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Overgroups of exterior powers of an elementary group.
Normalizers

Roman Lubkov and Ilia Nekrasov

Abstract. We establish two characterizations of an algebraic group scheme
VmGLn over Z. Geo-

metrically, the scheme
VmGLn is a stabilizer of an explicitly given invariant form or, generally, an

invariant ideal of forms. Algebraically,
VmGLn is isomorphic (as a scheme over Z) to a normalizer

of the elementary subgroup functor
VmEn and a normalizer of the subscheme

VmSLn.
Our immediate goal is to apply both descriptions in the “sandwich classification” of overgroups

of the elementary subgroup. Additionally, the results can be seen as a solution of the linear preserver
problem for algebraic group schemes over Z, providing a more functorial description that goes
beyond geometry of the classical case over fields.

In memory of Nikolai Aleksandrovich Vavilov,
our teacher, a brilliant mathematician, and a generous colleague.

1. Introduction

The present work is a sequel of [18] where we have started the description of overgroups
of exterior powers of an elementary group. In this paper, we carry out the second key step
of the description: an explicit calculation of the normalizer of elementary groups in the
corresponding general linear group.

In the case when n is a multiple ofm, we construct anR-linear form f WV � � � � � V !

R in k variables, where V D V.$m/ and R is an arbitrary commutative ring. We prove
that

Vm SLn coincides with the algebraic group Gf of linear transformations preserving
this form f :

Gf .R/ WD
®
g 2 GL.nm/.R/ j f .gx

1; : : : ; gxk/ D f .x1; : : : ; xk/
¯
:

We deliver analogous description for
Vm GLn in terms of the form f . Namely, this group

scheme is equal to the stabilizer xGf of the ideal generated by the form f :

xGf .R/ WD
®
g 2 GL.nm/.R/ j g preserves the ideal hf i

¯
:

Theorem 1. If n=m is an integer greater than 2, then there are isomorphisms
VmSLnŠGf ,Vm GLn Š xGf of affine group schemes over Z.
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The theorem follows the traditional description of a Chevalley group as a stabilizer of
a form and the corresponding extended Chevalley group as the stabilizer up to a scalar
multiplier, see [6].

In the case when n is not divisible by m, we construct an ideal F , a direct generaliza-
tion of hf i, such that

Vm GLn coincides with a stabilizer of this ideal:

xGF .R/ WD
®
g 2 GL.nm/.R/ j g preserves the ideal F

¯
:

Theorem 2. Using prior notation,
VmGLn and xGF are isomorphic as affine group schemes

over Z.

Analogous description for the general case of n and m can be found in [29], as we
discuss in Section 3. Indeed, the group scheme

Vm GLn is a stabilizer of the Plücker ideal
Plu generated by Plücker quadratic forms. However, our description goes further then just
taking a subideal of Plu: ideal F from Theorem 2 is a proper subideal of the radical

p
Plu

with some nice properties.
In the theory of linear preserver problem and, more generally, in geometric invariant

theory there exists a classic geometric interpretation of a normalizerNGL.V /.G/ of a group
G acting irreducibly on a vector space V : NGL.V /.G/ is equal to StabGL.V /.O/, where O

is a closed G-orbit in P .V / (we invite reader to consult [3, Theorem 3.2] and references
there). Theorems 1 and 2 can be seen as an example of a scheme-theoretic incarnation of
the statement. Authors hope to pursue this direction for wider class of groups in a future
publication.

Now let C;D be two subgroups of an abstract group G. Recall that the transporter of
C to D is the set:

TranG.C;D/ D ¹g 2 G j C g � Dº:

We need a scheme-theoretic analogue [22, Section V.6]: scheme-theoretic transporter
of X to Y inside an algebraic group G is the functor TranG.X; Y / such that

TranG.X; Y /.R/ D
®
g 2 G.R/ j zg 2 Y. zR/ for all R-algebras zR and z 2 X. zR/

¯
:

The scheme-theoretic normalizer NG.X/ is defined as a scheme-theoretic transporter
TranG.X;X/.

We denote the elementary subgroup of GLn.R/ by En.R/ and the correspondingm-th
exterior power of the elementary group by

Vm En.R/. The following is our second result.

Theorem 3. If n > 4 and n=m is an integer greater than 2, then there are isomorphisms of
the affine algebraic group schemes over Z:

N
�Vm En

�
Š N

�Vm SLn
�
Š Tran

�Vm En;
Vm SLn

�
Š Tran

�Vm En;
Vm GLn

�
Š

Vm GLn;

where all scheme-theoretic normalizers and transporters are taken inside GL.nm/.

According to the results of [20] and forthcoming [19], we can replace the normaliz-
ers and transporters with their group-theoretic analogues for some classes of rings R. For
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example, Tran.
Vm En.R/;

Vm SLn.R// coincides with Tran.
Vm En;

Vm SLn/.R/ for alge-
bras R over infinite fields, see [20, Proposition 4.3]. In other words, the classic version of
Theorem 3 with abstract transporters holds as well over these rings, see [28,31,32, Theo-
rem 3], [27, Theorem 2], [1, Theorem 4] for analogues in other cases.

The paper is organized as follows. In Section 2 we present the basic notation. We recall
the well-known description using the Plücker polynomials in Section 3, we construct an
invariant form for

Vm GLn for the case n=m 2 N in Section 4, and, in Section 6, we gen-
eralize the latter description to an invariant system of forms for any n;m. Section 5 gives
a geometric description of the quotient

Vm GLn.R/ by
Vm
.GLn.R//. Finally, in Section 7

we discuss different notions of normalizers and transporters and prove Theorem 3.

2. Exterior powers of elementary groups

In this section, we introduce exterior powers of an elementary group and define the related
concepts.

We denote the set ¹1; 2; : : : ; nº by Œn�. If there is no confusion, we denote the binomial
coefficient

�
n
m

�
byN . Elements of

Vm
Œn�, them-th exterior power of the set Œn�, are ordered

subsets I � Œn� of cardinality m without repeating entries:
Vm
Œn� D

®
.i1; : : : ; im/ j 1 6 i1 < i2 < � � � < im 6 n

¯
:

Let R be a commutative ring and let Rn be the right free R-module with the standard
basis ¹e1; : : : ; enº.

Vm
Rn is a free module of rank N D

�
n
m

�
with the basis ei1 ^ � � � ^ eim

with .i1; : : : ; im/ 2
Vm
Œn�. The products ei1 ^ � � � ^ eim are defined for an arbitrary set

¹i1; : : : ; imº via e�.i1/ ^ � � � ^ e�.im/ D sgn.�/ ei1 ^ � � � ^ eim for � 2 Sm a permutation of
Œm�. We can assume that n > 2m due to the isomorphism

Vm
V � Š .

Vdim.V /�m
V /� for an

arbitrary free R-module V .
For everym6 n, we have the Cauchy–Binet homomorphism

Vm
WGLn.R/!GLN .R/

defined via the diagonal action:
Vm
.g/.ei1 ^ � � � ^ eim/ WD .gei1/ ^ � � � ^ .geim/ for ei1 ; : : : ; eim 2 R

n:

Thus
Vm is a representation of the group GLn.R/. It is called the m-th vector representa-

tion or the m-th fundamental representation. The image group
Vm
.GLn.R// is called the

m-th exterior power of the general linear group.
By ai;j we denote an entry of a matrix a 2 GLn.R/ at the position .i; j /, where

1 6 i; j 6 n. Further, e denotes the identity matrix and ei;j denotes the standard matrix
unit, i.e., the matrix that has 1 at the position .i; j / and zeros elsewhere. For entries of the
inverse matrix we use the standard notation a0i;j WD .a

�1/i;j . The [absolute] elementary
group En.R/ is a subgroup of GLn.R/ generated by all elementary transvections ti;j .�/D
e C �ei;j , where 1 6 i ¤ j 6 n, � 2 R. The set El .n;R/ is a subset of En.R/ consisting
of products of at most l elementary transvections. The exterior power of the elementary
group

Vm En.R/ is defined as the
Vm–image of the elementary group En.R/.
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Figure 1. Weight diagram .A4;$2/ and action of tI;J .�/.

Figure 2. Weight diagram .A6;$3/.

