
EMS Surv. Math. Sci. 11 (2024), 277–413
DOI 10.4171/EMSS/81

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Environmental averaging

Roman Shvydkoy

Abstract. Many classical examples of models of self-organized dynamics, including the Cucker–
Smale, Motsch–Tadmor, multi-species, and several others, include an alignment force that is based
upon density-weighted averaging protocol. Those protocols can be viewed as special cases of “envi-
ronmental averaging”. In this paper we formalize this concept and introduce a unified framework
for systematic analysis of alignment models.

A series of studies are presented including the mean-field limit in deterministic and stochas-
tic settings, hydrodynamic limits in the monokinetic and Maxwellian regimes, hypocoercivity and
global relaxation for dissipative kinetic models, several general alignment results based on chain
connectivity and spectral gap analysis. These studies cover many of the known results and reveal new
ones, which include asymptotic alignment criteria based on connectivity conditions, new estimates
on the spectral gap of the alignment force that do not rely on the upper bound of the macroscopic
density, uniform gain of positivity for solutions of the Fokker–Planck-alignment model based on
smooth environmental averaging. As a consequence, we establish unconditional relaxation result
for global solutions to the Fokker–Planck-alignment model, which presents a substantial improve-
ment over previously known perturbative results.
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1. Introduction

Many mathematical models of swarming behavior reflect the tendency of every agent to
align its velocity to an averaged direction of motion of the crowd around. Although the
rules that describe the average may not be given explicitly, most adhere to a few basic
principles. First, agents react more to the closest neighbors, and second, the density of
the swarm plays constructive role in defining a particular communication protocol. Such
rules, in a broad sense, give rise to what is called environmental averaging.

Early computer simulations that incorporated an alignment mechanism along with
other interaction forces produced first realistic visualizations of flocks and schools, see [3,
77]. A wide variety of applications ranging from swarming behavior of animals to tech-
nological implementations, see these sources [1, 6, 8, 26, 33, 51, 70, 72, 82, 92] and refer-
ences therein, has ignited mathematical inquiries into theoretical foundation of alignment
dynamics.

A prototypical example of a static averaging model arises in opinion dynamics, where
each agent labeled by index i 2 Œ1;N � has a set of other agents Ni to which it is connected.
The opinion vector pi aligns to the opinions of connected agents via

Ppi D �
X
j2Ni

aij .t/.pj � pi /C Fi ;
X
j

aij .t/ D 1:

Here, Fi incorporate all other forces such as adherence to convictions or random noise.
If the graph of players is connected then the system naturally reaches the total consensus
pi ! xp. Forces may lead to non-trivial limiting states, such as Nash equilibria, see [27,
58, 70, 74].

In swarming dynamics the pioneering work of Vicsek et al. [96] introduced a discrete
model of self-propelled particles with local interactions8<: vi .k C 1/ D v0

P
j Wjxj �xi j<r0

vj
j
P
j Wjxj �xi j<r0

vj j
C ��n;

xi .k C 1/ D xi .k/C vi .k C 1/;

where �n are random variables and � > 0 is the noise intensity. The Vicsek averaging
is spatially local and includes normalization to reflect the tendency of agents to adhere
to a fixed characteristic speed. The model produces a number of emergent phenomena
developing into global patterns such as mills or periodically rotating chains. Solutions
undergo phase transitions from ordered to disordered states depending on the noise level,
see [26] for a discussion.

A growing number of studies on flocking behavior is based on the Cucker–Smale
system introduced in [24, 25],´
Pxi D vi ;

Pvi D
PN
jD1mj�.xi � xj /.vj � vi /;

.xi ; vi / 2 Rn �Rn; i D 1; : : : ; N: (1.1)
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Here, � is a smooth radially symmetric and decreasing kernel, originally �.r/D �

.1Cr2/ˇ=2
,

where �;ˇ > 0. The model provides a well-defined mathematical framework which admits
justifiable kinetic and macroscopic descriptions, see [9, 16, 35, 41, 43, 82, 94]. It appeared,
in part, in response to the need for a model whose long time behavior is not associated
with perpetual connectivity assumptions on the flock as in prior studies. In fact, a simple
criterion for alignment can be stated solely based on rate of decay of the kernel.

Theorem 1.1 ([24, 25]). If ˇ ⩽ 1, all solutions to (1.1) align exponentially fast to the
mean velocity xv D .1=

PN
jD1mj /

PN
jD1mj vj , while flock remains bounded

max
iD1;:::;N

jvi � xvj ⩽ Ce�ıt ; max
i;jD1;:::;N

jxi � xj j ⩽ xD;

where C; ı; xD depend only on the initial condition and parameters of the kernel. If ˇ > 1,
there are solutions that do not align.

Since its inception the Cucker–Smale system has seen numerous applications. A rem-
arkable implementation to satellite navigation was proposed in [75], where a value of
ˇ D 0:4 was found to be most optimal for the purposes of the mission. Adaptations to
control problems are addressed in [10, 12, 20]. Interacting agents immersed in an incom-
pressible fluid lead to hybrid systems with Cucker–Smale component modeling the align-
ment force [40]. Multi-scale and multi-species flocks have been studied in [45, 88]. An
important modification of the system with thermodynamic features was proposed in [42],
see also [1]. Flocking analysis can be extended to non-linear alignment protocols as
well [39, 50, 65, 93]. A comprehensive review of various other features of the Cucker–
Smale dynamics based on hierarchy, angle of vision, and emergence of leaders can be
found in [17]. In the context of alignment dynamics which includes potential attrac-
tion/repulsion or Rayleigh frictions forces, the emergent behavior has not yet been fully
understood, although it is clear from these studies [22, 58, 80, 81, 88], that the effect of
such forces on collective outcomes could be dramatic. In particular, the quadratic con-
finement potential drives the system to an aggregated harmonic oscillator, [80]. Some
general N -dependent results in this direction can be achieved for the 3Zone model of
Reynolds [77] with the use of the corrector method introduced in [29], see [82]. Lastly,
we mention that the alignment criterion itself stated in Theorem 1.1 does not require the
kernel to have any explicit form and has seen numerous extensions to include general fat-
tail kernels and kernels with degenerate communication in short range, see [29, 41] and
Section 4.1 below.

It is insightful to rewrite the Cucker–Smale system as follows

Pxi D vi ; xi 2 �;

Pvi D si .Œv�i � vi /; vi 2 Rn; i D 1; : : : ; N;
(1.2)

where � is an environment (for most of our discussion either Tn or Rn), Œv�i is an aver-
aging protocol of the i th agent, v D .v1; : : : ; vN /, and si is a specific communication
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strength. Here,

si D
NX
jD1

mj�.xi � xj /; Œv�i D

PN
jD1mj�.xi � xj /vjPN
jD1mj�.xi � xj /

: (1.3)

This form highlights two separate structural components of an alignment model – the
averaging and communication strength. Varying these components allows to adapt the
system to a particular modeling scenario. For example, it is argued in [69, 70] that if a
flock consists of clusters with unbalanced sizes it is more realistic to incorporate a static
strength parameter si D � > 0, leading to what is called the Motsch–Tadmor model

Pvi D �.Œv�i � vi /:

Analysis of this model presents many challenges related to the lack of symmetry and
momentum conservation. However, the analogue of Theorem 1.1 still holds, [70]. A mod-
ification that restores the symmetry was proposed in [82],

si D 1; Œv�i D

Z
Rn

�.xi � �/

PN
jD1mj�.� � xj /vjPN
jD1mj�.� � xj /

d�: (1.4)

This particular averaging appears instrumental in several other studies of flocking such
as hydrodynamic limits [82], relaxation and hypocoercivity in kinetic dynamics [83], see
also Sections 8 and 9. Its continuous variant emerged in the analysis of non-homogeneous
turbulence in [61].

Another interesting example of a non-Galilean invariant environmental averaging is
given by a class of segregation models. Let ¹glºLlD1 be a smooth partition of unity

LX
lD1

gl D 1

subordinated to an open cover
SL
lD1�l D �, where � is a compact environment. Let

si D 1; Œv�i D

LX
lD1

gl .xi /

PN
jD1mj vjgl .xj /PN
jD1mjgl .xj /

: (1.5)

Here, the agents communicate predominantly in their own communities and exchange
of information is facilitated through the borders. Consensus can be reached provided the
border is sufficiently populated at all times, see Section 4 for a rigorous formulation. Many
more examples are discussed in Section 2.

In the large crowd limit as N !1 the components si ; Œ��i take macroscopic forms,
which makes them suitable for statistical description of the alignment systems. For exam-
ple, denoting f� D f � � for a distribution f , we can see that the Cucker–Smale model
corresponds to

s� D �� ; Œu�� D
.u�/�

��
:
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This averaging rule is also known as the Favre filtration, [34], which was introduced in
the context of numerical simulations of turbulent flow. In the same manner, the averaging
of (1.4) is given by the over-mollification of the Favre filtration

Œu�� D

�
.u�/�

��

�
�

;

and the averaging of (1.5) becomes

Œu��.x/ D

LX
lD1

gl .x/

R
�
ugl� dyR

�
gl� dy

:

All the operations above make mathematical sense for any probability measure � 2 P .�/

and any bounded field u 2 L1.�/. In particular, we can go back to the discrete analogues
by applying averaging on empirical pairs

�N D

NX
iD1

miıxi ; uN D

NX
iD1

vi1xi ;

Œv�i WD Œu
N ��N .xi /; si WD s�N .xi /: (1.6)

It is therefore more inclusive to define averaging rules via macroscopic formulas.
Physical features of the system (1.2) are intimately connected to analytical properties

of the pair .s�; Œ � ��/. In most situations those properties are more naturally expressed in
terms of the strength measure given by d�� D s� d�. Thus, the preservation of �-momen-
tum Z

�

Œu�� d�� D
Z
�

u d��;

implies conservation of the physical hydrodynamic momentum, d
dt

R
�
ud�D 0. The sym-

metry Z
�

v � Œu�� d�� D
Z
�

Œv�� � u d��

implies a natural energy dissipation law

d
dt

Z
�

juj2 d�.x/ D �
1

2

Z
���

��.x; y/ju.x/ � u.y/j
2 d�.x/ d�.y/; (1.7)

where �� is a communication kernel representing a given averaging, see Section 3.2. The
long time behavior analysis becomes connected to coercivity and positive-definiteness of
the averaging, see Section 4.

In order to get more insight into such connections, it is useful to disassociate the aver-
aging/strength pair .��; Œ � ��/ from any particular differential law they are involved in, and
take a “birds eye” look on its kinematic properties. For this purpose, we will delegate the
concept of an environmental averaging model to a family of pairs

M D ¹.��; Œ � ��/ W � 2 P .�/º;
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parametrized by probability measures �2P .�/, and satisfying a list of continuity assump-
tions stated below in Section 2. Through the study of such models it appears possible to
build a unifying framework for many flocking and regularity results that have appeared
scattered before, and to find substantially new ones that, otherwise, are obscured by speci-
ficity of a particular model. This will be the main objective of the present work. So, let us
give a brief overview of the studies undertaken here.

(I) First, we develop basic functional analysis of the averaging models. Here we focus
primarily on those properties that have direct physical interpretation in terms of dynamics
of a particular system they are involved in. Those include representability (existence of
a communication kernel), conservation, symmetry, and most importantly a quantitative
version of positive definiteness – ball positivity, see Section 3. We also describe regularity
conditions on the pairs s�; Œu�� necessary for developing a meaningful well-posedness
theory for kinetic models done in Sections 5 and 7.

(II) Next we address the classical flocking result of Cucker and Smale for general
environmental averaging models. We choose the kinetic description in the context of
measure-valued solutions:

@tf C v � rxf D rv � .s�.v � Œu��/f /: (1.8)

Here � and u� are the macroscopic density and momentum, respectively. It is the most
inclusive framework since it encapsulates the microscopic system (1.2) if applied to empir-
ical measures

f D

NX
iD1

miıxi ˝ ıvi ;

and the pressureless hydrodynamic system if applied to mono-kinetic solutions

f D �.x; t/ı0.v � u.x; t//;

see (4.7). For global communication kernels the analogue of the original Cucker–Smale
alignment criterion is stated in Theorem 4.2, see also Carrillo et al. [16] for the first result
of this kind in kinetic formulation.

In the case of local communication, which is our primary focus, all alignment criteria
can be sorted into two types – ones that rely on a chain-connectivity of the flock, and ones
that make use of the spectral gap condition. The former approach is dynamic. It is based
on the idea that connected misaligned components of the flock lose energy through the
law (1.7) until full alignment is achieved. For the classical Cucker–Smale and topological
singular models this was addressed in [68, 87]. Here we present a new result stated in
Theorem 4.5 which gives a sufficient condition of ball-thickness, see (3.15): as long as the
flock is connected at a local communication scale r of the kernel, and x�r .supp�/≳ 1=t1=4

in the open space or x�r .�/≳ 1=t1=2 on the torus, the flock aligns. No control on the upper
bound of the density is necessary.
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The spectral gap approach is kinematic in nature. It relies on finding efficient bounds
on the spectral gap of the averaging operator set in a proper function space. In fact, spectral
gaps are relevant to flocking behavior in several contexts including relaxation problem for
the Fokker–Planck-alignment model. So, it will be our primary focus in Section 4.4. A
criterion proved in [92] states that a symmetric model aligns provided

R1
0
�.t/ dt D 1,

where

� D inf
u2L20.�/

.u;L�u/�

.u; u/�
; L�u D s�.u � Œu��/;

and .u; v/� D
R
�
u � v d�. In Proposition 4.9 we present an extension of this result to

the non-symmetric case. For the Cucker–Smale model the bound � ≳ �2�=�C was proved
in the same work [92], see also Remark 4.11. This result is consistent with the chain-
connectivity criterion stated above provided �C remains bounded. For systems with a
singular kernel a similar result was established in [87]. With a view towards the relaxation
problem, where reliance on �C is prohibitive, it is imperative to find bounds on the spectral
gap independent of �C.

To this end we propose a somewhat different methodology – one that focuses directly
on the averaging Œ � �� in the framework of ��-weighted spaces:

.u; Œu��/�� ⩽ .1 � "/kuk2
L2.��/

:

We introduce the low energy method tailored to finding estimates on " solely in terms
of ��. The method applies to a special, but quite broad class of so-called ball-positive mod-
els, see Proposition 4.16. These include the segregation (1.5), the overmollified Motsch–
Tadmor variant (1.4), and most notably the classical Cucker–Smale model (1.3) provided
the defining kernel is Bochner-positive: � D  �  for some  ⩾ 0. In particular, if
applied to the Cucker–Smale model the method gives the following bound:

" ≳ x�3r .�/: (1.9)

(III) The next study is dedicated to justifying the kinetic description through a mean-
filed limit in both deterministic and stochastic contexts. As the number of agents grows
N ! 1, the microscopic system settles in the weak sense to a solution to the kinetic
Vlasov-alignment equation (1.8):

�N D

NX
iD1

miıxi ˝ ıvi ! f:

So far the limit has been rigorously justified for the Cucker–Smale and (1.4)-models [41,
43,82]. In Section 5 we establish a much broader result which covers models with certain
uniform regularity properties, see Definition 3.17, and is insensitive to the symmetry of a
model. It applies in particular, to the Motsch–Tadmor and other similar models.

When system (1.2) is supplemented with density-weighted stochastic forces

dxi D vi dt;

dvi D si .Œv�i � vi / dt C
p
2�si dBi ; i D 1; : : : ; N;

(1.10)
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where the Bi ’s are independent Brownian motions in Rn, the limit “in law” settles to a
solution of the Fokker–Planck-alignment equation

@tf C v � rxf D �s��vf Crv � .s�.v � Œu��/f /: (1.11)

For the additive noise and general convolution-type models the result was proved in [9],
while the present case is treated in Section 6. The non-homogeneous diffusion requires a
separate consideration, and is introduced for two reasons. First, it makes physical sense
to put stochasticity where communication actually happens and is proportional to its
strength. Random deviations get stronger with more active communication, so si acts as
a thermalization parameter. Second, it ensures that the kinetic model (1.11) has a natural
Maxwellian equilibrium. This will be instrumental in the study of relaxation.

(IV) Reading off the evolution of macroscopic quantities from (1.8), we obtain the
hydrodynamic Euler-alignment system (EAS)

@t�Cr � .u�/ D 0;

@t .�u/Cr � .�u˝ u/Cr �R D .Œu�� � u/ d��;
(1.12)

where R is the Reynolds stress given by

R D

Z
Rn

.v � u/˝ .v � u/f dv:

Here, we encounter the classical closure problem. One can achieve a specific form of R

by introducing various scaling regimes. This has been addressed in two situations. The
monokinetic regime f ! �.x; t/ı0.v � u.x; t// results in the pressureless EAS, R D 0,
and the analysis of this limit for the classical Cucker–Smale model goes back to [35, 52,
66], see also [82]. The convergence was established quantitatively in Wasserstein-1 metric.
In Section 9.1 we produce a general result and upgrade the convergence to Wasserstein-2
under mild continuity assumptions on M. It applies, in particular, to all the models listed
here, including non-symmetric ones such as MMT.

By incorporating a strong penalization force of Fokker–Planck type, one can achieve
another regime where f settles to a Maxwellian. This results in the Euler-alignment sys-
tem with isothermal pressure tensor R D � Id. The Cucker–Smale model was analyzed
in [53–55], and (1.4) was analyzed in [83], see also [21] for a new development in the
mildly singular case. Section 9.2 presents a general result.

We note that kinetic closure is not the only way to model flocking on the macroscopic
level. A general class of systems with entropic pressure introduced in [93], which includes
kinetic ones as a particular example, is amenable to flocking analysis as well.

(V) The most comprehensive study in this present work is related to well-posedness
and relaxation of the Fokker–Planck-alignment model (1.11) on the periodic environment
� D Tn. The motivation for this study is rooted in the original question of emergence –
formation of collective outcome from purely local interactions. On the periodic domain,
if the communication kernel � has a short reach, supp � � Œ0; r0�, then there exists a
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family of unaligned solutions where agents rotate along parallel geodesics with vari-
ous velocities (or even perpendicular geodesics with mutually rational velocities). These
are called locked states. Such solutions form a measure-zero set in the ensemble of ini-
tial data .x1; : : : ; xN ; v1; : : : ; vN /. No deterministic approach to establishing alignment
based on generic data that avoids locked states has been explored yet, except for the
one-dimensional case [29]. It is natural, however, to look into this problem in stochas-
tic settings of (1.10), where locked states are being disrupted instantly. One can expect a
collective outcome in two limiting steps: first t !1, then � ! 0. For large crowd dis-
tributions governed by (1.11) this can be viewed as a relaxation problem: in the first step,
we obtain convergence to the Maxwellian

f ! ��;xu D
1

j�j.2��/n=2
e�.jv�xuj

2/=2� ; (1.13)

which in turn aggregates on the monokinetic state ı0.v � xu/˝ dx as � ! 0. The latter
represents a perfectly aligned configuration.

This program has seen some success in the past. The relaxation itself for the lin-
ear problem is a classical and well-understood subject, see [97] and references therein.
With the non-linear alignment force the works [18, 32] establish relaxation for perturba-
tive solutions near equilibrium in the case of the Cucker–Smale and purely local models,
respectively. The first global result was proved in [83] in the context of the (1.4)-model,
where linear technique was adapted to the non-linear problem enabled by special cancel-
lations in the alignment forcing.

In Section 8 we extend this technique further and prove a much more general result
that pertains to a wide variety of models. Proposition 8.1 lists a set of functional require-
ment on a given solution to imply exponential relaxation. This applies in particular to
perturbative solutions, but the main application manifests itself in global relaxation for
ball-positive models. It comes in conjunction with the detailed well-posedness theory for
the Fokker–Planck-alignment equations developed in Section 7. We prove that most mod-
els M with good regularity properties facilitate the classical kinetic diffusion effect –
spread of positivity of solutions expressed by the instant gain of Gaussian tails

f .t; x; v/ ⩾ be�ajvj
2

:

The spread of positivity is a well-known result observed in many kinetic equations, see [2,
13, 36, 46, 49, 71] and references therein. The novel additional aspect of our result stated
in Proposition 7.3 is that the constants a; b depend only on the entropy and L1-bound
on the drift s�Œu��. For many models, including the Cucker–Smale, the latter two can be
controlled by initial condition only. Consequently, for those models we obtain uniform
control over the lower bound on the density, and hence, the spectral gap through (1.9). In
such cases relaxation result is unconditional. Let us summarize the result specifically for
the original Cucker–Smale model.

Theorem 1.2. Any classical solution f to (1.11) based on the Cucker–Smale model with
Bochner-positive kernel � relaxes exponentially fast to the global Maxwellian (1.13).
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Theorem 8.8 contains the full list of models to which a similar result applies. We
note again that previously this result was established only in perturbative regime by Duan
et al. [32]. Concerning other models, in particular non-symmetric models such as Motsch–
Tadmor, we obtain relaxation near equilibrium in Fisher information sense. The complete
statement is given in Theorem 8.7.

Finally, let us comment on what is not included in our study and what would be highly
desirable to address in the near future. First, we include no forces, focusing mainly on the
core alignment mechanism. Potential forces, such as confinement, attraction/repulsion etc,
have a great impact on collective outcomes and play major role in applications, [14, 17,
22, 80, 81]. Second, we treat only linear couplings in the alignment force. Several recent
studies [39, 50, 65, 93] highlight the importance of non-linear couplings as well. In our
general framework non-linearity � can be incorporated by considering the system

Pvi D si Œ�.v � vi /�i :

Developing regularity and relaxation theory, say, for the kinetic counterpart would be
crucial to understanding more intricate non-linear phenomena of self-organization. Third,
our framework does not presume communication to be singular, either mildly or strongly.
Such models were introduced in [31, 76, 84–87] to analyze the effects of enhanced local
communication and its role in emergent dynamics, see the survey [72]. Finally, we leave
the analysis of hydrodynamic models in our general framework to future research as it
shifts the focus far from the thread of this work, see [15,44,60,70,82,94] and the literature
therein. However, we will share a new prospective on modeling macroscopic alignment in
Section 9.3.

2. Basic concept and examples

Let � denote an n-dimensional environment. We mostly focus on the cases when � is
either the open space Rn, periodic domain Tn, a finite set of points, or Cartesian products
of the above. Denote by P .�/ the set of probability measures on �. An environmental
averaging model is a family of pairs

M D ¹.��; Œ � ��/ W � 2 P .�/º

satisfying the following functional requirements:

(ev1) For every � 2 P .�/, �� is a finite positive measure on �. We call it communi-
cation strength;

(ev2) Œ � �� is a linear bounded operator on the weighted space L2.�; d��/ WD L2.��/;

(ev3) Œ � �� is a linear bounded operator on L1.��/, with the properties (��-a.e.):

Œu�� ⩾ 0 for all u ⩾ 0 and Œ1��� D 1�: (2.1)
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Here and throughout 1A denotes the characteristic function of a set A. If uD .u1; : : : ; um/
is a vector field (where m may be unrelated to the dimension n) we assume that the oper-
ator Œu�� is acting on each coordinate:

Œu�� D .Œu1��; : : : ; Œum��/: (2.2)

Although the averaging models are generally assumed to be defined over all densities
� 2 P .�/, to fulfill further regularity assumptions on the averaging operation it may be
necessary to restrict the probabilities � to a narrower admissible class D � P . The most
encountered examples include “thick” flocks, see Section 3.7.

Most natural models are material – a property of adherence to the support of the flock.
Namely, we say that the model M is material if

(ev4) there exists bounded family of non-negative functions s� 2 L1C .�/ with

sup
�2P .�/

ks�kL1.�/ ⩽ xS

such that �� D �s�. We also call s� a (specific) strength function;

(ev5) Œu�� D 0, provided u D 0 �-a.e.

On the microscopic level one considers discretely distributed density and velocity
fields associated to a set of N agents ¹xiºNiD1:

�N D

NX
iD1

miıxi ; uN D

NX
iD1

vi1xi :

Assuming that the model is material we can unambiguously compute the values of the
average and strength at the agents’ locations

Œv�i WD Œu
N ��N .xi /; si WD s�N .xi /:

The agent-based system (1.2) is stated precisely in terms of these discrete components.

2.1. Examples

Let us list several classical examples, and some new ones, and show how they fit into the
definition of environmental averaging.

Example 2.1. The most obvious example is the global averaging

s� D 1; Œu�� D

Z
�

u� dx: (Mglob)

and the system (1.2), in this case, expresses alignment with all-to-all communication

Pvi D

NX
jD1

mj .vj � vi /:
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The extreme opposite is the pure identity model

s� D 1; Œu�� D u 1supp�: (MI)

The agent-based version obviously leads to a stalled system. However, the utility of this
model in the kinetic formulation will present itself in the study of hydrodynamic limits,
see Section 9.

Example 2.2. The classical Cucker–Smale system has been discussed in detail in the
introduction. Let us recall that in this case the pair is given by

s� D �� ; Œu�� D
.u�/�

��
: (MCS)

Here and throughout we denote for short f� D f � �, and � is assumed to be infinitely
smooth. In this case the averaging Œu�� D uF is also known as the Favre filtration used in
large eddy simulations of compressible turbulence, [34]. Its remarkable property comes
from the fact that if � satisfies the continuity equation

@t�Cr � .u�/ D 0;

then the filtered density �� satisfies the continuity equation relative to the Favre-filtered
velocity field

@t�� Cr � .uF��/ D 0:

An important implication of this equation will be discussed in Section 9.3.
Properties (ev1) and (ev3) are obvious here. To verify (ev2) we notice that �� D ��� .

So using that for any � 2 P .�/,

j.u�/� j
2 ⩽ .juj2�/��� ; (2.3)

we obtainZ
�

jŒu��j
2 d�� D

Z
�

j.u�/� j
2 d�
��

⩽
Z
�

.juj2�/� d� D
Z
�

juj2�� d� D kuk2
L2.��/

:

We can see that the MCS-model is contractive. The contractivity generally holds even in
Lp-spaces for any conservative model, see Lemma 3.9.

Example 2.3. If we set s� D 1, the example above turns into another well-known model,
the so-called Motsch–Tadmor model [69, 70]:

s� D 1; Œu�� D
.u�/�

��
: (MMT)

The model was introduced to mediate some issues arising in application of the Cucker–
Smale averaging to multi-scale flocks, where a large and distant sub-flock overpowers the
dynamics of a smaller sub-flock, see also [82, 88] for more discussion.
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The only non-trivial property (ev2) holds for the admissible class of thick densities
D D ¹� 2 P W inf �� > 0º under no assumption on the kernel �. However, if the kernel �
is local and compactly supported, i.e.

c1jxj<r0 ⩽ �.x/ ⩽ C1jxj<R0 ; R0 > r0; (2.4)

(the latter holds automatically on compact �), then the L2-boundedness holds for any
� 2 P .�/ uniformly over P .�/. Indeed, using (2.3),Z

�

jŒu��j
2 d� ⩽

Z
�

.juj2�/�
d�
��
D

Z
�

juj2.
�

��
/� d�:

According to [53, Lemma 5.2], and see also the appendix, under the condition (2.4) we
have � �

��

�
�
⩽ C; (2.5)

where C depends only on the constants the appear in (2.4) and dimension. This implies
the desired result.

Example 2.4. We can interpolate between MCS and MMT and consider a general power
law for the specific strength function:

s� D �
ˇ
� ; Œu�� D

.u�/�

��
; ˇ ⩾ 0: (Mˇ )

All these models satisfy the requirements (ev1) and (ev3) obviously, and (ev2) follows
as above provided we have the following generalization of (2.5), which is proved in the
appendix: under (2.4), �

�

�
1�ˇ
�

�
�

⩽ C�
ˇ
� ; 8 0 ⩽ ˇ ⩽ 1; (2.6)

where C depends only on the constants the appear in (2.4), ˇ, and the dimension.

Example 2.5. More suitable for modeling local communication, a symmetric version of
the Motsch–Tadmor model can be defined by applying extra convolution to the Favre
filtration:

s� D 1; Œu�� D

�
.u�/�

��

�
�

: (M�)

This gives rise to the discrete averaging given by (1.4). Here we assume as always that
� 2 C1 and it is a mollifier: � 2 L1C.�/ with

R
� dx D 1.

The model was introduced in [82,83] and played various roles. It was proved to define
a globally hypocoercive kinetic dynamics, and was also used to extend Figalli and Kang’s
hydrodynamic limit in the monokinetic regime [35] to flocks with compact support, see
also Section 9.
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More versions of M� can be obtained by looking into different strengths by analogy
with the Mˇ -model, or by replacing � with a more general baratropic pressure:

�� D p.�/; Œu�� D

�
.up/�

p�

�
�

; (M�;p)

where p ⩾ 0 is a function of �. Here, the support of the strength function may not coincide
with �, or s� may be unbounded, which makes it a non-material model. Also the class
of admissible densities D may be restricted depending on the pressure law p.�/. For
example, in the ideal gas case p D �
 we naturally assume D D L
 .�/.

One interesting case is obtained when p D 1, resulting in

�� D 1; Œu�� D u��� : (M��)

In this case the average and the strength do not depend on the density at all, and conse-
quently define a non-material model.

Example 2.6 (Topological models). A new way of modeling interactions which imple-
ment topological, rather than Euclidean measure of distance, has long been advocated by
many empirical studies [7, 11, 73, 79]. The first symmetric topological model was intro-
duced in [87], see also [59, 67, 78], although it incorporated singular communication. Its
smooth variant fits within our framework of environmental averaging.

To define such a model let us consider a basic symmetric domain O0 D O.�e1; e1/
connecting two points �e1 and e1, and for any pair .x; y/, let O.x; y/ be the domain con-
necting x and y obtained by rotation and dilation of O0. Let �O.x;y/ be some mollification
of the characteristic function 1O.x;y/. We introduce the topological “distance” given by

d�.x; y/ D
Z
�

�O.x;y/.�/ d�.�/:

Now let �.d; z/WRC ��! RC be a smooth non-negative kernel, radial in z. We define

��.x; y/ D �.d�.x; y/; x � y/:

The kernel incorporates both metric and topological distances. Note that due to the sym-
metry of the domain O.x; y/, the kernel is also symmetric.

Let us define

s�.x/ D
Z
�

��.x; y/ d�.y/; Œu�� D

R
�
��.x; y/u.y/ d�.y/R
�
��.x; y/ d�.y/

: (Mtopo
CS )

This is the full topological variant of MCS. As these models bear relevance to biolog-
ical applications it makes most sense to assume inverse dependence on the topological
distance. For example,

�.d; z/ D
 .z/

."C d2/˛=2
; ˛ ⩾ 0;
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where  is a smooth kernel and " > 0 is a parameter ("D 0 would correspond to the fully
singular case).

By analogy we can also define a topological version of MMT:

s�.x/ D 1; Œu�� D same; (Mtopo
MT )

or the ˇ-model

s�.x/ D
�Z

�

��.x; y/�.y/ dy
�ˇ
; Œu�� D same: (Mtopo

ˇ
)

There is no reasonable topological counterpart of the mollified model M� , since there
is no way to guarantee that �� integrates to 1 at all times.

Example 2.7 (Models with strict segregation). A family of examples with segregated
alignment protocol can be built by setting s� D 1, fixing a � -algebra F of Borel subsets
of � and considering the conditional expectation E�.f jF / relative to d�. Define

Œu��;F D E�.ujF /: (Mcond)

For a given filtration ¹�;;º � F1 � F2 � � � � ! B, we can define a martingale chain of
averages

Œu��;n D E�.ujFn/;

which naturally connects the global averaging model with the purely local one, since
Œu��;n ! u in any Lp.�/, 1 ⩽ p <1.

Such an averaging operation models strict segregation between disjoint subalgebras
of F , so-called “neighborhoods”. Let us consider one specific example. Suppose F is the
algebra spanned by a partitioning of � into subsets A1; : : : ; AL. Then

Œu��;F D

LX
lD1

1Al
�.Al /

Z
Al

u� dx: (MF )

If u0 D ul0 within each cube Al , and initial density �0 is stays away from the borders @Al ,
then for a short period of time the solution satisfies a pure transport equation

�t C u
l
0 � rx� D 0

on each Al . So, the flock will travel with constant velocity within each neighborhood and
will remain segregated until one piece reaches the boundary of its neighborhood and starts
communicating with others.

Example 2.8 (Smooth segregation). Since in practice there is always a gradual transition
between neighborhoods, it makes sense to consider a smooth version of the model above,
which is also more amenable to analysis. Let us assume that � is compact, and consider
any smooth partition of unity gl 2 C1.�/, gl ⩾ 0, and

PL
lD1 gl D 1. Most naturally,
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such a partition can be obtained by subordinating it to an open cover ¹OlºLlD1 of �, so
that suppgl � Ol . We define the model by setting all s� D 1, and

Œu��.x/ D

LX
lD1

gl .x/

�.gl /

Z
�

ugl� dy; �.gl / D

Z
�

gl� dx: (Mseg)

In this model the boundaries are not sharp as in the previous version, and there is some
exchange of information that occurs across the adjacent neighborhoods.

