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The non-degeneracy invariant of Brandhorst and
Shimada’s families of Enriques surfaces

Riccardo Moschetti, Franco Rota, and Luca Schaffler

Abstract. Brandhorst and Shimada described a large class of Enriques surfaces, called .�; x�/-
generic, for which they gave generators for the automorphism groups and calculated the elliptic
fibrations and the smooth rational curves up to automorphisms. In the present paper, we give lower
bounds for the non-degeneracy invariant of such Enriques surfaces, we show that in most cases the
invariant has generic value 10, and we present the first known example of complex Enriques surface
with infinite automorphism group and non-degeneracy invariant not equal to 10.

1. Introduction

A fundamental feature of an Enriques surface Y is that it always has an elliptic pencil, and
the understanding of these gives information about the geometry of Y . More specifically,
in the current paper we are interested in studying the so-called non-degeneracy invariant
nd.Y /. This was introduced in [7] and it is defined as follows. Every elliptic pencil can
be written as j2F j, where F 2 Pic.Y / is called a half-fiber. Then, the non-degeneracy
invariant nd.Y / is the maximum m such that there exist half-fibers F1; : : : ; Fm such that
Fi � Fj D 1 � ıij . Back to geometry, if nd.Y / D 10, then Y can be realized as a degree
10 surface in P 5 given by the intersection of 10 cubics (see the discussion in [11, Sec-
tion 2.3]). In a way, nd.Y / can be thought of as a way of measuring how far we are from
such a projective realization.

In characteristic different from 2, it is known that 4 � nd.Y / � 10. While the upper
bound simply follows from the fact that Num.Y /, the group of divisors on Y modulo
numerical equivalence, has rank 10, the lower bound is a recent result [14]. The non-
degeneracy invariant is known to be 10 for Enriques surfaces without smooth rational
curves [6, Theorem 3.2] and for generic Enriques surfaces containing smooth rational
curves (see [11, Section 4.2] and [5, Lemma 3.2.1]). The non-degeneracy invariant was
also computed for Enriques surfaces with finite automorphism group [10, Section 8.9],
and for specific examples of special Enriques surfaces with smooth rational curves and
infinite automorphism group (see [9, Sections 4.1–4.3] and [16, Section 5]). Otherwise,
computing nd.Y / is in general a hard problem as it is difficult to understand all the elliptic
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fibrations on Y , and the knowledge of their orbits under automorphisms is not sufficient
to determine it.

In the present paper, we work over C (see Remark 3.2) and turn to a specific class of
Enriques surfaces which were introduced by Brandhorst and Shimada in [4]. These are
called .�; x�/-generic Enriques surfaces, where � is the ADE-type of a lattice spanned by
a set of smooth rational curves on Y , and x� is the ADE-type of its primitive closure in
Num.Y /. The 184 lattice-theoretic possibilities for all pairs .�; x�/ were classified in [20].
Of these, 155 are obtained by realizable families of .�; x�/-generic Enriques surfaces (see
Definition 3.4). For these families, Brandhorst and Shimada study Aut.Y / and the sets
of smooth rational curves and elliptic fibrations on Y up to automorphisms. Combining
this information with [16, 17], we prove the following result. In the statement we do not
include the values of the non-degeneracy invariants for the families 1; 172; 184, since they
are already known, see Remark 4.1.

Theorem 1.1 (Theorems 4.2 and 5.10). For an integer i 2 ¹1; : : : ; 184º, let Yi be the i -th
realizable .�; x�/-generic Enriques surface in [4, Table 1] with i ¤ 1; 172; 184. Then,

(1) nd.Y145/ D 4.

(2) We have the lower bounds

nd.Y84/ � 9; nd.Y85/ � 7; nd.Y121/ � 9;

nd.Y122/ � 7; nd.Y123/ � 7; nd.Y143/ � 8;

nd.Y144/ � 8; nd.Y158/ � 9; nd.Y159/ � 7;

nd.Y171/ � 8; nd.Y176/ � 7:

(3) Finally, in the remaining 140 cases, nd.Yi / D 10.

For each surface Yi in the statement of Theorem 1.1, we provide an explicit sequence
of half-fibers on Yi realizing the claimed lower bound for nd.Yi /, see Section 6 for a
reference. For the Enriques surface Y145, using the work of Brandhorst and Shimada,
the automorphism group of Y145 acts on cohomology as the infinite dihedral group. We
give a full combinatorial description of its action on the set of smooth rational curves.
We then assemble this information to compute the value of the non-degeneracy invariant.
The details of the proof are spelled out in Section 5. To our knowledge, Y145 is the first
example of Enriques surface with infinite automorphism group and nd.Y / < 10. Different
aspects of the Enriques surfaces Y145 have been studied in the literature: they appear in [2]
as examples with “small” infinite automorphism group, their K3 covers have zero entropy
[3, Remark 5.5], and some non-extendable isotropic sequences on them were computed in
[13, Section 4].

The strategy we used to show that nd.Y145/ D 4 applies in principle to the remaining
11 cases in Theorem 1.1 (2). However, the argument is harder to replicate: both the auto-
morphism groups and the sets of orbit representatives of smooth rational curves are more
complex. This will be object of future study.
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Figure 1. The E10 lattice.

2. Preliminaries on Enriques surfaces and the non-degeneracy
invariant

2.1. Enriques surfaces and the E10 lattice

An Enriques surface Y is a smooth minimal projective connected algebraic surface of
Kodaira dimension zero such that

h0.Y; !Y / D h
1.Y;OY / D 0:

For an Enriques surface, the canonical class KY is the unique torsion element of Pic.Y /
(more specifically, 2KY � 0), and after quotienting by it we obtain SY WD Num.Y /, i.e.
the group of divisors on Y modulo numerical equivalence. The intersection product among
curves endows SY with the structure of a lattice: a finitely generated free abelian group L
of finite rank together with a non-degenerate symmetric bilinear form bWL � L! Z. As
a lattice, SY is isometric to U ˚ E8, where U is the hyperbolic lattice

�
Z2;

�
0 1
1 0

��
and

E8 is the negative definite root lattice associated to the corresponding Dynkin diagram.
We review root lattices more in detail in Section 3.1, but first we recall an alternative
realization of the lattice U ˚E8.

Definition 2.1. The E10 lattice is defined to be Z10 together with the intersection form
associated to the canonical basis e1; : : : ; e10 as represented in Figure 1: e2

i D �2 and
ei � ej D 1 if the corresponding vertices are joined by an edge, and zero otherwise. A direct
check shows that E10 is even, unimodular, and of signature .1; 9/ (see [19, Chapter V] for
this standard terminology). It follows by [15, Theorem 1] thatE10 is isometric to U ˚E8.
Therefore, for any Enriques surface Y , SY is isometric to E10.

In the current paper, it will be crucial to work with Z-bases of SY in the following
form.

Definition 2.2. Let Y be an Enriques surface and let B D ¹B1; : : : ;B10º be a basis of SY .
We call B an E10-basis if the map Bi 7! ei extends to an isometry between SY and E10.

2.2. The non-degeneracy invariant of an Enriques surface

Given an elliptic fibration f W Y ! P 1 on an Enriques surface Y , then f has exactly
two multiple fibers 2F and 2F 0 [1]. The curves F; F 0 are called the half-fibers of the
elliptic fibration. The half-fibers on an Enriques surface can be used to define the following
invariant of Y .



