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Regular models of modular curves in prime level over Zur
p

Bas Edixhoven and Pierre Parent

Abstract. We give regular models for modular curves associated with (normalizer of) split and
non-split Cartan subgroups of GL2.Fp/ (for p any prime). We then compute the group of connected
components of the fiber at p of the Néron model of their Jacobians.

While this work was in progress, B. E. passed away, on January 16, 2022.
He is deeply missed (P. P.).

1. Introduction
For p a prime number, semistable models for modular curves associated with all maximal
subgroups of GL2.Z=pZ/ were determined by the present authors in [16]. Recall those
maximal subgroups are either Borel, normalizer of split Cartan and normalizer of non-
split Cartan, whose corresponding curves are generally denoted by X0.p/, XCs .p/ and
XCns .p/, respectively; to these one must add three exceptional subgroups (and the relevant
curves). In the present article, we propose to describe regular models over Z (or, actually,
over the maximal unramified extension Zur

p of Zp , for convenience). Such models are
well-known for X0.p/ since at least the foundational work of Deligne and Rapoport [11],
and we decided not to consider the case of exceptional subgroups, which we feel to be of
lesser arithmetic interest. We have therefore focussed on the case of curves associated with
either split or non-split Cartan subgroups in characteristic p, and their normalizers. What
was previously known in that context was the only case of the curves Xs.p/ associated
with split Cartan subgroups (but not their normalizer), which had been studied under the
form X0.p

2/ by the first-named author (in what is probably his first published work,
coming out from his PhD thesis (see [12,13])). Here we recover in that case the results of
op. cit. with our different method, and we cover the other situations. We actually give
two versions, for each case, of regular models: the first ones are the minimal regular
models with normal crossings, which come out naturally from taking Galois quotients
of our previous semistable models and resolving singularities; then after contracting, we
obtain the minimal regular models. (Surprisingly enough, the latter appear to be totally
reduced, whereas the Galois quotients we started with were not – anywhere, at least in the
non-split case). A look at Figures 4 and 8 (models for Xns.p/ vs. Xs.p/, respectively),
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or Figures 6 and 10 (XCns .p/ vs. XCs .p/), shows the morality of the situation, or at least
the strong geometric parallelism between the split and non-split cases: the special fibers
are essentially the same, except that reduced projective lines in the split case have been
cut into small pieces in the non-split case. Those P1s are j -lines in the split situations,
whereas their broken equivalents in the non-split cases have no modular interpretation, as
they just result from blow-ups in the course of the regularization process.

Our models finally allow to compute the component groups of the Néron models of the
Jacobians of those curves. Here, another noteworthy feature is that the Jacobian over Z of
the curve XCs .p/ (therefore also X0.p2/=wp2 ) has trivial component group: JCs .p/ has
connected fibers over Z, so the situation is similar to that of X1.p/, as was proven by
B. Conrad, the second-named author and W. Stein in the article [9] with that precise title.

We feel modular curves are objects which are classical enough to justify the present
work; knowing their regular models is for instance required to describe some other impor-
tant features, such as their height (cf. the recent works [4] or [5]). But as in the case of the
semistable article [16], we have also been led by diophantine motivations. Indeed, when
working out the recent quadratic Chabauty method for modular curves as developed by J.
Balakrishnan and her coauthors (see e.g. [1–3]), one needs to have semistable models at
one’s disposal. On the other hand, the geometric version of quadratic Chabauty, developed
by the first-named author and G. Lido (see [15]) requires regular models. In particular, one
needs to know the exponent of the component groups of the Néron models of the Jaco-
bians (in order to map every component of the curve to the Jacobian’s neutral component:
check the m in [15, Section 2]). In the case of XCns .p/, we find it to be just .p � 1/ (see
Proposition 3.2). Beyond that numerical datum, it seems that the complete description of
our regular models shall in fact be useful for modular versions of non-abelian Chabauty
(see forthcoming work by G. Lido et al.).

Note from the second-named author. While that text was in progress we learnt, in the
last weeks of 2021, of the illness of the first-named author. Bas Edixhoven passed away
on January 16, 2022, a few months before his 60th birthday. The present work was ripe
enough, in the summer before, for Bas to give a talk about it in Oberwolfach (July 22,
2021); yet it was immature enough for him to mention then that “we [were] not yet happy
with all proofs/computations1”. I (P. P.) have tried to complete the writing-up and make
(me) happy enough with it. However, as a colleague and friend kindly put, “Bas had his
own standards”, which would have been ridiculous to mimic. Not only do I therefore claim
all mistakes that could remain, but I also apologize to those who could feel disappointed
with the style. Beste Bas, bedankt, bedankt voor alles.

Notation. Through all the text, we safely assume that our primes p are greater than 5,
unless explicitly stated otherwise. (Note by the way that for p D 2; 3 all our modular
curves have genus 0, so there is no question about regular models.) The notation Zp2

1Handwritten notes for his lecture (private communication).
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stands for the ring of integers of the unique non-ramified quadratic extension Qp2 of Qp

(Witt vectors of Fp2 ), and Zur
p for the ring of integers of the maximal unramified extension

Qur
p of Qp (Witt vectors of xFp).

2. Some structural results on X.p/

All through this text, we freely use results displayed in [16], to which we refer for details
about notation or definitions. In this section we sum up and develop some of the basics of
op. cit.

Fix once and for all a prime number p (> 3). Consider some representable finite étale
moduli problem P over .Ell/Zp . The moduli problem .P ; Œ�.p/�/ classifies triples .E=S;
a;�/ for S a Zp-scheme,E=S an elliptic curve, a 2P .E=S/ and � 2 Œ�.p/�.E=S/ (in the
sense of [17]). Katz–Mazur’s theorems about �.p/-structures [17, Theorems 3.6.0, 5.1.1,
and 10.9.1] assert that .P ; Œ�.p/�/ is representable by a regular Zp-scheme M.P ; Œ�.p/�/,
having a compactification we denote by xM.P ; Œ�.p/�/. The existence of Weil’s pairing
ep.�; �/ shows that the morphism

xM
�
P ;
�
�.p/

��
! Spec.Zp/

factorizes through Spec.ZpŒ�p�/, with �p some primitive pth root of unity. For all integers
i in ¹1; : : : ; p � 1º, set

Xi WD xM
�
P ;
�
�.p/�

i
p -can��

for the sub-moduli problem over .Ell/Zp Œ�p � representing triples�
E=S=ZpŒ�p�; a; �

�
such that ep

�
�.1; 0/; �.0; 1/

�
D �ip:

The obvious morphism a
i2F�p

Xi ! xM
�
P ;
�
�.p/

��
Zp Œ�p �

induces, by normalization, an isomorphism of schemes over ZpŒ�p�:a
i2F�p

Xi
�
�! xM

�
P ;
�
�.p/

���
Zp Œ�p �

; (2.1)

where M.P ; Œ�.p/�/�Zp Œ�p � !
xM.P ; Œ�.p/�/Zp Œ�p � is the normalization. The triviality of

pth roots of unity in characteristic p shows that, after the base change ZpŒ�p�! Fp , the
Xi;Fp are not only isomorphic to each other but actually equal. Moreover, the modular
interpretation of a �.p/-structure �W .Z=pZ/2! E.k/, in the generic case of an ordinary
elliptic curve E over a field k of characteristic p, amounts to choosing some line L in
.Z=pZ/2 which plays the role of Ker.�/, then some point P in E.k/ which defines the
induced isomorphism .Z=pZ/2=L

�
�! EŒp�.k/. More precisely, we have the following.
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Figure 1. Katz–Mazur and stable fibers of Xi .

Theorem 2.1 (Katz–Mazur [17, Theorem 13.7.6]). Each curve Xi;Fp obtained from Xi
over ZpŒ�p� via ZpŒ�p�! Fp , is the disjoint union, with crossings at the supersingular
points, of pC 1 copies of the xM.P /-schemes xM.P ; ŒExIg.p; 1/�/ (cf. Figure 1). We label
those Igusa schemes Igi;L for .i; L/ running through F�p � P1.Fp/.

Making that model go through the semistabilization process of [16], we do a base
change and perform a few blow-ups to obtain a semistable model over Zur

p Œp
1=.p2�1/�,

with special fiber as represented in Figure 1 (cf. Section 2.2 of op. cit.). In particular,
the Xi now have two kinds of parts: the vertical (or Igusa) ones, which already showed up
in Katz–Mazur model, and the new horizontal (Drinfeld) ones, with projective models

˛pˇ � ˛ˇp D zpC1: (2.2)

The Galois group Gal.Qp2.p
1=.p2�1//=Qp2/ will be identified with �p2�1.xQ/ via the

map

� 7!
�.p1=.p

2�1//

p1=.p
2�1/

DW �;

and we will also identify that group with �p2�1.Fp2/ ' F�
p2

, for which we choose a gen-
erator u. It acts on xM.P ; Œ�.p/�/�Zp Œ�p � (or more precisely on each Xi ).

On each Drinfeld part Di;s , with affine model ˛pˇ � ˛ˇp D 1, the subgroup of
p C 1st-roots of unity in F�

p2
acts by v.WD up�1/W .˛; ˇ/ 7! .v�1˛; v�1ˇ/. On the pro-

jective model ˛pˇ � ˛ˇp D zpC1, that Galois action extends uniquely to

.˛; ˇ; z/ 7! .v�1˛; v�1ˇ; z/;

and its fixed points are the p C 1 points at infinity ¹.1; 0; 0/; .a; 1; 0/; a 2 Fpº.
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Remark 2.1. Those fixed points (at infinity) under Galois on the Drinfeld components
are precisely the intersection points of the Di;s with Igusa parts (on which, on their side,
the same Galois action of p C 1st-roots of unity is trivial).

On the other hand,
xM
�
P ;
�
�.p/

���
Zur
p Œp1=.p

2�1/�

is also endowed with a modular action of GL2.Fp/, also described in [16, Section 2]. It
will actually be more convenient to consider the action of the full group F�

p2
� GL2.Fp/.

Proposition 2.1. The action of F�
p2
� GL2.Fp/ on a given Igusa part Igi;P has stabilizer®

.u; g/; N.u/ WD upC1 D det.g/; g � P D P
¯
;

which acts on Igi;P by the diamond operator hupC1�P .g�1/ip , for �P the character on
the Borel subgroup of GL2.Fp/ defined by the action on the line P .

On the Drinfeld parts Di;s of the special fiber of xM.P ; Œ�.p/�/�, the stabilizer of the
action of F�

p2
� GL2.Fp/ is

†0 WD
®
.u; g/; N.u/ D upC1 D det.g/

¯
:

On each Di;s , that stabilizer acts like�
u;

�
a b

c d

��
.˛; ˇ/ D u�1.a˛ C cˇ; b˛ C dˇ/:

Proof. We know from [16, Sections 2.2.3 and 2.2.4] that the two actions of u 2 F�
p2

and
g 2 GL2.Fp/ have modular interpretation:

uW
�
E=S

f
�! Spec

�
ZŒ�p�

�
; a; �

�
i

x.u/
7���!