There are ways to combine several averaging models into one that describe evolution
of a multi-flock. Here “multi” may mean several things – either multiple subflocks with
their own communication rules combine into a mega-flock with some global communica-
tion between subflocks, or it could mean the use of several communication rules within
and between subgroups, which we call “species”. Both of these variants were studied
in [45, 88].

Example 2.9 (Multi-species). When a big flock contains groups of agents with distinct
characteristics, communication between different groups may be facilitated by different
rules, or communication kernels �˛ˇ . A model that accommodates such various commu-
nication rules was introduced in [45]:

Px˛i D v
˛
i ; i D 1; : : : ; N ˛; ˛ D 1; : : : ; A;

Pv˛i D

AX
ˇD1

N ˇX
jD1

m
ˇ
j �

˛ˇ .x
ˇ
j � x

˛
i /.v

ˇ
j � v

˛
i /:

(2.7)

Here, each communication protocol is of Cucker–Smale type.
Such multi-species models can be generalized and fit into the framework of environ-

mental averaging we discuss here. To do that, suppose we have an array of A2 material
models M˛ˇ , ˛; ˇ D 1; : : : ; A defined over the same environment �. We can combine
them into a new multi-model on the product space � � A. To account for possible vari-
ations of masses of sub-flocks, we fix a set of masses ¹M ˛º˛ with the total mass being
M D

P
˛ M

˛ , and encode them into the set of admissible densities DA over � � A.
Namely, we say that � 2 DA is admissible if

� D
1

M

AX
˛D1

M ˛�˛ ˝ ı˛;

where �˛ 2 P . We define a cumulative strength function by

s�.x; ˛/ D
AX
ˇD1

M ˇ s˛ˇ
�ˇ
.x/:

The corresponding averaging of a function u D ¹u˛º˛ is given by

Œu��.x; ˛/ D
1

s�.x; ˛/

AX
ˇD1

M ˇ s˛ˇ
�ˇ
.x/Œuˇ �

˛ˇ

�ˇ
.x/:
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In terms of this average one can see directly, that the model (2.7) takes the canonical form

Pv D s�.Œv�� � v/:

Example 2.10 (Multi-flocks). Let us recall the multi-flock model introduced in [88]:

Px˛i D v
˛
i ;

Pv˛i D

NX̨
jD1

m˛j �
˛.x˛i � x

˛
j /.v

˛
j � v

˛
i /C "

AX
ˇD1; ˇ¤˛

M ˇ .X˛; Xˇ /.V ˇ � v˛i /:
(2.8)

The model representsA groups of agents evolving according to their own communication,
Cucker–Smale type in this particular case, while communication between groups is facil-
itated through another protocol which involves a kernel  and alignment to macroscopic
parameters of each subflock, namely their center of masses

X˛ D
1

M ˛

NX̨
iD1

m˛i x
˛
i ; M ˛

D

NX̨
iD1

m˛i ;

and momenta

V ˛ D
1

M ˛

NX̨
iD1

m˛i v
˛
i :

This idea can be made more formal via an asymptotic analysis detailed in [88].
In general, let ¹M˛ºA˛D1 be a family of material models defined over the same envi-

ronment �. We define the admissible set of densities DA as in the previous example. For
any � D ¹�˛º˛ 2 DA, we define the strength function by

s�.x; ˛/ DM ˛s˛�˛ .x/;

and for u D ¹u˛º˛ the average is given by

Œu��.x; ˛/ D Œu
˛�˛�˛ .x/:

So far this model incorporates only internal flock communications. To combine these
into an interactive multi-flock we assume that the communication between sub-flocks is
facilitated through another averaging model .sext

� ; Œu�
ext
� /. The multiflock model (2.8) can

be written as a system over � � A:

Pv D s�.Œv�� � v/C "sext
�A
.ŒV �ext

�A
� v/;

where �A D
PA
˛D1M

˛ıX˛ and V D
PA
˛D1 1V ˛ .

Example 2.11 (Models on finite sets). The last but not least example on our list is the
family of models on finite environments � D ¹x1; : : : ; xN º. These will be an essential
tool to prove results about continuous models, see Appendix B. Finite models illustrate a
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situation when all the agents are planted in their places and simply play the role of labels.
They do not give rise to any inertial systems of type (1.2). However, they do give rise to
families of first order linear systems for vi D v.xi / 2 Rm,

Pvi D si .Œv�i � vi /;

for each distribution of masses � D .m1; : : : ; mN /. Since the averages act coordinate-
wise (see (2.2)), the systems for each coordinate decouple and we can assume that vi are
scalars. In this case the properties of the model can be reduced to the properties of the
corresponding reproducing matrix associated with the average:

A D .aij /
N
i;jD1; aij D Œ1xj �.xi /:

Property (ev3) implies that A has non-negative entries, and A1 D 1, that is, A is right-
stochastic.

3. Classes of models and their properties

In this section we will systematize functional properties of environmental averaging mod-
els without association with any dynamical law. We introduce several important classes
based on their operator-theoretical classification, which will be used extensively in subse-
quent studies.

3.1. Mapping properties. Jensen inequality

Let us discuss functional basics of environmental averages, and direct consequences of
mapping properties stated in (ev2) and (ev3).

First of all, order preserving maps (2.1) obey the maximum principle

minf ⩽ Œf �� ⩽ maxf; (3.1)

and consequently are contractive on L1.��/:

kŒf ��k1 ⩽ kf k1: (3.2)

Next, let us look intoL1-adjoint operator Œ � ��. Technically, it maps .L1/�! .L1/�

and if restricted to L1 it still lands into .L1/� from this general prospective. However,
the extra structure of the averaging allows us to conclude more.

Lemma 3.1. The operator Œ � ��� has the following properties:

(1) Œ � ��� WL
1.��/! L1.��/, and hence, Œ � �� is weak�-continuous on L1.��/;

(2) Œ � ��� is order preserving;

(3) Œ � ��� WL
1
C.��/! L1C.��/ is an isometry.



Environmental averaging 295

Proof. Let us fix f 2 L1.��/ and for every measurable set A define

�f .A/ D

Z
�

f Œ1A�� d��:

This defines finite � -additive measure. Indeed, if A D
S1
iD1Ai , a disjoint union, then

1SN
iD1Ai

! 1S1
iD1Ai

in L2.��/. By (ev2), we then also have Œ1SN
iD1Ai

�� ! Œ1S1
iD1Ai

�� in L2.��/. Then up to
a subsequence, the same convergence holds ��-a.e. By the Lebesgue dominated conver-
gence theorem we obtain

�f .1SN
iD1Ai

/! �f .1S1iD1Ai /:
Furthermore, if ��.A/ D 0, then by (ev2) Œ1A�� D 0 a.e., and hence �f .A/ D 0. This

implies that �f is absolutely continuous with respect to ��. Hence, there exists a function
g 2 L1.��/ such that Z

�

f Œ1A�� d�� D
Z
�

g1A d��:

By approximation and continuity (3.2) we obtain the same relationZ
�

f Œh�� d�� D
Z
�

gh d��;

for any h 2 L1.��/. This means that Œf ��� D g 2 L
1.��/. We have proved (1).

Preservation of order (2) follows directly from (ev3) since if f 2 L1C.��/, thenZ
Œf ���g d�� D

Z
f Œg�� d�� ⩾ 0

for all g 2 L1C .��/. Hence, Œf ��� ⩾ 0. Moreover,Z
Œf ��� d�� D

Z
f Œ1�� d�� D

Z
f d��;

which proves (3).

As a consequence, we obtain the following point-wise Jensen inequality for averag-
ings.

Lemma 3.2. For any u 2 L1.��/, the following Jensen inequality holds ��-a.e.:

 .Œu��.x// ⩽ Œ .u/��.x/; (3.3)

where  is a continuous convex even and monotonically increasing on RC function.



R. Shvydkoy 296

Proof. By Lemma 3.1, for every A � �, there exists fA 2 L1C.��/, kfAk1 D 1, such that

1

��.A/

Z
A

Œu�� d�� D
Z
�

ufA d��:

Then by the classical Jensen inequality we have

 

�
1

��.A/

Z
A

Œu�� d��

�
D  

�ˇ̌̌Z
�

ufA d��
ˇ̌̌�

⩽  

�Z
�

jujfA d��

�
⩽
Z
�

 .juj/fA d�� D
Z
�

 .u/fA d�� D
1

��.A/

Z
A

Œ .u/�� d��:

Since this holds for any A, by the Lebesgue differentiation theorem and continuity of  ,
as A! ¹xº for a.e. x we obtain (3.3), as desired.

One of the useful consequences of Jensen’s inequality is extrapolation to Lp-spaces
for p < 2 and a bound on the Lp-norms.

Lemma 3.3. Suppose Œ1��� 2 L
1.��/. Then Œ � ��WLp.��/! Lp.��/ for all 1 ⩽ p ⩽1,

and
kŒ � ��kLp.��/!Lp.��/ ⩽ kŒ1�

�
�k
1=p
1 :

Proof. For p D 1, the result is simply the axiom (ev3). For p < 1, we use Jensen’s
inequalityZ

�

jŒu��j
p d�� ⩽

Z
�

Œjujp�� d�� D
Z
�

jujpŒ1��� d�� ⩽ kukpp kŒ1�
�
�k1;

and the result follows.

In some of our studies we will encounter the need to quantify boundedness of the
weighted averages s�Œ � �� on L2.�/. This is weaker than the previous mapping property
thanks to the uniform boundedness of s�. Thus, a weaker condition is required for it to
hold.

Lemma 3.4. Suppose s�Œs
p�1
� ��� 2 L

1.�/, 1 ⩽ p < 1. Then s�Œ � ��WLp.�/! Lp.�/,
and

ks�Œ � ��kLp.�/!Lp.�/ ⩽ ks�Œsp�1� ���k
1=p
1 :

Proof. Using Jensen’s inequality,

ks�Œu��k
p

Lp.�/
D

Z
�

js�Œu��jp d� ⩽
Z
�

Œjujp��sp� d�

D

Z
�

Œjujp��sp�1� d�� D
Z
�

jujpŒsp�1� ��� d��

D

Z
�

s�Œsp�1� ��� juj
p d� ⩽ ks�Œsp�1� ���k1kuk

p

Lp.�/
:

We refer to Section 3.7 for further discussion.
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3.2. Reproducing kernel

For material models we often deal with the weighted averaging s�Œu�� rather than the bare
averaging Œu��. In most models the weighted average is an integral operator represented
by a kernel.

Definition 3.5. A reproducing kernel of the model M is a non-negative function �� 2
L1C.�˝ �/, such that Z

�

��.x; y/ d�.y/ D s�.x/; �-a.e.

and so that for all u 2 L1.�/,

s�Œu��.x/ D
Z
�

��.x; y/u.y/ d�.y/; �-a.e.

A list of examples including our core models is provided in Table 1.

Model MCS MMT Mˇ M� Mseg

�� �.x � y/
�.x � y/

��.x/

�.x � y/

�
1�ˇ
� .x/

Z
�

�.x � z/�.y � z/

��.z/
dz

LX
lD1

gl .x/gl .y/

�.gl /

Table 1. Reproducing kernels.

Generally, the kernel can be recovered from a right-stochastic reproducing kernel of
the average itself,

ˆ� 2 L
1
C.�� ˝ ��/;

Z
�

ˆ�.x; y/ d��.y/ D 1; ��-a.e.,

Œu�� D

Z
�

ˆ�.x; y/u.y/ d��.y/:

The correspondence between the two is given by

��.x; y/ D s�.x/ˆ�.x; y/s�.y/:

The representation of the adjoint averaging is given by

s�.y/Œv���.y/ D
Z
�

��.x; y/v.x/ d�.x/; �-a.e. (3.4)

Reproducing kernels are useful for many reasons. Not only do they provide more
specific structure to the averaging operator, many properties of the averaging that we will
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introduce later can be restated in terms of regularity of the kernel, see Section 3.7. The
alignment forces that appear on all levels of description take a more conventional form:

si .Œv�i � vi / D
NX
jD1

mj��N .xi ; xj /.vj � vi /; (3.5a)

s�.Œu�� � v/ D
Z
��Rn

��.x; y/.w � v/f .y;w/ dw dy; (3.5b)

s�.Œu�� � u/ D
Z
�

��.x; y/.u.y/ � u.x// d�.y/: (3.5c)

3.3. Conservative models and contractivity

Recall that due to (3.1) every alignment system that is based on an environmental averag-
ing has a maximum/minimum principle and therefore tends to align. If one can quantify
the rate of change of the amplitude of u based on properties of the couple .��; Œ � ��/ one
can potentially obtain an alignment u! xu to some constant velocity vector xu. However,
not every model has a predetermined xu. Typically xu is uniquely defined by the initial con-
dition if the system preserves the momentum. This property is ensured if the underlying
model is conservative.

Definition 3.6. We say that the model M is conservative if for any � 2P .�/, u 2L2.��/,
we have Z

�

u d�� D
Z
�

Œu�� d��:

At all levels of description (1.2), (1.8), (1.12), conservative models preserve momen-
tum,

d
dt
xu D 0; xu D

Z
�

�u dx:

Since we assume that the total mass of a flock is 1, this also predetermines the limiting
average velocity from the initial condition xuD

R
�
�0u0 dx. Non-conservative models such

as MMT may also align, see Section 4.1 below. However, for those models the limiting
velocity emerges dynamically and is not predetermined by the initial condition.

In operator terms being conservative simply means that the adjoint average Œ � �� also
preserves constants

Œ1��
�
� D 1�; ��-a.e.; 8� 2 P .�/: (3.6)

This in turn implies that the space of mean-zero fields

L20.��/ D

²
u 2 L2.��/ W

Z
�

u d�� D 0
³

is invariant for both Œ � �� and Œ � ��� .
Together with the positivity proved in Lemma 3.1, (3.6) implies that

Œ � ��� WL
1.��/! L1.��/;
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and so the adjoint model M� consisting of pairs .��; Œ � ���/ fulfills all the requirements of
environmental averaging.

Lemma 3.7. If M is conservative, then M� also defines a conservative model. If M1

and M2 are conservative with the identical set of strength functions, then M2 ıM1 and
1
2
.M1 CM2/ are also conservative.

For a material model that possesses a reproducing kernel being conservative is equiv-
alent to ˆ� being doubly stochastic, or equivalently for �� to satisfy:Z

�

��.x; y/ d�.x/ D s�.y/: (3.7)

A useful reformulation of conservative property can be done in terms of contractivity.

Definition 3.8. We say that the model M is p-contractive for 1 ⩽ p ⩽ 1, if for any
� 2 P .�/, u 2 Lp.��/,

kŒu��kLp.��/ ⩽ kukLp.��/:

Note that straight from the definition part (ev3) all models are1-contractive. It is easy
to show that contractivity is equivalent to being conservative.

Lemma 3.9. The following are equivalent:

(i) M is conservative;

(ii) kŒ1����kL1.��/ ⩽ 1 for all � 2 P .�/;

(iii) M is p-contractive for all 1 ⩽ p ⩽1;

(iv) M is 1-contractive.

Proof. (i)) (ii) is trivial. Conversely, assume (ii). Then we haveZ
�

1� d�� ⩾
Z
�

Œ1��
�
� d��

D

Z
�

1�Œ1��� d�� D
Z
�

1� d��;

which proves that Œ1���� D 1�, ��-a.e.
The implication (ii)) (iii) is a direct consequence of Lemma 3.3.
Since (iii)) (iv) is trivial, let us now assume (iv). By duality Œ � ��� is1-contractive,

and hence (ii) holds.

Contractivity also implies that the alignment force is dissipative. For example, for the
pressureless Euler-alignment system (see (4.7) below), we obtain

d
dt
1

2

Z
�

�juj2 dx D
Z
�

Œu � Œu�� � juj
2� d�� ⩽ 0: (3.8)
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3.4. Symmetric models

Most of the models on our list are in fact symmetric: for all � 2P .�/ and u0;u00 2L2.��/,

.u0; Œu00��/�� D .Œu
0��; u

00/�� ;

where we generally adopt the following notation for the inner-product relative to a mea-
sure �:

.f; g/� D

Z
�

fg d�:

In other words, Œ � ��� D Œ � ��. In terms of reproducing kernel, if one is available, symme-
try is equivalent toˆ� being symmetric. Setting u00 D 1� we can see that every symmetric
model is conservative. However, not every conservative model is automatically symmet-
ric. Plenty of examples are provided by defining the averages with non-symmetric doubly
stochastic reproducing kernels.

For symmetric models the energy law (3.8) takes a more explicit form

d
dt

Z
�

�juj2 dx D �
Z
�

��.x; y/ju.x/ � u.y/j
2 d�.x/ d�.y/:

We can see that the dissipation burns energy for as long as communicating agents of the
flock are not yet aligned. This creates a mechanism for flocking behavior to be discussed
in more detail in Section 4.

If M is a conservative but not symmetric model, then canonical ways to symmetrize it
would be to consider the model 1

2
.MCM�/ or M� ıM. According to Lemma 3.7, those

define proper environmental averages.

3.5. Galilean invariance

We say that the model M is Galilean invariant if for all x 2 � and v 2 Rn,

��.�Cv/.x/ D ��.x C v/;

Œu.� C v/��.�Cv/.x/ D Œu��.x C v/:

In terms of reproducing kernel, if one is available, the Galilean invariance is equivalent to

s�.�Cv/.x/ D s�.x C v/;

��.�Cv/.x; y/ D ��.x C v; y C v/:

For a particular differential system in which M is involved, this property implies the
conventional Galilean invariance with respect to the transformation

x ! x C tV; v ! v C V; u! uC V:

All the models considered above except for segregation and conditional expectation
ones are Galilean invariant. The segregation protocols are planted into a given geography
of the map and therefore are not translation invariant.
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3.6. Ball-positivity

If an operator T on a (real in our case) Hilbert space HR is positive semi-definite, i.e.

.T u; u/ ⩾ 0; (3.9)

geometrically this means that T u and u lie on the same side of the hyperplane u?. If T u
lies in an even more restricted location, namely, in the ball 1

2
Bkuk.u/, i.e.


T u � 1

2
u



 ⩽

1

2
kuk;

then we call T ball-positive. A more useful definition of ball-positivity can be stated equiv-
alently as follows

.T u; u/ ⩾ kT uk2; 8u 2 HR:

In other words, it is positivity (3.9) that comes with a more coercive flavor. Although, as
far as we can trace, there is no standard term associated with this property in the literature,
such operators appeared for instance in [63] (with � D 1) and [91].

In the context of environmental averaging models, whereHRDL
2.��/, and T D Œ � ��,

the ball-positivity is stated as follows

.u; Œu��/�� ⩾ kŒu��k
2
L2.��/

; 8u 2 L2.��/: (3.10)

This property has profound implications to flocking behavior of the system as we will see
later in Section 4.4.

We identify many ball-positive models on our list with the use of a simple lemma.

Lemma 3.10. If M is symmetric, then M is ball-positive if and only if it is positive semi-
definite.

Proof. The forward implication is trivial. Conversely, if M is non-negative and symmet-
ric, then .u;v/T D .T u;v/ defines a (possibly degenerate) inner product on the real Hilbert
space HR D L

2.��/. Hence, the Cauchy–Schwarz inequality applies

j.T u; v/j ⩽
p
.T u; u/

p
.T v; v/:

Taking supremum over all unit v and using the contractivity of T , we obtain the result.

Corollary 3.11. If M is conservative, then M� ıM is ball-positive.

Clearly, the conditional expectation model Mcond is ball-positive, because it consists
of orthogonal projections. For Mseg, we have

.u; Œu��/� D

LX
lD1

�.ugl /
2

�.gl /
⩾ 0:
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The classical Cucker–Smale model MCS is ball-positive, provided the kernel � is Bochner-
positive, i.e. � D  �  for some smooth  ⩾ 0. We have

.u; Œu��/�� D

Z
�

.u�/ � .u�/� dx D
Z
�

.u�/2 dx ⩾ 0:

The symmetric M� model is also ball-positive

.u; Œu��/� D

Z
�

j.u�/� j
2

��
dx ⩾ 0:

The same argument shows that all M�;p-models are ball-positive.
Among symmetric but not necessarily ball-positive models are the topological mod-

els M
topo
CS . Here, the kernel is not Bochner-positive to even imply sign definiteness of the

averaging. Incidentally, ball-positivity does not imply symmetry either. This will be shown
in Appendix B. So, these two properties are completely independent.

Nonetheless, ball-positivity, does imply a host of other properties including of course
positivity and 2-contractivity. The 2-contractivity alone does not seem to be sufficient to
imply conservation, in spite of Lemma 3.9, it is still possible to show that all ball-positive
models are conservative. The proof of this result is not so straightforward. We include it
in Appendix B.

Proposition 3.12. Every ball-positive model is conservative.

Let us summarize the list of properties, relations between them, and examples (see
Table 2):

ball-positive(H

´ symmetric H) conservative ” contractive~w
positive semi-definite (H ball-positive

Model conservative symmetric ball-positive Galilean invariant

MI ✓ ✓ ✓ ✓

Mglob ✓ ✓ ✓ ✓

MCS ✓ ✓ ✓ if � D  �  ✓

M
topo
CS ✓ ✓ ✗ ✓

MMT ✗ ✗ ✗ ✓

M� ✓ ✓ ✓ ✓

Mseg ✓ ✓ ✓ ✗

Table 2. Functional properties of the core models.

The most important applications of ball-positivity will be seen in the context of flock-
ing and spectral gap calculations to be discussed in Section 4.4.
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3.7. Thickness, regularity, and well-posedness of microscopic systems

In order to develop a meaningful analysis of alignment models it will be necessary to make
a list of continuity and regularity assumptions. We state those in terms of representing
kernels and strength functions, which appears to be the most economical way.

3.7.1. Locality of communication. First and foremost we assume that representing ker-
nels support communication at a short range, i.e.

��.x; y/ ⩾ c01jx�yj<r0 for some r0 > 0 and all � 2 P .�/: (3.11)

Typically, for Favre-based models, such locality follows from the corresponding locality
of the defining convolution kernel �:

�.r/ ⩾ c01r<r0 : (3.12)

Many models in our list satisfy this condition automatically. For the classical Cucker–
Smale, it simply means that � > 0 near the origin. The Motsch–Tadmor model fulfills the
same via

��.x; y/ D
�.x � y/

��.x/
⩾

1

k�k1
�.x � y/; (3.13)

since ��.x/ ⩽ k�k1. Similarly, for the M�-model, we have

��.x; y/ ⩾
1

k�k1
� � �.x � y/ ⩾ c01jx�yj<r0 :

The locality also holds for the segregation model Mseg on a compact environment �.
Indeed, since

PL
lD1 gl .x/ D 1, for every x there exists l such that gl .x/ ⩾ 1=L. Using

continuity and compactness, there exists a r0 > 0 such that for any jx � yj < r0, we have
gl .y/ > 1=2L. Then, since �.gl / ⩽ 1,

��.x; y/ D

LX
lD1

gl .x/gl .y/

�.gl /
⩾

1

2L2
D c0; 8x; y W jx � yj < r0:

Thus, (3.11) is satisfied.
A better way to express (3.11) and similar conditions that follow is through the use of

a smooth cut-off function. Let us fix � 2 C10 .B1.0// such that �.x/ D 1 for x 2 B1=2.0/
and 0⩽ �⩽ 1 throughout. We denote the rescaling of � by �r .x/D �.x=r/. Thus, (3.11)
implies

��.x; y/ ⩾ c0�r0.x � y/:

3.7.2. Thickness. Flock with a certain weight present throughout its support or even the
entire environment are called thick. One can use masses of balls, �.Br .x// as a measure of
thickness. This concept was adopted, for example, in [68]. While useful in many situations
(see Sections 4.2, 4.4) for some models, however, thickness takes more individual form
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which is easier to satisfy. For example, in the MCS case it is more natural to measure
thickness as �� , while for Mseg the thickness can be measured in terms of masses of
neighborhoods, �.gl /. We adopt the following general definition.

Definition 3.13. A thickness of a density � 2 P .�/ is a function‚�W�! RC satisfying
the following conditions:

(i) ‚.�; �/ is lower semi-continuous;

(ii) �.¹x W ‚.�; x/ D 0º/ D 0 for all � 2 L1.�/ \P .�/;

(iii) there exists c > 0 such that ‚.�; x/ ⩾ cmin � for all � 2 �;

(iv) continuity-in-�: there exists a c > 0 such that for all �0; �00 2 P .�/,

k‚.�0; �/ �‚.�00; �/k1 ⩽ ck�0 � �00kP I

(v) compatibility with the continuity equation: if � satisfies

@t�Crx � .u�/ D 0;

then for every point x 2 �, the function t ! ‚.�.t/; x/ satisfies

@t‚.�; x/ ⩾ �ckukL2.�/; (3.14)

in a distributional sense.

Thickness of the flock over a subset S � � is defined by

‚.�; S/ D inf
x2S

‚.�; x/:

If S D �, we call ‚.�;�/ the uniform thickness of the flock.

Example 3.14. If no specific structural information is known about ��.x; y/ except for
locality (3.11) then a universal choice for the thickness would be the mass of a smoothed
ball at a scale 0 < r < r0 (called ball-thickness):

‚.�; x/ D x�r .x/ D � � �r .x/: (3.15)

Most properties are easy to verify: for (i) we even have ‚ 2 C1, for (ii) we observe that

¹x W ‚.�; x/ D 0º \ supp � D ;;

(iii) and (iv) are trivial, and as to (v), we have

@t x�r .x/ D �rx � .u�/�r D �.u�/r�r ⩾ �ckukL2.�/: (3.16)

Example 3.15. Thickness associated with a local convolution-type kernel � (see (3.12))
is given by

‚.�; x/ D ��.x/:

Here all the properties are trivial. Note that locality (3.12) is necessary for (ii). This choice
will be suitable for all Favre-based models.
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Example 3.16. Another example is associated with the segregation model Mseg:

‚.�; x/ D min
lWx2suppgl

�.gl /: (3.17)

Here we also assume for technical reasons that j@.suppgl /j D 0.
To show the lower semi-continuity, let x 2 � be such that ‚.�; x/ > a. Suppose

l1; : : : ; lk is the list of indexes such that x 62 supp gli . Then there exists ı > 0 such that
Bı.x/ \ supp gli D ;. Then for all y 2 Bı.x/ the list of l’s for which y 2 supp gl is
a subset of the list of l’s corresponding to x. So, ‚.�; y/ ⩾ ‚.�; x/, and hence the set
¹x W ‚.�; x/ > aº is open.

To show (ii) suppose we have x W‚.�;x/D 0, hence there exists l such that x 2 suppgl
and �.gl /D 0. If gl .x/ > 0, then �.B".x//D 0 for a small ", hence x 62 supp�. Otherwise,
x 2 @.suppgl /. So,

¹x W ‚.�; x/ D 0º � .�n supp �/ [ @.suppg1/ [ � � � [ @.suppgL/;

and the �-measure of the set on the right-hand side is 0.
(iii) and (iv) are trivial, as to (v) we have similar to (3.16)

@t�.gl / D

Z
�

u � rgl d� ⩾ �ckukL2.�/

for any l D 1; : : : ; L. So, for any fixed x 2 � there is a finite collection of l’s such that
x 2 supp gl . Denote it L.x/. Since the minimum is taken over a fixed compact set L.x/
at any moment of time, Rademacher’s lemma applies to deduce (3.14) is distributional
sense.

3.7.3. Regularity of M and continuous dependence on �. Let us discuss now regularity
and continuity-in-� of our models. We will encounter two types of models – ones whose
regularity depends on thickness (and therefore can be violated if the density in question is
not thick), and ones that are uniformly regular independently of thickness.

Before we make these definitions precise, let us make an observation – in all our
models the strength is bounded from below by the native and ball-mass thicknesses: there
exists an non-decreasing continuous function sWRC ! RC such that

s�.x/ ⩾ s.‚.�; x//; s�.x/ ⩾ s.x�r0.x// for all x 2 �: (3.18)

Let us recall the classical Kantorovich–Rubinstein distance between any two finite
measures �0; �00 over �:

W1.�
0; �00/ D sup

Lip.h/⩽1

ˇ̌̌̌Z
�

h.x/
�

d�0.x/ � d�00.x/
�ˇ̌̌̌
:



R. Shvydkoy 306

Model MCS M
topo
CS Mˇ M� Mseg

‚.�; x/ ��.x/ � .x/ ��.x/ ��.x/ min
lWx2suppgl

�.gl /

Table 3. Associated thickness of selected models.

Definition 3.17. We say that a model M is regular if for every R > 0 and �; �0; �00 2
P .BR/, we have for every k D 0; 1; : : : ;

k@ks�kL1.BR/ C k@
k
x��kL1.BR�BR/ C k@

k
y��kL1.BR�BR/ ⩽ Ck;R.‚.�; BR//; (3.19)

ks�0 � s�00kL1.BR/ C k��0 � ��00kL1.BR�BR/ ⩽ CR.‚.�
0; BR/;‚.�

00; BR//W1.�
0; �00/:

(3.20)

Definition 3.18. We say that a model M is uniformly regular if for every R > 0 and
�; �0; �00 2 P .BR/ we have for every k D 0; 1; : : : ;

k@ks�kL1.BR/ C k@
k
x��kL1.BR�BR/ C k@

k
y��kL1.BR�BR/ ⩽ Ck;R; (3.21)

ks�0 � s�00kL1.BR/ C k��0 � ��00kL1.BR�BR/ ⩽ CRW1.�
0; �00/: (3.22)

If no information is known about the thickness of one of the densities involved in
inequality (3.20), some of the models still retain a level of continuity if at least the other
density is thick: for every R > 0 and �0; �00 2 P .BR/, one hasZ

�

js�0.x/ � s�00.x/j2 d�00.x/ ⩽ CR.‚.�
0; BR//W

2
1 .�
0; �00/; (3.23)Z

�

Z
�

j��0.x; y/ � ��00.x; y/j
2 d�00.x/ d�00.y/ ⩽ CR.‚.�

0; BR//W
2
1 .�
0; �00/: (3.24)

This will be useful in the study of the hydrodynamic limits.
Let us go through the main examples on our list, identify their associated thicknesses

and determine which level of regularity they satisfy and under which conditions. Our
findings are summarized in Tables 3, 4 and 5.

Example 3.19 (MCS, M
topo
CS ). The Cucker–Smale model is trivially uniformly regular with

‚.�; x/ D �� . While M
topo
CS is uniformly regular with ‚.�; x/ D � .

Example 3.20 (Mˇ , 0 ⩽ ˇ < 1). The model has the same associated thickness, that is,
‚.�; x/ D �� . Under no conditions on �, the model is trivially regular. If � > 0, then

‚.�; x/ ⩾ inf
r<2R

�.r/ D ı > 0 (3.25)

on BR for any � 2 P .BR/. So, in this case the model is uniformly regular, and all the
estimates are straightforward.
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Model regular uniform (3.23), (3.24)

MCS ✓ ✓ ✓

M
topo
CS ✓ ✓ ✓

Mˇ ✓ � > 0 c1jxj<r0 ⩽ �.x/⩽C1jxj<R0
M� ✓on compact � � > 0 on compact�,

� D
1

hxinC

on Rn

✓on compact �

Mseg ✓ suppgl D � ✓

Table 4. Regularity type of selected models.

Let us assume that � is local and satisfies (2.4). We will prove that in this case the
model is continuous in � ((3.23), (3.24)). Indeed, as to (3.23), by an elementary inequality,
we have

j.�0�/
ˇ
� .�00�/

ˇ
j ⩽ C j�0� j

ˇ�1
j�0� � �

00
� j ⩽ C.‚.�0; x//kr�k1W1.�

0; �00/;

and (3.23) follows. As to the kernel continuity (3.24), we haveZ
�

Z
�

j��0.x; y/ � ��00.x; y/j
2 d�00.x/ d�00.y/

⩽ k�k1

Z
�

Z
�

ˇ̌̌̌
1

.�0�.x//
1�ˇ
�

1

.�00�.x//
1�ˇ

ˇ̌̌̌2
�.x � y/ d�00.x/ d�00.y/

D k�k1

Z
�

ˇ̌̌̌
1

.�0�.x//
1�ˇ
�

1

.�00�.x//
1�ˇ

ˇ̌̌̌2
�00�.x/ d�00.x/

D k�k1

Z
�

j.�00�.x//
1�ˇ � .�0�.x//

1�ˇ j2

.�0�.x//
2�2ˇ

.�00�.x//
2ˇ d�00.x/

�00�.x/

⩽ C.‚.�0; BR//W
2
1 .�
0; �00/

Z
BR

d�00.x/
�00�.x/

:

Note that Z
BR

d�00.x/
�00�.x/

D
1

k�k1

Z
BRCR0

Z
BR

�.x � y/
d�00.x/
�00�.x/

dy

D
1

k�k1

Z
BRCR0

.
�00

�00�
/�.y/ dy:

According to (2.5), the expression inside is uniformly bounded, and hence the whole inte-
gral is bounded by a constant depending only on R;R0. This proves (3.24).
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Finally, we note that if � is local, then the ball-thickness (3.15) with r ⩽ r0 can also
be used in all the estimates. This observation will be useful in the relaxation study, see
Section 8. However it should be noted that ��.x/⩾ cx�r .x/, and so it is easier for densities
to be natively thick than ball-thick.