R. Moschetti, F. Rota, and L. Schaffler 1222

Definition 2.3. Let Y be an Enriques surface and let m be the maximum for which there
exist half-fibers F1; : : : ; Fm on Y such that Fi � Fj D 1 � ıij . Then m is called the non-
degeneracy invariant of Y and it is denoted by nd.Y /.

As we briefly reviewed in Section 1, if the Enriques surface Y is unnodal, or general
nodal, then nd.Y / D 10. Otherwise, it is in general a hard problem to compute nd.Y /,
which is known only in few cases (for instance, the Enriques surfaces with finite auto-
morphism group). Motivated by this, in [16] we introduced a combinatorial version of the
non-degeneracy invariant which we now review. First we recall that an elliptic configura-
tion on Y is a curve C appearing in Kodaira’s classification of singular fibers in elliptic
fibrations [1, Chapter V, Table 3], but not a multiple of such a fiber (note that C does not
have to be primitive in SY ). In this case, we have that either jC j is an elliptic pencil or
j2C j is an elliptic pencil of which C is a half-fiber [1, Chapter VIII, Lemma 17.3].

Definition 2.4. Let R be a finite collection of smooth rational curves on an Enriques sur-
face Y . Let HF.Y;R/ be the set of numerical equivalence classes h 2 SY in the following
form:

• h D ŒC �, where C is an elliptic configurations with irreducible components in R and
C is a half-fiber of an elliptic pencil on Y ;

• hD 1
2
ŒC �, where C is an elliptic configurations with irreducible components in R and

C is a fiber of an elliptic pencil on Y .

Then we define the combinatorial non-degeneracy invariant of Y relative to R, cnd.Y;R/,
to be the maximum m such that there exist f1; : : : ; fm 2 HF.S;R/ such that fi � fj D

1 � ıij .

As cnd.Y;R/ only considers classes of half-fibers supported in R, it gives a lower
bound for nd.Y /. In [17] we implemented a code that computes cnd.Y;R/ by listing all
elliptic configurations supported in R and then, with a recursive procedure, finds all the
maximal sequences f1; : : : ; fm 2 HF.S;R/ satisfying fi � fj D 1 � ıij . The procedure
terminates as R is a finite set of smooth rational curves.

2.3. The combinatorial non-degeneracy invariant cnd.Y /

We now introduce an additional version of non-degeneracy invariant which explores the
behavior of cnd.Y;R/ as R varies.

Definition 2.5. Let Y be an Enriques surface. We define the combinatorial non-degener-
acy invariant of Y as follows:

cnd.Y / D max
®

cnd.Y;R/ j R � R.Y / is finite
¯
:

Remark 2.6. It is an immediate consequence of the definition that we have the following
order relations among the different invariants we introduced above:

cnd.Y;R/ � cnd.Y / � nd.Y /:
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The next proposition pinpoints a (nonempty) class of Enriques surfaces where the
invariants cnd.Y / and nd.Y / are equal.

Proposition 2.7. Let Y be an Enriques surface such that every elliptic fibration admits a
fiber or a half-fiber supported on the union of smooth rational curves. Then we have that
nd.Y / D cnd.Y /.

Proof. LetmD nd.Y / and let f1D ŒF1�; : : : ;fmD ŒFm� be numerical equivalence classes
of half-fibers on Y such that fi � fj D 1 � ıij . By hypothesis, for all i 2 ¹1; : : : ; mº,
j2Fi j D jnCi jwhere Supp.Ci /D

S
j R

.i/
j for some smooth rational curvesR.i/

j and nD 1

or 2 if Ci is a fiber or a half-fiber respectively. Define R D ¹R
.i/
j j i; j º. Then

nd.Y / D m � cnd.Y;R/ � cnd.Y / � nd.Y / H) nd.Y / D cnd.Y /:

We now give an example where nd.Y / does not coincide with cnd.Y /.

Proposition 2.8. Let Y be a general nodal Enriques surface. Then cnd.Y / < 10.

Proof. Suppose .f1; : : : ; f10/ is an isotropic sequence realizing cnd.Y / D 10. By the
definition of cnd.Y / and [10, Theorem 6.5.5 (ii)], it is necessary that every pencil j2Fi j

has a reducible fiber of type zA1. So, let us write 2fi D Ri C Si with Ri and Si smooth
rational curves.

The first step is to show that for all i; j 2 ¹1; : : : ; 10º, i ¤ j , the fibers Ri C Si and
Rj C Sj have a component in common. By contradiction, assume otherwise. Then, we
have that

fi � fj D 1 H) 4 D .Ri C Si / � .Rj C Sj / D Ri �Rj CRi � Sj C Si �Rj C Si � Sj :

Since no two .�2/-curves on Y are disjoint by [10, Corollary 6.5.2], then the intersection
products Ri �Rj ; Ri � Sj ; Si �Rj ; Si � Sj equal 1, which contradicts [10, Lemma 6.5.1].

In the second step of the proof, we show that there exists a smooth rational curve
R0 which is an irreducible component of Ri C Si for all i . Let us start by considering
R1C S1 andR2C S2. As they have a common irreducible component by the first step, we
can assume up to relabeling thatR0 WD S1 D S2. Let us considerRi C Si , i 2 ¹3; : : : ; 10º,
and assume by contradiction that R0 ¤ Ri ; Si . Then, by the first step, we must have that

Ri C Si D R1 CR2:

Up to relabeling, we may assume that Ri D R1 and Si D R2. Now, consider Rj C Sj ,
j 2 ¹3; : : : ; 10º n ¹iº. AsRj C Sj has a component in common withRi C Si DR1CR2,
then we can assume up to relabeling that Rj D R1. At the same time, Rj C Sj has a
component in common with R2 CR0, which is impossible because Rj C Sj would equal
R1 CR2 or R1 CR0, contradicting the fact that the 10 fibers of type zA1 that we fixed are
distinct. So, R0 is a component of Ri C Si . Summarizing, we can write for all i that

Ri C Si D Ri CR0:



R. Moschetti, F. Rota, and L. Schaffler 1224

Finally, we study the intersection matrix R D .Ri � Rj /0�i;j�10. For i D 1; : : : ; 10,
we have that R0 � Ri D 2 as R0 C Ri is an elliptic configuration of type zA1. Lastly, for
i; j ¤ 0, i ¤ j , we have that

4 D .R0 CRi / � .R0 CRj / D 2CRi �Rj H) Ri �Rj D 2:

It can be checked directly that the matrix R has rank 11, which implies that R0; : : : ; R10

generate a sublattice of SY of rank 11, which cannot be.

3. Smooth rational curves and automorphisms of Enriques surfaces

From the discussion so far, it emerged that the more we know about smooth rational curves
on an Enriques surface Y , the more we understand nd.Y /. In [4] Brandhorst and Shimada
studied the distribution of smooth rational curves on Y in relation to the automorphism
group Aut.Y /. Below we recall some aspects of their work.

3.1. Root lattices and the .�; x�/-generic Enriques surfaces

We follow the exposition in [4, Section 1.1]. An ADE-lattice is an even, negative definite
lattice R generated by roots, i.e. vectors v 2 R such that v2 D�2. It is well known that an
ADE-lattice R has a basis consisting of roots whose associated dual graph is the disjoint
union of some of the Dynkin diagrams An (n � 1), Dn (n � 4), and E6; E7; E8. This
ADE-type for the lattice R is denoted by �.R/.

