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Equivariant birational geometry of linear actions

Yuri Tschinkel, Kaiqi Yang, and Zhijia Zhang

Abstract. In this paper, we study linear actions of finite groups in small dimensions, up to equiv-
ariant birationality.

1. Introduction

The classification of actions of finite groups on rational surfaces, up to equivariant bira-
tionality, has a rich past and an active present. It goes back at least to the classical work
of Bertini, Castelnuovo, Kantor, Segre, with the focus on involutions and their fixed loci,
and to the work of Manin, Iskovskikh, and Sarkisov, with an emphasis on the group action
on the Picard group [28], classification of elementary birational transformations [17], and
equivariant birational rigidity [36]. The fundamental work of Dolgachev–Iskovskikh [13]
summarizes and completes this vast program, to a certain extent: it gives a list of finite
groups that can act on rational surfaces, and presents an algorithm that allows to distin-
guish different birational actions of a group, in many cases.

More precisely, the equivariant Minimal Model Program (MMP) shows that an action
of a finite group G on a rational surface can be realized as a regular action either on a
Del Pezzo surface or conic bundle over P1, see [30]. One can assume that the surface
is minimal, i.e., no equivariant blow downs are possible. Finite group actions on minimal
Del Pezzo surfaces of low degree are rigid, and visible via induced actions on the primitive
Picard lattice, i.e., as subgroups of the respective Weyl group.

The most significant “What is left?” [13, Section 9] was the classification, up to bira-
tionality, of actions on Del Pezzo surfaces of high degree, e.g., linear and projectively
linear actions on the projective plane.

Definition 1.1. A regular generically free action of a finite groupG on projective space Pn

is called linear, respectively, projectively linear if it arises via projectivizations P .V / of
an .nC 1/-dimensional representation V of G, respectively, of a central extension of G.

Finite subgroups of PGL3.C/ and PGL4.C/ has been classified by Blichfeldt [3],
where he defined a G-action on Pn to be:

• intransitive: if the representation V is reducible;
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• transitive, but imprimitive: if the action is not intransitive, but there is a nontrivial
normal subgroup of G acting intransitively;

• primitive: neither of the above.

Geometrically, one can interpret the definition as follows: a finite group action on P2 is
intransitive if it fixes a point, and is imprimitive if it has an orbit of points of length 3; the
action on P3 is intransitive if it fixes a point, or leaves a line invariant, and is imprimitive
if it has an orbit of points of length 4, or leaves the union of two disjoint lines invariant.
Equivariant birational geometry of primitive actions was essentially settled, via equivari-
ant MMP, in [34]. On the other extreme, the birational classification of linear actions of
abelian groups has been settled, in all dimensions, in [33, Theorem 7.1]. In general, the
classification of regular actions on P2, up to birationality, is still an open problem.

The case of threefolds is much more involved. As in dimension 2, the birational classi-
fication of linear actions on P3 is an open problem. Significant progress has been achieved
in analyzing primitive actions [7,11], or involutions in the Cremona group Cr3 (see [29]).

New equivariant birational invariants were defined in [20] and [22, Definitions 4.2
and 4.4]. The definitions assume that the ground field is of characteristic zero and con-
tains roots of unity of order dividing the order of G. The invariants are computed on an
appropriate birational model X (standard form) and take values in the Burnside group
Burnn.G/, which is defined as a quotient of a symbols group by explicit relations. The
symbols encode information about loci with nontrivial abelian stabilizers, the weights of
the induced action in the normal bundle to these loci, as well as the induced action on
the corresponding function fields, see [14, Section 7] for definitions and [14, Sections 6
and 7.6] for examples. The paper [24] applied this formalism to the study of actions on P2

and produced new examples of non-birational intransitive actions.
In this paper, we work over an algebraically closed field k of characteristic zero. We

apply the formalism of Burnside groups to the study of linear actions in dimensions � 3.
We make extensive use of the algorithm developed in [24], which allows to recursively
compute the class in Burnn.G/ of a (projectively) linear action of a finite group G on Pn.
We have implemented this algorithm in magma and compiled tables of classes of such
actions on P2 and P3, see [40]. Among our results are:

• in dimension 2, the Burnside formalism does not allow to distinguish primitive actions
but does yield many new examples of non-birational linear and projectively linear
actions, see Section 7.

• in dimension 3, we exhibit new types of non-birational linear actions on P3 as well as
nonlinearizable actions on smooth quadrics, see Section 8 and 9.

In essence, the Burnside formalism complements birational rigidity techniques as in [7,
11, 34].

Here is a roadmap of the paper. In Section 2, we recall basic facts concerning equi-
variant birational geometry and relevant classical invariants used to distinguish actions
up to birationality. In Section 3, we recall the definition of the Burnside group Burnn.G/
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introduced in [20]; this group receives birational invariants of generically free actions of
a finite group G on n-dimensional varieties. We tabulate the groups in small dimensions
and for small G, and develop new tools for working with these groups. In Section 4, we
explain how to compute the class

ŒX ý G� 2 Burnn.G/

of a generically free G-action on an n-dimensional variety X . In Section 5, we apply the
formalism to curves. In Section 6 we give examples of computations of classes of linear
actions, using the algorithm in [24]. In Sections 7 and 8, we investigate linear actions on
P2 and P3, providing new examples of non-birational actions, not distinguishable with
previous tools. In Section 9, we study quadrics of dimension � 3.

2. Generalities

We recall basic terminology and notation. We consider generically free, regular actions
of finite groups G on smooth projective algebraic varieties X over an algebraically closed
field k of characteristic zero. Generically free means that there exists a Zariski open subset
ofX whereG acts freely. By convention, the action is from the right, and it will be denoted
byX ýG. The induced leftG-action on the function field k.X/ is denoted byG ýk.X/.
We let XG WD ¹p 2 X; p � g D pº be the set of G-fixed points on X .

We write X �G X 0, if there exists a G-equivariant birational map X Ü X 0. This
means that there exists a G-equivariant isomorphism of field extensions

k.X/=k
�
�! k.X 0/=k:

We say that X;X 0 are stably equivariantly birational if

X � Pm �G X
0
� Pm;

for some m, with trivial action on the second factor. Of particular interest is the study
of (conjugacy classes of) finite subgroups of the Cremona group Crn D Bir Aut.Pn/, the
group of birational automorphisms of projective space, and the study of equivariant bira-
tionalities X �G P .V /. We say that the G-action on X is:

• linearizable if V is a faithful representation of G, i.e., the action arises from an injec-
tive homomorphism G ! GL.V _/, e.g., any cyclic group action on Pn;

• projectively linearizable if the G-action on P .V / arises from a projective representa-
tion G ! PGLnC1, i.e., a linear representation zG ! GL.V _/ of a central extension

1! �nC1 ! zG ! G ! 1;

where �nC1 denotes cyclic group of order nC 1. As an example, dihedral group Dn-
actions on P1 with even n are projectively linearizable but not linearizable as such
actions necessarily come from 2-dimensional representations of D2n.
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Note that a linearizable action is projectively linearizable, but the converse need not hold.
We call the corresponding actions on P .V / linear, respectively, projectively linear. Pro-
jectively linear actions on Pn with a fixed point are linear.

Among general approaches to the (stable) linearizability problem are:

• birational rigidity, see, e.g., [10, 31],

• intermediate Jacobians, see [15],

• group cohomology, such as Amitsur invariant (see [2, Section 6], [35, Theorem 2.14])
or invariance of H1.G; Pic.X// under equivariant blowups of smooth projective G-
varieties X , see [4].

We next list technical tools that are ubiquitous in equivariant birational geometry:

• If X is rationally connected and G is cyclic then XG ¤ ;.

• If G is abelian and � W zX Ü X is a G-equivariant birational map between smooth
projective varieties, then

XG ¤ ; , zXG ¤ ;:

Note that abelian group actions on a smooth projective variety do not always have fixed
points, e.g., the generically free C 22 -action on P1, or translation actions on abelian vari-
eties.

• (RY) Assume that a finite abelian group G acts regularly and generically freely on a
smooth projective variety X of dimension n. Let p 2 XG be a G-fixed point and

.a1; : : : ; an/; aj 2 G
_

the collection of characters of G occurring in the tangent space at p. Let

det.p/ WD a1 ^ � � � ^ an 2 ^n.G_/

be the determinant. Let � W zX!X be aG-equivariant birational morphism. Then, by [33],
there exists a G-fixed point q 2 ��1.p/ � zX such that

det.p/ D ˙ det.q/:

• (No-name lemma) If G acts generically freely on X and E ! X is a G-vector bundle
of rank m, then

E �G X � Pm;

with trivial action on the second factor.

• (MRC) Let r D r.X/ be the dimension of the Maximal Rationally Connected (MRC)
quotient of an algebraic variety X . This is a well-defined equivariant birational invariant,
by the functoriality of MRC quotients (see, e.g., [19, Section IV.5.5]).

• (H1) Let X be a smooth projective variety with a generically free, stably linearizable,
action of G. Then, for all H � G, one has

H1.H;Pic.X// D 0:
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A G-variety satisfying this property will be called H1-trivial. This is a stable birational
property.

In the next sections, we discuss G-birational invariants introduced in [20] and [22].
They are based on an analysis of the geometry of subvarieties of X with nontrivial stabi-
lizers, together with the induced representation in the normal bundle, and can be viewed
as a generalization of the (RY) invariant.

3. Equivariant Burnside groups

Throughout,G is a finite group andH a finite abelian group. WhenH �G is a subgroup,
we write ZG.H/ (resp. NG.H/) for its centralizer (resp. normalizer) in G. We write

H_ WD Hom.H; k�/

for the group of characters of H .
There are three versions of symbols groups, corresponding to the kind of data we

attach to loci with nontrivial stabilizers (on a standard model, see Section 4). We recall the
definitions, following [20] and [22].

3.1. Maximal stabilizers

This version addresses (generically free, regular) actions of finite abelian groups H on
smooth projective varieties X , of dimension n; one records the weights of H in the tan-
gent space at H -fixed points. In detail, for n 2 N, let �n.H/, be the free abelian group
generated by symbols

ˇ D .b1; : : : ; bn/; b1; : : : ; bn 2 H
_; hb1; : : : ; bni D H

_;

subject to the reordering relation:

(O) ˇ D .b1; : : : ; bn/ � ˇ
0 D .b01; : : : ; b

0
n/ if there is a permutation � 2 Sn, with

b0i D b�.i/ for i D 1; : : : ; n.

Consider the quotient �n.H/! Bn.H/ by the blowup relation:

(B) For ˇ D .b1; : : : ; bn/, n � 2, ˇ is identified with the symbol´
.0; b2; : : : ; bn/ when b1 D b2, and

ˇ1 C ˇ2 otherwise;

where

ˇ1 WD .b1 � b2; b2; b3; : : : ; bn/; ˇ2 WD .b1; b2 � b1; b3; : : : ; bn/:
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3.2. Combinatorial Burnside group

This version takes into account arbitrary stabilizers for actions of general finite groups,
but ignores the induced action on function fields of strata with nontrivial stabilizers.
For n 2 N, let �Cn.G/ be the abelian group generated by the symbols

.H; Y; ˇ/; (3.1)

where

• H � G is an abelian subgroup (the stabilizer of the symbol);

• Y is a subgroup of ZG.H/=H ; and

• ˇ D .b1; : : : ; bn�d / is a sequence of nontrivial characters ofH , generatingH_, and d
runs over all integers in Œ0; : : : ; n�.