Example 3.21 (Mseg). The computation is quite similar for the segregation model Mseg,
where the thickness functional ‚ is given by (3.17). The model is clearly uniformly thick
if supp gl D �, l D 1; : : : ; L, since then ‚.�; �/ D 1 for any �. Generally, the global
thickness is given by ‚.�; �/ D minl �.gl /. So, it is clear that regularity holds for this
model as well. All these conclusions hold for the ball-mass thickness (3.15) where r is a
small radius so that for every l there exists an x0 2 �l such that gl jBr .x0/ ⩾ c0 for some
fixed c0 > 0.

Let us establish (3.24) relative to the native thickness (the ball-thickness (3.15) will
not work here)Z

�

Z
�

j��0.x; y/ � ��00.x; y/j
2 d�00.x/ d�00.y/

⩽
Z
�

Z
�

LX
lD1

gl .x/gl .y/

ˇ̌̌̌
1

�0.gl /
�

1

�00.gl /

ˇ̌̌̌2
�.x � y/ d�00.x/ d�00.y/

⩽
LX
lD1

.�00.gl //
2

ˇ̌̌̌
1

�0.gl /
�

1

�00.gl /

ˇ̌̌̌2
D

LX
lD1

ˇ̌̌̌
�0.gl / � �

00.gl /

�0.gl /

ˇ̌̌̌2
⩽ C.‚.�0; �//W 2

1 .�
0; �00/:

Example 3.22 (M�). Because of the non-local dependence on �� in the kernel, there
does not seem to be another thickness quantity that would fulfill the local continuity and
regularity assumptions. However, if we set ‚.�; x/ D ��.x/, the model becomes regular
on any compact environment � and for any kernel �. Also on compact �, the model is
uniformly regular when � > 0. Finally, the strong continuity-in-� ((3.23), (3.24)) holds as
well: Z

�

Z
�

j��0.x; y/ � ��00.x; y/j
2 d�00.x/ d�00.y/

≲
Z
�

Z
�

Z
�

�.x � z/�.y � z/

ˇ̌̌̌
1

�0�.z/
�

1

�00�.z/

ˇ̌̌̌2
dz d�00.x/ d�00.y/

D

Z
�

ˇ̌̌̌
1

�0�.z/
�

1

�00�.z/

ˇ̌̌̌2
.�00.z//2 dz

⩽
j�j

‚2.�0; �/
W 2
1 .�
0; �00/:
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On the open space, if � is compactly supported then the model would fail to fulfill
any regularity assumptions. However, for the integrable kernel � satisfying the following
conditions

� 2 W k;1.�/; 8k 2 N;

1

2
jyj ⩽ jxj ⩽ 2jyj ) �.x/ � �.y/;

(3.26)

one can establish uniform regularity. The choice

� D
1

hxinC

; 
 > 0; hxi D .1C jxj2/1=2

is an example of such a kernel.
To see this, let � 2 P .BR/. We have

@kx��.x; y/ D

Z
�

@k�.x � z/�.y � z/

��.z/
dz

D

Z
B2R

@k�.x � z/�.y � z/

��.z/
dz C

Z
�nB2R

@k�.x � z/�.y � z/

��.z/
dz:

Inside the ball B2R we have ��.z/ ⩾ ı by (3.25). So,Z
B2R

@k�.x � z/�.y � z/

��.z/
dz ⩽ C.R/k�kW k;1 :

For z 2 �nB2R, we have by (3.26)

��.z/ D

Z
BR

�.z � w/ d�.w/ ≳ �.z/

Z
BR

d�.w/ D �.z/:

On the other hand, by the same conditions (3.26), since y 2 BR,

�.y � z/ ≲ �.z/:

Thus, Z
�nB2R

@k�.x � z/�.y � z/

��.z/
dz ≲

Z
�nB2R

j@k�.x � z/j dz ⩽ k�kW k;1 :

Since the kernel is symmetric the same holds for @ky��. We have proved (3.21). To show
that (3.22) holds, let us write

j��0.x; y/ � ��00.x; y/j ⩽
Z
�

�.x � z/�.y � z/
j�00�.z/ � �

0
�.z/j

�0�.z/�
00
�.z/

dz

D

Z
B2R

�.x � z/�.y � z/
j�00�.z/ � �

0
�.z/j

�0�.z/�
00
�.z/

dz

C

Z
�nB2R

�.x � z/�.y � z/
j�00�.z/ � �

0
�.z/j

�0�.z/�
00
�.z/

dz:
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Using again that inside the ball B2R, �0�.z/; �
00
�.z/ ⩾ ı, we obtain

≲ W1.�
0; �00/CW1.�

0; �00/

Z
�nB2R

�.x � z/�.y � z/

�0�.z/�
00
�.z/

sup
w2BR

jrw�.z � w/j dz:

Arguing as before we conclude that �.x � z/�.y � z/=�0�.z/�
00
�.z/ is uniformly bounded

on �nB2R. At the same time, supw2BR jrw�.z � w/j 2 L
1. dz/. This finishes the esti-

mate.
The native thickness in all of the above can be replaced with the ball-thickness (3.15)

as well.

3.7.4. Well-posedness of agent-based systems. Let us establish basic well-posedness of
the agent based system as a consequence of the uniform regularity:´

Pxi D vi ;

Pvi D si .Œv�i � vi /; i D 1; : : : ; N:
(3.27)

Here,� can be any environment. Recall that si and Œv�i are defined in (1.6). The maximum
principle implies that maxi jvi j ⩽ maxi jvi .0/j WD A, and therefore, max jxi j ≲ t a priori.
So, in order to establish global existence by the standard fix point argument it suffices to
check that the right-hand side of (3.27) is locally Lipschitz on �N �RnN .

So, let us assume that M is uniformly regular. Let us fix masses m1; : : : ; mN and two
configurations

.x01; : : : ; x
0
N I v

0
1; : : : ; v

0
N / 2 B

N
R � B

N
A ; .x001 ; : : : ; x

00
N I v

00
1 ; : : : ; v

00
N / 2 B

N
R � B

N
A :

We only need to show Lipschitzness of the momentum equation. We have

js0i Œv
0�i � s0iv

0
i � s00i Œv

00�i C s00i v
00
i j ⩽ js

0
i Œv
0�i � s00i Œv

00�i j C js0iv
0
i � s00i v

00
i j

D IC II:

As for II,

II ⩽ js0i � s00i jjv
0
i j C js

00
i jjv
0
i � v

00
i j

⩽ Ajs0i � s00i j C xS jv
0
i � v

00
i j:

Using (3.21) and (3.22),

js0i � s00i j ⩽ js�0.x
0
i / � s�0.x00i /j C js�0.x

00
i / � s�00.x00i /j

⩽ xC1jx
0
i � x

00
i j C

xCW1.�
0; �00/

⩽ xC1jx
0
i � x

00
i j C

xC
X
j

mj jx
0
j � x

00
j j

≲ max jx0j � x
00
j j:
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We now estimate the weighted averages term using the same regularity assumptions,

I ⩽
X
j

mj j��0.x
0
i ; x
0
j /v
0
j � ��00.x

00
i ; x
00
j /v
00
j j

⩽
X
j

mj��0.x
0
i ; x
0
j /jv

0
j � v

00
j j C

X
j

mj j��0.x
0
i ; x
0
j / � ��00.x

00
i ; x
00
j /jjv

00
j j

⩽ xC0 max jv0j � v
00
j j C A

X
j

mj j��0.x
0
i ; x
0
j / � ��00.x

0
i ; x
0
j /j

C A
X
j

mj j��00.x
0
i ; x
0
j / � ��00.x

00
i ; x
00
j /j

⩽ xC0 max jv0j � v
00
j j C AW1.�

0; �00/C 2A xC1
X
j

mj jx
0
j � x

00
j j

≲ max jv0j � v
00
j j Cmax jx0j � x

00
j j:

We have proved the following result.

Proposition 3.23. If M is uniformly regular, then the system (3.27) is globally well-posed.

Note that this well-posedness result is robust – the Lipschitzness is independent of the
number of agents or their masses. That is why it can be extended to kinetic formulation
as well, see Section 5. However, the well-posedness in a less robust form also extends to
some non-regular models such as MMT if � is finitely supported and satisfies (3.11). This
is based on the fact that for any atomic � we have ��.xi /⩾mi�.0/. So, there is a residual
mass-dependent thickness of the flock left on its support. Indeed, we have in this case

jŒv0�i � Œv
00�i j ⩽

k�k1

�.0/mi

X
j

mj jv
0
j � v

00
j j C A

X
j

mj j��0.x
0
i ; x
0
j / � ��00.x

00
i ; x
00
j /j;

and

��0.x
0
i ; x
0
j / � ��00.x

00
i ; x
00
j / D

�.x0i � x
0
j /P

k mk�.x
0
i � x

0
k
/
�

�.x00i � x
00
j /P

k mk�.x
00
i � x

00
k
/

≲
1

m2i
max jx0k � x

00
k j:

Similar computation works for Mˇ . Models Mseg and M� do not seem to have good
well-posedness properties when it comes to agent-based systems with purely local com-
munication kernels.

Proposition 3.24. The models MMT, Mˇ are globally well-posed provided the defining
kernel � is locally supported (3.12).

3.7.5. Uniform mapping properties. When studying well-posedness of kinetic models
it will be essential to have a uniform boundedness of the weighted averages at the base
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level independent of �. These can be readily stated in terms of Lebesgue integrability
conditions on the kernel. We will isolate two such conditions.

First, the uniform boundedness on L2.�/:

s�Œ � ��WL2.�/! L2.�/ (3.28)

can be stated using the result of Lemma 3.4. It is guaranteed to hold under a simpler
condition:

sup
�2P

ks�Œ1���k1 <1: (3.29)

Recalling the action of the adjoint in terms of reproducing kernel (3.4), (3.29) can be
stated as �� 2 L1y L

1
x.�/ uniformly in �:

sup
�2P .�/

sup
y2�

Z
�

��.x; y/ d�.x/ <1: (3.30)

This condition was first documented in the context of the MMT-model in [53]. It holds
trivially for all conservative models, see (3.7). For Mˇ , including the Motsch–Tadmor
model MMT, this follows from (2.6). So, all the core models on our list satisfy (3.30).

Second, a stronger uniform boundedness

s�Œ � ��WL2.�/! L1.�/ (3.31)

is guaranteed by the membership ��2L1x L
2
y.�/ uniformly in � (by the Hölder inequality):

sup
�2P .�/

sup
x2�

Z
�

j��.x; y/j
2 d�.y/ <1: (3.32)

Examples on our list include all Mˇ and M
topo
ˇ

models for ˇ ⩾ 1
2

, and in particular,
the classical Cucker–Smale model MCS. Indeed, we have for Mˇ ,Z

�

ˇ̌̌̌
�.x � y/

�
1�ˇ
� .x/

ˇ̌̌̌2
d�.y/ ⩽ k�k1

��.x/

�
2�2ˇ
� .x/

D k�k1�
2ˇ�1
� .x/ ⩽ k�k21:

Unfortunately, MMT, M� , and Mseg are not regular enough to satisfy (3.32) for arbitrary
kernels. However, if inf� > 0, that is of course the case for M� and all Mˇ , and similarly
if suppgl D � for Mseg.

The results are summarized in Table 5.

Model MCS M
topo
CS Mˇ M� Mseg

L2 ! L2 ✓ ✓ (2.4) ✓ ✓

L2 ! L1 ✓ ✓ ˇ ⩾
1

2
or inf� > 0 inf� > 0 suppgl D �

Table 5. Conditions under which models are uniformly bounded.



Environmental averaging 313

4. Flocking

4.1. The Cucker–Smale theorem

We start with an extension of the classical Cucker–Smale theorem that originally appeared
in [24] for the MCS-model. The result declares how strong the long-range communication
must be in order to ensure alignment from any initial condition. The discrete, kinetic, and
hydrodynamic analogues of this result are proved in exact same way, due to essentially
the same structure of the characteristic equations taking one of the forms (3.5), see [82]
for a detailed account. We adhere to the context of kinetic Vlasov-alignment model

@tf C v � rxf D rv � .s�.v � Œu��/f /; diam.suppf0/ <1; (4.1)

where
�.x/ D

Z
Rn

f .x; v/ dv; u�.x/ D

Z
Rn

vf .x; v/ dv:

It incorporates the agent based dynamics as a special case of a weak solution, and does not
require any particular closure assumption, for more on this see [92, 93]. The pressureless
Euler-alignment system allows the same treatment if written in Lagrangian coordinates,
see Theorem 4.3 below. The main idea conveyed here is that the result does not require any
special properties of the model and can be extended to any general material environmental
averaging that has a reproducing kernel ��.

We consider � to be an arbitrary environment, although the unbounded ones, such
as Rn, is where the result is most meaningful. If f is a measure-valued solution to (4.1),
starting from a compactly supported initial condition f0, then at any point of time f is
given by the push-forward of f0 along the characteristics (see Section 5):

d
dt
X.t; x; v/ D V.t; x; v/; X.0; x; v/ D x; (4.2)

d
dt
V .t; x; v/ D s�.X/.Œu��.X/ � V /; V .0; x; v/ D v: (4.3)

We abbreviate !D.x;v/ for short. The representation formula (3.5b) gives the V -equation
a more specific form (using the characteristic change of coordinates):

d
dt
V .t; !/ D

Z
��Rn

��.X.t; !/;X.t; !
0//.V .t; !0/ � V.t; !// df0.!0/;

from which the maximum principle for V -characteristics is evident. This fundamental
principle holds even for models without a representation kernel which we prove next.

Lemma 4.1 (Maximum principle). Suppose M is a material model, and suppf0���Rn

is compact. Then for any ! 2 suppf0 and any t > 0, we have

V.t; !/ 2 conv supp
�Z

�

f0.x; v/ dx
�
:
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Proof. The convex hull in question can be represented as the intersection of hyperspaces:

conv supp
�Z

�

f0.x; v/ dx
�
D

\
`2F�Rn

¹v W `.v/ ⩽ c`º:

Let us fix an ` 2 F . Since the action of ` is just a linear combination of coordinates we
have

d
dt
`.V .t; !// D s�.X/.Œ`.u/��.X/ � `.V // D s�.X/Œ`.u/ � `.V /��.X/:

By Rademacher’s lemma we can evaluate the above at a point w 2 supp f0 where maxi-
mum of `.V .t; !// is achieved. Looking into the field under the average we have

`.u/.y; t/ � `.V / D

R
Rn `.w � V /f .t; y; w/ dwR

Rn f .t; y; w/ dw
:

Now let  ı be a standard compactly supported mollifier. We have using the transport
propertyZ

Rn

`.w � V /f .t; y; w/ dw

D lim
ı!0

Z
Rn

`.w � V / ı.y � z/f .t; z; w/ dw dz

D lim
ı!0

Z
Rn

`.V .t; !0/ � V.t; !// ı.y �X.!
0; t //f0.t; !

0/ d!0 ⩽ 0:

Thus, `.u/� `.V /⩽ 0 point-wise. By the order preserving property of the averages (ev3),
we have

d
dt
`.V .t; !// ⩽ 0:

In other words, maxsuppf0 `.V .t; !// ⩽ c` for all times. This finishes the proof.

As a consequence, the macroscopic velocity u of f remains bounded by the initial
condition:

ju.x; t/j D lim
ı!0

ˇ̌̌̌ R
��Rn V.t; z; w/ ı.x � z/f0.z; w/ dz dwR

��Rn  ı.x � z/f0.z; w/ dz dw

ˇ̌̌̌
⩽ kV kL1.suppf0/ ⩽ max j suppf0j:

Theorem 4.2 (Kinetic Cucker–Smale). Suppose there exists � 2 C1, a positive, non-
increasing, radially symmetric kernel with fat tail,

R1
0
�.r/ dr D1, such that

��.x; y/ ⩾ �.x � y/; 8� 2 P : (4.4)
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Then any measure-valued solution to (4.1) starting from a compactly supported initial
condition f0 aligns and flocks exponentially fast

D.t/ D max
!0;!002suppf0

jX.t; !0/ �X.t; !00/j < C; 8t > 0;

A.t/ D max
!0;!002suppf0

jV.t; !0/ � V.t; !00/j ⩽ Ce�ıt ; (4.5)

where C;ı > 0 depend on the initial condition and the parameters of the model. Moreover,
there exists u1 2 Rn such that

max
!2suppf0

jV.t; !/ � u1j ⩽ Ce�ıt : (4.6)

If the model M is conservative, then u1 D xuD
R
�
u� dx, the total conserved momentum.

Proof. Following characteristics let us fix at any point of time a label !˙ 2 supp f0,
where V i achieves its maximum and minimum, respectively, V i

˙
. So, by the Rademacher

lemma, we have distributionally

d
dt
V i˙ D

Z
��Rn

��.X.t; !˙/; X.t; !
0//.V i .t; !0/ � V i˙/ df0.!0/:

In view of (4.4),

d
dt
V iC ⩽

Z
��Rn

�.X.t; !C/ �X.t; !
0//.V i .t; !0/ � V iC/ df0.!0/

⩽ �.D/

Z
��Rn

.V i .t; !0/ � V iC/ df0.!0/:

And similarly,
d
dt
V i� ⩾ �.D/

Z
��Rn

.V i .t; !0/ � V i�/ df0.!0/:

Subtracting the two, we obtain for the amplitude Ai D V iC � V
i
�,

d
dt
Ai ⩽ ��.D/Ai :

Taking the Euclidean amplitude A D
p
.A1/2 C � � � C .An/2, we obtain the system

d
dt
D ⩽ A;

d
dt
A ⩽ ��.D/A:

Following [41], we form the Lyapunov function

L D AC

Z D

0

�.r/ dr;

which remains bounded. Hence, in view of the fat-tail condition,D remains bounded, and
going back to the A-equation, we obtain exponential decay on the amplitudes.
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To conclude (4.6) let us notice that as a consequence of (4.5), we have

max
!2suppf0

j PV j ⩽ Ce�ıt :

So, every characteristic V.!; t/ will converge exponentially fast to a limit u1.!/. In view
of (4.5), u1 must be a constant vector.

The alignment of characteristics stated in Theorem 4.2 implies corresponding behav-
ior of the distribution f itself by transport. First, we can see that its v-marginal f v DR
�
f .t; x; v/ dx converges weakly to the Dirac:

f v ! ı0.v � u1/:

Moreover, since f is a push-forward of f0 along (4.2) and (4.3), the v-support of f will
belong to an exponentially shrinking ball around u1. This implies uniform convergence
of the macroscopic velocity

u.x; t/ � u1 D

R
jv�u1j⩽Ce�ıt

.v � u1/f .x; v; t/ dvR
jv�u1j⩽Ce�ıt

f .x; v; t/ dv
;

so,
sup

x2supp�
ju.x; t/ � u1j ⩽ Ce�ıt :

And it also implies exponential alignment in the energy sense, to be discussed in greater
detail in Section 4.3:

xu D

Z
�

u� dx;

ıE WD
1

2

Z
��Rn

jv � xuj2f dv dx ⩽ Ce�ıt :

Unfortunately the result does not seem to provide much insight into behavior of the
macroscopic density �. See, however, [85] for a convergence result to a traveling wave in
the one-dimensional case.

The exact same result can be stated for the hydrodynamic alignment model without
pressure, the so-called pressureless Euler-alignment system (see Section 9.1 for its deriva-
tion):

�t Cr � .u�/ D 0; ut C u � ru D s�.Œu�� � u/: (4.7)

If passed to Lagrangian coordinates

Px.˛; t/ D v.˛; t/ WD u.x.˛; t/; t/; ˛ 2 �;

Pv.˛; t/ D

Z
�

��.x.t; ˛/; x.t; ˛
0//.v.t; ˛0/ � v.t; ˛// d�0.˛0/;

the system is structurally similar to (4.2) and (4.3). So, the proof goes through exactly as
before.
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Theorem 4.3 (Hydrodynamic Cucker–Smale). Under the assumptions of Theorem 4.2,
any classical solution to the pressureless Euler-alignment system (4.7) with compactly
supported initial �0 aligns and flocks exponentially fast:

sup
t⩾0
.diam.supp �// <1; sup

x2supp�
ju.t; x/ � u1j ⩽ C0e

�ıt :

For the MCS-model where ��.x; y/ D �.x � y/ the statements above are classical.
The kinetic and hydrodynamics versions appeared in [16] and [94], respectively.

In the Motsch–Tadmor case, we can apply the same fat-tail condition on the defining
kernel � due to (3.13). However, the limiting velocity u1 is not determined by the initial
condition and emerges dynamically.

The theorem does not apply to either the over-mollified model M� or the segregation
model Mseg as those are inherently local, which brings us to the next main question – what
conditions guarantee emergent behavior when communication is strictly local?

4.2. Chain connectivity. The 1=t1=4 and 1=t1=2 results

It is obvious that locality (3.11) itself is insufficient for unconditional alignment of the sys-
tem. In the open space Rn one can simply direct two agents away from each other starting
at a distance larger than communication range. On Tn one can launch two agents with
misaligned velocities along two parallel geodesics at a distance larger than communica-
tion range. So, it is clear that some kind of connectivity is necessary to obtain alignment.
In this section we explore how to achieve this for symmetric models and for quantitatively
thick flocks.

Definition 4.4. We say that the flock .u; �/ is chain connected at scale r if for any two
points x0; x00 2 supp �, there exists a chain

x0 D x1; x2; : : : ; xK D x
00

such that xi 2 supp � and jxi � xj j < r .

Our main result shows alignment under connectivity assumption at a sub-local scale r0
and proper thickness rate. Here we use the term thickness to refer to the ball-thickness
defined in (3.15).

Theorem 4.5. Let � D Rn, and M is a symmetric model with kernel satisfying (3.11).
If the flock remains chain connected at the scale r D r0=8 for all time and has thickness
satisfying x�r .supp �/ ⩾ c=t1=4, then the flock aligns:

sup
!;!02suppf0

jV.t; !/ � V.t; !0/j ≲
1
p

ln t
: (4.8)

On the torus � D Tn, the result holds under the weaker condition x�r .supp �/ ⩾ c=t1=2.
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In the case of the torus we can consider a non-vacuous flock ��DminTn � > 0. Such a
flock remains trivially connected at any scale and is uniformly thick x�r .supp�/ ≳ ��. So,
one important consequence of the above theorem is a statement in terms of quantitative
no-vacuum condition.

Corollary 4.6. Let�D Tn, M is symmetric and material, and the kernel satisfies (3.11).
If �� ⩾ c=t1=2, then the flock aligns (4.8).

Before we get to the proof, we first explore how one can reduce the number of links in
a chain.

Lemma 4.7. If the flock is chain connected at scale r , then between any pair of points
there is a 3r-chain with the number of links limited to K ⩽ 2=x�r .supp �/.

If the diameter of the flock is bounded, thenK can be chosen independent of thickness
but dependent on the diameter, K ⩽ C.diam.supp �//.

Proof. Suppose we have a chain x0 D x1; x2; : : : ; xK D x00 2 supp � with the properties
listed in the definition. We now choose a subchain in the following manner. Let xi1 D x1.
Then let us pick i2 � 1 to be the largest index > i1 for which jxi1 � xi2�1j < 2r . So, all
subsequent elements will stay at a distance at least 2r from xi1 . In particular,

jxi1 � xi2 j ⩾ 2r;

and yet since jxi2�1 � xi2 j < r , we have

jxi1 � xi2 j < 3r:

Pick i3 similarly to i2, etc. Eventually, xK will be selected last unconditionally.
According to the construction, we have a new chain yj D xij , j D 1; : : : ; J , such that

jyj � yjC1j < 3r and jyj � ykj ⩾ 2r

for any j ¤ k < J . Hence, the chain is connected at scale 3r . At the same time, by
disjointness

x�r .supp �/.J � 1/ ⩽
J�1X
jD1

�.Br .yj // D �

� J�1[
jD1

Br .yj /

�
⩽ 1:

Hence, J ⩽ 1C 1=x�r .supp �/ ⩽ 2=x�r .supp �/.
Alternatively, if the flock is bounded, and the balls around yj ’s are disjoint, J is limited

by volume to cn diam.supp �/n=rn. This proves the lemma.

The primary technical use of this lemma will be in the construction of chains with
thick links. Specifically, if the flock is r-connected then we find it also 3r-connected by
chains of sizeK ⩽ 2=x�r .supp�/, and since any ballB4r .xi / contains the ballsBr .xi�1/[
Br .xiC1/, then

�.B4r .xi / \ B4r .xiC1// ⩾ x�r .supp �/: (4.9)
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Proof of Theorem 4.5. Let us assume for now that � D Rn.
By symmetry of the model we have the following energy law

d
dt

E D �
1

2

Z
��Rn

��.x; x
0/jv � v0j2f .t; !0/f .t; !/ d!0 d!:

Hence, in view of (3.11),Z 1
0

Z
¹jx�x0j<r0º�Rn

jv � v0j2f .t; !0/f .t; !/ d!0 d! dt <1:

Consider the averages of macroscopic momenta over balls of radius 4r :

xv.x/ D
1

�.B4r .x//

Z
Rn�B4r .x/

wf .t; y; w/ dw dy:

The quadratic deviations from the averages are all subordinated to the dissipation rate:Z
Rn�B4r .x�/

jv � xv.x�/j2f .t; x; v/ dv dx

D

Z
Rn�B4r .x�/

ˇ̌̌̌
1

�.B4r .x�//

Z
Rn�B4r .x�/

.v � w/f .t; y; w/ dw dy
ˇ̌̌̌2
f .t; x; v/ dv dx

⩽
1

�.B4r .x�//

Z
Rn�B4r .x�/�Rn�B4r .x�/

jv � wj2f .t; y; w/f .t; x; v/ dw dy dv dx

using that jx � yj < 8r D r0,

⩽
1

�.B4r .x�//

Z
¹jx�x0j<r0º�Rn

jv � v0j2f .t; !0/f .t; !/ d!0 d!:

Thus, in view of (4.15), and the fact that x�r .supp �/ ⩽ �.B4r .x
�//,Z 1

0

sup
x�2�

x�r .supp �/
Z

Rn�B4r .x�/

jv � xv.x�/j2f .t; x; v/ dv dx dt <1: (4.10)

Let us now estimate the flattening near extremes. Let us fix one coordinate of v suppf ,
say vi and denote by viC D V

i .t; !C/ D max!2suppf0 V
i .t; !/, and xC D X.t; !C/. We

drop the superindex i for shortness of notation. Then

d
dt
vC D

Z
��Rn

��.xC; y/.w � vC/f .t; y; w/ dy dw

⩽ c0

Z
B4r .xC/

.w � vC/f .t; y; w/ dy dw

D c0�.B4r .xC//.xv.xC/ � vC/ ⩽ c0x�r .supp �/.xv.xC/ � vC/:

Similarly,
d
dt
v� ⩾ c0x�r .supp �/.xv.x�/ � v�/:
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Consequently, Z 1
0

x�r .supp �/
�
.xv.x�/ � v�/C .vC � xv.xC//

�
dt <1: (4.11)

Combining (4.10) and (4.11), and fixing an T 0 > 0 large enough, we can ensure that
for any T > 0 there is a time t 2 ŒT; T C T 0� such that

.xv.x�/ � v�/C .vC � xv.xC//C sup
x�2�

Z
Rn�B4r .x�/

jv � xv.x�/j2f .t; x; v/ dx dv

<
1

x�r .supp �/t ln t
: (4.12)

In particular, the extreme values are close to the averages around them. Let us now show
that all the averages are close to each other, and this will finish the proof.

We have for any x� 2 �,Z
Rn�B4r .x�/

jv � xv.x�/j2f .t; x; v/ dx dv ⩽
1

x�r .supp �/t ln t
:

Denote ı D 2=‚r .�/
p
t ln t . Then, by the Chebyshev inequality,

f
�
¹jv � xv.x�/j > ıº � B4r .x

�/
�
⩽
1

ı2

Z
Rn�B4r .x�/

jv � xv.x�/j2f .t; x; v/ dx dv

⩽
1

4
x�r .supp �/: (4.13)

Let us now consider a 3r-chain x1; : : : ; xK with K < C=x�r .supp �/, which connects
two points x� and xC. According to (4.9), �.B4r .xi / \ B4r .xiC1// ⩾ x�r .supp �/. Thus,
f .Rn � .B4r .xi / \ B4r .xiC1/// ⩾ x�r .supp �/. Yet according to (4.13),

f
��
¹jv � xv.xi /j > ıº �B4r .xi /

�
[
�
¹jv � xv.xiC1/j > ıº �B4r .xiC1/

��
⩽
1

2
x�r .supp�/:

Consequently,

Bı.xv.xi // � B4r .xi / \ Bı.xv.xiC1// � B4r .xiC1/ ¤ ;:

Hence,
jxv.xi / � xv.xiC1/j ⩽ 2ı:

Summing up over all i , we obtain

jxv.xC/ � xv.x�/j ⩽ 2ıK ≲
1

x� 2r .supp �/
p
t ln t

�
1
p

ln t
: (4.14)

Combining with (4.12), we have

vC � v� ⩽
1
p

ln t
:



Environmental averaging 321

Since this holds at time t < T C T 0, it must hold at time T C T 0 by the maximum
principle. But since t > T ,

1
p

ln t
⩽

1
p

lnT
≲

1p
ln.T C T 0/

:

Since T is arbitrary, this finishes the proof in the open space.
On the torus the diameter of the flock is uniformly bounded, and consequently, by

Lemma 4.7,K remains uniformly bounded. In this case the estimate (4.14) gets improved
to the following

jxv.xC/ � xv.x�/j ⩽ 2ıK ≲
1

x�r .supp �/
p
t ln t

�
1
p

ln t
;

provided x�r .supp �/ ≳ 1=t1=2. The rest of the proof is the same.

Remark 4.8. The exact same result holds for solutions of the pressureless Euler-align-
ment system (4.7), thanks to the fact that it has a similar form of the energy dissipationZ 1

0

Z
���

��.x; y/ju.x; t/ � u.y; t/j
2 d�.y/ d�.y/ dt <1: (4.15)

4.3. Alignment in the energy sense. Spectral gaps

The alignment of characteristics stated in Theorem 4.5 implies alignment in the energy
sense. Recalling that xu D

R
�
u� dx, we have

ıE D
1

2

Z
��Rn

jv � xuj2f dv dx ⩽
Z
��Rn���Rn

jV � V 0j2f0f
0
0 d! d!0 ≲

1
p

ln t
:

In this section we explore alignment in this weaker sense

ıE ! 0;

by appealing to the most basic energy law of the Vlasov-alignment equation (4.1).
We will not make any special assumptions on the underlying model M except that M

is material just to make sense of the strength function in equation (4.1). In particular, the
momentum xu may not be conserved.

In order to write the equation for ıE , let us note the identity

E WD
1

2

Z
��Rn

jvj2f dv dx D ıE C
1

2
jxuj2:

The momentum satisfies
d
dt
1

2
jxuj2 D .xu; Œu�� � u/�� ;

and the equation for total energy is given by

d
dt

E D �

Z
��Rn

s�jvj2f dv dx C .u; Œu��/�� :
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Subtracting the two we obtain

d
dt
ıE D �

Z
��Rn

s�jvj2f dv dx C .u; Œu��/�� � .xu; Œu�� � u/�� :

Let us further notice the identityZ
��Rn

s�jvj2f dv dx D
Z
��Rn

s�jv � xuj2f dv dx C 2.u; xu/�� � .xu; xu/�� :

Collecting the macroscopic terms together we obtain

d
dt
ıE D �

Z
��Rn

s�jv � xuj2f dv dx C .ıu; Œıu��/�� ; ıu D u � xu:

Next, let us decompose the energy on the right-hand side into the internal and macro-
scopic part,Z

��Rn

s�jv � xuj2f dv dx D
Z
��Rn

s�jv � uj2f dv dx C .ıu; ıu/�� :

We obtain the energy law

d
dt
ıE D �

Z
��Rn

s�jv � uj2f dv dx C .ıu; Œıu��/�� � .ıu; ıu/�� : (4.16)

Naturally, we will seek to relate the right-hand side back to the energy. This comes
from two assumptions. First, we require that the averaging operator has a numerical range
separated from 1, i.e. at any time there exists " D ".t/ 2 .0; 1/ such that

sup
®
.u; Œu��/�� W u 2 L

2.��/; xu D 0; kukL2.��/ D 1
¯
⩽ 1 � ": (4.17)

This in turn implies

.ıu; ıu/�� � .ıu; Œıu��/�� ⩾ ".ıu; ıu/�� : (4.18)

Second, we require the strength function to have a positive lower bound

inf
x2supp�

s�.x; t/ D s.t/:

Plugging these back into (4.16), we obtain

d
dt
ıE ⩽ �

Z
��Rn

s�jv � uj2f dv dx � ".ıu; ıu/��

⩽ �"

�Z
��Rn

s�jv � uj2f dv dx C .ıu; ıu/��

�
D �"

Z
��Rn

s�jv � xuj2f dv dx ⩽ �"s ıE:

This implies a general sufficient condition for alignment.
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Proposition 4.9. Let M be a material model on an arbitrary environment �. The kinetic
model (4.1) aligns in the energy sense provide the following condition holds:Z 1

0

".t/s.t/ dt D1:

A few remarks are in order.