In [20] Shimada classified the ADE-sublattices of E10 up to the action of OP .E10/,
which is the group of isometries of E10 which preserve a positive half-cone P , that is one
of the two connected components of ¹v 2 E10 j v � v > 0º.

Theorem 3.1 ([20]). The following hold:

(1) Let R1; R2 � E10 be two ADE-lattices. Denote by xR1; xR2 their respective prim-
itive closures in E10. Then also xR1; xR2 are ADE-lattices and .�.R1/; �. xR1// D

.�.R2/; �. xR2// if and only if R1 and R2 are in the same OP .E10/-orbit.

(2) Let R � E10 be an ADE-sublattice. Then there are 184 possibilities for the pairs
.�.R/; �. xR//. These are listed in [20, Table 1] (see also [4, Table 1]).

Remark 3.2. Given an ADE-sublattice R � E10, it is natural to ask whether there exists
an Enriques surface Y together with a configuration of smooth rational curves C1; : : : ; Cn

� Y whose dual graph equals �.R/. By [20, Corollary 1.8], we have that �.R/ is realized
in this way on a complex Enriques surface if and only if the fourth column of [20, Table 1]
does not have the symbol “�”, which occurs in 175 cases out of the 184 possibilities for
.�.R/; �. xR//. As our goal is to study these Enriques surfaces, we work over C.

We will be interested in understanding the geometry of nodal Enriques surfaces Y
whose universal K3 cover satisfies specific conditions with respect to a configuration of
smooth rational curves on Y generating a sublattice of SY of fixed ADE-type. Recall that
for a lattice .L; b/ and a positive integer m, L.m/ denotes the lattice .L;mb/.



The non-degeneracy invariant of Brandhorst and Shimada’s families of Enriques surfaces 1225

Definition 3.3. Let Y be an Enriques surface with universal K3 cover X ! Y . Let .�; x�/
one of the pairs in [4, Table 1]. Then Y is called .�; x�/-generic provided the following
hold:

(1) Consider H 2;0.X/ � TX ˝C, where TX denotes the transcendental lattice of the
K3 surface X . Then the group of isometries of TX preservingH 2;0.X/ is equal to
¹˙idTX

º.

(2) Let R � E10 be an ADE-sublattice such that .�.R/; �. xR// D .�; x�/. Define MR

to be the sublattice of E10.2/˚R.2/ given by˝
.v; 0/; .w;˙w/=2 j v 2 E10; w 2 R

˛
:

Then there exist isometries MR Š SX and E10 Š SY such that the following
diagram commutes:

E10.2/ MR

SY .2/ SX :

Š Š

Definition 3.4. Among the 175 cases in Remark 3.2 of .�; x�/ which can be realized
geometrically by smooth rational curves on an Enriques surface, 155 of them are .�; x�/-
generic. These are the cases not marked with “�” in the fifth column of [4, Table 1]. We
will focus on these Enriques surfaces, which we will refer to as realizable .�; x�/-generic
Enriques surfaces.

3.2. Automorphisms and smooth rational curves on .�; x�/-generic Enriques
surfaces

Let Y be a .�; x�/-generic Enriques surface. Consider the natural homomorphism

Aut.Y /! OP .SY /

and denote by aut.Y / its image. One of the main results in [4] is the computation of a
finite generating set for aut.Y / and the study of its action on R.Y /, which denotes the set
of smooth rational curves on Y . The construction is quite technical [4, Section 6.1], but
for our purposes it suffices to focus on two of its main ingredients: the sets Rtemp and H .
The former set Rtemp is a specific subset of R.Y / with the property that the composition

Rtemp ,! R.Y /� R.Y /= aut.Y /

is surjective, while H is a subset of aut.Y / that acts in a specific way on a chamber
decompositions of the nef cone of Y . We focus on Rtemp because it contains explicit
examples of smooth rational curves on Y that we can use to study nd.Y /, and we can
apply the automorphisms in H to Rtemp to obtain more smooth rational curves if needed.
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Moreover, the elements in Rtemp and H are conveniently described in [21] in terms of a
fixed E10-basis of SY . So, a curve in Rtemp is an integral vector of dimension 10 and an
automorphism in H is a 10 � 10 matrix with entries in Z. In the next example we explain
how to extract this information from [21] (see also [22]).

Example 3.5. Consider the .�; x�/-generic Enriques surface number 145. To find the data
corresponding to Rtemp and H in the file [21, Enrs.txt], we can first search for no := 145.
In the corresponding record named Rats, which is before the label 145, we can find
Ratstemp, and then different records named rat. For each one of these, we consider
ratY, which give the following vectors:

R0 WD .4; 2; 4; 6; 5; 4; 3; 2; 1; 0/; R1 WD .2; 2; 3; 4; 3; 2; 1; 0; 0; 0/;

R2 WD .0; 0; 0; 0; 0; 0; 0; 0; 0; 1/; R3 WD .0; 0; 0; 0; 0; 0; 0; 0; 1; 0/;

R4 WD .0; 0; 0; 0; 0; 0; 0; 1; 0; 0/; R5 WD .0; 0; 0; 0; 0; 0; 1; 0; 0; 0/;

R6 WD .0; 0; 0; 0; 0; 1; 0; 0; 0; 0/; R7 WD .0; 0; 0; 0; 1; 0; 0; 0; 0; 0/;

R8 WD .0; 0; 1; 0; 0; 0; 0; 0; 0; 0/; R9 WD .0; 0; 0; 1; 0; 0; 0; 0; 0; 0/:

This means that, for a fixed E10-basis ¹B1; : : : ; B10º of SY , the vectors

4B1 C 2B2 C 4B3 C 6B4 C 5B5 C 4B6 C 3B7 C 2B8 C B9;

2B1 C 2B2 C 3B3 C 4B4 C 3B5 C 2B6 C B7; B10; B9; B8; B7; B6; B5; B3; B4

are numerically equivalent to smooth rational curve on Y , giving the curves in Rtemp. The
record HHH encodes the automorphisms in H , whose action on SY is described by the
different gY. For the Enriques surface 145 there are two such gY, and these have to be
thought of as 10 � 10 matrices in the E10-basis ¹B1; : : : ; B10º.

4. The non-degeneracy invariant for .�; x�/-generic Enriques surfaces

4.1. The main result

Using [16, 17] we compute a lower bound, and in the majority of the cases the exact
value, for the non-degeneracy invariant of the realizable .�; x�/-generic Enriques surfaces
in [4, Table 1].

Remark 4.1. Let Yi be the i -th realizable .�; x�/-generic Enriques surface in [4, Table 1].
By [4, Section 7.4], the Enriques surfaces Y172 and Y184 have finite automorphism group.
These Enriques surfaces were classified in [12], and more precisely we have that Y172 and
Y184 are respectively of type I and II. For these Enriques surfaces, the non-degeneracy
invariants were computed in [10, Propositions 8.9.6 and 8.9.9] (see also [16, Table 3]). The
Enriques surface Y1 is a general nodal Enriques surfaces by combining [4, Section 6.5]
and [10, Theorem 6.5.5 (ii)], and thus we have nd.Y1/D 10. This leaves us with 152 cases
of nd.Yi / to compute.
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Theorem 4.2. Let Yi be the i -th realizable .�; x�/-generic Enriques surface in [4, Table 1]
with i ¤ 1; 172; 184. Then,

(1) nd.Y145/ D 4.