Symbols with d D 0 are called point symbols and those with d D n� 1 divisorial symbols.
The symbols (3.1) are subject to reordering and conjugation relations:

(O) .H; Y; ˇ/ D .H; Y; ˇ0/ if ˇ � ˇ0, as in Section 3.1.

(C) .H; Y; ˇ/ D .H 0; Y 0; ˇ0/ if there exists some g 2 G such that

H 0 D gHg�1; Y 0 D gYg�1;

and the characters in ˇ0 arise from those in ˇ via conjugation by g.

Consider the quotient �Cn.G/! BCn.G/ by the vanishing and blowup relations:

(V) .H; Y; ˇ/ D 0 when b1 C b2 D 0.

(B) .H; Y; ˇ/ D ‚1 C‚2, where

‚1 WD

´
0 if b1 D b2, and

.H; Y; ˇ1/C .H; Y; ˇ2/ if b1 ¤ b2;

with ˇ1, ˇ2 as above, and

‚2 WD

´
0 if bi 2 hb1 � b2i for some i , and

. xH; xY ; x̌/ otherwise:

Here,
xH WD Ker.b1 � b2/ � H;

with
H= xH � xY � ZG.H/= xH;

and xY is the preimage of Y in ZG.H/= xH . The corresponding character x̌ consists of
restrictions of characters of ˇ:

x̌ WD .xb2; xb3; : : : /; xbi 2 H
_=hb1 � b2i; i ¤ 1:

The images of point symbols, respectively, divisorial symbols, will be called point classes,
respectively, divisorial classes.
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3.3. Equivariant Burnside group

The most refined version records both the action of the stabilizer in the normal bundle and
the induced action on the function fields of strata.

For n 2 N, let Symbn.G/, be the free abelian group generated by symbols

.H; Y ýK;ˇ/; (3.2)

where

• H � G is an abelian subgroup;

• Y � ZG.H/=H is a subgroup;

• K is a finitely generated extension of k, of transcendence degree d � n, with faithful
action by Y ; and

• ˇ D .b1; : : : ; bn�d / is a sequence of nontrivial characters of H , generating H_.

As in the case of combinatorial Burnside groups, we call a symbol in Symbn.G/ divisorial
if d D .n� 1/, i.e., ˇD .b/, for some generator b ofH_. We call a symbol a point symbol
if d D 0. Generally, we call .n � d/ the codimension of the symbol.

The symbols (3.2) are subject to reordering and conjugation relations:

(O) .H; Y ýK;ˇ/ D .H; Y ýK;ˇ0/ if ˇ � ˇ0.

(C) .H;Y ýK;ˇ/D .H 0; Y 0 ýK 0; ˇ0/ if, for some g 2 G, we haveH 0 D gHg�1,
Y 0 D gYg�1, there is an isomorphism K Š K 0, trivial on k, that is compatible
with the respective actions, and ˇ0 obtained from ˇ via conjugation by g.

We consider the quotient

Symbn.G/! Burnn.G/

by the vanishing and blowup relations on the symbols which are not divisorial:

(V) .H; Y ýK;ˇ/ D 0 when b1 C b2 D 0.

(B) .H; Y ýK;ˇ/ D ‚1 C‚2, where

‚1 WD

´
0 if b1 D b2, and

.H; Y ýK;ˇ1/C .H; Y ýK;ˇ2/ if b1 ¤ b2;

‚2 WD

´
0 if bi 2 hb1 � b2i for some i , and

. xH; xY ýK.x/; x̌/ otherwise:

Here xH WD Ker.b1 � b2/�H and x̌ is the image of characters of ˇ in xH_; there is also a
recipe to produce a xY -action on K.x/, extending the given action of Y (via the canonical
homomorphism xY ! Y ) on K, see the action construction in [22, Section 2].
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m B2.G/ BC2.G/ BC3.G/

2 0 0 0

3 Z Z 0

4 Z Z 0

5 Z2 Z2 0

6 Z2 ˚ Z=2 Z4 ˚ Z=2 0

7 Z3 ˚ Z=2 Z3 ˚ Z=2 Z=2

8 Z3 ˚ Z=4 Z5 ˚ Z=4 Z=2

9 Z5 ˚ Z=3 Z7 ˚ Z=3 Z

10 Z4 ˚ .Z=2/2 ˚ Z=6 Z8 ˚ .Z=2/2 ˚ Z=6 .Z=2/2

11 Z6 ˚ Z=5 Z6 ˚ Z=5 Z˚ Z=5

12 Z7 ˚ Z=8 Z16 ˚ .Z=2/2 ˚ Z=8 Z2 ˚ .Z=2/2

13 Z8 ˚ Z=7 Z8 ˚ Z=7 Z2 ˚ Z=7

14 Z7 ˚ .Z=2/4 ˚ Z=12 Z13 ˚ .Z=2/6 ˚ Z=12 Z˚ .Z=2/6

15 Z13 ˚ Z=8 Z19 ˚ Z=8 Z5 ˚ Z=2

16 Z10 ˚ .Z=2/2 ˚ Z=16 Z19 ˚ .Z=2/2 ˚ .Z=4/2 ˚ Z=16 Z3 ˚ .Z=2/7

Table 1. Computations for cyclic groups G D Cm.

3.4. Computations

LetG be abelian. The groups Bn.G/ are defined by finitely many generators and relations
and are thus effectively computable. In practice, this is doable for n � 4 and jGj < 300.
Such computations allow us to recognize interesting arithmetic and combinatorial struc-
tures of Bn.G/. In particular, these groups are related to cohomology of congruence
subgroups of GLn.Z/, they carry Hecke operators, admit multiplication and comultipli-
cation, see [20, 21, 23]. Tables for cyclic groups Cm of small order can be found in [20,
Section 5].

The groups BCn.G/ are also finitely generated, with finitely many relations, and thus
computable. A structure theorem, [39, Theorem 5.2], provides simplifications in compu-
tations of BCn.G/, by reduction to modified Bn.H/, for abelian subgroups H � G. For
example, for G abelian, we proved in [39] that

BCn.G/ D
M
H 0�G

M
H 00�H 0

Bn.H
00/;

and in particular there is a surjective homomorphism BCn.G/! Bn.G/. We list B2,
BC2 and BC3 for small groups in the following tables. We start withG WDCm in Table 1,
Table 2 concernsG WD Cn˚Cm, and in Table 3 we record results for small nonabelianG.
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.n;m/ B2.G/ BC2.G/ BC3.G/

.2; 2/ .Z=2/2 .Z=2/2 0

.2; 4/ Z2 ˚ .Z=2/3 Z6 ˚ .Z=2/7 .Z=2/3

.2; 6/ Z3 ˚ .Z=2/4 ˚ Z=4 Z20 ˚ .Z=2/14 ˚ Z=4 .Z=2/9

.2; 8/ Z6 ˚ .Z=2/6 ˚ Z=8 Z30 ˚ .Z=2/18 ˚ .Z=4/4 ˚ Z=8 Z˚ .Z=2/24

.4; 4/ Z11 ˚ Z=2 Z41 ˚ .Z=2/29 Z5 ˚ .Z=2/31

.3; 3/ Z7 Z15 Z3

Table 2. Computations for bicyclic groups G D Cn ˚ Cm.

G BC2.G/ BC3.G/

Q8 .Z=2/3 0

D4 .Z=2/3 0

D5 .Z=2/2 0

A5 .Z=2/3 0

S5 .Z=2/6 ˚ Z=4 0

D6 .Z=2/5 ˚ Z=4 0

A6 .Z=2/7 ˚ Z=4˚ Z Z=2˚ Z

S6 .Z=2/31 ˚ .Z=4/3 ˚ Z=8 .Z=2/5 ˚ Z=4

A7 .Z=2/12 ˚ .Z=4/3 ˚ Z=8˚ Z2 .Z=2/3 ˚ Z

PSL2.F7/ .Z=2/3 ˚ Z Z=2

D5 �D4 .Z=2/118 ˚ Z=4˚ .Z=12/11 ˚ .Z=24/˚ Z .Z=2/63 ˚ Z

Table 3. Computations for small nonabelian groups.

In contrast to Bn.G/ and BCn.G/, the computation of Burnn.G/ is more difficult.
One of the reasons is that the symbols depend on function fields, i.e., algebraic varieties,
which have moduli. For example, there are 3 types of nonlinearizable involutions in the
plane Cremona group Cr2 (de Jonquières, Geiser, Bertini), fixing curves C of genus � 1,
and contributing symbols

s D .C2; 1 ýk.C /; .1// 2 Burn2.C2/:

Since the conjugacy class of an involution in Cr2 is uniquely determined by k.C /, the
symbols s parametrize all conjugacy classes of involutions.
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In the following sections, we discuss various approaches to working with Burnn.G/.
There is a natural homomorphism

Burnn.G/! BCn.G/; (3.3)

defined by forgetting the field information in each symbol (see [23, Section 8]). Note that
it is not necessarily surjective (indeed, all point classes in Burnn.G/ always have triv-
ial Y , while in BCn.G/, such classes may very well be nontrivial). However, sometimes,
this homomorphism allows to distinguish actions by comparing their classes under the
homomorphism (3.3), see Sections 7, 8 and 9.

3.5. Tools

In small dimensions and for small G, we can arrive at simplifications via simple manipu-
lations with defining relations. For reference, we list several such standard operations with
symbols, which are independent of the ambient group and will be frequently used.

We consider the symbols

s D .H; Y ýK;ˇ/; ˇ D .b1; : : : ; bn�d /; K D k.F /; (3.4)

with small H and Y ; geometrically, F is a stratum of dimension d , with generic stabi-
lizer H , see (4.1).

Reduction to point classes. Relation .B/ implies that if d ¤ n � 1 and b1 D b2, then

s D .H; Y ýK.x/; .b2; : : : ; bn�d //; (3.5)

with trivial Y -action on x. In particular, every symbol as in (3.4) with Y D 1 and F D Pd

can be reduced to a point symbol.

Vanishing. Relation .V/ implies that s vanishes (see [22, Proposition 4.7]), providedX
i2I

bi D 0 2 H
_ for some I � Œ1; : : : ; n � d�: (3.6)

Cyclic stabilizers. First recall that the weight r of a character �r of a cyclic group
H D Cm is defined up to modulo m. Namely, one has �r D �r�m for 0 � r � m � 1.
We now explain many situations where the symbol s defined in (3.4) with small cyclic H
vanishes.