�
E=S

f 0

�! Spec
�
ZŒ�p�

�
; a; �

�
iu�p�1

for f 0 D Spec.upC1/ ı f and

gW .E=S; a; �/i 7! .E=S; a; � ı g/i det.g/

respectively (where the index shift from i to i det.g/ on the line above comes from the
properties of Weil’s pairing). It follows that u and g induce isomorphisms:

x.u/W

8<:Igi;P
�
�! Igiu�p�1;P

Di;s
�
�! Diu�p�1;s;

(2.3)

r.g/W

8<:Igi;P
�
�! Igi det.g/;g�1P

Di;s
�
�! Di det.g/;s;

(2.4)

respectively. The two actions commute, and the stabilizers of both vertical and horizontal
parts obviously are as in the proposition.
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For the Igusa parts, the modular interpretation shows that if .u; g/ is such that upC1 D
det.g/, then on a basis which is adapted to the line P (which is to play the role of the
kernel of Frobenius) such that g.P / D P , g needs to act as�

�P .g/ �

0 �P .g/
�1 det.g/

�
D

�
�P .g/ �

0 �P .g/
�1upC1

�
;

whence the diamond action h�P .g/�1upC1i on the (generically) étale line .EŒp�=P /Fp .
As for the Drinfeld parts Di;s , one knows from [16] that the coordinates ˛; ˇ of op.

cit. are such that ˛ D ��1x, ˇ D ��1y and u.�/ D u � � for � some uniformizer of
Zur
p Œp

1=.p2�1/�, e.g. � some p1=.p
2�1/. (Recall that x D Z.�.1; 0// and y D Z.�.0; 1//,

for Z some parameter of the formal group of the supersingular elliptic curve Es underly-
ing Di;s .) Moreover .x; y/ 7! .x; y/ �

�
a b
c d

�
under

�
a b
c d

�
in GL2.Fp/, whence the action

of F�
p2
� GL2.Fp/ given in the proposition.

3. Regular models for non-split Cartan structures

3.1. Regular model for xM.P ; �ns.p//

We first compute a regular model for modular curves associated with a non-split Cartan
group �ns.p/�GL2.Fp/ (not its normalizer for now), endowed with some additional level
structure P . (Recall [22] contains another modular interpretation of the �ns.p/-structure.)

Theorem 3.1. Let p > 3 be a prime, and let Œ�ns.p/� be the moduli problem over ZŒ1=p�
associated with �ns.p/. Let P be a representable moduli problem, which is finite étale over
.Ell/=Zp (for instance P D Œ�.N /� for someN � 3 not divisible by p). Let xM.P ; �ns.p//

D xM.P ; �.p//=�ns.p/ be the associated compactified fine moduli space.
The curve xM.P ; �ns.p// has a regular model over Zur

p whose special fiber is made
of one vertical Igusa part, from which a horizontal chain of Drinfeld components rises at
each supersingular point.

That vertical part is a copy of xM.P /xFp , with multiplicity p � 1.

If sP is the number of supersingular points of xM.P /.xFp/, the sP horizontal chains
of (Drinfeld) components are all copies of branches of the following shape: a rational
curve P1 with multiplicity p C 1, on which, at two points, stems another P1 with mul-
tiplicity 1. All singular points in the special fiber are regular normal crossings; more
precisely, the completed local rings at the geometric former intersection points (between
Igusa and Drinfeld parts) are

Zur
p

�
ŒX; Y �

�
=.XpC1 � Y p�1 � p/

and those at the latter two intersection points (purely on each Drinfeld part), are

Zur
p

�
ŒX; Y �

�
=.XpC1 � Y � p/:

See Figure 2.
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Figure 2. Special fiber at xFp of the regular model xM.P ; �ns.p//.

Remark 3.1. As in [16, Remark 2.2], we would have liked to call our “vertical parts”
xM.P /xFp “vertical components”, but were formally prevented from doing so because they

may be not irreducible.

Proof. We start by considering the semistable model xM.P ; �ns.p//
st over Zur

p Œ�0�, for
�0 WDp

2=.p2�1/, given in [16, Theorem 3.1]. So setG WDGal.Qur
p .�0/=Q

ur
p /'F�

p2
=¹˙1º.

First we determine the dual graph of the quotient arithmetic surface (and not its regu-
larization yet). Proposition 2.1 shows the Drinfeld components are stable under the action
of Galois; as for the two Igusa parts Igi .p;P / ' xM.P ; Ig.p/=¹˙1º/xFp , i D 1 or d , their
stabilizer is the index 2 subgroup of squares F�;2

p2
=¹˙1º, and they are switched by the

quotient .F�
p2
=¹˙1º/=.F�;2

p2
=¹˙1º/.

Now for the quotients of Igusa parts. The subgroup of Galois with order .p C 1/=2,
that is, �pC1.F�p2/=¹˙1º, in their stabilizer .F�;2

p2
/=¹˙1º, acts trivially on any of those

Igusa parts, by Proposition 2.1. So taking the quotient by �pC1.F�p2/=¹˙1º shows that

over Zur
p Œp

1=.p�1/�, xM.P ; �ns.p// has a special fiber with same Igusa parts

xM
�
P ; Ig.p/=¹˙1º

�
xFp
;

with multiplicity 1. We then quotient out by the Galois group F�;2
p2
=�pC1.Fp2/. As non-

zero homotheties belong to our Cartan subgroup, Proposition 2.1 shows that the quotient
of any of the two Igusa parts Igi .p;P /, i D 1 or d , of the semistable model [16, Theo-
rem 3.1] can be read as the quotient of xM.P ; Ig.p/=¹˙1º/xFp by ¹.v2; HvpC1/; v 2 F�

p2
º,

where for any � in F�p ,H� is the homothety with ratio �. Each such morphism .v2;HvpC1/

has modular interpretation

.E; a; P / 7!
�
E; a; hvpC1ipP

�
(3.1)
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(Proposition 2.1 and its proof). Therefore,

Gal
�
Qur
p .p

1=.p�1//=Qur
p .
p
p/
�
' F�;2

p2
=�pC1.Fp2/

acts generically freely on the ordinary locus of each Igusa part, with quotient a copy of
xM.P /xFp . Looking at generic local rings of closed points on the arithmetic surface, we see

that the Igusa parts occur with multiplicity .p � 1/=2 in the closed fiber over Zur
p Œ
p
p�.

Finally, the last step of order 2, that is, taking the quotient under F�
p2
=F�;2
p2

, identifies the
two Igusa parts, so that their multiplicity in the special fiber over Zur

p is eventually p � 1.
Now we focus on Drinfeld components. Recall from [16, Section 3.1] that one can

choose parameters z̨; žof the general Drinfeld component of the semistable xM.P;Œ�.p/�/�

such that it has model
z̨
pC1
� ž

pC1
D 2A (3.2)

for A D aN=2 ¤ 0, with notation as in [16, (18)]. Identifying our non-split Cartan sub-
group �ns.p/ mod p with F�

p2
, one can choose a generator � of the elements with norm 1

in the latter group such that
�W .z̨; ž/ 7! .�p z̨; � ž/:

The coordinates U WD z̨pC1 �A and V WD z̨ ž are therefore clearly invariant under Galois
action, and as ŒxFp..z̨; ž//W xFp..U; V //� D p C 1, those U and V do generate the function
field of the Drinfeld parts of the semistable xM.P ; �ns.p//. Those Drinfeld parts therefore
have models of shape

U 2 D V pC1 C A2 (3.3)

(cf. [16, (21)]). Now by Proposition 2.1, if u belongs to G D Gal.Qur
p .p

2=.p2�1//=Qur
p /,

then any g in �ns.p/ with N.u/ D upC1 � detg mod p is such that .u; g/ stabilizes any
Drinfeld component for xM.P ; Œ�.p/�/�. Therefore, the Galois action is induced, on the
Drinfeld components Ds of the quotient, by uW .z̨; ž/ 7! .u�1g � z̨; u�1g � ž/. In other
words, if u is a generator of F�

p2
, and � is in �ns.p/ with �.z̨/ D up z̨ and �. ž/ D u ž,

then u ı �.z̨; ž/ D .up�1 z̨; ž/. As for the Drinfeld parts of the semistable xM.P ; �ns.p//,
the Galois action becomes

uWU 7!U; V 7!up�1V (3.4)

on the parameters U; V of the above model (3.3).
One therefore checks that the subgroup�p�1.Fp2/=¹˙1ºDhupC1i=¹˙1º of F�

p2
=¹˙1º

is the kernel of the Galois action on the Drinfeld parts in the fiber, so the special fiber of
our descended curve over Zur

p Œp
1=.pC1/� has Drinfeld components with same model as

above, and multiplicity 1. Then the quotient group F�
p2
=�p�1.Fp/, which is isomorphic to

�pC1.Fp2/, acts generically freely on those Drinfeld part, so the special fiber of the quo-
tient modular curve over Zur

p has Drinfeld components with multiplicity pC 1. Moreover,
parameters for the Galois quotient of Drinfeld curves are now X WD U , Y WD V pC1, so
those quotients can be given equation

X2 D Y C A2I (3.5)

that is, they are projective lines.
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As for intersection points between Drinfeld and Igusa components, their equation can
be computed directly to be as in our theorem, which shows our curve is regular at those
points (a fact which also follows from Serre’s pseudo-reflection criterion; cf. [9, Theo-
rem 2.3.9]). The generic points on the descended Drinfeld components, on their side, have
completed local rings of shape

Zur
p

�
ŒX; y�

�
=.ypC1 � p/

hence are regular. However, regularity may fail at points of the Drinfeld curves coming
from points which are fixed by Galois. Those are the points at infinity (which are exactly
the intersection points with Igusa components – see Remark 2.1 above), on one hand,
which have just been discussed. And, on the other hand, they are the points at finite dis-
tance for which V D 0 on the model (3.3), i.e. the two points .X; Y / D .˙A; 0/ (on the
model (3.5)) coming from .U; V / D .˙A; 0/, which themselves come from the points on
the model (3.2)

.z̨; ž/ D
�
0; �kpC1.�2A/

1
pC1

�
and .z̨; ž/ D

�
�kpC1.2A/

1
pC1 ; 0

�
(where �pC1 is some primitive pC 1st-root of unity). Below those latter fixed points under
Galois the situation demands blow-ups.