In the sequel, we use weight diagrams to illustrate internal combinatorics of equa-
tions. We refer the reader to [25] where the authors describe all the rules to construct
weight diagrams. The exterior power of the elementary group

Vm En.R/ corresponds to
the representation of the Chevalley group of type ˆ D An�1 with the highest weight $m.

In the majority of existing constructions,
Vm GLn.R/ arises together with an action

on the Weyl module V.$m/ D R
N . We denote the weight set of the module V.$m/ by

ƒ.$m/. Then ƒ.$m/ D
Vm
Œn�.

Fix an admissible base v�; � 2 ƒ of the module V D V.$m/. We regard a vector
a 2 V , a D

P
v�a�, as a column of coordinates a D .a�/; � 2 ƒ.

In Figures 1 and 2 we reproduce the weight diagrams of the groups
V2 E5.R/ andV3 E7.R/, which correspond to representations .A4; $2/ and .A6; $3/, respectively. We

follow the convention of naturally ascending numbering of weights. On the diagrams, the
highest weight is the leftmost one. Recall that in a weight diagram two weights are joined
by an edge if their difference is a fundamental root.
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The algebraic group scheme
Vm GLn is, by definition, the categorical image of the

group scheme GLn under the Cauchy–Binet homomorphism. The group
VmGLn.R/ is de-

fined asR-points of the functor
VmGLnD

VmGLn. /. The [abstract] groups
Vm
.GLn.R//

and
Vm GLn.R/ are different for a general ring R. We have a canonical inclusionVm�GLn.R/

�
6

Vm GLn.R/I

the quotient set is computed in Section 5.
Abstractly, elements of

Vm GLn.R/ are images of matrices under
Vm with entries

belonging to some extension of R. In other words, arbitrary element Qg 2
Vm GLn.R/ has

the form Qg D
Vm
g where g 2 GLn.S/ for some extension ring S of R.

Below we show that the group
Vm SLn.R/ is the standard Chevalley group G.ˆ;R/,Vm GLn.R/ is the extended Chevalley group xG.ˆ; R/, and

Vm En.R/ coincides with the
[absolute] elementary subgroup of G.ˆ;R/.

Recall that
Vm En.R/ is normal not only in the image of the general linear group but

in the bigger group
Vm GLn.R/. This fact follows from [24, Theorem 1].

Theorem 4. Let R be a commutative ring, n > 3, thenVm En.R/ P
Vm GLn.R/:

We recall the explicit form of the exterior power of an elementary transvection [18]
which we utilize later.

Proposition 5. Let ti;j .�/ be an elementary transvection in En.R/, n > 3. ThenVm
ti;j .�/ D

Y
L2

Vm�1
.Œn�X¹i;j º/

tL[i;L[j
�

sgn.L; i/ sgn.L; j /�
�

(2.1)

for any 1 6 i ¤ j 6 n.

Similarly, one can get an explicit form of the torus elements h$m.�/ of the groupVm GLn.R/.

Proposition 6. Let di .�/ D e C .� � 1/ei;i be a torus generator, 1 6 i 6 n. Then the
exterior power of di .�/ equals the diagonal matrix with diagonal entries 1 everywhere
except in .n�1m�1/ positions:

Vm�
di .�/

�
I;I
D

´
�; if i 2 I;
1; otherwise:

As an example, consider
V3
t1;3.�/ D t124;234.��/t125;235.��/t145;345.�/ 2

V3 E5.R/
and

V4
d2.�/D diag.�; �; �;1; �/2

V4E5.R/. It follows from the propositions that
Vm
ti;j .�/

belongs to E.
n�2
m�1/.N;R/. In other words, the residue1 of an exterior transvection

res
�Vm

ti;j .�/
�

equals the binomial coefficient
�
n�2
m�1

�
.

1The residue res.g/ of a transformation g is, by definition, the rank of g � e.
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Let I; J be two elements of
Vm
Œn�. We define a distance between I and J as the

cardinality of the intersection I \ J :

d.I; J / D jI \ J j:

This combinatorial characteristic plays an analogous role of the distance function d.�;�/
for roots � and � on the weight diagram of a root system.

3. Stabilizer of the Plücker ideal

First we recall the well-known description of polyvector representations of the general
linear group. In [29] the authors proved that

Vm GLn.R/ coincides with the stabilizer of
the Plücker ideal.

Plücker polynomials are homogeneous quadratic polynomials

fI;J 2 Z
�
xH ;H 2

Vm
Œn�
�

of Grassmann coordinates xH . In general, Plücker polynomials can be represented in the
form:

fI;J D
X
j2JnI

˙xI[¹j ºxJn¹j º;

where I 2
Vm�1

Œn� and J 2
VmC1

Œn�. To clarify the sign of the factors, we extend the
definition of the Grassmann coordinates as follows. If there are coinciding elements in the
set ¹i1; : : : ; imº, then xi1���im D 0; otherwise xi1���im D sgn.i1; : : : ; im/x¹i1���imº. Thus the
Plücker polynomials have the form:

fI;J D

mC1X
hD1

.�1/hxi1���im�1jhxj1��� Ojh���jmC1
:

A Plücker ideal Plu WD Plun;m P RŒxI W I 2
Vm
Œn�� is generated by all Plücker relations

fI;J with I 2
Vm�1

Œn� and J 2
VmC1

Œn�.

Lemma 7. Let R be an arbitrary commutative ring. The group
Vm En.R/ preserves the

Plücker ideal Plu.

Following notation of the paper [29], we put Gnm.R/ WD FixR.Plu/ for any commu-
tative ring R, where FixR.Plu/ is the set of R-linear transformations preserving the ideal
Plu:

Gnm.R/ WD
®
g 2 GLN .R/ j f .gx/ 2 Plu for all f 2 Plu

¯
:

Lemma 8. For any n; m the functor R 7! FixR.Plu/ is an affine group scheme defined
over Z.

Next results are classical known, see [6] and [35, Theorem 4]. Note that representationVm is minuscule. Therefore it is irreducible and tensor indecomposable.
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Lemma 9. LetK be an algebraically closed field. For any n;m with 16m6n�1, the ker-
nel of

Vm for GLn.K/ and SLn.K/ equals �m and �d where d D gcd.n;m/, respectively.

Lemma 10. As a subgroup of GLN .K/, the algebraic group
Vm
.GLn.K// is irreducible

and tensor indecomposable. Moreover, except the case nD2m>4, the group
Vm
.GLn.K//

coincides with its normalizer. In the exceptional case, the group has index 2 in its normal-
izer.

The analogous result holds for
Vm
.SLn.K// as a subgroup of SLN .K/.

Using the classification of maximal subgroups in classical groups by Gary Seitz [26,
Table 1] (see also the survey [5] with corrections), it is easy to prove that

Vm SLn.K/ is
maximal for an algebraically closed field K. The following statement is [29, Lemma 7].

Lemma 11. Let K be an algebraically closed field. For any n; m; 1 6 m 6 n � 1 the
groups

Vm GLn.K/ and
Vm SLn.K/ are maximal among connected closed subgroups in

one of the following groups:Vm GLn.K/:
Vm SLn.K/:

• in GLN .K/, if n ¤ 2m; • in SLN .K/, if n ¤ 2m;
• in GSpN .K/, if n D 2m & odd m; • in SpN .K/, if n D 2m & odd m;
• in GO0N .K/, if n D 2m & even m. • in SON .K/, if n D 2m & even m.

Besides, in the exceptional cases these classical groups are unique proper connected
overgroups of

Vm GLn.K/ and
Vm SLn.K/, respectively.

Corollary 12. Suppose K is an algebraically closed field; then
Vm GLn.K/ D G0nm.K/.

Finally, for the coincidence of the group schemes, we must prove that Gnm is smooth
or, what is essentially the same, to calculate the dimension of the Lie algebra Lie.Gnm/.

Lemma 13. For any field K the dimension of the Lie algebra Lie.Gnm;K/ does not
exceed n2.

Using [36, Theorem 1.6.1], we get the following result.