H DC2. If ˇ contains more than one entry, then sD 0 2Burnn.G/, by .V/. Now assume
that s is a divisorial symbol, and F �Y F 0 � P1, with F as in (3.4), some F 0, and with
trivial action on the second factor. By (3.5) and .V/,

s D .C2; Y ýk.F 0/; .1; 1// D 0:
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H D C3. The symbol s vanishes, if its codimension is � 3, by (3.6). Together with .B/
this implies

.C3; 1 ýK;ˇ/ D 0 2 Burnn for n � 3:

For some G, the symbol can be nontrivial, i.e., in Burn2.C3/. On the other hand, if there
is a C6 � G centralizing H , then it supplies additional relations, leading to additional
vanishing. For example, we have

.C3; C2 ýk.P1/; .1; 1//

D .C6; 1 ýk; .1; 4; 1// � .C6; 1 ýk; .1; 3; 1// � .C6; 1 ýk; .3; 4; 1//

D �.C6; 1 ýk; .1; 3; 1// � .C6; 1 ýk; .5; 4; 1// � .C6; 1 ýk; .3; 1; 1//

D �2.C6; 1 ýk; .3; 1; 1//

D �2.C6; 1 ýk.P1/; .1; 3// [by (B)]
D �2.C6; 1 ýk; .1; 3; 3// D 0 2 Burn3.G/:

Similarly,

.C3; C2 ýk.P1/; .2; 2//

D .C6; 1 ýk; .2; 5; 5// � .C6; 1 ýk; .2; 3; 5// � .C6; 1 ýk; .3; 5; 5//

D �.C6; 1 ýk; .2; 1; 5// � .C6; 1 ýk; .5; 3; 5// � .C6; 1 ýk; .3; 5; 5// D 0

D �2.C6; 1 ýk; .5; 3; 3// D 0 2 Burn3.G/:

H WD C4. Consider point symbols for n D 3. There are only two potentially nontrivial
symbols

.C4; 1 ýk; .1; 1; 1//; .C4; 1 ýk; .3; 3; 3//: (3.7)

Indeed, in all other cases, we obtain vanishing of the symbol from relation .V/. Using
(3.6), we derive

0 D .C4; 1 ýk; .1; 2; 1// D .C4; 1 ýk; .3; 2; 1//C .C4; 1 ýk; .1; 1; 1//;

0 D .C4; 1 ýk; .3; 2; 3// D .C4; 1 ýk; .1; 2; 3//C .C4; 1 ýk; .3; 3; 3//;

and thus the two symbols in (3.7) vanish.

H D C5. All symbols

.C5; 1 ýk.Pd /; ˇ/ 2 Burnn.G/; n � 2;

reduce to point classes. Let n D 3 and order b1 � b2 � b3 using (O). Potentially nonvan-
ishing generators are:

.C5; 1 ýk; .i; i; i//; i D 1; : : : ; 4; .C5; 1 ýk; .1; 2; 1//;

and turn to relations:

.C5; 1 ýk; .1; 2; 1// D .C5; 1 ýk; .4; 2; 1//C .C5; 1 ýk; .1; 1; 1//:
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Relation (V) then implies

.C5; 1 ýk; .1; 2; 1// D .C5; 1 ýk; .1; 1; 1//:

On the other hand, we have

.C5; 1 ýk; .1; 2; 1// D .C5; 1 ýk.P1/; .1; 2// D .C5; 1 ýk; .1; 2; 2// D 0:

The same argument shows the vanishing of all other generators.
In summary, we have the following result.

Lemma 3.1. Let G be a finite group and n � 3. Every point class in Burnn.G/, with
stabilizer H D Cm � G and m � 6 is trivial.

Proof. It suffices to prove this for n D 3. We already dealt with m D 2; 3; 4; 5. When
m D 6, ‚2-terms in the blowup relations come from

.C2; C3 ýk.P1/; .1; 1// D 0;

.C3; C2 ýk.P1/; .1; 2// D 0;

.C3; C2 ýk.P1/; .˙1;˙1//:

We prove that the last symbols are also zero in Burn3.G/. By the blowup relation (B),
we know that

0 D .C3; C2 ýk.P1/; .1; 2//

D .C3; C2 ýk.P1/; .2; 2//C .C3; C2 ýk.P1/; .1; 1//:

The vanishing of the last two symbols was showed above in the case of cyclic stabilizer
with H D C3.

For compactness, for point classes, we will use the notation

.b1; b2; b3/ D .C6; 1 ýk.P1/; .b1; b2; b3//:

Applying .B/, we obtain

0 D .1; 4; 1/ D .3; 4; 1/C .1; 3; 1/C .C3; C2 ýk.P1/; .1; 1//:

Similarly,

.3; 4; 1/
(O)
D .1; 4; 3/ D .3; 4; 3/C .1; 3; 3/C‚2 D 0;

since all terms on the right vanish, by .V/ and the fact that

b3 2 hb1 � b2i; b3 D 3; b1 D 1; b2 D 4:

We now have
0 D .3; 4; 1/ D .5; 4; 1/C .3; 1; 1/:

Thus, all ‚2 terms vanish.
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Next, note that once we know that .b1; b2; b3/ D 0 then the same relations, applied to
negatives, yield .�b1;�b2;�b3/ D 0 as well. Thus we need to prove the vanishing of the
nonboldface symbols in the following sequence of relations, which we apply in the given
sequence; in bold we have indicated the terms that vanish by (V), by previous identities,
or by sign change on previously obtained vanishing symbols:

.1; 2; 3/ D .2; 3; 1/ D .5; 3; 1/C .2; 1; 1/;

.1; 1; 2/ D .2; 1; 1/ D .2; 5; 1/C .1; 1; 1/;

.1; 2; 3/ D .1; 3; 2/ D .4; 3; 2/C .1; 2; 2/;

.1; 3; 4/ D .1; 4; 3/ D .3; 4; 3/C .1; 3; 3/;

.1; 1; 3/ D .1; 3; 1/ D .4; 3; 1/C .1; 2; 1/;

.2; 2; 3/ D .2; 3; 2/ D .5; 3; 2/C .2; 1; 2/;

.1; 4; 4/ D .3; 4; 4/C .1; 3; 4/:

This completes the proof.

3.6. Incompressibles

For n D 1, there are no relations, with the exception of the conjugation relation .C/,
i.e., Burn1.G/ is the free abelian group spanned by symbols .H; 1 ýk; .b1//, where
H � G is a cyclic subgroup (up to conjugation).

In dimensions n � 2, we call a divisorial symbol incompressible if it does not appear
in the ‚2-term of any relation .B/. Geometrically, this means that the corresponding
divisor F in (3.4), with the indicated Y -action, is not equivariantly birational to what
could arise, as an exceptional divisor, via a blowup of a standard model from smaller-
dimensional strata with nontrivial stabilizer. In particular, such divisorial symbols do not
participate in any relations, except in the conjugation relation (C). We have

Burnn.G/ D Burntriv
n .G/˚ Burninc

n .G/˚ Burncomp
n .G/;

where

• Burntriv
n .G/ is freely spanned by symbols .1; G ýK; . //, where K is a field of tran-

scendence degree n, with a generically free action of G;

• Burninc
n .G/ is freely spanned by incompressible divisorial symbols, modulo conjuga-

tion; and

• the third summand is generated by all other symbols, subject to relations in Section 3.3
(see [24, Proposition 3.4]).

In some examples, the presence of incompressible symbols already allows to distinguish
birational types of actions, greatly simplifying the arguments (see Section 7). In other
examples, one has to perform computations in Burncomp

n .G/.
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Recall that, for n D 2, we have

• point classes, i.e., K D k and ˇ D .b1; b2/;

• divisorial classes:

– classes of rational curves, i.e., K D k.x/, ˇ D .b1/, and Y cyclic,

– classes of rational curves, with ˇ D .b1/, and Y noncyclic,

– classes of curves of genus � 1, i.e., those where K D k.C /, and C is a curve of
genus � 1.

The incompressible divisorial symbols correspond to the last two cases, see [24, Proposi-
tion 3.6].

Example 3.2. For G D C3, we have Burncomp
2 .C3/ D Z. Indeed, the generators are the

symbols

.C3; 1 ýk; .1; 2//; .C3; 1 ýk; .1; 1//; .C3; 1 ýk; .2; 2//;

.C3; 1 ýk.P1/; .1//; .C3; 1 ýk.P1/; .2//;

subject to the relations

.C3; 1 ýk; .1; 2//
(V)
D 0;

.C3; 1 ýk; .1; 2//
(B)
D .C3; 1 ýk; .1; 1//C .C3; 1 ýk; .2; 2//;

.C3; 1 ýk; .2; 2//
(B)
D .C3; 1 ýk.P1/; .2//;

.C3; 1 ýk; .1; 1//
(B)
D .C3; 1 ýk.P1/; .1//:

Thus, Burncomp
2 .C3/ D Z is freely generated by .C3; 1 ýk; .1; 1//.

Table 4 shows the structure of Burncomp
2 .G/ for G D Cm.

The analysis of incompressible divisorial symbols

xs D . xH; xY ýk.D/; .xb1/ 2 Burn3.G/;

in dimensions n � 3, is more involved. We have not attempted a full classification. The
definition of “incompressibility" of a symbol depends on the group theoretical information
of the ambient group G, see Example 3.3. But in some cases, the geometric information
of D governs the incompressibility. For example, in the following cases, xs is an incom-
pressible symbol regardless of what is the ambient group G:

• D is not uniruled;

• D is xY -solid, i.e., not xY -birational to a xY -equivariant Mori fiber space over a positive-
dimensional base (see [6] for a detailed study of solid toric varieties in dimension� 3);

• nD3 and D is a rational surface which is not xY -equivariantly birational to a Hirze-
bruch surface, see [13] for a classification of such actions.
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m Burncomp
2 .G/ m Burncomp

2 .G/

– – 9 Z8 ˚ Z=3

2 0 10 Z11 ˚ Z=3

3 Z 11 Z6 ˚ Z=5

4 Z2 12 Z22 ˚ Z=4

5 Z2 13 Z8 ˚ Z=7

6 Z6 14 Z17 ˚ Z=2˚ Z=6

7 Z3 ˚ Z=2 15 Z22 ˚ Z=8

8 Z8 ˚ Z=2 16 Z25 ˚ .Z=2/2 ˚ Z=8

Table 4. Structure of Burncomp
2 .G/ for G D Cm.

How do we tell whether or not a symbol

xs WD . xH; xY ýxK;ˇ/ 2 Burnn.G/

is incompressible, in practice? A necessary condition is that xK 6� xY xK 0.x/, for some func-
tion field xK 0, with trivial action of xY on x; such symbols arise via blowup relations from
symbols where some characters in ˇ have multiplicity � 2. The next steps, after verifying
this condition, are:

(1) to list all conjugacy classes of abelian subgroups H � G, together with their cen-
tralizers ZG.H/;

(2) for each H enumerate all nontrivial proper subgroups H 0 ¨ H , and list all sub-
groups Y 0 � ZG.H/=H 0;

(3) if there is no .H 0; Y 0/ conjugated to . xH; xY /, then xs is incompressible;

(4) if there is such a pair, one needs to analyze in detail whether or not the action
construction in [22, Section 2] can produce, birationally, the given action xY ýxK.

Example 3.3. Let n D 3 and G a finite group. Consider a symbol

xs D .C2; C2 � C2 ýxK; .1// 2 Burn3.G/;

where xK D k.P2/ and xY D C2 � C2 acts linearly on P2, in particular, with fixed points.
When G D Q8, xs is incompressible. There are four conjugacy classes of nontrivial

abelian subgroups of G, one C2, with centralizer G, and three C4, with centralizer itself.
Such an action is not birational to an action of xY on P1 � P1, with trivial action on the
second factor. By step (2) above, such xY D C2 � C2 does not arise.