So set S D Zur
p Œ�1� for �1 D p1=.pC1/. At the two fixed points .˙A; 0/ of (3.3),

V can be chosen as a local parameter for the Drinfeld curve, on which Galois acts via
�WV 7! �V for � a generator of F�

p2
=F�p ' �pC1.xQp/. A straightforward adaptation of [9,

Lemma 2.3.4 and its proof] shows that V can be lifted to a parameter x of the completed
local rings Zur

p Œ�1�ŒŒx�� of our arithmetic surface at that point such that the action of Galois
is given, for � in �pC1.xQp/, by

�W�1 7! ��1; x 7! �x: (3.6)

Therefore, the local ring of Galois invariants here has the same completion asM
k�0

Zur
p

�
�
pC1�Œk�
1 xk

�
D

M
k�0

Zur
p p�

�Œk�
1 xk

where Œk� denotes the integer within the range ¹1;pC 1º that is congruent to k mod pC 1.
Setting Yk WD �

pC1�k
1 xk D p.x=�1/

k , for 1 � k � p C 1, that ring can be written as

A WD Zur
p ŒY1; : : : ; YpC1�=.Y

k
1 � p

k�1Yk/1�k�pC1:

The ring can be seen not to be regular at the maximal ideal M D .p; Y1; : : : ; YpC1/ (e.g.
applying again Serre’s pseudo-reflections criterion to the ring Zur

p Œ�1�ŒŒx�� above), so we
blow it up at M. For 1 � r � p C 1, we need a priori study

Ar WD AŒYr ; p=Yr ; Yk=Yr �1�k�pC1;

that is, setting Yk;r WD Yk=Yr and Pr WD p=Yr ,

Ar D Zur
p ŒY1;r ; Y2;r ; : : : ; Yr�1;r ; Yr ; YrC1;r ; : : : ; YpC1;r ;Pr �:
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We also define A0 WD AŒYk=p�1�k�pC1, so that, setting Yk;0 WD Yk=p,

A0 D Zur
p ŒY1;0; Y2;0; : : : ; YpC1;0�:

As for the Ar in the former set of rings one remarks that if 1 < r < p C 1, one has
YrC1;r D x=�1, so that Yk;r D Y k�rrC1;r (respectively, Yk;r D Y r�kr�1;r ) if k � r (respec-
tively, k � r) and that Pr D Y rr�1;r , Yr D pY rrC1;r and YrC1;r � Yr�1;r D 1. So Ar D
Zur
p ŒYrC1;r ; Y

�1
rC1;r �. One moreover checks that YrC1;r D Yr 0C1;r 0 for any r; r 0 within the

range ¹1; : : : ; pº, so that the Ar , 1 < r < p C 1, are equal as subrings of the fraction
field of A. When r D 1, one still has Yk;1 D Y k�12;1 for 1 � k � p C 1, P1Y2;1 D 1 and
Y1 D pY2;1, so that eventually the p previous rings Ar , 1 � r < p C 1, are all equal,
setting X WD �1=x, to

A1 D Zur
p ŒP1; Y2;1� D Zur

p ŒX;X
�1�: (3.7)

When r D p C 1, one has Yk;pC1 D Y
pC1�k
p;pC1 for 1 � k � p C 1 and PpC1 D Y

pC1
p;pC1, so

that
Y
pC1
p;pC1 � YpC1 D p:

Also note that, with notation as in (3.7) above, Yp;pC1 D Y �12;1 DX ; therefore, setting now
Y WD YpC1:

ApC1 ' Zur
p ŒX; Y �=.X

pC1
� Y � p/:

As for A0, finally, one has Y k1;0 D Yk;0 for all 1 � k � p C 1, so that

A0 ' Zur
p ŒZ�;

where, with notation as in (3.7), Z D Y1;0 D Y1=p D Y2;1 D x=�1 D 1=X . Our first
blow-up of A is therefore already regular and has the simple shape described in Figure 2.
This completes the proof of Theorem 3.1.

3.2. Regular models for xM.P ; �C
ns .p//

Theorem 3.2. Let p > 3 be a prime, and let Œ�Cns .p/� be the moduli problem over ZŒ1=p�
associated with �Cns .p/. Let P be a representable moduli problem, which is finite étale
over .Ell/=Zp as in Theorem 3.1.

Let xM.P ;�Cns .p//D
xM.P ;�.p//=�Cns .p/ be the associated compactified fine moduli

space.
Then xM.P ; �Cns .p// has a regular model over Zur

p whose special fiber is made of one
vertical Igusa part, from which grow horizontal chains of Drinfeld components above each
supersingular point.

That vertical part is a copy of xM.P /xFp , with multiplicity .p � 1/=2.

If sP is the number of supersingular points of xM.P /.xFp/, the sP horizontal chains
of (Drinfeld) components are all copies of branches of the following shape: a rational
curve P1 with multiplicity pC 1, on which, at two points, another P1 stands up, one with
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p C 1

DCs p C 1
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p C 1

.p � 1/=2

Galois quotient

�

�

�

�

�

�

�

�

�

blow-up

DCs
p C 1

DCs
p C 1

DCsp C 1

�

�

�

�

1

1

1

pC1
2

pC1
2

pC1
2

.p � 1/=2

Regular model

Figure 3. Special fiber at xFp of the regular model xM.P ; �Cns .p//.

multiplicity 1, and one with multiplicity .p C 1/=2. All singularities in the special fiber
which are intersection points between Igusa and Drinfeld parts have completed local rings
with same completion as

Zur
p

�
ŒX; Y �

�
=.XpC1 � Y

p�1
2 � p/I

as for those at the exceptional divisors on the Drinfeld parts, they are

Zur
p

�
ŒX; Y �

�
=.XpC1 � Y � p/ and Zur

p

�
ŒX; Y �

�
=.XpC1 � Y

pC1
2 � p/I

see Figure 3.

Proof. Start from the semistable model xM.P ; �Cns .p//
st of [16, Theorem 3.3], over

Zur
p Œp

2=.p2�1/�. As in the proof of Theorem 3.1, one sees that the graph of the special
fiber of the quotient scheme by Galois remains unchanged over Zur

p Œ
p
p�. Then over Zur

p ,
there is only one “vertical”, Igusa part, crossed at supersingular points by Drinfeld com-
ponents (whether p � 1 or �1 mod 4).

If p � �1 mod 4, then xM.P ; �Cns .p//
st over Zur

p Œp
2=.p2�1/� has only one Igusa part,

which is xM.P ; Ig.p/=¹˙1º/xFp . With notation as in [16, Theorem 3.3], one can assume
that the action on F2p of our non-split Cartan subgroup has a basis of Fp2=Fp-conjugate
eigenvectors P1, P2, with respect to which the normalizer of Cartan can be written as²�

r 0

0 rp

�
; wr WD

�
0 r

rp 0

�
; r 2 F�

p2

³
:

So writing P for the Fp-line spanned in F2p by P1 C P2, one might consider a repre-
sentative Igi;P in xM.P ; �.p//xFp above xM.P ; Ig.p/=¹˙1º/xFp , which shows that in our
normalizer-of-non-split-Cartan curve, the Igusa part is acted on trivially exactly by the
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Galois subgroup �2.pC1/.Fp2/=¹˙1º of F�
p2
=¹˙1º. (Indeed, just take the quotient by the

subgroup ��
u.p�1/=2;

�
0 1

1 0

���
(for u a generator of F�

p2
) of F�

p2
� �Cns .p/, and apply Proposition 2.1.) Taking the quotient

by this Galois subgroup shows that over Zur
p Œp

2=.p�1/�, xM.P ; �Cns .p// has a special fiber
with two Igusa parts which are still isomorphic to xM.P ; Ig.p/=¹˙1º/xFp , with multiplicity
1. Now the quotient Galois group F�

p2
=�2.pC1/.Fp2/ has order .p � 1/=2, which is odd;

therefore, any of its elements can be given a representative v2 in F�;2
p2

, so that it acts as
.v2; HvpC1/, which is the diamond operator hvpC1ip , on our Igi;P (notation as for (3.1),
proof of Theorem 3.1). This eventually shows that, over Zur

p , xM.P ; �Cns .p//xFp has an

Igusa part which is isomorphic to xM.P /xFp , with multiplicity .p � 1/=2.

If p � 1 mod 4, each of the two Igusa parts xM.P ; Ig.p/=C4/xFp of the special fiber of
xM.P;�Cns .p//

st over Zur
p Œp

2=.p2�1/�, has Galois stabilizer the index 2 subgroup F�;2
p2
=¹˙1º

of squares in F�
p2
=¹˙1º. Inside of that, the subgroup with trivial action can be seen to be

�2.pC1/.Fp2/=¹˙1º, in exactly the same fashion as for the p��1mod 4 case. Therefore,
taking the quotient by this Galois subgroup shows that over Zur

p Œp
2=.p�1/�, xM.P ; �Cns .p//

has a special fiber with two Igusa parts which are still isomorphic to xM.P ; Ig.p/=C4/xFp ,

with multiplicity 1. The quotient Galois group F�;2
p2
=�2.pC1/.Fp2/, with order .p � 1/=4,

again acts as ¹.v2;HvpC1/; v 2 F�
p2
º, hence generically faithfully on the Igusa part. Thus

over Zur
p Œ
p
p� we obtain a special fiber whose Igusa parts are copies of xM.P /xFp , with

multiplicity .p � 1/=4. As before, those copies are switched when landing to Zur
p , whence

the final multiplicity .p � 1/=2, as in the p � 1 mod 4 case.
Now for the Drinfeld part. With notation as in the proof of Theorem 3.1, we know from

[16, Theorem 3.3] that the Drinfeld components of xM.P ; �Cns .p//
st over Zur

p Œp
2=.p2�1/�

have equation

Y 2 D X

�
X

pC1
2 C

�
aN

2

�2�
(3.8)

for X D V 2 D .z̨ ž/2 and Y D U � V D z̨ ž.z̨pC1 � aN=2/, with Galois action uWX 7!
u2.p�1/X;Y 7! up�1Y if u 2 F�

p2
=¹˙1º (see (3.4)). The Drinfeld parts therefore descend

to the same model (3.8), with multiplicity 1, over Zur
p Œp

1=.pC1/�. Then the Galois group
acts generically faithfully on closed points in the special fiber, so that the quotient scheme
has special fiber some projective line with multiplicity p C 1. Indeed parameters for the
quotient scheme in the special fiber can be chosen asR WDX

pC1
2 and S WD Y 2=X (whence

a trivial model S D R C .aN
2
/2). The only closed points on the model (3.8) on which

the Galois action has inertia are either those at infinity (which correspond to intersection
point(s) with Igusa part(s)) or points for which Y D 0, that is,

.X; Y / D .0; 0/ or .X; Y / D

��
p C 1

2

�nd

roots of �
�
aN

2

�2
; 0

�
;
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which give, on the model S D R C .aN
2
/2 of the Drinfeld components downstairs (over

Zur
p ),

.R; S/ D

�
0;

�
aN

2

�2�
or .R; S/ D

�
�

�
aN

2

�2
; 0

�
:

At that set of points, Serre’s pseudo-reflection criterion [9, Theorem 2.3.9] implies the
quotient is not regular.

(Here we may remark that if p � 1 mod 4, then (3.8) defines a hyperelliptic equation
of type “Y 2 D X2gC2 C � � �”, which has two points at infinity: they correspond exactly to
the intersection with the two Igusa parts on xM.P ; �Cns .p//

st over Zur
p Œp

2=.p2�1/�. Whereas
if p � �1 mod 4, then (3.8) defines an equation of type “Y 2 D X2gC1 C � � �”, which has
one points at infinity, and indeed in that case there is only one Igusa part intersecting
Drinfeld. That numerology shows up again, in a slightly more subtle guise, in the proof of
the split case (Theorem 4.2) below).

Let us complete the study of the above singular points (at finite distance). At the
first one, .X; Y / D .0; 0/, the completed local ring can be expressed as series in Y and
p1=.pC1/, and the same computation as in the proof of Theorem 3.1 above (see (3.6) and
what follows) shows that blowing up makes a P1

xFp
with multiplicity 1 pop up. That is

enough to regularize the situation there.
On the set of .p C 1/=2 points of shape .X; Y / D ..pC1

2
/nd roots of � .aN

2
/2; 0/,

Galois acts transitively. Set �1 WD p1=.pC1/, and descend the model (3.8) to ZŒ�1�. Then
the quotient Galois group F�

p2
=.F�

p2
/pC1 ' �pC1.Fp2/ acts generically freely on the Drin-

feld component, but with inertia its order-2 subgroup at each such point (.pC1
2
/nd roots of

�.aN
2
/2; 0). If " is a generator of that order 2 subgroup and x is a good lift of parameter

of the ring mod �1 (in the sense of [9, Lemma 2.3.4], cf. (3.6) above), one has

"W�1 7! ��1; x 7! �x;

and the ring of Galois invariants of the completed local ring is therefore the same as that
of

A D
M
k�0

Zur
p Œ�

2
1 �x

2k
M
k�0

Zur
p Œ�

2
1 ��1x

2kC1
' Zur

p Œt; X; Y �=.t
pC1
2 � p;X2 � tY /:

Once more, in a similar fashion as in the proof of Theorem 3.1 ((3.6) and around), one sees
that A is singular, but blowing up once at M D .t;X; Y / crafts a scheme which is regular,
whose special fiber is the union of the special fiber of the Drinfeld part (projective line with
multiplicity p C 1) with another P1

xFp
having multiplicity .p C 1/=2, which intersects it.

