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On nonemptiness of Newton strata in the
BC

dR-Grassmannian for GLn

Serin Hong

Abstract. We study the Newton stratification in the BCdR-Grassmannian for GLn associated to an
arbitrary (possibly nonbasic) element of B.GLn/. Our main result classifies all nonempty Newton
strata in an arbitrary minuscule Schubert cell. For a large class of elements in B.GLn/, our classifi-
cation is given by some explicit conditions in terms of Newton polygons. For the proof, we proceed
by induction on n using a previous result of the author that classifies all extensions of two given
vector bundles on the Fargues–Fontaine curve.

1. Introduction

1.1. Motivation and main result

The BCdR-Grassmannian is an analogue of the affine Grassmannian in p-adic geometry.
It was introduced by Caraiani–Scholze [2] to study the cohomology of certain Shimura
varieties, and was used by Scholze–Weinstein [17] as a crucial tool for the construc-
tion of local Shimura varieties. In addition, it played a fundamental role in the work of
Fargues–Scholze [8] on the geometrization of the local Langlands correspondence via the
geometric Satake equivalence for p-adic groups.

The main objective of this paper is to study a natural stratification of the BCdR-Grass-
mannian known as the Newton stratification, which we briefly describe now. Let us fix a
connected reductive group G over a finite extension E of Qp . We write GrG for the BCdR-
Grassmannian forG, and GrG;� for the Schubert cell associated to a dominant cocharacter
� of G. For a complete algebraically closed extension C of E, we have

GrG.C / D G.BdR/=G.B
C
dR/ and GrG;�.C / D G.BCdR/�.t/

�1G.BCdR/=G.B
C
dR/

where BdR is the p-adic de Rham period ring with valuation ring BCdR, residue field C and
a fixed uniformizer t . The Cartan decomposition for G induces a decomposition

GrG D
G

�2X�.T /C

GrG;�
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where X�.T /C denotes the set of all dominant cocharacters of G. Moreover, each Schu-
bert cell GrG;� is related to the (diamond of the) p-adic flag variety F`.G;�/ via a natural
Białynicki-Birula map

BB� W GrG;� �! F`.G;�/;

which is an isomorphism if � is minuscule. In order to define the Newton stratification
on GrG and its Schubert cells, we consider the stack BunG of G-bundles on the Fargues–
Fontaine curveX . By the result of Fargues [6], the topological space jBunG j of BunG is in
natural bijection with the set B.G/ of Frobenius-conjugacy classes of elements of G. ME/,
where ME as usual denotes the p-adic completion of the maximal unramified extension
of E. Given an element b 2 B.G/, we write Eb for the corresponding G-bundle on X .
The theorem of Beauville–Laszlo [1] implies that a G-bundle on the Fargues–Fontaine
curve is specified by the gluing data of the trivial G-bundles on Spec.BCdR/ and X �1,
where1 is a fixed closed point on X with residue field C and completed local ring BCdR.
If we fix b 2 B.G/, for every point x 2 GrG.C / we can modify the gluing data for Eb by
x to obtain a new G-bundle Eb;x . We thus obtain a map

Newtb W GrG.C / �! B.G/

which maps each x 2 GrG.C / to the element b0 2 B.G/ corresponding to Eb;x . For each
Schubert cell GrG;�, the Newton stratification associated to b 2 B.G/ is a decomposition
into subdiamonds

GrG;� D
G

b02B.G/

Grb
0

G;�;b

where Grb
0

G;�;b.C / is the preimage of b0 in GrG;�.C / under the map Newtb .
The Newton stratification of minuscule Schubert cells was originally introduced in the

aforementioned work of Caraiani–Scholze [2] as a key tool for studying the fibers of the
Hodge–Tate period map. It has also been used as a pivotal tool for studying the p-adic
period domain by many authors, such as Chen–Fargues–Shen [4], Shen [18], Chen [3],
Viehmann [19], Nguyen–Viehmann [15], and Chen–Tong [5].

For the trivial element b D 1, a result of Rapoport [16] shows that the Newton stra-
tum Grb

0

G;�;b is nonempty if and only if b0 is an element of the set B.G;��/ defined by
Kottwitz [14]. When b is basic, meaning that Eb is semistable, Chen–Fargues–Shen [4]
and Viehmann [19] extends the result of Rapoport to parametrize all nonempty Newton
strata by a generalized Kottwitz set. However, for a general element b 2 B.G/, no explicit
parametrization is known for nonempty Newton strata in an arbitrary Schubert cell.

In order to explain our main result, which classifies all nonempty Newton strata in
the Schubert cell GrG;� for G D GLn and a minuscule cocharacter �, we need to set
up some notations. Let us recall that, as observed by Kottwitz [14], the set B.GLn/ is
naturally identified with the set of concave polygons on the interval Œ0; n� with rational
slopes and integer breakpoints, where a polygon refers to a continuous piecewise linear
function whose graph passes through the origin. Given an element b 2 B.GLn/, we write
�.b/ for the corresponding polygon and often regard it as a tuple of rational numbers
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�.b/

�.b0/

�.a/

�.c/

�.c0/

�.b0/

�.a0/

Figure 1. Illustration of the inductive criterion.

.�1.b/; : : : ; �n.b//where �i .b/ denotes the slope of �.b/ on the interval Œi � 1; i �. We may
also represent the dominant cocharacter � of GLn as an n-tuple of descending integers
(�1; : : : ; �n) and regard it as a concave polygon on Œ0; n� whose slope on Œi � 1; i � is �i .

Given two arbitrary elements b; b0 2 B.GLn/, our main result gives an inductive
criterion for the nonemptiness of the Newton stratum Grb

0

GLn;�;b . Let us provide a brief
description of the inductive criterion here and refer the readers to Theorem 3.1.12 for a
precise statement. If b is basic, the desired classification is given by the aforementioned
results of Chen–Fargues–Shen [4] and Viehmann [19]. If b is not basic, we have unique
elements a 2 B.GLm/ and c 2 B.GLn�m/ for some integer m such that �.a/ and �.c/
together form a partition of �.b/ with �.a/ being the line segment in �.b/ of maximum
slope. The key observation for our main result is that, as illustrated in Figure 1, the stratum
Grb

0

GLn;�;b is not empty if and only if there exist a0 2 B.GLm/ and c0 2 B.GLn�m/ with
the following properties:

(i) The Newton strata Gra
0

GLm;�1;a and Grc
0

GLn�m;�2;c are not empty for some minus-
cule cocharacters �1 of GLm and �2 of GLn�m.

(ii) The vector bundle Eb0 arises as an extension of Ec0 by Ea0 ; in other words, there
exists a short exact sequence of vector bundles

0 �! Ea0 �! Eb0 �! Ec0 �! 0:

The cocharacters �1 and �2 in property (i) are uniquely determined by a0 and c0. More-
over, property (i) imposes explicit bounds on the slopes in �.a0/ and �.c0/, and conse-
quently yields a finite list of candidates for .a0; c0/. For each candidate, we can check
property (ii) by a previous result of the author [11]. Then for each candidate with prop-
erty (ii), we can inductively proceed to check property (i); indeed, if �.b/ has r distinct
slopes, then �.c/ has r � 1 distinct slopes while �.a/ is a line segment by construction.

