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Boundary states of the Robin magnetic Laplacian

Rayan Fahs, Loïc Le Treust, Nicolas Raymond, and San Vũ Ngo. c

Abstract. This article tackles the spectral analysis of the Robin Laplacian on a smooth bounded
two-dimensional domain in the presence of a constant magnetic field. In the semiclassical limit, a
uniform description of the spectrum located between the Landau levels is obtained. The correspond-
ing eigenfunctions, called edge states, are exponentially localized near the boundary. By means of
a microlocal dimensional reduction, our unifying approach allows on the one hand to derive a very
precise Weyl law and a proof of quantum magnetic oscillations for excited states, and on the other
hand to refine simultaneously old results about the low-lying eigenvalues in the Robin case and
recent ones about edge states in the Dirichlet case.

1. Motivations and results
1.1. About the magnetic Robin Laplacian

We want to describe the spectrum of the semiclassical magnetic Laplacian

Lh D .�ihr � A/2

on a smooth, bounded, and simply connected open Euclidean domain � � R2, with
boundary conditions of Robin type. The vector potential A W x�! R2 is supposed to be
smooth and generating a constant magnetic field of intensity 1:

@1A2 � @2A1 D 1:

The magnetic Robin boundary conditions are enforced by defining the operator Lh D

Lh;A; to be the selfadjoint operator associated with the quadratic form defined for all
 2 H 1.�/ by:

Qh;A. / D

Z
�

ˇ̌
.�ihr � A/ 

ˇ̌2dx C h
3
2

Z
@�

j j2ds; (1.1)

where  2 R [ ¹C1º, and ds is the length measure of the boundary induced by the
Euclidean metric. By convention,  D C1 corresponds to the Dirichlet boundary condi-
tion  2H 1

0 .�/. In the whole paper, our estimates will be uniform when  2 Œ�0;C1�
for an arbitrary fixed 0 > 0. When  2 R, the domain of Lh is given by

Dom.Lh/ D
®
 2 H 1.�/ W .�ihr � A/2 2 L2.�/;
� ihn � .�ihr � A/ D h

3
2 on @�

¯
;
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where n is the outward pointing normal to the boundary. Note that a change of gauge can
be used to ensure that A � n D 0. In this case, the magnetic Robin condition becomes a
usual Robin condition:

�n � r D h�
1
2 : (1.2)

We would like to establish accurate spectral asymptotics for Lh in regimes where the
magnetic field plays a major role, competing with the Robin condition (this is the origin,
as we will see, of the factor h

3
2 in the Robin condition). Until now, very accurate results are

available only for the Neumann magnetic Laplacian (when  D 0). In this case, the lowest
eigenvalues have been analyzed in detail in [11] and uniform estimates have been recently
established in [3] where a purely magnetic tunnelling effect formula has been proved. Let
us also note that, in the special case of disks and annuli, the magnetic Laplacian with
Robin condition has been the objet of physics papers (see, for instance, [35, Figure 8]
where the real part of the eigenvalues appear as a function of B). They also consider the
case of a complex Robin parameter, which could motivate interesting extensions of the
present work to a non-selfadjoint setting.

When  ¤ 0, the only known semiclassical results go back to the works by Kachmar,
see [25], where only the smallest eigenvalue has been estimated. In all these situations
(except when  D C1, where the first eigenvalue is asymptotic to h times the magnetic
intensity—here, 1), one can show that the first eigenvalue becomes smaller than h as soon
as h is small enough. This energy bound is usually associated with a localization behavior
near the boundary of the eigenfunctions, which can be quantified by semiclassical Agmon
estimates.

By a simple scaling, the semiclassical limit h! 0 translates into a quantum regime
where the intensity of the magnetic field tends to infinity. In the physics literature of thin
conductors or electron gases (approximated by 2D domains) subject to a strong external
magnetic field, it is well known that the presence of a boundary (or, more generally, of an
abruptly changing magnetic field along a curve) generates a current along the boundary
due to the presence of “bouncing modes” classically localized at a distance

p
E=B to the

boundary (E is the kinetic energy and B is the magnetic intensity: in this work B D 1),
see for instance [17]. These so-called “edge states” or “boundary states” exist as soon as
the Fermi level of the conductor lies strictly in between two consecutive Landau levels,
and produce ballistic dynamics along the boundary. If the boundary @� is compact, this
dynamics is quantized and produces new discrete energy levels. These are precisely the
eigenvalues that we wish to describe in this work.

Heuristically, the localization near @� is often explained by the classical bouncing
modes alluded to above, but it is also easy to understand from a quantum perspective.
Indeed, if we forget the boundary condition, Lh acts as the magnetic Laplacian with con-
stant magnetic field, on the Euclidean plane, LR2

h;A. The spectrum of this so-called “bulk”
operator is well-known and made of the famous Landau levels ¹.2n� 1/h; n > 1º, which
are infinitely degenerate eigenvalues. This suggests that, if one considers potential eigen-
values of Lh in a window of the form Ih D Œha; hb� with 2n � 1 < a < b < 2nC 1 for
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some integer n > 0 (for n D 0, we take a D �1), they cannot correspond to any bulk
state, and hence the corresponding eigenfunctions should be localized near the boundary.
This phenomenon has interesting physical applications; a famous one is the quantum Hall
effect, when the domain is not simply connected, which expresses the collective effects
of several boundaries on the total net current. Another application is the confinement of
particles in small domains, or “quantum dots” (sometimes called “anti-dots” because one
takes B D 0 inside the domain, and B D 1 outside), see [31, 37].

On the mathematics side, the existence of edge currents in a half-plane with Dirichlet
boundary condition was shown in [7]. In a compact setting, the eigenfunction localization
at the boundary has been observed (again in the Dirichlet case  D C1, which is usually
chosen in physics) in [16], which was one of our motivations for this work. The methods
of [16] lead to a description of the spectrum in a thin spectral window, see [16, Corol-
lary 2.7]. However the exponential decay away from the boundary was not established. In
fact, as we will see, this decay does not follow from the usual Agmon estimates, but from
a strategy à la Combes–Thomas (see the original article [5] or the review [24]). Such a
strategy has been used recently in the context of the Bochner–Schrödinger operator, see
[29, Section 3] and [30].

In this article we treat the general case  2 R [ ¹C1º. This corresponds, physically,
to a domain � coated with a very thin layer of a different material (see for instance [2]).
Since� is bounded, the spectrum in Ih is always discrete and a first rough estimate shows
that the number of eigenvalues lying in Ih, denoted by N.Lh; Ih/, satisfies

N.Lh; Ih/ 6 Ch�2; (1.3)

for some C > 0 and all h > 0 small enough (see Appendix A where we recall the ori-
gin of this estimate). Our goal is to obtain a very precise description, in the semiclassical
regime, of the spectral elements corresponding to the interval Ih, much more accurate
than (1.3). This includes the localization behavior near @� of the corresponding eigen-
functions. For instance, when  2 R, a consequence of our main result Theorem 1.7 is
the appearance of a quite interesting phenomenon: for a given (low) energy, one can have
boundary quasimodes corresponding to classical currents flowing in opposite directions,
leading to magnetic oscillations of eigenvalues, see Theorem 1.12.

This work is also an opportunity to revisit the Neumann case analyzed in [11,19] (see
also [3]) by establishing more uniform asymptotic expansions, with slightly more general
boundary conditions.

1.2. De Gennes operator with Robin condition

Our results will be expressed in terms of the eigenvalues of the de Gennes operator with
Robin boundary condition. This operator, which appears naturally in the study of boundary
induced magnetic effects [12, 39], is a differential operator of order two depending on the
real parameters  and � and acting as

HŒ; �� D �
d2

dt2
C .t � �/2;
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on the domain

Dom
�
HŒ; ��

�
D

²
u 2 B1.RC/ W

�
�

d2

dt2
C .t � �/2

�
u 2 L2.RC/; u0.0/ D  u.0/

³
;

where
B1.RC/ D

®
u 2 H 1.RC/ W

�
t 7! tu.t/

�
2 L2.RC/

¯
:

It is well known that HŒ; �� is a self-adjoint elliptic operator with compact resolvent.
Its spectrum can be written as a non-decreasing sequence of eigenvalues .�n.; �//n>1

(which are all simple due to the Cauchy–Lipschitz theorem). We denote by uŒ;��n the
normalized sequence of the corresponding eigenfunctions (with uŒ;��n .0/ > 0). We let

‚Œn�1�./ WD inf
�2R

�n.; �/:

The index n� 1 is compatible with the notation used in the case of the de Gennes operator
(case when  D 0), see [12, Section 3.2]. The family .HŒ; ��/.;�/2R2 is analytic of type
(B) (in the sense of Kato, see [27, Chapter VII, Section 4]), i.e., the form domain does not
depend on the parameters and the sesquilinear form is analytic as a function of  or � . By
convention, we denote by HŒC1; �� (i.e., we let  D C1) the corresponding operator
with Dirichlet boundary condition u.0/ D 0.

The following proposition gathers the main properties of the functions �n.; �/ (which
are usually called dispersion curves) that will be used in this article. Most of them have
been established in [25] (see also [26], and [7] in the Dirichlet case).

Proposition 1.1. Let us fix n > 1. When  2 R, the function �n.; �/ is analytic and

lim
�!�1

�n.; �/ D C1; lim
�!C1

�n.; �/ D 2n � 1: (1.4)

Moreover,�n.; �/ has a unique minimum attained at �D�n�1./, but not attained at infin-
ity. This minimum is non-degenerate. The function�n.; �/ is decreasing on .�1; �n�1.//
and increasing on .�n�1./;C1/. In addition, we have, for all n > 2,

2n � 3 < ‚Œn�1�./ < 2n � 1: (1.5)

When  D C1, that is when the Robin condition is replaced by the Dirichlet condition,
�n.C1; �/ is still smooth, but now decreasing fromC1 to 2n � 1.

The non-degeneracy of the minimum of �n.; �/ for  2 R is obtained by adapting the
Dauge–Helffer formula, see [25] for the case n D 1, which gives:

@2��n.; �/j�D�n�1./ D 2�n�1./
ˇ̌
uŒ;��n .0/

ˇ̌2
: (1.6)

The lower bound in (1.5) will be established in Appendix B. This proposition has the
following elementary but important consequences for our analysis, which are illustrated
in Figure 1.
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Figure 1. This figure shows the dispersion curves �k.; �/, for  D �1. We visualize the preimage
of a given interval Œa; b�� .2n� 3; 2n� 1/ with nD 3. The curves are obtained by a standard finite
difference numerical scheme.

Corollary 1.2. Let  2 R [ ¹C1º be fixed. Let ‚ be the set of all critical values of the
functions �n: we have

‚ D
®
‚Œn�1�./; n > 1

¯
:

Let ƒ be the set of limit points of the functions �n at infinity:

ƒ WD ¹2n � 1; n > 1º:

Let Œa; b� � R be an interval disjoint from ƒ. Let either n D 1 if a < 1 or n > 2 be such
that Œa; b�� .2n� 3; 2n� 1/. (In the case nD 1 we allow aD�1.) It follows from (1.4)
that for any integer k > 1, ��1

k
.Œa; b�/ is compact.

Let p.k/ be the number of connected components of ��1
k
.Œa; b�/: we have8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

p.k/ D 1 if 1 6 k < n

p.n/ D 0 if  D C1

p.n/ D 1 if  2 R and ‚Œn�1� 2 Œa; b�

p.n/ D 2 if  2 R and ‚Œn�1� < a

p.n/ D 0 if  2 R and b < ‚Œn�1�

p.k/ D 0 if k > n:
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Therefore, when  2 R,

N.; a; b/ WD #
®
k > 1 W �k.; �/

�1
�
Œa; b�

�
¤ ;

¯
D

´
n if b > ‚Œn�1�./

n � 1 otherwise;
(1.7)

and if  D C1 (Dirichlet case) then �1.C1; �/ does not take any value in .�1; 1/, and
N.; a; b/ D n � 1.

From now on, we denote by N.; a; b/ D N this cardinal.

Assumption 1.3. In the following, a and b are allowed to depend on h, as soon as they
stay in an h-independent compact interval inside .2n � 3; 2n � 1/.

With this picture in mind, for each k > 1, we may construct a smooth function
ı
�k ,

bounded with all its derivatives, which coincide with �k in a neighborhood of ��1
k
.Œa; b�/.