(2) We have that

nd.Y84/ � 9; nd.Y85/ � 7; nd.Y121/ � 9;

nd.Y122/ � 7; nd.Y123/ � 7; nd.Y143/ � 8;

nd.Y144/ � 8; nd.Y158/ � 9; nd.Y159/ � 7;

nd.Y171/ � 8; nd.Y176/ � 7:

Moreover, in the above 11 cases, nd.Yi / D cnd.Yi /.

(3) Finally, in the remaining 140 cases we have that nd.Yi / D 10.

Proof. The value nd.Y145/D 4 is computed in Section 5 (in particular, see Theorem 5.10).
In the remaining cases where nd.Yi /�m, we provide an explicit non-degenerate isotropic
sequence of length m (if m D 10, then we obtain the 141 cases in (3)). To find such
sequences we use the code [17] with input the smooth rational curves in Rtemp provided
by [21], and in some case Rtemp together with some curves in Rtemp � aut.Yi / (see Sec-
tion 4.2 for more detail). The output, which can be tested directly without using again [17]
(see Section 4.3 for more detail), is discussed in Section 6. Finally, the claim in (2) that
nd.Yi /D cnd.Yi / for the eleven examples mentioned follows by Proposition 2.7 combined
with the fact that every elliptic fibration on Yi admits a fiber or a half-fiber supported on
the union of smooth rational curves, as it can be argued by [23].

Remark 4.3. It follows immediately from Theorem 4.2 that there are no .�; x�/-generic
Enriques surfaces with non-degeneracy invariant equal to 5 or 6. To our knowledge, exam-
ples of Enriques surfaces with non-degeneracy invariant 5; 6, or 9 are not known.

4.2. Computer-based construction of the isotropic sequences

Fix a .�; x�/-generic Enriques surface Yi . To compute a lower bound for nd.Yi /, the pro-
gram [17] needs as input a basis for SYi

and a finite collection R of smooth rational
curves on Yi (for the explanation of the algorithm see [16, Section 4]). Following [4],
we take an E10-basis for SYi

and R D Rtemp if i ¤ 43; 78; 84; 121; 158 (recall the
smooth rational curves in Rtemp are already expressed in the E10 basis in [21]). For
i D 43; 78; 84; 121; 158, we obtain the claimed lower bound on nd.Yi / by taking R equal
to Rtemp union a finite subset of Rtemp � aut.Yi /. More precisely, we consider the action of
the automorphisms in H (see Example 3.5).

Remark 4.4. We collect some subtleties behind the above calculations.

(1) In the cases where nd.Yi /D 10, it is sometimes enough to consider a proper subset
of curves in Rtemp to construct a non-degenerate isotropic sequence of length 10.
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(2) In Theorem 4.2, for the cases where nd.Yi / � m with m ¤ 10 and i ¤ 43; 78; 84,
we used all the curves in Rtemp. We also used some of the automorphisms in H

to produce new smooth rational curves not in Rtemp, but this did not improve the
lower bound m.

(3) The code [17] needs that the chosen smooth rational curves in R generate SYi

over Q. We have that Rtemp has this property, except for i D 84.

(4) For i D 43;78;84;121;158, by only using RDRtemp we obtain the lower bounds
nd.Y43/ � 6; nd.Y78/ � 7; nd.Y84/ � 4; nd.Y121/ � 6; nd.Y158/ � 8, instead of
the better 10; 10; 9; 9; 9, respectively.

4.3. How to test the correctness of the output

One way of proving parts (2) and (3) of Theorem 4.2 is by directly checking the out-
put discussed in Section 6. More precisely, let nd.Yk/ � m be one of the inequalities
claimed in (2) or (3) of Theorem 4.2 and let F1; : : : ; Fm be the corresponding sequence
of half-fibers we want to check. Using the data in [21], we can find the coordinates of
each smooth rational curve in the support of F1; : : : ; Fm with respect to the fixed E10

basis, and consequently express each half-fiber F1; : : : ; Fm in this basis. (Sometimes,
smooth rational curves are obtained by acting on some Ri 2 Rtemp with automorphisms
in H D ¹H0;H1; : : :º). We point out that the obtained vectors have integral entries, which
guarantees that F1; : : : ; Fm 2 SYk

, and that the entries are not simultaneously divisible
by 2, which guarantees that there are no fibers among F1; : : : ; Fm. By organizing the 10-
dimensional vectors as rows of a matrix F , we can check the following equality by simple
matrix multiplication:

FME10F
|
D 1m � Im:

Here, 1m is the m �m matrix with entries equal to 1 and Im is the m �m identity matrix.
This means that Fi � Fj D 1 � ıij for all i; j . The last thing to verify is that F1; : : : ; Fm

are actually half-fibers. For this, let Ci be the elliptic configuration associated to Fi . That
is, if Fi has a coefficient 1=2, then Ci D 2Fi . Otherwise, Ci D Fi . Then we have to check
that the dual graph of the curvesRi in the support of Ci form an extended Dynkin diagram
and that the coefficients of the smooth rational curves Ri in Ci match the multiplicities of
the irreducible components of the singular fibers in Kodaira’s classification.

Example 4.5. For Yk D Y158, the claimed sequence of half-fibers is the following:

F1 D
1

2
.R0 CR2/; F2 D

1

2
.R2 CR16/; F3 D

1

2
.R2 CR2 �H2/;

F4 D
1

2
.R3 CR4/; F5 D

1

2
.R3 CR12/; F6 D

1

2
.R2 CR14/;

F7 D .R2 CR8/; F8 D
1

2
.R1 CR6 CR8 CR15 C 2R7/;

F9 D
1

2
.R5 CR6 CR8 CR9 C 2R11/:
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Using the data in [21] we can write R0;R1;R2;R3; : : : ;R9, R11;R12;R14;R15;R16;

R2 �H2 in the E10-basis as

R0D.2; 1; 2; 3; 2; 1; 0; 0; 0; 0/; R1D.2; 1; 2; 3; 2; 2; 2; 1; 0; 0/;

R2D.8; 5; 10; 15; 14; 13; 10; 6; 4; 2/; R3D.8; 5; 10; 15; 14; 13; 10; 7; 4; 1/;

R4D.4; 1; 4; 7; 6; 5; 4; 3; 2; 1/; R5D.0; 1; 0; 0; 0; 0; 0; 0; 0; 0/;

R6D.0; 0; 0; 0; 0; 0; 0; 0; 0; 1/; R7D.0; 0; 0; 0; 0; 0; 0; 0; 1; 0/;

R8D.0; 0; 0; 0; 0; 0; 0; 1; 0; 0/; R9D.2; 1; 2; 4; 4; 4; 4; 3; 2; 1/;

R11D.4; 2; 5; 8; 7; 6; 4; 2; 1; 0/; R12D.4; 3; 6; 9; 8; 7; 4; 3; 2; 1/;

R14D.4; 3; 6; 9; 8; 7; 6; 4; 2; 0/; R15D.4; 3; 6; 9; 8; 8; 6; 4; 2; 1/;

R16D.6; 3;8;13;12;11;8;6;4;2/; R2 �H2D.12;7;14;23;20;19;14;10;6;2/:

(4.1)

So, the coordinates of F1; : : : ; F9 in the same basis are

F1 D .5; 3; 6; 9; 8; 7; 5; 3; 2; 1/; F2 D .7; 4; 9; 14; 13; 12; 9; 6; 4; 2/;

