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Proof. (�) Fix U and �. Let O be a neighborhood of law.X;Y/. Let Y.n/ be a sequence
of microstates for Y as in Definition 4.5. Then

�n
�
�
.n/
R .O j Y.n/ Y/

�
� sup

Z.n/2�.n/R .�2.O//

�n
�
�
.n/
R .O j Z.n/ Y/

�
:

(In the case where the left-hand side is empty the inequality holds trivially.) Therefore,

lim
n!U

�
1

n2
log �n

�
�
.n/
R .O j Y.n/ Y/

�
Cm logn

�
� lim sup

n!1

1

n2
log

�
sup

Z.n/2�.n/R .�2.O//

�n
�
�
.n/
R .O j Z.n/ Y/

�
Cm logn

�
:

Taking the infimum over O and then the supremum over � and U completes the argument.
(�) Let Ok be a nested decreasing sequence of neighborhoods of law.X;Y/ in †!;R

such that O0 D †!;R and
T
k2N Ok D ¹law.X;Y/º. Define A0 D N and for k � 1,

AkD

²
n�k W

1

n2
log sup

Z.n/2�.n/R .�2.Ok//

�n
�
�
.n/
R .Ok jZ.n/ Y/

�
Cm logn> x�R.X jY/�

1

k

³
:

Observe that because OkC1 � Ok , we have AkC1 � Ak . It is a consequence of the def-
inition of x�R.X j Y/ that Ak is nonempty. However,

T
k2N Ak D ¿. These properties

imply that there exists a non-principal ultrafilter U on N such that Ak 2 U for all k (see
Fact 2.9).

From the definition of Ak , for each n 2 Ak nAkC1, there exists Y.n/ 2 �.n/R .�2.Ok//

such that

1

n2
log �n

�
�
.n/
R .Ok j Y.n/ Y/

�
Cm logn > x�R.X j Y/ �

1

k
:

Note that law.Y.n// converges to law.Y/ as n! U because for n 2 Ak (which is a
neighborhood of U), we have law.Y.n// 2 �2.Ok/; and

T
k2N �2.Ok/D ¹law.Y/º. Thus,

Y.n/ induces an embedding � W B!MU. For n 2 Ak , we have n 2 Ak0 nAk0C1 for some
k0 � k and hence

1

n2
log �n

�
�
.n/
R .Ok j Y.n/ Y/

�
Cm logn

�
1

n2
log �n

�
�
.n/
R .Ok0 j Y.n/ Y/

�
Cm logn

> x�R.X j Y/ �
1

k0
� x�R.X j Y/ �

1

k
:

It follows that for each k 2 N,

lim
n!U

1

n2
log �n

�
�
.n/
R .Ok j Y.n/ Y/

�
Cm logn � x�R.X j Y/ �

1

k
:
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Because†!;R is compact, the Ok’s must form a neighborhood basis for†!;R at law.X;Y/
and hence

inf
O3law.X;Y/

1

n2
log �n

�
�
.n/
R .O j Y.n/ Y/

�
Cm logn

D inf
k2N

lim
n!U

1

n2
log �n

�
�
.n/
R .Ok j Y.n/ Y/

�
Cm logn � x�R.X j Y/:

Therefore,
x�R.X j Y/ � �U.X j B; �/;

which completes the proof.

4.2. Conditional free entropy and conditional classical entropy

In this section, we relate conditional free entropy with classical entropy by an analogue
of [42, Proposition B.7], which expresses the free entropy as the supremum of limits of
classical entropy of certain random matrix models. The idea of free entropy as a large-n
limit of classical entropy goes back to the work of Voiculescu [47], and the idea to take the
supremum of classical entropies of certain measures was applied by Biane and Dabrowski
in their concavification of free entropy [5, Remark 4.5]. The point of [42, Proposition B.7]
and the results here is to give a description that does not explicitly reference the microstate
spaces, based on a diagonalization argument. We will first give a random matrix charac-
terization of �U.X j B; �/ and then a random matrix characterization of �U.X j B/.

Theorem 4.10 (Random matrix characterization of �U.X j Y/). Let X be an m-tuple of
elements from .M; �/sa, and let Y be a self-adjoint tuple of generators for a �-subalgebra
B �M. Fix a sequence Y.n/ 2Mn.C/Nsa such that supnkY

.n/
j k <1 and Y.n/ converges

in non-commutative law to Y.
Then �U.X j Y.n/ Y/ is the supremum of

lim
n!U

1

n2
h.X.n//Cm logn D lim

n!U
h.n/.X.n//;

over all sequences of random variables .X.n//n2N with X.n/ 2Mn.C/msa satisfying:

(1) the law of .X.n/;Y.n// converges to the law of .X;Y/ in probability as n! U.

(2) For some R 2 .0;1/m, we have limn!UkX.n/kop � R in probability.

(3) There are some constants C > 0 and K > 0 such that for each n 2 N,

P
�
kX.n/k2 � C C ı

�
� e�Kn

2ı2 for all ı > 0:

Remark 4.11. “Convergence in probability as n! U” is understood as follows. Let Zn
be a sequence of random variables indexed by n 2N. Then limn!UZn � c in probability
means that for each " > 0,

lim
n!U

P.Zn > c C "/ D 0:
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Remark 4.12. The hypothesis (3) can be replaced by some weaker tail bounds if desired.
The motivation for the specific form of the tail bound used here is that it arises naturally
from concentration estimates for certain random matrix models (see e.g. [1, Sections 2.3
and 4.4]). For instance, it is easy to check that the Gaussian random matrices S .n/j satisfy
such an estimate. This is how the theorem was used in [42, Appendix B]. However, for
the purposes of our main result in this paper, the specific form of tail bound is irrelevant
because we only need to apply the theorem to matrices X.n/ that are uniformly bounded
in operator norm, hence also uniformly bounded in k�k2, which trivially satisfy (3); see
Remark 4.14 and proof of Theorem 6.4.