Remark 4.10. Let us note that for symmetric models with s� � 1, the space of vanishing
momentum L20.�/ is invariant under Œ � ��, and the numerical range determines the range
of the spectrum. So, condition (4.17) is equivalent to a spectral gap between the trivial
eigenvalue 1 and the rest of the spectrum to the left

spec
®
Œ � ��IL

2
0.�/

¯
� .�1; 1 � "�;

where

L20.�/ D

²
u 2 L2.�/ W

Z
�

u d� D 0
³
:

For this reason, although in general (4.17) is not a spectral property, we still refer to it as
a spectral gap.

In general, however, conservative models leave the null-space

L20.��/ D

²
u 2 L2.��/ W

Z
�

u d�� D 0
³

invariant. In this case, it is possible to relate " to the actual spectral gap of Œ � �� on L20.��/
if s� is bounded from below. Details are provided in Appendix C.

Remark 4.11. Proposition 4.9 can be viewed as a generalization of Tadmor’s [92] to the
non-symmetric case. The argument there is slightly different in the interpretation of the
spectral gap condition (4.18). As opposed to (4.18) where all the inner products are related
to the common ��-weight, one can make a more direct relation to the physical macroscopic
energy, i.e. the �-weighted product

.ıu; ıu/�� � .ıu; Œıu��/�� ⩾ �.ıu; ıu/�:

The corresponding alignment statement in terms of � readsZ 1
0

min¹s.t/; �.t/º dt D1:

Such � can be expressed in variational form as the second (approximate) eigenvalue
of the alignment operator

L�u D s�.u � Œu��/:

We have

� D inf
u2L20.�/

.u;L�u/�

.u; u/�
: (4.19)



R. Shvydkoy 324

The advantage of this approach consists in the fact that for symmetric models represented
by a kernel the formulation (4.19) takes a more explicit form

� D inf
u2L20.�/;kuk2D1

Z
���

ju.x/ � u.y/j2��.x; y/ d�.y/ d�.x/:

Theorem 2 of [92] gives a kinematic estimate in terms of lower and upper bounds on the
density, in the case when � D Tn. Namely,

� ≳
�2�
�C
: (4.20)

The result is proved under condition (4.21) below, however it can be recast for physically
local kernels (3.11) as well. Let us reproduce the argument as it will be used later in
Example 4.14.

Proof of (4.20). We obtain

.u;L�u/� ⩾ c0�
2
�

Z
jx�yj<r0

ju.x/ � u.y/j2 dx dy:

As shown in [62, Lemma 2.1] this can be further estimated from below by

⩾ c0c1�
2
�

c0

.2�/n

Z
Tn

ju.x/ � Ave.u/j2 dx;

where c1 D c1.r0/, and Ave.u/D 1
.2�/n

R
�
u.x/dx. Recalling that u has momentum zero,

we finish with

≳
�2�
�C

Z
Tn

ju.x/ � Ave.u/j2 d�.x/ ⩾
�2�
�C
.u; u/�:

Estimate (4.20) shows that under global control on �C one obtains alignment under
the root-assumption �� ≳ 1=

p
t , the same result as proved in Corollary 4.6 under no

assumption on �C. The difference between the two approaches is fundamental – dynamic
vs kinematic. It appears that the dynamic approach is not sensitive to the density growth
and gives a better result for symmetric models on the torus. However, as we will see later in
Section 4.4 the kinematic approach, although in somewhat different form than presented
here, gives estimates independent of �C as well, and in some cases can even beat the
root-result, see Proposition 4.16. Any bound on the spectral gap that does not rely on �C
will prove to be a crucial in the study of relaxation for kinetic Fokker–Planck models in
Section 8.

Let us present two applications of Proposition 4.9 that are distinctly different from the
root-result. In both cases we assume � D Tn.

Example 4.12 (MCS-model). Let us assume that � is a mollification kernel, where � ⩾ 0,
and Z

�

� dx D 1;
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local or not. Then its non-zero Fourier modes will necessarily be smaller than the unit:

c0 D sup
k2Znn¹0º

j y�.k/j < 1: (4.21)

Let us compute the spectral gap as defined by (4.17). Using that
R
u� dx D 0 by the

Plancherel identity,

.u; Œu��/�� D

Z
�

u�.u�/� dx D
X

k2Znn¹0º

jcu�.k/j2 Re.y�.k// ⩽ c0

Z
�

ju�j2 dx:

We now relate it back to the L2.��/-norm:

.u; Œu��/�� ⩽ c0

Z
�

juj2���
�

��
dx ⩽ c0




 �
��





1
kuk2

L2.��/
:

Suppose now that k�=��k1 < 1=c0. We define

" D 1 � c0




 �
��





1
: (4.22)

Naturally, " < 1 � c0 since at the point of maximum of � we have � ⩾ �� , and so the
L1-norm is at least 1. Also, note that if � is convex in a ball Br .x/, where r is the range
of the communication kernel, then �.x/⩽ ��.x/, and (4.22) holds if restricted to that ball.
So, the spectral gap (4.22) essentially quantifies flatness of the density � in those regions
where it is not convex.

Also, note that for " D 1 � c0, the only flock that satisfies (4.22) is the uniformly
distributed one. So, the smaller the " the more room there is for variations in distribu-
tion. However, (4.22) still ensures sufficient spread of the support across the domain (for
otherwise the geodesic counterexample applies).

Now, a lower bound on s� can be interpreted as a measure of thickness (see Sec-
tion 3.7),

s.t/ D ‚.�; supp �/: (4.23)

Collecting the computations above and applying Proposition 4.9, we obtain the fol-
lowing alignment result.

Corollary 4.13. For the Cucker–Smale model MCS, a sufficient condition for alignment in
the energy sense is the flatness (4.22) and thickness (4.23) to satisfy

R1
0
".t/s.t/ dt D1.

Example 4.14 (MMT-model). For the Motsch–Tadmor non-symmetric model MMT com-
putation of the gap is more technical and require heavier assumptions on the density.

Let us assume that the defining kernel � is local (see (3.11)) and
R
� dx D 1. We have

.u; u/� � .u; Œu��/� D

Z
���

u.x/ � .u.x/ � u.y//�.x/�.y/
�.x � y/

��.x/
dy dx;
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symmetrizing in x and y,

D
1

2

Z
���

ju.x/ � u.y/j2�.x/�.y/
�.x � y/

��.x/
dy dx

C
1

2

Z
���

u.y/ � .u.x/ � u.y//�.x/�.y/

�
1

��.x/
�

1

��.y/

�
�.x � y/ dy dx: (4.24)

Now, using that ��.x/ ⩽ k�k1 we bound the first term from below by a multiple of
.u;L�u/�, which by (4.20) is bounded from below by c.�2�=�C/kuk

2
2. As to the second

term, note that the component with the dot-product u.y/ � u.x/ vanishes by symmetry, and
hence we are left with

�
1

2

Z
���

ju.y/j2�.y/�.x/

�
1

��.x/
�

1

��.y/

�
�.x � y/ dy dx

D �
1

2

Z
���

ju.y/j2�.y/
� �
��

�
�
.y/ dy C

1

2
kuk22

D
1

2

Z
���

ju.y/j2�.y/
�
1 �

�

��

�
�
.y/ dy:

We now impose the following condition on the smallness of variation:

�C � �� ⩽ c
�3�
�C
: (4.25)

Then �
1 �

�

��

�
�
.y/ ⩽

�C � ��

��
⩽ c

�2�
�C
:

Consequently, this term becomes less than half of the main dissipation term (4.24),

.u; u/� � .u; Œu��/� ⩾
c

2

�2�
�C
.u; u/�:

So, similar to the symmetric case under the flatness assumption (4.25), the size of the
spectral gap is still estimated at � D " ≳ �2�=�C.

Corollary 4.15. There exists a c > 0 which depends only on the parameters of the model
such that any solution to the kinetic equation (4.1) on Tn governed by the Motsch–Tadmor
averaging aligns in the energy sense, provided

�C � �� ⩽ c
�3�
�C
;

Z 1
0

�2�
�C

ds D1:

4.4. Spectral gap of a ball-positive model. Low energy method

As we have seen the spectral gap condition (4.17) plays a central role in alignment dynam-
ics and will be important in the study of relaxation, see Section 8. It will be essential to
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find bounds on " that are independent of �C, since the growth of the density cannot be con-
trolled away from equilibrium. In this section we present the so-called low energy method
which allows one to obtain such bounds for ball-positive models on Tn.

To describe the method let us first discuss energetics of ball-positive models. Since
kŒ � ��kL2.��/ ⩽ 1, we obtain a streak of three inequalities,

.u; u/�� ⩾ .u; Œu��/�� ⩾ .Œu��; Œu��/�� :

This defines the hierarchy of three �-energies (not to be confused with the physical �-
energies)

E0 D .u; u/�� ; E1 D .u; Œu��/�� ; E2 D .Œu��; Œu��/�� :

As seen from (3.8) the difference between the first two energies A0DE0 �E1 controls
the rate of alignment in collective systems. The next difference A1 D E1 � E2 is also
non-negative by the very definition of ball-positivity, and in fact by the Cauchy–Schwarz
inequality one has the relation

A0 ⩾ A1:

So, it is clear that the strength of ball-positivity measured by A1 bears direct relevance to
alignment.

To adopt it for spectral gap calculations, we note that the spectral gap condition (4.17)
can be expressed directly in terms of top tier energies

A0 ⩾ "E0; 8u 2 L
2.��/; xu D

Z
�

u� dx D 0: (4.26)

The lower energy method seeks to achieve (4.26) through comparison between the two
terms down in the hierarchy (low energies)

A1 ⩾ "E1; 8u 2 L
2.��/; xu D 0: (4.27)

Indeed, let us observe that (4.27) is equivalent to

.1 � "/.u; Œu��/�� ⩾ .Œu��; Œu��/�� ; 8u 2 L
2.��/; xu D 0; (4.28)

and hence
kŒu��kL2.��/ ⩽ .1 � "/kukL2.��/; 8u 2 L

2.��/; xu D 0;

which implies that (4.17) � (4.26).
One can see from (4.28) that the method is necessarily restricted to the class of ball-

positive models. It turns out that estimating the low energy gap (4.27) sometimes gives
substantial improvements over the direct approach (4.26) in the sense of giving a bound
independent of �C. Let us present several examples from our list.

Throughout we assume that the kernel in question is local ((3.11), (3.12)), and the
environment is periodic�D Tn. The summary of estimates to be obtained below is given
in the following proposition.
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Proposition 4.16. For each of the ball-positive models MCS, M� , Mseg, Table 6 shows
the bounds from below on the spectral gap up to a constant multiple. In particular, if the
kernel is all-to-all, inf�� > 0, then the spectral gap is automatically uniform.

Model MCS M� Mseg

spectral gap x� 3
r0=2

.�/ x�r0=2.�/ x� 2Lrseg
.�/, see (4.37)

Table 6. Lower bounds on spectral gaps.

Proof of Proposition 4.16 for the M�-model. For the M�-model the following formula
was proved in [83]:

A1 D
1

2

Z
���

���.x; y/juF.x/ � uF.y/j
2 dx dy;

���.x; y/ D

Z
�

�.x � �/�.y � �/�.�/ d�;
(4.29)

where uF is the Favre-filtration given by MMT. The proof goes as follows:

A1 D

Z
�

.�� juFj
2
� �j.uF/� j

2/ dx

D

Z
�

.��uF � uF � �.uF/� � .uF/�/ dx

D

Z
�

.��uF � .�.uF/�/�/ � uF dx

D

Z
���

�.x � �/�.�/.uF.x/ � .uF/�.�// � uF.x/ d� dx

D

Z
�����

�.x � �/�.y � �/�.�/.uF.x/ � uF.y// � uF.x/ d� dx dy

D

Z
���

���.x; y/.uF.x/ � uF.y// � uF.x/ dx dy

D
1

2

Z
���

���.x; y/juF.x/ � uF.y/j
2 dx dy;

where in the last step we performed symmetrization in x; y.
We now estimate ��� from below: let jx � yj < r0=2, then

���.x; y/ D

Z
�

�.x � y C �/�.�/�.y � �/ d�

⩾
Z
j�j<r0=2

�.x � y C �/�.�/�.y � �/ d�

⩾ c20

Z
j�j<r0=2

�.y � �/ d� ⩾ c20 x�r0=2.�/:
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Thus,
���.x; y/ ≳ x�r0=2.�/1jx�yj<r0=2: (4.30)

With this at hand, we have

A1 ≳ x�r0=2.�/
Z
jx�yj<r0=2

juF.x/ � uF.y/j
2 dx dy;

and by [62, Lemma 2.1],

≳ x�r0=2.�/
Z
�

juF � Ave.uF/j
2 dx ≳ x�r0=2.�/

Z
�

�� juF � Ave.uF/j
2 dx:

Using the vanishing momentum, Ave..u�/�/ D 0, we continue:

D x�r0=2.�/

�Z
�

�� juFj
2 dx � 2Ave.uF/ � Ave..u�/�/„ ƒ‚ …

D0

C .2�/njAve.uF/j
2

�
:

Noting that
R
�
�� juFj

2 dx D E1, we conclude:

⩾ x�r0=2.�/E1:

So, we have a bound
" ⩾ cx�r0=2.�/;

where c > 0 depends only on the parameters of the model.

We obtain the following improvement over the general root-result of Corollary 4.6.

Corollary 4.17. Under the M�-averaging protocol a solution to the Vlasov-alignment
equation (4.1) aligns if �� ≳ 1=t .

Let us note that under this weak assumption on the density the only known alignment
result was established in [87] for singular topological models. And in one dimension it
was proved to hold automatically for any non-vacuous solutions to the Euler-alignment
system (9.2) based on the metric or topological Cucker–Smale averaging protocol. For the
system based on the M�-model such a bound is unknown a priori.

Proof of Proposition 4.16 for the MCS-model. By the assumptions of ball-positivity and
locality, � D  �  , where  is a non-negative smooth kernel satisfying

 .x/ ⩾ c01jxj⩽r0 : (4.31)

Let us apply the low energy method. We aim to prove the following bound:

" ≳ x� 3r0=2.�/: (4.32)
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To prove (4.32) we will quantify the alignment term A1 in a way similar to the previ-
ous example. To achieve this we notice that for the Bochner-positive � the MCS-averaging
is nothing but a nested application of two distinct Favre filtrations. Indeed, let us denote

v D
.u�/ 

� 
; % D � :

Then denoting vF D .v%/ =% , we obtain

Œu�� D
.u�/�

��
D
..u�/ / 

% 
D
...u�/ =� /� / 

% 
D vF: (4.33)

Observe that

A1 D

Z
�

.u�/2 dx �
Z
�

jŒu��j
2��� dx D

Z
�

jvj2%� dx �
Z
�

jvFj
2�% dx:

Let us examine the second term now: jvFj
2�% . We use the fact that the Favre-filtration

with respect to  ; % is a symmetric operation relative to the measure %% . So, we can
write Z

�

jvFj
2�% dx D

Z
�

vF �

�
vF
�

%

�
%% dx

D

Z
�

v �
�
vF
�

%

�
F
%% dx D

Z
�

v � .vF�/ % dx:

Now let us factor out the common v% term:

A1 D

Z
�

%v � .� v � .vF�/ / dx

D

Z
�2
%.x/�.y/v.x/ � .v.x/ � vF.y// .x � y/ dy dx

expanding further in vF .y/, we obtain

D

Z
�2

%.x/�.y/

% .y/
v.x/ � .v.x/% .y/ � .v%/ .y// .x � y/ dy dx

D

Z
�3

%.x/�.y/%.z/

% .y/
v.x/ � .v.x/ � v.z// .z � y/ .x � y/ dz dy dx;

symmetrizing in x; z,

D
1

2

Z
�3

%.x/�.y/%.z/

% .y/
jv.x/ � v.z/j2 .z � y/ .x � y/ dz dy dx:

Notice that the integral in y represents the application of the variable doubling convolution
to �=�� as in (4.29) using kernel  . So we obtain the following exact formula for A1:

A1 D
1

2

Z
�2
%.x/%.z/

� �
��

�
  
.x; z/jv.x/ � v.z/j2 dz dx:



Environmental averaging 331

Since �� ⩽ c1 pointwise, we have, using (4.30),� �
��

�
  

⩾ c1�  ≳ x�r0=2.�/1jx�zj<r0=2:

So,

A1 ≳ x�r0=2.�/
Z
jx�zj<r0=2

%.x/%.z/jv.x/ � v.z/j2 dz dx

≳ x� 3r0=2.�/
Z
jx�zj<r0=2

jv.x/ � v.z/j2 dz dx;

proceeding as for the M�-model,

⩾ x� 3r0=2.�/
Z
�

jv.x/ � Ave.v/j2 dx ≳ x� 3r0=2.�/
Z
�

%jv.x/ � Ave.v/j2 dx

⩾ x� 3r0=2.�/
Z
�

%jv.x/j2 dx D x� 3r0=2.�/
Z
�

.u�/2 

� 
dx

≳ x� 3r0=2.�/
Z
�

.u�/2 dx D x� 3r0=2.�/E1:

We arrive at (4.32).

Proof of Proposition 4.16 for the Mseg-model. Since this model is symmetric and non-
negative definite it is automatically ball-positive by Lemma 3.10. So, it is natural to apply
the low-energy approach. We start with the analogue (4.29) which in this case reads

A1 D
1

2

X
l;l 0

�.glgl 0/

ˇ̌̌̌
�.ugl /

�.gl /
�
�.ugl 0/

�.gl 0/

ˇ̌̌̌2
:

Indeed,

A1 D

X
l

.�.ugl //
2

�.gl /
�

Z
�

�X
l

gl
�.ugl /

�.gl /

�2
� dx

D

X
l

.�.ugl //
2

�.gl /
�

X
l;l 0

�.glgl 0/
�.ugl /

�.gl /

�.ugl 0/

�.gl 0/

D

X
l

�.ugl /

�
�.ugl /

�.gl /
�

X
l 0

�.glgl 0/

�.gl /

�.ugl 0/

�.gl 0/

�
;

noting that the coefficients �.glgl 0/=�.gl / add up to 1 over l 0,

D

X
l

�.ugl /
X
l 0

�.glgl 0/

�.gl /

�
�.ugl /

�.gl /
�
�.ugl 0/

�.gl 0/

�
D

X
l;l 0

�.glgl 0/
�.ugl /

�.gl /

�
�.ugl /

�.gl /
�
�.ugl 0/

�.gl 0/

�
;
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symmetrizing over l; l 0,

D
1

2

X
l;l 0

�.glgl 0/

ˇ̌̌̌
�.ugl /

�.gl /
�
�.ugl 0/

�.gl 0/

ˇ̌̌̌2
:

The formula indicates that the energy keeps dissipating as long as discrepancies remain
between local averages in adjacent and connected neighborhoods, �.glgl 0/ > 0. To extract
a working criterion out of it, we rewrite A1 is a different way:

A1 D

X
l

.�.ugl //
2

�.gl /
�

X
l;l 0

Gl l 0
�.ugl /p
�.gl /

�.ugl 0/p
�.gl 0/

;

where

Gl l 0 D
�.glgl 0/p
�.gl /�.gl 0/

:

Considering those as entries of the symmetric matrix G D ¹Gl l 0ºLl;l 0D1 and denoting the
vector

X D

�
�.ug1/p
�.g1/

; : : : ;
�.ugL/p
�.gL/

�
;

the above expression can be written as

A1 D jX j
2
� hGX;Xi:

The vanishing momentum condition means that the vector X belongs to the hyperplane
orthogonal to the vector of roots Y D .

p
�.g1/; : : : ;

p
�.gL//, denoted Y ?. Such plane

remains invariant under the action of G, while GY D Y . So, the low-energy bound (4.27)
becomes equivalent to the spectral gap condition on G:

spec¹GIY ?º ⩽ 1 � ": (4.34)

It is not easy, however, to compute the spectrum of G exactly. A more practical
approach to (4.34) would be to find a condition on the entries of G that implies a bound
like (4.34). To this end, let us assume that non-zero entries are uniformly bounded from
below, i.e. the neighborhoods have “populated intersections”:

�.glgl 0/ ⩾ ı
p
�.gl /�.gl 0/; 8l; l

0
W suppgl \ suppgl 0 ¤ ;; (4.35)

for some ı > 0.
Under this condition let us consider the eigenvalue problem

.1 � "/X D GX; X � Y D 0:

Renormalizing X D .X1; : : : ; XL/ via xl D Xl=
p
�.gl /, we obtain the system

.1 � "/xl D
X

l 0Wsuppgl 0\suppgl¤;

�.gl 0gl /

�.gl /
xl 0 : (4.36)

Note that the sum on the right represents a convex combination of coordinates.
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Denote xC D xlC the positive maximal and x� D xl� the negative minimal values.
Since X 2 Y ?, those must be strictly signed. Since g’s form a partition of unity, there is
a sequence of indexes lC D l0; l1; : : : ; lp D l� with p ⩽ L such that

suppgli \ suppgliC1 ¤ ;:

Let us start with (4.36) at l D l0. Then l1 is one of the neighbors. We can assume without
loss of generality that xl1 < x

C for otherwise, we relabel and start with the first index l1
having this property.

We leave the l1-term unchanged, and estimate the rest of the x’s by xC to obtain

.1 � "/xC ⩽

�
1 �

�.gl0gl1/

�.gl0/

�
xC C

�.gl0gl1/

�.gl0/
xl1 :

Solving for xl1 , we obtain

xl1 ⩾

�
1 �

"

�.gl0gl1/=�.gl0/

�
xC:

Since xl1 < x
C it implies in particular that " > 0. It also follows from (4.35) that

�.gl0gl1/

�.gl0/
⩾ ı2;

and hence
xl1 ⩾

�
1 �

"

ı2

�
xC:

By the same computation centered this time at xl1 and with " reset to "=ı2, we obtain

xl2 ⩾
�
1 �

"

ı4

�
xC:

Continuing the process to the last term we obtain

x� ⩾
�
1 �

"

ı2p

�
uC ⩾

�
1 �

"

ı2L

�
xC:

Recalling that x� < 0, it implies " ⩾ ı2L. Thus, the spectral gap is estimated to be at least

" D ı2L:

To estimate ı in terms of thickness, let us observe that by continuity in any overlapping
neighborhoods there exists a ball of fixed radius rseg > 0 such that

Brseg.x/ � supp.gl / \ supp.gl 0/ (4.37)

and such that gl ; gl 0 ⩾ c1 on Brseg.x/ for some fixed c1 > 0. Thus, we have using that
�.gl / ⩽ 1,

�.glgl 0/p
�.gl /�.gl 0/

⩾ c21 x�rseg.�/:

So, ı ≳ x�rseg.�/.
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4.4.1. Application of the low energy method to non-ball-positive models. For non-
ball-positive models such as Motsch–Tadmor, or more generally, for Mˇ the low energy
method can still produce estimates on spectral gap for almost uniformly distributed den-
sities, 



� � 1

j�j






1

⩽ ı: (4.38)

Here, we make the same Bochner positivity assumption on the defining kernel � D  � 
and the locality (4.31).

Let us start as in Example 4.14 by symmetrizing and using cancellation:

.u; u/�� � .u; Œu��/��

D

Z
���

u.x/ � .u.x/ � u.y//�.x/�.y/
�.x � y/

�
1�ˇ
� .x/

dy dx

D
1

2

Z
���

ju.x/ � u.y/j2�.x/�.y/
�.x � y/

�
1�ˇ
� .x/

dy dx

�
1

2

Z
���

ju.y/j2�.x/�.y/

�
1

�
1�ˇ
� .x/

�
1

�
1�ˇ
� .y/

�
�.x � y/ dy dx

D IC II:

First, note that

I ⩾ c1

Z
���

u.x/ � .u.x/ � u.y//�.x/�.y/�.x � y/ dy dx

D c1
�
.u; u/��� � .u; Œu��/���

�
;

which is exactly the spectral gap form that appears for the MCS model. So, using Proposi-
tion 4.16 and (4.38), we obtain

I ⩾ c2x�
3
r0=2

.�/.u; u/��� ⩾ c2.c3 � ı/
3.c4 � ı/

1�ˇ .u; u/
�
ˇ
��

⩾ c5.u; u/�� ;

provided ı < 1
2

min¹c3; c4º. Next,

II D
1

2

Z
���

ju.y/j2�.y/�
ˇ
� .y/

�
1 �

1

�
ˇ
�

�
�

�
1�ˇ
�

�
�

�
dy:

Using again (4.38),

1

�
ˇ
�

�
�

�
1�ˇ
�

�
�

⩽
��

c4 � ı
⩽
c4 C ı

c4 � ı
⩽ 1C

2ı

c4 � ı
;

1

�
ˇ
�

�
�

�
1�ˇ
�

�
�

⩾
��

c4 C ı
⩾
c4 � ı

c4 C ı
⩾ 1 �

2ı

c4 C ı
:
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So, if ı is small enough we haveˇ̌̌̌
1 �

1

�
ˇ
�

�
�

�
1�ˇ
�

�
�

ˇ̌̌̌
⩽ c6ı:

We arrive at
jIIj ⩽ c6ı.u; u/�� :

Combining the two together, we obtain

.u; u/�� � .u; Œu��/�� ⩾ .c5 � c6ı/.u; u/�� ⩾ c7.u; u/�� ;

provided ı < c8, where c8 is an absolute constant depending only on the parameters of
the model. We have thus proved a version of Proposition 4.16 for Mˇ models.

Proposition 4.18. There exist constants ı; c0 > 0 depending only on the parameters of the
model Mˇ , 0 ⩽ ˇ ⩽ 1, such that for any density satisfying (4.38) the size of the spectral
gap is estimated as "0 > c0.

5. Deterministic mean-field limit

In this section we consider either the periodic or open environments � D Tn; Rn.
The goal of this section will be to derive the Vlasov-alignment equation (4.1), as the

weak limit of empirical measures

�Nt D

NX
iD1

miıxi .t/ ˝ ıvi .t/; (5.1)

where .xi ; vi /NiD1 solve the agent based system (3.27). We will focus on the measure-
valued solutions with bounded support. Although this is not a necessary assumption, it
simplifies some of the technical issues considerably.

Definition 5.1. We say that ¹�tº0⩽t<T 2 Cw�.Œ0; T /IP .BR �BR// is a measure-valued
solution to (4.1) with initial condition �0 if for any test-function g2C1.Œ0; T /���Rn/
one has, for all 0 < t < T ,Z

��Rn

g.t; x; v/ d�t .x; v/ D
Z
��Rn

g.0; x; v/ d�0.x; v/

C

Z t

0

Z
��Rn

.@sg C v � rxg C s�s .Œus��s � v/ � rvg/ d�s.x; v/ ds: (5.2)

The definition makes sense provided s�s and s�s Œus��s are bounded and continuous
functions in .s; x/. This typically can be derived from the regularity of the model as stip-
ulated in Section 3.7. But since we cannot rely on any a priori thickness of solutions we
must assume that the model M is uniformly regular.
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With this assumption, the continuity of s�s .x/ in x follows from (3.21). Continuity
in s follows from (3.22):

ks�s0 � s�s00 k1 ≲ W1.�s0 ; �s00/ ⩽ W1.�s0 ; �s00/:

Since for compactly supported measuresW1 determines the weak�-convergence, the claim
follows. As to the weighted averages, we have

s�s Œus��s D
Z
BR�BR

��s .x; y/v d�s.y; v/:

So, again the continuity in x follows from (3.21). In terms of time, we use (3.22) to obtainZ
BR�BR

��s0 .x; y/v d�s0.y; v/ �
Z
BR�BR

��s00 .x; y/v d�s00.y; v/

D

Z
BR�BR

��s0 .x; y/v
�

d�s0.y; v/ � d�s00.y; v/
�

C

Z
BR�BR

�
��s0 .x; y/ � ��s00 .x; y/�v d�s00.y; v/

⩽ xC1W1.�s0 ; �s00/C xCRW1.�s0 ; �s00/ ≲ W1.�s0 ; �s00/:

The crucial and elementary observation is that the empirical measure given in (5.1)
satisfies (5.2) if and only if ¹.xi ; vi /ºi solve the agent-based system (3.27). As a con-
sequence, solutions to (3.27) fall naturally into the framework of the Vlasov-alignment
equation. Our goal will be to prove the following theorem by showing contractivity of the
map �0 ! �t on any finite time interval.

Theorem 5.2. Suppose M is uniformly regular. Let �0 2 P .� �Rn/ be any measure
with compact support. Then for any T > 0 there exists a unique measure-valued solution
¹�tº0⩽t<T 2 Cw�.Œ0; T /IP .BR.T // to (4.1), which can be reconstructed from solutions
to (3.27) as follows. Let all .x0i ; v

0
i / 2 O, where O is some fixed neighborhood of supp�0

and such that �N0 ! �0 weakly. Then �Nt ! �t weakly uniformly on Œ0; T /.

As a corollary, we obtain validity of the mean-field limit in all the cases listed in the
last row of Table 4.

The theorem will be proved via a Lagrangian approach using the transport structure
of (4.1). To this end, we introduce the characteristic flow

d
dt
X.t; s; x; v/ D V.t; s; x; v/; X.s; s; x; v/ D x;

d
dt
V .t; s; x; v/ D s�.X/.Œu��.X/ � V /; V .s; s; x; v/ D v: (5.3)

We also denote X.t; 0; x; v/D X.t; x; v/, V.t; 0; x; v/D V.t; x; v/, and .x; v/D !. Note
that the right-hand side of (5.3) is Lipschitz in .X;V /, so the flow is well defined on Œ0;T �.
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Define the test-function g.s; !/ D h.X.t; s; !/; V .t; s; !// for some h 2 C10 .R
2n/, for

which we have
@sg C v � rxg C s�.Œu�� � v/ � rvg D 0:

So, plugging it into (5.2) we obtainZ
��Rn

h.!/ d�t .!/ D
Z
��Rn

h.X.t; !/; V .t; !// d�0.!/: (5.4)

This means that �t is a push-forward of the initial measure �0 along the flow-map .X;V /,
�t D .X; V /#�0.

The proof of the mean-field limit consists of two steps: establishing control over the
deformation .rX;rV / on a given time interval, and proving Lipschitzness of the push-
forward map in the W1-metric.