For a concrete example, we illustrate how our inductive criterion shows the nonempti-
ness of the stratum Grb

0

GL8;�;b with

�.b/ D

�
2

3
;
2

3
;
2

3
;
3

5
;
3

5
;
3

5
;
3

5
;
3

5

�
;
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�.b0/ D

�
1

4
;
1

4
;
1

4
;
1

4
; 0; 0; 0; 0

�
;

� D .1; 1; 1; 1; 0; 0; 0; 0/:

The elements a 2 B.GL3/ and c 2 B.GL5/ are given by

�.a/ D

�
2

3
;
2

3
;
2

3

�
and �.c/ D

�
3

5
;
3

5
;
3

5
;
3

5
;
3

5

�
:

We apply the inductive criterion with a0 2 B.GL3/ and c0 2 B.GL5/ given by

�.a0/ D

�
�
1

3
;�
1

3
;�
1

3

�
and �.c0/ D

�
1

2
;
1

2
;
1

2
;
1

2
; 0

�
:

Indeed, the nonemptiness of the stratum Grb
0

GL8;�;b follows from the following statements:

• Eb0 arises as an extension of Ec0 by Ea0 .

• Gra
0

GL3;�1;a with �1 D .1; 1; 1/ and Grc
0

GL5;�2;c with �2 D .1; 0; 0; 0; 0/ are not empty.

For the second statement, we note that a and c are basic for �.a/ and �.c/ being line
segments.

A special case of our main result reduces to a noninductive criterion as follows:

Theorem 1.1.1. Let � be a minuscule dominant cocharacter of G D GLn represented by
an n-tuple with entries 0 and 1. Given two arbitrary elements b;b0 2B.GLn/ such that the
difference between any two distinct slopes in �.b/ is greater than 1, the Newton stratum
Grb

0

GLn;�;b is nonempty if and only if the following conditions are satisfied (Figure 2):

(i) The polygon �.b0/ lies below the polygon �.b/C �� with the same endpoints,
where �� denotes the unique dominant cocharacter of GLn in the conjugacy
class of ��1.

(ii) We have inequalities

�i .b
0/ � �i .b/ � �i .b

0/C 1 for i D 1; : : : ; n:

(iii) For each breakpoint of �.b/, there exists a breakpoint of �.b0/ with the same
x-coordinate.

Condition (i) is in fact equivalent to having b0 in the generalized Kottwitz set consid-
ered by Chen–Fargues–Shen [4] and Viehmann [19]. When b is basic, condition (i) also
implies conditions (ii) and (iii). Hence when b is basic Theorem 1.1.1 agrees with the
aforementioned result of Chen–Fargues–Shen [4] and Viehmann [19].

The hypothesis on the cocharacter � having entries 0 and 1 is insignificant; indeed,
without this assumption we still get a similar statement by a simple reduction technique
as stated in Proposition 3.1.6. On the other hand, the hypothesis on the slopes in �.b/ is
crucial. For the general case, conditions (i) and (ii) are still necessary but not sufficient.
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�.b/

�.b/C ��

�.b0/C idŒ0;n�

�.b0/

Figure 2. Illustration of the conditions in Theorem 1.1.1.

1.2. Outline of the proof

Given a vector bundle E on the Fargues–Fontaine curve X , its minuscule effective mod-
ification at 1 of degree d refers to an injective bundle map E 0 ,! E whose cokernel
is the skyscraper sheaf at 1 with value C˚d . The Newton stratum Grb

0

GLn;�;b is not
empty if and only if there exists a minuscule effective modification Eb0 ,! Eb at1. We
thus wish to classify all minuscule effective modifications of Eb at 1. If b is basic, the
desired classification is given by the aforementioned results of Chen–Fargues–Shen [4]
and Viehmann [19]. Let us now assume that b is not basic. We can find a direct sum
decomposition

Eb ' Ea ˚ Ec with a 2 B.GLm/ and c 2 B.GLn�m/

where a is basic such that �.a/ equals the line segment in �.b/ of maximum slope.
For every minuscule effective modification � W Eb0 ,! Eb at1, the above decomposition
extends to a commutative diagram of short exact sequences

0 Ea Eb Ec 0

0 Ea0 Eb0 Ec0 0

˛ ˇ 


where ˛ and 
 are also minuscule effective modifications at 1. Conversely, given such
a commutative diagram we apply a result of Chen–Tong [5] to observe that ˛ and 
 can
be adjusted so that ˇ is a minuscule effective modification at 1. Then we use a previ-
ous result of the author [11] to classify all vector bundles Ea0 and Ec0 that fit into such a
commutative diagram, and consequently proceed by induction to obtain the desired clas-
sification.
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1.3. Notations and conventions

Throughout the paper, we fix the following data:

• E is a finite extension of Qp .

• C is a complete and algebraically closed extension of E.

• G is a reductive group over E with Borel subgroup B and maximal torus T � B .

We also retain the following notations:

• ME is the p-adic completion of the maximal unramified extension of E.

• B.G/ is the set of Frobenius-conjugacy classes of elements of G. ME/.

• X�.T /
C is the set of all dominant cocharacters of G.

In addition, we use the following standard notations:

• Given a valued field K, we write OK for its valuation ring.

• Given a ringed space S , we write OS for its structure sheaf.

• Given a perfectoid ring R, we write R[ for its tilt and Rı for its subring of power
bounded elements.

• Given a perfect Fp-algebra A, we write W.A/ for the ring of Witt vectors over A.

2. Preliminaries

In this section, we review some basic facts about the BCdR-Grassmannian and G-bundles
on the Fargues–Fontaine curve.

2.1. The BC

dR-Grassmannian

Proposition 2.1.1 ([9, Proposition 2.4], [13, Lemma 3.6.3]). Let R be a perfectoid alge-
bra over C . There exists a natural surjective homomorphismW.Rı[/�Rı whose kernel
is a principal ideal of W.Rı[/.

Definition 2.1.2. Let R be a perfectoid algebra over C . Choose a generator t of the ker-
nel of the map W.Rı[/ � Rı in Proposition 2.1.1. We write BCdR.R/ for the t -adic
completion of W.Rı[/Œ1=p�, and define the de Rham period ring associated to R by
BdR.R/ WD B

C
dR.R/Œ1=t �.

Proposition 2.1.3 ([9, Proposition 2.17]). The ring BdR.C / is a discretely valued field
with valuation ring BCdR.C / and residue field C .

We will henceforth write BdR WD BdR.C / and BCdR WD BCdR.C /. We also fix a uni-
formizer t of BdR in light of Proposition 2.1.3.

Definition 2.1.4. The BCdR-Grassmannian is the functor GrG that associates to each per-
fectoid affinoid algebra .R;RC/ over C the set of pairs .E; ˇ/ consisting of a G-torsor E

over Spec.BCdR.R// and a trivialization ˇ of E over Spec.BdR.R//.
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Proposition 2.1.5 ([17, Proposition 19.1.2]). There exists a natural identification

GrG.C / Š G.BdR/=G.B
C
dR/:

Remark. In fact, we can naturally identify GrG as the étale sheafification of the functor
that associates to each perfectoid affinoid algebra .R;RC/ over C the coset G.BdR.R//=

G.BCdR.R//.