Proof of Theorem 4.10. Based on Lemma 4.4, we may assume without loss of generality
that kYj kop D 1 and kY .n/j kop D 1 for all j 2 N. Suppose that .X.n//n2N is any sequence
satisfying the conditions (1)–(3). As the Y.n/ are fixed, the distribution of .X.n/;Y.n//
depends only on X.n/. Then one can use the argument of [42, Proposition B.7] (replacing
the usual microstate spaces with the conditional microstate spaces and the limit with the
ultralimit), to show that limn!U h

.n/.X.n//� �U.X jY.n/ Y/. We repeat the argument
here for the reader’s convenience.

First fix R0 so that for all j D 1; : : : ; m, R0j > max.Rj ; 1/. Let O be a neighborhood
of law.X;Y/ in †!;R0 . For each n 2 N, we define the following partition of Mn.C/msa :

S
.n/
0 WD �

.n/
R0 .O j Y

.n/ Y/;

S
.n/
1 WD B.0; C C 1/ n S

.n/
0 ;

S
.n/
j WD B.0; C C j / n B.0; C C j � 1/ for all j � 2;

whereB.0;K/ denotes the 2-norm ball of radiusK centered at 0. To simplify notation, for
each n 2 N we write �n for the Lebesgue measure on Mn.C/msa . Then, applying Fact 3.2
to the density of .X.n/;Y.n//, we have

hMn.C/msa
.X.n/;Y.n// �

1X
jD0

�.n/
�
S
.n/
j

�
log �n

�
S
.n/
j

�
� �.n/

�
S
.n/
j

�
log�.n/

�
S
.n/
j

�
;

where we write �.n/ to denote the probability measure associated to .X.n/;Y.n//. (Note
that as Y.n/ is fixed, this depends only on X.n/). Subsequently,

h.n/.X.n/;Y.n// �
1X
jD0

H
.n/
j .O j Y.n/ Y/; (4.3)

where

H
.n/
j .O j Y.n/ Y/

WD �.n/
�
S
.n/
j

�� 1

n2
log �n

�
S
.n/
j

�
Cm logn

�
� �.n/

�
S
.n/
j

�
�
1

n2
log�.n/

�
S
.n/
j

�
:
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Note that this quantity depends on the neighborhood O only for the indices j 2 ¹0; 1º.
We now bound each term of the sum in 4.3. When j D 0, we have

H
.n/
0 .O j Y.n/ Y/

D �.n/
�
�
.n/
R0 .O j Y

.n/ Y/
�� 1

n2
log �n

�
�
.n/
R0 .O j Y

.n/ Y/
�
Cm logn

�
� �.n/

�
�
.n/
R0 .O j Y

.n/ Y/
�� 1

n2
log�.n/

�
�
.n/
R0 .O j Y

.n/ Y/
��
:

Since .X.n/;Y.n// converges in non-commutative law to .X;Y/ and �t log t � e�1 for
any t > 0, we have that the second term goes to 0 when we take the ultralimit in n. For
the first term, note that by property (1),

lim
n!U

�.n/
�
�
.n/
R0 .O j Y

.n/ Y/
�
D 1:

Then, by the definition of �U.X j Y.n/ Y/: for any " > 0 there is some neighborhood
O" such that

lim
n!U

H
.n/
0 .O" j Y.n/ Y/ � �U.X j Y.n/ Y/C ": (4.4)

For bounding the other terms, we first note that upon identifyingMn.C/msa with Cmn2 and
applying Stirling’s formula, we have

1

n2
log �n

�
B.0; r/

�
D �m lognCm log r CO.m/ for all r > 0: (4.5)

Then for the term with j D 1, note that S .n/1 � B.0; C C 1/, so we have

H
.n/
1 .O j Y.n/ Y/

� �.n/
�
S
.n/
1

��
�m lognCm log.C C 1/CO.m/Cm logn

�
�
1

n2
�.n/

�
S
.n/
1

�
log�.n/

�
S
.n/
1

�
D �.n/

�
S
.n/
1

��
m log.C C 1/CO.m/

�
�
1

n2
�.n/

�
S
.n/
1

�
log�.n/

�
S
.n/
1

�
:

Again since �t log t � e�1 for t > 0, the second term goes to zero in the ultralimit. Then
again by property (1), we have

�.n/
�
S
.n/
1

�
! 0 as n! U;

so that

lim
n!U

H
.n/
1 .O j Y.n/ ! Y/ � lim

n!U
�.n/

�
S
.n/
1

��
m log.C C 1/CO.m/

�
D 0:
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Finally, for j � 2, we apply equation (4.5) along with the exponential tail bound in prop-
erty (3) and the fact that �t log t is increasing for t � e�1 to obtain

1X
jD2

H
.n/
j .O j Y.n/ Y/

�

1X
jD2

�.n/
�
S
.n/
j

��
m log.C C j /CO.m/

�
C

1

n2

Z
�e�1 log.e�1/

�

1X
jD2

e�Kn
2.j�1/2

�
m log.C C j /CO.m/

�
C

1

en2
! 0 as n! U:

Finally, combining these upper bounds and sending "! 0 in equation (4.4), we obtain
that for any sequence .X.n//n2N satisfying the conditions (1)–(3),

lim
n!U

h.n/.X.n/;Y.n// � lim
n!U

1X
jD0

H
.n/
j .O j Y.n/ Y/ � �U.X j Y.n/ Y/:

For the other direction, we construct a sequence .X.n//n2N so that

�U.X j Y.n/ Y/ � lim
n!U

h.n/.X.n//:

Without loss of generality, assume �U.X j Y.n/  Y/ > �1. Fix R > kXk1, and O

a neighborhood of law.X;Y/. Let .Ok/k2N be a sequence of nested neighborhoods of
law.X;Y/ in †!;R, shrinking to law.X;Y/ as k !1.