Indeed, let „0 W R ! R be a smooth, bounded with all its derivatives, and increasing
function such that for all k 2 ¹1; : : : ; N º, �k.;„0.�// D �k.; �/ in a neighborhood of
��1
k
.Œa;b�/ and�k ı„0 takes its values in .�1; a/[ .b;C1/ away from it. We consider

ı
�k WD �k

�
;„0.�/

�
; (1.8)

where we omit the reference to the parameter  to lighten the notation. In the following,
we will more generally denote by

ı
', the function ' after „0.

1.3. Results

Let us now describe the main results of our article, which will be expressed in terms of
pseudo-differential operators in one dimension.

1.3.1. A pseudo-differential framework. The bounded functions
ı
�k will be convenient

to state our main theorem, which involves h
1
2 -pseudo-differential operators with symbols

in the usual class SR2.1/ given by

SR2.1/ D
®
a 2 C1.R2s;� / W 8˛ 2 N2; 9C˛ > 0 W j@˛aj 6 C˛

¯
:

As we said before, the eigenfunctions of Lh will be localized near the boundary of �,
which is a closed smooth curve with length 2L. Our main result describes their distribution
with the help of an h

1
2 -pseudo-differential operator on the boundary (see for instance [13,

Section 4.1] where similar considerations have been done in the context of discontinuous
magnetic fields). Let us denote „ D h

1
2 . We recall that the Weyl quantization of a symbol

p is given by the formula:

.OpW
„
p/ .x/ D

1

2�„

Z
R2
ei.x�y/�=„p

�x C y
2

; �
�
 .y/dyd�; 8 2 S.R/; (1.9)

and that this formula defines a bounded operator form L2.R/ to L2.R/ if p 2 SR2.1/, by
the Calderón–Vaillancourt theorem. To shorten the notation, we will sometimes write pW

instead of OpW
„
p.
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Let T2L D R=2LZ, and L2.T2L/ be the subset of L2loc.R/ of 2L-periodic functions,
equipped with the usual L2 norm on Œ0; 2L�. When p 2 ST2L�R.1/, i.e., p 2 SR2.1/ and is
2L-periodic in its first variable s, then for any � 2 R, the operator given in (1.9) induces
a bounded operator from ei� �L2.T2L/ to ei� �L2.T2L/—we denote by ei� � the function
x 7! ei�x .

Remark 1.4. The space ei� �L2.T2L/ only depends on the class of � modulo �
L

; it is
equal to the subspace of functions in L2loc.R/ equipped with the Floquet boundary con-
dition  .x C 2L/ D ei2L� .x/. The operator OpW

„
p acting on ei� �L2.T2L/ is unitarily

equivalent to OpW
„
p.x; �C „�/ acting on L2.T2L/.

1.3.2. Main theorem. Since our main result describes the spectrum of Lh “modulo
O.h2/”, we need to make this notion precise.

Definition 1.5. In this article, we will say that the spectra of two self-adjoint operators T1
and T2 depending on h coincide in Ih modulo O.h˛/, ˛ 2 R t ¹C1º, when there exists
C; h0 > 0 such that, for all h 2 .0; h0/,

• T1 and T2 have discrete spectrum in Ih C Œ�Ch˛; Ch˛�,

• for all interval Jh � Ih we can find an intervalKh such that Jh �Kh with dH .Kh; Jh/
6 Ch˛ and

rank1Jh.T1/ 6 rank1Kh.T2/; rank1Jh.T2/ 6 rank1Kh.T1/;

where dH denotes the Hausdorff distance:

dH .A;B/ D sup
.a;b/2A�B

max
�
d.a; B/; d.b; A/

�
:

This definition translates to discrete subsets of R as follows: for each discrete subset
S � R, we associate the sum of Dirac masses ıS WD

P
s2S ıs , and consider the corre-

sponding self-adjoint operator whose spectral measure is ıS . Then we say that two discrete
subsets A1 and A2 coincide modulo O.h˛/ when the spectra of the corresponding oper-
ators coincide modulo O.h˛/ in the above sense. In order to deal with multiplicities, we
will, by convention, associate with the disjoint union S t S 0 the operator corresponding
to the spectral measure ıS C ıS 0 .

Remark 1.6. Let us make some comments about Definition 1.5.

• The relation “the spectra of T1 and T2 coincide in Ih modulo O.h˛/” is an equivalence
relation. It is obviously symmetric and reflexive (taking Kh D Jh). The transitivity
follows from the triangle inequality for dH .

• If the spectra of T1 and T2 coincide in Ih modulo O.h˛/, then, for all zIh � Ih, the
spectra of T1 and T2 coincide in zIh modulo O.h˛/.

• If the spectra of T1 and T2 coincide in Ih modulo O.h˛/, we have

dH
�

sp.T1/ \ Ih; sp.T2/ \ Ih
�
D O.h˛/:
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• If the endpoints of the interval Ih stay away from an hˇ -neighborhood of the spectrum,
with ˇ < ˛, then for h small enough T1 and T2 have exactly the same number of
eigenvalues inside Ih, counted with multiplicities.

• The notion described in Definition 1.5 already appears under various forms in the
literature (see, for instance, the view point in [22, Section 1] and [18, Section 4]).

We can now state our main result, where we use, among others, the eigenvalues
�k.; �/ and eigenfunctions uŒ;��

k
of the de Gennes operator (Section 1.2), the integer

N defined in (1.7), and the notation introduced in (1.8).

Theorem 1.7. Under Assumption 1.3, the spectrum of Lh in Œha; hb� coincides with that
of hMh modulo O.h2/, where

Mh WD

266664
mW
1 0 � � � 0

0 mW
2

:::
:::

: : : 0

0 � � � 0 mW
N

377775
is a bounded operator acting diagonally on ei�.h/�L2.T2L/N . Here

�.h/ D
j�j

j@�jh
;

and each mW
k

is an h
1
2 -pseudo-differential operator with symbol in ST2L�R.1/. Let us

denote by .s; �/ the (canonical) variables in T2L � R. Then we have:

• the principal symbol of mW
k

is
ı
�k.�/;

• its subprincipal symbol is ��.s/
ı

C k.�/ with

Ck.�/ D
˝�
.� � �/�2 � @� � 2�.� � �/

2
�
u
Œ;��

k
.�/; u

Œ;��

k
.�/
˛
L2.RC/

; (1.10)

and �.s/ is the curvature of the boundary at the point of curvilinear abscissa s.

Remark 1.8. One can check that, for all k> 1,Ck.�k�1.// has the same sign as  Œk�1�0 �

 , see Proposition B.5 where the threshold  Œk�1�0 is discussed. Proposition B.5 also cor-
rects a mistake in [25, Lemma II.3 and (2.24)], where it is stated that C1.�0.// is always
positive.

It is important to notice that Theorem 1.7 is actually a diagonalization result since it
reduces the spectral analysis of Lh to that of a family of pseudo-differential operators in
one dimension: the spectrum of Mh is the superposition (counting multiplicities) of the
spectra of the mW

k
, k D 1; : : : ; N . As it turns out, the spectrum of each of these pseudo-

differential operators can be completely described using (refinements of) old and new
results in the literature. Indeed, notice that the principal symbols

ı
�k have a special feature:
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they depend only on the frequency variable � , and, as functions of � , they have at most a
unique critical point, which is a nondegenerate minimum (Proposition 1.1). Hence, from a
microlocal viewpoint, only two situations must be considered. LetE 2 Œa; b�, eitherE is a
regular value of

ı
�k (or�k.; �/, equivalently), and then the well-known Bohr–Sommerfeld

rules apply, or E is a critical value of
ı
�k , in which case the Hamiltonian .s; �/ 7!

ı
�k.�/

admits a transversally non-degenerate minimum on a circle, and the recent study [8] of
folded quantum action variables applies.

1.3.3. Eigenvalues in a regular spectral window. Our first application concerns the case
where the interval Œa; b� consists of regular values of all �k . We will use the following
well-known spectral result, an extension to all orders of the Bohr–Sommerfeld rules (see,
for instance, [9, 20, 21, 38]), which we prove in Section 5.2.1.

Proposition 1.9. Consider an „-pseudo-differential operator P„2OpW
„
.SR2.1//with sym-

bol 2L-periodic with respect to s and with principal symbol .s; �/ 7! �.�/ and subprin-
cipal symbol .s; �/ 7! ��.s/C.�/. We consider its realization on eis�.„

2/L2.T2L/. Let E
be a regular value of � for which ��1.E/ is a finite set of points �E1 ; : : : ; �

E
p .

Then, there exists " > 0 such that ŒE � "; E C "� is a set of regular values of �,
and ��1.ŒE � "; E C "�/ is the disjoint union †1 t � � � t †p where each †q � R is a
compact interval containing �Eq in its interior. Let " > 0 be any value satisfying the above
conditions. For each q D 1; : : : ; p, let z†q be an open interval containing†q such that the
z†q’s are pairwise disjoint. Then the following holds.

For each q D 1; : : : ; p, there exists a smooth map z†q 3 � 7! fq.�; „/ 2 R with an
asymptotic expansion, in the smooth topology,

fq.�; „/ � fq;0.�/C „fq;1.�/C „
2fq;2.�/C � � �

depending only on the symbol of P„ in the cylinder T2L � †q , such that the spectrum of
P„ inside ŒE � "; E C "� coincides, modulo O.„1/, with the disjoint union 

pG
qD1

®
fq.�; „/; � 2 „

�
�
L

ZC �.„2/
�
\ z†q

¯!
\ ŒE � "; E C "�;

see Definition 1.5. Moreover, we have

fq;0.�/ D �.�/j†q ; (1.11)

fq;1.�/ D
�C.�/j†q

2L

Z 2L

0

�.s/ds: (1.12)

Combining Proposition 1.9 and Theorem 1.7, we get the following result, where we
use the notation of Corollary 1.2 and Theorem 1.7.

Corollary 1.10 (Spectrum of Lh at regular values). Let Œa; b� be an interval disjoint from
‚ and ƒ. For each k D 1; : : : ; N , for each q D 1; : : : ; p.k/, let †k;q � R be an interval
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such that �k.; �/ is a diffeomorphism from †k;q to a neighborhood of Œa; b�, in such a
way that all †k;q are pairwise disjoint and

Sp.k/
qD1 †k;q contains �k.; �/�1.Œa; b�/. Then

there exists a smooth map †k;q 3 � 7! fk;q.�; „/ 2 R with an asymptotic expansion (in
the smooth topology)

fk;q.�; „/ � fk;q;0.�/C „fk;q;1.�/C „
2fk;q;2.�/C � � �

such that the spectrum of Lh in Œha; hb� coincides, modulo O.h2/, with the disjoint union� NG
kD1

p.k/G
qD1

®
hfk;q.�; h

1
2 /; � 2 h

1
2
�
�
L

ZC �.h/
�
\†k;q

¯�
\ Œha; hb�:

Moreover, we have,
when � 2 †k;q ,

fk;q;0.�/ D �k.; �/; (1.13)

fk;q;1.�/ D �h�iCk.�/; (1.14)

where h�i is the average curvature:

h�i D
1

2L

Z 2L

0

�.s/ds D
�

L
:

Since the leading terms (1.13) and (1.14) do not depend on q (apart from the domain of
definition †k;q) we obtain that the spectrum of Lh in Œha; hb� coincides, modulo O.h2/,
with the disjoint union

NG
kD1

®
h�k.; �/ � h

3
2 h�i

ı

Ck.�/; � 2 h
1
2
�
�
L

ZC �.h/
�¯
\ Œha; hb�: (1.15)

As a first application of this corollary, we obtain a very accurate formula for the number
of eigenvalues of Lh in Œha; hb�, this number being much smaller than what the crude
estimate (1.3) says:

Theorem 1.11 (Precise Weyl formula). Let Ih D Œha; hb� where Œa; b� is an interval dis-
joint from ‚ and ƒ. Then the number of eigenvalues of Lh in Ih is

N.Lh; Ih/ D

�
L

�h1=2

X
k;q

ı
Œ0�

k;q
C
Lh�i

�

X
k;q

ı
Œ1�

k;q
CO.h1=2/

�
;

where we use the notation
P
k;q WD

PN
kD1

Pp.k/
qD1 , and

ı
Œ0�

k;q
WD j˛k;q � ˇk;qj; ı

Œ1�

k;q
WD

Ck.ˇk;q/

j�0
k
.ˇk;q/j

�
Ck.˛k;q/

j�0
k
.˛k;q/j

;

with ˛k;q WD ��1k;q.a/, ˇk;q WD �
�1
k;q
.b/.
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In this statement we have denoted �k;q WD �k.; �/j†k;q . Notice that, since the remain-
der term O.h1=2/ tends to 0, we obtain that, when h is small enough,N.Lh; Ih/ is equal to
the integer part of L

�h1=2

P
k;q ı

Œ0�

k;q
C

Lh�i
�

P
k;q ı

Œ1�

k;q
, or this plus or minus 1. Note that the

one term asymptotics in Theorem 1.11 is already known when  DC1 and that it can be
seen as a consequence of [6, Corollary 1.3]. It is also related to [15, Theorem 1.1] dealing
with positive variable magnetic fields and  D 0. When B is constant, Theorem 1.11 is
refinement of [15, Theorem 1.1] since it exhibits the second order term. The strategy of
our proof could also likely be used to recover [15, Theorem 1.2], see Section 1.3.4.