Proposition 2.1.6 ([17, Corollary 19.3.4]). Given � 2 X�.T /C, there exists a locally
spatial diamond GrG;� with

GrG;�.C / D G.BCdR/�.t/
�1G.BCdR/=G.B

C
dR/:

Remark. In this paper, we won’t use the language of diamonds in an essential way
because we are only interested in the C -valued points of GrG and GrG;�.

Definition 2.1.7. Let � be a dominant cocharacter of G.

(1) We refer to the locally spatial diamond GrG;� in Proposition 2.1.6 as the Schubert
cell of GrG associated to �.

(2) We define the parabolic subgroup of G associated to � by

P� WD
®
g 2 G W lim

t!0
�.t/g�.t/�1 exists

¯
:

(3) We define the flag variety associated to the pair .G;�/ by

F`.G;�/ WD G=P�:

(4) We define the Białynicki-Birula map associated to � as the map

BB� W GrG;�.C / �! F`.G;�/.C /

which associates to g�.t/�1G.BCdR/2GrG;�.C / the parabolic subgroup NgP� Ng�1,
where Ng denotes the image of g under the natural map G.BCdR/! G.C/.

Proposition 2.1.8 ([2, Theorem 3.4.5]). If � is a minuscule cocharacter of G, the Białyn-
icki-Birula map BB� is bijective.

2.2. G -bundles on the Fargues–Fontaine curve

Definition 2.2.1. Fix a uniformizer � of E and a pseudouniformizer $ of C [. Let q be
the number of elements in the residue field of E.

(1) We set
Y WD Spa

�
WOE .OC [/

�
n
®ˇ̌
�Œ$�

ˇ̌
D 0

¯
;

where we write WOE .OC [/ WD W.OC [/˝W.Fq/ OE for the ring of ramified Witt
vectors over OC [ with coefficients in OE and the Teichmuller lift Œ$� of $ , and
define the adic Fargues–Fontaine curve associated to the pair .E; C [/ by

X WD Y=�Z
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where � denotes the automorphism of Y induced by the q-Frobenius automor-
phism on WOE .OC [/.

(2) We define the schematic Fargues–Fontaine curve associated to the pair .E; C [/
by

X WD Proj
�M
n�0

H 0.Y;OY/
�D�n

�
:

Remark. The definition of the adic Fargues–Fontaine curve relies on the fact that the
action of � on Y is properly discontinuous.

Theorem 2.2.2 ([12, Theorem 4.10], [7, Théorème 6.5.2], [13, Theorem 8.7.7]). We have
the following statements:

(1) X is a Noetherian adic space over E.

(2) X is a Dedekind scheme over E.

(3) There exists an equivalence of the categories of vector bundles on X and X ,
induced by pullback along a natural map of locally ringed spaces X ! X .

Remark. The scheme X is not a curve in the usual sense as it is not of finite type over E.

In light of statement (3) in Theorem 2.2.2, we will henceforth identify G-bundles on
X with G-bundles on X .

Definition 2.2.3. Given an element b 2 B.G/, we define the associated G-bundle Eb on
X (or on X ) by descending along the map Y ! Y=�Z D X the trivial G-bundle on Y

equipped with the �-linear automorphism given by b.

Theorem 2.2.4 ([6, Théorème 5.1]). The map

B.G/ �! H 1
ét.X;G/

sending b to the isomorphism class of Eb is a bijection.

Proposition 2.2.5. The set of isomorphism classes of isocrystals over ME and the set of
isomorphism classes of vector bundles onX admit a natural bijection which is compatible
with direct sums, duals, and ranks.

Proof. Consider an arbitrary integer n > 0. Given b 2 B.GLn/, we write Nb for the
isocrystal over ME with underlying vector space ME˚n and the Frobenius-semilinear auto-
morphism given by b. As observed by Kottwitz [14], there exists a natural bijection
betweenB.GLn/ and the set of isomorphism classes of isocrystals over ME of rank nwhere
b 2 B.GLn/ maps to the isomorphism class of Nb . Moreover, Theorem 2.2.4 yields a
bijection between B.GLn/ and the set of isomorphism classes of vector bundles over X
of rank n where b 2 B.GLn/ maps to the isomorphism class of Eb . We thus obtain a
bijection between the set of isomorphism classes of isocrystals over ME and the set of iso-
morphism classes of vector bundles onX . It is straight forward to check that this bijection
is compatible with direct sums, duals, and ranks.
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Definition 2.2.6. Let E be a vector bundle on X . We denote by N.E/ the isomorphism
class of isocrystals over ME that corresponds to E under the bijection in Proposition 2.2.5.

(1) We write rk.E/ for the rank of E , and define the degree of E , denoted by deg.E/,
to be the degree of N.E/.

(2) We define the Harder–Narasimhan (HN) polygon of E by

HN.E/ WD �Newt
�
N.E/_

�
;

where Newt.N.E/_/ refers to the Newton polygon of the dual of N.E/.

(3) We say that E is semistable of slope � if HN.E/ is a line segment of slope �.

Remark. The definition of HN.E/ is in line with the convention that Newton polygons
are convex while Harder–Narasimhan polygons are concave.It is also worthwhile to men-
tion that the correct (or usual) definition of semistability should be given in terms of
the Harder–Narasimhan formalism for vector bundles on X ; in fact, the equivalence of
our definition and the correct definition is due to a highly nontrivial result of Fargues–
Fontaine [7].

Proposition 2.2.7. Let E be a vector bundle on X .

(1) E admits a direct sum decomposition E ' ˚Ei where the Ei ’s are semistable
vector bundles on X of distinct slopes.

(2) If the Ei ’s are arranged in order of descending slope, HN.E/ is given by the
concatenation of the polygons HN.Ei /.

Proof. The assertion is evident by Proposition 2.2.5 and the semisimplicity of isocrystals.

Remark. Statement (2) implies that the direct summands Ei are uniquely determined up
to permutations.

Definition 2.2.8. Let E be a vector bundle onX . We refer to the direct sum decomposition
E ' ˚Ei in Proposition 2.2.7 as the Harder–Narasimhan (HN) decomposition of E .

2.3. The Newton stratification of Schubert cells and flag varieties

For the rest of this paper, we fix a closed point1 onX given by the following proposition:

Proposition 2.3.1 ([7, Théorèmes 6.5.2 and 7.3.3], [5, Remark 1.7]). There exists a closed
point1 on X with the following properties:

(i) X �1 is the spectrum of a principal domain Be � BdR.

(ii) The completed local ring at1 is canonically isomorphic to BCdR.

Remark. A closed point on X corresponds to a characteristic 0 untilt of C [ (i.e., a per-
fectoid field K with an isomorphism K[ ' C [) up to �-equivalences. We may take1 to
be the closed point on X corresponding to C with the identity map on C [. The field C
alone does not determine1 as C [ has automorphisms which are not �-equivalent to the
identity map.
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Proposition 2.3.2. The setH 1
ét.X;G/ is naturally in bijection with the set of isomorphism

classes of triples .Eı;bE; ˇ/ where

• Eı is a G-bundle on X �1,

• bE is a trivial G-bundle on Spec.BCdR/, and

• ˇ is a gluing map of Eı and bE over Spec.BdR/.