Let A0 D N and for k � 1 let

Ak D

²
n � k W

1

n2
log �n

�
�
.n/
R .Ok j Y.n/ Y/

�
Cm logn > �U

R .X j Y
.n/ Y/�

1

k

³
:

Note that Ak 2 U because

lim
n!U

1

n2
log �n

�
�
.n/
R .Ok j Y.n/ Y/

�
Cm logn � �U

R .X j Y
.n/ Y/:

Moreover, since the Ok’s are nested, we haveAkC1�Ak ; also,
T
k2N AkD¿. For each k,

for n 2 Ak nAkC1, let �.n/ be the uniform measure on �.n/R .Ok j Y.n/ Y/, and let X.n/

be a random matrix tuple in Mn.C/msa with distribution �.n/. Thus, for n 2 Ak n AkC1,

h.n/.X.n// D
1

n2
log �n

�
�
.n/
R .Ok j Y.n/ Y/

�
Cm logn:

Hence, using the definition and nestedness of the Ak’s,

h.n/.X.n// � �U
R .X j Y

.n/ Y/ �
1

k
for n 2 Ak :
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Thus, as Ak 2 U, we have

lim
n!U

h.n/.X.n// � �U
R .X j Y

.n/ Y/ �
1

k
:

Since k was arbitrary,

lim
n!U

h.n/.X.n// � �U
R .X j Y

.n/ Y/ D �U.X j Y.n/ Y/:

It remains to check that X.n/ satisfies (1)–(3). Note that by construction kX.n/kop � R
so that (2) and (3) hold. Furthermore, to show that law.X.n/;Y.n// converges in probability
to law.X;Y/, fix a neighborhood O of law.X;Y/. Since †d;R is compact, there exists k
such that Ok � O. For all n 2 Ak , we have law.X.n/;Y.n// 2 Ok � O.

Remark 4.13. The same proof works to show the random matrix interpretation of�.X jY/
holds with limn!U replaced by subsequential limits. More explicitly, one can establish
that given fixed microstates Y.n/ for Y, we have �.X j Y.n/ Y/ is the supremum of

lim
`!1

1

n2
`

h.X.`/;Y.n`//Cm logn` D lim
`!1

h.n`/.X.`/;Y.n`//;

over sequences n` !1 and random variables X.`/ 2Mn`.C/
m
sa satisfying (1)–(3).

Remark 4.14. In the last theorem, note for each n we chose the matrix tuples X.n/ uni-
formly at random from

�
.n/
R .Ok j Y.n/ Y/ for n 2 Ak n AkC1:

(Recall
S
k2N.Ak n AkC1/ D A0 D N.) Thus, we may always choose the collection

¹X.n/ºn2N to be unitarily invariant in distribution and uniformly bounded in operator
norm.

Theorem 4.15. Let X be anm-tuple of elements from .M; �/sa, and let Y be a self-adjoint
tuple of generators for a �-subalgebra B �M. Then �U.X j B/ is the supremum of

lim
n!U

1

n2
h.X.n/ j Y.n//Cm logn D lim

n!U
h.n/.X.n/ j Y.n//;

over all sequences of random variables .X.n/;Y.n//n2N with X.n/ 2Mn.C/msa and Y.n/ 2
Mn.C/Nsa satisfying:

(1) The law of .X.n/;Y.n// converges to the law of .X;Y/ in probability as n! U.

(2) For some R 2 .0;1/m, we have limn!UkX
.n/
j kop � R in probability.

(3) There are some constants C > 0 and K > 0 such that for each n 2 N and all
values of y,

P
�
kX.n/k2 � C C ı j Y.n/ D y

�
� e�Kn

2ı2 for all ı > 0:

(4) For each j , there is some R0j such that limn!UkY
.n/
j kop � R

0
j .
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Proof. First, we show that �U.X j B/ is less than or equal to the supremum. Recall
�U.X j B/ was defined as the supremum of �U.X j B; �/ over all embeddings �. By the
previous proposition, after fixing microstates Y.n/ that induce the embedding �, this quan-
tity in turn is the supremum over matrix models X.n/ satisfying (1)–(3) of Theorem 4.10.
Note that if X.n/ and Y.n/ satisfy (1)–(3) of the previous theorem, where Y.n/ is deter-
ministic, then .X.n/;Y.n// also satisfy (1)–(4) of this theorem. Moreover, when Y.n/ is
deterministic, we have h.n/.X.n/ j Y.n// D h.n/.X.n//. Thus, �U.X j B/ is less than or
equal to the supremum asserted in this theorem.

For the reverse inequality, suppose .X.n/;Y.n// satisfy (1)–(4) of this theorem. By
standard facts about conditional distributions and Borel probability spaces (see e.g. [15,
Chapters V.9 and V.10] and [35, Section 8.3]), we may assume without loss of generality
that all the Y.n/’s are random variables on a fixed probability space .�;P0/, and that X.n/

is a random variable onMn.C/msa �� which can be sampled by first sampling ! and then
sampling using the conditional distribution �.n/! of X.n/ given Y.n/.!/. For each !, we
denote by X.n/.!/ the random variable on Mn.C/ chosen according to this conditional
distribution. We use P0 for the probability measure on the space where Y.n/ is defined,
as above, and we write P for probability on the (implicit) larger probability space where
X.n/ and Y.n/ live.

Since h.n/.X.n/ j Y.n// D
R
�
h.n/.X.n/.!// dP0.!/, the idea of the argument is now

to apply Theorem 4.10 pointwise to each !. However, we must be careful because we
only assumed convergence in probability, and the limits are with respect to the ultrafilter
U. Thus, roughly speaking, we want to arrange that the hypotheses of Theorem 4.10 hold
uniformly for ! in a set of large measure.