Theorem 14. For any n; m; 1 6 m 6 n � 1 there is an isomorphism of affine groups
schemes over Z:

Gnm Š

´
GLn =�m; if n ¤ 2m;

GLn =�m h Z=2Z; if n D 2m:

4. Exterior powers as the stabilizer of invariant forms I
Next we present an alternative description of

Vm GLn.R/ as a stabilizer of a form. Anal-
ogous forms are well known for classical and exceptional groups in the standard repre-
sentation over an arbitrary ring, see [27,28,30–32]. Conveniently for the reader, a general
approach was developed by Skip Garibaldi and Robert Guralnick [12, 13]. We also refer
to [2, Section 4.4] where the author constructed cubic invariant forms for

Vm SLn.
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The following theorem is classically known and can be found in [9, Chapter 2, Sec-
tions 5–7] for characteristic 0 and can be deduced from [7, 33] as all primes are almost
very good in type An or, nicely summarized, [23, Theorem 1 (4)] for fields of positive
characteristic.

Proposition 15. Let K be an algebraically closed field. Then
Vm GLn.K/ is a group of

similarities of a form only in the case n=m 2 N and n=m > 3. Moreover, this form is unique
in the space of n=m-tensors and it is equal to

• qm
Œn�
.x/ D

P
sgn.I1; : : : ; I n

m
/ xI1 � � � xI n

m
for even m;

• qm
Œn�
.x/ D

P
sgn.I1; : : : ; I n

m
/ xI1 ^ � � � ^ xI n

m
for odd m,

where the sums in the both cases range over all unordered partitions of the set Œn� into
m-element subsets I1; : : : ; I n

m
.

Henceforth, we use the uniform notation q.x/ for these forms and we assume that m
is even (unless otherwise specified); the case of odd m can be addressed analogously.

So in the case of an algebraically closed field K, the abstract group
Vm GLn.K/ con-

sists of matrices g 2 GLN .K/ for which there is a multiplier function � D �.g/ 2 K�

such that q.gx/ D �.g/q.x/ for all x 2 KN . The calculation of � on a generic diagonal
matrix di .�/ 2 GLn.K/ shows that �.g/ D det.g/. Since the coefficients of these forms
equal ˙1, the forms are defined over Z. The same calculation confirms the answer over
an arbitrary ring:

q.
Vm
g � x/ D det.g/ � q.x/ for g 2 GLn.R/:

To get a direct analog of Proposition 15 over arbitrary rings, we change our focus from
forms of high degree to the corresponding multilinear forms. Concretely, let

k WD
n

m
2 N;

then a [full] polarization for the forms q.x/ D qm
Œn�
.x/ is a k-linear form f m

Œn�
:

f .x/ D f mŒn�.x
1; : : : ; xk/ D

X
sgn.I1; : : : ; Ik/ x1I1 � � � x

k
Ik
;

where the sum ranges over all ordered partitions of the set Œn� into m-element subsets.

Proposition 16. Let R be an arbitrary commutative ring and n=m 2 N. The form f is
invariant under the action of

Vm En.R/ and it is multiplied by � under the action of a
weight element

Vm
di .�/.

Proof. As we noted previously, the multiplier �.g/ is equal to the determinant. Indeed,
�.g/ is a one-dimensional representation, i.e., is a homomorphism GLn.R/! GL1.R/.
Moreover, �.g/ is a polynomial map that equals the determinant of g over C. Thus �.g/D
det.g/ for an arbitrary ring R. And then the statement is obvious. But below we prove the
proposition by direct calculation.
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We show that
f .gx1; : : : ; gxk/ D �f .x1; : : : ; xk/;

where g D
Vm
di .�/. Since I1; : : : ; Ik is an ordered partition of Œn�, the number i belongs

to the index of only one variable xlIl in every monomial x1I1 � � � x
k
Ik

of the form f . Thus

every monomial of f .gx1; : : : ; gxk/ has the form˙x1I1 � � � x
l�1
Il�1

�xlIl
xlC1IlC1

� � � xkIk
.

Now let g D
Vm
ti;j .�/. By (2.1) the matrix g is equal to the product of transvections

tiL;jL.sgn.i; L/ sgn.j; L/�/ with L 2
Vm�1

.Œn� X ¹i; j º/. Therefore exactly .n�2m�1/ coordi-
nates change in the vector gx; x 2 RN : .gx/iL D xiL C sgn.i; L/ sgn.j; L/�xjL. Then
in the form f .gx1; : : : ; gxk/ � f .x1; : : : ; xk/ all monomials have the form:

˙x1I1 � � � x
l�1
Il�1

�
sgn.i; L/ sgn.j; L/�xljL

�
xlC1IlC1

� � � xkIk ;

where Il D iL,L 2
Vm�1

.Œn�X ¹i; j º/. Let I1; : : : ; Ik be a partition of Œn�where Il D iL1,
Ip D jL2,L1;L2 2

Vm�1
.Œn�X ¹i; j º/. Then the indices zI1; : : : ; zIk , where zIl D jL1, zIp D

iL2, form a partition of Œn� as well. Therefore the sum of the corresponding monomials
equals

sgn.I1; : : : ; Ik/x1I1 � � � x
p
jL2
� � � xl�1Il�1

�
sgn.i; L1/ sgn.j; L1/�xljL1

�
xlC1IlC1

� � � xkIk

C sgn. zI1; : : : ; zIk/x1zI1 � � � x
l
jL1
� � � xl�1

zIl�1

�
sgn.i; L2/ sgn.j; L2/�x

p
jL2

�
xlC1
zIlC1
� � � xk

zIk
:

It remains to check that the corresponding signs are opposite:

sgn.I1; : : : ; Ik/ sgn.i; L1/ sgn.j; L1/ D � sgn. zI1; : : : ; zIk/ sgn.i; L2/ sgn.j; L2/:

Multiplying this equality by sgn.j; L2/ sgn.j; L1/, we obtain

sgn.I1; : : : ; Ik/ sgn.i; L1/ sgn.j; L2/ D � sgn. zI1; : : : ; zIk/ sgn.i; L2/ sgn.j; L1/:

And this is equivalent to

sgn.I1; : : : ; Ik/ D � sgn. zI1; : : : ; zIk/;

where the indices Ip; zIp and Il ; zIl are unordered.
If m is even, then this equality is equivalent to sgn.iL1; jL2/ D � sgn.jL1; iL2/.

Since iL1; jL2 and jL1; iL2 differ by an odd number of transpositions, the signs are
opposite. Similarly, I1; : : : ; Ik and zI1; : : : ; zIk differ by an odd number of transpositions
for odd m.

We denote the ring of all polynomials in (families of) variables

x1 D ¹x1I ºI2
Vm
Œn�
; : : : ; xk D ¹xkI ºI2

Vm
Œn�

with R-coefficients by RŒx1; : : : ; xk �. We consider a Zk-grading on this ring given by
sums of degrees in each of the families x1; : : : ; xk , e.g., the form

f D f mŒn�.x
1; : : : ; xk/
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has grading .1; : : : ; 1/ as exactly one of variables from each families appears in each
monomial of f . The submodule of all forms with grading .1; : : : ; 1/ we denote by

RŒx1; : : : ; xk �.1;:::;1/:

Applying the calculations similar to the previous proof, we get the uniqueness result
for

Vm En.R/–semi-invariant forms.

Proposition 17. Let R be an arbitrary ring and suppose n=m 2 N. Then every
Vm En.R/–

semi-invariant form in the space of multilinear forms RŒx1; : : : ; xk �.1;:::;1/ is a multiple of
f D f m

Œn�
.x1; : : : ; xk/.

Proof. Consider arbitrary F.x1; : : : ; xk/ D
P
aI1;:::;Ikx

1
I1
� � �xkIk

2 RŒx1; : : : ; xk �.1;:::;1/.
We first prove that for each nonzero aI1;:::;Ik the indices I1; : : : ; Ik form a partition

of Œn�. Assume that there exists j 2Œn� such that j 62I1[ � � � [Ik for some tuple .I1; : : : ; Ik/
with aI1;:::;Ik ¤ 0. Choose an arbitrary i appearing in at least one Ii ; without loss of
generality, I1 D iL1. Action by

Vm
tij .�/ on the monomial aI1;:::;Ikx

1
I1
� � �xkIk

contains the
monomial˙� � aI1;:::;Ikx

1
jL1
� � � xkIk

. This monomial appears only for

aI1;:::;Ikx
1
I1
� � � xkIk

due to the conditions on j . We get a contradiction with the semi-invariancy of F , so each
j 2 Œn� appears in at least one I1; : : : ; Ik .