On the other hand, whenG DC 32 , the symbol xs is compressible – applying the blowup
relation (B) to the symbol

.C 22 ; C2 ýk.P1/; ..1; 0/; .0; 1///; (3.8)
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the ‚2 symbol which arises is

‚2 D .C2; C
2
2 ýk.P1 � P1/; ..1; 0/; .0; 1///;

with each factor of C 22 acts faithfully on each factor of P1 � P1. This action has a fixed
point on P1 � P1 and is thus linearizable, i.e., birational to the linear C 22 -action on P2.
We then conclude xs D ‚2 and xs is a compressible symbol.

Remark 3.4. When the stabilizer group H is an abelian group with k generators, we
identify the character group H_ with the group H itself, and denote a character by a
k-tuple of weights. For example, in the symbol (3.8),

.1; 0/; .0; 1/

represent two characters of C 22 . We will use this notation frequently when displaying
computations of symbols in the remaining sections.

3.7. MRC quotients

In the key relation (B), s D .H; Y ýk.F /; ˇ/ D ‚1 C ‚2, the term ‚2 is a symbol
with the function field k.F /.x/. Note that k.F / is the function field of a rationally con-
nected (RC) variety if and only if this holds for K.F /.x/. In fact, in any given relation,
all appearing terms have the same dimension of the MRC quotient r D r.F /. This yields
a direct sum decomposition

Burnn.G/ D Burntriv
n .G/˚ Burnrc

n .G/˚

n�1M
rD1

Burnnrc;r
n .G/; (3.9)

where

• Burntriv
n .G/ is freely spanned by symbols with H D 1;

• Burnrc
n .G/ is generated by symbols s with H ¤ 1, and fields K D k.F /, where F is

a rationally connected variety; and

• Burnnrc;r
n .G/ is generated by symbols withH ¤ 1 andK D k.F / the function field of

a variety whose MRC quotient has dimension r .

Different summands in this decomposition could have a nontrivial intersection with
Burninc

n .G/, the incompressible divisorial symbols.

3.8. H1-triviality

Further decompositions of Burnn.G/ can be obtained by realizing that relation .B/ pre-
serves H1.Y 0; Pic.F //, Y 0 � Y , where F is a smooth projective model of the function
field in the symbol s. In particular, we have

Burnrc
n .G/ D Burnrc;H1D0

n .G/˚ Burnrc;H1¤0
n .G/;

depending on the (non)triviality of the H1-condition (see Section 3).
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Lemma 3.5. If xs 2 Burnrc
3 .G/ is a compressible divisorial symbol, then

xs 2 Burnrc;H1D0
3 .G/:

Proof. Indeed, it can only arise from a symbol s D .H; Y ýk.P1/; ˇ/, which is H1-
trivial.

4. Computing the classes

We recall the definition of the class of a generically free G-action on a smooth projective
variety X .

We assume that X is in standard form, i.e., there is an open subset U � X where
the G-action is free, with complement X n U a normal crossings divisor such that for its
every component D and all g 2 G, we have .D � g/ \ D is either empty or all of D,
see [14, Section 7.2] for more details. Such a model of the function field K can always
be obtained via equivariant blowups with smooth centers, and every further blowup of
such a model is also in standard form. One of its features is that all stabilizers are abelian,
see [14, Section 7.2] and [32, Theorem 4.1]. By definition, the class of such an action

ŒX ý G� WD
X
H

X
F

.H; Y ýk.F /; ˇF / 2 Burnn.G/ (4.1)

is a sum over conjugacy classes of stabilizers H of maximal strata F � X with these
stabilizers, with the induced action of a subgroup Y � ZG.H/=H on the corresponding
function field; ˇF is the sequence of weights of H in the normal bundle to F . In other
words, the symbol records one representative of a G-orbit of a (maximal) stratum with
stabilizerH : changing a component in thisG-orbit conjugates the stabilizer by an element
g 2 G, the action on that component, and the induced action in the normal bundle to that
component; this is reflected in the conjugation relation .C/.

The sum (4.1) contains a distinguished summand, .1; G ýk.X/; . // 2 Burntriv
n .G/,

reflecting the G-action on the generic point of X . Of course, there can be actions where
there are no other summands in (4.1), e.g., a translation action on an elliptic curve. In such
cases, the Burnside group formalism provides no information about the G-action. On the
other hand, we will exhibit many examples, where the actions can be distinguished via
images of the corresponding classes under projections to Burninc

n .G/ or Burncomp
n .G/.

We note that incompressible divisorial symbols can be read off from any equivariant
birational model, even one which is not in standard form. It is typically a nontrivial task to
find a standard model. Indeed, a linear representation V of a nonabelian group G, and its
equivariant compactification P .1˚ V /, where 1 is the trivial representation, by definition
have strata with nonabelian stabilizers, e.g., the origin of V ; and one may have to blow up
several times to reach abelian stabilizers. In [24] it was shown that aG-equivariant version
of De Concini–Procesi compactifications of subspace arrangements provides a standard
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model for the G-action on P .V /; here the relevant subspaces in P .V / correspond to loci
with nontrivial stabilizers. We illustrate this in Section 6. A similar algorithm for actions
on toric varieties was presented in [25].

Next, assume we are given differentG-actions, presented onX andX 0, which are both
in standard form. To distinguish these, one expresses the classes as in (4.1), and considers
the projection of the difference ŒX ý G� � ŒX 0 ý G� to Burninc

n .G/. Since there are no
blowup relations between symbols in that group, it is easy to see whether or not this
difference vanishes; see Corollary 7.7.

If the difference does vanish in this group, we can consider projections to other direct
summands introduced in Sections 3.6, 3.7, and 3.8:

Burncomp
n .G/; Burnrc

n .G/; : : :

As mentioned in Section 3, these groups are harder to compute, in general. One of the
main difficulties is that one has to keep track of infinitely many generating symbols, and
of relations that are implied by (often nontrivial) stable equivariant birationalities. For
example, by the No-name lemma, any two faithful G-representations are stably equiv-
ariantly birational, but not necessarily equivariantly birational. Further examples of such
stable equivariant birationalities can be found in [16]. In some cases, we are able to over-
come this intrinsic difficulty by passing to the combinatorial Burnside group BCn.G/,
via (3.3). We have implemented algorithms checking nonvanishing of any given class in
BCn.G/, for all n � 2; however, these are practical only for small n.

In the following sections, we will apply this machinery to

• (projectively) linear actions on Pn, with G � PGLnC1, n � 3;

• smooth quadric hypersurfaces X � Pn, n � 4.

5. Linear actions in dimension 1

We recall the well-known list of finite G � PGL2:

Cm; Dm; A4; S4; A5;

where Cm is the cyclic group of order m and Dm is the dihedral group of order 2m. The
corresponding actions on P1 are linear if and only if G is cyclic, or dihedral with m odd.

The classification of birational actions on P1 is straightforward: two G-actions on P1

are equivariantly birational if and only if the corresponding representations V are projec-
tively equivalent, i.e., conjugated in PGL2. We describe this in detail.

G D Cm. The action arises via a representations of the form P .1 ˚ "/, where " is a
primitive character of G; given "; "0, birationality of the corresponding G-actions holds if
and only if " D ˙"0.
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G D Dm. When m is odd, G acts on P1 via a faithful 2-dimensional representations
of Dm; when m is even, G acts via a faithful 2-dimensional representations of D2m.
Two such actions are birational if and only if their restrictions to the subgroup Cm �Dm

induce birational actions of Cm on P1.

G D A4. The actions arise from faithful 2-dimensional representations of SL2.F3/, all
of which are projectively equivalent. So A4 admits a unique action on P1.

G D S4. The actions arise from faithful 2-dimensional representations of GL2.F3/, all
of which are projectively equivalent. So S4 also admits a unique action on P1.

G DA5. The actions arise from faithful 2-dimensional representations of SL2.F5/. There
are two such representations, inducing two nonisomorphic actions of A5 on P1 after pro-
jectivization. So A5 admits two non-birational actions.

Note that in dimension 1, non-birational actions of cyclic groups can be distinguished
by the Reichstein–Youssin invariant (RY) [33]: when Cm acts on P1 via a character �, the
action is determined by˙�.

In applications to nonabelian groups, we can consider determinants of actions upon
restrictions to their abelian subgroups, e.g., for G dihedral. For G D A5, the two non-
birational actions can also be distinguished already via restriction to C5 � G: in one case,
we obtain

.C5; 1 ýk; .1//C .C5; 1 ýk; .4//;

and in the other
.C5; 1 ýk; .2//C .C5; 1 ýk; .3//;

and these are different in Burn1.G/.

Proposition 5.1. The birational type of the action of a finite group G on P1 is uniquely
determined by ŒP1 ý G� 2 Burn1.G/.

6. Computing the classes of linear actions

The computation of classes in the Burnside group of (projectively) linear actions in dimen-
sions� 2 is more involved. Given a faithful linear representationG! GL.V _/ we obtain
a faithful projective representation G=C ! PGL.V _/, where C � G is the maximal
(cyclic) subgroup acting via scalar matrices. An algorithm to compute the class

ŒP .V / ý G=C � 2 Burnn.G=C/

of the induced action of G=C on Pn was developed in [24], and implemented in [40].
It is based on an equivariant version of the De Concini–Procesi approach to wonderful
compactifications of subspace arrangements [12], which provides a systematic way of
turning any given projectively linear action into a standard form. We note that
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• all symbols produced and appearing as summands in

ŒP .V / ý G� D
X
H

X
F

.H; Y ýk.F /; ˇF /;

are in Burnrc
n .G/, see (3.9); and

• all actions Y ýk.F / are equivariantly birational to products of projectively linear
actions on projective spaces, without permutation of the factors (see Corollary 6.1).

We explain the main ideas below, supplemented with two examples (our notation fol-
lows the one in [24]). First, consider the pairs

.�; "/; C � � � G; " 2 Hom.�; k�/; (6.1)

where � is the generic stabilizer group of some 1-dimensional subspace ` � V and " is
the character of � given by its action on `; we are using the identification

� ! GL.`_/ ' k�:

Then �=C stabilizes the point P .`/ 2 P .V /. The set

xL D xL.V / WD ¹pairs .�; "/ as aboveº [ ¹1º

carries information about the subspace arrangement. In particular, we associate to every
pair .�; "/ 2 xL the subspace

V�;" WD ¹v 2 V j v � g D ".g/v; for all g 2 �º:

The De Concini–Procesi model P .V / xL is defined as the closure of the image of the natural
map

P .V /ı ! P .V / �
Y

.�;"/2 xL; �¤C

P .V=V�;"/;

where the P .V /ı is the complement in P .V / of the union of all proper subspaces of the
form P .V�;"/. The natural projection

P .V / xL ! P .V /

is an isomorphism on P .V /ı, whose complement in P .V / xL is a normal crossings divisor.
It is shown in [24, Proposition 7.2] that the G-action on P .V / xL is in standard form with
respect to this divisor. We now describe the main steps of the algorithm.