Note condition (3) implies an upper bound on the second moment EkX.n/.!/k22 that
is uniform in !; specifically,

E
X .n/.!/2

2
D

1X
jD1

X .n/.!/2
2
� 1¹CCj�kX .n/.!/k22<CCjC1jY.n/.!/º

C
X .n/.!/2

2
� 1¹kX .n/.!/k22<CC1jY.n/.!/º

�

1X
jD1

.C C j C 1/e�Kn
2j 2
C .C C 1/ DW C 0 <1;

and this upper bound C 0 is independent of !. Hence, by Fact 3.3, there is an upper bound
M on the entropy h.n/.X.n/.!// that is uniform in !.

Let .Ok/ be a sequence of neighborhoods in †!;R;R0 shrinking to law.X;Y/. For each
n and !, write

�n;k.!/ D
®
X 2Mn.C/

m
sa W kXk1 < Rj C 1=k and law

�
X;Y.n/.!/

�
2 Ok

¯
:

Let

�n;k D
®
! 2� W

Yj .!/1 <R0j C1=k for j D 1; : : : ; k; �.n/!
�
�n;k.!/

�
> 1� 1=k

¯
:
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Note that limn!U P0.�n;k/ D 1; indeed,

P0.�
c
n;k/ � P0

�Yj .!/1 > Rj C 1=k
�
C P0

�
�.n/!

�
�n;k.!/

c
�
� 1=k

�
� P0

�Yj .!/1 > Rj C 1=k
�
C k

Z
�

�.n/!
�
�n;k.!/

c
�
dP0;

where we have used the union bound and Markov’s inequality. Now

P0
�
kYj .!/k1 > Rj C 1=k

�
! 0

as n!U by assumption (4). Meanwhile, by the definition of the conditional distribution,Z
�

�.n/!
�
�n;k.!/

c
�
dP0

D P
�®

X 2Mn.C/
m
sa W kXk1 < Rj C 1=k and law

�
X;Y.n/.!/

�
2 Ok

¯c�
;

which converges to zero as n! U by our assumptions (1) and (2). Let �0;k D � and
A0 D N and for k � 1, let

Ak D
®
n � k W P0.�n;k/ � 1 � 1=k

¯
:

Since P0.�n;k/! 1 as n! U, we have that Ak 2 U. Also the intersection of the Ak’s
is empty by construction. For each k 2 N, for each n 2 Ak n AkC1, fix some !n 2 �n;k
such that

h.n/
�
X.n/.!n/

�
� sup
!2�n;k

h.n/
�
X.n/.!/

�
� 1=n:

From the definition of �n;k , we see that for n 2 Ak n AkC1, we haveYj .!n/1 < R0j C 1=k for j D 1; : : : ; k; and �.n/!n

�
�n;k.!n/

�
> 1 � 1=k:

Since the Ak’s are nested, it follows that the same inequality holds for all n 2 Ak . There-
fore, by the definition of �n;k , we get that X.n/.!n/ and Y.n/.!n/ satisfy the assumptions
of Theorem 4.10, and so

lim
n!U

h.n/
�
X.n/.!n/

�
� �U.X j B/:

Now observe by the definition of conditional entropy, if n 2 Ak n AkC1, then

h.n/.X.n/ j Y.n// D
Z
�

h.n/
�
X.n/.!/

�
dP0.!/

D

Z
�n;k

h.n/
�
X.n/.!/

�
dP0.!/C

Z
�c
n;k

h.n/
�
X.n/.!/

�
dP0.!/

� P0.�n;k/
�
h.n/

�
X.n/.!n/

�
C 1=n

�
C P0.�

c
n;k/M

� h.n/
�
X.n/.!n/

�
C 1=nCM=k:
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Again, because the Ak’s are nested, we get

h.n/.X.n/ j Y.n// � h.n/
�
X.n/.!n/

�
C 1=nCM=k

for all n 2 Ak , not only for n 2 Ak n AkC1. Hence,

lim
n!U

h.n/.X.n/ j Y.n// � lim
n!U

h.n/
�
X.n/.!n/

�
C 1=k CM=k

� �U.X j B/C 1=k CM=k:

Since k was arbitrary, we get limn!U h
.n/.X.n/ j Y.n// � �U.X j B/ as desired.

5. Conditional non-microstates free entropy

In this section, we develop the notions of free score function and free Fisher information
in order to define a conditional non-microstates free entropy, in analogue with the classical
conditional entropy defined using Fisher information in Section 3.2. The following defini-
tions are from [49], but phrased in terms of formal polynomials rather than von Neumann
subalgebras with algebraically free generators.

Notation 5.1. Throughout this section, we fix Ex to denote the indeterminates x1; x2; : : : ;
xm, and Ey to denote the infinite tuple of indeterminates y1; y2; : : : :

Definition 5.2. Let B be a unital �-algebra, and let BhExi be the algebra of polynomials
in m non-commuting variables with coefficients from B. For i D 1; : : : ; m, we define the
partial non-commutative derivatives @i or free difference quotient as linear maps:

@i W BhExi ! BhExi ˝BhExi

by sending B to 0 and xj to ıij 1˝ 1, and extending by the Leibniz rule

@i .P1P2/ D @i .P1/ � .1˝ P2/C .P1 ˝ 1/ � @i .P2/
�
for P1; P2 2 BhExi

�
:

We also extend the non-commutative derivatives @i for i D 1; : : : ; m to the algebra of
polynomials in countably many non-commuting variables BhEx; Eyi.