In a second application, we focus on the regular eigenvalues of Lh below the first
Landau level, and investigate how the eigenvalues move when h varies (by the scaling
mentioned in the introduction, this corresponds to the variation of the quantum energies
when the external magnetic field is modified). This variation of eigenvalues is mainly due
to the strong flux term �.h/ D j�j

j@�jh
, see (1.15). When  2 R, the eigenvalues below the

first Landau level are described by only two intervals†1;1 and†1;2, for which the sense of
variation of the approximate eigenvalues with respect to h are opposite. Hence, we obtain
a strongly oscillating behavior for these eigenvalues, which is a generalization to excited
states of the Little–Parks effect, see [14].

Theorem 1.12 (Magnetic quantum oscillations). Let  2 R. Let Ih D Œha; hb� with a >
‚0./ and b < 1. There exists h0 > 0, C > 0 and M > 0 such that the following holds.
Let h < h0, and let j 2 N be such that the j -th eigenvalue �j .; h/ of Lh belongs to Ih.
Then there exists Ci DCi .j;h/, i D 1;2;3, with 0 < C1 <C2 <C3 6M such that, letting
hi WD hC Cih

2, we have

• �j .h2/ > �j .h1/C Ch
3=2,

• �j .h2/ > �j .h3/C Ch
3=2.

Moreover, the gap between consecutive eigenvalues is—(roughly) periodically with period
O.h2/—smaller than O.h2/, precisely: there exists h0 such that jh � h0j D O.h2/ and
�j .h

0/��jC1.h
0/DO.h2/, and there exists h00 such that jh�h00jDO.h2/ and �jC1.h00/�

�j .h
00/ > Ch3=2.

See also Figure 2. The proof of this theorem is given in Section 5.2.4. We believe
that this is the first mathematical treatment of quantum magnetic oscillations for excited
states in the first Landau band. In principle, similar oscillations for eigenvalues between
higher Landau levels could be obtained in the same vein. However, the growing number
of connected components †k;q involved would make the analysis (and statement) quite
complicated.

Remark 1.13. These applications illustrate the fact that Corollary 1.10 gives a very accu-
rate description of the spectrum of Lh by providing us with explicit approximations of the
eigenvalues in Œha; hb� modulo O.h2/. When  D C1 (i.e., in the Dirichlet case), it also
improves the description given in [16, Corollary 2.7] concerned with a thin spectral win-
dow containing a regular value. Moreover, although our results are formulated in terms of
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approximation of the eigenvalues, the strategy, based on microlocal projections, leading to
Theorem 1.7 can also be used to describe the eigenspaces of Lh in terms of those of Mh.

1.3.4. Critical values. Our main theorem also applies to the case when the spectral win-
dow contains a critical value, i.e., an element of‚, see Corollary 1.2 (such a critical value
is the unique non-degenerate global minimum of a unique dispersion curve, see Propo-
sition 1.1). To illustrate this, let us focus on the low-lying eigenvalues. The following
corollary improves [25, Theorem I.5, ˛ D 1

2
] by establishing the spectral asymptotics of

the lowest eigenvalues and by exhibiting spectral gaps of order h
7
4 instead of h

3
2 in the case

of regular values for each given dispersion curve. It also extends to any Robin parameter
the result obtained by Fournais and Helffer in [11] when  D 0.

Once Theorem 1.7 is applied and reduces the analysis to a single „-pseudo-differential
operator, this corollary becomes essentially an application of [8, Proposition 6.8], see
details in Section 5.2.2.

Corollary 1.14. Consider  ¤  Œ0�0 with  Œ0�0 defined in Remark 1.8, and let

� D sign. Œ0�0 � / D sign
�
C1
�
�0./

��
:

Assume that �� admits a unique maximum at smax, which is non-degenerate. Then, for all
j > 1, uniformly when jh

1
4 D o.1/,

�j .; h/ D ‚
Œ0�./h � �.smax/C1

�
�0./

�
h
3
2

C
h
7
4 .2j � 1/

2

q
k2C1

�
�0./

�
�001
�
; �0./

�
C o.h

7
4 /;

with k2 D ��00.smax/, and where we recall that �0./ is given in Proposition 1.1.

Remark 1.15. Let us end the description of our results with a few comments about con-
sequences and extensions following from our approach.

(i) Corollary 1.14 describes the low-lying eigenvalues with some uniformity in j
(which was not the case in [11]), in an interval of the form .�1; ‚Œ0�./hC

Ch3=2�. On the other hand, Corollary 1.10 gives the spectrum in any interval
of the form Œha; hb� with a > ‚0./ and b < 1. Hence we have a spectral
interval between these two regimes which we do not describe here. But actually,
by using refined spectral results for 1D pseudo-differential operators, and in
particular the strategy of [8] in the case where � is a Morse function, it should
also be possible to close this gap. However, this would require an analysis of the
hyperbolic singularities arising from the minima of ��, where we expect both a
concentration of the eigenfunctions and a higher density of eigenvalues.

(ii) When  >  Œ0�0 , the proof of Corollary 1.14 shows that the eigenfunctions (as-
sociated with the low-lying eigenvalues) are concentrated near the points of
minimal curvature. This contrasts with the Neumann case when the points of
maximal curvature play the role of attractive wells. This phenomenon was not
observed before, see Remark 1.8.
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(iii) The case  D  Œ0�0 is critical sinceC1.�0.//D 0. However, our analysis can still
be used by computing additional subprincipal terms in our effective operator
method. A similar phenomenon has recently been observed in the study of the
magnetic Dirac operator [1, Section 8] and also in the analysis of the magnetic
Schrödinger operator with discontinuous magnetic fields [13]. In this case, we
have, for all j > 1,

�j .; h/ D ‚
Œ0�./hC h2�j .Ah/C o.h

2/;

where AhD
@2��.;�0.//

2
.DsC�.h/ � h

� 12 �0.//
2CC�

2.s/, for some C 2R.
In this transition regime, the effective operator is not semiclassical.

(iv) When the curvature � is constant, in the case  2 R, we are in a degenerate
situation rather similar to the case when  D  Œ0�0 . Concerning the operatorsmW

k

of Theorem 1.7, this case corresponds to [8, Proposition 6.4]. We can prove an
expansion in the form

�j .; h/ D ‚
Œ0�./h � �C1

�
�0./

�
h
3
2 C h2�j .Ah/C o.h

2/:

Here, the eigenvalues of Ah will generate magnetic oscillations, see [8, The-
orem 2.2; k D 0]. When  D 0 and j D 1, a similar estimate is described in
[11, Theorem 5.3.1].

1.4. Organization of the article

In Section 2, we prove that the eigenfunctions associated with eigenvalues of Lh in Œha;hb�
are exponentially localized near the boundary of �, see Proposition 2.1. Note that the
strategy used to derive this localization deviates from the usual variational method (see,
for instance, [18] or [36, Proposition 4.7]), which fails since we want to consider eigenval-
ues between two consecutive Landau levels. To overcome this issue, our strategy, which
eventually generalizes the variational method, is based on establishing the bijectivity of the
magnetic Laplacian between exponentially weighted L2 spaces. In Section 3, by means
of tubular coordinates .s; t/ near the boundary and a rescaling t D h

1
2 � , we introduce a

model operator N„ depending on the effective semiclassical parameter „ D h
1
2 , acting on

2L-periodic functions and involving a flux term f0, see (3.3) and (3.2). We also show that
the eigenfunctions of Lh are roughly microlocalized in a compact set of the phase space
attached to the boundary, see Proposition 3.1. This allows to prove that the spectrum of
Lh (between the Landau levels) is located near that of N„, see Proposition 3.2. However,
one will see that Proposition 3.2 is not directly useful to establish our main theorems. It is
rather a pretext to motivate the introduction of N„ and to describe the spectral estimates
required to prove that spectra coincide modulo O.h1/. Actually, one will compare directly
the spectrum of Lh to that of an effective operator on the boundary of�. For that purpose,
in Section 4, we construct a Grushin problem in order to invert the pseudo-differential
operator N„ (which acts as N„ with f0 replaced by 0). This method is inspired by the
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works of Martinez and Sjöstrand, see, for instance, the presentation in [32,41]. It has been
adapted to magnetic operators by Keraval in [28] and it has recently shown its efficiency to
describe the low-lying eigenvalues of various magnetic operators (see, for instance, [3,13]
and also [33] in a non-selfadjoint context). The novelty in the present paper is to use it
to tackle the description of larger eigenvalues for magnetic Schrödinger operators with
boundaries, when several dispersion curves are involved (see Figure 1), and not only the
first one as in [3] or [13]. In order to use this method, we write a semiclassical expansion
of N„, see Proposition 4.2. The principal operator symbol is the de Gennes operator (with
Robin condition), which can be inverted in the spectral window Œa; b� up to considering an
augmented matrix involving the eigenfunctions of the de Gennes operator, see Lemma 4.3.
This allows to build an approximate inverse of an augmented version of N„ denoted by
OpW
„
P„, see (4.3) (and the left and right quasi inverses (4.5) and (4.6)). Thanks to these

quasi inverses, the bijectivity of Lh � z is reduced to that of a pseudo-differential oper-
ator on T2L whose matrix symbol is M„, modulo some remainders, see Proposition 4.4
where the eigenfunctions of Lh are directly used as quasimodes for MW

„
. In Section 5,

we perform the spectral analysis of MW
„

by using that the principal matrix symbol M0 is
diagonal with uniform gaps between the diagonal entries. We deduce Proposition 1.9 and
Corollary 1.14. In Appendix A, we recall the origin of the estimate (1.3). Appendix B is
devoted to the de Gennes operator with Robin conditions: a couple of known results are
recalled and useful new ones are established.

2. Exponential localization near the boundary and consequences

Let us consider a smooth functionˆ0 W x�! RC that coincides with dist.x; @�/ near @�,
and which vanishes only on @�. Such a function can be constructed as follows. Let � > 0
be such that the �-neighborhood of @�, which we call �1, admits a trivialization by the
geodesic exponential: in other words�1 ' T� Œ��; �� with coordinates .s; t/, and for any
x.s; t/ 2 �1, we have dist.x; @�/ D jt j, and t > 0 if x 2 �. We denote by t W �1 ! R
the corresponding (smooth) map x 7! t . Let �0 � � be the complementary set of the
�=2-neighborhood of @�. Thus,�0 [�1 is an open neighborhood of x�. Let .�0; �1/, be
an associated partition of unity. The function ˆ0 WD �0 C t�1 meets our requirements.

Next, we extend ˆ0 to a smooth function on R2 that also belongs to W 2;1.R2/.
The following proposition states that the eigenfunctions of Lh associated with eigen-

values in Ih are localized near the boundary of �. The estimates look like Agmon’s
estimates, but they are not obtained via variational means as it is the case in many mag-
netic settings. Here, they follow from resolvent estimates using the distance to the Landau
levels.