Proof. EveryG-bundle onX becomes trivial after the pullback via the map Spec.BCdR/!

X induced by 1, as noted by Nguyen–Viehmann [15, Section 2.1] and Chen–Tong [5,
Remark 1.7]. Hence the desired assertion follows from Proposition 2.3.1 and the theorem
of Beauville–Laszlo [1].

Definition 2.3.3. Let E be a G-bundle on X . A modification of E at1 is a G-bundle E 0

on X together with an isomorphism between E and E 0 on X �1.

Example 2.3.4. Consider an element b 2 B.G/ and a point x 2 GrG.C /. We may write
x D gG.BCdR/ for some g 2 G.BdR/ under the identification GrG.C / Š G.BdR/=G.B

C
dR/

as noted in Proposition 2.1.5. Now, in light of Proposition 2.3.2 we take a triple .Eı;bE; ˇ/
corresponding to Eb and a G-bundle Eb;x on X corresponding to .Eı;bE; gˇ/. By con-
struction, Eb;x is naturally a modification of Eb at1.

Definition 2.3.5. Consider an element b 2 B.G/ and a dominant cocharacter � of G.

(1) For each x 2GrG.C /, we refer to theG-bundle Eb;x constructed in Example 2.3.4
as the modification of Eb at1 induced by x.

(2) For each b0 2 B.G/, we define the associated Newton stratum with respect to b in
GrG;� as the subdiamond Grb

0

G;�;b of GrG;� with

Grb
0

G;�;b.C / D
®
x 2 GrG;�.C / W Eb;x ' Eb0

¯
:

(3) For each b0 2 B.G/, we define the associated Newton stratum with respect to b in
F`.G;�/ as the subvariety F`.G;�; b/b

0

of F`.G;�/ such that F`.G;�; b/b
0

.C /

is the image of Grb
0

G;�;b.C / under the map BB�.

Remark. The subdiamond Grb
0

G;�;b of GrG;� is uniquely determined by its set ofC -points
since GrG;� is a locally spatial diamond.

2.4. Subsheaves and extensions of vector bundles on the Fargues–Fontaine curve

Definition 2.4.1. Given two integers n and d with n > 0, a rationally tuplar polygon
of rank n and degree d is the graph P of a continuous function f with the following
properties:

(i) f is defined on Œ0; n� with f .0/ D 0 and f .n/ D d .

(ii) f is linear on Œi � 1; i � for each i D 1; : : : ; n with a rational slope denoted by
�i .P/.
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Q

P

Figure 3. Illustration of the Bruhat order.

Example 2.4.2. We are particularly interested in the following rationally tuplar polygons:

(1) For every vector bundle E on X of rank n and degree d , its HN polygon HN.E/
is a rationally tuplar polygon of rank n and degree d .

(2) For G D GLn with Borel subgroup B of upper triangular matrices and maximal
torus T of diagonal matrices, we regard all dominant cocharacters as rationally
tuplar polygons of rank n under the natural identification

X�.T /
C
Š
®
.ai / 2 Zn W a1 � a2 � � � � � an

¯
:

(3) We write d=n.n/ for the line segment connecting .0; 0/ and .n; d/, which is a
rationally tuplar polygon of rank n and degree d .

Definition 2.4.3. Let Pn denote the set of rationally tuplar polygons of rank n.

(1) We define the Bruhat order � on Pn by writing P � Q if we have

jX
iD1

�i .P/ �

jX
iD1

�i .Q/ for each j D 1; : : : ; n

with equality for j D n.

(2) We define the slopewise dominance order � on Pn by writing P � Q if we have
�i .P/ � �i .Q/ for each i D 1; : : : ; n.

Remark. Intuitively, we have P � Q if and only if P lies on or above Q with the same
endpoints, as illustrated by Figure 3.

Proposition 2.4.4 ([10, Theorem 1.2.1]). Let D and E be vector bundles on X of rank n.
Then D is a subsheaf of E if and only if we have HN.E/ � HN.D/.

Definition 2.4.5. Given vector bundles D , E and F on X , we define a .D ; E; F /-
permutation of HN.D ˚ F / to be a rationally tuplar polygon P � HN.E/ with the fol-
lowing properties (Figure 4):

(i) The tuple .�i .P// is a permutation of the tuple .�i .HN.D ˚ F ///.

(ii) For each i D 1; : : : ; rk.E/, we have

• �i .P/ < �i .HN.E// only if �i .P/ occurs as a slope in HN.D/, and

• �i .P/ > �i .HN.E// only if �i .P/ occurs as a slope in HN.F /.
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D

E
F

Figure 4. Illustration of the conditions in Definition 2.4.5.

Proposition 2.4.6 ([7, Proposition 5.6.23]). Given vector bundles D and F on X such
that the minimum slope in HN.D/ is greater than or equal to the maximum slope in
HN.F /, every extension of F by D splits.

Proposition 2.4.7 ([11, Theorem 3.12], [5, Proposition 5.3]). Let D , E and F be vector
bundles on X such that there exists a short exact sequence

0 �! D �! E �! F �! 0:

There exists a .D ;E;F /-permutation of HN.D ˚ F /.

Proposition 2.4.8 ([11, Theorem 4.4], [5, Proposition 5.9]). Let D , E and F be vector
bundles on X . We write the HN decomposition of F as

F '

mM
iD1

Fi

where the Fi ’s are arranged in order of descending slope. There exists a short exact
sequence

0 �! D �! E �! F �! 0

if and only if there exists a sequence of vector bundles D D E0;E1; : : : ;EmD E onX such
that the polygon HN.Ei�1˚Fi / has an .Ei�1;Ei ;Fi /-permutation for each i D 1; : : : ;m.

3. Nonempty Newton strata in minuscule Schubert cells for GLn

In this section, we classify all nonempty Newton strata in an arbitrary minuscule Schubert
cell for GLn by studying modifications of vector bundles on the Fargues–Fontaine curve.
We first establish in Section 3.1 an inductive classification for nonempty Newton strata
associated to an arbitrary element of B.GLn/. We then prove in Section 3.2 some combi-
natorial lemmas about rationally tuplar polygons and use them in Section 3.3 to give an
explicit classification of all nonempty Newton strata associated to a large class of element
of B.GLn/. Throughout this section, we take dominant cocharacters of GLn with respect
to the standard Borel subgroup of upper triangular matrices and the standard maximal
torus of diagonal matrices.
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3.1. An inductive classification of nonempty Newton strata

Definition 3.1.1. Given a rationally tuplar polygon P of rank n, we define its dual to be
the rationally tuplar polygon P� with �i .P�/ D ��nC1�i .P/ for each i D 1; : : : ; n.

Example 3.1.2. We illustrate the notion of duality for the polygons in Example 2.4.2.

(1) For a vector bundle E on X of rank n, we have HN.E/� D HN.E_/ where E_

denotes the dual bundle of E .

(2) For a dominant cocharacter � of GLn, the polygon �� represents the unique dom-
inant cocharacter in the conjugacy class of ��1.

(3) For arbitrary integers d and n, we have d=n.n/
�
D �d=n.n/.