Input. A faithful linear representation G ! GL.V _/.

Step 1. Find C and xL D xL.V /, i.e., all possible pairs .�; "/ as in (6.1).
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Step 2. Find all chains of subspaces, up to conjugation by G,

0 ¨ V1 ¨ V2 ¨ � � � ¨ Vt ¨ V

such that

• Vi D V� i ;" for some pair .� i ; "/2 xL with � i ¤C , for every i D 1; : : : ; t and a common
character ";

• � i is the (maximal) stabilizer group of Vi .

Associated with each chain of subspaces is a chain of stabilizer groups,

ƒ WD �1 © �2 © � � � © � t ;

and a character " of �1.

Step 3. For each conjugacy class of chains of subspaces V1 ¨ � � � ¨ Vt and the corre-
sponding chain of stabilizers ƒ, find

• NG.ƒ/ � G, the intersection of normalizers of � i in G which stabilize ", this is the
stabilizer of ƒ;

• �tƒ, the maximal subgroup of NG.ƒ/ acting via scalars on all ViC1=Vi .

The input representation induces a faithful representation of NG.ƒ/ on

V _1 � .V2=V1/
_
� .V3=V2/

_
� � � � � .V=Vt /

_;

where �tƒ acts via scalars on each factor; we record characters "i of �tƒ on ViC1=Vi ,
i D 0; : : : ; t . By convention, V0 D 0 and VtC1 D V .

Step 4. For each conjugacy class of chains, compute the intermediate class

ŒP .V1/ � P .V2=V1/ � � � � � P .V=Vt / ý NG.ƒ/�.O.�1//

of the induced action of NG.ƒ/, with respect to .O.�1//, a sequence of line bundles
below

OP.V1/.�1/; OP.V1/.1/˝OP.V2=V1/.�1/; OP.V2=V1/.1/˝OP.V3=V2/.�1/; : : :

This intermediate class takes values in Burnn;¹0;:::;tº.NG.ƒ/;�tƒ/, the equivariant indexed
Burnside group with respect to line bundles .O.�1//, defined in [24, Sections 4 and 5]
(the definition is of this group is notationally heavy, it involves two abelian subgroups
H � H 0 of G and two sequences of characters). Since the De Concini–Procesi model
satisfies the conditions in [24, Lemma 5.1], we can compute the intermediate class by [24,
Definition 5.3].
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Step 5. A recursive formula [24, Proposition 8.3 and Theorem 8.4] allows us to compute
the class

ŒP .V / ý G�.OP.V /.�1//
2 Burnn;¹0º.G; C /

using all intermediate classes of chains found in Step 2. Essentially, this formula reflects
contributions to the class from the intersections of various strata with nontrivial stabilizers,
on an appropriate model. Apply this recursion to obtain the class, taking values in the
equivariant indexed Burnside group with respect to the line bundles .OP.V /.�1//.

Step 6. Apply the surjective homomorphism

�¹0ºWBurnn;¹0º.G; C /! Burnn.G=C/;

defined by
.C � H 0; Z0 ýK;ˇ; 
/ 7! .H 0=C;Z0 ýK;ˇ/:

By [24, Theorem 8.5], we have

ŒP .V / ý G=C � D �¹0º
�
ŒP .V / ý G�.OP.V /.�1//

�
:

Output. The class
ŒP .V / ý G=C � 2 Burnn.G=C/

is presented as a finite sum of symbols in Symbn.G/.

As already noted, an important observation is the following.

Corollary 6.1. Every symbol s appearing as a summand in the class ŒP .V / ý G� 2

Burnn.G/, via the algorithm from [22], is of the shape s D .H; Y ýk.F /; ˇ/, where

• F is birational to
Q
j P .Wj /;

• Y � ZG.H/=H acts without interchanging the factors; and

• the action on each factor is (birational) to a (projectively) linear action.

In particular, ŒP .V / ý G� 2 Burnrc;H1D0
n .G/, (see Section 3.8).

An example computation, forG DS4, acting on P2 D P .V /, where V is the standard
3-dimensional representation of S4, can be found in [24, Section 9]. Here, we provide new
examples, in dimensions 2 and 3.

Example 6.2. Let G D C3 �D5 acting on P2 D P .1 ˚ V"/; here V" WD " ˝ V is the
twist by a nontrivial character of C3 of the standard 2-dimensional representation of D5,
with generators acting via �

�5 0

0 ��15

�
;

�
0 1

1 0

�
:

Table 5 shows the relevant information for conjugacy classes of chains of stabilizer groups
from Steps 1, 2 and 3.



Equivariant birational geometry of linear actions 257

t ƒ NG.ƒ/ �tƒ "i

1 C3 �D5 C3 �D5 C3 0

1 C15 C15 trivial –

1 C6 C6 C2 1

1 C6 C6 trivial –

1 C3 C3 �D5 C3 1

1 C2 C6 C2 0

2 C3 �D5 � C2 C6 C6 0; 4

2 C15 � C3 C15 C15 4; 1

2 C6 � C3 C6 C6 1; 4

2 C6 � C3 C6 C6 4; 1

2 C6 � C2 C6 C6 4; 0

Table 5. Chains of stabilizer groups and associated data.

Each chain ƒ contributes to ŒP2 ý G� via its intermediate class, obtained in Step 4.
We record these classes as follows.

ƒ D C3 �D5.

.C3 � C3;D5 ýk.P1/; . /; .0; 2//C .C3 � C6; 1 ýk; .3/; .0; 2//

C .C3 � C6; 1 ýk; .3/; .0; 5//C .C3 � C15; 1 ýk; .9/; .0; 8//

2 Burn3;¹0;1º.C3 �D5; C3/:

ƒ D C15.

.1 � 1; C15 ýk.P1/; . /; .0; 0//C .1 � C15; 1 ýk; .7/; .13; 2//

C .1 � C15; 1 ýk; .8/; .13; 9// 2 Burn3;¹0;1º.C15; 1/:

ƒ D C6 with �t
ƒ
D 1.

.1 � 1; C6 ýk.P1/; . /; .0; 0//C .1 � C6; 1 ýk; .1/; .2; 3//

C .1 � C6; 1 ýk; .5/; .2; 4// 2 Burn3;¹0;1º.C6; 1/:

ƒ D C6 with �t
ƒ
D C2.

.C2 � C2; C3 ýk.P1/; . /; .1; 1//C .C2 � C6; 1 ýk; .4/; .5; 3//

C .C2 � C6; 1 ýk; .2/; .5; 1// 2 Burn3;¹0;1º.C6; C2/:
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ƒ D C3.

.C3 � C3;D5 ýk.P1/; . /; .2; 1//C .C3 � C6; 1 ýk; .3/; .2; 4//

C .C3 � C6; 1 ýk; .3/; .5; 1//C .C3 � C15; 1 ýk; .9/; .8; 7//

2 Burn3;¹0;1º.C3; C3/:

ƒ D C2.

.C2 � C2; C3 ýk.P1/; . /; .0; 1//C .C2 � C6; 1 ýk; .2/; .4; 5//

C .C2 � C6; 1 ýk; .4/; .0; 3// 2 Burn3;¹0;1º.C2; C2/:

Our algorithm records the action on function fields in each symbol, e.g., the action
of D5 on k.P1/ in the last expression, but we omit it from the notation.

When t D 2, each graded piece is a 1-dimensional vector space, with NG.ƒ/ acting
via scalars. We will obtain classes

.NG.ƒ/ � NG.ƒ/; 1 ýk; . /; ."; "1 � "; "2 � "1//:

Then we use the recursion in Step 5 to compute

ŒP .V / ý G�.OP.V /.�1// 2 Burnn;¹0º.G; C /:

In this example, G acts generically freely on P2, so that C D 1. After applying the
map �¹0º in Step 6 and cancellations by relations, we have

ŒP .V / ý G� D .1;G ýk.P2/; . //C 2.C2; C3 ýk.P1/; .1//

C .C3;D5 ýk.P1/; .2//C .C3;D5 ýk.P1/; .1//

C .C6; 1 ýk; .3; 2//C .C6; 1 ýk; .3; 4//

C .C6; 1 ýk; .3; 5//C .C6; 1 ýk; .2; 1/

C .C6; 1 ýk; .3; 1//C .C6; 1 ýk; .4; 5//

C .C15; 1 ýk; .1; 11//C .C15; 1 ýk; .3; 11//

C .C15; 1 ýk; .12; 4//:

There is an alternative method to compute the class ŒP .V /ýG� [23, Section 5]: First,
consider the action of D5 on P1 via its 2-dimensional representation V . LetL1 be OP1.1/

twisted by the nontrivial character " of C3, and L0 be the trivial line bundle on P1. Then

P .1˚ V"/ �G P .L0 ˚ L1/;

equivariantly. Using [23, Proposition 5.2], we obtain

ŒP .L0 ˚ L1/ ý G� D .1;G ýk.P2/; . //C .C2; C3 ýk.P1/; .1//

C .C3;D5 ýk.P1/; .2//C .C3;D5 ýk.P1/; .1//

C .C6; 1 ýk; .3; 2//C .C6; 1 ýk; .3; 4//

C .C6; 1 ýk; .3; 5//C .C6; 1 ýk; .3; 1//

C .C15; 1 ýk; .3; 11//C .C15; 1 ýk; .3; 4//:
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Here we specify the subgroups and their representations:

C3 D

��
�23 0

0 �23

��
; C6 D

��
0 �3
�3 0

��
C15 D

��
�3�5 0

0 �3�
4
5

��
:

Note that

ŒP .V / ý G� � ŒP .L0 ˚ L1/ ý G�

D .C2; C3 ýk.P1/; .1//C .C6; 1 ýk; .2; 1//C .C6; 1 ýk; .4; 5//

C .C15; 1 ýk; .1; 11//C .C15; 1 ýk; .12; 4// � .C15; 1 ýk; .3; 4//:

By conjugation relations (C),

.C15; 1 ýk; .3; 4// D .C15; 1 ýk; .12; 1//:

The blowup relations (B) yield

.C15; 1 ýk; .12; 1// D .C15; 1 ýk; .11; 1/C .C15; 1 ýk; .12; 4//;

.C6; 1 ýk; .2; 3// D .C6; 1 ýk; .5; 3//C .C6; 1 ýk; .2; 1//;

.C6; 1 ýk; .3; 5// D .C6; 1 ýk; .3; 2//C .C6; 1 ýk; .4; 5//

C .C2; C3 ýk.P1/; .1//:

Summing up the last two equalities, we obtain

.C6; 1 ýk; .2; 1//C .C6; 1 ýk; .4; 5//C .C2; C3 ýk.P1/; .1// D 0

and conclude

ŒP .V / ý G� � ŒP .L0 ˚ L1/ ý G� D 0 2 Burn2.G/;

as expected.