So, let us assume that on a time interval Œ0; T � we have a solution �t 2 P .BR/. By
the maximum principle of Lemma 4.1,

kV.t/kL1.O/ ⩽ max
.x;v/2O

jvj ⩽ diam O: (5.5)

Let us fix a compact domain O with supp�0 � O. Then

d
dt
krXkL1.O/ ⩽ krV kL1.O/:

Next,
d
dt
rV ⩽ rX>r.s�Œu��/.X/CrX>rs�.X/V C s�.X/rV;

so, in view of (ev4), (5.5), and (3.21), we obtain the inequality up to a constant depending
only on R;m;O; xS ,

d
dt
krV kL1.O/ ⩽ krXkL1.O/ C krV kL1.O/:

We thus conclude that

sup
Œ0;T �

krXkL1.O/ C krV kL1.O/ ⩽ C.R;m;O; T /: (5.6)

Let us now proceed to continuity estimates. Let us fix two measures �0t ; �
00
t 2 P .BR/

for all t 2 Œ0;T �. We also fix a common initial domain O, supp�00 [ supp�000 �O. Clearly,

d
dt
kX 0 �X 00kL1.O/ ⩽ kV

0
� V 00kL1.O/: (5.7)

For velocities, we have

d
dt
.V 0 � V 00/ D s�0.X 0/Œu0��0.X 0/ � s�00.X 00/Œu00��00.X 00/C s�00.X 00/V 00 � s�0.X 0/V 0:
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So, from (3.21) and (3.22), we have

js�0.X 0/Œu0��0.X 0/ � s�00.X 00/Œu00��00.X 00/j

≲ W1.�
0; �00/CW1.u

0�0; u00�00/C kX 0 �X 00kL1.�/;

and
js�0.X 0/ � s�00.X 00/j ≲ W1.�

0; �00/C kX 0 �X 00kL1.�/:

Thus,

d
dt
kV 0 � V 00kL1.O/ ≲ W1.�

0; �00/CW1.u
0�0; u00�00/

C kV 0 � V 00kL1.O/ C kX
0
�X 00kL1.�/:

But for any kgkLip ⩽ 1, we haveZ
�

g.x/. d�0t � d�00t / D
Z
��Rn

g.x/. d�0t � d�00t /

D

Z
��Rn

g.X 0/ d�00 �
Z
��Rn

g.X 00/ d�000

D

Z
��Rn

g.X 0/. d�00 � d�000/C
Z
��Rn

.g.X 0/ � g.X 00// d�00

⩽ krX 0kL1.�/W1.�
0
0; �
00
0/C kX

0
�X 00kL1.�/:

In view of (5.6) we conclude that

W1.�
0
t ; �
00
t / ≲ W1.�

0
0; �
00
0/C kX

0
�X 00kL1.�/:

Similarly, for any kgkLip ⩽ 1, we haveZ
�

g.x/.d.u0�0t / � d.u00�00t //

D

Z
��Rn

g.x/v. d�0t � d�00t /

D

Z
��Rn

g.X 0/V 0 d�00 �
Z
��Rn

g.X 00/V 00 d�000

D

Z
��Rn

g.X 0/V 0. d�00 � d�000/C
Z
��Rn

.g.X 0/V 0 � g.X 00/V 00/ d�00

⩽ .diam OkrX 0kL1.O/ C kgkL1.BR/krV
0
kL1.O//W1.�

0
0; �
00
0/

Cm diam OkX 0 �X 00kL1.O/ C kgkL1.BR/kV
0
� V 00kL1.O/:

In view of (5.6), we conclude that

W1.u
0�0; u00�00/ ≲ W1.�

0
0; �
00
0/C kX

0
�X 00kL1.O/ C kV

0
� V 00kL1.O/:
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Thus, we obtain

d
dt
kV 0 � V 00kL1.O/ ≲ W1.�

0
0; �
00
0/C kX

0
�X 00kL1.O/ C kV

0
� V 00kL1.O/:

Combining with (5.7) we conclude that

kX 0 �X 00kL1.O/ C kV
0
� V 00kL1.O/ ⩽ C.R; T /W1.�

0
0; �
00
0/: (5.8)

Let us now fix a function h with Lip.h/ ⩽ 1, and use the transport identity (5.4):Z
��Rn

h.!/ d�0t �
Z
��Rn

h.!/ d�00t

D

Z
��Rn

h.X 0; V 0/ d�00 �
Z
��Rn

h.X 00; V 00/ d�000

D

Z
��Rn

h.X 0; V 0/. d�00 � d�000/C
Z
��Rn

�
h.X 0; V 0/ � h.X 00; V 00/

�
d�000

⩽ LipO.h.X
0; V 0//W1.�

0
0; �
00
0/C kX� �X�kL1.O/ C kV� � V�kL1.O/:

Using that
LipO.h.X

0; V 0// ⩽ krV 0kL1.O/ C krX
0
kL1.O/;

and applying (5.6), (5.8), we conclude the following bounds

W1.�
0
t ; �
00
t / ⩽ C.R;O; T /W1.�

0
0; �
00
0/: (5.9)

This immediately implies uniqueness and stability of measure-valued solutions.
So, we start now with an arbitrary measure �0, and approximate it weakly with a

sequence of empirical measures

�N0 D

NX
iD1

miıxi ˝ ıvi ;

with all .xi ; vi / 2 O, where O is some fixed neighborhood of supp�0. Then let us run the
agent-based alignment model alignment (3.27). For any time T , we have

supp�Nt � BjOjCTA0 � BA0 ; t < T:

Thus, according to (5.9), �Nt is weakly Cauchy, and hence �Nt ! �t for some �t . To
finish the proof Theorem 5.2 we now prove a short lemma showing that the limit solves
the Vlasov-alignment equation weakly.

Lemma 5.3. Suppose a sequence of solutions�N 2Cw�.Œ0;T /IP .BR// converges weak-
ly pointwise, i.e. �Nt ! �t for all 0 ⩽ t < T . Then � 2 Cw�.Œ0; T /IP .BR// is a weak
solution to (4.1).
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Proof. The weak�-continuity of the limit will follow immediately from (5.2) once it is
established. Clearly, all the linear terms in (5.2) converge to their natural limits. As to the
force let us note for any s < T , we have (by the computations done above)

W1.�
N
s ; �

M
s /CW1.u

N
s �

N
s ; u

M
s �

M
s / ⩽ CW1.�

N
s ; �

M
s / ⩽ CW1.�

N
0 ; �

M
0 /;

since both are solutions to the Vlasov-alignment equation. Sending M !1, we obtain

W1.�
N
s ; �s/CW1.u

N
s �

N
s ; us�s/ ⩽ CW1.�

N
0 ; �0/;

which by continuity (3.22) implies that

s�Ns .Œu
N
s ��Ns � v/ � s�s .Œus��s � v/




L1.BR/

! 0

uniformly in s. Together with the weak convergence assumed for �Ns , we obtainZ t

0

Z
��Rn

.s�Ns .Œu
N
s ��Ns � v// d�Ns .x; v/ ds !

Z t

0

Z
��Rn

.s�s .Œus��s � v// d�s.x; v/ ds:

This finishes the proof.

Finally, let us discuss the implementation of Theorem 5.2 to global well-posedness
of smooth solutions. Since all solutions are transported according to (5.4) regularity of a
solution will depend on the regularity of initial data and the parameters of the model. First,
let us notice that the Jacobian of the characteristic map, by the Liouville formula, is given
by

detr!.X; V /.t; !/ D exp
²
�n

Z t

0

s�.X.s; !// ds
³
:

Then if �0 D f0 dw, with f0 2 C k , k 2 N and compactly supported, then for any t > 0,

f .t; X.t; !/; V .t; !// D f0.!/ exp
²
n

Z t

0

s�.X.s; !// ds
³
:

Inverting the flow and noting that .X; V / and s� are C k implies f 2 C k at all times
with support in v being confined to its original bounds and support in x growing at most
linearly.

Theorem 5.4. Suppose the model M is uniformly regular. Let f0 2 C k0 .� �Rn/ be any
compactly supported distribution. Then for any T > 0, there exists a unique solution f 2
L1.Œ0; T /IC k0 / to (4.1), which is supported on supp f0 C BtA0 � ¹0º, where A0 is the
maximal initial velocity.

6. Stochastic mean-field limit

As discussed in Section 4.1 one of the main obstacles for alignment on the torus Tn is
existence of so-called locked states: solutions with agents locked on periodic orbits that
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stay at a positive distance greater than the communication length scale r0. A natural way
to avoid such unstable states is to introduce stochastic noise:

dxi D vi dt;

dvi D si .Œv�i � vi / dt C
p
2�si dBi ;

(6.1)

where the Bi ’s are independent Brownian motions in Rn. Note that the noise here is
assumed to be “material”, i.e. it places stochasticity only within the influence of the flock.
As N !1 and assuming that the agents are indistinguishable, i.e. m1 D � � � D mN D
1=N , the system comes in natural correspondence with what we call the Fokker–Planck-
alignment equation

@tf C v � rxf D �s��vf Crv.s�.v � Œu��/f /: (6.2)

A major advantage of using material noise is that the kinetic model (6.2) possesses a
family of thermodynamic equilibria

��;xu D
1

j�j.2��/n=2
e�jv�xuj

2=2� :

If the underlying model M is conservative every solution is centered around the constant
averaged momentum xu, which predetermines the corresponding equilibrium and opens a
possibility for potential relaxation towards that distribution. The collective behavior inter-
pretation of this result would say that, as expected, the noise disrupts the locked states and
redistributes initial velocities symmetrically around the mean value xu. Alignment is then
restored in the sense of the vanishing noise limit:

lim
�!0

lim
t!1

f � .t/ D
1

j�j
ıvDxu ˝ dx:

The problem of relaxation and hypocoercivity will be discussed in Section 8. In this
section we provide a rigorous derivation of equation (6.2) as a mean-field limit of solutions
to the stochastic system (6.1). To make this statement precise, let us consider f a solution
to (6.2) on a time interval Œ0; T � with initial distribution f0. Consider now N independent
identically distributed random variables .x0i ; v

0
i /, i ⩽ N , with f0 D law.x0i ; v

0
i /, and let

.xi ; vi / solve (6.1). Form the empirical measure-valued random variables

�Nt D
1

N

NX
iD1

ıxi .t/ ˝ ıvi .t/:

The mean-field limit consist of showing that for all t ⩽ T , we have �Nt ! ft in law,
i.e. for any Lipschitz function h on � �Rn,

E

ˇ̌̌̌
1

N

NX
iD1

h.xi .t/; vi .t// �

Z
��Rn

h.x; v/f .t; x; v/ dx dv
ˇ̌̌̌2
! 0: (6.3)

Note that f dx dv in this context is considered as a constant random measure.
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In general, the convergence (6.3) is equivalent to propagation of chaos, see [90]: if f N

denotes the joint probability distribution of the process .x1; v1; : : : ; xN ; vN / solving (6.1),
then for any k ⩾ 1, the k-th marginal f .k/ converges weakly to the product of k copies of
f , f ˝k , as N !1:

hf .k/; '1 ˝ � � � ˝ 'ki

D hf N ; '1 ˝ � � � ˝ 'k ˝ 1˝ � � � ˝ 1i !

kY
jD1

hf; 'j i; 'j 2 Cb.R
2n/:

The strategy of proving (6.3) is based on the classical coupling method. Note that if
the .xi ; vi /’s were independent and identically distributed by f , then (6.3) would have
been nothing but the law of large numbers. So, to achieve the limit we couple (6.1) with
another system of separate N copies of the characteristic processes for (6.2):

dxxi D xvi dt;

dxvi D s�.xxi /.Œu��.xxi / � xvi / dt C
q
2�s�.xxi / dBi ;

(6.4)

with initial condition .x0i ; v
0
i /. Here, � and u are the macroscopic values of f . Note that

because the equations are decoupled, the pairs .xxi ; xvi / remain independent and identically
distributed. By the Itô formula, f is their common law.

To establish (6.3), one can add and subtract the intermediate average of h with xxi .t/,
xvi .t/ pairs:

E

ˇ̌̌̌
1

N

NX
iD1

h.xi .t/; vi .t// �

Z
R2n

h.x; v/f .t; x; v/ dx dv
ˇ̌̌̌2

⩽ E

ˇ̌̌̌
1

N

NX
iD1

h.xi .t/; vi .t// �
1

N

NX
iD1

h.xxi .t/; xvi .t//

ˇ̌̌̌2
C E

ˇ̌̌̌
1

N

NX
iD1

h.xxi .t/; xvi .t// �

Z
R2n

h.x; v/f .t; x; v/ dx dv
ˇ̌̌̌2
:

The second term goes to zero by the law of large numbers, while the first can be estimated
using symmetry by

E

ˇ̌̌̌
1

N

NX
iD1

h.xi .t/; vi .t//�
1

N

NX
iD1

h.xxi .t/; xvi .t//

ˇ̌̌̌2
⩽ krhk1E

�
jx1 � xx1j

2
C jv1 � xv1j

2
�
:

So the proof of (6.3) reduces to obtaining control over separation of characteristics:

E.t/ D E
�
jxi � xxi j

2
C jvi � xvi j

2
�
! 0 as N !1: (6.5)

This approach was carried out by Bolley et al. [9] in the case of convolution-type align-
ment systems and with additive noise (no strength s� thermalization). We now provide a
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proper extension that includes general environmental averaging models and material noise
as stated.

Let us also note, following [9], that a bound on (6.5) entails a bound on the rate of
decorrelation f .k/ ! f ˝k . Indeed,

W 2
2 .f

.k/; f ˝k/ ⩽ E

� kX
iD1

jxi � xxi j
2
C jvi � xvi j

2

�
D kE.t/! 0;

where W2 is the Wesserstein-2 distance.

6.1. Law of large numbers

We will work on the torus�D Tn and assume that M is uniformly regular in the sense of
Definition 3.18 with a minor modification. For all our averaging models the W1-metric
used to define continuity in � can in fact be replaced with a weaker W1 semi-metric
determined by finitely many fixed Lipschitz functions: for h1; : : : ; hK 2 Lip.�/ with
khkkLip ⩽ 1,

W
h1;:::;hK
1 .�0; �00/ D max

kD1;:::;K

ˇ̌̌̌ Z
�

hk.x/
�

d�0.x/ � d�00.x/
�ˇ̌̌̌
: (6.6)

Such is the case for all Favre-based models where h D �, or for Mseg where hl D gl .
Thus, the uniform continuity can be understood as follows:

ks�0 � s�00k1 C k��0 � ��00k1 ⩽ CW
h1;:::;hK
1 .�0; �00/: (6.7)

Let us now discuss consequences of the assumed regularity of the model on the law of
large numbers. The basic idea is that the model is compatible with the law of large numbers
in the averaged sense. Let us recall the classical law first, see [90]: for a sequence of i.i.d.
random variables Xj W†! Rd with bounded second momentum EjXj j2 ⩽ E0 and mean
EXj D m, we have

E

ˇ̌̌̌
1

N

NX
jD1

Xj �m

ˇ̌̌̌2
⩽
E0

N
:

Consequently, if h 2 Cb.Rd / and � is the law of Xj ’s, then in terms of � the above readsZ
RNd

ˇ̌̌̌
1

N

NX
jD1

h.!j / �

Z
Rd

h.!/�.!/

ˇ̌̌̌2
d�.!1/ � � � d�.!N / ⩽

khk21
N

: (6.8)

We will encounter the inequality (6.8) in two interpretations. Namely, for any h 2
Cb.�/ and f 2 P .� �Rn/, we haveZ

�N

ˇ̌̌̌
1

N

NX
jD1

h.yj / �

Z
�

h.z/ d�.z/
ˇ̌̌̌2

d�.y1/ � � � d�.yN / ⩽
Ckhk21
N

; (6.9)



R. Shvydkoy 344

Z
�N�RnN

ˇ̌̌̌
1

N

NX
jD1

vjh.yj / �

Z
�

h.z/u.z/ d�.z/
ˇ̌̌̌2

df .y1; v1/ � � � df .yN ; vN /

⩽
CE.f /khk21

N
; (6.10)

where E.f / D
R
��Rn jvj

2 df .
The next two lemmas show that the analogue of these two laws of large numbers also

holds with respect to the components of the model M.

Lemma 6.1. We have

˛N D sup
�2P .�/

Z
�N

ˇ̌
s�N .yi / � s�.yi /

ˇ̌2 d�.y1/ � � � d�.yN / ≲
1

N
; (6.11)

where �N D 1
N

PN
jD1 ıyj . Note that ˛N is independent of i by symmetry.

Proof. To see this, we have by (6.7) and (6.9) thatZ
�N

ˇ̌
s�N .yi / � s�.yi /

ˇ̌2 d�.y1/ : : : d�.yN /

≲
KX
kD1

Z
�N

ˇ̌̌̌Z
�

hk.z/
�

d�N � d�
�ˇ̌̌̌2

d�.y1/ : : : d�.yN /

D

KX
kD1

Z
�N

ˇ̌̌̌
1

N

NX
jD1

hk.yj / �

Z
�

hk.z/ d�.z/
ˇ̌̌̌2

d�.y1/ : : : d�.yN /

⩽
C

N
.kh1k1 C � � � C khKk1/:

Lemma 6.2. We have

ˇN D sup
f WE.f /⩽E0

Z
�N�RnN

ˇ̌
s�N .yi /Œu

N ��N .yi / � s�.yi /Œu��.yi /
ˇ̌2

df .y1; v1/ � � � df .yN ; vN / ≲
1

N
; (6.12)

where �N is as before, uN D
PN
jD1 vj 1¹yj º, and �; u are the macroscopic density and

velocity of f .

Proof. Let us assume i D 1 for definiteness. We have

s�N .y1/Œu
N ��N .y1/ � s�.y1/Œu��.y1/

D

Z
�

.��N .y1; z/ � ��.y1; z//u
N .z/ d�N .z/

C

Z
�

��.y1; z/
�
uN .z/ d�N .z/ � u.z/ d�.z/

�
D IC II: (6.13)
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Let us examine I first. We have by (6.6),

jIj ⩽ W
h1;:::;hK
1 .�N ; �/

1

N

NX
jD1

jvj j:

Thus,Z
�N�RnN

jIj2 df .y1; v1/ � � � df .yN ; vN /

⩽
1

N

NX
jD1

Z
�N�RnN

jvj j
2.W

h1;:::;hK
1 .�N ; �//2 df .y1; v1/ � � � df .yN ; vN /;

and by symmetry in j ,

D

Z
�N�RnN

jv1j
2.W

h1;:::;hK
1 .�N ; �//2 df .y1; v1/ � � � df .yN ; vN /

≲
KX
kD1

Z
�N�RnN

jv1j
2

ˇ̌̌̌
1

N

NX
jD1

hk.yj / �

Z
�

hk.z/ d�.z/
ˇ̌̌̌2

df .y1; v1/ � � � df .yN ; vN /:

Let us focus on one kth term. We single out the j D 1 term from the rest:

1

N 2

Z
�N�RnN

jv1j
2
jhk.y1/j

2 df .y1; v1/ � � � df .yN ; vN /

C

Z
�N�RnN

jv1j
2

ˇ̌̌̌
1

N

NX
jD2

hk.yj / �

Z
�

hk.z/ d�.z/
ˇ̌̌̌2

df .y1; v1/ � � � df .yN ; vN /

⩽
1

N 2
khkk

2
1E0

C E0

Z
�N�1�Rn.N�1/

ˇ̌̌̌
1

N

NX
jD2

hk.yj / �

Z
�

hk.z/ d�.z/
ˇ̌̌̌2

d�.y2/ � � � d�.yN /:

The latter integral is ≲ 1=N with a minor adjustment toN ! N � 1 in the average. Thus,
by (6.9), Z

�N�RnN

jIj2 df .y1; v1/ � � � df .yN ; vN / ≲
1

N
:

It remains to analyze II. We will treat y1 as a parameter, and let us denote hy1.z/ D
��.y1; z/. By the regularity assumption, hy1 2 Cb.�/ and is even Lipschitz. We have

II D
1

N

NX
jD1

vjhy1.yj / �

Z
�

hy1.z/u.z/ d�.z/:
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Again, we single out the j D 1 term, and by (6.10),Z
�N�RnN

jIIj2 df .y1; v1/ : : : df .yN ; vN /

⩽
1

N 2

Z
�N�RnN

jv1j
2
jhy1.y1/j

2 df .y1; v1/ � � � df .yN ; vN /

C

Z
�N�RnN

ˇ̌̌̌Z
�

1

N

NX
jD2

vjhy1.yj / �

Z
�

hy1.z/u.z/ d�.z/
ˇ̌̌̌2

df .y1; v1/ � � � df .yN ; vN /

⩽
1

N 2
k��k

2
1E0 C

1

N
k��k

2
1E0

with a minor adjustment to the index N ! N � 1 in the latter.

6.2. Main result

As discussed earlier we now focus on obtaining an estimate on separations of characteris-
tics to achieve (6.5). The result holds on a finite time interval Œ0; T � where f is a smooth
solution to (6.2) by which we mean existence of sufficiently many derivatives in weighted
Sobolev spaces to sufficient to understand (6.2) classically, see Section 7.

Theorem 6.3. Suppose M is uniformly regular satisfying (6.7). Let f be a classical solu-
tion to the Fokker–Planck-alignment equation (6.2) on a time interval Œ0; T � satisfying

‚.�;�/ ⩾ ı; 80 ⩽ t ⩽ T; (6.14)

and Z
��Rn

eajvj
2

f .x; v; t/ dx dv ⩽ c8; 80 ⩽ t ⩽ T: (6.15)

Then for any solution to the particle system (6.1) and (6.4) on the time interval Œ0; T �
with i.i.d. initial datum .x0i ; v

0
i / distributed according to the law f0 one has the following

estimate
E
�
jxi � xxi j

2
C jvi � xvi j

2
�
⩽ C1

1

N e�C2t
;

for some C1; C2 > 0 depending on T and all the constants involved in the assumptions
above. Consequently, the mean-field limit (6.3) holds.

Proof. We set � D 1 for simplicity. First, we notice that the solution has a uniformly
bounded energy on Œ0; T � and thus (6.12) applies uniformly on Œ0; T �.

Let us denote
E D Ex C Ev;

Ex D E
�
jxi � xxi j

2
�
; Ev D E

�
jvi � xvi j

2
�
:

Taking the derivative of the x-component, we obviously obtain

d
dt

Ex D 2E
�
.xi � xxi / � .vi � xvi /

�
⩽ E:
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For the velocity component we use the Itô formula,

d
dt

Ev D E
�
.vi � xvi / � .si .Œv�i � vi / � s�.xxi /.Œu��.xxi / � xvi //

�
C E

ˇ̌̌p
2si �

q
2s�.xxi /

ˇ̌̌2
:

Let us start with the noise term using (6.14) and (3.18),

E
ˇ̌̌p
2si �

q
2s�.xxi /

ˇ̌̌2
D 2E

ˇ̌̌̌
si � s�.xxi /
p

si C
p

s�.xxi /

ˇ̌̌̌2
⩽ C E

ˇ̌
si � s�.xxi /

ˇ̌2
:

Recalling that si D s�N .xi /, where �N D 1
N

PN
jD1 ıxj , and denoting x�N D 1

N

PN
jD1 ıxxj ,

we add and subtract intermediate terms

E
ˇ̌
si � s�.xxi /

ˇ̌2
≲ E

ˇ̌
s�N .xi / � sx�N .xxi /

ˇ̌2
C E

ˇ̌
sx�N .xxi / � s�.xxi /

ˇ̌2
: (6.16)

By regularity of the strength function (3.21) and symmetry,

E
ˇ̌
s�N .xi / � sx�N .xxi /

ˇ̌2
≲ Ex C E

�
1

N

NX
jD1

jxj � xxj j
2

�
D CEx :

The second term is bounded by ˛N as defined in (6.11), since � is the law of xxi and the
latter are independent,

E
ˇ̌
sx�N .xxi / � s�.xxi /

ˇ̌2
D

Z
�N

ˇ̌
s 1
N

PN
jD1 ıyj

.yi / � s�.yi /
ˇ̌2 d�.y1/ � � � d�.yN / ⩽ ˛N :

In conclusion, we obtain

E
ˇ̌̌p
2si �

q
2s�.xxi /

ˇ̌̌2
⩽ CEC ˛N :

Let us now turn to the alignment term. By adding and subtracting several intermediate
terms we expand it as follows:

E
�
.vi � xvi / � .si .Œv�i � vi / � s�.xxi /.Œu��.xxi / � xvi //

�
D �E

�
si jvi � xvi j2

�
C E

�
.vi � xvi / � .si Œv�i � s�.xxi /Œu��.xxi //

�
C E

�
.vi � xvi / � xvi .s�.xxi / � si /

�
:

The first term is non-positive, so we simply drop it. Let us estimate the last term. We
fix an R > 0 to be determined later and split the integrand as follows:

E
�
.vi � xvi / � xvi .s�.xxi / � si /

�
D E

�
.vi � xvi / � xvi1jxvi j<R.s�.xxi / � si /

�
C E

�
.vi � xvi / � xvi1jxvi j⩾R.s�.xxi / � si /

�
⩽ R2Ejvi � xvi j

2
C E

ˇ̌
si � s�.xxi /

ˇ̌2
C CEjvi � xvi j

2

C CE
�
jxvi j

21jxvi j⩾R
�
; (6.17)

where in the last term we simply used the global boundedness of the strength functions.
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For the second term we use the same estimate as before (6.16), hence continuing

⩽ .R2 C C/EC ˛N C CE
�
jxvi j

21jxvi j⩾R
�
:

Now,
E
�
jxvi j

21jxvi j⩾R
�
⩽ E1=2

�
jxvi j

4
�
E1=2

�
1jxvi j⩾R

�
:

Here the first term is bounded by the fourth moment of f , which is clearly bounded from
the assumption (6.15). And using again (6.15), we estimate the last term by

E
�
1jxvi j⩾R

�
D

Z
�

Z
jvj⩾R

ft .x; v/ dv dx ⩽
c4

eaR
2
:

The latter remains bounded on the interval Œ0; T � by a constant by assumption. We thus
obtained

E
�
.vi � xvi / � xvi .s�.xxi / � si /

�
⩽ .R2 C C/E.t/C ˛N C c4e

�aR2=2:

Lastly, let us estimate the second term on the right-hand side of (6.17). We have,
denoting uN D

PN
jD1 vj 1¹xj º and xuN D

PN
jD1 xvj 1¹xxj º,

E
�
.vi � xvi / � .si Œv�i � s�.xxi /Œu��.xxi //

�
⩽ Ev C E

ˇ̌
s�N .xi /Œu

N ��N .xi / � sx�N .xi /Œxu
N �x�N .xi /

ˇ̌2
C E

ˇ̌
sx�N .xi /Œxu

N �x�N .xi / � sx�N .xxi /Œxu
N �x�N .xxi /

ˇ̌2
C E

ˇ̌
sx�N .xxi /Œxu

N �x�N .xxi / � s�.xxi /Œu��.xxi /
ˇ̌2
: (6.18)

The last term here is bounded by ˇN , see (6.12). The elements in the first term are evalu-
ated at the same point xi . So, by a similar computation as in (6.13), we have

E
ˇ̌
s�N .xi /Œu

N ��N .xi / � sx�N .xi /Œxu
N �x�N .xi /

ˇ̌2
≲ E

"�
1

N

NX
jD1

jxvj j
2

�
W 2
1 .�

N ; x�N /

#
C E

�
W 2
1 .u

N�N ; xuN x�N /
�

⩽
1

N 2

NX
i;jD1

E
�
jxvj j

2
jxi � xxi j

2
�
C
1

N

NX
iD1

E
�
jxvi j

2
jxi � xxi j

2
�
C Ev: (6.19)

Each term here will be estimated by the same splitting method as before:

E
�
jxvj j

2
jxi � xxi j

2
�
D E

�
jxvj j

21jxvj j<Rjxi � xxi j
2
�
C E

�
jxvj j

21jxvj j⩾Rjxi � xxi j
2
�

⩽ R2Ex C E1=2
�
jxvj j

4
�
E1=2

�
1jxvj j⩾R

�
⩽ R2EC Ce�aR

2=2;

and similarly for the middle term. Thus,

(6.19) ⩽ R2EC Ce�aR
2=2:
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It remains to estimate the middle term in (6.18). Here we use the regularity of the
kernel (3.21) and obtain

E
ˇ̌
sx�N .xi /Œxu

N �x�N .xi / � sx�N .xxi /Œxu
N �x�N .xxi /

ˇ̌2
≲
1

N

NX
jD1

E
�
jxi � xxi j

2
jxvj j

2
�
:

This term becomes exactly as the previous one. So, the same estimate applies.
Putting the above estimates together and denoting r D aR2=2 and 
N D ˛N C ˇN ,

we arrive at
d
dt

E ⩽ C1.r C 1/EC C2
N C C3e
�r : (6.20)

Inequality (6.20) is exactly the one that appeared in [9]. Let us recap the conclusion
for completeness. First, by choosing r D 1 we see that E remains uniformly bounded
on Œ0; T �, E ⩽ E0. Thus, � ln.E=eE0/ ⩾ 1. Denoting v D E=eE0 and picking r D� lnv,
we obtain

v0 ⩽ �c1v ln v C c2
N ⩽ �cv ln v C c
N ;

where c D max¹c1; c1º. Rescaling time u.t/ D v.t=c/, we further obtain

u0 ⩽ �u lnuC 
N :

Letting w D u
�e
�t

N , we conclude

w0 ⩽ �w lnw C 1 ⩽ e�1 C 1:

Thus, w ⩽ T .e�1 C 1/ D CT , and hence unwrapping the notation, E ⩽ C1

e�C2t

N , as
claimed.

7. Fokker–Planck-alignment equation

In this section we develop a well-posedness theory of classical solutions to Fokker–Plank-
alignment (FPA) equations (6.2) that is suitable for applications to flocking. This means
that in addition to the standard regularity questions we will pay close attention to thick-
ness as related to the spectral gap computations discussed in Section 4. We will restrict
ourselves to the periodic domain � D Tn as that is the setting where most of our results
will be used in the sequel. We also set � D 1 as it plays no role in the analysis. So, we
consider the FPA equation

@tf C v � rxf D s��vf Crv � .s�.v � Œu��/f /: (7.1)

Classical solutions to (7.1) are defined to be solutions that belong to a high regularity
weighted Sobolev class. For reasons that will be clarified later it is essential to distribute
velocity weights in the manner defined as follows:

H k
l .� �Rn/ D

²
f W

X
k0⩽k

X
jk0jDk0

Z
��Rn

hvilC2.k�k
0/
j@k0
x;vf j

2 dv dx <1
³
; (7.2)
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where hvi D .1C jvj2/1=2. Some remarks are in order to elaborate on this choice. First,
we note that the alignment term in (6.2) prevents the persistence of a sub-Gaussian bound
f ⩽ C� if it holds initially. So, setting the problem traditionally in sub-Gaussian Hölder
classes (cf. [2, 48]), is not natural for the FPA equations. One exception is the class of
perturbative solutions developed for particular models in [18,32]. Inclusion of the weights
in (7.2) is necessary to achieve uniqueness primarily due to, again, the presence of align-
ment components; see, however, [97] for the classical, much weaker result. The use of
progressively increasing weights for lower order terms is required to control terms coming
from the inhomogeneity in front of the Fokker–Planck operator, which prevents closing a
priori estimates for any single-weight choice. Single weight spaces, however, would have
been sufficient for models with s� D 1.

7.1. Local well-posedness

Let us first discuss local well-posedness for thick data on compact domain.

Theorem 7.1. Suppose that the model M is regular in the sense of Definition 3.17, and
� D Tn. Let f0 2 H k

l
.� �Rn/, k; l ⩾ nC 3, be an initial condition such that

‚.�0; �/ > 0:

Then there exists a unique local solution to (7.1) on a time interval Œ0; T /, where T > 0
depends only on the initial energy E0 and thickness ‚.�0; �/, in the regularity class

f 2 Cw.Œ0; T /IH
k
l /; rvf 2 L

2.Œ0; T �IH k
l /: (7.3)

Moreover, if f 2 L1loc.Œ0; T /IH
k
l
/ is a given solution such that

inf
Œ0;T /

‚.�;�/ > 0; (7.4)

then f can be extended to an interval Œ0; T C "/ in the same class.

We can view the right-hand side of (7.1) as a sum of a weighted Fokker–Planck oper-
ator and a smooth drift

@tf C v � rxf D s�LFPf C w� � rvf; (7.5)

where
LFPf D rv � .rvf C vf /; w� D �s�Œu��:

Let us first disassociate the weights s� and w� from the solution and consider the linear
problem

@tf C v � rxf D s.x; t/LFPf C w.x; t/ � rvf; (7.6)

where s;w is a given smooth set of data on � � Œ0; T � with uniform bounds

s ⩾ c0 > 0; kskC k C kwkC k < C0 on � � Œ0; T �: (7.7)
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Lemma 7.2. Under the assumptions (7.7) for any initial condition f0 2 H k
l

, there exists
a unique solution to (7.6) on Œ0; T � with f 2 Cw.Œ0; T �IH k

l
/, rvf 2 L2loc.Œ0; T �IH

k
l
/,

and moreover
kf kHk

l
⩽ kf0kHk

l
eCt ;

where C depends only on c0 and C0.