Proposition 2.1. There exist ˛ > 0; C > 0; h0 > 0 such that for all h 2 .0; h0/ and all
eigenfunctions  associated with an eigenvalue in Ih, we haveZ

�

e2˛ˆ0.x/=h
1=2 ˇ̌
 .x/

ˇ̌2dx 6 Ck k2; (2.1)
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�

e2˛ˆ0.x/=h
1=2 ˇ̌
.�ihr � A/ 

ˇ̌2dx 6 Chk k2: (2.2)

2.1. Preliminaries

In the following, LR2
h

denotes the operator .�ihr�A/2 acting on the Hilbert spaceL2.R2/.
By using the gauge invariance, we assume in the whole section that AD 1

2
.�x2; x1/. Due

to our choice of eigenvalue �, we deduce that LR2
h
� � is bijective and that there exists

C > 0 such that, for all h > 0, .LR2
h � �/

�1
 6 Ch�1:

More precisely, we can take C D min.j2n � 3 � aj; j2n � 1 � bj/�1. We let ˆ D ˛ˆ0,
with ˛ > 0 to be determined, and consider the conjugated operator

Lˆh WD e
ˆ=h1=2LR2

h e
�ˆ=h1=2

D .�ihr � AC ih
1
2rˆ/2

D LR2
h C 2ih

1
2rˆ � .�ihr � A/ � hjrˆj2 � ih

3
2�ˆ: (2.3)

The following lemma tells us that the invertibility is preserved for Lˆ
h
� � if ˛ is small

enough.

Lemma 2.2. There exists C > 0 such that for all h > 0 and all ˛ > 0,

h
1
2

rˆ � .�ihr � A/.LR2
h � �/

�1
 6 C˛: (2.4)

In particular, Lˆ
h
� � is bijective as soon as ˛ 6 ˛0 and ˛0 is chosen small enough. With

such a choice of ˛0, there exists C > 0 such that, for all h > 0, and all ˛ 6 ˛0,.Lˆh � �/�1 6
C

h
: (2.5)

Proof. Consider v 2 L2.R2/ and let u D .LR2
h
� �/�1v. We have

.LR2
h � �/u D v;

so that, by taking the scalar product with u and using that � 6 Ch,.�ihr � A/u
2 6 Chkuk2 C kukkvk:

Therefore, since rˆ0 2 L1, there is a new constant C 0 > 0 such that

h
1
2

rˆ � .�ihr � A/u
 6 C 0˛hkuk C C 0h

1
2˛kuk

1
2 kvk

1
2 :

Since kuk D k.LR2
h
� �/�1vk 6 Ch�1kvk, we see that

h
1
2

rˆ � .�ihr � A/.LR2
h � �/

�1v
 6 zC˛kvk;

which gives (2.4).



R. Fahs, L. Le Treust, N. Raymond, and S. Vũ Ngo. c 1172

Let us now deal with the bijectivity. We have

Lˆh � � D LR2
h � �C B

with
B WD 2ih

1
2rˆ � .�ihr � A/ � hjrˆj2 � ih

3
2�ˆ:

Since rˆ0 and �ˆ0 are bounded, we deduce from (2.4) thatB.LR2
h � �/

�1
 6 C˛ C C1˛ C h

1=2C2˛
2 6 zC˛;

when ˛ is small enough. On the other hand,

Lˆh � � D
�
IdC B.LR2

h � �/
�1
�
.LR2
h � �/I

For ˛ small enough, we deduce that Id C B.LR2
h
� �/�1 is invertible, and thus so is

Lˆ
h
� �.

In order to prove Proposition 2.1, we need to localize on an h1=2-neighborhood of @�.
For this purpose, we introduce two functions �h 2 C10 .�/ and z�h 2 C1.x�/ as follows.

�hW

´
�! Œ0; 1�;

x 7! g
�
ˆ0.x/=h

1
2

� and z�hW

´
x�! Œ0; 1�;

x 7! 1 � g
�
ˆ0.x/=2h

1
2

�
;

where g is a smooth non-decreasing function on R, valued in Œ0; 1�, equal to 0 on .�1; 1/
and to 1 on .2;C1/. In particular,

supp.�h/ \ x� �
®
x 2 �; h�

1
2ˆ0.x/ > 1

¯
; (2.6)

and

supp.r�h/ \ x� �
®
x 2 � W h�

1
2ˆ0.x/ 2 Œ1; 2�

¯
�
®
x 2 � W z�h.x/ D 1

¯
: (2.7)

Note that the following properties hold:

• �h D 1 away from an h1=2-neighborhood of @�,

• r�h is supported in an h1=2-neighborhood of @�,

• 1suppr�h 6 z�h,

• z�h D 0 away from an h1=2-neighborhood of @�.

2.2. Proof of Proposition 2.1

Let us consider � 2 Œha; hb� \ sp.Lh/ and an associated eigenfunction  2 Dom.Lh/.
We have �

.�ihr � A/2 � �
�
 D 0:
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Let ' D eˆ=h
1=2
 . Using (2.3) in �, the equation becomes

.Lˆh � �/' D 0: (2.8)

Then, we have

.Lˆh � �/.�h'/ D ŒL
ˆ
h ; �h�'

D eˆ=h
1=2

ŒLh; �h�e
�ˆ=h1=2'

D eˆ=h
1=2�
� h2��h � 2ihr�h � .�ihr � A/

�
e�ˆ=h

1=2

'

D
�
� h2��h � 2ihr�h � .�ihr � AC ih

1
2rˆ/

�
': (2.9)

We have kh2.��h/'k 6 Chkz�h'k. (Here and in the rest of the paper, C denotes a con-
stant that is independent on h but that can vary from line to line.) Let us explain how to
deal with the last term. We have

h
r�h � .�ihr � AC ih

1
2rˆ/'

 6 h
r�h � .�ihr � A/'

C Chkz�h'k:
Let us temporarily admit that, for ˛ small enough,

h
r�h � .�ihr � A/'

 6 Chkz�h'k: (2.10)

We then immediately deduce from (2.9) that.Lˆh � �/.�h'/ 6 zChkz�h'k: (2.11)

Since �h' 2 Dom.LR2
h
/ we obtain from (2.5) that

k�h'k 6 Ckz�h'k;

which implies that
k'k 6 zC

�
kz�h'k C

.1 � �h/'�;
showing that ' is localized near @�. More precisely, recalling that ' D eˆ=h

1
2  , using

that ˆ0.x/ D dist.x; @�/ near the boundary, and the fact that the supports of z�h and
1 � �h lie in neighborhood of the boundary of size h

1
2 , we deduce (2.1).

Let us now deal with (2.2). We have the Agmon identity

Re hLh ; e2ˆ=h
1=2

 i D Qh;A.e
ˆ=h1=2 / � hkeˆ=h

1=2

 rˆk2;

which follows from (2.3) where we see that Re Lˆ
h
D Lh � hjrˆj

2 and we notice that

Re
˝
Lh ; e

2ˆ=h1=2 
˛
D
˝
.ReLˆh /e

ˆ=h1=2 ; eˆ=h
1=2

 
˛
:

Recall also that, when u 2 Dom.Lh/, then hLhu; ui D Qh;A.u/, see (1.1).
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Then, by using that  is an eigenfunction, we getZ
�

ˇ̌
.�ihr � A/.eˆ=h

1=2

 /
ˇ̌2dx C h

3
2

Z
@�

jeˆ=h
1=2

 j2ds � hkeˆ=h
1=2

 rˆk2

D �keˆ=h
1=2

 k2:

With (2.1), we findZ
�

ˇ̌
.�ihr � A/.eˆ=h

1=2

 /
ˇ̌2dx C h

3
2

Z
@�

jeˆ=h
1=2

 j2ds 6 Chk k2:

From a classical trace theorem (see for instance [10, Section 5.5]), there exists C > 0 such
that for all " > 0, we haveZ

@�

j'j2ds 6 C
�
"�1k'k2 C "

rj'j2�:
With the diamagnetic inequality (see for instance [12, Theorem 2.1.1]), we deduce that

h2
Z
@�

j'j2ds 6 C
�
h2"�1k'k2 C "

.�ihr � A/'
2�;

and then
h
3
2

Z
@�

j'j2ds 6 C
�
h
3
2 "�1k'k2 C "h�

1
2

.�ihr � A/'
2�:

Taking " D h
1
2

2jcjC
implies thatZ

�

ˇ̌
.�ihr � A/.eˆ=h

1=2

 /
ˇ̌2dx 6 zChk k2:

Computing a commutator gives (2.2).
It remains to explain why (2.10) holds. From (2.3) we can write

Lˆh D L1 C ih
1
2L2; (2.12)

with

L1 D .�ihr � A/2 � hjrˆj2;
L2 D 2rˆ � .�ihr � A/ � ih�ˆ:

From (2.12) and (2.8), we get

.L1 � �C ih
1
2L2/' D 0:

For j D 1; 2, we have

Re
˝
.L1 � �/'; .@j�h/

2'
˛
� h

1
2 Im

˝
L2'; .@j�h/

2'
˛
D 0:
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Thanks to the classical localization formula (see, for instance, [36, Proposition 4.2]), we
have

Re
˝
.L1 � �/'; .@j�h/

2'
˛
D
.�ihr � A/

�
.@j�h/'

�2 � h Z
�

jrˆj2
ˇ̌
.@j�h/'

ˇ̌2dx

� �k@j�h'k
2
� h2

r.@j�h/'2:
Moreover,ˇ̌

Im
˝
L2'; .@j�h/

2'
˛ˇ̌
D
ˇ̌
Im
˝
.@j�h/L2'; .@j�h/'

˛ˇ̌
6
ˇ̌
Im
˝
L2
�
.@j�h/'

�
; .@j�h/'

˛ˇ̌
C
ˇ̌˝
ŒL2; @j�h�'; .@j�h/'

˛ˇ̌
6 Ch

.@j�h/'2 C C˛.�ihr � A/.@j�h/'
k@j�h'k

C Ch
r.@j�h/'k@j�h'k:

Due to the properties of �h, we haveˇ̌
Im
˝
L2'; .@j�h/

2'
˛ˇ̌

6 Ckz�h'k C Ch
� 12˛

.�ihr � A/.@j�h/'
2

C Ch�
1
2˛kz�h'k

2
C Ch�

1
2 kz�h'k

2:

Therefore,.�ihr � A/Œ.@j�h/'�
2 6 Ckz�h'k

2
C C˛

.�ihr � A/.@j�h/'
2:

Taking ˛ small enough, we get.�ihr � A/
�
.@j�h/'

�2 6 Ckz�h'k
2:

Computing a commutator, we get (2.10).

3. An operator on a semi-cylinder

3.1. A model operator

The exponential localization near the boundary at a scale of order h
1
2 given by Propo-

sition 2.1 invites us to use the classical tubular coordinates .s; t/ near the boundary. We
recall that these coordinates are defined thanks to the map

� W T2L � .0; t0/ 3 .s; t/ 7! �.s/ � tn.s/; T2L WD R=2LZ;

which is injective if t0 is small enough. Its Jacobian is a.s; t/ D 1 � t�.s/, where � is the
curvature of the boundary at the point �.s/. Here � is a counterclockwise parametrization
by the curvilinear abscissa. Thus, � induces a smooth diffeomorphism between T2L �
.0; t0/ and �t0 WD �.T2L � .0; t0//.
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By using [12, Appendix F], we can check that the magnetic Laplacian acts locally near
the boundary in these coordinates as

zLh D a.s; t/
�1

�
� ih@s � t C f0 C �.s/

t2

2

�
a.s; t/�1

�
� ih@s � t C f0 C �.s/

t2

2

�
� h2a.s; t/�1@ta.s; t/@t ;

in the ambient Hilbert space L2.adsdt /. Here f0 D
j�j
j@�j

. The boundary condition (1.2)
becomes

@t .s; 0/ D h
� 12 .s; 0/:

Of course the operator zLh is only defined near t D 0. We would like to consider a global
operator. This can be done by inserting cutoff functions with respect to t . We let Lt D
t�.h�

1
2C�t / with � 2 .0; 1

2
/ and � a smooth cutoff function equal to 1 near 0.

Let us consider the differential operator acting as

zLh D a.s; Lt /
�1

�
� ih@s � t C f0 C �.s/

Lt2

2

�
a.s; Lt /�1

�
� ih@s � t C f0 C �.s/

Lt2

2

�
� h2a.s; Lt /�1@ta.s; Lt /@t ;

on the domain

Dom.zLh/ D
®
u 2 L2.T2L � RC/ W �@2t u 2 L

2.T2L � RC/;

.�ih@s � t C f0/
2u 2 L2.T2L � RC/; @tu.�; 0/ D h�

1
2u.�; 0/

¯
:

The ambient Hilbert space is L2.a.s; Lt /dsdt / D L2.dsdt /, with 2L-periodic condition
with respect to s.