As each Ii has cardinality m, the cardinality of their union is at most m � k D n.
Therefore aI1;:::;Ik ¤ 0 implies that ¹Iiº forms a (non-intersecting) partition of Œn�.

For aI1;:::;Ik ¤ 0, we take arbitrary i 2 I1 with I1 D iL1 and j 2 I2 with I2 D jL2.
Then action of

Vm
tij .1/ on aI1;:::;Ikx

1
I1
� � � xkIk

has the form

aI1;:::;Ikx
1
I1
� � � xkIk C sgn.j; L1/ � aI1;:::;Ikx

1
jL1
x2I2 � � � x

k
Ik
:

The latter term does not appear in F as jL1 \ I2 D j , therefore we need to cancel it out
to get the semi-invariancy. Then

sgn.j; L1/ � aI1;:::;Ikx
1
jL1
x2I2 � � � x

k
Ik

is forced to be equal to� sgn.j;L2/ � ajL1;iL2;:::;Ikx
1
jL1
x2jL2 � � �x

k
Ik

coming from the action
on the monomial ajL1;iL2:::;Ikx

1
jL1
x2iL2 � � � x

k
Ik

. In other words, for every i ¤ j from the
disjoint partition iL1 t jL2 t � � � t Ik D Œn� we get the equation:

sgn.j; L1/ � aiL1;jL2;:::;Ik C sgn.j; L2/ � ajL1;iL2;:::;Ik D 0:

Thus the final step of Proposition 16 proof implies that every non-zero aI1;:::;Ik coincides
with sgn.I1; : : : ; Ik/ � a for some shared a 2 R.

Let us define a group Gf .R/ as the group of linear transformations preserving the
form f .x1; : : : ; xk/:

Gf .R/ WD
®
g 2 GLN .R/ j f .gx1; : : : ; gxk/ D f .x1; : : : ; xk/

¯
:
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It is an analogue of the Chevalley group for the exterior powers. We define an analogue of
the extended Chevalley group:

xGf .R/ WD
®
g 2 GLN .R/ j there exists � D �.g/ 2 R� such that

f .gx1; : : : ; gxk/ D �.g/f .x1; : : : ; xk/
¯
:

The functors R 7! xGf .R/ and R 7! Gf .R/ define affine group schemes over Z. Combin-
ing Proposition 16 and the reasonings before it for all rings R, we have the morphism of
group schemes:

�W
Vm GLn �! xGf or, after Theorem 14, �WGLn =�m �! xGf :

Ideally, we can expect the group
Vm GLn.R/ to coincide with xGf .R/ (and

Vm SLn.R/
to coincide with Gf .R/) in the case n=m 2 N. Theorem 1 is a precise form of the expecta-
tion:

Theorem 18. If n=m is an integer greater than 2, then the group
Vm GLn.R/ coincides

with xGf .R/, and
Vm SLn.R/ coincides with Gf .R/ for an arbitrary ring R.

Remark 19. If nD 2m and 2 is not a zero-divisor, then xGf .R/D GON .R/ or GSpN .R/
depending on the parity of m. So in this case

Vm GLn.R/ is a subgroup of the orthogonal
or the symplectic group, respectively. Moreover, if .n; m/ D .4; 2/, then GO6.R/ equalsV2 GL4.R/.

In general case, stabilizer of a quadratic form and its polarization do not coincide.
Therefore, we only have the inclusion GON .R/ 6 xGf .R/ or GSpN .R/ 6 xGf .R/.

The proof of the theorem follows the classic Waterhouse Lemma [36, Theorem 1.6.1].
This result essentially reduces the verification of an isomorphism of affine group schemes
to the isomorphism of their groups of points over algebraically closed fields and the dual
numbers2 over such fields.

We note that an alternative proof based on [8, Exp. VI_B, Corollary 2.6] can be devel-
oped, but we do not pursue this direction here.

Lemma 20. Let G and H be affine group schemes of finite type over Z where G is flat,
and let 'WG!H be a morphism of group schemes. Assume that the following conditions
are satisfied for any algebraically closed field K:

(1) dim.GK/ > dimK.Lie.HK//,

(2) ' induces monomorphisms of the groups of points

G.K/ �! H.K/ and G
�
KŒı�

�
�! H

�
KŒı�

�
;

(3) the normalizer '.G0.K// in H.K/ is contained in '.G.K//.

2Recall that the algebra KŒı� of dual numbers over a field is isomorphic as a K-module to K ˚ Kı
with multiplication given by ı2 D 0.
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Here G0 denotes the connected component of the identity in G, GK denotes the extension
of scalars of G, and Lie.HK/ denotes the Lie algebra of the scheme HK .

Then ' is an isomorphism of group schemes over Z.

In the case under consideration, the preliminary assumptions on the schemes are sat-
isfied. Indeed, the schemes are of finite type being subschemes of appropriate GLn. The
flatness condition follows from smoothness of the Chevalley–Demazure scheme G. All
groups G0K are smooth connected schemes of the same dimension. Moreover, we showed
in the previous section that the normalizer of

Vm GLn.K/ in GLN .K/ coincides withVm GLn.K/. Thus condition (3) holds true.
As we mentioned above, Theorem 14 shows that instead of a morphism GLn =�m !

xGf we can consider the morphism (which we call � as well)
Vm GLn ! xGf . Then Propo-

sition 16 shows that
Vm En.R/ is a subgroup of xGf .R/ (as abstract groups) for any ring

R. A standard argument shows that
Vm En.R/ is dense in

Vm GLn.R/ for any local ring R.
Therefore � is a monomorphism for any local ring R. So condition (2) follows.

For R D K, an algebraically closed field, we can prove an even stronger statement:

Proposition 21. Suppose K is an algebraically closed field and n ¤ 2m; thenVm GLn.K/ D xG0f .K/ and
Vm SLn.K/ D Gf .K/:

Proof. The group
Vm GLn.K/ preserves the invariant form f .x1; : : : ; xk/ by Proposi-

tion 15, thus
Vm GLn.K/ 6 xGf .K/. Since

Vm GLn.K/ is connected, we haveVm GLn.K/ 6 xG0f .K/:

Further, from Lemma 11 it follows that
Vm GLn.K/ is maximal among connected closed

subgroups in GLN .K/. Since xGf .K/ is a proper subgroup of GLN .K/, we obtain the
reverse inclusion. For the group

Vm SLn.K/ the proof is similar.

To deal with condition (1), it only remains to evaluate the dimension of the Lie algebras
xGf and Gf . We follow the ideas of William Waterhouse [36, Lemmas 3.2, 5.3, and 6.3].

Let K be an arbitrary field. Then Lie algebra Lie..Gf /K/ of an affine group scheme
.Gf /K is most naturally interpreted as the kernel of homomorphism Gf .KŒı�/! Gf .K/

sending ı to 0, see [4, 15, 16, 34]. Practically, if G is a subscheme of GLn, then Lie.GK/
consists of all matrices e C zı, z 2 Mn.K/, satisfying the equations defining G.K/. For-
mally, the statement takes the following form when G is the stabilizer of a system of
polynomials.

Lemma 22. Let '1; : : : ;'s 2KŒx1; : : : ;xt �. Then a matrix eC zı with z 2Mt .K/ belongs
to Lie.FixK.'1; : : : ; 's// if and only ifX

16i;j6t

zijxi
@'h

@xj
D 0

for all h D 1; : : : ; s.
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To illustrate the argument that will be utilized for Theorem 23, we first provide an
outline of the proof of Lemma 13 for scheme Gnm.

Proof of Lemma 13. We apply Lemma 22 to the case of the stabilizer of Plücker polyno-
mials fK;L.x/, where K 2

Vm�1
Œn�, L 2

VmC1
Œn�. There are three types of equations on

entries zI;J , see [29, proof of Proposition 3]:

• d.I; J / 6 m � 2, so we are in the case jI [ J j > mC 2, and then zI;J D 0;

• d.I; J / D d.M;H/ D m � 1 and I � J D H �M , then zI;J D ˙zH;M ;

• d.I; J /Dd.M;H/Dm�1 and I�HDJ�M , then zI;I˙zH;H D˙zJ;J˙zM;M ,

where we conceive indices I 2
Vm
Œn� as roots of the corresponding representation, see the

proof of Theorem 23 and the example next to this theorem for a detailed description of
such approach.