The intersection point has ring of coordinates

Zur
p Œa; b�=.a

pC1b
pC1
2 � p/:

As for the singular points at the intersection of Drinfeld and Igusa parts, note that if p � 1
mod 4, they are not regular in the semistable model over Zur

p Œp
2=.p2�1/� of [16, Theo-

rem 3.3]. However, their image in the Galois quotient is regular over Zur
p (or even over the

quadratic subextension of Zur
p Œp

2=.p2�1/�).
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3.3. The coarse case: Xns.p/

Theorem 3.3. For p � 13 a prime, let Xns.p/ be the coarse modular curve over Q asso-
ciated with �ns.p/.

The minimal regular model with normal crossings of the curve Xns.p/ over Zur
p has a

special fiber which is made of one vertical Igusa component, which intersects horizontal
chains of Drinfeld components above each supersingular point.

The vertical part is a (smooth) projective line (j -line), with multiplicity p � 1.
At each supersingular point of that Igusa component, unless the corresponding j -

invariant has extra geometric automorphisms (that is, j � 0 or 1728 mod p), the crossing
Drinfeld component is a copy of a rational curve P1 with multiplicity p C 1, on which, at
two points, another P1 springs up with multiplicity 1. All intersection points in the special
fiber are regular normal crossings; more precisely, the completed local rings at the former
intersection points (between Igusa and those Drinfeld components) are

Zur
p

�
ŒX; Y �

�
=.XpC1 � Y p�1 � p/;

and those at the latter two intersection points (purely on each Drinfeld part) are

Zur
p

�
ŒX; Y �

�
=.XpC1 � Y � p/:

Moreover, the following hold:

• Ifp�1 mod 12, the vertical Igusa component intersects transversally an extra compo-
nent at each of the two (ordinary) j -invariants 1728 and 0, which are a projective line
with multiplicity .p�1/=2 (ring at the intersection point: Zur

p ŒŒa; b��=.a
p�1b

p�1
2 �p/)

and a projective line with multiplicity .p � 1/=3 (ring at the intersection point:
Zur
p ŒŒa; b��=.a

p�1b
p�1
3 � p/), respectively.

• If p�11 mod 12, the Drinfeld components above the supersingular j � 1728 and j�
0 mod p are both projective lines, with multiplicity .pC1/=2 and .pC1/=3, respec-
tively, both endowed with two extra components which are copies of P1 with multiplic-
ity 1 (intersection local rings: Zur

p ŒŒa; b��=.a
pC1
2 b � p/ and Zur

p ŒŒa; b��=.a
pC1
3 b � p/

respectively). The rings of the intersection between the Igusa component and the spe-
cial Drinfeld components are

Zur
p

�
Œa; b�

�
=.ap�1b

pC1
2 � p/; Zur

p

�
Œa; b�

�
=.ap�1b

pC1
3 � p/;

respectively.

• If p� 5 mod 12, we have the relevant mix between the above two situations: j � 1728
is ordinary mod p, so see the case p � 1 mod 12, whereas j � 0 is supersingular
mod p, so see the case p � 11 mod 12.

• If p � 7 mod 12, the situation is mutatis mutandis the same as before: this time j �
1728 is supersingular mod p, and j � 0 is ordinary mod p.

See Figure 4.
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Figure 4. Special fiber at xFp of the minimal regular model with minimal crossings of Xns.p/.
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Remark 3.2. Theorem 3.3 actually gives regular models for all p � 5, but we have
excluded primes p � 11 from its statement because of the non-minimality of our regu-
lar model with normal crossings in those cases. However, Xns.p/ is just a projective line
if p � 5 (including p D 2; 3), and for p D 7 and p D 11, the minimal regular model with
normal crossings is obtained by contracting the central Igusa component (with multiplicity
.p � 1/).

Proof. As before we start from the semistable model Xns.p/
st of the coarse curve over

Zur
p Œp

2=.p2�1/� found in [16, Theorem 3.4] and quotient out by the Galois group G D
Gal.Qur

p .p
2=.p2�1//=Qur

p / ' F�
p2
=¹˙1º. The only new feature with respect to the above

Theorem 3.1 appears at points with extra automorphisms, that is, corresponding to iso-
morphism classes of elliptic curves E with j -invariant 1728 (where AutxFp .E/ ' Z=4Z)
or j -invariant 0 (where AutxFp .E/ ' Z=6Z). In each situation, one needs to distinguish
between the cases where E is ordinary or supersingular.

So start with the case j D 1728 and assume it is ordinary at p (� 1 mod 4). Elliptic
curves with j � 1728 define .p � 1/=4 points on each of the two Igusa vertical compo-
nents xM.Ig.p/=¹˙1º/xFp in the special fiber of the semistable Xns.p/

st. First taking the
Galois quotient under �pC1.Fp2/=¹˙1º gives a model whose Igusa components remain
the same over the base Zur

p Œ�2 WD p
1=.p�1/�. The local rings at those special points with

j D 1728 have the same completion (at the closed point .x; �2/) as

A WD Zur
p Œ�2�Œx�: (3.9)

Then the Galois subquotient

G1 WD Gal
�
Qur
p .p

1=.p�1//=Qur
p .
p
p/
�
' F�;2

p2
=�pC1.Fp2/ ' F�;2p

of index 2 (which is the stabilizer of each Igusa component) acts transitively as

F�;2
p2
3 v2W .E; P / 7!

�
E; hvpC1ipP

�
(see (3.1)) on our set of .p � 1/=4 special points for which j � 1728 in the special fiber.
In particular, taking v WD u.p�1/=4 (for u some generator of F�

p2
), which is a lift of a fourth

root of unity in F�p , we see that the stabilizer in G1 of those special points is the order 2
subgroup G1Œ2� DW h"i, spanned by the order 2 element " D v2.pC1/ D �1 in F�;2p ' G1.
Again x can be chosen [9, Lemma 2.3.4] so that

"W�2 7! ��2; x 7! �x:

We therefore consider the ring of Galois invariants:

Ah"i D
M
k�0

Zur
p Œ�

2
2 �x

2k
M
k�0

Zur
p Œ�

2
2 ��2x

2kC1
' Zur

p Œt; X; Y �=.t
p�1
2 � p;X2 � tY /:

In a similar fashion as in the proof of Theorem 3.1 (cf. also the last lines of that of Theo-
rem 3.2), one sees that A is not regular, but blowing up once at M D .t; X; Y / produces
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a scheme over Zur
p Œp

2=.p�1/� which is (regular). Finally, taking the full Galois quotient
(therefore identifying the two Igusa parts), we obtain a scheme whose special fiber is the
intersection of the special fiber of the single Igusa component (j -line with multiplicity
p � 1) with another P1

xFp
with multiplicity .p � 1/=2; the intersection point has ring of

coordinates
Zur
p

�
Œa; b�

�
=.ap�1b

p�1
2 � p/:

Now consider ordinary points with j � 0 (so p � 1 mod 6). There are .p � 1/=6
points on each of the two Igusa components xM.Ig.p/=¹˙1º/xFp in the special fiber of the
semistable Xns.p/

st over Zur
p Œp

2=.p2�1/�. Those Igusa parts can, as before, be descended
over Zur

p Œ�2 D p
1=.p�1/�, and then the inertia of the Galois action at the points for which

j � 0 is the order 3 subgroup of F�
p2
=�pC1.Fp2/ ' F�p , which is spanned by some

!3 2 F�p that is lifted to u.p�1/=3 mod �pC1.Fp2/ (with u our generator of F�
p2

). Then
u.p�1/=3W�2 7! u.p

2�1/=3�2. On the other hand, Proposition 2.1 implies that the Galois
action of !3 on the Igusa component is

.E; P / 7!
�
E; hu.p

2�1/=6
ipP

�
; (3.10)

which is the same as that of the exceptional automorphism Œu.p
2�1/=6� (action of a 6th root

of unity) on the curve E0 with j -invariant 0 on xFp . From [16, (7), end of Section 2.2.2],
one therefore sees that the action of !3 on the universal deformation space xFpŒŒt �� at the
elliptic curve E0 with j -invariant 0 is given by t 7! .u.p

2�1/=6/2t D !3t . Summing up,
if Zur

p Œ�2�ŒŒt �� is the completed local ring at such a point over Zur
p Œ�2�, then the inertia

subgroup of Galois can be described as

!3W�2 7! !3�2; t 7! !3t: (3.11)

Therefore, computations similar to those in the previous case (when j � 1728) show
that if those points with j � 1728 are ordinary at p (� 1 mod 3), blowing up gives
a regular model over Zur

p with one extra rational component above p, with multiplicity
.p � 1/=3, intersecting the Igusa component in a singularity of shape

Zur
p

�
Œa; b�

�
=.ap�1b

p�1
3 � p/:

Now go back to the case j�1728, and assume it is supersingular at p (� �1 mod 4).
Checking [16, Theorem 3.4] and the proof of Theorem 3.1 above, one sees that the
exceptional Drinfeld component on the semistable model Xns.p/

st over Zur
p Œp

2=.p2�1/�

has equation
U 2 D W

pC1
2 C Ans

(for some nonzero Ans � .aN=2/ mod p), with notation for U and W D V 2 as in (3.3).
The Galois action is therefore deduced from (3.4) to be uWU 7! U ,W 7! u2.p�1/W . The
corresponding quotient Drinfeld component is again a rational curve, but its multiplicity
is now .p C 1/=2. Looking at points where Galois has inertia therefore produces singular
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points in the quotients and leads to computations completely similar to those at the end
of the proof of Theorem 3.1. We eventually obtain that, as its plain Drinfeld siblings, the
exceptional Drinfeld component with j � 1728 is endowed with two extra components
which are also copies of P1 with multiplicity 1; the local completed singularity is

Zur
p

�
Œa; b�

�
=.a

pC1
2 b � p/:

The ring of the intersection between the Igusa component and that special Drinfeld com-
ponent is

Zur
p

�
Œa; b�

�
=.ap�1b

pC1
2 � p/:

Finally, in the case where j � 0 is supersingular at p (� �1 mod 3), one obtain mutatis
mutandis a Drinfeld component which once more is a rational curve, with multiplicity
.p C 1/=3, endowed with two extra components which are copies of P1 with multiplic-
ity 1, and whose completed ring at the intersection point is

Zur
p

�
Œa; b�

�
=.a

pC1
3 b � p/I

the ring of the intersection between the Igusa component and the special Drinfeld compo-
nent is

Zur
p

�
Œa; b�

�
=.ap�1b

pC1
3 � p/:

As in the case of Theorem 3.2 (see end of its proof), singular points at the intersection
of Drinfeld and Igusa parts may be not regular in the semistable model of Xns.p/

st over
Zur
p Œp

2=.p2�1/� (see [16, Theorem 3.4]). However, their image in the Galois quotient is
regular over Zur

p (and, more precisely, have the above shape).
The statement that the regular models we obtained are the minimal regular models

with normal crossings is easily seen from the fact that no component can be contracted
without losing the “normal crossings” property. Details will be displayed in the proof of
next Corollary 3.1 (see also Figure 5).