The exponential localization of the original eigenfunctions at the scale h
1
2 near the

boundary suggests to consider the partial rescaling

.s; t/ D .s; „�/;

where „Dh
1
2.We consider the newoperator, acting in the ambient Hilbert spaceL2.Oa„dsd�/

D L2.dsd�/,

yLh D Oa„.s; �/
�1ps;„ Oa„.s; �/

�1ps;„ � Oa„.s; �/
�1@� Oa„.s; �/@� ; (3.1)

with

ps;„ D �i„@s � � C „
�1f0 C „�.s/

y�2

2
; (3.2)

and where Oa„.s; �/ D 1 � „y�� with y� D �.„2��/� .
The boundary condition becomes

@� .s; 0/ D  .s; 0/:
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The domain is given by

Dom.yLh/ D
®
u 2 L2.T2L � RC/ W �@2�u 2 L

2.T2L � RC/;
.�i„@s � � C „

�1f0/
2u 2 L2.T2L � RC/; @�u.�; 0/ D u.�; 0/

¯
:

In fact, it will even be more convenient to deal with the following operator

N„ D Oa„.s; �/
�1p

„0
s;„
Oa„.s; �/

�1p
„0
s;„
� Oa„.s; �/

�1@� Oa„.s; �/@� ; (3.3)

where we recall that „0 was defined in (1.8), and

p
„0
s;„
WD „0.� C „

�1f0/
W
� � C „�.s/

y�2

2
;

Dom.N„/ D
®
u 2 L2.T2L � RC/ W �@2�u 2 L

2.T2L � RC/;
�2u 2 L2.T2L � RC/; @�u.�; 0/ D u.�; 0/

¯
:

3.2. Microlocalization of the eigenfunctions of Lh

In fact, we can prove that the eigenfunctions of Lh associated with eigenvalues in Œha;hb�
are roughly microlocalized with respect to � C „�1f0, the (shifted) dual variable of s. In
order to quantify this, we consider the compact set

K D
[
j>1

®
� 2 R W �j .�/ 2 Œa; b�

¯
� Œ�min; �max� DW zK: (3.4)

Note thatK is indeed compact due to the properties of the �j (tending toC1 in�1) and
to the choice of Œa; b�, which does not contain Landau levels (the limits of the �j inC1).

The following result establishes a rather rough microlocalization result (with respect
to � ) for the eigenfunctions: it tells us that the eigenfunctions are microlocalized in the
compact set zK. To quantify this, we consider a smooth function „ with values in Œ0; 1�
such that „ D 0 near zK and 1 away from zK.

We let y� D h�1�.

Proposition 3.1. Let us consider the eigenvalue equation Lh D � for � 2 Œha; hb�.
Then,

yLh' D y�' C O.h1/k k: (3.5)

with ' D y�„ y , where y D  ı �.s;„�/ and y�„.�/D �.„��/ for a smooth cutoff function
� equal to 0 away from � D 0.

Moreover,
OpW
„

�
„.� C „�1f0/

�
' D O.„1/k k: (3.6)

Proof. The estimate (3.5) follows from the localization near the boundary (see Proposi-
tion 2.1).

Then, let us only prove that (3.6) holds when „ is 0 near .�1; �max C
�
2
/ and 1 on

.�max C �;C1/, the estimate following from similar arguments on .�1; �min � �/.
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In order to lighten the notation, we will use a slight abuse of notation by writing

„W
WD OpW

„

�
„.� C „�1f0/

�
: (3.7)

Then, we write
.yLh � y�/„

W' D ŒyLh; „
W�' C O.„1/k k:

Thanks to the explicit expression (3.1), we getŒyLh; „W�'
 6 C„k„W'k C C„k„W@�'k C O.„1/k k; (3.8)

and we can write, by using the support of �.h�
1
2C�t /,

yLh D yL0 C R„; yL0 D �@
2
� C p

2
s;„;0; ps;„;0 D �i„@s C „

� 12 f0 � �; (3.9)

where the remainder R„ can be written as

R„ D „
1�2�R„;2.s; �/p

2
s;„;0 C „

1�4�R„;1.s; �/ps;„;0 C „
2�8�R„;3 C „R„;4@� ; (3.10)

the R„;j being smooth functions, uniformly bounded in „.
Then, we consider an increasing function � 7! z„.�/ 2 .�maxC

�
4
;C1/ that coincides

with Id on .�max C
�
2
;C1/. We let

yLcut
0 D OpW

„

�
� @2� C

�
z„.� C „�1f0/ � �

�2�
;

acting onL2.T2L�RC/, where the superscript “cut” refers to the replacement of�i„@s C
„�1f0 by z„W (with the same abuse of notation as in (3.7)). We notice that yLcut

0 �
y� is

bijective (with an inverse uniformly bounded in „) due to the choice of z„ and the definition
of �max. Moreover, we have ¹„ ¤ 0º � ¹ z„ D Idº so that, with (3.9),

.yLcut
0 �

y�C Rcut
„
/„W' D ŒyLh; „

W�' C O.„1/k k;

which can be written as�
IdC Rcut

„
.yLcut
0 �

y�/�1
�
.yLcut
0 �

y�/„W' D ŒyLh; „
W�' C O.„1/k k:

By using (3.10) and applying the Calderón–Vaillancourt theorem, we get thatRcut
„
.yLcut
0 �

y�/�1
 D O.„1�4�/:

Thus, the operator IdC Rcut
„
.yLcut
0 �

y�/�1 is bijective as soon as „ is small enough.
With (3.8), this provides us first with

k„W'k2 6 C„k„W'k2 C C„k„W@�'k
2
C O.„1/k k2;

and then

k„W@�'k
2
C k„W'k2 6 C„k„W'k2 C C„k„W@�'k

2
C O.„1/k k2:

The estimate (3.6) follows by induction on the size of the support of „.
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3.3. First spectral estimates

The aim of the following proposition is to establish that the spectrum of Lh in Ih is close
to that of hN„ and thus that N„ is a nice auxiliary operator to describe the spectrum of Lh.
In fact, we will see that this proposition is not necessary to prove our spectral estimates,
but its proof is instructive.

Proposition 3.2. There exists h0 > 0 such that for all h 2 .0; h0/ the following holds. Let
us consider an interval Jh � Ih. Then, there exists an interval yJh such that Jh � yJh � Ih
with dH.Jh; yJh/ D O.h1/ and

rank1Jh.Lh/ 6 rank1 yJh.hN„/: (3.11)

Moreover, for all � 2 Ih \ sp.Lh/,

dist
�
�; h sp.N„/

�
D O.h1/: (3.12)

Proof. Let us start by proving (3.12). Let us consider an eigenvalue � 2 Ih of Lh. We
write the eigenvalue equation Lh D � .

With Proposition 3.1, we can write (3.5). Then, with (3.6), we deduce that

hN„' D �' C O.„1/k k:

Thus, (3.12) follows from the spectral theorem.
Let us now consider (3.11), which deals with multiplicities. Let us write

sp.Lh/ \ Jh D ¹�1; : : : ; �pº

(where the �j are distinct) and underline that these eigenvalues depend on h as well as p.
Consider the associated eigenspaces .Ej /16j6p and note that

dim
pM
jD1

Ej D O.h�2/

thanks to the Weyl estimate (1.3). With the same notation as above, we consider the spaces
of quasimodes .y�„ yEj /16j6p . Thanks to Proposition 3.1 (and the rough Weyl estimate),
dim.y�„ yEj / D dimEj , as soon as h is small enough. Moreover, we have� pM

jD1

hN„ � �
�
'
 6 "hk'k; "h D O.h1/;

for all ' D .'1; : : : ; 'p/ 2
Lp
jD1 y�„

yEj and where � D .�1; : : : ; �p/.
We set Jh D Œah; bh� and yJh D Œah � "h; bh C "h�. If rank1 yJh.hN„/ < rank1Jh.Lh/,

then the projection… W
Lp
jD1 y�„

yEj ! ran1 yJh.hN„/ could not be injective. Considering
a non-zero ' in its kernel, the spectral theorem would give k.

Lp
jD1 hN„ � �/'k> "hk'k,

which is a contradiction when ' ¤ 0. Therefore, (3.11) follows.
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4. A Grushin problem

4.1. A pseudo-differential operator with operator-valued symbol

Recalling Remark 1.4, we notice that the operator N„ can be seen as a pseudo-differential
operator acting as

N„ D Oa„.s; �/
�1T„ Oa„.s; �/

�1T„ � Oa„.s; �/
�1@� Oa„.s; �/@� ;

on functions of the form eisf0=hL2.T2L � RC/ and where

T„ D „
W
0 � � C „

�

2
y�2:

In fact, it will be convenient to see N„ as a pseudo-differential operator with operator-
valued symbol. At a formal level, the principal symbol of N„ is

n0.s; �/ D �@
2
� C .„0.�/ � �/

2

equipped with the domain

Dom.n0/ D
®
 2 B2.RC/ W  0.0/ D c .0/

¯
:

The vector space B2.RC/ is equipped with the .s; �/-independent norm

k k2
B2.RC/ D k 

00
k
2
C k 0k2 C

hti2 2:
With this convention, we may write that n0 2 S.R2;L.B2.RC/; L2.RC///.

We say that‰ 2 S.R2;L.B2.RC/;L2.RC///when, for all ˛ 2N2, there existsC˛ >0
such that for all .s; �/ 2 R2,

k@˛‰kL.B2.RC/;L2.RC// 6 C˛:

Such symbols might also depend on „; in this case, the constant C˛ is uniform in „.

Lemma 4.1. The operator N„ can be written as the Weyl quantization of a symbol in
S.R2;L.B2.RC/; L2.RC///.

Proof. We can write

T„ D OpW
„

�
„0.�/ � � C „

�

2
y�2
�
;

the symbol (2L-periodic with respect to s) belonging to the class

S
�
R2;L

�
B1.RC/; L2.RC/

��
\ S

�
R2;L

�
B2.RC/; B1.RC/

��
:

The functions a„.s; �/ and a„.s; �/�1 are bounded uniformly with respect to „ (and so
are all their derivatives). Then, the conclusion follows from the composition theorem for
pseudo-differential operators, see [28, Theorem 2.1.12].
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In the following, we let �D „2� and ��.�/D �.��/. This is convenient when expand-
ing the operator in powers of „ (� will be considered a parameter). This expansion
allows to describe rather accurately the symbol of N„ by expanding it in powers of „. An
analogous description for a very similar operator can be found in great detail in [13, Sec-
tion 4.2].

Proposition 4.2. The operator N„ can be written as follows:

N„ D n0 C „n1 C „
2R

.2/

„
C „w„@� ; (4.1)

where, for some N 2 N, C; „0 > 0, we have, for all „ 2 .0; „0/,

(i) w„ is a smooth function supported in ¹.s; �/ W C�1„�2� 6 h�i 6 C„�2�º and
such that w„ D O.h�i/,

(ii) R
.2/

„
is a pseudo-differential operator whose symbol belongs to a bounded set in

the space of symbols S.R2;L.B2.RC/; L2.RC; h�i�N d�///.

Moreover, the nj are given by nj D OpW
„
nj with

n0 D �@
2
� C

�
„0.�/ � �

�2
;

n1 D �.s/
��
„0.�/ � �

�
�2��

2
C ��@� C 2���

�
„0.�/ � �

�2�
:

In particular, we can write N„ D OpW
„
.n„/ with a symbol n„ satisfying

n„ D n0 C „n1 C „
2r
.2/

„
C „w„@� ;

where r .2/
„

belongs to the class of operator symbols S.R2;L.B2.RC/;L2.RC;h�i�N d�///
uniformly in „.

4.2. Dimensional reduction

The aim of this section is to analyse the spectrum of N„. This can be done thanks to a
Grushin reduction. The principal symbol of N„ is the “de Gennes operator” with Robin
boundary conditions. Explicitly, we have

n0.s; �/ D �@
2
� C

�
„0.�/ � �

�2
:

The increasing sequence of its (simple) eigenvalues is .�k.„0.�///k>1. We recall that the
functions �k are described in Proposition 1.1.

Now, consider the window

Œa; b� � .2n � 3; 2n � 1/:

For simplicity, let us denote
ı
uk WD

ı
u
Œ;��

k ;

see Section 1.2 and (1.8). Let N be defined as in (1.7).
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Lemma 4.3. For all z 2 Œa; b�, let us consider the matrix operator

P0.z/ D

�
n0.s; �/ � z …�

… 0

�
W B2.RC/ � CN ! L2.RC/ � CN ;

where …�.˛/ D
PN
jD1 j̨

ı
uj and … D .h ;

ı
uj i/16k6N .