The first case does not contribute to dimension of the Lie algebra. Matrix entries zI;J
from the second case give the contribution equal to n.n� 1/. And the third case contributes
no more than n linearly independent variables. Summing up, we get the upper bound equal
to n2.

We consider the schemes Gf .K/ and xGf .K/. The Lie algebra Lie.Gf .K// consists
of all matrices g D e C yı, y 2 MN .K/, satisfying the condition

f .gx1; : : : ; gxk/ D f .x1; : : : ; xk/

for all x1; : : : ; xk 2 KN . Similarly, Lie. xGf .K// consists of all matrices g D e C yı

with y 2MN .K/ satisfying the condition f .gx1; : : : ; gxk/ D �.g/f .x1; : : : ; xk/ for all
x1; : : : ; xk 2 KN .

Theorem 23. If n¤2m, then for any fieldK the dimension of the Lie algebra Lie. xGf .K//
does not exceed n2, whereas the dimension of the Lie algebra Lie.Gf .K// does not exceed
n2 � 1.

Proof. First observe that the conditions on elements of the Lie algebra Lie.Gf .K// are
obtained from the corresponding conditions for elements of Lie. xGf .K// by substituting
�.g/ D 1. Let g be a matrix satisfying the above conditions for all x1; : : : ; xk 2 KN .
Plugging in g D e C yı and using that the form f is k-linear, we get

ı
�
f .yx1; x2; : : : ; xk/C � � � C f .x1; : : : ; xk�1; yxk/

�
D
�
�.g/ � 1

�
f .x1; : : : ; xk/:

Now we show that the entries of the matrix y are subject to exactly the same linear depen-
dencies, as in the case Gnm. By definition f .eI1 ; : : : ; eIk / D 0 for all indices I1; : : : ; Ik 2Vm
Œn�, except the cases where ¹Ij º is a partition of the set Œn� D I1 t � � � t Ik .

• If d.I; J / 6 m � 2, then yI;J D 0. Indeed, in this case then there is a set of pair-
wise disjoint indices I2; : : : ; Ik 2

Vm
.Œn� X I / such that d.J; I2/ > 1, d.J; I3/ >

1 and d.J; I4/ D � � � D d.J; Ik/ D 0. Put x1 WD eJ , xl WD eIl , 2 6 l 6 k. Then
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f .x1; yx2; : : : ; xk/ D � � � D f .x1; x2; : : : ; yxk/ D 0. It follows that

f .yx1; x2; : : : ; xk/ D ˙yI;J D 0:

• If d.I; J / D m � 1 and I � J D H �M , then yI;J D ˙yH;M . Here there is a set
of pairwise disjoint indices M; I3; : : : ; Ik 2

Vm
.Œn� X I / such that d.J;M/ D 1 and

d.J; I3/ D � � � D d.J; Ik/ D 0. Put x1 WD eJ ; x
2 WD eM ; x

l WD eIl ; 3 6 l 6 k and
denote by H the index Œn� X .J [ I2 [ � � � [ Ik/. Then f .x1; x2; yx3; : : : ; xk/ D
� � � D f .x1; x2; : : : ; yxk/ D 0. It follows that

f .yx1; x2; : : : ; xk/C f .x1; yx2; x3 : : : ; xk/ D 0:

But f .yx1; x2; : : : ; xk/D sgn.I;M;I3; : : : ; Ik/ � yI;J , and f .x1; yx2; x3; : : : ; xk/D
sgn.J;H; I3; : : : ; Ik/ � yH;M .

• Finally, if d.I;M/Dm� 1 and I �M DH � J , then yI;I � yM;M D yH;H � yJ;J .
Indeed, there is a set of pairwise disjoint indices I3; : : : ; Ik 2

Vm
.Œn� n .I [ J //. In

other words, I; J; I3; : : : ; Ik is a partition of the set Œn�. Put x1 WD eI ; x2 WD eJ ; xl WD
eIl , where 3 6 l 6 k. Then�

�.g/ � 1
�
D ı.yI;I C yJ;J C yI3;I3 C � � � C yIk ;Ik /:

On the other hand, H;M; I3; : : : ; Ik is a partition of Œn� too, where I [ J D H [M .
Substituting x1 WD eH ; x2 WD eM ; xl WD eIl for all 3 6 l 6 k, we get�

�.g/ � 1
�
D ı.yM;M C yH;H C yI3;I3 C � � � C yIk ;Ik /:

Combining the obtained equalities, we see yI;I C yJ;J D yM;M C yH;H .

Therefore the obtained relations are the same as the relations in the previous lemma.
The matrix entries yI;J D 0 with d.I; J / 6 m � 2 do not contribute to the dimension of
the Lie algebra. The entries yI;J with d.I; J / D m � 1 give the contribution equal to the
number of roots of ˆ, namely, .n2 � n/. Finally, the latter item allows us to express all
entries yI;I as linear combinations of the entries yKj ;Kj ; 16 j 6 n, where each fundamen-
tal root of ˆ occurs among the pairwise differences of the weights Kj . For instance, one
can use the weights ¹1; : : : ;m� 1;pº,m 6 p 6 n, and ¹1; : : : ; Oi ; : : : ;mC 1º, 1 6 i < m,
see [29]. Figure 3 shows their location in the weight diagram .A5; $2/. Therefore the
dimension of the Lie algebra Lie. xGf .K// does not exceed n2 � nC n D n2. The same
argument is also applicable for the case of Lie.Gf .K//. It suffices to set �.g/D 1. Again,
we conclude that the dimension of Lie.Gf .K// does not exceed n2.

To conclude the proof of the theorem, we must reduce the dimension of Lie.Gf .K//.
For the sake of brevity, we conceive indices I 2

Vm
Œn� as roots of the corresponding rep-

resentation, and we write roots ˛ D c1˛1 C � � � C cn�1˛n�1 2 An�1 in the Dynkin form
c1 � � � cn�1, where j̨ are the simple roots of An�1. For example, ı D 1 � � �1 is the maximal
root of An�1. Suppose K1 is the highest weight of the representation, and I2; : : : ; Ik is
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Figure 3. Diagonal weights in .A5;$2/.

the standard partition of the set Œn� XK1 into m-element subsets, i.e., I2 > I3 > � � � > Ik .
Substituting x1 WD eK1 ; x

2 WD eI2 ; : : : ; x
k WD eKk , we get

yK1;K1 C yI2;I2 C � � � C yIk ;Ik D 0:

Further, note that for every j : K1 � Ij D c
j
1˛1 C � � � C c

j
n�1˛n�1. Using already proven

relations yI;I � yM;M D yH;H � yJ;J for I �M D H � J , express all diagonal entries
yIj ;Ij as linear combinations of the entries yKj ;Kj . Thus we find a non-trivial relation
among yKj ;Kj . Below we do this for arbitrary exterior power in detail.

In this notation,

K1 � I2 D 12 � � �m � � � 210 � � � 0; K1 � I3 D 12 � � � m � � �m„ ƒ‚ …
mC1 times

� � � 210 � � � 0;

and in general
K1 � Ij D 12 � � � m � � �m„ ƒ‚ …

.j�2/�mC1

� � � 21 0 � � � 0„ƒ‚…
n�mj

for 2 6 j 6 k. Recall that our numbering of the roots Kj is such that ˛m D K1 �

K2; ˛mC1 D K2 �K3; : : : ; ˛n�1 D Kn�m �Kn�mC1; ˛m�1 D K2 �Kn�mC2; ˛m�2 D

Kn�mC2 �Kn�mC3; : : : ; ˛1 D Kn�1 �Kn (for the exterior squares ˛m�1 D ˛1 D K2 �
Kn�mC2). Then for 3 6 j 6 k, we have

yK1;K1 � yIj ;Ij

D .yKn�1;Kn�1 � yKn;Kn/C 2.yKn�2;Kn�2 � yKn�1;Kn�1/

C � � � C .m � 1/.yK2;K2 � yKn�mC2;Kn�mC2/

Cm
�
.yK1;K1 � yK2;K2/C � � � C .yKm.j�2/C1;Km.j�2/C1 � yKm.j�2/C2;Km.j�2/C2/

�
C .m � 1/.yKm.j�2/C2;Km.j�2/C2 � yKm.j�2/C3;Km.j�2/C3/

C � � � C 2.yKm.j�1/�1;Km.j�1/�1 � yKm.j�1/;Km.j�1//

C .yKm.j�1/;Km.j�1/ � yKm.j�1/C1;Km.j�1/C1/
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D myK1;K1 C .m � 1/yK2;K2 � yKm.j�2/C2;Km.j�2/C2