F3 D .10; 6; 12; 19; 17; 16; 12; 8; 5; 2/; F4 D .6; 3; 7; 11; 10; 9; 7; 5; 3; 1/;

F5 D .6; 4; 8; 12; 11; 10; 7; 5; 3; 1/; F6 D .6; 4; 8; 12; 11; 10; 8; 5; 3; 1/;

F7 D .8; 5; 10; 15; 14; 13; 10; 7; 4; 2/; F8 D .3; 2; 4; 6; 5; 5; 4; 3; 2; 1/;

F9 D .5; 3; 6; 10; 9; 8; 6; 4; 2; 1/:

The matrix equality FME10F
| D 19 � I9 holds true. Below we write the intersection

matrix of the smooth rational curves in (4.1):0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�2 0 2 2 0 0 0 0 0 2 0 0 2 2 2 2

0 �2 0 0 0 0 0 1 0 0 0 2 0 0 2 0

2 0 �2 0 2 0 0 0 2 0 0 2 2 0 2 2

2 0 0 �2 2 0 2 0 0 0 0 2 0 0 2 0

0 0 2 2 �2 2 0 0 0 0 0 2 2 2 0 2

0 0 0 0 2 �2 0 0 0 0 1 0 0 0 2 0

0 0 0 2 0 0 �2 1 0 0 1 0 2 0 0 2

0 1 0 0 0 0 1 �2 1 0 0 0 0 1 0 0

0 0 2 0 0 0 0 1 �2 0 1 0 0 0 0 0

2 0 0 0 0 0 0 0 0 �2 1 2 0 0 0 0

0 0 0 0 0 1 1 0 1 1 �2 0 0 0 0 0

0 2 2 2 2 0 0 0 0 2 0 �2 2 0 0 2

2 0 2 0 2 0 2 0 0 0 0 2 �2 0 2 2

2 0 0 0 2 0 0 1 0 0 0 0 0 �2 0 0

2 2 2 2 0 2 0 0 0 0 0 0 2 0 �2 2

2 0 2 0 2 0 2 0 0 0 0 2 2 0 2 �2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

From this matrix we can extract that the extended Dynkin diagrams corresponding to the
elliptic configuration associated to F1; : : : ; F9, which are respectively:

6 � zAF
1;
zAHF

1 ; 2 � zDF
4:
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The coefficients of the smooth rational curves in (4.1) indeed match the multiplicities from
Kodaira’s classification. This completes the check for i D 158, confirming that

nd.Y158/ � 9:

To assist with the above checking for the 151 cases in Theorem 4.2 (2) and (3), we
provide appropriate scripts in [18].

4.4. A conjecture about nd.Y158/

By Theorem 4.2, we have that

nd.Y84/; nd.Y121/; nd.Y158/ � 9:

As there are no known examples of Enriques surfaces with non-degeneracy invariant 9, it
is worthwhile to explore whether at least one of these three lower bounds is attained. As
aut.Y158/ has the smallest number of generators, Y158 is a good candidate to study more
in detail. We run the code [17] with large (finite) samples of smooth rational curves R in
R.Y158/DRtemp � aut.Y158/ always obtaining that cnd.Y158;R/D 9. This computational
evidence motivates the following conjecture.

Conjecture 4.6. The realizable .�; x�/-generic Enriques surfaces 158 satisfies

nd.Y158/ D 9:

4.5. A question about cnd.Y1/

For the .�; x�/-generic Enriques surface Y1, we found that cnd.Y1/ � cnd.Y1;R/ D 7 for
several choices of R among the finite sets of smooth rational curves containing Rtemp.
Additionally, by Proposition 2.8 we have that cnd.Y1/<10, so the possibilities are cnd.Y1/

2 ¹7; 8; 9º. It would be interesting to know the value of cnd.Y1/.

5. The non-degeneracy invariant of the Enriques surface 145

In this section we fix Y WD Y145 to be the realizable .�;x�/-generic Enriques surface 145 in
[4, Table 1]. In this case, .�; x�/ D .E8; E8/. Our goal is to prove that nd.Y / D 4 in Theo-
rem 5.10. In what follows, we fix an E10-basis of SY compatible with the computational
data in [21].

5.1. Automorphisms and smooth rational curves on Y

Next, we describe aut.Y /. A description of the full automorphism group Aut.Y / appears
already in [2, Theorem 4.12]. At the same time, it is necessary for our purposes to describe
explicit generators compatibly with [4].

Start by first considering the 10 rational curves R0; : : : ; R9 in Rtemp on Y which were
introduced in Example 3.5. The dual graph of the union ofR0; : : : ;R9 appears in Figure 2.
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R9

R8 R1
R4

R6

R2

R7 R5

R3R0

Figure 2. Intersection graph of the smooth rational curvesR0; : : : ;R9 on the Enriques surface Y145.

Recall that a pair .2F1; 2F2/ of genus one pencils such that F1 � F2 D 1 is called a
U -pair. To a U -pair one can associate the bielliptic map, generically of degree 2, which is
induced by the linear series j2F1 C 2F2j. Therefore, a U -pair gives rise to an involution
on Y . We refer to [8, Section 3.3] for more properties of the linear series associated to the
U -pairs.

Definition 5.1. Consider the following fibers of elliptic fibrations:

G1 D 2.R0 CR2 CR3 CR4 CR5 CR6 CR7 CR9/;

G2 D R0 CR1 CR3 CR8 C 2.R4 CR5 CR6 CR7 CR9/;

G3 D 4R9 C 3R0 C 3R7 C 2R2 C 2R6 C 2R8 CR3 CR5:

Let " be the involution associated to the U -pair .G1; G2/. Another involution ı is associ-
ated to the U -pair .G1;G3/. Observe thatG3 �R1 D 0, soR1 is a component of a singular
fiber of jG3j. By the classification in [23], such a fiber forms a zA1 configuration: we denote
by R01 its other component. Finally, define  WD ı ı ".

Lemma 5.2. The automorphisms ";ı; 2Aut.Y / constructed above satisfy the following
properties:

(a) The involution " fixes R2 and R6 and it acts as a transposition on the pairs of
curves

.R0; R3/; .R1; R8/; .R4; R9/; .R5; R7/:

(b) The involution ı fixes R4, R8, R9, and it acts as a transposition on the pairs

.R0; R7/; .R2; R6/; .R3; R5/; .R1; R
0
1/:

(c) The automorphism  has infinite order and it acts as a transposition on the pairs

.R0; R5/; .R2; R6/; .R3; R7/; .R4; R9/:

Moreover, let us define R8;k WD 
k.R8/. Then the following hold:

(c.1) R8;�1 D R1;
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(c.2) R8;m ¤ R8;n for all m; n 2 Z, m ¤ n;

(c.3) R8;k ¤ R0; : : : ; R9 for all k 2 Z n ¹�1; 0º.

Proof. By [10, Lemma 8.7.5], " preserves the elliptic fibrations jG1j and jG2j. The auto-
morphism " is numerically non-trivial: this follows from [10, Lemma 8.2.5] and the fact
that the singular fibers in jG1j and jG2j have only 7 common components. The common
components R3;R4;R5;R6;R7;R9;R0 form an A7-configuration. Then, we claim that "
must act on the A7-configuration as the non-trivial symmetry of the A7 diagram. Indeed,
otherwise it would fix the classes of all curves Ri , i D 0; : : : ; 9. Since these classes are
independent in SY , " would act trivially on a basis of SY ˝Q, and hence numerically
trivially. This is a contradiction. The claimed action of " on R1; R2; R8 follows since "
preserves the intersection products. This shows part (a).