Proposition 3.1.3 ([4, Proposition 5.2], [19, Corollary 5.4]). Let b and b0 be elements of
B.GLn/ such that Eb is semistable. Given a dominant cocharacter � of GLn, the Newton
stratum Grb

0

GLn;�;b is nonempty if and only if we have

�.b/C �� � �.b0/ (3.1)

where �.b/ and �.b0/ respectively denote HN.Eb/ and HN.Eb0/.

Remark. For a reductive group G and a basic element b 2 B.G/, the results of Chen–
Fargues–Shen [4, Proposition 5.2] and Viehmann [19, Corollary 5.4] classify all nonempty
Newton strata with respect to b in an arbitrary Schubert cell in terms of the Kottwitz map
and the Newton map defined by Kottwitz [14]. In our context, their results are translated
to Proposition 3.1.3 by the following facts:

(a) An element b 2 B.GLn/ is basic if and only if Eb is semistable.

(b) The condition involving the Kottwitz map holds for all elements in B.GLn/.

(c) The condition involving the Newton map is equivalent to the inequality (3.1) as
�.b/ and �.b0/ are identified with the (concave) Newton polygons of b and b0.

Lemma 3.1.4. Let b be an element ofB.GLn/. For xD1.n/.t/GLn.BCdR/2GrGLn;1.n/.C /,

we have HN.Eb;x/ D HN.Eb/ � 1.n/.

Proof. Let us write the HN decomposition of Eb as

Eb '

mM
iD1

Ebi with bi 2 B.GLni /:

For each i D 1; : : : ;m, we take xi WD 1.ni /.t/GLni .B
C
dR/ 2 GrGLni ;1

.ni /.C /. Then we have

HN.Ebi ;xi / � HN.Ebi / � 1
.ni /

by Proposition 3.1.3 and thus find HN.Ebi ;xi / D HN.Ebi / � 1
.ni / as HN.Ebi / � 1

.ni / is a
line segment. Now the desired assertion follows by the fact that Eb;x is a direct sum of the
vector bundles Ebi ;xi .
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Proposition 3.1.5. Let� be a dominant cocharacter of GLn. For elements b;b02B.GLn/,
the Newton stratum Grb

0

GLn;�;b is not empty if and only if it contains a C -point.

Proof. The assertion is evident by definition.

Proposition 3.1.6. Let � be a dominant cocharacter of GLn with nonnegative slopes. For
two elements b; b0 2 B.GLn/, we have the following equivalent conditions:

(i) Grb
0

GLn;�;b is nonempty.

(ii) GrbGLn;��;b0 is nonempty.

(iii) Gr zb
0

GLn;�C1.n/;b
is nonempty for zb0 2 B.GLn/ with HN.E zb0/ D HN.Eb0/ � 1.n/.

Proof. For x D g�.t/G.BCdR/ 2 Grb
0

GLn;�;b.C /, we take

x� WD g�1��.t/G.BCdR/ 2 GrGLn;��.C /

and find Eb0;x� ' Eb , thereby deducing that x� lies in GrbGLn;��;b0.C /. Similarly, every
point in GrbGLn;��;b0.C / gives rise to a point in Grb

0

GLn;�;b.C /. Hence by Proposition 3.1.5
we establish the equivalence of conditions (i) and (ii).

Now it remains to verify the equivalence of conditions (i) and (iii). For every x D
g�.t/G.BCdR/ 2 Grb

0

GLn;�;b.C /, we take

Qx WD g�.t/1.n/.t/G.BCdR/ 2 GrGLn;�C1.n/.C /

and find Eb; Qx ' E zb0 by Lemma 3.1.4, thereby deducing that Qx lies in Gr zb
0

GLn;�C1.n/;b
.C /.

Conversely, for every Qx WD g�.t/1.n/.t/G.BCdR/ 2 GrGLn;�C1.n/.C / we take

x WD g�.t/G.BCdR/ 2 Grb
0

GLn;�;b.C /

and find Eb;x ' Eb0 by Lemma 3.1.4, thereby deducing that x lies in Grb
0

GLn;�;b.C /. Hence
we complete the proof by Proposition 3.1.5.

Remark. In light of Proposition 3.1.6, for our desired classification it suffices to consider
minuscule cocharacters with slopes 0 and 1.

Definition 3.1.7. Let E be a vector bundle on X of rank n.

(1) Given a dominant cocharacter � of GLn, we define an effective modification of E

at1 of type � to be an injective OX -module map E 0 ,! E whose cokernel is the

skyscraper sheaf at1 with value
nM
iD1

BCdR=t
�i .�/BCdR.

(2) We say that an effective modification E 0 ,! E at1 is minuscule of degree d if its
type is minuscule of degree d with slopes 0 and 1.

Proposition 3.1.8. Take a dominant cocharacter � of GLn and two elements b; b0 2
B.GLn/.



On nonemptiness of Newton strata in the BCdR-Grassmannian for GLn 1073

(1) If � has nonnegative slopes, the Newton stratum Grb
0

GLn;�;b is nonempty if and only
if there exists an effective modification Eb0 ,! Eb at1 of type �.

(2) If � is minuscule with slopes 0 and 1, the Newton stratum Grb
0

GLn;�;b is nonempty
if and only if there exists a minuscule effective modification Eb0 ,! Eb at1.

Proof. As the second statement is a special case of the first statement, it suffices to
prove the first statement. If Grb

0

GLn;�;b is not empty, Proposition 3.1.5 yields a point x 2
Grb

0

GLn;�;b.C /, which gives rise to an effective modification Eb;x ,! Eb at1 of type �.
Let us now assume for the converse that there exists an effective modification Eb0 ,! Eb
at 1 of type �. Take triples .Eı

b
;cEb; ˇb/ and .Eı

b0
; cEb0 ; ˇb0/ which respectively corre-

spond to Eb and Eb0 under the bijection in Proposition 2.3.2. We may set Eı
b
D Eı

b0
since

the map Eb0 ,! Eb is an isomorphism on X �1. Then we conjugate ˇb by a suitable
element in GLn.BCdR/ to write ˇb0 D g�.t/ˇb for some g 2 GLn.BCdR/, and in turn find
g�.t/GLn.BCdR/ 2 Grb

0

GLn;�;b.C / to complete the proof.

Proposition 3.1.9. Let E and E 0 be vector bundles on X of rank n. Take a direct sum
decomposition

E ' D ˚ F (3.2)

such that HN.D/ coincides with the line segment of maximal slope in HN.E/. There
exists a minuscule effective modification E 0 ,! E at1 if and only if there exist minuscule
effective modifications D 0 ,! D and F 0 ,! F at1 with a short exact sequence

0 �! D 0 �! E 0 �! F 0 �! 0:

Proof. The assertion is essentially a result of Chen–Tong [5, Proposition 4.6]. Our main
observation is that, while the result in loc. cit. for G D GLn only concerns the case where
E is semistable, its proof remains valid without the semistability assumption on E . For
convenience of the readers, we explain how the result in loc. cit. is translated to the desired
assertion.