We now describe the minimal regular models for our curves. The point is to compute
self-intersections of irreducible components in the special fiber, then contract the projec-
tive lines with self-intersection �1 (Castelnuovo criterion), and repeat the process on the
new fiber thus obtained. It turns out that one finally obtains reduced fibers.

(Let us recall here for the convenience of the reader that for p � 5 which one writes
p D 12kC i , with i D 1; 5; 7 or 11, the number of supersingular j -invariants in character-
istic p is k; k C 1; k C 1 or k C 2, respectively. In particular, the number of supersingular
j -invariants which are different from 0 and 1728 mod p is k in all four cases.)

Corollary 3.1. Assume p � 5. Writing p D 12kC i with i D 1; 5; 7 or 11, set n.p/D 2k
if i D 1, n.p/ D 2k C 2 if i D 5 or i D 7 and n.p/ D 2k C 4 if i D 11.

The minimal regular model of Xns.p/ over Zur
p has a special fiber which is reduced,

made of n.p/ components intersecting at one common (very) singular point. Those com-
ponents are quotients of the projective line, which might be singular at the common
intersection point. See Figure 5.
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(cf. Theorem 3.3)

-
Contraction of theDi

for i > 0

B
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E0 F0

F1E1

F2E2 �

�

�

FkEk

A

Step 1

�
�

�
�

�
�

�
�

�+

Contraction of A

D0

E0 F0

E1

E1

F1

F1

E2

E2

F2

F2

� � �

Ek

Ek

Fk

Fk

� � �

B

Step 2

-Contraction of B
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E0 F0

E1
E1F1
F1E2

E2
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F2

���
Ek

Ek
Fk Fk

���
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�
�
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F1 F1
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�
�
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Step 4 (Minimal regular model)

Figure 5. Minimal resolution of Xns.p/ in the case p D 12k C 5.
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Proof. One starts from the regular models obtained in Theorem 3.3. By Castelnuovo’s
criterion (cf. [19, Chapter 9.3]), one just needs to iteratively contract the components
in the special fiber which are isomorphic to projective lines (in our case, all irreducible
components are) and have self-intersection �1. One considers separately the four possible
cases of congruence for p mod 12. Namely, take for instance some p D 12k C 5. We
have labeled components on Figure 4; the only Igusa one is A (with multiplicity p � 1 D
12k C 4), and the horizontal ones are B (with multiplicity .p � 1/=2 D 6k C 2), D0
(multiplicity .pC 1/=3 D 4k C 2),D1; : : : ;Dk (all with multiplicity pC 1 D 12k C 6),
E0 and F0 (the two multiplicity 1 components intersecting D0) and similarly Ei , Fi (the
multiplicity 1 components intersecting Di ) for 1 � i � k; see also Figure 5. Any two
different components X and Y have intersection number X � Y D 1, so computing self-
intersection numbers gives (as intersecting with the whole special fiber gives 0)

A2 WD A � A D
�1

12k C 4

�
.6k C 2/A � B C .4k C 2/A �D0 C

kX
iD1

.12k C 6/A �Di

�
D �1 � k

and similarly B2 D�2,D2
0 D�3,E20 D F

2
0 D�4k � 2 and for 1� i � k,D2

i D�1 and
E2i D F

2
i D�12k � 6. So one first contracts allDi for i � 1 (Step 1 in Figure 5). Let � be

the contraction morphism. By the projection formula (see [19, Chapter 9, Theorem 2.12]),
if A0 WD ��.A/ denotes the image of A in the new scheme, then

A0
2
D ��.A/ � ��.A/ D A � �

���.A/ D A �

�
AC

kX
iD1

Di

�
D �1 � k C k D �1

(where the first two intersection products above occur on the contracted scheme, whereas
the others take place in the original arithmetic surface). So one further contractsA0 (Step 2
in Figure 5). Note at this point that, whereas the intersection product of any two different
components has always been 1 so far, it is no longer the case after contracting A0 (one has
Ei �Fi D 2 for i > 0). By abuse of notation, we forget about the “prime” in the new scheme
(so now A0 is denoted by A again) and keep writing � for the new contraction, and we let
B 0 WD ��.B/ denote the image of B , which satisfies

B 0
2
D B � ����.B/ D B � ŒB C A� D �1

so we contract B.
0/ (Step 3). Finally for D00 WD �.D0/,

D00
2
D D0 �

�
D0 C B C 2AC

kX
iD1

Di

�
D D2

0 C 2D0 � A D �1

(this time the first product occurs in the newest contracted arithmetic surface, whereas the
last ones are in the scheme we started with). We therefore finally contract D0 (Step 4),
and we obtain the minimal regular model which is indeed reduced, made of 2k C 2 D
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.p C 7/=6 projective lines with multiplicity 1, each of which intersects all the others at
one highly singular common point. (Note that writing down the intersection matrix of
our minimal regular model with normal crossings, and performing a Smith normalization
process which parallels our successive contractions, one can obtain the intersection matrix
of the minimal regular model.)

The computations in the other congruence cases for p are similar. Explicitly, and
labeling the components as in Figure 4, for p D 12k C 1, one contracts the Di , then
A, then B , finally C ; when p D 12k C 7, first contractDi , i � 1, then A,D�1 and C ; for
p D 12C 11, first the Di , i � 1, then A, D�1 and D0.

3.3.1. Component groups for Jns.p/.

Proposition 3.1. Let p � 17 be a prime, and denote by Jns.p/ the Néron model over Zur
p

of the Jacobian of Xns.p/. The group of connected components .Jns.p/=J
0
ns.p//.

xFp/ of
the special fiber of Jns.p/ is:

• Z=pC1
2

Z � Z=12.p C 1/Z �
�
Z=.p2 � 1/Z

�.p�25/=12 if p D 12k C 1;

• Z=pC1
6

Z � Z=4.p C 1/Z �
�
Z=.p2 � 1/Z

�.p�17/=12 if p D 12k C 5;

• Z=pC1
4

Z � Z=6.p C 1/Z �
�
Z=.p2 � 1/Z

�.p�19/=12 if p D 12k C 7;

• Z=pC1
12

Z � Z=2.p C 1/Z �
�
Z=.p2 � 1/Z

�.p�11/=12 if p D 12k C 11.

For pD 2;3;5, the component groups are trivial, and for pD 7;11 and 13 they are Z=2Z,
Z=24Z and Z=7Z, respectively.

Proof. By [8, Chapter 9.6, Corollary 3], using any of our regular models, we just need to
write down the intersection matrices at the special fiber and put them in Smith normal form
to compute the elementary divisors. To be explicit, let us again treat a particular case, when
p D 12k C 5. After Step 1 of the contraction process (Figure 5), one obtains an intersec-
tion matrix which, in the components basis ¹E1;F1;E2;F2; : : : ;Ek ;Fk ;A;D0;E0;F0;Bº,
has shape0BBBBBBBBBBBBBBBBBBBBB@

�12k � 5 1 � � � 0 1 0 0 0 0

1 �12k � 5 � � � 0 1 0 0 0 0

0 0 � � � 0 1 0 0 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

0 0 � � � 0 1 0 0 0 0

0 0 � � � 1 1 0 0 0 0

0 0 � � � �12k � 5 1 0 0 0 0

1 1 � � � 1 �1 1 0 0 1

0 0 � � � 0 1 �3 1 1 0

0 0 � � � 0 0 1 �4k � 2 0 0

0 0 � � � 0 0 1 0 �4k � 2 0

0 0 � � � 0 1 0 0 0 �2

1CCCCCCCCCCCCCCCCCCCCCA
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(see proof of Corollary 3.1). After going through a lengthy but elementary manual Smith
normal process, this does yield2 elementary divisors with quotient group (when k � 1):�

Z=.2k C 1/Z
�
�
�
Z=24.2k C 1/Z

�
�
�
Z=24.2k C 1/.3k C 1/Z

�k�1
:

3.4. Regular models for XC
ns .p/

Theorem 3.4. Let p � 13 be a prime, and let XCns .p/ be the coarse modular curve over
Q associated with �Cns .p/.

The minimal regular model with normal crossings of the curve XCns .p/ over Zur
p has

a special fiber made of one vertical Igusa component, intersecting horizontal chains of
Drinfeld components above each supersingular point.

That vertical part is a projective (j -)line, with multiplicity .p � 1/=2.
If � is the number of supersingular j -invariants in Fp2 , there are � horizontal chains

of (Drinfeld) components. Unless the corresponding j -invariant has exceptional geomet-
ric automorphisms (that is, j � 0 or 1728 mod p), those Drinfeld curves are all copies of
a rational curve P1 with multiplicity pC 1, on which, at one point, stems another P1 with
multiplicity 1, and at another point still another P1 rises, with multiplicity .p C 1/=2.

Depending on the residue class of p mod 12, the vertical Igusa components moreover
have the following additional equipments:
• If p � 1 mod 12, the vertical Igusa component intersects transversally an additional

chain of components above the ordinary point j � 0 mod p, which is made up of a
projective line, with multiplicity .p � 1/=3, followed by another P1, with multiplicity
.p � 1/=6.

• If p � 5 mod 12, then the vertical Igusa component has one exceptional Drinfeld
component, at the supersingular j � 0 mod p, which is a projective line with multi-
plicity .pC 1/=3, intersecting itself two extra projective lines, one with multiplicity 1,
the other one with multiplicity .p C 1/=6.

• If p � 7 mod 12, the vertical Igusa component intersects transversally an additional
chain of components at the ordinary j � 0 mod p, as in the case p � 1 mod 12: a
projective line, with multiplicity .p � 1/=3, followed by another P1, with multiplicity
.p � 1/=6. The exceptional Drinfeld component at the supersingular j � 1728 mod p
is just a projective line with multiplicity 1.

• If p� 11 mod 12, there are two exceptional Drinfeld components at the supersingular
j � 0 mod p and j � 1728, which are as in the respective cases above.

All intersections points in the special fiber between components with multiplicity a and b,
say, are normal crossings points, with local equations

Zur
p

�
ŒX; Y �

�
=.Xa � Y b � p/:

(See Figure 6.)

2One finds in GP-Pari a function matsnf (for “matrices Smith normal form”) which helps making
safety checks with our formulas for small values of p.
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�
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Figure 6. Special fiber above xFp of the minimal regular model with normal crossings of XCns .p/.
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Remark 3.3. As in Remark 3.2, note that Theorem 3.4 in fact gives regular models for
all p � 5, but we have discarded primes p � 11 from its statement because of the non-
minimality of our regular model with normal crossings in those cases. However, XCns .p/

is just a projective line if p � 7 (including p D 2; 3), and for p D 11 the minimal regular
model with normal crossings is obtained from the regular model above by contracting the
vertical Igusa component (which has multiplicity .p � 1/=2 D 5).

Remark 3.4. As a sanity check, we can notice that Theorem 3.4 provides SNC-models
(in the terminology of [20]), with genus-0 irreducible components in their special fiber.
So loc. cit. shows that the genus of the XCns .p/ can be read on the dual graph G of their
special fiber as

g
�
XCns .p/

�
D ˇ C

1

2

X
v

.rv � 1/.dv � 2/

where ˇ is the Betti number of G (which here is 0), and the above sum runs through the
vertices v of G, for which dv denotes the degree of v and rv is the multiplicity of the
associated irreducible component (see [20, formula on top of p. 150]). With that formula
in hand, it is easy to compute genera for each of the four congruence cases mod 12 of
Theorem 3.4, and check that one finds back the formula:

g
�
XCns .p/

�
D
p2 � 10p C 23C 6

�
�1
p

�
C 4

�
�3
p

�
24

obtained on the generic fibers using Riemann–Hurwitz formula (see e.g. [21, p. 117]).