As motivation for the free score function, we recall the following relationship between
the free difference quotient and differentiation of functions on the matrix algebra. In
Lemma 5.3, Lemma 5.4, and Corollary 5.5, the subalgebra B is absent. Instead, we use
an infinite collection of parameters Y1; Y2; : : : which we will take to be matrix approx-
imations for generators of B. (In spirit, we are replacing BhExi with ChEx; Y1; Y2; : : :i
when Y1; Y2; : : : are self-adjoint generators of B and the xj ’s are formal variables; see
Remark 5.9). In the next two lemmas, we use the following notation: For an algebra A, let
# W .A˝ A/ � A! A be the bilinear map .a˝ b; c/ 7! acb DW .a˝ b/#c.
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Lemma 5.3. Let f 2 ChEx; Eyi. Let f .n/ denote the function Mn.C/Nsa ! Mn.C/ given
by evaluation of f . Let Djf .n/ denote the Fréchet derivative of f .n/ as a function of Xj
mappingMn.C/sa!Mn.C/ŠMn.C/sa˝R C, that is,Djf .n/.X1; : : : ;Xm; Y1; Y2; : : :/
is the linear transformation Mn.C/!Mn.C/ such that for A 2Mn.C/sa,

Djf
.n/.X1; : : : ; Xm; Y1; Y2; : : :/ŒA�

D
d

dt

ˇ̌
tD0
f .n/.X1; : : : ; Xj�1; Xj C tA;XjC1; : : : ; Xm; Y1; Y2; : : :/:

Then we have

Djf
.n/.X1; : : : ; Xm; Y1; Y2; : : :/ŒA� D .@jf /

.n/.X1; : : : ; Xm; Y1; Y2; : : :/#A;

where .@jf /.n/ is function Mn.C/Nsa ! Mn.C/ ˝Mn.C/ given by evaluation of both
tensorands of @jf as polynomials on the input matrices X1; : : : ; Xm; Y1; Y2; : : : :

This lemma is proved for monomials by direct computation and then extended by
linearity. For details, see e.g. [30, Lemma 14.1.3]. Similar statements were shown earlier
in [8] and [13, Section 3].

Lemma 5.4. Let f 2ChEx; Eyi. Then 1
n2
rj � f

.n/D trn˝ trn..@jf /.n//, whererj � denotes
the divergence operator on f .n/ as a function of Xj .

Proof. Recall that the divergence is the trace of the Fréchet derivative. Note that there is an
isomorphismˆ fromMn.C/˝Mn.C/op to the space of linear operatorsB.Mn.C// given
by ˆ.A ˝ B/ŒC � D .A ˝ B/#C . Because of the uniqueness of the trace on Mn.C/ ˝
Mn.C/opŠMn2.C/, it follows that TrB.Mn.C//Œˆ.T /�D Trn˝Trn.T / for T 2Mn.C/˝
Mn.C/op. Therefore,

rj � f
.n/
D TrB.Mn.C//.Djf

.n// D Trn˝Trn
�
.@jf /

.n/
�
:

Dividing by n2 proves the asserted formula.

This yields the following integration-by-parts formula for random matrix models. This
is closely related to the Schwinger–Dyson equation for free Gibbs laws; see e.g. [22,
Section 4.3.20].

Corollary 5.5. Let X be an Mn.C/msa-valued random variable with finite moments, and
let „ be a score function for X. Let Y1; Y2; : : : be deterministic self-adjoint matrices. Let
f1; : : : ; fm 2 ChEx; Eyi and f D .f1; : : : ; fm/. Then

1

n2
E
˝
„j ; f

.n/.X1; : : : ; Xm; Y1; Y2; : : :/
˛
trn

D E trn˝ trn
�
.@jf /

.n/.X1; : : : ; Xm; Y1; Y2; : : :/
�
:

Proof. Because f .n/ is a polynomial function, Lemma 3.6 shows that

E
˝
„; f .n/.X1; : : : ; Xm; Y1; Y2; : : :/

˛
trn
D ErX � f

.n/.X1; : : : ; Xm; Y1; Y2; : : :/



D. Jekel and J. Pi 1114

Note thatrX � f .n/, the divergence with respect toX , can be expressed as
Pm
jD1rj � f

.n/
j .

Finally, we apply Lemma 5.4 to evaluate rj � f
.n/
j .

Voiculescu’s free score function is defined to satisfy an analog of this formula on B-
valued non-commutative polynomials.

Definition 5.6. Let B be a unital �-subalgebra of .M; �/, and X D .X1; : : : ; Xm/ an m-
tuple of self-adjoint elements in .M; �/. Let BhXi �M denote the subalgebra generated
by B and X. An element � D .�1; : : : ; �m/ 2 L2.W�.BhXi//m is the free score function
of X with respect to B (also called the conjugate variable of X with respect to B), if

�
�
�ip.X/

�
D � ˝ �

�
@ip.X/

�
for all p.x/ 2 BhExi and 1 � i � m:

Such an element � will be denoted J.X W B/.

Definition 5.7. Let B � .M; �/ be a unital �-subalgebra and X D .X1; : : : ; Xm/ an m-
tuple of self-adjoint elements of M. We define the relative free Fisher information of X
with respect to B to be

ˆ�.X W B/ D
J�X W BhXi�2

2
D

X
1�j�m

J�Xj W BhXi�22:
Otherwise, we define ˆ�.X W B/ D 1. We will also use the notation ˆ�.X W Y/ when Y
is a self-adjoint tuple which generates B.

Lemma 5.8. Let X D .X1; X2; : : : ; Xm/ be a tuple from .M; �/sa. Then

ˆ�.X W B/ D sup
®ˇ̌
� ˝ �

�
@f .X/

�ˇ̌2
W f .x/ 2 BhExim;

f .X/
2
� 1

¯
:

Proof. First, if both sides are infinite, then there is nothing to show; it suffices to consider
the cases where either ˆ�.X W B/ or the right-hand side above are finite.