Then, P0.z/ is bijective with inverse

Q0.z/ D

�
q0 …�

… z �M0.�/

�
; q0 D

�
n0.s; �/ � z

��1
.…�…/?;

where M0.�/ is the diagonal N �N matrix whose diagonal is .
ı
�1; : : : ;

ı
�N /.

Proof. Let g 2 L2.RC/ and ˇ 2 CN . Let us look for f 2 Dom.n0/ and ˛ 2 CN such that

P0.z/.f ˚ ˛/ D g ˚ ˇ:

In other words, �
n0.s; �/ � z

�
f C…�˛ D g; …f D ˇ:

Let E D span.
ı
u1; : : : ;

ı
uN /, and F D E?. We can write f D fE C fF where

fE D

NX
jD1

hf;
ı
uj i
ı
uj D …

�…f; fF D .…
�…/?f:

We have �
n0.s; �/ � z

�
fF D �

�
n0.s; �/ � z

�
fE �…

�˛ C g

D �
�
n0.s; �/ � z

� NX
jD1

ǰ
ı
uj �…

�˛ C g;

so that �
n0.s; �/ � z

�
fF D �

NX
jD1

ǰ .
ı
�j � z/

ı
uj �…

�˛ C g: (4.2)

The space F is stable by n0.s; �/ � z.
Moreover, thanks to the self-adjointness of n0, the min-max principle and the fact that

min
ı
�NC1 > 2N C 1 > z, there exists c > 0 such that, for all u 2 Dom.n0/ \ F ,˝

.n0 � z/u; u
˛
D hn0u; ui � zkuk

2 > .
ı
�NC1 � z/kuk

2 > ckuk2:

Thus, the operator .n0 � z/jF is injective with closed range and, by considering the
adjoint, we deduce that it is bijective. We also notice that.n0 � z/�1jF  6 .

ı
�NC1 � z/

�1 6 c�1:
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Then (4.2) has a solution if and only if the right-hand-side belongs to F , that is

�

NX
jD1

ǰ .
ı
�j � z/

ı
uj �…

�˛ C g 2 F

which means that, for all k 2 ¹1; : : : ; N º,

�ˇk.
ı
�k � z/ � ˛k C hg;

ı
uki D 0:

We deduce that
˛ D …g C

�
z �M0.�/

�
ˇ:

This unique solution is given by

fF D .…
�…/?

�
n0.s; �/ � z

��1
g:

Therefore,
f D fE C fF D …ˇ C .…

�…/?
�
n0.s; �/ � z

��1
g:

Let us now consider the full symbol

P„.z/ WD

�
n„ � z …�

… 0

�
;

which may be expanded in powers of „ as

P„.z/ D P0.z/C „P1.z/C R„;

with

P0.z/ D

�
n0.s; �/ � z …�

… 0

�
; P1.z/ D

�
n1 0

0 0

�
; R„.z/ D

�
r„ 0

0 0

�
;

where r„ D „2r
.2/

„
C „ Qw„;1 C „w„;2@� , see Proposition 4.2.

We notice that

PW
„
D

�
N„ � z P�

P 0

�
; P D …W: (4.3)

Since the principal symbol of PW
„

is bijective, it is natural to try to construct an approx-
imate inverse in the semiclassical limit. Let us look for an approximate inverse whose
symbol is in the form

Q„;1 D Q0.z/C „Q1.z/: (4.4)

As in [28], we are led to choose

Q1 D �Q0P1Q0 D �

�
q0n1q0 q0n1…

�

…n1q0 …n1…
�

�
:
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This choice is convenient since the composition theorem for pseudo-differential operators
(see [28]) implies that

QW
„;1

�
P0.z/C „P1

�W
D IdC „

�
1

i
¹Q0;P0º C Q0P1 C Q1P0

�W

C OL2.T2L�RC;h�iN dsd�/�L2.T2L/!L2.T2L�RC/�L2.T2L/.„
2/;

where the remainder is estimated thanks to the Calderón–Vaillancourt theorem (see [28,
Theorem 2.1.16]) and the resolvent estimate in Lemma B.6 (applied with an appropriate
˛ > 0). The „-term vanishes due the choice of Q1 and that fact that the Poisson bracket is
actually 0 since the principal symbol does not depend on s. With this choice, the bottom
right coefficient, denoted by Q˙

„;1
, of the matrix Q„;1 is

Q˙
„;1 D z �M0.�/ � „…n1…

�:

This invites to consider the effective matrix pseudo-differential operator whose symbol is

M„ DM0.�/C „M1.s; �/;

with

M1.s; �/ D �.s/…C
�
�;„0.�/

�
…�;

C.�; �/ D .� � �/�2��
2
C ��@� C 2���.� � �/

2:

Using again the composition theorem to deal with the remainder R„, we get

QW
„;1P

W
„
D IdC OL2.T2L�RC;h�iN dsd�/�L2.T2L/!L2.T2L�RC/�L2.T2L/.„

2/

C QW
„;1

�
„w„@� 0

0 0

�W

: (4.5)

Moreover, similar arguments show that QW
„;1

is also an approximate right inverse of PW
„

in
the sense that

PW
„
QW
„;1 D IdC OL2.T2L�RC;h�iN dsd�/�L2.T2L/!L2.T2L�RC/�L2.T2L/.„

2/

C

�
„w„@� 0

0 0

�W

QW
„;1: (4.6)

Proposition 4.4. The spectrum of Lh in Œha; hb� coincides (with multiplicity) with that of
hOpW

„
M„ modulo O.h2/.

Proof. First, we consider  an eigenfunction of Lh associated with � 2 Œha; hb�. We
use (4.5) with z D h�1� to get that

QW
„;1P

W
„

�
'

0

�
D

�
'

0

�
C O.„2/k'k;
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where ' denotes the function  after multiplication by a cutoff function in t and rescaling
as in Proposition 3.1. Note that we used the exponential decay in � of our quasimode '
(which comes from that of  ) to control the remainder term in (4.5). We infer that

P�P' D ' C O.„/k'k; .y� � OpW
„
M„/P' D O.„2/k'k; (4.7)

where we used that the principal symbol of the top right coefficient of Q„;1 is …�. Since
P� is bounded uniformly in „ (as the quantization of a bounded symbol), the first relation
implies that

k'k 6 CkP'k:

Then, from the second relation and the spectral theorem, we deduce that

dist
�
y�; sp.OpW

„
M„/

�
6 C„2:

This means that the spectrum of h�1Lh in the window Œha; hb� is at a distance of order
„2 to the spectrum of the effective operator OpW

„
M„.

Let us now proceed as in the proof of Proposition 3.2 and keep the same notation. We
have � pM

jD1

N„ � y�
�
'
 6 "hk'k; "h D O.h1/;

for all ' D .'1; : : : ; 'p/ 2
Lp
jD1 y�„

yEj and where y� D .y�1; : : : ; y�p/.
Similarly as (4.7), we have

k'k 6 CkP'k; (4.8)

and � pM
jD1

OpW
„
M„ � y�

�
P' D O.„2/kP'k;

where P' D .P'1; : : : ;P'p/. Due to (4.8), the action of the map P is injective onLp
jD1 y�„

yEj . Therefore, as in the proof of Proposition 3.2, the spectral theorem provides
us with

rank1Jh.Lh/ 6 rank1Kh.hM
W
„
/;

where Jh � Ih and Kh is an interval such that Jh � Kh and dH.Jh; Kh/ D O.h2/.
Let us now prove the converse estimate. We use (4.6) with an eigenvalue z D y� ofMW

„

and for f a corresponding eigenfunction. We have

PW
„
QW
„;1

�
0

f

�
D

�
0

f

�
C O.„2/kf k; (4.9)

where the remainder term involvingw„ has been controlled by using the exponential decay
of the eigenfunctions of the de Gennes–Robin operator n0.

Then, the first line in (4.9) gives

.N„ � y�/
�
QC
„;1

�W
f D O.„2/kf k; (4.10)
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whereas the second line gives

P
�
QC
„;1

�W
f D O.„2/kf k;

which leads to
kf k 6 C

�QC
„;1

�W
f
:

With (4.10), we get

.N„ � y�/
�
QC
„;1

�W
f D O.„2/

�QC
„;1

�W
f
:

Now, by using the exponential decay of .QC
„;1
/Wf and the rough microlocalization of f

in the support of „0 (since the principal symbol of the scalar pseudo-differential operator
M„ is n0), we get the quasimode estimate

.Lh � �/ 
quasi
D O.h2/k quasi

k;

with  quasi.x/ D �.t.x/=„1� /‰quasi ı ��1.x/ where

‰quasi.s; t/ D
�
QC
„;1

�W
f .s; „�1t /;

and � is a smooth cutoff function equal to 1 near 0 and 0 away from a neighborhood of
t D 0 and  2 .0; 1/ is chosen small enough so that

t�.h�
1
2C�t / D t

on the support of �.t=„1� /. Note that ‰quasi satisfies the Robin condition at t D 0 since
QC
„;1

(as well as Q0, see (4.4)) takes values in a space of functions satisfying the Robin
condition. In particular,  quasi belongs to the domain of Lh.

The spectral theorem shows that � is close to the spectrum of Lh at a distance or order
at most O.h2/. The argument concerning the multiplicities can again be used (as above)
by exchanging the roles of N„ and MW

„
. The conclusion follows.

Remark 4.5. In Proposition 3.2 we only proved one inclusion of spectra. In contrast,
Proposition 4.4 is stronger, since it provides an equality modulo O.h2/, in the sense of
Definition 1.5. Indeed, in the proof of Proposition 4.4, we only have to use quasimodes
for N„ and not necessarily the true eigenfunctions of N„ (whose existence in the spectral
window of interest is not obvious). Our presentation avoids the spectral analysis of N„
(existence of the discrete spectrum, Agmon estimates, etc.) by comparing directly the
spectra of Lh and of the effective operator.

5. Analysis of the effective operator

This section is devoted to the spectral study of MW
„

in Œa; b�. Let us diagonalize this
operator, up to a remainder of order O.„2/. Note that, by using the exponential decay of
the eigenfunctions of n0, we may (and so do we) replace �� by 1.
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5.1. Asymptotic diagonalization and end of the proof of Theorem 1.7

The end of the proof follows from classical arguments (see, for instance, [23, Section 3.1]
where such arguments are used). We notice that the spectrum of

T„ D exp.„AW/MW
„

exp.�„AW/

is the same as the one of MW
„

, as soon as A belongs to S.1/ and is 2L-periodic with
respect to s. In this case, we recall that AW is bounded from L2.T2L/ to L2.R2L/ (and
thus its exponential is well-defined as an element of L.L2.T2L// thanks to the classical
power series). Let us explain how to choose A. By expanding the exponential, we have

T„ D .IdC „AW/MW
„
.Id � „AW/C O.„2/;

and thus
T„ DM

W
„
C „ŒAW;MW

„
�C O.„2/;

so that
T„ DM

W
0 C „

�
M1 C ŒA;M0�

�W
C O.„2/:

Therefore, A should be chosen so that M1 � ŒM0; A� is diagonal. The map SkewN .R/ 3
A 7! ŒM0; A� 2 Sym0

N .R/ is well-defined and an isomorphism since M0 is diagonal with
distinct real entries, where SkewN .R/ is the vector space of skew-symmetric matrices
and Sym0

N .R/ the space of symmetric matrices with null diagonal. It is actually easy to
compute its inverse. Consider M a symmetric matrix with null diagonal. We want to find
A 2 SkewN .R/ such that ŒM0; A� DM . For all j 2 ¹1; : : : ; N º, we have

.M0 �
ı
�j /Aej DMej ;

and then, for all k 2 ¹1; : : : ; N º,

.
ı
�k �

ı
�j /hAej ; eki D hMej ; eki:

Thus, for all k ¤ j ,
hAej ; eki D .