Proof. As for Theorem 3.3 above, we start from the semistable model XCns .p/
st over the

ring Zur
p Œp

2=.p2�1/� given by [16, Theorem 3.5], and we quotient out by the Galois group

G D Gal
�
Qur
p .p

2=.p2�1//=Qur
p

�
' F�

p2
=¹˙1º;

taking care of points with exceptional automorphisms.
The case where j � 0 is ordinary mod p (� 1 mod 3) is not quite the same as what

happens for Xns.p/ in Theorem 3.3, because of Galois action. There is still a total of
.p � 1/=6 points with that j -invariant on the (either 1- or 2-components) Igusa locus of
our semistable model, which is xM.Ig.p/=¹˙1º/xFp if p ��1 mod 4 and xM.Ig.p/=C4/xFp
if p � 1 mod 4. As in the proof of Theorem 3.2, those Igusa parts can be descended over
Zur
p Œ�

2
2 D p

2=.p�1/�, and then the inertia of the Galois action at the points for which j � 0
is the order 3 subgroup of

F�
p2
=�2.pC1/.Fp2/ ' F�p =¹˙1º;

which is spanned by �3 WD u.p�1/=3 mod �2.pC1/.Fp2/ for u our generator of F�
p2

. Then
�3W�

2
2 7! u2.p

2�1/=3�22 . On the other hand, Proposition 2.1 implies that the Galois action
of �3 on the Igusa component is .E; P / 7! .E; hu.p

2�1/=6ipP / (see (3.10)), which is the
same as that of the exceptional automorphism Œu.p

2�1/=6� (action of a 6th root of unity) on
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the curve E0 with j -invariant 0 on xFp . As in the proof of Theorem 3.3, from [16, (7), end
of Section 2.2.2], one sees that the action of �3 on the universal deformation space xFpŒŒt ��
at the elliptic curve E0 with j -invariant 0 is given by t 7! .u.p

2�1/=6/2t D u.p
2�1/=3t .

Summing up, if Zur
p Œ�

2
2 �ŒŒt �� is the completed local ring at such a point over Zur

p Œ�
2
2 �, then

the inertia subgroup of Galois can be described as

�3W�
2
2 7! �23�

2
2 ; t 7! �3t: (3.12)

Notice the difference with the analogous situation (3.11) of Theorem 3.2 as now the Galois
action on the tangent space at our exceptional points is not diagonal. In any case, that
action is not by pseudo-reflections either, so the quotient is not regular, and we blow it
up. Over Zur

p Œ�6 WD �
6
2 D p

6=.p�1/�, the Igusa quotient has multiplicity 3, and looking at
invariants shows that, puttingX D t3 and Y D �22 t , each of our singularity quotients with
j � 0 there has local ring with same completion as

Zur
p Œ�6�ŒX; Y �=.Y

3
� �6X/:

Blowing it up at M D .�6; X; Y / produces three affine schemes with rings

Zur
p Œ�6�ŒX1; Y1�=.X

2
1Y

3
1 � �6/; Zur

p Œ�6�ŒX2; Y2�=.X
2
2Y2 � �6/; and Zur

p Œ�6�ŒX3�

(with X1 WD X , Y1 WD Y=X ; X2 WD �6=Y , Y2 WD X=Y ; and X3 WD Y=�6).
In other words, our blowing up creates, at each point with j � 0 mod p, a chain

consisting of a projective line with multiplicity 2, on which stems another projective line
with multiplicity 1. Now going all the way down to the quotient over Zur

p , all our .p � 1/=6
points are permuted (regardless of whether p is 1 or �1 mod 4), so that one eventually
obtains a single point with j � 0 mod 3 on the Igusa j -line, from which goes out a chain
consisting of a P1 with multiplicity .p � 1/=3, followed by another one with multiplicity
.p � 1/=6. The crossing points have the expected shape.

When j � 1728 is ordinary mod p (� 1 mod 4), then: nothing happens. (The Galois
quotient of the Igusa component is regular at those special points.) Indeed, compare with
the proof of Theorems 3.3, around (3.9): over Zur

p Œ�2 WD p
1=.p�1/�, the local ring at some

point with j � 1728 on an Igusa component xM.Ig.p/=C4/xFp is now Zur
p Œ�2�ŒŒx��, with

Galois action of the quadratic subextension: �2 7! ��2, x 7! x. Whence the regularity.
Now if j � 1728 is supersingular mod p (� �1 mod 4), then as in the proof of Theo-

rem 3.3, one checks through Theorem 3.2 above and its proof, and [16, Theorem 3.5], that
a parameter on the Drinfeld component (which is a projective line) in the special fiber of
the semistable model XCns .p/

st over Zur
p Œp

2=.p2�1/� is X D V 2 D .z̨ ž/2 (with notation as
in (3.3), or as in [16, proof of Theorem 3.5]). Therefore, if u is a generator of F�

p2
, then on

our exceptional Drinfeld component, the Galois action is defined by uWX 7! u2.p�1/X

(cf. (3.4)). Therefore, the Galois quotient, over Zur
p , has a special Drinfeld component

which is a projective line with multiplicity .p C 1/=2. On the Drinfeld component above
(over Zur

p Œp
2=.p2�1/�) (which again is a projective line with multiplicity 1), that Galois

action has exactly two fixed points (at X D 0 and X D1). One has to be the intersection
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point with the Igusa component. The other one creates a non regular point on the quotient
Drinfeld curve over Zur

p . An avatar on the computations seen many times now (cf. e.g.
(3.6) and below) shows that blowing up at that point causes a projective line with mul-
tiplicity 1 to appear. Summing-up: at the supersingular point j � 1728, some projective
line, sayD�1, with multiplicity .pC 1/=2, intersects our Igusa (vertical) component, and
some other projective line (say E�1) with multiplicity 1 pops-up at some other point of
D�1. The resulting scheme is now regular with normal crossings, but not minimal with
such properties: indeed, one readily checks thatD�1 has self-intersection �1. Contracting
it, only E�1 survives, and we now have the desired minimality property.

Finally, let us consider the case when j � 0 is supersingular mod p (� �1 mod 3).
With notation as in [16, proof of Theorem 3.5], the exceptional Drinfeld component above
j � 0, for the curve over Zur

p Œp
2=.p2�1/�, has equation

Y2 D X.X
pC1
6 C Ans/

with X D X3 D V 6 and Y D XY D UV 3. With the same u as just before that means
that Galois acts by uWX 7! u6.p�1/X;Y 7! u3.p�1/Y (see (3.3) and around). This first
shows that our exceptional Drinfeld component is a projective line (with parameter Z WD

Y2=X) with multiplicity .pC 1/=3. Then the same reasoning as at the end of the proof of
Theorem 3.2 (see (3.8) and nearby) shows that after blowing up, two extra projective lines,
one with multiplicity 1, and one with multiplicity .p C 1/=6, arise on that last Drinfeld
component with j � 0.

As at the end of proof of Theorem 3.3, the assertion that the regular models we
obtained are the minimal regular models with normal crossings (at least when p > 5)
follows from the fact that no component can be contracted without losing the “normal
crossings” property. Again, details will be displayed in the proof of next Corollary 3.2.

Corollary 3.2. Let p � 5. If p D 12k C i , for i D 1; 5; 7 or 11, set n.p/ D k if i D 1,
n.p/ D k C 1 if i D 5 or i D 7, and n.p/ D k C 2 when i D 11.

The minimal regular model of XCns .p/ over Zur
p , has a reduced fiber, which is made up

of n.p/ components (which is precisely the number of supersingular invariants), intersect-
ing at one common singular point. (As in Corollary 3.1, components are quotients of the
projective line, which might be singular at the common intersection point.) See Figure 7.

Remark 3.5. As already noticed, XCns .p/' P1Q for p D 2; 3; 5 and 7; moreover, XCns .11/

is known to be an elliptic curve of Kodaira type III from the work of Ligozat [18], which
can also be found by our computations.

Note also that, whereas the Galois quotient of the semistable model for XCns .p/ we
started with has no reduced component (at all), the minimal regular model is, to the con-
trary, totally reduced. Of course we knew a priori that there had to be reduced components
in order to host the specialization of points with values in Q, which are known to exists
in many cases (CM points). (Actually, for all p, CM elliptic curves even furnish an infi-
nite number of CM points with values in Qur

p which specialize to any of those reduced
components.)
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Figure 7. Minimal resolution of XCns .p/ in the case p D 12k C 5.
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Proof. This is very similar to the proof of Corollary 3.1. Again we give a picture of the
minimal resolution in the case p D 12k C 5 (see Figure 7): using Castelnuovo’s crite-
rion, one first contracts the horizontal components with multiplicity .p C 1/, then those
with multiplicity .p C 1/=2, then the vertical Igusa component, the horizontal one with
multiplicity .p C 1/=3, and finally that with multiplicity .p C 1/=6. The other cases for
p mod 12 are settled in the same fashion.

As in the proof of Corollary 3.1, one can remark that writing down the intersection
matrix of our minimal regular model with normal crossings, and performing a Smith
normalization process which parallels our successive contractions, one obtains the inter-
section matrix of our minimal regular model, which for XCns .p/ say with p D 12k C 5,
has shape in the components basis ¹F0; F1; : : : ; Fkº of Figure 7:0BBBBB@

.5 � p/=3 4 4 � � � 4

4 13 � p 12 � � � 12
:::

:::
:::

:::
:::

4 12 � � � 13 � p 12

4 12 � � � 12 13 � p

1CCCCCA :

3.4.1. Component groups for J C
ns .p/.

Proposition 3.2. Let p � 17 be a prime, and denote by JCns .p/ the Néron model over Zur
p

of the Jacobian of XCns .p/. The component group JCns .p/=J
C;0
ns .p/ of the special fiber of

JCns .p/ is:

• Z=12Z �
�
Z=.p � 1/Z

�.p�25/=12 if p D 12k C 1;

• Z=4Z �
�
Z=.p � 1/Z

�.p�17/=12 if p D 12k C 5;

• Z=6Z �
�
Z=.p � 1/Z

�.p�19/=12 if p D 12k C 7;

• Z=2Z �
�
Z=.p � 1/Z

�.p�11/=12 if p D 12k C 11.

When p D 11, the component group is Z=2Z, and it is trivial when p D 2; 3; 5; 7 or 13.

Proof. The arguments are the same as those of Proposition 3.1. Note that for small primes,
the zero group of components also trivially follows from the fact that the genus of XCns .p/

is 0 for p D 5; 7 (and p D 2; 3 of course). It is however 3 for p D 13 (and 1 if p D 11);
see for instance [21, p. 117].

4. Regular model for split Cartan structures

Computations of regular models for split Cartan modular curves in prime level have
already been performed, under the guise of �0.p2/-structure, by the first-named author,
in [12]. Here we redo the proofs for completeness, and add the normalizer-of-Cartan case,
via the different method used in the previous non-split Cartan situation (starting from
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semistable models and computing Galois quotients). The next results therefore necessar-
ily closely parallel those of previous section, to which we refer for details which might be
skipped here.

4.1. Regular model for xM.P ; �s.p//

Theorem 4.1. Let p > 3 be a prime, let Œ�s.p/� be the moduli problem over ZŒ1=p�
associated with �s.p/, and let P be a representable moduli problem which is finite étale
over .Ell/=Zp . Let xM.P ; �s.p// D xM.P ; �.p//=�s.p/ be the associated compactified
fine moduli space.