Let us take b; b0 2 B.GLn/ with E ' Eb and E 0 ' Eb0 . We write r for the rank of D

and P for the standard parabolic subgroup of GLn with Levi subgroup

M WD GLr �GLn�r � GLn :

The direct sum decomposition (3.2) corresponds to an element bM 2 B.M/ which maps
to b under the natural map B.M/! B.G/. Let E.M; b0/ denote the set of all elements
b0M 2 B.M/ which correspond to a direct sum D 0 ˚ F 0 for some vector bundles D 0 of
rank r and F 0 of rank n � r such that E 0 ' Eb0 arises as an extension of F 0 by D 0.

We take � to be the minuscule dominant cocharacter of GLn of degree d WD deg.E/�
deg.E 0/ with slopes 0 and 1. In addition, we choose an arbitrary element w in the Weyl
group of GLn and denote by �w the dominant cocharacter of M whose M -conjugacy
class contains the w-conjugate of �. We have �w D .�1; �2/ for some minuscule dom-
inant cocharacters �1 of GLr and �2 of GLn�r . We denote the degrees of �1 and �2
respectively by d1 and d2.
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Let F`.GLn; �/wP be the subscheme of F`.GLn; �/ given by the P -orbit of P�w . The
projection to M induces a map

prP;w W F`.GLn; �/wP �! F`.M;�w/:

The aforementioned result of Chen–Tong [5, Proposition 4.6] yields an identity

prP;w
�
F`.GLn; �/wP \ F`.GLn; �; b/b

0�
D

G
b0M2E.M;b

0/

F`.M;�w ; bM /
b0M : (3.3)

As both � and �w are minuscule, Proposition 2.1.8 implies that the Newton strata on
GrGLn;� and GrM;�w are respectively identified with the Newton strata on F`.GLn; �/
and F`.M;�w/. Hence the identity (3.3) shows that for minuscule effective modifications
˛ WD 0 ,!D and ˇ WF 0 ,!F at1 of degrees d1 and d2 we have the following equivalent
conditions:

(i) There exists a commutative diagram of short exact sequences

0 D E F 0

0 D 0 E 0 F 0 0

˛ ˇ (3.4)

with the top row given by the direct sum decomposition (3.2) and the middle
vertical arrow being a minuscule effective modification at1 (of degree d ).

(ii) There exists a short exact sequence

0 �! D 0 �! E 0 �! F 0 �! 0:

Since w is arbitrary, we deduce the desired assertion.

Remark. The necessity part of Proposition 3.1.9 is evident as every minuscule effective
modification E 0 ,! E at 1 gives rise to a commutative diagram (3.4). The main point
of Proposition 3.1.9 is the sufficiency part, which is essentially equivalent to the identity
(3.3) by Chen–Tong [5].

Proposition 3.1.10 ([7, Section 5.5.2.1]). Let E be a vector bundle onX . For every minus-
cule effective modification E 0 ,! E at1, its degree is equal to deg.E/ � deg.E 0/.

Lemma 3.1.11. Let E and E 0 be vector bundles on X of rank n such that E is semistable.
Take� to be the minuscule dominant cocharacter of GLn of degree d WD deg.E/� deg.E 0/
with slopes 0 and 1. There exists a minuscule effective modification E 0 ,! E at1 if and
only if E and E 0 satisfy the following equivalent inequalities:

HN.E/C �� � HN.E 0/ and HN.E 0/C 1.n/ � HN.E/ � HN.E 0/: (3.5)

Proof. By Propositions 3.1.3, 3.1.8, and 3.1.10, there exists a minuscule effective modifi-
cation E 0 ,! E at1 if and only if E and E 0 satisfy the first inequality in (3.5). If we write
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� for the slope of the line segment HN.E/, the polygon HN.E/ C �� has two distinct
slopes � and � � 1. Hence it is not hard to verify the equivalence of the two inequalities
in (3.5) by the concavity of HN polygons, thereby deducing the desired assertion.

Theorem 3.1.12. Let � be a minuscule dominant cocharacter of GLn with slopes 0 and 1.
Consider two arbitrary elements b; b0 2 B.GLn/. Take a direct sum decomposition

Eb ' Ea ˚ Ec with a 2 B.GLr / and c 2 B.GLn�r /

such that HN.Ea/ coincides with the line segment of maximal slope in HN.Eb/.

(1) If the degree of� is not equal to deg.Eb/�deg.Eb0/, the Newton stratum Grb
0

GLn;�;b
is empty.

(2) If the degree of � is equal to deg.Eb/ � deg.Eb0/ the Newton stratum Grb
0

GLn;�;b
is nonempty if and only if there exist a0 2 B.GLr / and c0 2 B.GLn�r / with the
following properties:

(i) We have HN.Ea0/C 1.r/ � HN.Ea/ � HN.Ea0/.

(ii) If we write the HN decomposition of Ec0 as

Ec0 '

mM
iD1

Fi

where Fi are arranged in order of descending slope, there exists a sequence
of vector bundles Ea0 DE0;E1; : : : ;EmDEb onX such that HN.Ei�1˚Fi /

has an .Ei�1;Ei ;Fi /-permutation for each i D 1; : : : ; r .

(iii) The Newton stratum Grc
0

GLn;x�;c is nonempty where x� is a minuscule domi-
nant cocharacter of GLn�r of degree Nd WD deg.Ec/ � deg.Ec0/ with slopes
0 and 1.

Proof. The assertion is straightforward to verify by Propositions 2.4.8, 3.1.8, 3.1.9, 3.1.10,
and Lemma 3.1.11.

Remark. The elements a 2 B.GLr / and c 2 B.GLn�r / are uniquely determined by the
HN decomposition of Eb . In addition, the Schubert cell GrGLn;x� contains finitely many
nonemtpy Newton strata, as easily seen by Propositions 2.4.4 and 3.1.8. Hence conditions
(i) and (iii) together yield finitely many candidates for a0 2 B.GLr / and c0 2 B.GLn�r /.
We can thus use Theorem 3.1.12 to inductively classify all nonempty Newton strata in an
arbitrary minuscule Schubert cell of GrGLn .

3.2. Concave rationally tuplar polygons

Definition 3.2.1. Given a rationally tuplar polygon P, we define its concave rearrange-
ment to be the rationally tuplar polygon yP such that the tuple .�i .yP// is the rearrangement
of .�i .P// in descending order.



S. Hong 1076

P

Q

P0

Q0

P0 ˚ Q0

Figure 5. A counter example for Lemma 3.2.5 without the concavity assumption.

Lemma 3.2.2. For every rationally tuplar polygon P, we have yP � P.

Proof. The assertion is evident by definition.

Remark. In fact, yP is the maximal rearrangement of P with respect to the Bruhat order.

Definition 3.2.3. Given two rationally tuplar polygon P and Q, we define their direct sum
P˚ Q to be the concave rearrangement of the concatenation of P and Q.

Example 3.2.4. Let us record some important examples of direct sums for our purpose.

(1) For two vector bundles E and F onX , we have HN.E ˚F /DHN.E/˚HN.F /.

(2) For two minuscule dominant cocharacters �1 of GLn1 and�2 of GLn2 with slopes
0 and 1, their direct sum (as a rationally tuplar polygon) is a minuscule dominant
cocharacter of GLn1Cn2 with slopes 0 and 1.

Lemma 3.2.5. Given concave rationally tuplar polygons P;P0;Q and Q0 with P � P0 and
Q � Q0, we have P˚ Q � P0 ˚ Q0.