ı
�k �

ı
�j /
�1
hMej ; eki;

which determines a unique A 2 SkewN .R/.
Since there is a uniform gap between the

ı
�j (with respect to � ), we get the existence

of a skew-symmetric A in S.1/ such that

M1 � diag.M1/„ ƒ‚ …
2Sym0N .R/

CŒA;M0� D 0:

With this choice, we get

T„ DM
W
0 C „ diag.MW

1 /C O.„2/:
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Note that, for all j 2 ¹1; : : : ; N º, we have

hM1ej ; ej i D �.s/
˝
C
�
�;„0.�/

�
u
Œ„0.�/;�
j ; u

Œ„0.�/;�
j

˛
:

By the spectral theorem, we deduce that the spectra ofMW
„

andMW
0 C„diag.MW

1 / coin-
cide modulo O.„2/. This procedure can be continued at any order.

5.2. Spectral consequences

The aim of this last section is to prove Proposition 1.9 and Corollary 1.14.

5.2.1. Proof of Proposition 1.9. We could not find this particular statement in the liter-
ature, because (a) we have to deal with non-connected level sets of the principal symbol,
and (b) we have Floquet periodic conditions, with „-dependent Floquet exponent. The
first issue is treated with usual microlocal arguments: each connected component carries
with itself a Bohr–Sommerfeld asymptotic series, as in [21], and the initial spectrum is
obtained, modulo O.„1/, by the superposition (with multiplicities) of all these series. The
second one is easily included in the general theory thanks to the “sheaf” approach of [42].
Indeed, near each point of the energy level curve � D const, the operator P„ is microlocally
a usual „-pseudo-differential operator, and the quantum Darboux–Carathéodory normal
form holds. Therefore, the Bohr–Sommerfeld cocycle of [42, Proposition 5.6] holds; the
difference being that the condition for a global section should include the Floquet expo-
nent � . This gives a Bohr–Sommerfeld rule for quantized energies E (for each connected
component) of the form

A.E/C „m.E/�
2
C „K.E/CO.„2/ D 2�„

�
`C L

�
�
�
; ` 2 Z; (5.1)

where A.E/ is the action integral (here A.E/D 2L� whenE D�.�/),m.E/ the Maslov
index (which vanishes here, because the curves � D const project diffeomorphically on the
s variable), and K.E/ is the integral of the subprincipal form [42, Definition 3.2] along
the energy level set. In order to compute K , we notice that the Hamiltonian vector field of
�.�/ is �0.�/ @

@s
and hence the subprincipal form is �r

�0.�/
ds, where r is the subprincipal

symbol of P„ (here r D �C.�/�.s/). Hence, for E D �.�/, we have

K.E/ D
C.�/

�0.�/ j†q

Z 2L

0

�.s/ds:

Inverting the formal series (5.1), we get

E D �.�/ �K
�
�.�/

�
1
2L
�0.�/CO.„2/; � D �

L
„
�
`C L

�
�
�

which gives (1.11) and (1.12).

5.2.2. Proof of Corollary 1.14. Thanks to Proposition 4.4 and the considerations in Sec-
tion 5.1, we know that the spectrum of Lh in Œha;hb� coincides with that of hMW

„
modulo

O.h2/. In the present section, since we are interested in the low-lying eigenvalues, we take
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a D �1 and b D ‚0./C " < 1 (for " > 0 small enough). Therefore, we have N D 1
and the matrix symbol M„ reduces to a scalar symbol:

M„.s; �/ D �1.; �/C „�.s/
˝
C
�
�;„0.�/

�
u
Œ„0.�/;�
1 ; u

Œ„0.�/;�
1

˛
:

We are interested in the spectrum of MW
„

(when acting on eisf0=hL2.T2L/). Hence,
Corollary 1.14 can be obtained by [8] (see in particular the Morse case, Section 6.3.1)
followed by a standard Birkhoff normal form (here, the Floquet exponent f0=h plays no
role because the analysis is local near a point in the boundary @�). Here are the details.

Thanks to the Weyl asymptotic formula for pseudo-differential operators (see, for
instance, [43, Theorem 14.11]), the counting function N.MW

„
; ‚0./ C "/ (giving the

number of eigenvalues less than ‚0./C ") satisfies

N
�
MW
„
; ‚0./C "

�
D

1

2�„

Z
¹.s;�/W�1.�/6‚0./C"º

dsd� C o.„�1/

D
L

�„

ˇ̌®
� W �1.�/ 6 ‚0./C "

¯ˇ̌�
1C o.1/

�
:

Now, we take " D „� , for some given � > 0.
Due to the non-degeneracy of the minimum of � 7! �1.;„0.�//, the eigenfunctions

associated with eigenvalues less than b are microlocalized in a neighborhood of �0./ of
size „�=2 (and so are all the linear combinations of such eigenfunctions due to the Weyl
estimate). This invites us to expand the symbol near �0./:

M„.s; �/ D ‚0./C
@2��

�
; �0./

�
2

�
� � �0./

�2
� „�.s/C1

�
�0./

�
C O

�ˇ̌
� � �0./

ˇ̌3
C „

ˇ̌
� � �0./

ˇ̌�
: (5.2)

Therefore, M„ is relative perturbation of the symbol of a classical electric Schrödinger
operator. The corresponding operator is

M„ D ‚0./C
@2��

�
; �0./

�
2

�
„Ds � �0./

�2
� „�.s/C1

�
�0./

�
:

Let us only consider the case when  < 
Œ0�
0 (i.e., � D 1). The assumption that � has a

unique maximum, which is non-degenerate, allows to use the harmonic approximation
near the maximum of � (and even a Birkhoff normal form, see, for instance, [36, Chap-
ter 5] or the original references [4, 40]). The eigenvalues of M„ satisfy

�j .M„/ D ‚0./ � �maxC1
�
�0./

�
„

C

 
.2j � 1/

s
k2C1

�
�0./

�
�001
�
; �0./

�
4

!
„
3
2 C o.„

3
2 /;

uniformly in j > 1 such that j„
1
2 D o.1/.

We recall that „ D h
1
2 . We get Corollary 1.14 by noticing, thanks to a perturbation

analysis using (5.2), that the spectra of hMW
„

and hM„ below h.‚0./C „
�/ coincide

modulo o.h
7
4 /.
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5.2.3. Proof of Theorem 1.11. By Theorem 1.7, and Definition 1.5 we have, for � D
O.h/,

N
�
hMh;

�
h.aC �/; h.b � �/

��
6 N

�
Lh; Œha; hb�

�
6 N

�
hMh;

�
h.a � �/; h.b C �/

��
: (5.3)

From Corollary 1.10, for any interval Œa0; b0� disjoint from ‚ and ƒ, the number of eigen-
values of Mh in Œha0; hb0� is bounded by C b0�a0

h1=2
for some constant C > 0. Applying this

with .a0; b0/ equal, respectively, to the four intervals .a; aC �/, .b � �; b/, .a � �; a/, and
.b; b C �/, it follows from (5.3) that

N
�
Lh; Œha; hb�

�
D N

�
hMh; Œha; hb�

�
CO.�h�1=2/

D N
�
hMh; Œha; hb�

�
CO.h1=2/:

Therefore, it is enough to estimate N.hMh; Œha; hb�/, for which we apply Corollary 1.10
(which is actually a description of the spectrum of Mh). This corollary says that the
number of eigenvalues of hMh inside Œha; hb�, including multiplicities, is given, mod-
ulo O.h2/, by the number of integers ` 2 Z such that

h
1
2
�
�
L
`C �.h/

�
2 f �1k;q;h

�
Œa; b�

�
; (5.4)

for some admissible .k; q/, where fk;q;h.�/ WD fk;q.�; h1=2/.
To simplify notations, let us momentarily fix .k; q/ and denote fh WD fk;q;h DW f0 C

h1=2f1 C O.h/, where f0 and f1 are defined in (1.13) and (1.14). By assumption, f0 is
monotonous on †k;q , let us assume that it is increasing; the decreasing case is obtained
by swapping .a; b/. For h small enough, fh is also increasing and hence f �1

h
.Œa; b�/ D

Œf �1
h
.a/; f �1

h
.b/�. Therefore, the solutions to (5.4) are exactly the integers belonging to

the interval
Lh�1=2

�

�
f �1h .a/; f �1h .b/

�
�
L

�
�.h/: (5.5)

Let � D f �1
h
.a/; of course � depends on h, but since � 2†k;q , it is bounded and we have

� D f �10 .a/C O.h1=2/. Therefore, f1.�/ D f1.f �10 .a//C O.h1=2/. According to the
statement of Theorem 1.11, we denote ˛ WD f �10 .a/. Writing f0.�/ D a � h1=2f1.˛/C
O.h/ we get, by Taylor expansion,

� D ˛ � h1=2.f �10 /0.a/f1.˛/CO.h/ D ˛ C h1=2
h�iCk.˛/

�0
k
.˛/

CO.h/:

Using the analogous formula for f �1
h
.b/, we may compute the difference f �1

h
.b/ �

f �1
h
.a/ and obtain the length of the interval (5.5):

Lh�1=2

�

�
f �1h .b/ � f �1h .a/

�
D
Lh�1=2

�
.ˇ � ˛/C

Lh�i

�

�
Ck.ˇ/

�0
k
.ˇ/
�
Ck.˛/

�0
k
.˛/

�
CO.h1=2/

which gives Theorem 1.11 by summing over admissible .k; q/.
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5.2.4. Proof of Theorem 1.12. We use the notation of Theorem 1.7. By Proposition 1.9,
the self-adjoint operators mW

k
acting on ei�.h/�L2.T2L/ satisfy the Gårding inequality:

mWk > min�k �O.h1=2/ D ‚Œk�1� �O.h1=2/ > b 8k D 2; : : : ; N; 8h < h0

for h0 small enough. Hence the spectrum of Lh in Ih coincides, modulo O.h2/, with
the spectrum of hmW1 in that interval. In other words, for this choice of interval Ih, the
disjoint unions of Corollary 1.10 reduce to a union of the two components .k D 1; q D 1/
and .k D 1; q D 2/, and the spectrum in Ih coincides modulo O.h2/ withG

qD1;2

®
hf1;q.�; h

1
2 /; � 2 h

1
2
�
�
L

ZC �.h/
�
\†1;q

¯
\ Œha; hb�:

So eigenvalues �j in Ih are associated with integers ` D `.h/ 2 Z such that h
1
2 .�
L
` C

�.h// 2 †1;1 [†1;2; therefore there are constants ˛; ˇ, independent on h, such that

�`.h/ WD h
1
2
�
�
L
`C �.h/

�
2 Œ˛; ˇ�:

Hence,
�

L
` 2

�
˛

h1=2
� �.h/;

ˇ

h1=2
� �.h/

�
:

Recalling that �.h/D j�j
j@�jh

, we get that, for h < h0 WD
q
j�j
ˇ j@�j

, `must be negative. Thus,
for each fixed `, �`.h/ increases when h decreases to zero. In other words, because of the
non-zero flux term, the corresponding semiclassical eigenvalues hf1;q.�`.h/; h

1
2 / “move

to the right” (in the sense of Figure 1) towards the Landau level �1 D 1.
Let us now describe the semiclassical branches, i.e., the curves

h 7! hf1;q
�
�`.h/; h

1
2
�
; q D 1; 2; ` 2 Z�: (5.6)

We may assume that the intervals †1;q satisfy †1;1 6 †1;2. Recall from Proposition 1.1
(or Figure 1) that there exists c > 0 such that �01j†1;1 6 �c while �01j†1;2 > c. Hence, in
view of the semiclassical expansion of fk;q , and up to reducing c, we get

f 01;1 6 �c and f 01;2 > c (5.7)

uniformly for h6h0 small enough. Thus, for each fixed admissible `2Z�, the branch (5.6)
generated by †1;1 (i.e., corresponding to q D 1) is an increasing curve, while the branch
corresponding to q D 2 is decreasing. Moreover, the semiclassical branches generated by
†1;1 and associated with different integers `1 ¤ `2 will never cross as h varies, and their
mutual vertical distance is bounded below asˇ̌

hf1;q
�
�`1.h/; h

1
2
�
� hf1;q

�
�`2.h/; h

1
2
�ˇ̌

> h
3
2
�c

L
: (5.8)

Hence, in view of (5.7), we see that the horizontal distance between these curves is O.h2/.
Of course, the same holds for the branches associated with †1;2, which thus form a col-
lection of disjoint decreasing curves. Therefore, the superposition of all branches is a
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Figure 2. Illustration of the collection of semiclassical branches of eigenvalues. Here we plot the
graphs of f1;q.�`.h/; h/ with respect to the variable „ D

p
h, for q D 1 (blue curves) and q D 2

(red curves). The continuous curve of �j .h/=h, for fixed j , where �j .h/ is the exact eigenvalue of
Lh, lies within the greyed stair-case like curve (of vertical width O.h/).

deformed grid intersected with the window .0; h0� � Œha; hb�, see Figure 2. In particular,
there are many crossing points, and the horizontal distance between consecutive crossing
points along a fixed branch is O.h2/.