Then xM.P ; �s.p// has a regular model over Zur
p whose special fiber is made up of

three “vertical” Igusa parts, which are linked together, at each supersingular point, by
Drinfeld components.

All three vertical parts are copies of xM.P /xFp . One of them (call it the central one) has
multiplicity p � 1; the other two (call them external ones) have multiplicity 1.

If sP is the number of supersingular points of xM.P /.xFp/, the sP horizontal chains of
(Drinfeld) components are all copies of a rational curve P1 with multiplicity p C 1.

At any intersection point in the special fiber between two irreducible components, of
multiplicity a and b, say (both in ¹1; p � 1; p C 1º), the completed local ring is

Zur
p

�
ŒX; Y �

�
=.Xa � Y b � p/:

For a shape of the special fiber of the curve, see Figure 8 (which, precisely speaking,
represents the coarse case XCs .p/).

Proof. As in the proof of Theorem 3.1, we start by considering the semistable model over
Zur
p Œ�0 D p

2=.p2�1/� given in [16, Theorem 4.1].
We begin with the vertical components. Remark that the two external Igusa parts in

the special fiber, which are both copies of xM.P /xFp , are acted on trivially by Galois. They
therefore give rise to the same Igusa parts in the quotient modular curve over Zur

p . As
for the other two Igusa parts, the situation is exactly the same as for those in the non-split
Cartan case; therefore, the same arguments as in the beginning of the proof of Theorem 3.1
show they give rise to a copy of xM.P /xFp with multiplicity .p � 1/. As for the Drinfeld
parts, the situation is almost similar to the non-split Cartan case (Theorem 3.1) but not
quite. Recall that those Drinfeld components in the special fiber over Zur

p Œp
2=.p2�1/� have

models
U 2 D V pC1 C As; (4.1)

where U D ˛pˇ � a=2, V D ˛ˇ and As D a
2=4 in xFp some non-zero element a in xFp ,

with notation of [16, Theorem 4.1, (27) and its proof]. If u is a generator of F�
p2

, its Galois
action which can be read on the Drinfeld component as that of�

u;

�
1 0

0 upC1

��
2 F�

p2
� �s.p/;
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Figure 8. Special fiber over xFp of the minimal regular model with normal crossings of Xs.p/.
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here induces U
�u
�! U , V

�u
�! up�1V (cf. Proposition 2.1). Therefore, the quotient Drinfeld

curves are projective lines, with parameters X D U , Y D V pC1, linked by equations of
the shape X2 D Y C As. Looking at local rings at closed points of the arithmetic surface
shows the new Drinfeld components appear with multiplicity p C 1 in the special fiber
above Zur

p . Also note that the quotient curve is regular, except perhaps under orbits of
points where Galois does not act freely. The latter are, on the model (4.1), the two points
for which V D 0 (but this implies ˛D 0 or ˇD 0, so those points are quotients of points at
infinity on the model for the full Drinfeld curves (2.2) of X.p/ in Section 2). Or perhaps,
they are points at infinity for (4.1), so again they come from points at infinity for (2.2). In
all cases, those possibly non-regular points are precisely the four intersection points with
Igusa parts.

We therefore just check what happens at intersection points between Igusa and Drin-
feld components. First we treat those at the intersection with the central Igusa parts. In our
initial semistable model over Zur

p Œ�0 D p
2=.p2�1/�, they are double points of thickness 1

with complete local ring
Zur
p Œ�0�

�
Œx; y�

�
=.xy � �0/; (4.2)

for x and y parameters corresponding to the Igusa and Drinfeld components, respectively,
[16, Theorem 4.1]. The stabilizer of each of those double point is the subgroup of index 2
in the total Galois group, that is,

S WD Gal
�
Qur
p .�0/=Q

ur
p .
p
p/
�
' F�;2

p2
=¹˙1º:

By the straightforward adaptation of [9, Lemma 2.3.4] already used in our previous proofs,
one can assume Galois acts on x and y via (Teichmüller lifts of) characters. Recall that
u denotes a generator of the full Galois group F�

p2
=¹˙1º, so that u2 is a generator of S .

The order of the action on x and y and the preservation of the equation in (4.2) imply that
Galois acts via

u2W x 7! u2.pC1/x; y 7! u2.1�p/y:

Making a dévissage if one wishes, by decomposing S as SŒpC1
2
�� SŒp�1

2
�, we see that on

the two successive subquotients, Galois acts via pseudo-reflections on the cotangent space,
which implies that the quotient ring is regular, from Serre’s criterion [9, Theorem 2.3.9] –
and indeed that ring is

Zur
p

�
Œx

p�1
2 ; y

pC1
2 ;
p
p�
�
=
�
x
p2�1
4 y

p2�1
4 �

p
p
�
:

Going down the last step to Zur
p finally gives a singularity with equation

Zur
p

�
ŒX; Y �

�
=.XpC1Y p�1 � p/:

Finally, let us check points of intersection with the external Igusa components. Any
double point in the semistable model over Zur

p Œ�0 D p
2

p2�1 � has completed local ring iso-
morphic to Zur

p Œ�0�ŒŒx; y��=.xy � �
p�1
2

0 / and such a point is fixed by the full Galois group
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[16, Theorem 4.1]. Taking the quotient by .F�
p2
=¹˙1º/p�1 and setting �1 WD p1=.pC1/,

we obtain singularities of the shape

zA WD Zur
p Œ�1�

�
Œx; y�

�
=.xy � �1/

which now is a regular ring. If � D up�1 is a generator of the p C 1-order cyclic quo-
tient G1 WD Gal.Qur

p .�1/=Q
ur
p /' F�

p2
=F�p , then the Galois action is induced by �Wx 7! x,

y 7! �y and �1 7! ��1, with

zAG1 D Zur
p

�
Œx; Y �

�
=.xpC1Y � p/:

4.2. Model for xM.P ; �C
s .p//

Theorem 4.2. Let p > 3 be a prime, let Œ�Cs .p/� be the moduli problem over ZŒ1=p�
associated with �Cs .p/, and let P be a representable moduli problem which is finite étale
over .Ell/=Zp . Let xM.P ; �Cs .p// D

xM.P ; �.p//=�Cs .p/ be the associated compactified
fine moduli space.

Then xM.P ; �Cs .p// has a regular model over Zur
p whose special fiber is made of two

“vertical” Igusa parts, which are bound together, at each supersingular point, by Drinfeld
components.

The two vertical parts are copies of xM.P /xFp . One of them has multiplicity p�1
2

; the
other one has multiplicity 1.

If sP is the number of supersingular points of xM.P /.xFp/, the sP horizontal chains of
(Drinfeld) components are all copies of a rational curve P1 with multiplicity pC 1. Each
of them also sees one projective line arising, with multiplicity pC1

2
.

At any intersection point in the special fiber between two irreducible components, of
multiplicity say a and b (2 ¹1; .p � 1/=2; .p C 1/=2; .p C 1/º), the completed local ring
is

Zur
p

�
ŒX; Y �

�
=.Xa � Y b � p/:

For a picture of the curve’s special fiber (actually in the coarse case), see Figure 10.

Proof. Use [16, Theorem 4.2]. As in Theorem 3.2 above, we see that the graph of the
special fiber of the quotient scheme by Galois remains the same over Zur

p Œ
p
p� as it is

upstairs (on the semistable model over Zur
p Œp

2=.p2�1/�). Then on Zur
p , the two central Igusa

components (. . . if there are two) are switched, whence the graph of the special fiber of our
curve over Zur

p . Also remark that the copy of the Igusa component xM.P / in the special
fiber of the semistable model over Zur

p Œp
2=.p2�1/� descends to the same object over Zur

p .
Then first assume p � �1 mod 4. As in the beginning of the proof of Theorem 3.2,

one sees that the Igusa component xM.P ; Ig.p/=¹˙1º/ over Zur
p Œp

2=.p2�1/� descends to
xM.P / over Zur

p , with multiplicity .p � 1/=2. If p � 1 mod 4, again the same arguments
as in the proof of Theorem 3.2 show the two Igusa components xM.P ; Ig.p/=C4/ over
Zur
p Œp

2=.p2�1/� descend to (a single) xM.P / over Zur
p , always with multiplicity .p � 1/=2.
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As for the Drinfeld components over Zur
p Œp

2=.p2�1/�, Theorem 4.2 of [16] claims they
have models

Y 2 D X.X
pC1
2 C As/ (4.3)

(for some As D a2=4 ¤ 0) with X D V 2 D .˛ˇ/2 and Y D UV D .˛pˇ � a=2/.˛ˇ/

(notation as in [16, proof of Theorem 4.2], or (4.1) above). As in (4.1) and after we check
that if u is a generator of F�

p2
, Galois is induced by

uWX 7! u2.p�1/X; Y 7! up�1Y:

So parameters for the Galois quotient are R WD X .pC1/=2, S WD Y 2=X , linked by an
equation S D RCAs, and we are formally in the same situation as for the Drinfeld com-
ponent (3.8) in the proof of Theorem 3.2 above. However, in the present split Cartan case,
the Drinfeld components are known to have one more intersection point with Igusa parts
than in the non-split situation of Theorem 3.2. More precisely, if p � 1 mod 4, then (4.3)
defines a hyperelliptic equation of type “Y 2 D X2gC2 C � � �”, which has two points at
infinity, and they are intersection points with two Igusa parts on the semistable model
over Zur

p Œp
2=.p2�1/�. On the other hand, if p � �1 mod 4, then (4.3) defines an equation

of type “Y 2 D X2gC1 C � � �” having one point at infinity, which is the intersection point
of only one Igusa part with our Drinfeld component. So in both cases, there is one missing
intersection point with Igusa parts. But one checks that .X; Y / D .0; 0/ on (4.3) indeed
comes from a point at infinity on the Drinfeld component (2.2): so here is our missing
intersection point with Igusa parts. Then there are .p C 1/=2 remaining points (on (4.3))
where Galois has some inertia, of order 2, and the proof of Theorem 3.2 above (cf. (3.8)
and the subsequent arguments) shows that taking the Galois quotient and blowing up still
makes another projective line rise up with multiplicity .pC 1/=2 in the Drinfeld projective
line downstairs, over Zur

p .

4.3. Models for Xs.p/

Theorem 4.3. For p � 13 a prime, let Xs.p/ be the coarse modular curve over Q asso-
ciated with �s.p/.

Then the minimal regular model with normal crossings of Xs.p/ over Zur
p has a spe-

cial fiber made up of three vertical Igusa parts, which are linked by horizontal chains
of Drinfeld components above each supersingular point. All irreducible components are
projective lines.

The vertical parts are j -lines. The central one has multiplicity p � 1. The two external
ones have multiplicity 1.

If � is the number of supersingular j -invariants in Fp2 , the � horizontal chains of
(Drinfeld) components are almost all (i.e., for j 6� 0 or 1728 mod p) copies of a rational
curve P1 with multiplicity pC 1. According to the residue class of p mod 12, the vertical
Igusa components moreover have the following extra components:

• If p � 1 mod 12, the central Igusa component intersects transversally an extra com-
ponent at each of the two (ordinary) j -invariants 1728 and 0, which are a projective
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line with multiplicity .p � 1/=2 and a projective line with multiplicity .p � 1/=3,
respectively.

• If p � 11 mod 12, the Drinfeld components above the supersingular j � 1728 and
j � 0 mod p are both projective lines, with multiplicity .p C 1/=2 and .p C 1/=3,
respectively.