Example 6.3. Consider the action of G DD7 on P3, given by

G D

*0@ �7 0 0 0

0 ��17 0 0

0 0 �27 0

0 0 0 ��27

1A;� 0 1 0 01 0 0 0
0 0 0 1
0 0 1 0

�+
� PGL4 :

The stabilizer chains are given in Table 6.

t ƒ NG.ƒ/ �tƒ "

1 C2 C2 C2 0

1 C2 C2 C2 1

1 C7 C7 C1 2

1 C7 C7 C1 3

Table 6. Chains of stabilizer groups for G DD7.
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The intermediate classes in the equivariant indexed Burnside groups are:

ƒ D C2 with NG .ƒ/ D C2.

.C2 � C2; 1 ýk.P2/; . /; .0; 1// 2 Burn3;¹0;1º.C2; C2/:

ƒ D C2 with NG .ƒ/ D C2.

.C2 � C2; 1 ýk.P2/; . /; .1; 1// 2 Burn3;¹0;1º.C2; C2/:

ƒ D C7.

.C1 � C1; C7 ýk.P2/; . /; .0; 0//C .C1 � C7; 1 ýk; .5; 6/; .2; 3//

C .C1 � C7; 1 ýk; .1; 2/; .2; 1//C .C1 � C7; 1 ýk; .1; 6/; .2; 2//

2 Burn3;¹0;1º.C7; 1/:

ƒ D C7.

.C1 � C1; C7 ýk.P2/; . /; .0; 0//C .C1 � C7; 1 ýk; .4; 6/; .3; 2//

C .C1 � C7; 1 ýk; .2; 3/; .3; 6//C .C1 � C7; 1 ýk; .1; 5/; .3; 1//

2 Burn3;¹0;1º.C7; 1/:

These classes are combined to obtain

ŒP .V / ý G�.OP.V /.�1// D .C1 � C1; G ýk.P3/; . /; .0//

C .C1 � C2; 1 ýk.P2/; .1/; .0//C .C1 � C2; 1 ýk.P2/; .1/; .1//

C .C1 � C7; 1 ýk; .3; 5; 6/; .2//C .C1 � C7; 1 ýk; .1; 1; 2/; .2//

C .C1 � C7; 1 ýk; .1; 2; 6/; .2//C .C1 � C7; 1 ýk; .2; 4; 6/; .3//

C .C1 � C7; 1 ýk; .2; 3; 6/; .3//C .C1 � C7; 1 ýk; .1; 1; 5/; .3//:

Applying �¹0º and using relations (V) and (B), we obtain the nonzero class

ŒP .V / ý G� D .1;G ýk.P3/; . //

C .C7; 1 ýk; .1; 1; 2//C .C7; 1 ýk; .2; 4; 6//

C .C7; 1 ýk; .2; 3; 6// 2 Burn3.G/I

in fact, the point classes in this formula are equal, and nonzero, in BC3.G/ D Z=2. The
action is birational to an action on P1 � P2, with trivial action on the second factor and
faithful action on the first factor, by the No-name lemma.

7. Automorphisms of P 2

In this section, we apply the Burnside group formalism to the problem of classification of
actions of finite subgroups of PGL3 up to conjugation in the plane Cremona group Cr2
(see [13]).
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For n D 2, the classification of actions up to conjugation in PGL3 takes the form (we
follow [13, Section 4.2] and [24, Section 10]):

• intransitive: G D Cm �G0; with G0 � GL2;

• transitive but imprimitive: certain extensions of C3 or S3 by bicyclic groups;

• primitive: A5, A6, PSL2.F7/, the Hessian group 32 W SL2.F3/; and two of its sub-
groups.

Primitive actions. These are completely understood via birational (super)rigidity tech-
niques [34]. For example, A5 admits one, A6 admits four, and PSL2.F7/ admits two
non-birational actions on P2 (see [5, Theorem B.2]).

Proposition 7.1. The Burnside group formalism does not distinguish primitive actions
on P2.

The proof proceeds via a computation of all classes involved and comparisons of the
resulting expressions in the respective Burnside groups. Here is a representative example.

Example 7.2. The action of G WD PSL2.F7/ on P2 is super-rigid, and there are non-
isomorphic 3-dimensional representations V and V 0 of G, giving rise to non-birational
G-actions on P2 D P .V / and P .V 0/. The characters of the corresponding representations
differ on elements of order 7. We compute the classes

ŒP .V / ý G� D .1;G ýk.P2/; . //C 2.C2;D2 ýk.P1/; .1//

C .C3; 1 ýk; .1; 1//C .C4; 1 ýk; .1; 1//C 2.C4; 1 ýk; .1; 2//

C .C7; 1 ýk; .6; 5//C .C7; 1 ýk; .1; 4//

C .C 22 ; 1 ýk; ..0; 1/; .1; 0///C ..C 02/
2; 1 ýk; ..0; 1/; .1; 0///I

ŒP .V 0/ ý G� D .1;G ýk.P2/; . //C 2.C2;D2 ýk.P1/; .1//

C .C3; 1 ýk; .1; 1//C .C4; 1 ýk; .1; 1//C 2.C4; 1 ýk; .2; 3//

C .C7; 1 ýk; .6; 3//C .C7; 1 ýk; .1; 2//

C .C 22 ; 1 ýk; ..0; 1/; .1; 0///C ..C 02/
2; 1 ýk; ..1; 1/; .1; 0///:

The representations V and V 0 differ by �7 7! �37 . Conjugation relations imply that

ŒP .V / ý G� D ŒP .V 0/ ý G�:

We record useful method to produce incompressible classes in dimension 3 (see Sec-
tion 3.6).

Proposition 7.3. Let G be a finite group and

xs D . xH; xY ýk.P1/.t/; .xb// 2 Burn3.G/

a symbol appearing in a ‚2-relation. Then xY does not admit a primitive action on P2.
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Proof. By [34, Theorem 1.3], P2 are xY -rigid (and thus xY -solid) for a primitive action
from xY . Therefore the corresponding actions do not appear in ‚2 relations, see Sec-
tion 3.6.

Transitive imprimitive actions. There are four types of such actions, two types with G
an extension of C3 and two additional types when G is an extension of S3, see [13,
Theorem 4.7].

Proposition 7.4. The Burnside group formalism allows to distinguish transitive imprimi-
tive actions, indistinguishable by the .RY/ invariant.

We do not claim that we can distinguish all such actions. In each of the four types
there is a bicyclic group H � G; restricting to H and applying the Reichstein–Youssin
determinant invariant (RY) toH gives non-birational actions in some cases. Our examples
focus on the simpler types in [13, Theorem 4.7], as it is more difficult to distinguish
smaller actions.

We consider

(1) extensions 1 ! Cn ˚ Cn ! G ! C3 ! 1 with the action on P2 D P2.s; t/
generated by

.x W y W z/ 7! .�snx W y W z/; .x W �
t
ny W z/; .z W x W y/; (7.1)

where s; t 2 .Z=n/�, and �n is a primitive n-th root of unity;

(2) extensions 1 ! Cn ˚ Cm ! G ! C3 ! 1 with m D n=d , with d > 1, d jn,
s2 � s C 1 D 0 .mod d/, and with the action on P2 D P2.r; s; t/ generated by

.x W y W z/ 7! .�rmx W y W z/; .�
s
nx W �

t
ny W z/; .z W x W y/: (7.2)

Example 7.5. Let G be a group of type .1/, with n D 8. Consider actions as in (7.1) with
s D 1, t D 7, and s0 D 3, t 0 D 5. respectively. The (RY) invariant is inconclusive in this
case. Computing the Burnside symbols as in Section 6, we obtain

ŒP2.s; t/ ý G� D .1;G ýk.P2/; . //

C .C8; C8 ýk.P1/; .3//C .C8; C8 ýk.P1/; .5//

C .C 28 ; 1 ýk; ..1; 2/; .6; 7///C .C 28 ; 1 ýk; ..7; 6/; .7; 1///I

ŒP2.s0; t 0/ ý G� D .1;G ýk.P2/; . //

C .C8; C8 ýk.P1/; .1//C .C8; C8 ýk.P1/; .7//

C .C 28 ; 1 ýk; ..3; 6/; .2; 5///C .C 28 ; 1 ýk; ..5; 2/; .5; 3///:

(As before, we omit to specify the action of C8 on k.P1/ from our notation.) There are no
incompressible symbols in the expressions above, however we are still able to distinguish
the actions in the combinatorial Burnside group, after applying map (3.3) to the difference

ŒP2.s; t/ ý G� � ŒP2.s0; t 0/ ý G�: (7.3)
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Performing computations in magma, we found the group BC2.C
2
8 / has rank 733, and

the image of (7.3) in BC2.G/ is nonzero. This allows us to conclude that the given two
C 28 -actions on P2 are not birational to each other.

The same argument applies to nD 5, s D 1, t D 2, s0 D 3 and t 0 D 4; or nD 9, s D 2,
t D 3, s0 D 4 and t 0 D 6.

The non-birationality of actions in the following two examples follows from [34,
Theorem 1.3], indeed, these actions are birationally rigid. However, they serve as an
illustration of the symbols formalism, in the case of imprimitive actions. In the case of
intransitive actions, discussed below, birational rigidity techniques not apply.

Example 7.6. Let G act via type (2) with nD 14 andmD 2. Consider actions as in (7.2)
with r D t D 1, s D 3, and r 0 D t 0 D 1, s0 D 5, respectively. Again, the (RY) invariant is
inconclusive. We have

ŒP2.r; s; t/ ý G� D .1;G ýk.P2/; . //

C .C2; C14 ýk.P1/; .1//C .C2; C14 ýk.P1/; .1//

C .C2 � C14; 1 ýk; ..0; 3/; .1; 5///

C .C2 � C14; 1 ýk; ..0; 11/; .1; 8///I

ŒP2.r 0; s0; t 0/ ý G� D .1;G ýk.P2/; . //

C .C2; C14 ýk.P1/; .1//C .C2; C14 ýk.P1/; .1//

C .C2 � C14; 1 ýk; ..1; 11/; .0; 1///

C .C2 � C14; 1 ýk; ..1; 3/; .1; 12///:

Applying map (3.3) to the difference and computing in BC2.G/, we find that the actions
are non-birational.

Intransitive actions. Existence of G-fixed points makes it more difficult to classify in-
transitive actions using birational rigidity techniques. However, it is well suited for the
Burnside group formalism. Recall that intransitive actions take the form of

G D Cn �G
0; n � 2;

where G0 � GL2 is a lift of a subgroup xG0 � PGL2. We are again in the situation of
Section 5:

• xG0 D Cm for some m � 2. Then G0 is also a cyclic group, i.e., G is a rank 2 abelian
group. The (RY) invariant determines equivariant birationality of such actions [33,
Theorem 7.1].

• xG0 DDm;A4;S4 or A5. By [24, Section 10], we know that G admits non-birational
actions when the Euler function '.n/ � 3. Here we modify the proof to cover more
cases when n � 2.