Consider now ı. Observe first that the zE7-fiber G3 must be preserved, and hence
that R8 must be fixed. Likewise, ı maps R4 to itself. Next, we claim that ı.R3/D R3 and
ı.R5/DR5 if and only if ı.R1/DR1 and ı.R01/DR

0
1. In fact, the curveR4 is a bisection

of jG3j meeting G3 in R3 and R5, and meeting the singular fiber R1 C R
0
1 once in each

component. The restriction ıjR4 has at least two fixed points given by the intersection
with the two half-fibers of jG3j. Since an automorphism of R4 Š P 1 with three fixed
points is the identity, and since ı preserves the fibration jG3j, the map ıjR4 fixes R4 \R3

and R4 \ R5 only if it is the identity, which establishes the claim. Arguing as for ", the
automorphism ı acts numerically non-trivially. Then, we claim that ı must act on the
A7-configuration of common curves amongG1 andG3 as a reflection. Suppose otherwise
for the sake of contradiction. In particular, the classes R3 and R5 are preserved by ı. As
explained above, this implies that ı also preserves R1, and hence that it is numerically
trivial, arguing as for ". This is a contradiction, hence ı acts as a reflection on the A7-
configuration and transposes R1 and R01.

For part (c), the action of  on Ri for i ¤ 8 follows from parts (a) and (b) above. We
now prove that  has infinite order. Denote by 0 the isometry of SY which is induced
by  . First, observe that 2

0 is the identity on the zA7-configuration. Hence, by the proof of
[2, Lemma 4.10], we have that 2

0 is an element of a subgroup ofO.SY / isomorphic to ZÌ
.Z=2Z/. In particular, as 2

0 is not the identity (2
0.R1/ D R

0
1), we have that 2

0 has order
2 or infinite. So, if we show that 4

0 is a nontrivial isometry, then we can conclude that 2
0,

and hence ;0, has infinite order. Consider the zE7 elliptic configurations given by

M D 4R4 C 3R3 C 3R5 C 2R2 C 2R6 C 2R1 CR0 CR7;

M 0 D 4R4 C 3R3 C 3R5 C 2R2 C 2R6 C 2R
0
1 CR0 CR7:

By [23], the elliptic fibrations jM j; jM 0j have a zA1 fiber each, which both contain the curve
R8. Explicitly, we can write these two zA1 fibers as R8 CR and R8 C S for some smooth
rational curves R and S . As 2.M/ D M 0, we have that 2.R8 C R/ D R8 C S . So,
2.R8/ D R8 or S . We show that the former is impossible by contradiction. If 2.R8/ D

R8, then .R01/DR8. By applying ı to both sides, we obtain ".R01/D ı.R8/DR8, hence
".R8/DR

0
1, which cannot be as ".R8/DR1 andR1 ¤R

0
1. We argued that 2.R8/D S ,
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which forces 2.R/ D R8, whence 4.R/ D 2.R8/ D S . As it also holds 4
0.R/ D S ,

this proves that 4
0 is not the trivial isometry.

We now can prove part (c.2). If false, then let k be a nonzero integer such that k.R8/

D R8. Therefore, also 2k.R8/ D R8. Additionally, 2k fixes the zA7-configuration. We
have that

2k.R8/ D R8 H) �2k.R8/ D R8 H) �2k
�
".R1/

�
D R8

H) "
�
2k.R1/

�
D R8 H) 2k.R1/ D ".R8/ D R1:

As 2k fixes each curveR0; : : : ;R9, we have that 2k
0 is the trivial isometry, contradicting

the fact proved above that 0 has infinite order. Finally, let us show (c.3). By the above
argument, we already know thatR8;k ¤R1;R8. IfR8;k DRj for j ¤ 1;8, thenR8;kC2 D

Rj (recall 2 fixes the zA7-configuration), which contradicts (c.2).

The remaining part of this section relies on the computational data [21]. To help the
reader reproduce the computational arguments, we introduce some notations and conven-
tions, and reconcile our considerations so far with [4]. In particular, recall that [4] fixes
a E10-basis of SY . The coordinates of the curves R0; : : : ; R9 with respect to this basis
are written as row vectors in Example 3.5. By letting " and  act on SY , the associated
matrices in this E10-basis are written below. To denote them, we use the corresponding
Greek letters, but not in boldface.

" D

0BBBBBBBBBBBBBBB@

�3 �2 �4 �6 �5 �4 �3 �2 0 0

0 �1 0 0 0 0 0 0 0 0

2 2 3 4 3 2 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

4 2 4 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
;

 D

0BBBBBBBBBBBBBBB@

�9 �4 �10 �16 �13 �10 �7 �6 �4 �2

�8 �3 �8 �14 �12 �10 �8 �6 �4 �2

10 4 11 18 15 12 9 6 4 2

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

4 2 4 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

1CCCCCCCCCCCCCCCA
:
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From now on, we see aut.Y / as a group of matrices.

Lemma 5.3. The group aut.Y / is generated by " and  , which satisfy the relations

"2
D I10; " D �1":

In particular, aut.Y / Š Z Ì .Z=2Z/.

Proof. The claimed relations can be checked directly (this can also be checked at level
of the automorphisms ";). The matrix  matches an element of H , extracted from [21,
Enrs.txt] as explained in Example 3.5. The other matrix in the record is �1, and these
are the only two elements in H . The matrix " appears in the record autcham inside V0.
In autcham there are two possible gY, and " equals the record gY different from I10. So,
by the discussion in [4, Section 6.1], we have that " and  generate aut.Y /. Finally, the
isomorphism of groups Z Ì .Z=2Z/ Š aut.Y / is explicitly given by .n; i/ 7! n"i .

Recall the convention in [4] that the automorphisms act on the smooth rational curves
by matrix multiplication on the right. We follow this convention, for consistency with the
work of Brandhorst–Shimada. So, for instance, the action of  on R8 is given by the
matrix multiplication

R8 �  D .10; 4; 11; 18; 15; 12; 9; 6; 4; 2/;

meaning that the coordinate vector of .R8/ is R8 �  , where in the latter we identify as
usual the smooth rational curve R8 with its numerical class in SY and coordinate vector.
Although both the intersection product among curves and the matrix action of aut.Y / are
denoted by “�”, the difference between the two will always be clear from the context.

As an illustration, we explicitly compute the coordinate vectors ofR8 � 
k as the trans-

pose of 0BBBBBBBBBBBBBBBBBB@

4k2 C 4k C 1 � .�1/k

2k2 C k C 1
2
�

1
2
.�1/k

4k2 C 4k C 2 � .�1/k

7k2 C 7k C 2 � 2.�1/k

6k2 C 6k C 3
2
�

3
2
.�1/k

5k2 C 5k C 1 � .�1/k

4k2 C 4k C 1
2
�

1
2
.�1/k

3.k2 C k/

2.k2 C k/

k2 C k

1CCCCCCCCCCCCCCCCCCA

: (5.1)

This can be verified by using induction twice, one for the positive and one for the negative
integers. Alternatively, the above claim can be checked directly with SageMath, as it can
compute abstract k-th powers of matrices. We point out that (5.1) can be used to produce
an alternative argument for Lemma 5.2 (c).
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Corollary 5.4. The only smooth rational curves on Y areR0;R2;R3;R4;R5;R6;R7;R9

and the infinitely many R8;k for k 2 Z, where in particular R8 D R8;0 and R1 D R8;�1.