Proof. To construct a solution to (7.6) from initial data f0 2H k
l

one first considers a fully
viscous regularization

@tf C v � rxf D sLFPf C w � rvf C "�x;vf: (7.8)

A local solution to (7.8) on a time interval Œ0; T"� is obtained via the standard fixed point
argument, see [57]. In order to extend it to all of Œ0;1/ we provide a priori estimates
for (7.6) which automatically apply to (7.8) independently of ". As a result we obtain
a bound on kf kHk

l
, which depends only on its initial value, on c0 and C k-norms of s

and w. So, we have a family of solutions f " uniformly in C.Œ0; T �IH k
l
/, and clearly also

in f "t 2 L
1.Œ0; T �IL2/. By the Aubin–Lions compactness lemma we can pass to the

limit "! 0 in any H k0

l 0
for k0 < k, l 0 < l and weakly in H k

l
extracting a subsequence

converging to a solution to (7.6). Weak continuity in H k
l

also follows classically.
Thus, the problem reduced to obtaining proper a priori bounds for solutions to (7.6).
Let us estimate the top v-derivative @k

vf first (here and further on we use a less formal
notation for the partials, only keeping track of the order):

@t@
k
vf C v � rx@

k
vf C @

k�1
v @xf D sLFP@

k
vf C s@k

vf C w � rv@k
vf:

Testing with hvil@k
vf , we obtain

d
dt

Z
��Rn

hvil j@k
vf j

2 dv dx C
1

2

Z
��Rn

hvilv � rxj@
k
vf j

2 dv dx

C

Z
��Rn

hvil@k�1
v @xf @

k
vf dv dx

D �

Z
��Rn

shvil j@kC1
v f j2 dv dx C

1

2

Z
��Rn

s�v.hvil /j@k
vf j

2 dv dx

C

Z
��Rn

s@v.hvilv/j@k
vf j

2 dv dx C
Z
��Rn

shvil j@k
vf j

2 dv dx

�

Z
��Rn

w � rv.hvil /j@k
vf j

2 dv dx

While the first integral on the left-hand side vanishes, the second is bounded by kf k2
Hk
l

.
All the terms on the right-hand side, using that @vhvip ≲ hvip�1, are also bounded by
kf k2

Hk
l

except for the dissipation which has a uniform bound from below by (7.7). Thus,

d
dt

Z
��Rn

hvil j@k
vf j

2 dv dx ⩽ Ckf k2
Hk
l

� c0

Z
��Rn

hvil j@kC1
v f j2 dv dx;

where C is a constant depending on all the L1-norms of s;w.
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Let us now estimate the rest of the other top derivatives @k�k0
v @k0

x f , k0 > 0. Sparing the
tedious details, most of terms are all bounded by Ckf k2

Hk
l

, where C is an upper bound
for the C k-norms of s;w. The rest is given by

d
dt

Z
��Rn

hvil j@k�k0
v @k0

x f j
2 dv dx

≲ Ckf k2
Hk
l

� c0

Z
��Rn

hvil j@k�k0C1
v @k0

x f j
2 dv dx

C

Z
��Rn

hvil@xs�v@k�k0
v @k0�1

x f @k�k0
v @k0

x f dv dx

C

Z
��Rn

@xshvil v � rv@k�k0
v @k0�1

x f @k�k0
v @k0

x f dv dx:

For the penultimate term, we haveZ
��Rn

hvil@xs�v@k�k0
v @k0�1

x f @k�k0
v @k0

x f dv dx

⩽ �
Z
��Rn

hvil@xsrv@k�k0
v @k0�1

x f � rv@
k�k0
v @k0

x f dv dx C Ckf k2
Hk
l

D �
1

2

Z
��Rn

hvil@xs @xjrv@k�k0
v @k0�1

x f j2 dv dx C Ckf k2
Hk
l

D

Z
��Rn

hvil@2xs j@k�k0C1
v @k0�1

x f j2 dv dx C Ckf k2
Hk
l

⩽ Ckf k2
Hk
l

:

In the remaining term we take advantage of the dissipation and the higher weight
assigned to the lower order derivatives. Integrating by parts in v, we haveZ

��Rn

@xshvil v � rv@k�k0
v @k0�1

x f @k�k0
v @k0

x f dv dx

D �

Z
��Rn

@xsrv � .hvilv/@k�k0
v @k0�1

x f @k�k0
v @k0

x f dv dx

�

Z
��Rn

@xshvil @k�k0
v @k0�1

x f v � rv@
k�k0
v @k0

x f dv dx

⩽ Ckf k2
Hk
l

C
c0

2

Z
��Rn

hvil j@k�k0C1
v @k0

x f j
2 dv dx

C C

Z
��Rn

hvilC2j@k�k0
v @k0�1

x f j2 dv dx

⩽ Ckf k2
Hk
l

C
c0

2

Z
��Rn

hvil j@k�k0C1
v @k0

x f j
2 dv dx:

As a result, we obtain

d
dt

Z
��Rn

hvil j@k�k0
v @k0

x f j
2 dv dx ⩽ Ckf k2

Hk
l

�
c0

2

Z
��Rn

hvil j@k�k0C1
v @k0

x f j
2 dv dx:
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The same argument works to estimate any positive order derivatives, each time taking
advantage of the higher weight put on one order below. It remains to estimate the 0-th
order term

d
dt

Z
��Rn

hvilC2kjf j2 dv dx

D
1

2

Z
��Rn

s�vhvilC2kf 2 dv dx �
Z
��Rn

shvilC2kjrvf j2 dv dx

�

Z
��Rn

srvhvilC2k � vf 2 dv dx �
Z
��Rn

srv � .hvilC2kv/f 2 dv dx

�

Z
��Rn

.w � rvhvilC2k/f 2 dv dx

⩽ C

Z
��Rn

hvilC2kjf j2 dv dx � c0

Z
��Rn

hvilC2kjrvf j
2 dv dx:

So, the estimate on the 0-th order term closes on itself.
We obtained

d
dt
kf k2

Hk
l

⩽ Ckf k2
Hk
l

�
c0

2
krvf k

2

Hk
l

;

and the estimate stated in the lemma follows. It also proves uniqueness since the equation
is linear.

Proof of Theorem 7.1. To construct solutions to the fully non-linear problem (7.5) we use
iteration scheme based on solving a sequence of linear problems

@tf
mC1
C v � rxf

mC1
D s�mLFPf

mC1
C w�m � rvf mC1;

f mC1.0/ D f0
(7.9)

for m D 0; 1; : : : In order to pass to the limit as m!1 we need to ensure that f mC1

remain uniformly bounded inH k
l

on a fixed time interval Œ0; T �. According to Lemma 7.2
a bound on f mC1 depends on smoothness of s�m and w�m and a lower bound on s�m .
Thanks to the regularity of M and (3.18), these conditions can be controlled by the thick-
ness ‚.�m; �/ and the energies

Em D
1

2

Z
��Rn

jvj2f m dv dx:

Let us show that there exists a common time interval Œ0; T � on which all the energies
are uniformly bounded and the all the densities �m are uniformly thick.

Starting with the energy, testing (7.9) with 1
2
jvj2 we can see that the Fokker–Planck

component yields a bound ks�mk1EmC1⩽ xSEmC1. Let us denote 2ıD‚.�0;�/. Assum-
ing for a moment that them-th flock remains thick‚.�m;�/⩾ ı and then using the bound

kw�mk1 ⩽ C0.ı/
p

Em;
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we obtain

d
dt

EmC1 ⩽ C �

Z
��Rn

wn � vf mC1 dv dx

D C C

Z
�

smŒum��m � umC1�mC1 dx

⩽ C C C0.ı/
p

Em
Z
�

jumC1j�mC1 dx ⩽ C C C0.ı/
p

EmEmC1

⩽ C C C0.ı/max¹Em;EmC1º:

Hence, denoting xEm D max¹E0;E1; : : : ;Emº, we obtain from the above

d
dt
xEmC1 ⩽ C C C0.ı/xE

mC1: (7.10)

At the same time, by (3.14),

@t‚.�
m; �/ ⩾ �ckumkL2.�m/ ⩾ �c

p
xEmC1: (7.11)

Let us argue by induction. The initial interval of existence for m D 0 is T0 D 1. On
this interval, ‚.�0; �/ D 2ı > ı. Then from (7.10), we have

xE1 ⩽ E0e
C0.ı/t C C1.ı/e

C0.ı/t :

So, for t ⩽ .ln 2/=C0.ı/, we have

xE1.t/ ⩽ 2E0 C 2C1.ı/:

Using (7.11) we conclude on the same time interval (recall that �m.0/ D �0 initially)

‚.�1; �/ ⩾ ‚.�0; �/ � tC1.ı/
p
2E0 C 2C1.ı/

⩾ 2ı � tC1.ı/
p
2E0 C 2C1.ı/:

Consequently, for t < ı=C1.ı/
p
2E0 C 2C1.ı/, we have ‚.�1; �/ ⩾ ı.

Setting

T D min
²

ln 2
C0.ı/

;
ı

C1.ı/
p
2E0 C 2C1.ı/

³
;

we obtain exact same estimates for the next elements in the sequence:

xE2.t/ ⩽ 2E0 C 2C1.ı/; t < T

and
‚.�2; �/ ⩾ 2ı � tC1.ı/

p
2E0 C 2C1.ı/ ⩾ ı; t < T:

Continuing in the same manner it follows that Em ⩽ 2E0 C 2C1.ı/ and‚.�m;�/ ⩾ ı on
the same time interval Œ0; T � for all m 2 N.
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Lemma 7.2 implies that each solution in the sequence f m will exist and be uniformly
bounded in classCw.Œ0;T �IH k

l
/. By compactness we conclude that there exists a converg-

ing subsequence in any lower regularity class, and that the limit solves the equation (7.5)
classically by continuity properties of the model (3.20).

From the above we see that the local time of existence T depends only on the initial
energy E0 and thickness ı. With this observation let us assume that we are given a solution
on an interval Œ0;T 0/ in the Sobolev classH k

l
and such that (7.4) holds for all t < T 0. Then

the estimate analogous to (7.10) shows that the energy E.t/ remains bounded on Œ0; T 0/
by a constant depending only on ı and E0. Starting from T 0 � " where " > 0 is small
we construct a solution on a time interval ŒT 0 � "; T 0 � " C T / where T depends only
on ı and E0 and not on ". This extends the solution beyond T 0 by uniqueness, which we
address next.

Let us have two thick solutions f and zf in class (7.3) starting from the same initial
condition f0. Denote g D f � zf . We will estimate evolution of this difference in the
weighted class L2

l
DH 0

l
and show that estimates close if l is large enough. Note that acc-

ording to definition of H k
l

for k large as assumed, we have rvf;rv zf ;LFPf;LFP zf 2L
2
l
,

uniformly.
Let us take the difference

@tg C v � rxg D s�LFPg C .s� � sz�/LFP zf C w� � rvg C .w� � wz�/ � rv zf :

Testing with hvilg and integrating the x-transport term drops out. The rest of the terms
are estimated using continuity assumption (3.20) and the usual energy estimates

d
dt
kgk2

L2
l

≲ kgk2
L2
l

C k� � z�k1kLFP zf kL2
l
kgkL2

l

C .k�u � z�zuk1 C k� � z�k1E/krv zf kL2
l
kgkL2

l
:

Here, we replaced the W1-metrics with L1 since this is not essential. The zf components
and the energy are uniformly bounded as noted above. So, we have

d
dt
kgk2

L2
l

≲ kgk2
L2
l

C k� � z�k1kgkL2
l
C k�u � z�zuk1kgkL2

l

Now,

k� � z�k1 ⩽
Z
��Rn

jgj dv dx D
Z
��Rn

hvil=2jgjhvi�l=2 dv dx ≲ kgkL2
l
;

provided l > n. Similarly,

k�u � z�zuk1 ⩽
Z
��Rn

jvjjgj dv dx D
Z
��Rn

hvil=2jgjhvi�l=2C1 dv dx ≲ kgkL2
l
;

provided l > nC 2. So, we arrive at

d
dt
kgk2

L2
l

≲ kgk2
L2
l

;

and uniqueness follows.
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7.2. Spread of positivity

In order to extend local solutions globally it is clear that we have to generate a lower
bound on the macroscopic density. Since regularity of the local solution can deteriorate
propagation of the thickness is impossible to prove with the local existence estimates.
Instead we resort to what is called spread of positivity.

Solutions to many kinetic equations tend to develop instantaneous spread of support
across the domain, in the sense of gaining a Gaussian bound

f .t; x; v/ ⩾ be�ajvj
2

; (7.12)

see [2, 2, 28, 30, 36, 46, 47, 49, 56, 71]. The constants a; b, however, depend on either the
regularity of the solution on a given time interval or bounds on macroscopic quantities
such as the mass-density, energy-density and entropy-density. Such bounds may deterio-
rate in time which puts constants a; b in dependence on time as well. With a view towards
flocking and regularity the primary purpose of a bound like (7.12) would be to translate
into a global lower bound on the density � ⩾ �� dependent only on the basic quantities
such as drift and entropy. At this point we are essentially using the advantage of a com-
pact environment. As a consequence, for those models where the drift and entropy can be
controlled in time we can develop global existence and relaxation results.

So, our primary goal in this section will be to establish the Gaussian bound (7.12) with
parameters that depend only on the entropy/energy and the drift.

Proposition 7.3. For a given classical solution f 2 Cw.Œ0; T /IH k
l
.Tn// of (7.1) on a

time interval Œ0; T / there exists a; b > 0 which depend only on the parameters of the
model M, time T , and

xW D sup
t2Œ0;T /

ks�Œu��k1;

xH D sup
t2Œ0;T /

Z
Tn�Rn

jvj2f dv dx C
Z

Tn�Rn

f j logf j dv dx;

such that
f .t; x; v/ ⩾ be�ajvj

2

; 8.t; x; v/ 2 Tn
�Rn � ŒT=2; T /:

Central to our proof will be the weak Harnack inequality proved in [38]. To state it we
need to introduce some notation.

We will be looking at solutions on kinetic cylinders defined by, for z0 D .t0; x0; v0/ 2
R �Rn �Rn,

Qr .z0/ D ¹z W �r
2 < t � t0 ⩽ 0; jx � x0 � .t � t0/v0j < r

3; jv � v0j < rº:

One can define the Lie-group action on triplets z by

z0 ı z D .t0 C t; x0 C x C tv0; v0 C v/:
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Then
z�1 D .�t;�x C tv;�v/:

And we define the kinetic multiplication by a scalar as

rz D .r2t; r3x; rv/:

The cylinders Qr .z0/ can then be considered as the shift and rescaling of the 0-centered
cylinder Qr D Qr .0/

Qr .z0/ D z0 ıQr :

And by scaling, rQ1 D Qr .
We consider super-solutions to the following general Fokker–Planck equation

@tf C v � rxf ⩾ rv � .Arvf /C B � rvf: (7.13)

The equation has natural scaling invariance. If

fr;z0.z/ D f .z0 ı rz/;

then fr;z0 satisfies

@tfr;z0 C v � rxfr;z0 ⩾ rv � .Ar;z0rvfr;z0/C Br;z0 � rvfr;z0 ; (7.14)

where
Ar;z0.z/ D A.z0 ı rz/; Br;z0.z/ D rB.z0 ı rz/:

Thus, the following rule applies.

Claim 7.4. If f solves (7.13) on Qr 0.z0/, then fr;z0 solves the rescaled equation (7.14)
on Qr 0=r ..z�10 ı z

0/=r/. Furthermore, if A;B satisfy

�I ⩽ A ⩽ ƒI; jBj ⩽ ƒ; z 2 Qr 0.z
0/; (7.15)

for some �;ƒ > 0, then the new coefficients Ar;z0 ;Br;z0 satisfy the same bounds on

Qr 0=r ..z
�1
0 ı z

0/=r/;

provided r < 1.

For ! > 0 small let us introduce the following two non-overlapping cylinders

QC! D Q!.1; 0; 0/; Q�! D Q!.!
2; 0; 0/:

That is,QC! is attached to the top of the basic cylinderQ1.1; 0; 0/, andQ�! is lying on the
bottom.
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Theorem 7.5 (Weak Harnack inequality, [38]). There are constants R0; !0; p; C0 > 0,
which depend only on �; L; n satisfying the following property. If f is a super-solution
to (7.13), in the cylinder QR0 D Œ0; 1� � ¹jxj < R0º � ¹jvj < R0º with A; B satisfy-
ing (7.15), then whenever �Z

Q�!0

f p dz
�1=p

⩽ C0 inf
QC!0

f:

We now turn to proving Proposition 7.3. The proof goes in several steps. First, we
rewrite the FPA (7.5) as follows:

@tf C v � rxf D s��vf C .s�v C w�/ � rvf C ns�f:

Since the last term is non-negative, f is a super-solution to the truncated equation

@tf C v � rxf ⩾ s��vf C .s�v C w�/ � rvf;

which has the structure of (7.13). We will be mindful of the fact, however, that B D
s�v C w� is unbounded in v, and this will be taken into account in due course.

In the subsequent course of the proof, the various constants denoted

c0; c1; : : : ; !0; !1; : : : ; T0; T1; : : : ; r0; r1; : : : ; R0; R1; : : :

depend only on the parameters of the model, T , and xW ; xH . We call such constants admis-
sible.

Step 1: Choosing domain of ellipticity. Let us recall from (3.18) that the strength function
is supported from below by a measure of ball-thickness at scale r0 across the domain
� D Tn. Since Tn has finite volume by a covering argument, there exists a constant c1
depending on n, and there exists x0 2 Tn such that

x�r0=4.0; x
0/ ⩾ c1; (7.16)

Consequently,
x�r0.0; x/ ⩾ c2; 8x 2 Br0=2.x

0/:

Next, notice that x�r1 satisfies the following equation:

@t x�r0 D �rx � .u�/�r0 D �.u�/r�r0 ⩾ �c3kukL2.�/ ⩾ �c3 xH:

So, for any t > 0, and any x 2 Br0=2.x
0/, we have

x�r0.t; x/ ⩾ c2 � tc3 xH:

This implies that on the time interval t 2 Œ0; T1�, where T1 D .c2=2c3 xH/ ^ T , we have

x�r0.t; x/ ⩾ c2=2; 8x 2 Br0=2.x
0/;
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and in view of (3.18),

s�.t; x/ ⩾ s.c2=2/ D �; 8.t; x/ 2 Œ0; T1� � Br0=2.x
0/:

Let us come back to (7.16) and extract a thick subdomain for f not too far in v-
direction. We have

c1 ⩽
Z
Br0=4.x

0/

Z
Rn

f .0; x; v/ dv dx

D

Z
Br0=4.x

0/

Z
jvj<R

f .0; x; v/ dv dx C
Z
Br0=4.x

0/

Z
jvj⩾R

f .0; x; v/ dv dx

⩽
Z
Br0=4.x

0/

Z
jvj<R

f .0; x; v/ dv dx C
xH

R2
;

for R D R1 D 1 _
p
2 xH=c1, we haveZ
Br0=4.x

0/

Z
jvj<R1

f .0; x; v/ dv dx ⩾
c1

2
D c3: (7.17)

Let us define our domain of ellipticity x� D Œ0; T1� � Br0=2.x
0/ � B2R1.0/, where we

have
� ⩽ s� ⩽ ƒ; js�vj C jw�j ⩽ ƒ; (7.18)

where ƒ D max¹ xS; 2 xSR1 C xW º, and xS is the common bound on the strength function
by (ev4). The constants �; ƒ determine R0; !0; p; C0 > 0 from Theorem 7.5, which
depend only on �;ƒ; n, so they are admissible.

Step 2: Finding the initial plateau. We want to find a center of inflation .0; x0; v0/ in
such a way that the point .x0; v0/ lies within the interior subdomain Br0=4.x

0/ � BR1.0/

and a small !-cylinder around it has a substantial presence of f . That cylinder will be
blown into Q�!0 resulting in f having a substantial Lp-mass in it. At the same time the
domain of ellipticity x� will be blown to engulf the needed wide cylinder QR0 to fulfill
the assumptions of Theorem 7.5. The theorem then applies to obtain an admissible lower
bound on f at a later time.

Thanks to (7.17) by the standard covering argument, for any small !, one can find a
point .x0; v0/ 2 Br0=4.x

0/ � BR1.0/ such thatZ
B!3 .x0/�B!.v0/

f .0; x; v/ dv dx ⩾ c3c4jB!3.x0/ � B!.v0/j D c5!
4n; (7.19)

We will choose ! later. Let us prove now that the initial weight of f in a cylinder as
in (7.19) stretches in time on the natural scale !2.

Lemma 7.6. Suppose initiallyZ
B!3 .x0/�B!.v0/

f .0; x; v/ dv dx ⩾ c5!
4n:
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Then Z
Q2!.4!2;x0;v0/

f .z/ dz ⩾ c6!
8nC2: (7.20)

Proof. Let us fix a smooth cut-off function h.r/D 1r<1 and h.r/D 0 for r ⩾ 2, bounded
by 1. Let

h!.x; v/ D h
� x
!3

�
h
� v
!

�
:

Define the kinetic convolution

g.t/ D

Z
��Rn

f .t; x0 C x C tv0; v C v0/h!.x; v/ dv dx

Then initially, g.0/ ⩾ c5!
4n. Let us compute the derivative

d
dt
g D

Z
��Rn

.@tf C v0 � rxf /h! dv dx

D

Z
��Rn

.@tf C .v0 C v/ � rxf /h! dv dx �
Z
��Rn

v � rxf h! dv dx:

Note thatˇ̌̌̌Z
��Rn

v � rxf h! dv dx
ˇ̌̌̌
D

ˇ̌̌̌Z
��Rn

f v � rxh! dv dx
ˇ̌̌̌
⩽ ckrhk1!

�2:

So,

d
dt
g ⩾

Z
��Rn

�
s��vf C .s�.v C v0/C w�/ � rvf

�
h! dv dx � c!�2

D

Z
��Rn

f
�
s��vh! � ns�h! � .s�.v C v0/C w�/ � rvh!

�
dv dx � c!�2

⩾ �ƒ!�2 � nƒ � .ƒ2R1 C xW /!
�1
� c!�2 ⩾ �c7!

�2:

Hence,
g.t/ ⩾ c5!

4n
� c7!

�2t:

Integrating again, we obtainZ t

0

g.s/ ds ⩾ c5!
4nt � c7!

�2 t
2

2

Setting t D c5!4nC2c7 � !2, we obtainZ !2

0

g.s/ ds ⩾ c6!
8nC2:

Noting that h! is supported on B8!3 � B2! and bounded by 1, we obtain the desired
result.
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We now make a transformation

z ! z0 ı rz; z0 D .0; x0; v0/; r D
!1

!0
; !1 D 2!: (7.21)

This ensures that, whatever ! is, the boxQ�!0 gets transformed into ourQ2!.4!2; x0; v0/.
We now choose ! such that the ambient domainQR0 transforms inside our the lower half
of the domain of ellipticity. Given that x0 is within Br0=4.x

0/ and v0 2 BR1.0/ it suffices
to choose

!1 D !0 min
²r

T1

4
;

r
r0

16R1
;
R1

2R0

³
:

Under so defined rescaling the we have

Q�!0 ! Q!1.!
2
1 ; x0; v0/; QC!0 ! Q!1..!1=!0/

2; x0 C v0.!1=!0/
2; v0/;

and moreover 2QR0 D Œ0; 2� � B2R0 � B2R0 gets transformed inside the domain of ellip-
ticity

2QR0 ,! Œ0; T=2� � Br1=2.x
0/ � B2R1.0/ �

x�:

At the same time, the ellipticity bounds (7.18) remain the same (and in fact improve on
the drift). Observe also that all the parameters involved so far are admissible.

In order to apply the weak Harnack inequality, we need to essentially interpolate the
L1-information on f expressed by (7.20) between Lp and L logL in order to extract
information on the Lp level.

Since !1 D 2! has been picked already and it is dependent only on the parameters of
the model, and T; xW ; xH , let us write (7.20) as followsZ

Q!1 .!
2
1 ;x0;v0/

f .z/ dz ⩾ c8:

We have Z
Q!1 .!

2
1 ;x0;v0/

f j logf j dz ⩽ !21
xH:

Thus, Z 1
0

j¹f ⩾ ˛º \Q!1.!
2
1 ; x0; v0/j.j log˛j C sgn.˛ � 1// d˛ ⩽ !21

xH:

Consequently, for ˛0 > 1,Z 1
˛0

j¹f ⩾ ˛º \Q!1.!
2
1 ; x0; v0/j d˛ ⩽

1

log˛0
!21
xH:

Choosing ˛0 D exp¹4!21 xH=c8º, we haveZ 1
˛0

j¹f ⩾ ˛º \Q!1.!
2
1 ; x0; v0/j d˛ ⩽

c8

4
:
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At the same time, for ˛1 D c8=4!2C4n1 , we haveZ ˛1

0

j¹f ⩾ ˛º \Q!1.!
2
1 ; x0; v0/j d˛ ⩽ ˛1jQ!1.!

2
1 ; x0; v0/j D ˛1!

2C4n
1 D

c8

4
:

Consequently, Z ˛0

˛1

j¹f ⩾ ˛º \Q!1.!
2
1 ; x0; v0/j d˛ ⩾

c8

4
:

This implies that

j¹f ⩾ ˛1º \Q!1.!
2
1 ; x0; v0/j ⩾

c8

4.˛0 � ˛1/
WD c9:

Note again that all the constants depend only on the parameters of the model, and T; xW ; xH .
Using transformation (7.21), which has Jacobian .!1=!0/4nC2, we obtain

j¹fr;z0 ⩾ ˛1º \Q
�
!0
j ⩾ .!1=!0/

4nC2c9 WD c10:

Hence, by the Chebychev inequality,�Z
Q�!0

f pr;z0 dz
�1=p

⩾ .˛
p
1 j¹fr;z0 ⩾ ˛1º \Q

�
!0
j/1=p ⩾ ˛1c

1=p
10 WD c11:

Theorem 7.5 applies to show that

inf
QC!0

fr;z0 ⩾ c12;

or in terms of the original function f ,

inf
Q!1 ..!1=!0/

2;x0Cv0.!1=!0/2;v0/
f ⩾ c12:

Step 3: Harnack chains. It will be more efficient, in terms of notation, to remain in the new
system of coordinates defined by (7.21). Since the transformation involves only admissible
parameters, any bound on f obtained in the new system will translate into an admissible
bound in the old system.

So, in the new coordinates, f satisfies

@tf C v � rxf ⩾ s.t; x/�vf C .b.t; x/v C w.t; x// � rvf:

We make another time-shift to make notation even simpler z ! .1; 0; 0/ ı z. Thus, we
have

� ⩽ s ⩽ ƒ; jbvj C jwj ⩽ ƒ; (7.22)

on the new wide domain of ellipticity

x� D Œ�1; 1� � B2R0 � B2R0 :

Notice that the new quantities xW ; xH turn into another pair of admissible constants.
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On the previous step we established a bound, which in the new coordinate frame reads

inf
Q!0

f ⩾ c0; (7.23)

where c0 is admissible. The goal now is to show that by the time t D 1 the solution spreads
across the entire torus �.

It will also be more accommodating to use Theorem 7.5, where Q�!0 is replaced
byQ!0 . This is clearly achievable by a slight rescaling and a shift which is allowed by our
enlarged ellipticity domain x�. Also, notice that be rescaling the theorem also applies to the
cylinders Q˙

!0=2
with C0 being replaced with an absolute multiple of C0, also admissible.

Now let us proceed with the construction of Harnack chains. The original idea goes
back to [4,5] and has seen more recent adaptations for Fokker–Planck equation in [2]. Our
construction will be similar in spirit to the latter, although quite different in two technical
aspects. First, we produce a chain that reaches the targeted velocity field in fewer steps,
thus achieving the exact Gaussian tail on the first run. And second, the estimates along the
chain will take into account the loss of information that comes with the use of a weaker
version of the Harnack inequality.

Lemma 7.7. Let (7.23) hold. There exist admissible constants a; b > 0 such that

f .t; x; v/ ⩾ be�ajvj
2

for all .!0=4/2 ⩽ t ⩽ .!0=2/
2, jxj ⩽ .!0=2/

3 and all v 2 Rn.

Proof. Let us fix an N 2 N to be determined later, and let r D 2jvj=!0N . Denote yv D
v=jvj. Let us define the sequence of points

z0 D 0; zlC1 D zl ı r
�
1; 0;

!0

2
yv
�
; l D 0; : : : ; N � 1:

In other words,
zl D

�
lr2; lr3

!0

2
yv; lr

!0

2
yv
�
WD .tl ; xl ; vl /:

Notice that the end-point

zN D

�
4jvj2

N!20
;
4jvj3

N 2!20
yv; v

�
reaches the target velocity vector v by cost of a small shift in time-space variable.

Also notice the following embeddings of cylinders

z1 ı rQ!0=2 � rQ!0.1; 0; 0/; (7.24)

which follows by direct verification. Applying zlı from the left, we obtain

zlC1 ı rQ!0=2 � zl ı rQ!0.1; 0; 0/: (7.25)
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We will be looking at the rescalings

fl .z/ D f .zl ı rz/:

All these functions can be thought of as defined on the same domain x� with the same
ellipticity constants. Indeed, if z D .s; y; w/ 2 x�, then

zl ı rz D .tl C r
2s; xl C r

3y C r2svl ; rw C vl /:

We have

jtl C r
2sj ⩽

4jvj2

!20N
C

4jvj2

!20N
2
⩽
8jvj2

!20N
< 1

provided N ⩾ 8jvj2=!20 . Next,

jxl C r
3y C r2svl j ⩽

4jvj3

!20N
2
C 2R0

8jvj3

!30N
3
C

4jvj3

!20N
2
⩽ .2R0 C 1/

16jvj3

!30N
2
⩽ 2R0;

provided N 2 ⩾ .2R0 C 1=2R0/ � .16jvj
3=!30/. This puts the .t; x/ pair into the box

Œ�1; 1� � B2R0 , and so, the ellipticity for s.zl ı rz/ enjoys the same bounds (7.22). As
to the drift term, which gets rescaled to

Bl D b.tl C r2s; xl C r3y C r2svl /r.rw C vl /C rw.tl C r2s; xl C r3y C r2svl /;

notice that
jrw C vl j ⩽ 2R0r C jvj

so,
jBl j ⩽ ƒr.2R0r C jvj/C rƒ < ƒ;

provided N ⩾ c1jvj
2, where c1 is admissible.

The conclusion is that all functions fl if considered defined on x� satisfy the equation
with the same ellipticity constants provided

N ⩾ c2hvi
2;

where c2 is admissible.
Let us now start iteration of the weak Harnack inequality. We have for f0.z/ D f .rz/

from the assumption (7.23), and since rQ!0 � Q!0 ,�Z
Q!0

f
p
0 .z/ dz

�1=p
⩾ c0!

.4nC2/=p
0 :

According to Theorem 7.5,

inf
Q!0 .1;0;0/

f0 ⩾ C�10 c0.!0=2/
.4nC2/=p;
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(we artificially divided !0 by 2 in order to fit with the general pattern later). According
to (7.24), we have in particular

inf
Q!0=2

f1 ⩾ C�10 c0

�!0
2

�.4nC2/=p
:

Then by restricting to the cylinder Q!0=2,�Z
Q!0

f
p
1 .z/ dz

�1=p
⩾ C�10 c0

�!0
2

�2�.4nC2/=p
:

According to Theorem 7.5,

inf
Q!0 .1;0;0/

f1 ⩾ C�20 c0

�!0
2

�2�.4nC2/=p
:

We proceed in the same manner using (7.25) and applying repeatedly Theorem 7.5.
On the last step we achieve the following bound

inf
Q!0=2

fN ⩾ c0

h�!0
2

�.4nC2/=p
C�10

iN
D c0c

N
3 :

In particular, at the origin we obtain

fN .0; 0; 0/ D f .zN / D f .tN ; xN ; v/ ⩾ c0c
N
3 :

Let us now fix a pair .t; x/ such that .!0=4/2 ⩽ t ⩽ .!0=2/
2, jxj ⩽ .!0=2/

3 and
consider the function

g.z/ D f ..t � tN ; x � xN ; 0/ ı z/:

This function satisfies the equation on the slightly shrunken domain of ellipticity

Œ�0:9; 0:9� � B1:9R0 � B1:9R0 :

At the same time
inf

.tN�t;xN�x;0/ıQ!0

g ⩾ c0:

The same holds on the subcylinder Q!0=2 � .tN � t; xN � x; 0/ ı Q!0 (the inclusion
follows from the assumptions on .t; x/). Applying the above proof to the new function g,
we obtain

g.tN ; xN ; v/ D f .t; x; v/ ⩾ c0c
N
4 :

Picking the minimal N under which the above holds we find N D c5hvi2. Hence,

f .t; x; v/ ⩾ c0e
N ln c4 D c0e

�c5j ln c4jhvi2 ;

and the proof is complete.
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Step 4: Spread of positivity in x. Let us fix any point of time .!0=4/2 ⩽ t ⩽ .!0=2/
2 and

reset it to 0. So, at the moment, we have

f .0; x; v/ ⩾ be�ajvj
2

; (7.26)

for all jxj ⩽ .!0=2/
3 WD r3 and all v 2 Rn. Note that r3 is admissible.

The next goal is to establish spread of positivity across the entire periodic domain.
Recall that after the rescaling (7.21) our distribution f is defined onL0Tn�Rn, whereL0
is an admissible new period. Also, recall that since the scaling parameter r < 1, we still
have global bounds on the coefficients

jsj ⩽ xS; jbj ⩽ xS; jwj ⩽ xW :

First, let us adopt a barrier construction from [2] to our situation.

Lemma 7.8. Suppose
f .0; x; v/ ⩾ ı1¹jxj<r; jvj<Rº:

Then, for any � > 0, we have

f .t; x; v/ ⩾
ı

4
1¹jx�tvj<r=2; jvj<R=2º:

for

t ⩽ t1 WD min
²
1; �;

1

8
�

1

n xS.1=r2 C 1=R2/C . xSRC xW /.�=r C 1=R/

³
: (7.27)

Proof. Let us fix A > 0 to be determined later and consider the barrier function

� D �At C ı

�
1 �
jx � tvj2

r2
�
jvj2

R2

�
:

Note that f .0; x; v/ ⩾ �.0; x; v/, and also for all t > 0, f .t; x; v/ ⩾ �.t; x; v/ D 0, on
the boundary

1 D
jx � tvj2

r2
C
jvj2

R2
:

So, we have f ⩾ � on the parabolic boundary in question. We now need to show that � is
a sub-solution inside the ellipsoid

1 ⩾
jx � tvj2

r2
C
jvj2

R2
:

By the classical comparison principle it implies f ⩾ � on the same region.
So, differentiating we obtain

�t C v � rx� D �A;

js�v�j D sı
ˇ̌̌̌
2t2n

r2
C
2n

R2

ˇ̌̌̌
⩽ 2nı xS

�
1

r2
C

1

R2

�
;
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j.bv C w/ � rv�j ⩽ ı. xSRC xW /

�
2t
jx � tvj

r2
C
2jvj

R2

�
⩽ ı. xSRC xW /

�2�
r
C
2

R

�
:

Let
A D 2nı xS

� 1
r2
C

1

R2

�
C ı. xSRC xW /

�2�
r
C
2

R

�
:

In view of the bounds above this implies that � is a sub-solution.
It remains to observe that as long as t ⩽ ı=4A and jx � tvj < r=2, jvj < R=2, we

have � ⩾ ı=4.