Proof. Let m and n respectively denote the ranks of P and Q. Take two sets A and B
which form a partition of the set ¹1; : : : ; mC nº with�

�i .P
0
˚ Q0/

�
i2A
D
�
�i .P

0/
�

and
�
�i .P

0
˚ Q0/

�
i2B
D
�
�i .Q

0/
�
:

Let R to be the rationally tuplar polygon of rank mC n with�
�i .R/

�
i2A
D
�
�i .P/

�
and

�
�i .R/

�
i2B
D
�
�i .Q/

�
:

Since P;P0;Q and Q0 are all concave, the inequalities P � P0 and Q � Q0 together imply
R � P0 ˚ Q0. Now we find P˚ Q D yR � R by Lemma 3.2.2 to complete the proof.

Remark. Lemma 3.2.5 does not hold without the concavity assumption. For example, if
we take P D Q D d=r .r/ for some integers r and d with r > 0, for arbitrary nonlinear
convex polygons P0 and Q0 of rank r and degree d we do not have P ˚ Q � P0 ˚ Q0

despite having P � P0 and Q � Q0, as illustrated in Figure 5.
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Lemma 3.2.6. Let P and Q be rationally tuplar polygons of rank m and n. For arbitrary
rationally tuplar polygons P0 of rank m and Q0 of rank n, we have

.P˚ Q/C .P0 ˚ Q0/ � .PC P0/˚ .QC Q0/:

Proof. We observe that there exist permutations � and � 0 of the set ¹1; : : : ; mC nº with

�i
�
.PCP0/˚ .QCQ0/

�
D ��.i/.P˚Q/C �� 0.i/.P

0
˚Q0/ for each i D 1; : : : ;mC n;

and consequently deduce the desired assertion by the concavity of P˚ Q and P0 ˚ Q0.

3.3. An explicit classification of nonempty Newton strata

Lemma 3.3.1. Let E be a vector bundle on X of rank n. Every minuscule effective modi-
fication E 0 ,! E at1 gives rise to a minuscule effective modification zE ,! E 0 at1 with
HN. zE/ D HN.E/ � 1.n/.

Proof. Let � be the minuscule dominant cocharacter of GLn of degree d WD deg.E/ �
deg.E 0/ with slopes 0 and 1. Take elements b; b0 and Qb in B.GLn/ with E ' Eb , E 0 ' Eb0

and zE 'E Qb . The effective modification E 0 ,!E at1 yields a point in Grb
0

GLn;�;b by Propo-
sitions 3.1.8 and 3.1.10, and in turn yields a point in Gr Qb

GLn;��C1.n/;b0
by Proposition 3.1.6.

Hence we obtain a minuscule effective modification

zE ,! E 0

at1 by Proposition 3.1.8 as desired.

Proposition 3.3.2. Let E be a vector bundle onX of rank n. For every minuscule effective
modification E 0 ,! E at1, we have

HN.E/C �� � HN.E 0/ and HN.E 0/C 1.n/ � HN.E/ � HN.E 0/

where � is the minuscule dominant cocharacter of GLn of degree d WD deg.E/� deg.E 0/
with slopes 0 and 1.

Proof. The second inequality is an immediate consequence of Proposition 2.4.4 and
Lemma 3.3.1. Hence it remains to establish the first inequality. Let us write m for the
number of distinct slopes in HN.E/ and proceed by induction on m. If E is semistable,
the assertion is evident by Lemma 3.1.11. We henceforth assume that E is not semistable,
so that we have m > 1. Take a direct sum decomposition

E ' D ˚ F

such that HN.D/ coincides with the line segment of maximal slope in HN.E/. The
numbers of distinct slopes in HN.D/ and HN.F / are respectively 1 and m � 1. Now
Proposition 3.1.9 yields minuscule effective modifications ˛ WD 0 ,!D and ˇ W F 0 ,! F
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at1 with a short exact sequence

0 �! D 0 �! E 0 �! F 0 �! 0: (3.6)

Let us denote the types of ˛ and ˇ respectively by �1 and �2. In a concrete form, we have

�1 D 1
.d1/ ˚ 0.n1�d1/ and �2 D 1

.d2/ ˚ 0.n2�d2/

where we set n1 WD rk.D/ D rk.D 0/, n2 WD rk.F / D rk.F 0/, d1 WD deg.D/ � deg.D 0/
and d2 WD deg.F /� deg.F 0/. By the induction hypothesis, the minuscule effective mod-
ifications ˛ and ˇ at1 respectively yield the inequalities

HN.D/C ��1 � HN.D 0/ and HN.F /C ��2 � HN.F 0/:

Then by Example 3.2.4, Lemmas 3.2.5 and 3.2.6 we find

HN.E/C �� D
�

HN.D/˚ HN.F /
�
C .��1 ˚ �

�
2/

�
�

HN.D/C ��1
�
˚
�

HN.F /C ��2
�

� HN.D 0 ˚ F 0/:

In addition, by Proposition 2.4.7 the short exact sequence (3.6) yields the inequality

HN.D 0 ˚ F 0/ � HN.E 0/:

We thus obtain the first inequality, thereby completing the proof.

Remark. The two inequalities in Proposition 3.3.2 are not equivalent in general, although
they are equivalent if E is semistable as shown in Lemma 3.1.11.

Example 3.3.3. Let us present an example (Figure 6) showing that the converse of Propo-
sition 3.3.2 does not hold. Take E and E 0 to be vector bundles on X with

HN.E/ D 4=3.3/ ˚ 3=4.4/ and HN.E 0/ D 1.2/ ˚ 1=3.3/ ˚ 0.2/:

By construction, we have rk.E/ D rk.E 0/ D 7, deg.E/ D 7 and deg.E 0/ D 3. Now for the
minuscule dominant cocharacter � of GL7 of degree 4 with slopes 0 and 1, we find

HN.E/C �� � HN.E 0/ and HN.E 0/C 1.7/ � HN.E/ � HN.E 0/:

We wish to show that there does not exist a minuscule effective modification E 0 ,! E

at1. Suppose for contradiction that such a modification exists. Take a direct sum decom-
position

E ' D ˚ F

with HN.D/D 4=3.3/ and HN.F /D 3=4.4/. Proposition 3.1.9 yields minuscule effective
modifications D 0 ,! D and F 0 ,! F at1 with a short exact sequence

0 �! D 0 �! E 0 �! F 0 �! 0:
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HN.E/

HN.E/C ��HN.E 0/C 1.7/

HN.E 0/

Figure 6. A counter example for the converse of Proposition 3.3.2.

Then by Proposition 2.4.7 we obtain a .D 0;E 0;F 0/-permutation P of HN.D 0˚F 0/. Since
we have P � HN.E 0/ by construction, we find

�1.P/ � �1
�

HN.E 0/
�
D 1 and �2.P/ � �2

�
HN.E 0/

�
D 1: (3.7)

Moreover, as F 0 is a subsheaf of F by construction, Proposition 2.4.4 implies that all
slopes in HN.F 0/ are less than or equal to 3=4. We then deduce by (3.7) that �1.P/ and
�2.P/ should occur as a slope of D 0, and in turn find that the inequalities in (3.7) are in
fact equalities. Therefore HN.D 0/ must contain the line segment 1.2/, and consequently
is given by 1.2/ ˚ d .1/ for some integer d . Then we have d D �i .P/ for some i > 2

and thus find d � �i .HN.E 0// � 1=3. On the other hand, since D 0 occurs as a minuscule
effective modification of D at C , Proposition 3.3.2 implies d � 1=3. Now we have a
desired contradiction as d is an integer with d � 1=3 and d � 1=3.