Proof. By the discussion in [4, Section 6.2], we have that the set R.Y / of smooth rational
curves on Y can be obtained by acting with aut.Y / on Rtemp D ¹R0; : : : ; R9º. At the
same time, by Lemma 5.3, every element of aut.Y / can be written as "i ı n for n 2 Z,
i 2 ¹0; 1º. So, we have that

R.Y / D
®
Rj � .

n"i / j n 2 Z; i 2 ¹0; 1º; j 2 ¹0; : : : ; 9º
¯
:

Then, combining the results in Lemma 5.2 with the equality (given by the right action)

Rj � .
n"/ D Rj � ."

�n/ D .Rj � "/ � 
�n;

we obtain that
R.Y / D Rtemp t

®
R8;k j k 2 Z n ¹0;�1º

¯
;

which gives the description of R.Y / in the statement.

Remark 5.5 (The Barth–Peters example). It can be proved that the .E8; E8/-generic
Enriques surface Y under analysis already appeared in [2, Section 4]. We briefly recall
the construction of Barth and Peters. ConsiderQ WD P 1 � P 1 together with the involution
given in an affine patch by

sW .x; y/ 7! .�x;�y/:

For certain .4; 4/-curves B � Q (see [2, Section 4.1, Case 1]), the double cover xX !
Q branched along B has two A7 singularities. The minimal resolution X of xX is a K3
surface, and s lifts to a fixed point free involution � onX . Then, the very general Enriques
surface Y D X=h� i is .E8; E8/-generic. We omit the proof of this as it is not needed in
the computations that follow.

Finally, we connect the geometry of Y studied in Section 5.1 with the results and
notations of Barth–Peters. Following [8, Proposition 3.3.15], the surfaceW WDQ=hsi is a
4-nodal quartic symmetroid del Pezzo surface in P 4. The bielliptic map Y ! W associ-
ated with the U -pair .G1; G3/ in Definition 5.1 makes the following diagram commute:

X Y

Q W:

In particular, the covering involution of Y ! W , which we denoted by ı, coincides with
the involution induced on Y by � 3 onX (see [2, Section 4.2]). While [2] does not describe
an explicit infinite order generator of aut.Y /, there is a precise description of the subgroup
G of O.SY / which fixes ¹R0; : : : ; R9º n ¹R1; R8º: it is an infinite dihedral group, which
is generated by an involution ˛0 and an infinite order isometry ˛1 [2, Lemma 4.10 (a)].
One can verify that 2 induces on SY the isometry ˛4 WD ˛

4
1 . This implies, together with

the description of aut.Y / from [4], that aut.Y / \G is generated by ˛4.
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Type Representatives of elliptic fibrations up to aut.Y /

zAHF
7 R0 CR2 CR3 CR4 CR5 CR6 CR7 CR9

zAF
1 C
zEF

7

�
A WD 1

2
.R8 CR8;�2/;

1
2
.3R0 C 2R2 CR3 C 3R5 C 2R6 CR7 C 4R4 C 2R1/

�
zDF

8

Da WD
1
2
.R0CR1CR3C 2R4C 2R5C 2R6C 2R7C 2R9CR8/

Db WD
1
2
.2R0CR1C 2R2C 2R3C 2R4CR5CR7C 2R9CR8/

zEF
8

Ea WD
1
2
.R1C 2R4C 3R5C 4R6C 5R7C 6R9C 4R0C 2R2C 3R8/

Eb WD
1
2
.2R6C 4R7C 6R9C 5R0C 4R2C 3R3C 2R4CR1C 3R8/

Table 1. Elliptic fibrations on the Enriques surface 145.

5.2. Elliptic fibrations on Y

The elliptic fibrations on Y up to aut.Y / are classified in [4, Theorem 1.21]. In the next
lemma we give explicit representatives in term of the given smooth rational curves R.Y /.
First, it will be convenient to recall the following terminology and notation from [16].

Definition 5.6. The type of an elliptic configuration supported on R.Y / is the associated
extended Dynkin diagram, together with the information of being a fiber or a half-fiber.
The type of an elliptic fibration is the formal sum of the types of its singular fibers sup-
ported on R.Y /. For instance, .2 zAHF

1 C
zDF

6/ refers to the fibrations whose singular fibers
are three elliptic configurations, two of type zAHF

1 and one of type zDF
6 .

Lemma 5.7. Up to the action of aut.Y /, the types of elliptic fibrations are as in Table 1.

Proof. Let us introduce the notation A;Da; Db; Ea; Eb as in the table above. Using the
graph in Figure 2, one can check directly that the given representatives have the corre-
sponding type. What is left to prove is that the two representatives for zDF

8 and zEF
8 are not

in the same aut.Y /-orbit.
We start by discussing the case of zDF

8. We need to show that Da ¤ Db � � for all
� 2 aut.Y /. AsDb � "DDb , the possibleDb � � are given byDb;k WDDb � 

k for k 2 Z.
Therefore, what we need to show is that Da is different from Db;k for all k 2 Z. For this
purpose, it is enough to compute the intersection between Da and Db;k for every k, and
show that this is never equal to 0. It can be checked inductively that

Da �Db;k D k
2
C
1

2
.�1/k C

1

2
;

which is never equal to zero for k 2 Z.
We use similar ideas for zEF

8 . In this case, Eb � " ¤ Eb , so we consider

Eb;" WD Eb � "; Eb;k WD Eb � 
k ; Eb;";k WD Eb;" � 

k :

Notice that by Lemma 5.3 Eb � 
k � " D Eb � " � 

�k . Therefore, to prove that Ea is not in
the same orbit as Eb , it is enough to prove that the intersections Ea �Eb;k and Ea �Eb;";k
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are nonzero for all k 2 Z. We have that

Ea �Eb;k D 4k
2
C 3;

Ea �Eb;";k D 4k
2
C 2.�1/k � 4k C 3:

These are nonzero for all k 2 Z, proving what we needed.

5.3. Computing nd.Y /

We start by computing the maximum number of elliptic fibration of the same type which
can appear in the same isotropic sequence (this idea was also used in [16]).

Lemma 5.8. On the Enriques surface Y , the maximum number of elliptic fibrations of
the same type (see Lemma 5.7) that can appear in the same isotropic sequence is given as
follows:

Type Maximum

zAHF
7 1

zAF
1+ zEF

7 1

zDF
8 2

zEF
8 2

Proof. We analyze each case separately.
. zAHF

7 / The generators " and  of aut.Y /mapR0CR2CR3CR4CR5CR6CR7C

R9 to itself, so there is exactly one elliptic configuration on Y of type zAHF
1 . Therefore, the

maximum we are looking for is 1.
. zAF

1 C
zEF

7/ Consider the representative A of type zA1. First, we observe that

A � ."�1/ D A:

This implies that, for all � 2 aut.Y /, A � � D A � k for some k 2 Z. This is because
� D n"i for some n 2 Z and i 2 ¹0; 1º, and either i D 0, or i D 1 and hence

A � .n"/ D A � ."�n/ D A � ."�1/�nC1
D A � �nC1:

Therefore, we define
Ak WD A � 

k ;

which give all the other fibrations of the same type zAF
1. Now, assume that two diagrams

of type zAF
1 are in the same isotropic sequence. Then, up to the action of aut.Y /, we can

assume that one of them to be A0 D A while the other is Ak for some k 2 Z n ¹0º. We
compute that

A0 � Ak D k
2
�
1

2
.�1/k C

1

2
;

which is always even, and hence it never equals 1. In conclusion, there can be only one
diagram of type zAF

1 in the same non-degenerate isotropic sequence.
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. zDF
8/ Recall the curves Da; Db; Db;k from the proof of Lemma 5.7. Also, note that

Da � " D Da and introduce Da;k WD Da � 
k . These give all the fibers of type zD8 on Y .