We will be applying Lemma 7.8 for r D r3. Let us pick � and R now. Our aim is to
make sure that the time limitation giving by the bound (7.27) is long enough that every
corner of the torus L0Tn is reachable in that time with velocities from the ball jvj⩽ R=4.
In other words, we ask for t1R ⩾ 4L0, or

�R ⩾ 4L0; R ⩾ 4L0 (7.28)

R ⩾ 32L0

�
n xS

�
1

r23
C

1

R2

�
C . xSRC xW /

� �
r3
C
1

R

��
: (7.29)

So, first we fix � D r3=2 xS . This ensures that the leading order term in (7.29) has coeffi-
cient 1=2. Next, we fix the minimalRDR1 satisfying both (7.28) and (7.29). Note thatR1
is admissible.

Setting ı D be�aR
2
1 , which is also admissible, in view of (7.26) we have

f .0; x; v/ ⩾ ı1¹jxj<r1; jvj<R1º:

Then

f .t; x; v/ ⩾
ı

4
1¹jx�tvj<r3=2; jvj<R1=2º; t ⩽ t1:

Fix any x0 2 L0Tn. Then at time t1 there exists jv0j < R1=4 such that t1v0 D x0.
Notice that if

jx � x0j < r3=4; jv � v0j < r3=4;

then jx � t1vj D jx � x0 C t1.v0 � v/j < r3=2, and certainly, jvj < R1=2. So,

f .t1; x; v/ ⩾
ı

4
1¹jx�x0j<r3=4; jv�v0j<r3=4º:

Let us recall that we have started from any point of time .!0=4/2 ⩽ t ⩽ .!0=2/
2, and

obtained a time t1 independent of t . So, we found that for any x0 2 L0Tn there exists
a v0, jv0j < R1=4, which depends only on x0 such that

f .t; x; v/ ⩾
ı

4
1¹.!0=4/2<t�t1<.!0=2/2; jx�x0j<r3=4; jv�v0j<r3=4º: (7.30)
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In particular,

�.t; x0/ D

Z
Rn

f .t; x0; v/ dv ⩾
Z
jv�v0j<r3=4

f .t; x0; v/ dv ⩾ �1;

where �1 is admissible, and .!0=4/2⩽ t � t1⩽ .!0=2/2. So, for all such times, the density
has a uniform lower bound �1. At the same time there exists an admissible ƒ1 such that

s.t; x/C jb.t; x/v C w.t; x/j ⩽ ƒ1

for all .t; x; v/ 2 Œ.!0=4/2 C t1; .!0=2/2 C t1� � L0Tn � B4R1 D
x�1.

This implies that we have another initial plateau (7.30), but now around an arbitrary
point x0 2 L0Tn, and inside a large domain of ellipticity x�1. Applying Lemma 7.7 to
shifted and if necessary rescaled solution f , we find a time t2 < .!0=2/2 C t1 and admis-
sible !1; a1; b1 > 0 such that

f .t2; x; v/ ⩾ b1e
�a1jvj

2

1jx�x0j<!1 :

The obtained admissible constants are independent of x0 by virtue of the argument on
Step 3. Thus,

f .t2; x; v/ ⩾ b1e
�a1jvj

2

: (7.31)

Now, let us go back to Step 1 and recall that we started with time 0 and found an
admissible time 0 < t2 < 1=2 such that (7.31) holds. Starting at any other initial time
1 � t2 > t > 0, we find that (7.31) holds at t C t2. This finishes the proof.

7.3. Entropy and global well-posedness

The main implication of Proposition 7.3 can be expressed in terms of lower bound on the
density.

Corollary 7.9. For a given classical solution f 2 Cw.Œ0; T /IH k
l
.Tn// of (7.1) on a time

interval Œ0; T / there exists �� which depends only on the parameters of the model M,
time T , and xW , xH such that

�.t; x/ ⩾ ��; 8.t; x/ 2 ŒT=2; T / � Tn:

So, controlling xW and xH over any finite time interval prevents formation of vacuum,
which by Theorem 7.1 implies global extension. For a special class of our models control
over xW and xH can indeed be given a priori in terms of energy. We start with xH .

First we recall that xH is controlled by the true entropy

H D
1

2

Z
��Rn

jvj2f dv dx C
Z
��Rn

f logf dv dx:

Indeed, by the classical inequality, [37, 64], there is an absolute constant C > 0 such thatZ
��Rn

jf logf j dv dx ⩽
Z
��Rn

f logf dv dx C
1

4

Z
��Rn

jvj2f dv dx C C

⩽ H C C:
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So,
xH ⩽ 2H C C:

We also have control over the energy

E ⩽ 2H C C: (7.32)

Lemma 7.10. Suppose M satisfies (3.28). Then xH is finite on any finite time interval.
Moreover, if the model M is conservative, then xH is globally bounded by initial data

xH ⩽ 2H0 C C: (7.33)

Proof. We have directly from the equation

d
dt

H D �

Z
��Rn

s�

�
jrvf j

2

f
C 2.v � Œu��/ � rvf C v � .v � Œu��/f

�
dv dx: (7.34)

Using the identitiesZ
��Rn

s�Œu�� � rvf dx dv D 0;
Z
��Rn

s�v � Œu��f dx dv D .u; Œu��/�� ;

and replace Œu�� with u in the second term and compute the third as follows:Z
��Rn

s�v � .v � Œu��/f dv dx D
Z
��Rn

s�v � .v � u/f dv dx

C

Z
��Rn

s�v � .u � Œu��/f dv dx

D

Z
��Rn

s�jv � uj2f dv dx C kuk2
L2.��/

� .u; Œu��/�� :

We obtain

d
dt

H D �

Z
��Rn

s�
jrvf C .v � u/f j

2

f
dv dx � kuk2

L2.��/
C .u; Œu��/�� : (7.35)

We can see that H ⩽ H0 for conservative models and (7.33) follows.
Under (3.28), we use (7.32) to conclude that PH ⩽C1H CC2. The conclusion follows.

Immediately from Lemma 7.10, we obtain control over xW as well under L2 ! L1-
boundedness on the averages.

Lemma 7.11. Suppose M satisfies (3.31). Then xH; xW are finite on any finite time interval.
Moreover, if the model M is conservative, then xH; xW are uniformly bounded by a constant
depending only on the initial condition.
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Theorem 7.12. Suppose the model M is regular and satisfies (3.31). Then any local
solution f to the Fokker–Planck-alignment equation (7.1) in class H k

l
.� �Rn/ extends

globally in time. Consequently, (7.1) is globally well-posed for thick data

f0 2 H
k
l .� �Rn/; k; l ⩾ nC 3; ‚.�0; �/ > 0:

If in addition M is conservative, then there exists a �� > 0 depending only on the initial
entropy H0 and the parameters of the model, such that

�.t; x/ ⩾ ��; 8.t; x/ 2 Œ1;1/ � Tn: (7.36)

A simple rescaling argument shows that in fact for any time t0 > 0, there exists �� > 0
depending on the initial entropy H0, t0, and the parameters of the model such that

�.t; x/ ⩾ ��; 8.t; x/ 2 Œt0;1/ � Tn:

So, the vacuum disappears instantaneously.
As shown on the third row of Table 4 all our models are regular on compact environ-

ment, and hence the corresponding FPA are globally well-posed for thick data. In addition,
the models MCS, M� , and Mseg, due to being conservative, also enjoy the uniform bound
from below on the density (7.36).

8. Global relaxation and hypocoercivity

The discussion in this section will be taking place on the compact domain � D Tn. The
Fokker–Planck-alignment equation

@tf C v � rxf D �s��vf Crv � .s�.v � Œu��/f /; (8.1)

has an obvious equilibrium

��;xu D
1

j�j.2��/n=2
e�jv�xuj

2=2� ;

for any constant vector xu. In this section we demonstrate relaxation towards such equilib-
rium for large data.

There are several issues that arise when comparing this result to the classical linear
Fokker–Planck relaxation, see [97]. First, the non-linear alignment force pumps energy
into the system as will be seen from (8.3), which prevents direct sliding of the solution
towards global Maxwellian. Second, the degeneracy of thermalization �s� needs to be
avoided in order to retain uniform hypoellipticity of the equation. And third, since we are
not assuming that M is conservative, it is not immediately clear that the time dependent
momentum xu settles to a limiting vector u1.

We settle these issues in steps. Our first general result lists all the necessary functional
requirements on the solution to ensure relaxation towards a moving Maxwellian. We then
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examine how these requirements are met in the context of regularity properties stated in
Section 3.7 for specific classes of models and how the stabilization of momentum can be
deduced.

Proposition 8.1. Suppose M is a material model. Let f 2 H k
l
.� �Rn/ be a classical

solution to (6.2) with density � satisfying the following conditions uniformly in time

(i) there exist constants c0; c1; c2 > 0 such that c0 ⩽ s� ⩽ c1 and krs�k1 ⩽ c2 for
all � 2 D;

(ii) there exists a constant "0 > 0 such that

sup
®
.u; Œu��/�� W u 2 L

2.��/; xu D 0; kukL2.��/ D 1
¯
⩽ 1 � "0:

(iii) ks�Œ � ��kL2.�/!L2.�/ C krx.s�Œ � ��/kL2.�/!L2.�/ ⩽ c3.

Then f relaxes to the corresponding Maxwellian exponentially fast,

kf .t/ � ��;xu.t/kL1.��Rn/ ⩽ c4
p
��1	.f0/ e

�c5�t ;

where c4; c5 > 0 depend only on the parameters of the model M and c0; c1; c2; c3; "0.
Here, 	.f0/ is the Fisher information defined in (8.7), and

xu D

Z
��Rn

vf .t; x; v/ dv dx:

Proof of Proposition 8.1. We seek to estimate the relative entropy defined by

H D �

Z
��Rn

f log
f

��;xu
dv dx:

By the Csiszár–Kullback inequality, we have

c�kf � ��;xuk
2
1 ⩽ H

for some absolute c. So, an exponential decay of the entropy would imply the desired
result. Let us also recall that Sobolev densities f 2 H k

l
.� �Rn/ have finite Fisher infor-

mation (see below) which in turns control H , see [95, Lemma 1]. We can therefore
analyze H classically.

Since the model at hand is not assumed to be Galilean invariant or conservative the
mean velocity xu is time dependent and generally may not be assumed 0 without changing
the equation. It will, however, be beneficial to pass to the reference frame centered at xu.
So, we consider the change of variables

zf .x; v; t/ D f .x; v C xu; t/; zu D u � xu; z� D �:

In the new variables the equation becomes a system (dropping tildas)

@tf C .v C xu/ � rxf D xut � rvf C �s��vf Crv � .s�.v � Œu��/f /;

xut D

Z
�

.Œu�� � u/ d��;
Z
�

u� dx D 0:
(8.2)
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We also denote�� D��;0. Again, let us note that the extra transport term xut � rvf appears
because we do not assume that our model is conservative. We keep in mind that xut is a
constant vector at any point of time.

The starting point in the proof is two forms of the entropy law. One is (7.35), which
after � -rescaling reads

d
dt

H D �

Z
��Rn

s�
j�rvf C .v � u/f j

2

f
dv dx � kuk2

L2.��/
C .u; Œu��/�� :

Using the spectral gap assumption (ii), we conclude

d
dt

H ⩽ �"0kuk
2
L2.��/

:

And another form of entropy law follows directly from (7.34) (note that the extra transport
term xut � rvf does not effect either of them):

d
dt

H D �

Z
��Rn

s�
j�rvf C vf j

2

f
dv dx C .u; Œu��/�� : (8.3)

Although this form is not dissipative, it gives access to the partial Fisher information

	vv D

Z
��Rn

j�rvf C vf j
2

f
dv dx:

In view of (i) and (iii), we have

d
dt

H ⩽ �c0	vv C .u; Œu��/�� ⩽ �c0	vv C ckuk
2
L2.��/

: (8.4)

Combining with the previous form (8.4), we obtain

d
dt

H ≲ �	vv � kuk
2
L2.��/

: (8.5)

The next stage of the proof consists of showing that the classical hypocoercivity of the
linear Fokker–Planck equation extends to the fully non-linear alignment model. In contrast
to the M�-model analyzed in [83] the general system (8.2) requires special attention due to
presence of several additional ingredients such as inhomogeneity of diffusion and xu-shift
in the transport term. These result in the slower exponential rate � , as opposed to �1=2 for
the M�-model.

Let us write the equation for the new distribution

h D
f

��
;

ht C .v C xu/ � rxh D xut � rvh �
v

�
� xuthC s�.��vh � v � rvh/

C s�.��1.Œu�� � v/h � Œu�� � rvh/: (8.6)
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The Fokker–Planck part of the equation (8.6) has the traditional structure of an evolution
semi-group. Denoting

B D .v C xu/ � rx ; A D rv; A� D
� v
�
� rv

�
�;

where A� is understood relative to the inner product of the weighted space L2.�� /, we
can write

ht D ��s�A�Ah � BhC s�A�.Œu��h/ � A�.hxut /:

We consider Fisher information functionals

	vv.h/ D �
2

Z
��Rn

jrvhj
2

h
d�� ;

	xv.h/ D �
3=2

Z
��Rn

rxh � rvh

h
d�� ;

	xx.h/ D �

Z
��Rn

jrxhj
2

h
d�� ;

where d�� D �� dv dx. The full Fisher information defined by

	 D 	vv C 	xx (8.7)

dominates the relative entropy by the classical log-Sobolev inequality

	vv C 	xx ⩾ �H :

We now differentiate each of these functionals and obtain estimates on the obtained
equations. The coercivity will be restored by putting them together in a proper linear
combination along with the entropy law (8.5).

We will use the following notation: .g/� D
R
��Rn g d�� .

Lemma 8.2. We have

d
dt

	vv.h/ ⩽ �2�
3Dvv � 2c0	vv � 2�

1=2	xv C 2kuk
2
L2.��/

;

where
Dvv D .s�hjr2v xhj

2/�; xh D log h:

Proof. Let us write 	vv D .rvh � rv xh/�. Computing the derivative, we obtain

1

�2
d
dt

	vv D 2.rvht � rv xh/� � .jrv xhj
2ht /� D JA C JB C Ju C Jxu;

where

JA D �2�.s�rvA�Ah � rv xh/� C �.s�jrv xhj2A�Ah/�;

JB D �2.rvBh � rv xh/� C .jrv xhj
2Bh/�;
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Ju D 2.s�rvA�.Œu��h/ � rv xh/� � .s�jrv xhj2A�.Œu��h//�;

Jxu D �2.rvA
�.hxut / � rv xh/� C .rvjrv xhj

2
� xuth/�:

Let us start with the most straightforward transport term B . We have

JB D �2.rxh � rv xh/� � 2...v C xu/ � rxhvi /
xhvi /� C .jrv

xhj2.v C xu/ � rxh/�

DW J 1B C J
2
B C J

3
B :

Observe that
J 1B D �2�

�3=2	xv:

Next, as to the second term:

J 2B D �2..v C xu/ � rxhvihvih
�1/� D �..v C xu/ � rxjhvi j

2h�1/�

D �.jhvi j
2.v C xu/ � rxhh

�2/� D �.jxhvi j
2.v C xu/ � rxh/� D �J

3
B ;

and so the two cancel. We obtain

JB D �2�
�3=2	xv:

Let us turn to the dissipation term JA. Using the identity

@vi .A
�Ah/ D A�Ahvi C �

�1hvi ;

we have

JA D �2�.s�A�Ahvi xhvi /� � 2.s�rvh � rv xh/� C �.s�jrv xhj
2A�Ah/�:

Note that the term in the middle is bounded above by �2c0��2	vv in view of (i). In the
other two we switch A� to the opposite side,

JA ⩽ �2�.s�Ahvi � Axhvi /� � 2c0�
�2	vv C �.s�Ajrv xhj2 � Ah/�

D �2�.s�hAxhvi � Axhvi /� � 2�.s�xhviAh � Axhvi /�

� 2c0�
�2	vv C 2�.s�xhviAxhvi � Ah/�:

The second and last terms cancel, while the first is exactly �2�Dvv:

JA ⩽ �2�Dvv � 2c0�
�2	vv:

For the alignment term, we obtain the following the exact identity:

Ju D 2�
�2.Œu�� � u/�� : (8.8)

We note, however, that there is no advantage of keeping the low energy here as the full
energy will emerge later in the proof. So, we replace it with the full energy

Ju ⩽ 2.1 � "0/�
�2
kuk2

L2.��/
⩽ 2��2kuk2

L2.��/
:
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To prove (8.8), we manipulate with the formula for Ju as follows:

Ju D 2.s�rvA�.Œu��h
�
�rv
xh/� � .s�jrv xhj2A�.Œu��h//�

D 2.s�rv.��1v � Œu��h � Œu�� � rvh/ � rv xh/� � .s�rvjrv xhj2 � Œu��h/�

D 2��1.s�Œu��h � rv xh/� C 2��1.s�.v � Œu��/rvh � rv xh/�

� 2.s�r2vhŒu�� � rv xh/� � 2.s�r
2
v
xh.rv xh/ � Œu��h/�

DW J 1u C J
2
u C J

3
u C J

4
u ;

where r2vh is the Hessian matrix of h.
Observe that the first term is exactly the lower energy

J 1u D 2�
�1.s�Œu�� � rvh/� D 2��2.s�Œu�� � vh/� D 2��2.Œu�� � u/�� :

Now comes the crucial observation that the remaining terms that cannot be controlled
cancel altogether

J 2u C J
3
u C J

4
u D 0:

Indeed, using

hvivj D h
xhvivj C

1

h
hvihvj

let us compute J 3u ,

J 3u D �2.s�hvivj Œuj ��xhvi /� D �2.s�hxhvivj Œuj ��xhvi /� � 2
�

s�
1

h
hvihvj Œuj ��

xhvi

�
�

D J 4u � 2.s�rvh � Œu��jrv xhj
2/�:

Also note that
J 2u D 2�

�1.s�.v � Œu��h/jrv xhj2/�:

Then we have

J 2u C J
3
u D J

4
u C 2�

�1.s�.v � Œu��h/jrv xhj2/� � 2.s�rvh � Œu��jrv xhj2/�

D J 4u C 2.s�A
�.Œu��h/jrv xhj

2/�:

Switching A� in the last term we obtain

2.s�A�.Œu��h/jrv xhj2/� D 2.s�hŒu�� � rvjrv xhj2/� D �2J 4u :

The obtained terms sum up to zero.
Finally, we show that the momentum term vanishes Jxu D 0. Let us expand

Jxu D 2.r
2
vhrv

xh � xut /� � 2

�
v

�
� xut
jrvhj

2

h

�
�

C .rvjrv xhj
2
� xuth/�

DW J 1xu C J
2
xu C J

3
xu :
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Let us look into the first term,

J 1xu D

�
rvjrvhj

2

h
� xut

�
�

D

�
A

�
jrvhj

2

h

�
� xut

�
�

C

�
jrvhj

2

h2
rvh � xut

�
�

D

�
jrvhj

2

h

v � xut

�

�
�

C .jrv xhj
2
rvh � xut /�:

So,

J 1xu C J
2
xu D �

�
jrvhj

2

h

v � xut

�

�
�

C .jrv xhj
2
rvh � xut /�

D �.jrv xhj
2A�.hxut //� D �.rvjrv xhj

2hxut /� D �J
3
xu :

Thus, J 1
xu C J

2
xu C J

3
xu D 0.

Lemma 8.3. We have

d
dt

	xv.h/ ⩽ �
1

4
�1=2	xx C c.�

�1=2
C 1/	vv

C
1

2
�3Dvv C

1

2
�2Dxv C c.�

�1=2
C 1/kuk22;

where
Dxv D .s�hjrvrx xhj2/�:

Proof. Let us write

1

�3=2
d
dt

	xv.h/ D .rxht � rv xh/� C .rx xh � rvht /� � .htrv xh � rx xh/�

WD JA C JB C Ju C Jxu;

where, as before, JA; JB ; Ju; Jxu collect contributions from A, B , and alignment compo-
nents, respectively.

For the B-term, we have

JB D �.rx..v C xu/ � rxh/ � rv xh/� � .rx xh � rv..v C xu/ � rxh//�

C ...v C xu/ � rxh/rv xh � rx xh/�

WD J 1B C J
2
B C J

3
B :

For the middle term, we expand

J 2B D �.rx
xh � rxh/� � .xhxi .vj C xuj /hxj vi /�:

The first term is exactly ���1	xx and in the second integrating by parts in xj , we obtain

D ���1	xx C .xhxixj .vj C xuj /hvi /�;
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and using that xhxixj D h
�1hxixj �

xhxi
xhxj ,

D ���1	xx C .hxixj .vj C xuj /
xhvi /� � .

xhxi
xhxj .vj C xuj /hvi /�

D ���1	xx � J
1
B � J

3
B :

Hence,
JB D ��

�1	xx : (8.9)

Let us look into the JA-term:

1

�
JA D �.rx.s�A�Ah/ � rv xh/� � .s�rx xh � rvA�Ah/� C .s�A�Ahrv xh � rx xh/�

D J 1A C J
2
A C J

3
A :

For J 1A , we obtain

J 1A D �.s�A
�Ahxi

xhvi /� � ..s�/xiA
�Ahxhvi /�

D �.s�rvhxi � rv xhvi /� � ..s�/xirvhrv xhvi /�

D �.s�hrv xhxi � rv xhvi /� � .s�xhxirvh � rv xhvi /� �
�
.s�/xi
s1=2�

rvh

h1=2
� s1=2� h1=2rv xhvi

�
�

:

In view of assumption (i),

J 1A ⩽ �.s�hrv xhxi � rv xhvi /� � .s�xhxirvh � rv xhvi /� C c�
�1
p

	vvDvv:

For J 2A , we obtain

J 2A D ��
�1.s�rx xh � rvh/� � .s�xhxiA

�Ahvi /�

D ���1.s�rx xh � rvh/� � .s�hrv xhxi � rv xhvi /� � .s�xhvirv xhxi � rvh/�:

The two add up to

J 1A C J
2
A D ��

�1

�
s�
rxh

h1=2
�
rvh

h1=2

�
�

� 2.s�hrv xhxi � rv xhvi /�

� .s�Ah � A.rv xh � rx xh//� C c��1
p

	vvDvv

⩽ �c0�
�5=2

p
	xx	vv C

p
DxvDvv C c�

�1
p

	vvDvv � J
3
A :

Thus,
JA ⩽ c0�

�3=2
p

	xx	vv C �
p

DxvDvv C c
p

	vvDvv:

Let us examine the alignment term now,

Ju D .rx.s�A�.Œu��h// � rv xh/� C .rx xh � rv.s�A�.Œu�h///�

� .s�A�.Œu��h/rv xh � rx xh/�
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D ..s�/xiA
�.Œu��h/xhvi /� C .sA

�..Œu��/xih/
xhvi /� C .s�A

�.Œu��hxi /
xhvi /�

C .s�xhxiA
�.Œu��hvi //� C �

�1.s�hrx xh � Œu��/� � .s�hŒu�� � rv.rv xh � rx xh//�

D .h.s�Œu��/xi � rv xhvi /� C .s�hŒu��xhxi � rv xhvi /� C .s�hrv xhxi � Œu��xhvi /�

C ��1.s�hrx xh � Œu��/� � .s�hŒu�� � rv.rv xh � rx xh//�

We can see that the second, third, and fifth terms cancel, and we arrive at

Ju D .h.s�Œu��/xi � rv xhvi /� C �
�1.s�hrx xh � Œu��/� D J 1u C J

2
u :

We estimate J 1u using the assumption (iii), and the fact that L2.��/- and L2.�/-norms are
equivalent under (i),

J 1u ⩽ ckukL2.��/
p

Dvv

And again, by (iii),

J 2u ⩽ ��3=2kukL2.��/
p

	xx ⩽
1

2
��1	xx C �

�2
kuk2

L2.��/
:

Noticing that 1
2
��1	xx is absorbed into (8.9) and summing up all the terms we arrive at

d
dt

	xv.h/ ⩽ �
1

2
�1=2	xx C c0

p
	xx	vv C c�

3=2
p

	vvDvv C �
5=2
p

DxvDvv

C c�3=2kukL2.��/
p

Dvv C �
�1=2
kuk2

L2.��/

⩽ �
1

4
�1=2	xx C c.�

�1=2
C 1/	vv

C
1

2
�3Dvv C

1

2
�2Dxv C c.�

�1=2
C 1/kuk2

L2.��/
:

Finally, let us look at the momentum term

Jxu D �.A
�.xut@xih/@vi

xh/� � .@xi
xh@viA

�.xuth//� C .A
�.xuth/@vi

xh@xi
xh/�

WD J 1xu C J
2
xu C J

3
xu :

Let us note the identity

@viA
�
D A�@vi C

1

�
Id;

and expand on J 2
xu :

J 2xu D �.@xi
xhA�.xut@vih//� � �

�1.@xihxut /�:

The last term vanishes since xut is a constant vector. Thus,

J 2xu D �.rv@xi
xh � xut@vih/�:

In the other two terms we switch A� as well

J 1xu D �.@xihxut � rv@vi
xh/�; J 3xu D .hxut � rv.@vi

xh@xi
xh//�:
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The sum of the three is clearly zero by the product rule. So,

Jxu D 0:

Lemma 8.4. We have

d
dt

	xx.h/ ⩽ c	vv � �
2Dxv C ckuk

2
L2.��/

:

Proof. We have

1

�

d
dt

	xx.h/ D 2.rxht � rx xh/� � .jrx xhj
2ht /� WD JA C JB C Ju C Jxu:

The B-term cancels entirely,

JB D �2.rx..v C xu/ � rxh/ � rx xh/� C .jrx xhj
2.v C xu/ � rxh/�

D �2...v C xu/ � rxhxi /hxih
�1/� C .jrx xhj

2.v C xu/ � rxh/�

D �..v C xu/ � rxjrxhj
2h�1/� C .jrx xhj

2.v C xu/ � rxh/�

D �..v C xu/ � rxhjrxhj
2h�2/� C .jrx xhj

2.v C xu/ � rxh/� D 0:

So Jxu is

Jxu D �2.rxA
�.xuth/ � rx xh/� C .jrx xhj

2A�.xuth//�

D �2.@xihxut � rv@xi
xh/� C .rvjrx xhj

2
� xuth/� D 0:

The A-term is given by

JA D �2.rx.s�A�Ah/ � rx xh/� C .s�jrx xhj2A�Ah/�

D �2..s�/xiAh � Axhxi /� � 2.s�Ahxi � Axhxi /� C .s�Ajrx xhj
2
� Ah/�

⩽ c��1
p

Dxv	vv � 2.s�rv.hxhxi / � rv xhxi /� C .s�rvjrx xhj
2
� rvh/�

D c��1
p

Dxv	vv � 2.s�hrv xhxi � rv xhxi /� � 2.s�xhxirvh � rv xhxi /�

C .s�rvjrx xhj2 � rvh/�

D c��1
p

Dxv	vv � 2Dxv � .s�rvjrx xhj2 � rvh/� C .s�rvjrx xhj2 � rvh/�

D c��1
p

Dxv	vv � 2Dxv:

Thus,
JA ⩽ c

p
Dxv	vv � 2�Dxv:

Finally, the alignment term is given by

Ju D 2.rx.s�A�.Œu��h// � rx xh/� � .s�jrx xhj2A�.Œu��h//�:

In the second term, we switch the operator A�:

�.s�jrx xhj2A�.Œu��h//� D �.s�rvjrx xhj2Œu��h/�: (8.10)
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For the first term, we obtain

2.rx.s�A�.Œu��h// � rx xh/� D 2.h.s�Œu��/xi � rv xhxi /� C 2.s�hxhxi Œu�� � rv xhxi /�:

We can see that the last term cancels with (8.10). We thus obtain, using assumption (iii),

Ju D 2.h.s�Œu��/xi � rv xhxi /� ⩽ ckukL2.��/
p

Dxv:

Putting together the obtained bounds we have

d
dt

	xx.h/ ⩽ c�
p

Dxv	vv � 2�
2Dxv C c�kukL2.��/

p
Dxv

⩽ c	vv � �
2Dxv C ckuk

2
L2.��/

:

To conclude the proof, let us combine together all the Fisher functionals in the follow-
ing format

z	 D 	vv C ı�
1=2	xv C

c0

c
	xx ;

where ı > 0 is small, but dependent only on the parameters of the assumptions (i), (ii),
and (iii). Since � < 1, for ı small enough we have z	 � 	. Then,

d
dt
z	 ⩽ �c0	vv � c1�	xx C Ckuk

2
2:

Invoking the entropy inequality (8.5), we obtain with a properly chosen constant C > 0,

d
dt
. z	 C CH / ⩽ �c0	vv � c1�	xx ⩽ �c2�.	vv C 	xx/ � ��. z	 C CH /:

Hence,
z	 C CH ⩽ c3	.f0/e

�c2�t ;

and the result follows.

8.1. Applications

Let us now explore how Proposition 8.1 implies relaxation for various situations.
First, we have convergence near equilibrium for all models whose spectral gap is under

control for densities near uniform.

Proposition 8.5. Suppose that M is regular and has a uniformly positive spectral gap for
any densities close to uniform

inf¹"0.�/ W k� � 1=j�jk1 ⩽ ı0º > 0:

Then there exists a constant c > 0 depending only on the parameters of the model such
that for any initial condition f0 2 H k

l
.�/ satisfying

	.f0/ ⩽ c�ı0;

there exists a global classical solution converging to the Maxwellian exponentially fast.



Environmental averaging 381

Proof. By Definition 3.13 (iii), (iv) we can further reduce the size of ı0 if necessary to
have not only the uniform spectral gap condition but also the uniform thickness condition
satisfied, ‚.�;�/ > c4. By the regularity assumption (3.19), the assumption on the spec-
tral gap, and (3.18), such densities fulfill all the conditions (i), (ii), (iii) of Proposition 8.1,
with constants c0; c1; c2; c3; "0 depending only on ı0. And according to Theorem 7.1 such
data give rise to local classical solutions f 2 H k

l
.

If (8.11) holds, then by the Csiszár–Kullback inequality


�0 � 1

j�j





L1

⩽ c5cı0

for some absolute c5 > 0. If c < 1=2c5, then by continuity we have


�.t/ � 1

j�j





L1
< ı0

at least on some short time interval Œ0; T /. Let T be the maximal time of existence of
the local solution which satisfies the above. Note that the solution cannot blowup before it
reaches the equality k�.t/� 1=j�jkL1 D ı0, due to the continuation criterion (7.4). Hence,
if T is finite it is only because we have k�.T / � 1=j�jkL1 D ı0 for the first time.

The Proposition 8.1 then applies on Œ0; T �. As a consequence,


�.T / � 1

j�j





L1

⩽ c6cı0

for all t ⩽ T and some c6 depending on the parameters of the model only. Assuming
further that c < 1=2c6 we conclude that T cannot be finite. Thus, the solution exists
globally and satisfies k�.t/� 1=j�jkL1 < ı0 for all time. Proposition 8.1 applies again to
conclude the result.

Before we state application of this result to particular models, let us address the issue
of the time-dependent momentum for non-conservative case. It turns out that for all our
core non-conservative models Mˇ , including the Motsch–Tadmor model, the average
momentum stabilizes.

Lemma 8.6. Suppose M satisfies the assumptions of Proposition 8.5 and

Œ1��1=j�j D 1:

For any solution f that relaxes at an exponential rate in the sense of relative entropy there
exists u1 2 Rn such that xu.t/! u1 exponentially fast, and consequently,

kf .t/ � ��;u1kL1.��Rn/ ⩽ c9e
�c10t :

In particular, the conclusion applies to all conservative and all Mˇ models.
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Proof. By the Csiszár–Kullback inequality, we have


� � 1

j�j





1
≲ e�ct :

Thus, as we argued in the proof of Proposition 8.5, the density eventually enters into a
class satisfying all the functional requirements of Proposition 8.1 uniformly in time.