� � � � � yKm.j�1/C1;Km.j�1/C1 � yKn�mC2;Kn�mC2 � � � � � yKn;Kn ;

and for j D 2, we have

yK1;K1 � yI2;I2 D .yKn�1;Kn�1 � yKn;Kn/C 2.yKn�2;Kn�2 � yKn�1;Kn�1/

C � � � C .m � 1/.yK2;K2 � yKn�mC2;Kn�mC2/

Cm.yK1;K1 � yK2;K2/C .m � 1/.yK2;K2 � yK3;K3/

C � � � C 2.yKm�1;Km�1 � yKm;Km/C .yKm;Km � yKmC1;KmC1/

D myK1;K1 C .m � 2/yK2;K2 � yK3;K3 � � � � � yKmC1;KmC1

� yKn�mC2;Kn�mC2 � � � � � yKn;Kn :

It remains to add up all the obtained equalities with the equation yK1;K1 C yI2;I2 C � � � C
yIk ;Ik D 0. Thus the final equation on diagonal entries is the following:�
m.k � 1/ � k

�
yK1;K1 C

�
.m � 1/.k � 1/ � 1

�
yK2;K2 � yK3;K3 � � � � � yKn�mC1;Kn�mC1

� .k � 1/yKn�mC2;Kn�mC2 � � � � � .k � 1/yKn;Kn D 0:

This is precisely the desired non-trivial linear relation among the entries yKj ;Kj , which,
over a field of any characteristic, shows that the dimension of our Lie algebra is 1 smaller
than the above bound. Thus dim Lie.Gf .K// 6 n2 � 1, as claimed.

Let us give an example of the proof calculations for the case of
V2 E6.R/. Figure 3

shows the location of Kj in the weight diagram. We have y12;12 C y34;34 C y56;56 D 0
as the form is preserved.

• Since 12 � 34 D ˛1 C 2˛2 C ˛3, it follow that

y12;12 � y34;34 D .y13;13 � y23;23/C 2.y12;12 � y13;13/C .y13;13 � y14;14/

D 2y12;12 � y14;14 � y23;23:

• Since 12 � 56 D ˛1 C 2.˛2 C ˛3 C ˛4/C ˛5, we have

y12;12 � y56;56 D .y13;13 � y23;23/

C 2
�
.y12;12 � y13;13/C .y13;13 � y14;14/C .y14;14 � y15;15/

�
C .y15;15 � y16;16/

D 2y12;12 C y13;13 � y15;15 � y16;16 � y23;23:

Adding up these three equations, we get a non-trivial linear relation among the entries
yKj ;Kj :

y12;12 C y13;13 � y14;14 � y15;15 � y16;16 � 2y23;23 D 0:

Now we verified all the conditions from Lemma 20 and are ready to complete the
proof of Theorem 18.

Theorem 1. If n=m is an integer greater than 2, then there are isomorphisms
VmSLnŠGf ,Vm GLn Š xGf of affine group schemes over Z.
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Proof. Consider the Cauchy–Binet morphism
Vm of algebraic groups:Vm

WGLn �! GLN :

From Lemma 9, it follows that the kernel of this morphism equals �m. Proposition 16
implies that its image is contained in xGf . Hence

Vm induces a monomorphism of algebraic
groups:

�WGLn =�m �! xGf :

We wish to apply Lemma 20 to this morphism �. We know that dim.
Vm GLn;K/ D n2

(as an image of GLn;K under the Cauchet–Binet homomorphism with a finite kernel) for
an algebraically closed field K. Theorem 23 implies that dim.Lie. xGf;K// 6 n2 with the
same assumption on the field K. Therefore Condition (1) of Lemma 20 holds true. As we
discussed after Lemma 20, Conditions (2) and (3) are also satisfied.

This means that we can apply Lemma 20 to conclude that � is an isomorphism of affine
group schemes over Z.

The proof for the schemes
Vm SLn and Gf is similar and so it is omitted.

5. Difference between two exterior powers

The isomorphism �W
Vm GLn ! xGf from the previous section shows that for arbitrary

rings the class of transvections from
Vm GLn.R/ is strictly larger than the images

Vm
g,

g 2 GLn.R/: Vm�GLn.R/
�
<

Vm GLn.R/ for a general ring R:

Indeed, suppose n ¤ 2m (otherwise, one has to consider the argument for the corre-
sponding connected component of the group). Then the exact sequence of affine group
schemes

1 �! �m �! GLn �! GLn =�m �! 1

gives an exact sequence of Galois cohomology

1 �! �m.R/ �! GLn.R/ �! GLn =�m.R/

�! H 1.R; �m/ �! H 1.R;GLn/ �! H 1.R;GLn =�m/:

The values of all these cohomology sets are well known, see [17, Chapter III, §2], [29,
§9], or in the case of exterior square [36].H 1.R;GLn/ classifies projective R-modules P
of rank n. In particular, H 1.R;GL1/ classifies invertible R-modules, i.e., finitely gener-
ated projective R-modules of rank 1. The set H 1.R;GL1/ has a group structure induced
by a tensor product. This group is called the Picard group Pic.R/ of the ring R. Its ele-
ments are twisted forms of the free R-module R.

Let us consider the following exact sequence for description of H 1.R; �m/:

1 �! �m �! GL1
. /m

���! GL1 �! 1;
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where . /m is the mth power. Since .GL1/m.R/ D R�m, we have

1 �! R�=R�m �! H 1.R; �m/ �! Pic.R/ �! Pic.R/;

where the rightmost arrow is induced by . /m. Thus the cohomology group H 1.R; �m/

classifies projective R-modules P of rank 1 together with the isomorphism P˝m D R.
To describe the group GLn =�m.R/ it remains to calculate the kernel ofH 1.R;�m/!

H 1.R;GLn/. Observe that the morphism �m ! GLn passes through GL1 D Gm:

�m //

��

GLn

GL1
1�

scalar

BB

Since H 1.R;GLn/ classifies projective R-modules of rank n and the embedding GL1 ,!
GLn sends � to �e, the map H 1.R;GL1/! H 1.R;GLn/ sends an invertible module P
to
Ln
1 P . Therefore the kernel of H 1.R; �m/! H 1.R;GLn/ contains the whole group

R�=R�m and, in addition, elements P of the Picard group Pic.R/ such that P˝m Š R

and
Ln
1 P is free (Š Rn).

Summarizing both arguments, we see that the quotient of
Vm GLn.R/ by

Vm
.GLn.R//

contains a copy of the group R�=R�m. The quotient by this group is isomorphic to a
subgroup of the Picard group Pic.R/ consisting of invertible modules P over R such that
P˝m Š R and

Ln
1 P is free.

For the special linear group the argument is similar. The exact sequence of affine group
schemes

1 �! �d �! SLn �! SLn =�d �! 1

gives the exact sequence of Galois cohomology

1 �! �d .R/ �! SLn.R/ �! SLn =�d .R/

�! H 1.R; �d / �! H 1.R;SLn/ �! H 1.R;SLn =�d /;

where d D gcd.n; m/. The values of all these cohomology sets are also well known, for
instance see [17, Chapter III, §2].

The determinant map detWGLn ! GL1 induces a map of pointed sets

.det/1�WH
1.R;GLn/ �! Pic.R/:

Suppose ŒT � 2 H 1.R;GLn/ is a class represented by a projective module T of rank n.
For any automorphism ˛ of T , the determinant det.˛/ 2 R is the induced automorphism
of the n-th exterior power

Vn
T . Thus .det/1�.ŒT �/ D Œ

Vn
T �.

Consider another exact sequence of groups:

1 �! SLn.R/ �! GLn.R/
det
�! GL1.R/ �! 1:
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We describe the cohomology set H 1.R; SLn/. Let M be a projective R-module of rank
n such that

Vn
M Š R. And let ıM W

Vn
M ! R be a fixed isomorphism. An isomorphism

 WM ! N is called an isomorhism of pairs .M; ıM / Š .N; ıN / if ıN ı
Vn
 D ıM .