Let " be a primitive character of Cm, V a faithful 2-dimensional linear representation
of G0, and V" WD " ˝ V its twist by ". This yields generically free action G-action on
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P2 D P .1˚ V"/. To put the action in standard form, we first need to blow up the point
.1 W 0 W 0/ as it has nonabelian generic stabilizer. The action on the exceptional divisor is
given by P .V"/. On the standard model, there are two divisors with generic stabilizer H ,
where H is the maximal subgroup of G acting via scalars on V". For example, when
xG0 D A5, we can choose the lift G0 D SL2.F5/ and in this case,

H D

´
Cn when n is even;

C2n when n is odd:

Let �" be the character of H corresponding to the action, which depends on choice of ".
The two divisors contribute

.H; xG0 ýk.P .V //; .�"//C .H; xG
0 ýk.P .V //; .��"// (7.4)

to the class ŒP2 ý G�; these symbols are incompressible, as explained in Section 3.6,
or see [24, Proposition 3.6]. When '.n/ � 3, we can produce non-birational actions by
choosing characters " ¤ ˙"0. But one can do better:

Corollary 7.7. For xG0 D Dm, with m ¤ 1; 2; 3; 4; 6; 8; 12, or xG0 D A5, and all n � 2,
the group G D Cn �G0 admits non-birational linear actions on P2.

Proof. From Section 5, we know that Dm, withm as in the statement, and A5 admit non-
birational actions on P1. This will contribute different incompressible symbols to (7.4).

Now we consider the case xG0DDm in more detail. Recall that form odd, a generically
free action ofG0 DDm on P1 is linear; form even, it is projectively linear—it arises from
a 2-dimensional faithful representation of G0 DD2m. In both cases, the representation is
determined by a primitive character  ofH D Cm, respectively, C2m, we denote it by V .

We obtain an action of G D Cn �Dm on

P2 D P2.";  / WD P .1˚ V"; /; V"; WD "˝ V ; V D IndG
0

H . /:

Lemma 7.8. We have

P2.";  / �G P2.�";  / �G P2.";� / �G P2.�";� /:

Proof. Indeed, equivariant birationality from theG-action on P2."; / to the other actions
is realized by

.x W y W z/ Ü
� 1
x
W
1

z
W
1

y

�
; .x W z W y/;

� 1
x
W
1

y
W
1

z

�
;

respectively.
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Suppose m is odd. The following sum of incompressible symbols

.Cn;Dm ýk.P .V //; "/C .Cn;Dm ýk.P .V //;�"/ (7.5)

contributes to the class ŒP2.";  / ý G�; we obtain similar expressions for the G-action
on P2."0;  0/. We observe that

• when " ¤ ˙"0, the symbols in (7.5) have different weights;

• when  ¤ ˙ 0, the actions of Dm on P1 is not birational to each other.

Lemma 7.8 implies that the Burnside group formalism determines equivariant birationality
in this case.

On the other hand, when m is even, the classification of equivariant birational types
remains open.

Example 7.9. Consider G D C3 �D8, and put  0 WD  3. Then

ŒP2.";  / ý G� � ŒP2.";  0/ ý G� D 0 2 Burn2.G/:

However, we cannot tell whether or not

P2.";  /
‹
�G P2.";  0/:

In detail,

ŒP2.";  / ý G� D .1;G ýk.P2/; . //

C 2.C2; C6 ýk.P1/; .1//C 2.C 02; C6 ýk.P1/; .1//

C .C6;D4 ýk.P1/; .1//C .C6;D4 ýk.P1/; .5//

C .C 002 � C6; 1 ýk; ..0; 3/; .1; 5///C .C 002 � C6; 1 ýk; ..1; 2/; .1; 1///

C .C 002 � C6; 1 ýk; ..1; 4/; .0; 3///C .C 0002 � C6; 1 ýk; ..1; 2/; .0; 3///

C .C 0002 � C6; 1 ýk; ..1; 5/; .1; 4///C .C 0002 � C6; 1 ýk; ..1; 1/; .0; 3///

C .C24; 1 ýk; .19; 11//C .C24; 1 ýk; .5; 6//C .C24; 1 ýk; .19; 18//;

while

ŒP2.";  0/ ý G� D .1;G ýk.P2/; . //C � � � C .C24; 1 ýk; .6; 17//

C .C24; 1 ýk; .7; 23//C .C24; 1 ýk; .7; 18//;

with the only difference in the sum of terms with stabilizer C24, and these expressions are
equal in Burn2.G/.
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8. Automorphisms of P 3

In this section, we give new examples of non-birational imprimitive linear actions on P3.
The basic terminology is as follows:

actions

8̂̂̂̂
<̂
ˆ̂̂:

intransitive: invariant point or line

transitive:

8̂̂<̂
:̂

imprimitive:

´
2 skew lines

orbit of length 4 (monomial)

primitive: none of the above

Primitive actions. We follow [11]. There are thirty conjugacy classes of finite subgroups
G�PGL4 yielding primitive actions. They are listed, with inclusions, in [11, Appendix A].
These actions can be analyzed by birational (super)rigidity techniques, see [8] or [11].
By [11, Theorem 1.1], the action is birationally rigid if and only if G ¤ A5 or S5. This
means that applying G-MMP to any G-birational model one is reduced to P3; but this
does not imply that different actions on P3 are equivariantly birational. We now list rep-
resentative computations of Burnside classes:

G WD A5. Let V be its irreducible 4-dimensional representation. Consider the induced
action on P3 D P .V /. Then

ŒP3 ý G� D .1;A5 ýk.P3/; . //C 2.C2; C2 ýk.P2/; .1//

C .C3; 1 ýk.P1/; .2; 2//C .C3; 1 ýk.P1/; .1; 1//

C .C5; ýk; .1; 1; 2//C .C5; 1 ýk; .2; 2; 4//:

By Lemma 3.1, the point classes are trivial; furthermore,

.C2; C2 ýk.P2/; .1// D .C2; C2 ýk.P1/; .1; 1// D 0 2 Burn3.G/;

.C3; 1 ýk.P1/; .b; b// D .C3; 1 ýk; .b; b; b// D 0 2 Burn3.G/;

by .B/ and the vanishing relation .V/.

G D PSL2.F7/. The G-action on P3 is rigid [11, Theorem 1.3], but every faithful action
gives

ŒP3 ý G� D .1;G ýP3; . // 2 Burn3.G/:

G D A6. There are only two actions; they are rigid but equivariantly birational. The
corresponding classes are

ŒP3 ý G� D .1;G ýk.P3/; . //C .C3; C3 ýk.P2/; .2//;

C .C 23 ; 1 ýk; ..2; 2/; .0; 1/; .2; 1///C .C 23 ; 1 ýk; ..0; 2/; .2; 1/; .2; 2///;

ŒP3 ý G� D .1;G ýk.P3/; . //C .C 03; C3 ýk.P2/; .2//;

C .C 23 ; 1 ýk; ..0; 2/; .1; 1/; .1; 0///C .C 23 ; 1 ýk; ..0; 2/; .1; 0/; .2; 2///;

and the nontrivial contributions to their classes in BC3.G/ are equal, as expected. But
they are nontrivial in this group.
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G D S6. There are two actions, with Burnside classes

ŒP3 ý G� D .C1;S6 ýk.P3/; . //C .C2;A4 ýk.P2/; .1//

C .C 02;A4 ýk.P2/; .1//C .C 002 ; C
2
2 ýk.P2/; .1//

C .C3;S3 ýk.P2/; .1//C .C 23 ; 1 ýk; ..1; 1/; .1; 2/; .2; 0///;

respectively,

ŒP3 ý G� D .C1;S6 ýk.P3/; . //C .C2;A4 ýk.P2/; .1//

C .C 02;A4 ýk.P2/; .1//C .C 002 ; C
2
2 ýk.P2/; .1//

C .C 03;S3 ýk.P2/; .2//C .C 23 ; 1 ýk; ..0; 2/; .2; 0/; .2; 2///;

here, C2;C 02;C
00
2 are not conjugated inG. These differ in BC3.G/D .Z=2/5˚Z=4; thus,

the actions are not birational.

G D A7. There are two actions. The actions are super-rigid and thus not birational to
each other. The respective classes are:

ŒP3 ý G� D .1;G ýk.P3/; . //C .C2;S3 ýk.P2/; .1//

C .C3;A4 ýk.P2/; .2//

C .C7; 1 ýk; .2; 4; 4//C .C7; 1 ýk; .1; 3; 5//

C .C7; 1 ýk; .2; 3; 3//

C .C 23 ; 1 ýk; ..0; 1/; .1; 1/; .2; 0///

C .C 23 ; 1 ýk; ..0; 1/; .2; 0/; .2; 2///;

ŒP3 ý G� D .1;G ýk.P3/; . //C .C2;S3 ýk.P2/; .1//

C .C3;A4 ýk.P2/; .2//

C .C7; 1 ýk; .2; 4; 4//C .C7; 1 ýk; .1; 3; 5//

C .C7; 1 ýk; .2; 3; 3//

C .C 23 ; 1 ýk; ..0; 1/; .1; 0/; .2; 1///

C .C 23 ; 1 ýk; ..0; 1/; .1; 0/; .1; 2///:

We have BC3.G/D .Z=2/3˚Z, the (nontrivial contributions to) combinatorial Burnside
classes of the two actions are equal, which in this case implies that the classes are equal
in Burn3.G/.

Transitive imprimitive actions. Recall that these are of two types:

• leaving invariant a union of two skew lines;

• having an orbit of length 4 (monomial subgroups).

The second type was analyzed in [7]; by its main theorem, every imprimitive monomial
subgroup, with the exception of (GAP ID),

G48;3; G96;72; or G324;160;
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is G-solid (i.e., not G-birational to conic bundles or Del Pezzo fibrations). Examples of
non-birational actions are given in [7, Examples 1.6, 1.7 and 1.8].

Here we present applications of the Burnside group formalism to actions leaving
invariant two skew lines.

Example 8.1. Let G WD D5 �D4 and write  m for a primitive character of Cm. As in
Section 7, let V be a faithful 2-dimensional representation of Dm determined by  m.

We have generically free linear G-actions on

P3 D P .V 5 ˚ V 4/; respectively, P3 D P .V 25 ˚ V 4/: (8.1)

Our algorithm presents the class of each action in (8.1) as a sum of more than 60 sym-
bols; we have listed them at [40]. Again, with magma, we find that the projection of the
difference of the classes to BC3.G/ is nonzero and we conclude that the actions are not
birational.

This is the smallest such example we could find; the same holds for G WD D7 �D4

(and  5 replaced by  7).

Intransitive actions. The discussion is similar to that in Section 7. In dimension 3, intran-
sitive actions take the form of

G D Cn �G
0; n � 2;

where G0 � GL3 is a lift of xG0 � PGL3. It is shown in [24, Theorem 11.2] that when

xG0 D S4; A5; PSL2.F7/; A6 and '.n/ � 3;

G admits non-birational actions. Here we use the same argument to cover more cases
again: Let V be a 3-dimensional faithful representation of G0 and " a primitive character
of Cn. Let V" WD "˝ V and consider the action P .1˚ V"/. We need to blow up the fixed
point .1 W 0 W 0 W 0/ to put the action into standard form and on the blowup model, there
will be two divisors with generic stabilizer H , where H is the maximal subgroup of G
acting via scalars. Their contribution to the class is

.H; xG0 ýk.P .V //; .�"//C .H; xG
0 ýk.P .V //; .��"//:

These symbols are incompressible for our choice of xG0 because PSL2.F7/ and A6 are
nonabelian and cannot act generically freely on P1 (see Proposition 7.3). Actions of S4

and A5 on P1 � P1 with trivial action on one factor and generically free actions on the
other factor are not linearizable. Similarly to Corollary 7.7, we know that if xG0 admits
non-birational actions on P2, then G admits non-birational actions on P3. Keeping the
notation above, we arrive at the following result.