If ˆ�.X W B/ <1, then by Definition 5.7, there is a conjugate variable � WD J.X W
BhXi/ 2 L2.M/m satisfying˝

�; f .X/
˛
�
D � ˝ �

�
@f .X/

�
for all f .x/ 2 BhExim:

The result then follows:

ˆ�.X W B/ D k�k22 D sup
®ˇ̌˝
�; f .X/

˛
�

ˇ̌2
W
f .X/

2
� 1

¯
D sup

®ˇ̌
� ˝ �

�
@f .X/

�ˇ̌2
W
f .X/

2
� 1

¯
:

On the other hand, if the supremum in the right-hand side above is finite, then letting
C <1 be such that

sup
®ˇ̌
� ˝ �

�
@f .X/

�ˇ̌2
W f .x/ 2 BhExim;

f .X/
2
� 1

¯
� C <1;
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then we have for all polynomials f .x/ 2 BhExim,ˇ̌
� ˝ �

�
@f .X/

�ˇ̌
� C

f .X/
2
:

Because non-commutative polynomials are dense in L2.M/, there is a bounded linear
functional � W L2.M/! C extending f .X/ 7! � ˝ �.@f .X//, and by the Riesz represen-
tation theorem, there is a vector � 2 L2.M/ satisfying˝

�; f .X/
˛
�
D �

�
f .X/

�
D � ˝ �

�
@f .X/

�
for all f .x/ 2 BhExim:

Then � is a conjugate variable for X and by definition ˆ�.X W B/ <1, so the equality
follows by the argument given above.

Remark 5.9. The supremum on the right-hand side of Lemma 5.8 can be rephrased in
terms of formal polynomials p.Ex; Ey/ 2 ChEx; Eyi.

Indeed, since W�.Y/ D B, given any f .Ex/ 2 BhExim, and any B-valued coefficient c
of f , we can choose a sequence of polynomials pcn. Ey/2Ch Eyim so that kc�pcn.Y/k2!0.
Also by the Kaplansky density theorem (similar to Lemma 2.2) we can choose these to
be uniformly bounded in operator norm, in particular kpcn.Y/kop � kckop. By taking the
sum of polynomial approximations of the B-valued coefficients of monomials in f .Ex/,
we obtain polynomial approximations pfn .Ex;Y/ satisfyingf .X/ � pfn .X;Y/2 ! 0;

with kpfn .X;Y/kop uniformly bounded.
Now write f .Ex/ D limn p

f
n .Ex;Y/, and note

sup
f .Ex/2BhExim

kf k2�1

®ˇ̌
� ˝ �

�
@f .X/

�ˇ̌2¯
D sup
f .Ex/2BhExim

kf k2�1

®ˇ̌
� ˝ �

�
@
�

lim
n
pfn .X;Y/

��ˇ̌2¯
D sup
f .Ex/2BhExim

kf k2�1

®ˇ̌
� ˝ �

�
lim
n
@pfn .X;Y/

�ˇ̌2¯
� sup
p.Ex; Ey/2ChEx; Eyim

kpk2�1

®ˇ̌
� ˝ �

�
@p.X;Y/

�ˇ̌2¯
;

where we can exchange the limit with the derivative in the second equality because for
each of the B-valued coefficients c in the polynomial f , pcn. Ey/ is uniformly bounded in
operator norm and converges in k�k2 to c. The other inequality is immediate as there is a
natural identification of ¹p.Ex;Y/ W p.Ex; Ey/ 2 ChEx; Eyiº as elements of BhExi (by consider-
ing any Y-terms as coefficients). Thus, we have that

sup
f .x/2BhExim

kf k2�1

®ˇ̌
� ˝ �

�
@f .X/

�ˇ̌2¯
D sup
p.x;y/2ChEx; Eyim

kpk2�1

®ˇ̌
� ˝ �

�
@p.X;Y/

�ˇ̌2¯
:
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Definition 5.10. Let B � M be a unital �-subalgebra generated by the tuple of self-
adjoint elements Y, and let X an m-tuple of self-adjoint elements of M. We define the
relative non-microstates free entropy of X with respect to B as

��.X W B/ D
1

2

Z 1
0

�
m

1C t
�ˆ�.XC t1=2S W B/

�
dt C

m

2
log 2�e;

where S D .S1; : : : ; Sm/ is an m-tuple of freely independent standard semicircular vari-
ables which are also free from BhXi. We also write ��.X W Y/ for this quantity.

6. Proof of the main result

The next step toward proving the main result in Theorem 6.4 is the following proposition
relating the free and the classical Fisher information. The intuition for this statement is
related to [40, Section 4.6].

Proposition 6.1. Let XD .X1; : : : ;Xm/ be anm-tuple of self-adjoint elements in .M; �/,
and fix Y a tuple of generators for a von Neumann subalgebra B �M. Fix a sequence
Y.n/ 2Mn.C/Nsa of deterministic microstates for Y such that kY .n/j k is uniformly bounded
for each j . Suppose that X.n/ 2Mn.C/msa is a sequence of random matrix tuples with finite
moments such that the law of .X.n/;Y.n// converges in probability to the law of .X;Y/
and for each k, we have

lim
n!U

E trn
��
X
.n/
j

�2k�
<1 and lim

n!U
trn
��
Y
.n/
j

�2k�
<1:

Then
ˆ�.X W Y/ � lim

n!U

1

n4
	.X.n// D lim

n!U
	.n/.X.n//: (6.1)

Our first step toward proving this is to observe that

lim
n!U

E
�

trn
�
p.X.n/;Y.n//

��
D �

�
p.X;Y/

�
:

Here we use the following standard fact from probability theory.

Lemma 6.2. Suppose Zn is a sequence of complex random variables and Zn converges
in probability to a constant c. If limn!UkZnkL2 <1, then limn!U EŒZn� D c.

Proof. Note thatZn � c is also bounded inL2 and converges to zero in probability. Hence,
we can assume without loss of generality that c D 0. Note that for 0 < ı < t ,

jEZnj � EjZnj D E
�
jZnj1jZnj<ı

�
C E

�
jZnj1ı�jZnj�t

�
C E

�
jZnj1jZnj>t

�
� ı C tP

�
jZnj � ı

�
C E

�
jZnj

2

t
1jZnj�t

�
� ı C tP

�
jZnj � ı

�
C
kZnk

2
L2

t
:
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Hence,

lim
n!U

jEZnj � ı C 0C
1

t
lim
n!U
kZnk

2
L2
:

Since ı and t were arbitrary, limn!U jEZnj D 0.