By ŒM; ıM � denote the class of isomorphisms .M; ıM /. Then for any automorphism  

of .M; ıM /, we have ıM ı
Vn
 D ıM . This yields that det. / D 1. Therefore the set

H 1.R; SLn/ is determined by the classes ŒM; ıM �, i.e., by projective modules M of rank
n together with the fixed isomorphism

Vn
M Š R. And the map

H 1.R;SLn/! H 1.R;GLn/

corresponds to ŒM; ıM � 7! ŒM �.
As before, we use the description of H 1.R; �d / in terms of R�=R�d and projective

modules P of rank 1 such that P˝d Š R. The map H 1.R; �d /! H 1.R; SLn/ sends a
module P to the pair Œ

Ln
1 P; ı

can
P � where ıcan

P is the canonical isomorphism induced by
the multiplication ıcanWRn ! R.

Summing up, we see that the quotient of
Vm SLn.R/ by

Vm
.SLn.R// contains a copy

of the group R�=R�d . The quotient by this group consists of pairs .P; ˛/ where P is an
element of the Picard group Pic.R/ such that

P˝m Š R and ˛W

nM
1

P �! Rn

is an isomorphism such that ıcan
P D ı

can ı ˛.

6. Exterior powers as the stabilizer of invariant forms II

In the previous sections, we completely analyzed the case of one invariant form. However
if n=m 62 N, as we assume for this section, then the group

Vm GLn.R/ has only an ideal of
invariant forms.

Let us extend the definition of q.x/ from Section 4. Previously considered form

q.x/ D qmŒn�.x/

is associated to the set Œn� D ¹1; : : : ; nº. In this section, we use forms associated to an
arbitrary subsets of Œn� with fixed cardinality. Namely, we define qmV .x/ for an arbitrary
n1-subset V � Œn�, where n1=m 2 N:

• qmV .x/ D
P

sgn.I1; : : : ; I n1
m
/ xI1 � � � xI n1

m

for even m;

• qmV .x/ D
P

sgn.I1; : : : ; I n1
m
/ xI1 ^ � � � ^ xI n1

m

for odd m,

where the sums in the both cases range over all unordered partitions of the set V into
m-element subsets I1; : : : ; I n1

m
.

As usual, f mV .x
1; : : : ; xk/ denotes the Œ full � polarization of qmV .x/, where k WD n1

m
.

We ignore the power m in the notation f mV .x
1; : : : ; xk/ and qmV .x/ if it is clear from

context.
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Let nD lmC r where l; r 2N and l is the maximal such. Consider the ideal F DFn;m
of the ring ZŒxI � generated by the forms fV .x1; : : : ; xk/ for all possible ml-element
subsets V ¨ Œn�. We define the extended Chevalley group xGF .R/ as the group of linear
transformations preserving the ideal F :

xGF .R/ WD
®
g 2 GLN .R/ j there exist �V1 ; : : : ; �Vp 2 R

�; c.Vk ; Vl / 2 R such that

fVj .gx
1; : : : ; gxk/ D �Vj .g/fVj .x

1; : : : ; xk/C
X
l¤j

c.Vj ; Vl / � fVl .x
1; : : : ; xk/

for all j satisfying 1 6 j 6 p
¯
:

First we must show that xGF is a group scheme. We use the following standard argu-
ment.

Let f1; : : : ; fs be arbitrary polynomials in t variables with coefficients in a com-
mutative ring R. We are interested in the linear changes of variables g 2 GLt .R/ that
preserve the condition that all these polynomials simultaneously vanish. In other words,
we consider all g 2 GLt .R/ preserving the ideal A of the ring RŒx1; : : : ; xt � generated
by f1; : : : ; fs . It is well known (see, e.g., [10, Lemma 1] or [36, Proposition 1.4.1]) that
the set GA.R/D FixR.A/D FixR.f1; : : : ; fs/ of all such linear variable changes g forms
a group. For any R-algebra S with 1, we can consider f1; : : : ; fs as polynomials with
coefficients in S . Thus the group G.S/ is defined for all R-algebras. It is clear that G.S/
depends functorially on S . It is easy to provide examples showing that S 7! G.S/ may
fail to be an affine group scheme over R. This is due to the fact that GA.R/ is defined by
congruences, rather than equations, in its matrix entries. However in [36, Theorem 1.4.3]
a simple sufficient condition was found, that guarantees that S 7! G.S/ is an affine group
scheme. Denote byRŒx1; : : : ; xt �r the submodule of polynomials of degree at most r . The
following lemma is [36, Corollary 1.4.6].

Lemma 24. Let f1; : : : ; fs 2 ZŒx1; : : : ; xt � be polynomials of degree at most r and let A
be the ideal they generate. Then for the functor S 7! FixS .f1; : : : ;fs/ to be an affine group
scheme, it suffices that the rank of the intersection A \ RŒx1; : : : ; xt �r does not change
under reduction modulo any prime p 2 Z. This is true in particular if all generators of A
remain independent modulo p for all prime p.

We apply this lemma for the ideal F in ZŒxI �.

Lemma 25. Let n D ml C r , wherem; l 2 N. Then the functor R 7! xGF .R/ is an affine
group scheme over Z.

Proof. Let us show that for any prime p the polynomials fVj are linear independent
modulo p. Indeed, specializing xI appropriately, we can guarantee that one of these poly-
nomials takes value ˙1, while all other vanish. Let I1 t � � � t Il D Vj be a partition
of some ml-element subset Vj � Œn�. Set xIj WD 1 for i D 1; : : : ; l and xI WD 0 other-
wise. The monomial xI1 � � � xIl occurs only in one form corresponding to the partition
Vj D I1 t � � � t Il . Thus the value of the polynomial fVj is sgn.I1; : : : ; Il / D ˙1.
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Our immediate goal is to prove the coincidence of xGF and
Vm GLn. Lemma 20 is

useful for this again. Using the results of the previous two sections, we only must verify
coincidence of

Vm GLn.K/ and xG0F .K/ for algebraically closed fields and smoothness
of xGF .

The proof of the following proposition is completely analogous to the proof of Propo-
sition 21.

Proposition 26. Suppose K is an algebraically closed field. Then

Vm GLn.K/ D xG0F .K/:

To verify that the scheme xGF is smooth one needs to evaluate the dimension of the Lie
algebra. As above, it is possible to identify the Lie algebra Lie. xGF .K// with a homomor-
phism kernel sending ı to 0 inKŒı�. Thus Lie. xGF .K// consists of the matrices gD eC yı
where y 2 MN .K/ satisfying the following conditions

fVj .gx
1; : : : ; gxk/ D �Vj .g/fVj .x

1; : : : ; xk/C
X
l¤j

c.Vj ; Vl /fVl .x
1; : : : ; xk/

for 1 6 j 6 p and x1; : : : ; xk 2 KN .

Theorem 27. For any field K the dimension of the Lie algebra Lie. xGF .K// does not
exceed n2.

Proof. Let g be a matrix satisfying the above conditions for all 16 j 6p and x1; : : : ;xk 2
KN . Plugging in g D e C yı and using that the form fVj is k-linear, we get

ı
�
fVj .yx

1; x2; : : : ; xk/C � � � C fVj .x
1; : : : ; xk�1; yxk/

�
D .�Vj .g/ � 1/fVj .x

1; : : : ; xk/C
X
l¤j

c.Vj ; Vl /fVl .x
1; : : : ; xk/

for all 1 6 j 6 p.
Now we show that the entries of the matrix y are subject to the same linear depen-

dences, as in Theorem 23. By the very definition of the forms, fVj .eI1 ; : : : ; eIk / D 0

except the cases when ¹Ilº is a partition of the set Vj D I1 t � � � t Ik .