Corollary 8.2. For G D Cn �G0, with xG0 D PSL2.F7/ or A6, there exist non-birational
intransitive G-actions on P3 for all n � 2.

Proof. As in Section 7, these choices of xG0 give non-birational actions on P2.
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9. Automorphisms of quadrics

There is an extensive literature on birationality of quadrics over nonclosed fields (see,
e.g., [37]); of course, this is only interesting in absence of k-rational points. One of the
central problems there is the following.

Zariski problem for quadrics. If two smooth quadrics of the same dimension, over a
nonclosed field, are stably birational then they are birational.

This is known in dimensions � 7. On the other hand, in the G-equivariant context,
there are examples of stably equivariantly birational but not birational quadrics, already
in dimension 2. Their equivariant geometry has been addressed in, e.g., [18,35], [16, Sec-
tion 7]. In particular, the quadric surface Q D P1 � P1 admits actions of G D C2 �Dn,
for odd n, which are not birational to linear actions but such that the G-action onQ � P2,
with trivialG-action on the second factor, is birational to a linear action [16,27]. The exis-
tence of such stable birationalities makes the analysis of Burnrc

n .G/, n � 3, challenging,
as one has to account for all such possibilities.

We are not aware of a systematic study of G-equivariant geometry of quadrics in
higher dimensions. In particular, it would be interesting to study systematically construc-
tions of G-equivariant (stable) birationalities to projective spaces which do not rely on
existence of G-fixed points.

Assumptions on fixed points. Projection from fixed points gives trivially linearizability
of the action, thus we will assume that

• XG D ;.

On the other hand, existence of fixed points on a smooth model is a birational invariant
for actions of abelian groups [32], and linear actions of abelian groups have fixed points.
Since we are only interested in linear actions, we will assume that

• XH ¤ ; for all abelian H � G.

In this section we consider the birational classification of automorphisms of quadrics
from the perspective of Burnside groups. In particular, we focus on G-actions satisfying
the assumptions above.

Conics. Consider X � P2, given by

3X
jD1

x2j D 0;

with an action of a subgroup G of the Weyl group W.D3/ D S4. The group W.D3/ has
eleven conjugacy classes of subgroups. Only one satisfies the requirements (concerning
fixed points), namely S3 D h�; �i, with �2 D �3 D 1, and the natural permutation action
on the coordinates; this action is linearizable. We turn to quadric surfaces.
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Abelian actions on P 1 � P 1. Their birational classification is in [1, Proposition 6.2.4].
In [14, Section 5.5] we noted that the following actions of C 22 on P1 � P1 are not dis-
tinguishable with the Burnside formalism: the product action has fixed points, while the
diagonal action does not, thus the actions are not birational, but the projections of the
classes to the nontrivial part of the Burnside group vanish.

On the other hand, consider the following, nonlinearizable, actions of C 32 on P1 � P1:
in the first case, via K4 D C

2
2 on one factor and C2 on the other factor, and in second case

via K4 on both factors, together with a switch of the factors. In the first case, we record

2.C2;K4 ýk.P1/; .1//;

coming from the two fixed points on the second P1, and in the second case only one such
class. Since this symbol is incompressible (see [24, Proposition 3.6]), we conclude that
the two actions have different classes in the Burnside group.

Nonabelian actions on P 1 � P 1. A full list of such actions is given in [13, Theorem 4.9].
Here we consider the quadric surface Q given by

4X
jD1

x2j D 0: (9.1)

We focus on actions changing signs and permuting the variables. There are 2 conjugacy
classes of such groups G satisfying the assumptions on fixed points, namely:

S3,D6

where
D6 D C2 �S3 D h�; �; �i; �2 D �3 D 1:

Here � inverts the sign on x4, S3Dh�;�i acts via permutation of the first three coordinates,
and the specialization is to S3 D h�; � � �i.

The fixed-point free S3-action is linearizable; it is birational to an action on P .1˚V2/,
where V2 is the standard 2-dimensional representation of S3; in particular, there is a fixed
point on P2.

On the other hand, by [27, Section 9] (see also [16, Section 6]), the D6-action onQ is
not linearizable but stably linearizable. The proof of nonlinearizability in [18] was based
on classification of birational transformations (links) between rational surfaces. An alter-
native proof, using the Burnside group formalism, is in [14, Section 7.6]; we give a similar
argument in the following example.

Example 9.1. Let G D C 22 �S3. We analyze whether or not the symbol

xs D .C2; C2 �S3 ýxK; .1// 2 Burn3.G/; xK D k.Q/;

is incompressible. There is a candidate symbol

s D .C 22 ;S3 ýK; .e1; e2//;
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that could lead to the given xs via the blowup relation (B). Here e1; e2 are nontrivial distinct
characters of C 22 .

Let us specify the action of xY D C2 �S3 on xK D k.Q/, with Q the quadric surface
in (9.1): C2 switches the sign on x4 and S3 permutes the first three coordinates.

Since Q is rational, we must have K D k.P1/. The Action construction produces
‚2-terms where the xY -action is birational to an action on a Hirzebruch surface S , a pro-
jectivization of a rank-2 vector bundle on P1, either with trivial action or a C2-action on
the generic fiber.

In the first case, such an action is birational to an action on P1 � P1, with C2 �S3 D

D6 acting on one of the factors, and trivial action on the second factor. This action has no
fixed points upon restriction to

C2 �S2 � C2 �S3;

which is not the case for the xY action on Q. Thus the actions are not birational.
In the second case, we compare the classes in Burn2. xY /, for the actions on Q and

on S . We find one incompressible symbol

.C2;S3 ýk.P1/; .1// 2 Burn2.C2 �S3/

in the class ŒQ ý xY �, and two such symbols, corresponding to the two sections fixed
by C2, in the class ŒS ý xY � (see Section 3.6). Thus the actions are not birational and xs is
incompressible.

Quadric threefolds. We consider first X � P4 given by
P5
jD1 x

2
j D 0, with a natural

action of the Weyl group W.D5/. This group has 197 conjugacy classes of subgroups,
examined in [26, Section 5] in connection with the analysis of possible Galois actions (or
automorphisms) on Picard groups of Del Pezzo surfaces of degree 4; the goal there was to
identify potentially rational surfaces over nonclosed fields (see also [38]). There are 112
(conjugacy classes of) subgroups G � W.D5/ which give rise to fixed-point free actions.

We focus on the linearizability problem. Note that the (RY) invariant (see Section 3)
does not provide any information: W.D5/ does not contain abelian subgroups of rank 3
that could give a nontrivial obstruction.

We obtain 33 W.D5/-conjugacy classes of subgroups satisfying our assumptions on
fixed points; several of these are conjugated in PGL5. We list the remaining cases:

D5

F5 A5

S5

D4

S4
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D04 D004 Q8

D8 D4 W C2 SD16 SL.2; 3/

OD16

C4wrC2 GL.2; 3/

D6 D06

C 22 �S3 C3 WD4 D12

S3 �D4

�

Note that D04 and D004 are not conjugated in W.D5/ but are conjugated in PGL5.k/,
while D6 and D06 are not conjugated in PGL5.k/.

Example 9.2. We consider G D C 22 � S3 � W.D5/. The action is realized via involu-
tions c4 and c5 switching signs on x4 and x5, and the permutation action by S3 on the
remaining variables x1; : : : ; x3.

This contributes the symbol

xs WD . xH; xY ýk.Q/; .1// 2 Burn3.G/;

to the class ŒX ý G�; here xH WD hc5i, and xY WD hc4;S3i ' C2 � S3 is acting on the
quadric surface Q � P3, given by

4X
iD1

x2i D 0:

We claim that

(1) xs is an incompressible divisorial symbol in Burn3.G/;

(2) the xY action on Q is not birational to a (projectively) linear action, or products of
such actions.

We have addressed (1) in Example 9.1. The same argument shows that the xY -action on
Q is not (projectively) linearizable. Note also that in this case, we do not need to pass to
a standard model zX for the G-action. Indeed, when the class is computed on zX , it will be
a sum of various classes, with positive coefficients, and the incompressible class xs will be
among them. Since symbols xs are not produced by the algorithm in Section 6 and since xs
is incompressible, we conclude that the G-action on X is not (projectively) linearizable.

This G is contained in S3 �D4, so that the corresponding action on X is therefore
also not (projectively) linearizable.

Example 9.3. Consider the quadric threefold X given by

6X
iD1

x2i D

6X
iD1

xi D 0:
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stabilizer H ZG.H/ orbit representatives of fixed loci of H

A4 1 one point

A04 1 one point

S3 1 two points

C 23 C 23 one point

C5 C5 two points

C4 C4 two points

C3 C 23 one conic

C 03 C 23 one line

C2 D4 one conic

Table 7. Stabilizer stratification.

It carries a natural action of S6, by permutation of the coordinates as well as the induced
action of A6. By [9, Theorem 6.2], the A6-action is super-rigid, in particular, it is not
equivariantly birational to a projectively linear action.

Here we give an alternative argument, based on the Burnside formalism. First we treat
G D S6. The involution x5 $ x6 fixes a quadric surface Q with residual S4-action. We
have that

(1) the corresponding symbol

xs WD .C2;S4 ýk.Q/; .1//

is incompressible. Indeed, symbols appearing in the ‚2-term come from actions on the
projectivization of a rank-2 vector bundle over P1. Since S4 does not have normal cyclic
subgroups, it has to act trivially on the fibers, and generically freely on the base P1.
In particular, any K4 � S4 would act without fixed points. On the other hand, the K4-
action onQ, generated by the transpositions .1; 2/ and .3; 4/, switching x1; x2 and x3; x4,
respectively, fixes two points. This implies that xs is incompressible.

(2) there are two projectively linear S6-actions on P3, with Burnside classes pre-
sented in Section 8. The symbol xs does not appear in these expressions.

We conclude that the S6-action onX is not birational to a projectively linear action on P3.
Now we give a different argument, for G WD A6, and by extension S6. Here, we base

the argument on computations in

BC3.A6/ D Z=2˚ Z:

We analyze the fixed loci for (conjugacy classes of) subgroups H � G (see Table 7).
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Note that all symbols in BC3.A6/ with stabilizer not equal to H WD C 23 are trivial.
The group H D h.1; 2; 3/; .4; 5; 6/i has four fixed points, contained in the G-orbit of

p D .0 W 0 W 0 W 1 W �3 W �
2
3/:

The G-action is not in standard form; however, since H D C 23 is maximal, in the poset
of groups with nontrivial fixed loci, symbols with this stabilizer on a standard form can
only arise from blowing up these fixed points. Relation .B/ implies that contributions from
H -fixed points on the blowup equal to those on X . Thus

ŒX ý G� D .H; 1; ..0; 2/; .1; 2/; .2; 2/// 2 BC3.G/;

which vanishes, by relation .V/. On the other hand, the classes of projectively linear
actions of G do not vanish in BC3.G/, see Section 8.
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