• If p� 5 mod 12, we have the relevant mix between the two above situations: j � 1728
is ordinary mod p, so see the case p � 1 mod 12, whereas j � 0 is supersingular
mod p, so see the case p � 11 mod 12.

• If p � 7 mod 12, symmetric to the previous case: now j � 1728 is supersingular
mod p, whereas j � 0 is ordinary mod p.

Any intersection point in the special fiber between two irreducible components, of
multiplicity say a and b (both in ¹1; .p � 1/=3; .p C 1/=3; .p � 1/=2; .p C 1/=2; .p �
1/; .p C 1/º), has completed local ring

Zur
p

�
ŒX; Y �

�
=.Xa � Y b � p/:

See Figure 8.

Remark 4.1. Again Theorem 4.3 also applies to give regular models for all p � 5, but
we have excluded primes p � 11 from its statement because of the non-minimality of our
regular model with normal crossings for those primes. But Xs.p/ is just a projective line
if p � 5 (including p D 2; 3); and for p D 7 and p D 11, the minimal regular model with
normal crossings is obtained by contracting the central Igusa component (with multiplicity
p � 1). (See Remarks 3.2 and 3.3).

Proof. We now start from [16, Theorem 4.3]. The only things to adapt with respect to
the fine, rigidified case (Theorem 4.1 above) is the situation at special points with extra
automorphisms. Then the computations are essentially the same as those carried out in the
proof of Theorem 3.3 above. (Compare Figures 8 with 4.)

Corollary 4.1. For any prime p, the minimal regular model of Xs.p/ over Zur
p has a

reduced fiber, which is made of two components (the external Igusa ones), intersecting
(many times) at one common highly singular point (unless the curve has genus 0, that is,
p D 2; 3 or 5).

See Figure 9 for the case p D 12k C 5.

Proof. See Corollary 3.1 and its proof: by Castelnuovo’s criterion, one just needs to con-
tract the components which are isomorphic to projective lines and have self-intersection
�1. Namely, in the case p D 12k C 5, for instance, we first contract the Drinfeld compo-
nents with multiplicity pC 1. Then the central Igusa component (with multiplicity p � 1)
has self-intersection�1, so we contract it. Next we can contract the multiplicity .p � 1/=2
component; finally we contract the Drinfeld component with multiplicity .pC 1/=3. What
remains is the two external Igusa components, which have multiplicity 1.
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Figure 9. Minimal resolution of Xs.p/ in the case p D 12k C 5.
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Remark 4.2. Note that, after contracting all components Di for i > 0 in the minimal
regular model with normal crossings of Xs.p/ over Zur

p (that is, at the first step of the
minimal resolution process), one recovers, by a quite different path, the results of [12,
Paragraph 1.5], because of the well-known Q-isomorphism X0.p

2/ ' Xs.p/.
As a numerical sanity check, doing the math as above for p D 7 for example shows

that Xs.7/ ' X0.49/ and Jac.Xns.7// (which have same special fiber) are elliptic curves
of Kodaira type III, a fact known e.g. from [7].

4.3.1. Component groups for Js.p/.

Proposition 4.1. For p � 5 a prime, denote by Js.p/ the Néron model over Zur
p of the

Jacobian of Xs.p/. The component group Js.p/=J
0
s .p/ of the special fiber of Js.p/ is

Z=
p2 � 1

24
Z:

(Here we recover [14, Proposition 2].)

Proof. We do the same computations as for Proposition 3.1 – but perhaps easier (here, at
step 1 of the minimal resolution process, that is, after contracting all Drinfeld components
with multiplicity p C 1, the type of the intersection matrices is fixed (always 5 � 5)). For
instance, for p D 12k C 5, one checks that the intersection matrix of the regular model at
step 1 is, in the basis ¹E;F;A;B;D0º of Figure 9,0BBBBB@

.�12k2 � 9k � 2/ k k 0 1

k .�12k2 � 9k � 2/ k 0 1

k k �1 1 1

0 0 1 �2 0

1 1 1 0 �3

1CCCCCA
which is easily put under Smith normal form.

4.4. Regular models for XC
s .p/

Theorem 4.4. For p > 11 a prime, let XCs .p/ be the coarse modular curve over Q asso-
ciated with �Cs .p/.

The minimal regular model with normal crossings of XCs .p/ over Zur
p has a special

fiber made of two vertical Igusa parts, which are linked by horizontal chains of Drinfeld
components above each supersingular point. All irreducible components are (smooth) pro-
jective lines.

The vertical parts are j -lines. One has multiplicity .p � 1/=2 (in what follows, we
call it the “central one”). The other one has multiplicity 1.

If � is the number of supersingular j -invariants in Fp2 , the � horizontal chains of
(Drinfeld) components are almost all copies of branches, at least for j 6�0 or 1728 modp,
which are rational curves P1, with multiplicity p C 1, from which grows another excep-
tional projective line with multiplicity .pC 1/=2. According to the residue class of p mod
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12, the central Igusa component moreover has the following supplementary features:

• If p � 1 mod 12, then the central Igusa component intersects transversally an extra
component above the (ordinary) invariant j � 0 mod p, which is made of a projective
line, with multiplicity .p � 1/=3, followed by another P1, with multiplicity .p � 1/=6.

• If p � 5 mod 12, the central Igusa component has no extra component. However,
there is one exceptional Drinfeld component, at the (supersingular) invariant j � 0,
which is a projective line, with multiplicity .p C 1/=3, intersecting itself one extra
projective line, with multiplicity .p C 1/=6.

• If p � 7 mod 12, the central Igusa component intersects transversally an extra com-
ponent above the ordinary invariant j � 0 mod p, which is as in the case p � 1 mod
12: a projective line, with multiplicity .p � 1/=3, followed by another P1, with multi-
plicity .p � 1/=6. At the supersingular point j � 1728, the central Igusa component
directly intersects (transversally) the other Igusa line (which has multiplicity 1).

• If p � 11 mod 12, there are two exceptional supersingular j -invariants (j � 0 and
j � 1728), where the situation is as described in the two respective cases above.

Any intersection point in the special fiber between two irreducible components, of
multiplicity say a and b (both in ¹1; .p�1/=6; .pC1/=6; .p�1/=3; .pC1/=3; .p�1/=2;
.p C 1/=2; .p C 1/º), has completed local ring

Zur
p

�
ŒX; Y �

�
=.Xa � Y b � p/:

See Figure 10.

Remark 4.3. Once more, Theorem 4.4 also gives regular models for all p � 5, but we
have excluded primes p � 11 from its statement because of the non-minimality of our reg-
ular model with normal crossings for those small primes (cf. Remark 3.3 etc.). However,
and as in loc. cit. again, the XCs .p/ for p � 7 are just projective lines. For XCs .11/, one
sees that its minimal regular model with normal crossings is found from the regular one
given in Theorem 4.4 by contracting the central Igusa component in the special fiber.

In fact, note that our models for XCns .p/ and XCs .p/ have the same special fiber for
p � 7 and p D 13. When p D 13, that illustrates Baran’s isomorphism [6]. (The same
isomorphism of special fibers holds for Xns.p/ and Xs.p/, in the same range p � 7,
p D 13.)

Remark 4.4. Extending the comparison between the split and non-split cases, one can
also use Theorem 4.4 to check the genera of the XCs .p/ (cf. Remark 3.4). Again The-
orem 4.4 provides us with SNC-models, in the terminology of [20], with genus-0 irre-
ducible components in their special fiber. So writing G for the dual graph of the spe-
cial fiber and ˇ the Betti number of G (which here is nonzero), we use the formula
g.XCs .p// D ˇ C

1
2

P
v.rv � 1/.dv � 2/ (where the above sum runs through the vertices

v of G, for which dv denotes the degree of v and rv is the multiplicity of the irreducible
component corresponding to it [20, top of p. 150]). Computing genera in each of the four



B. Edixhoven and P. Parent 1054

D2 pC 1

pC1
2

1

D1 pC 1

pC1
2

Dk
pC 1

pC1
2

p�1
2

j � 0

��	 p�1
3

p�1
6

�

�

�

�

�

�

p D 12k C 1

pC1
3

pC1
6 1

j � 0

�
�
��

D1

pC 1

D2

pC 1

DkpC 1

�

�

�

pC1
2

pC1
2

pC1
2

p�1
2

p D 12k C 5

D2 pC 1

pC1
2

D1 pC 1

pC1
2

Dk pC 1

pC1
2

p�1
2

j � 0���
p�1
3

p�1
6

1

j � 1728
���

�

�

�

�

�

�

p D 12k C 7

1

j � 1728���

pC1
3

pC1
6

D1

pC 1

D2

pC 1

DkpC 1

�

�

�

pC1
2

j � 0
���

pC1
2

pC1
2

p�1
2

p D 12k C 11

Figure 10. Special fiber over xFp of the minimal regular model with normal crossings of XCs .p/.
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(Theorem 4.4 for p D 12k C 5).
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Figure 11. Minimal resolution of XCs .p/ in the case p D 12k C 5.



B. Edixhoven and P. Parent 1056

���
A

���������
D0 ���

E0

���
F0

�����
D1 ���

E1

���
F1 XCns .p/

� � �

PPPPP���
Dk ���

Ek

���
Fk

���
A

���������
D0 ���

C0

�����
D1 ���

C1

���
BHH

HHH
H

A
AA

�
�
�

��

XCs .p/

� � �

PPPPP���
Dk ���

Ck

Figure 12. Dual graphs of the special fibers of XCns .p/ vs. XCs .p/ (case p D 12k C 5). (The com-
ponents are labeled as in Figures 7 and 11, respectively.)

congruence cases mod 12 of Theorem 4.4 gives back the formula:

g
�
XCs .p/

�
D
p2 � 8p C 11 � 4

�
�3
p

�
24

[21, p. 117]. Actually, that strong parallelism between the split and non-split case (com-
pare Figures 6 and 10) is reflected in the fact that our Lorenzini’s formula directly gives

g
�
XCs .p/

�
D g

�
XCns .p/

�
C ˇ;

a relation predicted by Chen–Edixhoven’s isogeny [10]:

Jac
�
XCs .p/

�
� Jac

�
XCns .p/

�
� Jac

�
X0.p/

�
;

as Jac.X0.p// has purely toric reduction of same rank as that of Jac.XCs .p//. Cf. Fig-
ure 12.

Proof. Starting from [16, Theorem 4.4], one checks that the proofs and arguments of
Theorems 3.4 and 4.2 above can be transposed with obvious and small modifications.

Corollary 4.2. Let p be a prime number. The special fiber of the minimal regular model
of XCs .p/ over Zur

p is reduced, made of one single component, which is a projective line
with multiplicity 1 intersecting itself (many times) at one singular point (unless p � 7,
where the curve has genus 0).

Proof. We do the same computations as for Corollaries 3.2 or 4.1. To be explicit in the
case p D 12k C 5 for instance, we contract the Drinfeld components with multiplicity
p C 1; then we contract the components with multiplicity .p C 1/=2, then the central
Igusa component (multiplicity .p � 1/=2), the component with multiplicity .p C 1/=3,
and finally the one with multiplicity .p C 1/=6. See Figure 11.

4.4.1. J C
s .p/ has connected fibers.

Proposition 4.2. Denote by JCs .p/, for any prime p, the Néron model over Zur
p of the

Jacobian of XCs .p/. The component group JCs .p/=J
C;0
s .p/ of the special fiber of JCs .p/

is trivial.
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Proof. This trivially follows from the fact that the minimal regular model has only one
component (and is readily checked by writing the intersection matrix for the minimal
regular model with normal crossings).
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