• If d.I; J / 6 m � 2 (jI [ J j > mC 2), then yI;J D 0. Indeed, then there is a set of
pairwise disjoint indices I2; : : : ; Ik 2

Vm
.Vj X I / such that d.J; I2/ > 1; d.J; I3/ >

1 and d.J; I4/ D � � � D d.J; Ik/ D 0. Set x1 WD eJ ; x
l WD eIl ; 2 6 l 6 k. Then

fVj .x
1; yx2; : : : ; xk/ D � � � D fVj .x

1; x2; : : : ; yxk/ D 0. It follows that

fVj .yx
1; x2; : : : ; xk/ D ˙yI;J D 0:

• If d.I; J / D d.M;H/ D m � 1, then yI;J D ˙yH;M . Here there is a set of pairwise
disjoint indices M; I3; : : : ; Ik 2

Vm
.Vj X I / such that d.J;M/ D 1 and d.J; I3/ D

� � � D d.J; Ik/ D 0. Set x1 WD eJ ; x2 WD eM ; xl WD eIl ; 3 6 l 6 k and denote by H
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the index Vj X .J [ I2 [ � � � [ Ik/. Then

fVj .x
1; x2; yx3; : : : ; xk/ D � � � D fVj .x

1; x2; : : : ; yxk/ D 0:

It follows that

fVj .yx
1; x2; : : : ; xk/C fVj .x

1; yx2; x3 : : : ; xk/ D 0:

But

fVj .yx
1; x2; : : : ; xk/ D sgn.I;M; I3; : : : ; Ik/ � yI;J ;

fVj .x
1; yx2; x3; : : : ; xk/ D sgn.J;H; I3; : : : ; Ik/ � yH;M :

• Finally, for diagonal entries the following condition holds

yI;I � yM;M D yH;H � yJ;J ;

where d.I; J / D d.H;M/ D 0 and I [ J D H [M . In this case there is a set of
pairwise disjoint indices I3; : : : ; Ik 2

Vm
.Vj n .I [ J //. In other words, I;J;I3; : : : ; Ik

is a partition of the set Vj . Put x1 WD eI , x2 WD eJ , xl WD eIl where 3 6 l 6 k. Since
fVl .x

1; : : : ; xk/ D 0 for all l ¤ j , we get�
�Bj .g/ � 1

�
D ı.yI;I C yJ;J C yI3;I3 C � � � C yIk ;Ik /:

On the other hand, H;M; I3; : : : ; Ik is partition of the set Vj too, where I [ J D
H [M . Substituting x1 WD eH , x2 WD eM , xl WD eIl for all 3 6 l 6 k, we have�

�Bj .g/ � 1
�
D ı.yM;M C yH;H C yI3;I3 C � � � C yIk ;Ik /:

Combining the obtained qualities, we see that yI;I C yJ;J D yM;M C yH;H .

Thus, as in the proof of Theorem 23, it turns out that the dimension of the Lie algebra
Lie. xGF .K// does not exceed n2: the entries yI;J do not contribute to the dimension when
d.I; J / 6 m � 2, they make a contribution n.n � 1/ when d.I; J / D m � 1 and, finally,
they make a contribution n for d.I; J / D m.

Consequently we verified all the condition from Lemma 20 and can conclude thatVm GLn equals the stabilizer of F . The proof is similar to the proof of Theorem 1.

Theorem 2. Using prior notation,
VmGLn and xGF are isomorphic as affine group schemes

over Z.

7. Normalizer theorem

We modify our approach in proving Theorem 3 by contrasting it with Theorems 1 and 2.
Specifically, in Theorem 28, we establish that the functors of R-points coincide for the
group schemes under consideration, for an arbitrary ring R.
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Theorem 28. If n > 4 and n=m is an integer greater than 2, then for any commutative
ring R, we have

N
�Vm En

�
.R/ D N

�Vm SLn
�
.R/ D Tran

�Vm En;
Vm SLn

�
.R/

D Tran
�Vm En;

Vm GLn
�
.R/ D

Vm GLn.R/;

where all normalizers and transporters are taken inside the group scheme GL.nm/.

Before proving the theorem, we address the issue of group-theoretic vs. scheme-
theoretic objects appearing in the theorem. Classically, the theorem is formulated with
normalizers and transporters as abstract groups. For example, the (group of R-points of
the) transporter

Tran.
Vm En;

Vm SLn/.R/

WD
®
g 2 GL.nm/.R/ j z

g
2
Vm SLn. zR/ for all R-algebras zR and z 2

Vm En. zR/
¯

should be replaced with the transporter (as an abstract group)

Tran
�Vm En.R/;

Vm SLn.R/
�

WD
®
g 2 GL.nm/.R/ j z

g
2
Vm SLn.R/ for all z 2

Vm En.R/
¯
:

In this presentation, we immediately see the inclusion

Tran.
Vm En;

Vm SLn/.R/ 6 Tran
�Vm En.R/;

Vm SLn.R/
�
:

The next proposition [20, Lemma 4.1, Proposition 4.3] presents other more nontrivial
inclusions between different version of the normalizers and transporters.

Proposition 29. In the assumptions of Theorem 3 and 28, the following inclusions hold:

N
�Vm En.R/

�
D Tran

�Vm En.R/;
Vm SLn.R/

�
> N

�Vm SLn.R/
�
;

N
�Vm En

�
.R/ D Tran

�Vm En;
Vm SLn

�
.R/ D N

�Vm SLn
�
.R/:

The question of when all these groups coincide is quite tricky. For example, [20,
Proposition 4.5] proves it in a general situation for algebras over infinite fields; and [19]
proves it for our case for an arbitrary R with char.R/ ¤ 2.

Proof of Theorem 28 (and Theorem 3). First, the equality of the first three sets follows
from Proposition 29. Moreover, a standard Lie-theoretic argument [11, Chapter 4, Corol-
lary 3.9] shows that N.

Vm SLn/.R/ is a group scheme, so all three of them are.
Second, we prove the inclusion

Vm GLn.R/6N.
Vm SLn/.R/ via Theorem 18. Indeed,

g 2
Vm GLn.R/ implies that g stabilizes the form f up to a scalar �.g/. Then, for an arbi-

traryR-algebra zR, the element gbg�1 stabilizes f as �.g/�.g�1/D 1 and b 2
Vm SLn. zR/

stabilizes f .
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Third, we show the inclusion Tran.
Vm En;

Vm SLn/.R/ 6
Vm GLn.R/. We pick an

element g 2 Tran.
Vm En;

Vm SLn/.R/ and an element h 2
Vm En. zR/. Then a WD ghg�1

belongs to
Vm SLn. zR/, and thus

f .ax1; : : : ; axk/ D f .x1; : : : ; xk/:

Substituting .gx1; : : : ; gxk/ for .x1; : : : ; xk/, we get

f .ghx1; : : : ; ghxk/ D f .gx1; : : : ; gxk/:

Consider the form DWRN � � � � �RN ! R defined by the rule

D.x1; : : : ; xk/ WD f .gx1; : : : ; gxk/:

By our assumption, one has

D.hx1; : : : ; hxk/ D D.x1; : : : ; xk/

for all h 2
Vm En. zR/. Hence the form D is invariant under the action of

Vm En. zR/. Thus
Proposition 17 shows us

D.x1; : : : ; xk/ D � � f .x1; : : : ; xk/ for some � 2 zR:

As the transporter is a group, we can plug in g�1 instead of g. Thereby we conclude that
� is invertible. This shows that g belongs to the group xGf . zR/. But initially g 2 GLN .R/,
so g belongs to xGf .R/ which by Theorem 1 coincides with

Vm GLn.R/.
Finally, the equality Tran.

VmEn;
Vm SLn/.R/DTran.

VmEn;
VmGLn/.R/ follows from

Proposition 17 and Theorem 1. Indeed, if zg (with z and g are from zR-points of the
group schemes) belongs to

Vm GLn Š xGf , then the scalar of semi-invariancy is det.zg/D
det.z/ D 1. Therefore zg belongs to Gf Š

Vm SLn.

Remark 30. We turn to the structure theory of Lie groups for proving thatN.
Vm SLn/ is a

group. Alternatively, we can employ the proved isomorphism N.
Vm SLn/ Š Gf to deduct

explicit equations, as in [21], for the functor N.
Vm SLn/ and, using Jacobi’s complemen-

tary formula, verify that they cut out a group scheme.

Remark 31. The equivalence Tran.E.ˆ;�/;G.ˆ;�//Š Tran.E.ˆ;�/; xG.ˆ;�// holds
in a general situation. It is enough to use the argument of [20, Lemma 4.1] and immediate
generalization of the main theorem of [14] to the extended Chevalley group xG.ˆ;�/.
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