Now, assume two diagrams of type zD8 are in the same isotropic sequence. Up to aut.Y /
we have the following possibilities:

.Da;Da;k/; .Db;Db;k/; .Da;Db;k/:

We can compute the pairwise intersections as

Da �Da;k D k
2
�
1

2
.�1/k C

1

2
;

Db �Db;k D k
2
�
1

2
.�1/k C

1

2
;

Da �Db;k D k
2
C
1

2
.�1/k C

1

2
:

The first two are different from 1 for every k, while the third is equal to 1 if and only if
kD 0;˙1. Finally, we observe that .Da;Db;k/ cannot be further extended, as addingDa;h

or Db;h for some h 2 Z will result in two elements of the sequence having intersection
not equal to 1.

. zEF
8/ Recall the curves Ea; Eb; Eb;"; Eb;k ; Eb;";k from the proof of Lemma 5.7. Also,

introduceEa;" WDEa � ",Ea;k WDEa � 
k , andEa;";k WDEa;" � 

k . These give all the fibers
of type zE8 on Y . Now, assume that two diagrams of type zEF

8 are in the same isotropic
sequence. Up to aut.Y / we have the following possibilities:

.Ea; Ea;k/; .Ea; Ea;";k/; .Eb; Eb;k/; .Eb; Eb;";k/; .Ea; Eb;k/; .Ea; Eb;";k/:

We can compute the pairwise intersections as

(1) Ea �Ea;k D 4k
2 � 2.�1/k C 2;

(2) Ea �Ea;";k D 4k
2 � 4k C 4;

(3) Eb �Eb;k D 4k
2 � 2.�1/k C 2;

(4) Eb �Eb;";k D 4k
2 � 4k C 4;

(5) Ea �Eb;k D 4k
2 C 3;

(6) Ea �Eb;";k D 4k
2 C 2.�1/k � 4k C 3.

We observe that in cases (1), (2), (3), (4), (5) the intersection product is not equal to 1 for
any k, while in case (6) Ea �Eb;";k D 1 if and only if k D 1. From the above calculations
also follows that the isotropic sequence .Ea; Eb;";k/ cannot be further extended because
by adding a curve Ea;h, Ea;";h, Eb;h, or Eb;";h for some h 2 Z we will have a pairwise
intersection not equal to 1.

Proposition 5.9. LetY be the realizable .�;x�/-generic Enriques surface145 in [4, Table 1].
Then, cnd.S/ D 4.
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Proof. An explicit example of non-degenerate isotropic sequence of length 4, also de-
scribed in [13, Remark 4.3], is given by the numerical equivalence classes of

R0 CR2 CR3 CR4 CR5 CR6 CR7 CR9 . zAHF
7 /

1

2
.R0 CR8 CR1 CR3 C 2R9 C 2R7 C 2R6 C 2R5 C 2R4/ . zDF

8/

1

2
.R1 CR5 CR7 CR8 C 2R4 C 2R3 C 2R2 C 2R0 C 2R9/ . zDF

8/

1

2
.2R2 C 3R0 C 4R9 C 3R7 C 2R6 CR5 C 2R8 CR3/ . zEF

7/:

This shows cnd.Y / � 4. To prove that equality holds, we assume by contradiction that
there exists an isotropic sequence of five elements in HF.Y;R.Y // (see Definition 2.4).
By Lemma 5.8, the types of the corresponding five elliptic fibrations can only be one of
the following combinations:

• . zEF
7 C

zAF
1/, 2 � . zD

F
8/, 2 � . zE

F
8/;

• . zAHF
7 /, 2 � . zDF

8/, 2 � . zE
F
8/;

• . zAHF
7 /, . zEF

7 C
zAF

1/, . zD
F
8/, 2 � . zE

F
8/;

• . zAHF
7 /, . zEF

7 C
zAF

1/, 2 � . zD
F
8/, . zE

F
8/.

Recall from the beginning of the proof of Lemma 5.8 that the half-fiber of type zA7 is
invariant under aut.Y /. Moreover, for all k 2 Z, we have that

zA7 �Ea;k D
zA7 �Ea;";k D

zA7 �Eb;k D
zA7 �Eb;";k D 2:

This implies that no isotropic sequence on Y contains an elliptic fibration of type zAHF
7 and

another of type zEF
8 . So, the only combination of types allowed in the isotropic sequence

of length 5 is
. zAF

1 C
zEF

7/; 2 � .
zDF

8/; 2 � .
zEF

8/: (5.2)

Now consider one of the two half-fibers of type zE8. Up to aut.Y /, this is either Ea or Eb .
Assume we haveEa (an analogous argument holds forEb). We now show that there exists
exactly one half-fiber of type zD8 which has intersection 1 with Ea, giving a contradiction
as we have two of such half-fibers from (5.2). We consider then the following intersection
numbers:

• Ea �Da;k D 2k
2 �

1
2
.�1/k � k C 3

2
D 1 if and only if k D 0;

• Ea �Db;k D 2k
2 C

1
2
.�1/k � k C 3

2
¤ 1 for all k 2 Z.

So,Da;0 DDa is the only half-fiber of type zD8 such that Ea �Da D 1. In conclusion, we
cannot have on Y an isotropic sequence of elements in HF.Y;R.Y // of length 5, hence
cnd.S/ D 4.

Theorem 5.10. Let Y be the .�; x�/-generic Enriques surface 145 in [4, Table 1]. Then,
we have that nd.Y / D 4.
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Proof. By the classification of elliptic fibrations modulo automorphisms[4,Theorem 1.21]
and the complete table of these, which can be found in [23], we obtain that every elliptic
fibration on Y admits a fiber or a half-fiber supported on the union of smooth rational
curves. So, we can apply Proposition 2.7 to argue that nd.Y / D cnd.Y /. Finally, cnd.Y /
was shown to equal 4 in Proposition 5.9.

6. List of isotropic sequences
We computed explicit non-degenerate isotropic sequences realizing the lower bounds
in Theorem 4.2. A digital version of these data can be accessed by following the arti-
cle’s DOI. Recall that for each case, the curves Ri and the automorphisms Hi are taken
from the data Rats-Ratstemp and Autrec-HHH of [21] respectively, and they are num-
bered sequentially starting from zero. We only list the realizable .�; x�/-generic Enriques
surfaces, so we skip Y26; Y48; Y49; : : : (we refer to [4, Table 1] for the complete list of non-
existent cases). Recall that the non-degeneracy invariants for Y1;Y172;Y184 are known: see
Remark 4.1 and the discussion in Section 4.5 about cnd.Y1/. These data are also available
in [18].
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