Proof of Proposition 6.1. For readability, we write ExD .x1; : : : ;xm/ and EyD .y1;y2; : : :/.
We claim that for every p 2 ChEx; Eyi, we have

lim
n!U

E
�

trn
�
p.X.n/;Y.n//

��
D �

�
p.X;Y/

�
(6.2)

and
lim
n!U

E
�

trn˝ trn
�
@xip.X

.n/;Y.n//
��
D � ˝ �

�
@xip.X;Y/

�
: (6.3)

By our assumptions, trn.p.X.n/;Y.n/// converges in probability to �.p.X;Y//, and sim-
ilarly trn˝ trn.@xip.X.n/;Y.n/// converges in probability to � ˝ �.@xip.X;Y//. Hence,
by Lemma 6.2, it suffices to show that trn.p.X.n/;Y.n/// and trn˝ trn.@xip.X.n/;Y.n///
are bounded in L2 of the probability space as n!U. By linearity, it suffices to prove that
trn.p.X.n/;Y.n/// and trn.p.X.n/;Y.n/// trn.q.X.n/;Y.n/// are bounded in L2 for mono-
mials p and q. Consider a monomial A.n/1 � � �A

.n/

k
where each Aj is either X .n/ij or Y .n/ij

.
By the non-commutative Hölder’s inequality (Fact 2.1),ˇ̌

trn
�
A
.n/
1 � � �A

.n/

k

�ˇ̌2
�
�

trn
�ˇ̌
A
.n/
1

ˇ̌k�2=k
� � � trn

�ˇ̌
A
.n/

k

ˇ̌k�2=k�2
� trn

��
A
.n/
1

�2k�1=k
� � � trn

��
A
.n/

k

�2k�1=k
:

Then using the classical Hölder’s inequality,

E
ˇ̌
trn
�
A
.n/
1 � � �A

.n/

k

�ˇ̌2
� E

�
trn
��
A
.n/
1

�2k�1=k
� � � trn

��
A
.n/

k

�2k�1=k�
�
�
E trn

��
A
.n/
1

�2k��1=k
� � �
�
E trn

��
A
.n/

k

�2k��1=k
:

By our assumption on the moments, the limit of this quantity as n!U is finite. Similarly,
if q is a monomial B.n/1 � � �B

.n/

`
where each B.n/j is one of the X .n/’s or Y .n/’s, then

E
ˇ̌
trn
�
A
.n/
1 � � �A

.n/

k

�
trn
�
B
.n/
1 � � �B

.n/

`

�ˇ̌2
� E

�
trn
��
A
.n/
1

�2k�1=k
� � � trn

��
A
.n/

k

�2k�1=k trn
��
B
.n/
1

�2`�1=`
� � � trn

��
B
.n/

`

�2`�1=`�
�
�
E trn

��
A
.n/
1

�2k�2�1=2k
� � �
�
E trn

��
A
.n/

k

�2k�2�1=2k
�
�
E trn

��
B
.n/
1

�2`�2�1=2`
� � �
�
E trn

��
B
.n/

`

�2`�2�1=2`
�
�
E trn

��
A
.n/
1

�4k��1=2k
� � �
�
E trn

��
A
.n/

k

�4k��1=2k
�
�
E trn

��
B
.n/
1

�4`��1=2`
� � �
�
E trn

��
B
.n/

`

�4`��1=2`
:

This establishes (6.2) and (6.3).
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The main inequality (6.1) that we want to prove is trivial in the case that

lim
n!U

1

n4
	.X.n// D1;

so assume that the limit is finite. Then for U-many n there is a score function „.n/ for
X.n/ as in Definition 3.4. Then by Corollary 5.5, we have

E
˝
„.n/; p.X.n/;Y.n//

˛
trn
D

mX
jD1

E
�
n2 trn˝ trn

�
@xjp.X

.n/;Y.n//
��
: (6.4)

By Lemma 5.8 and Remark 5.9,

ˆ�.X W Y/ D sup
f .x/2BhExim

kf k2�1

®ˇ̌
� ˝ �

�
@f .X/

�ˇ̌2¯
D sup
p.x;y/2ChEx; Eyim

kp.X;Y/k2�1

®ˇ̌
� ˝ �

�
@p.X;Y/

�ˇ̌2¯
:

Fix p 2 ChEx; Eyi with kp.X;Y/k2 � 1. Then

� ˝ �
�
@p.X;Y/

�
D lim
n!U

E
�

trn˝ trn
�
@p.X.n/;Y.n//

��
:

For each n, by applying the integration by parts relation (6.4) and Cauchy–Schwarz in-
equality,ˇ̌

E
�

trn˝ trn
�
@Xp.X.n/;Y.n//

��ˇ̌
D

ˇ̌̌̌
1

n2
E
˝
„.n/; p.X.n/;Y.n//

˛
trn

ˇ̌̌̌
�

1

n2

�
E
p.X.n/;Y.n//2

2
k„.n/k22

�1=2
D

1

n2

�
E
p.X.n/;Y.n//2

2

�1=2
	.X.n//1=2:

Thus, in the limit we obtainˇ̌
� ˝ �

�
@p.X;Y/

�ˇ̌
D lim
n!U

ˇ̌
E
�

trn˝ trn
�
@p.X.n/;Y.n//

��ˇ̌
� lim
n!U

�
E
p.X.n/;Y.n//2

2

�1=2� 1

n4
	.X.n//

�1=2
D

�p.X;Y/2
2

lim
n!U

1

n4
	.X.n//

�1=2
�

�
lim
n!U

1

n4
	.X.n//

�1=2
By squaring this equation and taking the supremum over p with kp.X;Y/k2 � 1, we
obtain ˆ�.X W Y/ � limn!U

1
n4

	.X.n// as desired.

Since we must integrate the Fisher information to obtain the entropy, we will use the
following fact to exchange the ultralimit and integral (which is difficult to do in general).
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Lemma 6.3. Let fn W Œ0; T �! Œ0;1� be a sequence of decreasing nonnegative functions
for some fixed 0 < T <1. Let U be a free ultrafilter on N. Then f D limn!U fn is a
decreasing function (hence measurable) and

R T
0
f � limn!U

R T
0
fn.