Consider now the exact eigenvalues �j 2 Œha;hb�. By Corollary 1.10, each �j must be
O.h2/-close to one of the semiclassical branches. For fixed ` 2 Z�, modifying the value
of h by an amount of order O.h2/ amounts to shifting the abscissa �`.h/ by an amount
proportional to h

1
2 . Therefore, by suitably choosing C1 and setting h1 WD hC C1h2 we

may assume that �j .h1/ corresponds to a unique increasing branch (parameterized by
†1;1): when h varies in an interval of size O."h2/ around h1, with " > 0 small enough,
there is a unique and fixed `1 2 Z such thatˇ̌

�j .h/ � hf1;1
�
�`1.h/; h

1
2
�ˇ̌
D O.h2/:

Next, we choose C2 > C1 so that with h2 WD hCC2h2, �`1.h2/ is O.h3/ close to the first
crossing on the right-hand side of �`1.h1/. The exponent 3 is not important, any exponent
N > 3 will work as well. We haveˇ̌

�j .h2/ � h2f1;1
�
�`1.h2/; h

1
2
2

�ˇ̌
D O.h2/:

and since jf 01;1j > c, we obtain a constant C > 0 such that

�j .h2/ > �j .h1/C Ch
3=2:

On the right hand side of the crossing, the integer `1, and the increasing branch, do
not longer correspond to the eigenvalue �j (this branch will now correspond to �jC1).
Instead, we have to select the branch parameterized by †1;2, labeled by some `2 2 Z�;
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then, as before, with a suitable C3 > C2, we have, with h3 WD hC C3h2ˇ̌
�j .h3/ � h3f1;2

�
�`2.h3/; h

1
2

3

�ˇ̌
D O.h2/;

and hence, since the new branch is now decreasing,

�j .h3/ 6 �j .h2/ � Ch
3=2:

Note that, in the above analysis, the constants Cj depend on h, but in a uniform way:
they belong to a fixed compact interval contained in .0;C1/. The above estimates are
then uniform for h 6 h0 if h0 is chosen small enough.

We now turn to the last statement of the theorem. We choose h2 as before, but with
more precision: we can always select the exact crossing point h0 between the semiclassical
branches, i.e.,

h0f1;1
�
�`1.h

0/; h0
1
2
�
D h0f1;2

�
�`2.h

0/; h0
1
2
�
:

This gives
�j .h

0/ � �jC1.h
0/ D O.h2/:

Finally, for any value of h sufficiently far from the crossing, for instance h00 D h1 or h3,
the vertical estimate (5.8) ensures that

�jC1.h
00/ � �j .h

00/ > Ch3=2;

for some C > 0, which finishes the proof of the theorem.

A. A rough Weyl estimate

The aim of this section is recall why (1.3) holds. Thanks to the Young inequality, we have,
for all  2 H 1.�/,

Qh;A. / >
h2

2
kr k2 � 2kAk21k k

2
C  h

3
2

Z
@�

j j2ds:

When  > 0, we get that

Qh;A. / >
h2

2
kr k2 � 2kAk21k k

2:

When  < 0, we use a classical trace theorem: there exists C > 0 such that, for all " > 0,Z
@�

j j2ds 6 "kr k2 C C"�1k k2:

By choosing " D �
p
h

4
> 0, we deduce that

Qh;A. / >
h2

4
kr k2 � 2kAk21k k

2
� 42Chk k2:
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In both cases, there exists zC > 0 such that, for all h 2 .0; 1/ and all  2 H 1.�/,

Qh;A. / >
h2

4
kr k2 � zCk k2:

With the min-max principle, this shows that, for all �,

N.Lh; �/ 6 N

�
��Neu; 4

�C zC

h2

�
:

The conclusion follows from the Weyl asymptotics for the Neumann Laplacian, which is
the same at the main order as in the Dirichlet case, see, for instance, [34, Introduction].

B. Spectral analysis of De Gennes operator

Lemma B.1. For each  2 R, n > 2, we have

�n.; �/ > 2n � 3:

In particular, we have
‚Œn�1�./ > 2n � 3:

Proof. From the Sturm–Liouville theory, uŒ;��n admits n � 1 zeros on RC. We denote by
zn;1.; �/ its first zero. We consider the function

vŒ;��n .t/ D uŒ;��n

�
t C zn;1.; �/

�
;

which satisfies the Dirichlet condition at 0 and

HDir�� � zn;1.; �/�vŒ;��n D �n.; �/v
Œ;��
n ;

where HDirŒ�� is the Dirichlet realization of �@2� C .� � �/
2 on L2.RC/. The function

v
Œ;��
n has exactly n � 2 zeros on RC. By the Sturm’s oscillation theorem, vŒ;��n is the
.n � 1/-th eigenfunction of HDirŒ� � zn;1.; �/�. Therefore we have

�n.; �/ D �
Dir
n�1

�
� � zn;1.; �/

�
:

Moreover, by monotonicity of the Dirichlet problem, for all � 2 R,

�Dir
n�1.�/ > 2n � 3:

The following proposition is obtained by adapting the proof of [25, Theorem II.2].

Proposition B.2. Let n > 1. If � is a critical point of �n.; �/, we have

�n.; �/ D �
2
� 2:
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Lemma B.3. When  2 R, we have the following relationsZ C1
0

�
t � �n�1./

�ˇ̌
uŒ;�n�1./�n .t/

ˇ̌2dt D 0; (B.1)Z C1
0

�
t � �n�1./

�3 ˇ̌
uŒ;�n�1./�n .t/

ˇ̌2dt D
1

6

�
1C 2�n�1./

�
uŒ;�n�1./�n .0/: (B.2)

Proof. We let
uŒ�n D u

Œ;�n�1./�
n :

Let us consider the differential operator:

L D �@2t C
�
t � �n�1./

�2
�‚Œn�1�./:

Note that for any polynomial p, we have:

Lv D
�
p.3/ � 4

��
t � �n�1./

�2
�‚./Œn�1�

�
p0 � 4

�
t � �n�1./

�
p
�
uŒ�n ; (B.3)

and Z C1
0

uŒ�n .t/.Lv/.t/dt D
Z C1
0

LuŒ�n .t/v.t/dt C
�
v0.0/ � v.0/

�
uŒ�n .0/; (B.4)

for v D 2pŒuŒ�n �0 � p0u
Œ�
n . Taking p D 1, we get

�4

Z C1
0

�
t � �n�1./

�ˇ̌
uŒ�n .t/

ˇ̌2dt D 2
�
�n�1./

2
� 2 �‚Œn�1�./

�ˇ̌
uŒ�n .0/

ˇ̌2
:

Recalling Proposition B.2, the above formula proves (B.1). To prove (B.2), we take p D
.t � �n�1.//

2. Then, we have

v0.0/ � v.0/ D �2
�
2�n�1./C 1

�
uŒ�n .0/:

We get now from (B.3) and (B.4)

�12

Z C1
0

�
t � �n�1./

�3 ˇ̌
uŒ�n .t/

ˇ̌2 dt D �2
�
2�n�1./C 1

�ˇ̌
uŒ�n .0/

ˇ̌2
:

Lemma B.4. We have

Cj
�
�j�1./

�
D
1

2

�
u
Œ�
j .0/

�2
�

Z C1
0

�
t � �j�1./

�3�
u
Œ�
j .t/

�2dt

D
1

3

�
1 � �j�1./

��
u
Œ�
j .0/

�2
;

where Cj is defined in (1.10).
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Proof. We write

.� � t /t2 C 2t.� � t /2 D .t � �/3 � �2.t � �/:

We take � D �j�1./. The conclusion follows from Lemma B.3.

Proposition B.5. Let us fixj>1. When2R, there exists Œj�1�0 >0, such that,Cj.�j�1.//
is positive if  <  Œj�1�0 and negative if  >  Œj�1�0 .

Proof. We notice that, for  6 0, we get Cj .�j�1.// < 0.
Now, for  > 0. From Proposition B.2, we can rewrite Cj .�j�1.// as

Cj
�
�j�1./

�
D
1

3

�
1 � 

q
2 C‚Œj�1�./

��
u
Œ�
j .0/

�2
;

Since .uŒ�j .0//2 > 0, then, to study the sign of Cj .�j�1.// it is sufficient to study the
sign of the function f defined by f ./ D 1 � 

p
2 C‚Œj�1�./. We have

f 0./ D �

q
2 C‚Œj�1�./ �



2

�
‚Œj�1�./

�0
C 2p

2 C‚Œj�1�./
:

We can use [25, Section B] (which can be adapted to j > 1) to deduce that f 0./ < 0.
Therefore, f is increasing on Œ0;C1Œ.

Let us notice now that f .0/ D 1 and lim!C1 f ./ D �1. This establishes the
existence of a unique zero of f ./, denoted by  Œj�1�0 .

Lemma B.6. Let ˛ 2 R and ˇ 2 N. Consider the interval Œa; b�. We consider … D
.h ; u

Œ;��
j i/16j6n, where n is the number of dispersion curves �j .; �/ taking values in

Œa; b� (see the discussion at the beginning of Section 3.2). We consider yK a neighborhood
of zK.

There exists C˛;ˇ > 0 such that for all z 2 Œa; b� and all � 2 yK, the following holds.
For all v 2 L2.RC/ such that hti˛v 2 L2.RC/, we havehti�˛@ˇ� �HŒ; �� � z��1.…�…/?�hti˛v� 6 C˛;ˇkvk:

Proof. Let us only prove this estimate for ˇ D 0. We consider z 2 Œa; b�. Let us consider
v 2 S.xRC/ and let u be the unique solution to the equation�

HŒ; �� � z
�
u D .…�…/?

�
h�ti˛kv

�
(B.5)

that is orthogonal to .uŒ;��j /16j6n, with

htik D
�
1C t2�2k

� 1
2 ;

where �k is a smooth non-negative function equal to 0 on Œ0; 1� and to 1 on Œ2k;C1/ and
such that j�0

k
j 6 k�1. In particular, the weight is 1 near 0. Here � > 0 is a parameter to be

chosen small enough.
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We have seen in Lemma 2.2 that�
HŒ; �� � z …�

… 0

�
W B2.RC/ � Cn ! L2.RC/ � Cn

is bijective. Thus, equation (B.5) is equivalent to�
HŒ; �� � z …�

… 0

��
u

0

�
D

�
.…�…/?

�
h�ti˛

k
v
�

0

�
:

Note that 
h�ti�˛

k
0

0 1

! 
HŒ; �� � z …�

… 0

! 
h�ti˛

k
0

0 1

!
D

 
HŒ; ��CR�;k � z h�ti�˛

k
…�

…
�
� h�ti˛

k

�
0

!
;

where

R�;k D �˛�
2.t2�2k/

0 1

1C �2t2�2
k

@t

�

�
�2˛

2

.t2�2
k
/00

1C �2t2�2
k

C

�
˛

2
� 1

�
�4˛

2

.t2�2
k
/02

.1C �2t2�2
k
/2

�
:

With
u D h�ti˛k Qu;

we get

HŒ; �; �; k�

�
Qu

0

�
D

�
h�ti�˛

k
.…�…/?

�
h�ti˛

k
v
�

0

�
;

with

HŒ; �; �; k� D

 
HŒ; ��CR�;k � z h�ti�˛

k
…�

…
�
� h�ti˛

k

�
0

!
:

Thanks to the exponential decay of the uŒ;��j (which is uniform for � 2 yK), we notice that
HŒ; �; �; k� is bijective as soon as � is small enough and k large enough. Moreover,HŒ; �; �; k��1 6 C:

This implies that
k Quk 6 C

h�ti�˛k .…�…/?
�
h�ti˛kv

�;
and then (by using again the exponential decay of the eigenfunctions)h�ti�˛k u

 6 Ckvk:

Taking the limit k !C1, the Fatou lemma givesh�ti�˛u 6 Ckvk:

This provides us with the desired estimate since h�tihti�1 2 Œ�; 1�.
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