Proposition 3.3.4. Let E and E 0 be vector bundles on X of rank n. Denote by � the
minuscule dominant cocharacter of GLn of degree d WD deg.E/ � deg.E 0/ with slopes 0
and 1. Assume that E satisfies the following property:

(�) All distinct slopes in HN.E/ differ by more than 1.

There exists a minuscule effective modification E 0 ,! E at1 if and only if E and E 0 satisfy
the following conditions (Figure 7):

(i) We have HN.E/C �� � HN.E 0/ and HN.E 0/C 1.n/ � HN.E/ � HN.E 0/.

(ii) For each breakpoint of HN.E/, there exists a breakpoint of HN.E 0/ with the
same x-coordinate.
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HN.E/

HN.E/C ��

HN.E 0/C 1.n/

HN.E 0/

Figure 7. Illustration of the conditions in Proposition 3.3.4.

Proof. Let us first assume that E and E 0 satisfy conditions (i) and (ii). We write the HN
decomposition of E as

E '

mM
iD1

Ei (3.8)

where the direct summands Ei are arranged in order of descending slope, and set

xi WD

iX
jD1

rk.Ej / for i D 0; : : : ; m:

By condition (ii), we get a direct sum decomposition

E 0 '

mM
iD1

E 0i (3.9)

where each HN.E 0i / coincides with the restriction of HN.E 0/ on the interval Œxi�1; xi �.
Then by condition (i) we find

HN.E 0i /C 1
.xi�xi�1/ � HN.Ei / � HN.E 0i / for i D 1; : : : ; m:

Now for each i D 1; : : : ; m, Lemma 3.1.11 yields a minuscule effective modification
E 0i ,! Ei at 1 as Ei is semistable. Hence we obtain a minuscule effective modification
E 0 ,! E at1 from the direct sum decompositions (3.8) and (3.9).

For the converse, we now assume that there exists a minuscule effective modification
E 0 ,! E at 1. Since E and E 0 satisfy condition (i) by Proposition 3.3.2, it remains to
establish condition (ii). We proceed by induction on the number m of distinct slopes in
HN.E/. If E is semistable, the assertion is vacuously true as HN.E/ does not have a
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breakpoint. We henceforth assume that E is not semistable, so that we have m > 1. Take
a direct sum decomposition

E ' D ˚ F (3.10)

such that HN.D/ coincides with the line segment of maximal slope in HN.E/. Let us
denote the slope of HN.D/ by �. By construction, HN.F / hasm� 1 distinct slopes which
are all less than � � 1 by property (�). In addition, we have HN.E 0/C 1.n/ � HN.E/ by
Proposition 3.3.2 and thus find

�i
�

HN.E 0/
�
� � � 1 for i D 1; : : : ; rk.D/: (3.11)

Now we note by Proposition 3.1.9 that there exist minuscule effective modifications
D 0 ,! D and F 0 ,! F at1 with a short exact sequence

0 �! D 0 �! E 0 �! F 0 �! 0: (3.12)

Then we find

�i
�

HN.F 0/
�
� �i

�
HN.F /

�
< � � 1 for i D 1; : : : ; rk.F 0/ (3.13)

by Proposition 2.4.4, and also obtain a .D 0;E 0;F 0/-permutation P of HN.D 0 ˚ F 0/ by
Proposition 2.4.7. For each i D 1; : : : ; rk.D/, the inequalities (3.11) and (3.13) together
imply that �i .P/ occurs as a slope in HN.D 0/. Since we have P�HN.E 0/ by construction,
we find

�i .P/ D �i
�

HN.D 0/
�
D �i

�
HN.E 0/

�
for i D 1; : : : ; rk.D/

and consequently deduce from the inequalities (3.11) and (3.13) that all slopes in HN.D 0/
are greater than all slopes in HN.F 0/. Hence the short exact sequence (3.12) induces a
direct sum

E 0 ' D 0 ˚ F 0 (3.14)

by Proposition 2.4.6, and consequently yields a breakpoint of HN.E 0/ with x-coordinate
rk.D 0/ D rk.D/. In addition, since we have a minuscule effective modification F 0 ,! F

at1, we find by the induction hypothesis that for every breakpoint of HN.F / there exists
a breakpoint of HN.F 0/ with the same x-coordinate. We thus establish condition (ii) by
the direct sum decompositions (3.10) and (3.14), thereby completing the proof.

Theorem 3.3.5. Let � be a minuscule dominant cocharacter of GLn with slopes 0 and 1.
Take two arbitrary elements b; b0 2 B.GLn/ and write �.b/ WD HN.Eb/ and �.b0/ WD
HN.Eb0/. Assume that b satisfies the following property:

(�) All distinct slopes in �.b/ differ by more than 1.

The Newton stratum Grb
0

GLn;�;b is nonempty if and only if �.b/ and �.b0/ satisfy the fol-
lowing conditions:

(i) We have �.b/C �� � �.b0/ and �.b0/C 1.n/ � �.b/ � �.b0/.

(ii) For each breakpoint of �.b/, there exists a breakpoint of �.b0/ with the same
x-coordinate.
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HN.E/

HN.E 0/
HN.D/

HN.F / D HN.F 0/

HN.E 0/

HN.D 0/

Figure 8. Illustration of Example 3.3.6.

Proof. The assertion is an immediate consequence of Propositions 3.1.8, 3.1.10, and 3.3.4.

Remark. Theorem 3.3.5 is identical to Theorem 1.1.1. For a non-minuscule cocharacter
� of GLn with slopes in Œ0; d �, we should be able to get a similar classification theorem
with d in place of 1 using the Demazure resolution.

Example 3.3.6. Let us provide an example (Figure 8) to show that Proposition 3.3.4 and
Theorem 3.3.5 do not hold without assuming (�). Take E and E 0 to be vector bundles on
X with

HN.E/ D 5=4.4/ ˚ 3=4.4/ and HN.E 0/ D 3=5.5/ ˚ 1=3.3/:

Then HN.E/ and HN.E 0/ do not have breakpoints with the same x-coordinates. We wish
to show that there exists a minuscule effective modification E 0 ,! E at 1. Take vector
bundles D , D 0, F and F 0 on X with

HN.D/ D 5=4.4/; HN.D 0/ D 1=4.4/; HN.F / D HN.F 0/ D 3=4.4/:

By construction, we have a direct sum decomposition

E ' D ˚ F :

In addition, we obtain minuscule effective modifications D 0 ,!D and F 0 ,! F at1 by
Lemma 3.1.11, and find a short exact sequence

0 �! D 0 �! E 0 �! F 0 �! 0

by Proposition 2.4.8. Therefore Proposition 3.1.9 yields a minuscule effective modifica-
tion E 0 ,! E at1 as desired.
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