Proof. Let

gk.t/ D

2kX
jD1

min
�
f

�
Tj

2k

�
; 2k

�
1ŒT .j�1/=2k ;Tj=2k/.t/:

Then gk � gkC1 � 2kC1 and limk!1 gk D f almost everywhere (specifically, at all
points of continuity of f , which is cocountable because f is monotone). Hence,

R T
0
f D

supk
R T
0
gk . Fix k 2 N and " > 0. Since f .t/ D limn!U fn.t/, there is a set A 2U such

that

n 2 A H) fn

�
Tj

2k

�
� min

�
f

�
Tj

2k

�
; 2k

�
� " for j D 1; : : : ; 2k :

Since fn is decreasing,
R T
0
fn is bounded by below by any right-endpoint Riemann sum,

so for n 2 A,Z T

0

fn.t/ dt �
T

2k

2kX
jD1

fn

�
Tj

2k

�
�
T

2k

2kX
jD1

�
min

�
fn

�
Tj

2k

�
; 2k

�
� "

�
D

Z T

0

gk.t/ dt � T":

Since " and k were arbitrary, limn!U

R T
0
fn � supk

R T
0
gk D

R T
0
f .

Theorem 6.4. Let X D .X1; : : : ; Xm/ be an m-tuple of self-adjoint elements in .M; �/,
let B be a separable von Neumann subalgebra, and fix a countable tuple of generators
Y for B. Fix a sequence Y.n/ 2Mn.C/Nsa converging in non-commutative law to Y. Then
for any ultrafilter U on N:

�U.X j Y.n/ Y/ � ��.X W B/: (6.5)

Hence, by taking the supremum over all sequences Y.n/  Y, and the supremum over
ultrafilters,

�U.X j B/ � ��.X W B/; x�.X j B/ � ��.X W B/: (6.6)

Proof. First, note that if �U.X j B/ D �1, there is nothing to prove. Otherwise, by
Theorem 4.10 and Remark 4.14, there is some R2 .0;1/m and a sequence X.n/ of random
variables in Mn.C/msa such that:

(1) kX.n/kop � R for all j and n,

(2) .X.n/;Y.n// converges to .X;Y/ in non-commutative law, and

(3) �U.X j Y.n/ Y/ D limn!U.
1
n2
h.X.n//Cm logn/ D limn!U h

.n/.X.n//.
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Let S D .S1; S2; : : : ; Sm/ be a tuple of freely independent semicircular random vari-
ables, also freely independent from X and Y, in some larger tracial von Neumann algebra
zM containing M. Also, let S.n/ 2Mn.C/msa be a sequence ofm-tuples of independent GUE

random matrices. We claim that for each u > 0, the random matrices X.n/ C u1=2S.n/ and
Y.n/ satisfy the hypotheses of Proposition 6.1. Indeed, using Theorem 2.8 (b), .S.n/;X.n/;
Y.n// converges in non-commutative law almost surely to .S; X; Y/. Since any poly-
nomial in .X C u1=2S;Y/ is also a polynomial in .S;X;Y/, this implies that .X.n/ C
u1=2S.n/;Y.n// converges in non-commutative law almost surely to .XC u1=2S;Y/. Fur-
thermore, using Theorem 2.8 (a) and the fact that kX.n/kop � R, we have

lim
n!U

E
X .n/j C u1=2S

.n/
j

k
op <1 for each k:

This implies limn!U E trnŒ.X
.n/
j C u1=2S

.n/
j /2k � <1. Therefore, we can apply Proposi-

tion 6.1 to .X.n/ C u1=2S.n/;Y.n// to obtain

ˆ�.XC u1=2S W Y/ � lim
n!U

1

n4
	.X.n/ C u1=2S.n//:

By Corollary 3.9, the function 	.X.n/ C u1=2S.n// is decreasing in u. By restricting
to a bounded interval Œ0; t �, integrating over u in this interval, and applying Lemma 6.3,
we obtain

1

2

Z t

0

ˆ�.XC u1=2S W Y/ du � lim
n!U

1

2n4

Z t

0

	.n/.X.n/ C u1=2S.n// du

D lim
n!U

1

n4

�
h.n/.X.n/ C t1=2S.n// � h.n/.X.n//

�
;

where the last equality follows from (3.2). Rearranging this to isolate the term approxi-
mating �U.X j B/, we write

�U.X j Y.n/ Y/ D lim
n!U

h.n/.X.n//

� lim
n!U

h.n/.X.n/ C t1=2S.n// �
1

2

Z t

0

ˆ�.XC u1=2S W B/ du:

We may bound the first term on the right-hand side by applying Fact 3.3 to X.n/ C
t1=2S.n/:

h.n/.X.n/ C t1=2S.n// D
1

n2
h.X.n/ C t1=2S.n//Cm logn

�
m

2

�
log

�
EkX.n/k22 Cm � t

�
C log

�
2�e

mn2

�
C 2 logn

�
D
m

2
log

��
EkX.n/k22 Cm � t

�
.2�e/.n2/

mn2

�
�
m

2
log.C C t /C

m

2
log.2�e/;
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where C WD 1
m

supn EkX.n/k22 <1. Therefore,

�U.X j Y.n/ Y/ �
m

2
log.C C t /C

m

2
log.2�e/ �

1

2

Z t

0

ˆ�.XC u1=2S W B/ du

�
m

2
log.C C t / �

m

2
log.t/

C
1

2

Z t

0

�
m

1C u
�ˆ�.XC u1=2S W B/

�
duC

m

2
log.2�e/:

Taking t !1, we obtain the desired inequality �U.X j Y.n/ Y/ � ��.X WB/ in (6.5).
Then (6.6) follows from Definition 4.5, Definition 4.6, and Lemma 4.9.
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