We have

xut D

Z
�

Z
�

��.x; y/u.y/�.y/ dy�.x/ dx �
Z
�

s�.y/u.y/�.y/ dy

D

Z
�

Z
�

.��.x; y/ � �1=j�j.x; y//u.y/�.y/ dy�.x/ dx

C

Z
�

Z
�

�1=j�j.x; y/u.y/�.y/ dy
�
�.x/ �

1

j�j

�
dx

C

Z
�

�
1

j�j

Z
�

�1=j�j.x; y/ dx � s1=j�j.y/
�
u.y/�.y/ dy

C

Z
�

�
s1=j�j.y/ � s�.y/

�
u.y/�.y/ dy:

By continuity assumptions all the terms on the right-hand side are bounded by a con-
stant multiple of k� � 1=j�jk1

p
E . Since the energy remains uniformly bounded all these

terms are exponentially decaying. This proves the exponential convergence xu.t/! u1
for some u1 2 Rn.

Next, we haveZ
��Rn

f log
f

��;u1
dv dx D

Z
��Rn

f log
f

��;xu
dv dx C

Z
��Rn

f log
��;xu

��;u1
dv dx:

The last term is a constant multiple ofZ
��Rn

f
�
ju1 � vj

2
� jxu � vj2

�
dv dx D ju1j2 � jxuj2 C 2

Z
�

.xu � u1/ � u� dx ≲ e�ct :

This finishes the proof.

According to our computations of spectral gaps stated in Proposition 4.16 and Propo-
sition 4.18, we can apply the above results to conclude local relaxation for all core models.
Let us gather all this in one statement.

Theorem 8.7 (Relaxation near equilibrium). Suppose that M is a regular model satisfying

inf
²
"0.�/ W





� � 1

j�j






1

⩽ ı0

³
> 0;

and
Œ1��1=j�j D 1:
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Then there exists a constant c > 0 depending only on the parameters of the model such
that for any initial condition f0 2 H k

l
.�/ satisfying

	.f0/ ⩽ c�ı0; (8.11)

there exists a global classical solution f and there exists u1 2 Rn such that

kf .t/ � ��;u1kL1.��Rn/ ⩽ c9e
�c10t :

In particular, the conclusion applies to all core models MCS, MMT, Mˇ , M� , Mseg.

We now gather a set of conditions which guarantees global relaxation.

Theorem 8.8 (Global relaxation). Suppose M is a regular conservative model satisfy-
ing (3.31) and such that

inf¹"0.�/ W x�r .�/ > ı0º > 0

for some r; ı0 > 0. Then any classical global solution to the Fokker–Planck-alignment
equation (8.1) relaxes to equilibrium as stated in Proposition 8.1 with xu D xu0.

In particular, global relaxation holds for the following models:

• the Cucker–Smale model MCS with a Bochner-positive kernel � D  �  ;

• the M�-model with inf� > 0;

• the segregation model Mseg with suppgl D � for all l D 1; : : : ; L.

Proof. According to Theorem 7.12 under the given conditions on M any classical solution
gains a uniform bound on the density from below �.x; t/ ⩾ ��, for .x; t/ 2 � � Œ1;1/.
This automatically puts the solution into a class satisfying the assumptions of Proposi-
tion 8.1 uniformly.

Let us remark that the only requirement that prevents global relaxation for the M�

and Mseg models with general local kernels is the uniformL2!L1-boundedness (3.31),
which is needed to control xW . However, this control can be regained if the solution is
known to have uniformly bounded macroscopic velocities

sup
t⩾0
ku.t/k1 <1:

This is precisely the result obtained for M� in [83].

9. Hydrodynamic limits

Supplementing the Vlasov equation (4.1) with a strong penalization force

@tf
"
C v � rxf

"
D rv � .s�.v � Œu"��"/f "/C

1

"
F.f "/; (9.1)
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one can achieve regimes in which the distribution f asymptotically takes a special form
explicitly expressible in terms of the macroscopic quantities u; �. The limiting system
satisfied by u; � is called the Euler-alignment system (EAS) (1.12), in which the pressure
law depends on the particular force F used in the limit. In this study we will cover two
types of limits – monokinetic and Maxwellian.

The monokinetic limit is achieved by enforcing strong local alignment

F D rv � Œ.v � u
"/f "�:

The force penalizes deviation from the Dirac concentrated on u", which drives the solution
towards monokinetic distribution f D �.x; t/ıu.x;t/.v/, where �; u solve the pressureless
EAS

@t�Cr � .u�/ D 0; @tuC u � ru D s�.Œu�� � u/: (9.2)

Solutions to (9.2) will always be understood in smooth regularity classes such as

.u; �/ 2 Cw
�
Œ0; T /IHm

� .H k
\ L1C/

�
\ Lip

�
Œ0; T /IHm�1

� .H k�1
\ L1C/

�
form ⩾ k C 1 > n=2C 2. Local and global well-posedness theory for such solutions can
be established for a variety of models and data, see [82] for a detailed analysis. Because
of the maximum principle on u which applies to solutions of (9.2) any initially compact
flock supp �0 � BR0 will remain compactly supported on any finite time interval

supp �.t/ � BR.t/; R.t/ ⩽ R0 C A0t: (9.3)

The history of this limit goes back to [52, 66] where the alignment term in (4.1) is
considered centered around zero velocity. In the settings of the classical Cucker–Smale
model the hydrodynamic limit was studied in [35]. In both studies the force F D rv �
Œ.v � u"/f "� includes the rough macroscopic field u" causing issues with uniqueness of
characteristics of (9.1) and subsequently the transport of f ". These issues have been dealt
with in [35] by imposing no vacuum condition �> 0 and restricting analysis to the periodic
domain. A more recent remake of Figalli-Kang’s argument done in [82] avoids all these
issues by replacing u" with a mollified version if it, u"

ı
, based on the M�-protocol. Such

change allows to extend the limit to vacuous and compactly supported flocks on either Tn

or Rn.
In the context of the general environmental averaging models this result can be broadly

extended to include all uniformly regular models. Moreover, in contrast to the previous
studies the convergence f " ! f can be upgrade quantitatively to Wasserstein-2 metric,
see Theorem 9.2.

In the Maxwellian regime the force F is given by the Fokker–Planck-alignment oper-
ator

F D �vf
"
Crv � Œ.v � u

"/f "�:

The local thermodynamic equilibrium becomes the Maxwellian

f D
�.x; t/

.2�/n=2
e�jv�u.x;t/j

2=2;
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and so the corresponding macroscopic model is given by the EAS with isothermal pressure

@t�Cr � .u�/ D 0;

@t .�u/Cr � .�u˝ u/Cr� D �s�.Œu�� � u/:

In the Cucker–Smale settings, this limit was justified in [55] via the relative entropy
method. Again, because of the roughness of u" the result had to be cast in the settings
of a special class of weak solutions established in [53], see also [54] for the justification
of a local alignment limit. The work [83] implemented similar method to prove hydrody-
namic limit in the context of the M�-model.

Now, we can cast the Maxwellian limit in the framework of general environmental
averaging models with the additional implementation of the mollified local alignment
field u"

ı
– the same methodology we will be using in the monokinetic case. This allows to

work in the class of classical solutions as stated in Theorem 7.1 and Theorem 7.12. The
limiting solution must be non-vacuous and the domain is restricted to the torus � D Tn.
Theorem 9.6 shows convergence f " ! f in the relative entropy sense, which implies
stronger convergence in L1 by the Csiszár–Kullback inequality.

9.1. Monokinetic limit

In this section we discuss the monokinetic limit. The analysis will be carried out on any
environment �, compact or not under the assumption of uniform regularity of M.

Let us consider solutions to the following Vlasov model with forced local alignment

@tf
"
C v � rxf

"
D rv � .s�".v � Œu"��"/f "/C

1

"
rv � ..v � u

"
ı/f

"/; (9.4)

where subscript ı designates a special mollification. To define it, let us fix a smooth molli-
fier  ı.x/D 1

ın
 .x=ı/, where  > 0 on� and in the case of�D Rn we assume that  

satisfies the algebraic decay condition (3.26). Then let uı be the average of u based on the
M ı -protocol,

uı D

�
.u�/ ı
� ı

�
 ı

:

Formally, (9.4) corresponds to the Vlasov equation (4.1) based on the model given by

s"� D s� C
1

"
; Œu�";ı� D

"s�
"s� C 1

Œu�� C
1

"s� C 1
uı :

Clearly, since M ı and M are uniformly regular, then so is the model above. Conse-
quently, the global existence of classical compactly supported solutions to (9.4) is war-
ranted in this case by Theorem 5.4. Moreover, characteristics of (9.4) satisfy the usual
maximum principle for velocities Lemma 4.1. Hence, jX".t/j ⩽ R0 C tA0, where R0 is
the initial radius of the support in x and A0 is the maximal initial velocity. Thus, on any
time interval Œ0; T �, the family f " will be supported on a bounded region uniformly in "
if initial f0 is compactly supported.
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Before we focus on the main convergence result let is go back to the defined molli-
fication uı and note another remarkable approximation property – if u is a smooth field,
then uı approximates u with a quantitative bound independent of any regularity of �.
This allows to implement it to situations where the only information known on � is its
mass. The following is a generalization of such approximation property presented in [82,
Lemma 5.1].

Lemma 9.1. For any u 2 Lip and for any 1 ⩽ p <1, one has

kuı � ukLp.�/ ⩽ CıkukLip; (9.5)

where C > 0 is a constant depending only on the kernel  and p. The estimate also holds
for all 1 ⩽ p ⩽1 with C independent of p if  is compactly supported.

Proof. Let us fix a test-function f 2 Lq.�/, where q�1 C p�1 D 1. Then, let us splitZ
�

f .uı � u/� dx D
Z
�

f .uı � u ı /� dx C
Z
�

f .u ı � u/� dx WD I1 C I2:

For I2, we simply use the standard approximation property of mollification

I2 ⩽ ıkukLipkf kL1.�/ ⩽ ıkukLipkf kLq.�/:

For I1, using the Minkowskii and Hölder inequality, we have

I1 D
Z
�

.f�/ ı
.u�/ ı
� ı

dx C
Z
�

.f�/ ı
u� ı
� ı

dx

D

Z
�

.f�/ ı ..u�/ ı � u� ı /

� ı
dx D

Z
�

.f�/ ı

�
1=p
 ı

.u�/ ı � u� ı

�
1=q
 ı

dx

⩽

�Z
�

j.f�/ ı j
q

�
q=p
 ı

dx
�1=q�Z

�

j.u�/ ı � u� ı j
p

�
p=q
 ı

dx
�1=p

⩽

�Z
�

.jf jq�/ ı dx
�1=q�Z

���

ju.y/ � u.x/jp�.y/ ı.x � y/ dy dx
�1=p

⩽ kf kLq.�/kukLip

�Z
���

jx � yjp�.y/ ı.x � y/ dy dx
�1=p

D ıkf kLq.�/kukLipC
1=p
p; ;

where Cp; D
R
�
jxjp .x/ dx. This implies (9.5) for all p <1. If however  is com-

pactly supported, then Cp; ⩽ .diam supp /p , and so the estimate holds also in the limit
as p !1.

The main convergence result of this section will be quantified in terms of W2-metric:

W 2
2 .f1; f2/ D inf


2….f1;f2/

Z
�2�R2n

j!1 � !2j
2 d
.!1; !2/;

where….f1; f2/ is the set of probability measures with marginals f1 and f2, respectively.
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Theorem 9.2. Suppose M is a uniformly regular model. Let .�; u/ be a classical solution
to (9.2) on the time interval Œ0;T /with compact support (9.3), and let fD�.x; t/ıu.x;t/.v/.
Suppose f "0 2 C

k
0 .� �Rn/ is a family of initial conditions satisfying

(i) suppf "0 � ¹jwj < R0º;

(ii) W2.f
"
0 ; f0/ ⩽ ".

Then there exists a constant C such that for all t < T , one has

W2.f
"
t ; ft / ⩽ C

r
"C

ı

"
: (9.6)

Remark 9.3. Let us note that the scaling regime ı D "2 appears to be the most optimal:
if ı� "2, the model becomes over-resolved without improvement on convergence rate of
solutions, if ı � "2, the model is under-resolved and the convergence rate slows down.
We obtain in this case the optimal rate of

p
":

W2.f
"; f / ⩽ C

p
":

Remark 9.4. Note that W2.f "; f / ! 0 also implies convergence of densities, simply
because �’s are marginals of f ’s:W2.�";�/⩽W2.f ";f /. Similarly, since all distributions
are confined to a bounded set, we also haveW1.u"�";u�/⩽CW1.f ";f /⩽CW2.f ";f /.
So, this also implies the convergence of momenta.

Remark 9.5. The theorem applies to a range of core models listed in Table 4. However,
we also note that the uniform regularity is only needed to facilitate global existence of
solutions. The actual assumptions that are needed to run the argument for a given fam-
ily of solutions are (3.28), (3.23) and (3.24), where �0 D � is the limiting density, and
k@y��k1 < C . Thus, if the limiting density is known to be thick and the model is sim-
ply regular and satisfies (3.28), (3.23) and (3.24), then the theorem applies just as well to
putative solutions and extends to a much wider class of models listed in the last row of
Table 4.

Proof. Let us first note that since all densities are compactly supported the model satisfies
all the estimates of (3.21) and (3.22) for � and �" uniformly on Œ0; T �.

Denoting

E" D
1

2

Z
��Rn

jvj2f ".x; v/ dx dv;

we have the following energy balance relation for solutions of (9.4):

d
dt

E" D �

Z
��Rn

s�" jvj2f " dv dx C .u"; Œu"��"/��"

C
1

"

Z
�

j.�"u"/ ı j
2

�" ı

dx �
2

"
E":
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Noting that Z
��Rn

s�" jvj2f " dv dx ⩾ .u"; u"/��" ;

we obtain

d
dt

E" ⩽ .u"; Œu"��" � u
"/��" C

1

"

Z
�

j.�"u"/ ı j
2

�" ı

dx �
2

"
E": (9.7)

Obviously the last two terms store a lot of dissipative information. The crucial observation
is that they control internal energies of f " both the native one relative to the local field u"

and relative to the filtered field u"
ı
. To see this, let us note the following two identities:

e.f "ju"/ WD
1

2

Z
��Rn

jv � u"j2f " dv dx D E" �
1

2

Z
Rn

�"ju"j2 dx;

e.f "ju"ı/ WD
1

2

Z
��Rn

jv � u"ı j
2f " dv dx D E" �

Z
�

j.�"u"/ ı j
2

�" ı

dx C
1

2

Z
�

�"ju"ı j
2 dx:

Summing up, we obtain

e.f "ju"/C e.f "ju"ı/D 2E" �
Z
�

j.�"u"/ ı j
2

�" ı

dxC
1

2

Z
Rn

�"ju"ı j
2 dx �

1

2

Z
Rn

�"ju"j2 dx;

and since the M�-model is contractive, the last two terms add up to a non-positive value.
Thus,

2E" �

Z
�

j.�"u"/ ı j
2

�" ı

dx ⩾ e.f "ju"/C e.f "ju"ı/:

Consequently, plugging this pack into (9.7) we obtain

d
dt

E" ⩽ .u"; Œu"��" � u
"/��" �

1

"

�
e.f "ju"/C e.f "ju"ı/

�
: (9.8)

The energy inequality (9.8) already shows that the solution concentrates to a mono-
kinetic form near its own macroscopic field. However, the quantity that controls how far
that concentration is from u, is the modulated kinetic energy:

e.f "ju/ D
1

2

Z
��Rn

jv � uj2f " dv dx:

This quantity plays a key role in the argument. It should be noted that it controls the
corresponding macroscopic relative entropyZ

�

�"ju" � uj2 dx D
Z
�

.ju"j2�" � 2u" � u�" C juj2�"/ dx

⩽
Z
��Rn

.jvj2f " � 2u � vf " C juj2f "/ dx dv D e.f "ju/: (9.9)
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According to (ii) we can fix an initial 
0 2 ….f "0 ; f0/ such thatZ
�2�R2n

j!1 � !2j
2 d
0.!1; !2/ ⩽ 2"2:

Let us now propagate 
0 along the direct product of characteristic maps of (9.4) and (4.1),
i.e. let 
t by the measure-valued solution to the transport equation

@t
 C v1 � rx1
 C v2 � rx2


Crv1

h


�

s�".v1 � Œu"��"/C
1

"
.v1 � u

"
ı/
�i
Crv2

�

s�.v2 � Œu��/

�
D 0:

Integrating upon pairs .x1; v1/ and .x2; v2/ we can see that the marginals of 
 satisfy
the same transport equations as f and f ", respectively. Consequently, by uniqueness,

t 2 ….f

"
t ; ft / for all time. This means that the cost of 
t dominates the W2-distance at

any time,

W WD

Z
�2�R2n

j!1 � !2j
2 d
t .!1; !2/ ⩾ W 2

2 .f
"; f /:

Let us split W into potential and kinetic components

W D

Z
�2�R2n

jv1 � v2j
2 d
 C

Z
�2�R2n

jx1 � x2j
2 d
 WD Wv CWx :

Evolution of the potential component is easily estimated using the transport of 


d
dt
Wx D

d
dt

Z
�2�R2n

jX".!1; t / �X.!2; t /j
2 d
0

D 2

Z
�2�R2n

.X".!1; t / �X.!2; t // � .V
".!1; t / � V.!2; t // d
0 ⩽ Wx CWv:

Instead of writing the evolution equation for Wv we subordinate it to the internal
energy, and trace its evolution. Let us make the following estimate:

Wv ⩽
Z
�2�R2n

jv1 � u.x1/j
2 d
 C

Z
�2�R2n

ju.x1/ � u.x2/j
2 d


C

Z
�2�R2n

ju.x2/ � v2j
2 d


⩽
Z
��Rn

jv � u.x/j2f ".x; v/ dv dx C C
Z
�2�R2n

jx1 � x2j
2 d
 C 0;

where the last term is canceled thanks to the monokinetic nature of f ,

D e.f "ju/C CWx :

So far, we have obtained

d
dt
Wx ⩽ e.f "ju/C c1Wx ; Wv ⩽ e.f "ju/C c2Wx : (9.10)

To complete this system we now investigate evolution of the internal energy itself.
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Before we write the equation for the modulated energy e.f "ju/, let us recall that
we are dealing with smooth solutions to both so all the computations are legitimate.
From (9.4) we can read off the macroscopic system for the "-density and momentum´

�"t Cr � .�
"u"/ D 0;

.�"u"/t Crx � .�
"u" ˝ u" CR"/ D ��".Œu

"��" � u
"/C 1

"
�".u"

ı
� u"/;

where the Reynolds stress is given by

R" D

Z
Rn

.v � u"/˝ .v � u"/f ".x; v; t/ dv:

Let us expand e.f "ju/ into three parts:

e.f "ju/ D E" �

Z
Rn

�"u" � u dx C
1

2

Z
Rn

�"juj2 dx:

From the energy inequality (9.8) we will only retain the alignment component (to be used
later) and the native internal energy

d
dt

E" ⩽ .u"; Œu"��" � u
"/��" �

1

"
e.f "ju"/: (9.11)

Let us work out the equation for the macroscopic part:

d
dt

Z
�

�"u" � u dx D
Z
�

@t .�
"u"/ � u dx C

Z
�

�"u" � @tu dx (9.12)

D

Z
Rn

.�"u" ˝ u" CR"/ W ru dx �
Z
�

�"u" ˝ u W ru dx

C .Œu"��" � u
"; u/��" C

Z
�

�"u" � .Œu�� � u/s� dx

C
1

"

Z
�

�".u"ı � u
"/ � u dx

d
dt
1

2

Z
�

�"juj2 dx D
Z
�

�"u � @tu dx C
1

2

Z
�

@t�
"
juj2 dx (9.13)

D �

Z
�

�"u˝ u W ru dx C
Z
�

�"u˝ u" W ru dx

C

Z
�

�"u � .Œu�� � u/s� dx:

Putting the two equations together and collecting all the inertia terms and using (9.9), we
obtain

�

Z
�

�".u" � u/˝ .u" � u/ W ru dx ⩽ kruk1

Z
�

�"ju" � uj2 dx ≲ e.f "ju/:

The Reynolds stress is estimated similarlyZ
�

R" W ru dx ⩽ kruk1

Z
��Rn

jv � u".x; t/j2f ".x; v; t/ dx dv ≲ e.f "ju"/:
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As to the local alignment term, we use the symmetry and approximation property of
the M�-averaging used to define u"

ı
, which is crucially independent of regularity of �".

Namely, by Lemma 9.1 with p D 2, we haveZ
�

�".u"ı � u
"/ � u dx D

Z
�

�"u"ı � u dx �
Z
�

�"u" � u dx

D

Z
�

�"u" � uı dx �
Z
�

�"u" � u dx

D

Z
�

�"u" � .uı � u/ dx ⩽ Cku"kL2.�"/ıkruk1:

Thus, the local alignment term can be estimated by

Aloc D
1

"

Z
Rn

�".u"ı � u
"/ � u dx ≲ ku"kL2.�"/

ı

"
:

Note that the energy ku"kL2.�"/ remains uniformly bounded in ", so

Aloc ≲
ı

"
: (9.14)

Let us collect the obtained estimates (9.11), (9.12), (9.13), and simplify the native
alignment components

d
dt

e.f "ju/ ≲ e.f "ju/C
ı

"
C .u" � u; Œu"��" � u

"/��"

C

Z
�

�".u � u"/ � .Œu�� � u/s� dx:

It remains to estimate the alignment terms. Let us rearrange them as follows:

ıA D .u" � u; Œu"��" � u
"/��" C

Z
�

�".u � u"/ � .Œu�� � u/s� dx

D

Z
�

�".u � u"/ � .s�" Œu"��" � s�Œu�� C s�u � s�"u"/ dx

D .u" � u; Œu" � u��"/��" C

Z
�

�".u � u"/ � .s�" Œu��" � s�Œu��/ dx

�

Z
�

�"ju � u"j2s�" dx C
Z
�

�".u � u"/ � u.s�" � s�/ dx WD IC IIC IIIC IV:

Note that I and III would add up to a non-positive constant had we assumed that our model
was contractive. Instead, we simply drop III and use the uniform boundedness (3.28),
which is implied by (3.21) to estimate I by the macroscopic relative entropy

I ≲
Z
�

�"ju" � uj2 dx:
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Since u 2 W 1;1, using (3.22) the second term is bounded byZ
�

�".u � u"/ � .s�" Œu��" � s�Œu��/ dx

≲
Z
�

�"ju" � uj2 dx

C

Z
�

ˇ̌̌̌Z
�

.��".x; y/�
".y/ � ��.x; y/�.y//u.y/ dy

ˇ̌̌̌2
�".x/ dx

⩽
Z
�

�"ju" � uj2 dx C
Z
�

ˇ̌̌̌Z
�

.��".x; y/ � ��.x; y//�
".y/u.y/ dy

ˇ̌̌̌2
�".x/ dx

C

Z
�

ˇ̌̌̌Z
�

��.x; y/.�
".y/ � �.y//u.y/ dy

ˇ̌̌̌2
�".x/ dx

⩽
Z
�

�"ju" � uj2 dx C kuk21

Z
�

Z
�

j��".x; y/ � ��.x; y/j
2�".y/�".x/ dy dx

C k@y.��u/k
2
1W

2
1 .�

"; �/;

which by (3.21) and (3.22) (or in fact by a weaker assumption (3.23) and (3.24)) is
bounded further by

≲
Z
�

�"ju" � uj2 dx CW 2
1 .�

"; �/:

Finally, by (3.22) the last term is bounded by the same quantityZ
�

�".u � u"/ � u.s�" � s�/ dx ≲
Z
�

�"ju" � uj2 dx C
Z
�

�"js�" � s�j2 dx

⩽
Z
�

�"ju" � uj2 dx CW 2
1 .�

"; �/:

In summary, the alignment term is bounded by

ıA ≲
Z
�

�"ju" � uj2 dx CW 2
1 .�

"; �/ ⩽ e.f "ju/CW 2
2 .�

"; �/: (9.15)

Collecting all the estimates together, we obtain

d
dt

e.f "ju/ ≲ e.f "ju/C
ı

"
CW 2

2 .�
"; �/:

Note that since the .x1; x2/-marginal of 
 belongs to ….�"; �/, we further find that

W 2
2 .�

"; �/ ⩽ Wx :

So, we have obtained the system

d
dt
Wx ⩽ e.f "ju/C c1Wx ;

d
dt

e.f "ju/ ⩽ c2

�
e.f "ju/CWx C

ı

"

�
:
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Note that the initial value of e.f "ju/CWx is bounded by a constant multiple of " in
view of the choice of 
0 for Wx (even "2 in this case), and

e.f "0 ju0/ D
Z
��Rn

jv � u0j
2 df "0

D

Z
��Rn

jv � u0j
2Œ df "0 � df0�

⩽ CW1.f
"
0 ; f0/ ⩽ CW2.f

"
0 ; f0/ ⩽ ":

Grönwall’s lemma implies e.f "ju/CWx ≲ "C ı=", and thanks to (9.10),

Wv ⩽ "C
ı

"
:

We have established (9.6).

9.2. Maxwellian limit

In this section we provide a derivation of the Euler-alignment system with isothermal
pressure for material models on the torus � D Tn,

�t Cr � .u�/ D 0

.�u/t Cr � .�u˝ u/Cr� D �s�.Œu�� � u/:
(9.16)

Well-posedness of this system has been established for non-vacuous solutions for various
models, see [19, 23].

As outlined in the beginning of this section our strategy will be to consider the equation
with strong Fokker–Planck penalization force

@tf
"
C v � rxf

"
D
1

"

�
�vf

"
Crv � ..v � u

"
ı/f

"/
�
Crv � .s�".v � Œu"��"/f "/; (9.17)

where u" is the macroscopic velocity field associated with f ", and u"
ı

is the same mollifi-
cation as defined in the previous monokinetic study.

Let us briefly discuss regularity of (9.17). In what follows we will study solutions
of (9.17) that exist on a common tine interval Œ0; T � independent of ". Unfortunately the
local existence result alone stated in Theorem 7.1 will not provide such solutions, because
the energy bounds (or entropy for that matter) will deteriorate with ". So, the only way
to ensure common existence is to guarantee global well-posedness of (9.17). According
to Theorem 7.12 the equation is globally well-posed for thick data if both models – the
native M and the mollification uı based on M – are regular and satisfy (3.31). Assum-
ing that supp D � the model M will fulfill these conditions, and as to the defining
model M, we will make it as an assumption. The focus will now be turned to establishing
convergence of the hydrodynamic limit for a given family of solutions.
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Let us write out the corresponding macroscopic system

�"t Cr � .u
"�"/ D 0;

.�"u"/t Cr � .�
"u" ˝ u"/Cr�" Crx �R" D �

"s�".Œu"��" � u"/C
1

"
�".u"ı � u

"/;

R" D

Z
Rn

..v � u"/˝ .v � u"/ � I/f " dv:

Here, I is the identity matrix.
We measure the distance between pairs .u"; �"/ and .u;�/ by using the relative entropy

between the corresponding local Maxwellians:

� D
�.x; t/

.2�/n=2
e�jv�u.x;t/j

2=2; �" D
�".x; t/

.2�/n=2
e�jv�u

".x;t/j2=2:

In fact, such entropy is encoded into the total relative entropy between f " and �:

H .f "j�/ D

Z
��Rn

f " log
f "

�
dv dx:

Indeed, the following identity holds,

H .f "j�/ D H .f "j�"/CH .�"j�/; (9.18)

H .�"j�/ D
1

2

Z
�

�"ju" � uj2 dx C
Z
�

�" log
��"
�

�
dx: (9.19)

So, if H .f "j�/ ! 0, then also H .�"j�/ ! 0. Recall that by the classical Csiszár–
Kullback inequality (see, for example, [82]), the relative entropy controls L1-distance
between the probability densities,

H .f jg/ ⩾ ckf � gk2
L1
:

So, vanishing of the relative entropy H .�"j�/! 0 implies strong limits

�" ! �; �"u" ! �u; �"ju"j2 ! �juj2

in L1.�/.

Theorem 9.6. Suppose M is a regular model on Tn satisfying (3.23), (3.24) and (3.31).
Let .u; �/ be a given smooth non-vacuous solution to (9.16) on a time interval Œ0; T �.
Suppose that initial distributions f "0 2 H

k
l

converge to �0 in the sense of entropies as
"! 0:

H .f "0 j�0/! 0:

Then for all " small enough there exists a unique global solution f " 2 H k
l

, and as long
as ı D o."/, we have

sup
t2Œ0;T �

H .f "j�/! 0:
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Remark 9.7. Going back to the discussion of Section 3.7 we can see that the theorem
applies to many core models on our list. Specifically, we have it for MCS and M

topo
CS uncon-

ditionally, for Mˇ we have it for all local kernels if ˇ⩾ 1=2 and for all-to-all kernels � > 0
for any ˇ, the M� requires � > 0 as well, and Mseg requires suppgl D �.

Remark 9.8. We also note that in the course of the proof, just like in the monokinetic
case, the regularity and (3.31) conditions are only needed to facilitate global existence
of solutions, while the bounds (3.28), (3.23) and (3.24) are used in the actual estimates.
So, for putative classical solutions to (9.17) the result extends to a wider range of models
listed on the last row of Table 4.

Proof. First let us notice that by the Csiszár–Kullback inequality,

H .f "0 j�0/ ⩾ k�
"
0 � �0k

2
1:

Since, �0 > 0 on �, it implies that ‚.�0; �/ > 0 by Definition 3.13 (iii), and by (iv) we
have

j‚.�"0; �/ �‚.�0; �/j ⩽ ck�"0 � �0k1 ! 0;

so starting from some "0 we have ‚.�"0; �/ > ı > 0, for " < "0. Such initial conditions
give rise to global solutions by Theorem 7.12.

Let us break down the relative entropy into kinetic and macroscopic parts:

H .f "j�/ D H" C G";

H" D

Z
��Rn

�
f " logf " C

1

2
jvj2f "

�
dv dx C

n

2
log.2�/;

G" D

Z
�

�1
2
�"juj2 � �"u" � u � �" log �

�
dx:

Let us state the energy bounds for each component. In the sequel we denote �" D ��"
for short.

Lemma 9.9. There are constants c1; c2; c3 that depend only on the model such that we
have the following entropy law:

H";E" 2 L
1.Œ0; T �/ uniformly in "; (9.20)

d
dt

H" ⩽ �
1

"
	" C c2 " e.f "ju"/ � ku"k2

L2.�"/
C .u"; Œu"��"/�" ; (9.21)

where

	" D

Z
��Rn

jrvf
" C .1C "s�"=2/.v � u"/f "j2

f "
dv dx:
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Proof. Differentiating,

d
dt

H" D�
1

"

Z
��Rn

�
jrvf

"j2

f "
C 2rvf

"
� .v � u"ı/C jv � u

"
ı j
2f "

�
dv dx

�
1

"

�
.u"ı ; u

"/�" � .u
"
ı ; u

"
ı/�"

�
�

Z
��Rn

s�"
�
rvf

"
� .v � Œu"��"/C v � .v � Œu

"��"/f
"
�

dv dx: (9.22)

To prove (9.20), we simply dismiss the first information term, and recall that the ı-
mollification constitutes the M�-averaging which is ball-positive. So, the second term,
according to (3.10) is also non-negative and we dismiss it too. We estimate the third term
as follows:

�

Z
��Rn

s�"
�
rvf

"
� .v � Œu"��"/C v � .v � Œu

"��"/f
"
�

dv dx

D n

Z
��Rn

s�"f " dv dx �
Z
��Rn

s�" jvj2f " dv dx C .u"; Œu"��"/�"

⩽ C �

Z
�

s�"�"ju"j2 dx C .u"; Œu"��"/�"

D c1 � ku
"
k
2
L2.�"/

C .u"; Œu"��"/�" :

Now, according to (3.28) the averaging operators are uniformly bounded on L2.��"/. So,
we obtain

d
dt

H" ⩽ c1 C c2E"; E" D
1

2

Z
��Rn

jvj2f " dv dx;

and according to (7.32),
d
dt

H" ⩽ c3 C c4H":

This proves (9.20).
To show (9.21), we replace all the macroscopic velocities in (9.22) with the native

one u". Indeed, in the information term we have

�
1

"

Z
��Rn

�
jrvf

"j2

f "
C 2rvf

"
� .v � u"ı/C jv � u

"
ı j
2f "

�
dv dx

D �
1

"

Z
��Rn

�
jrvf

"j2

f "
C 2rvf

"
� .v � u"/C jv � u"j2f " C ju" � u"ı j

2f "
�

dv dx

⩽ �
1

"

Z
��Rn

�
jrvf

"j2

f "
C 2rvf

"
� .v � u"/C jv � u"j2f "

�
dv dx

D �
1

"

Z
��Rn

jrvf
" C .v � u"/f "j2

f "
dv dx:
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For the alignment term, we obtain similarly

�

Z
��Rn

s�"
�
rvf

"
� .v � Œu"��"/C v � .v � Œu

"��"/f
"
�

dv dx

D �

Z
��Rn

s�"rvf " � .v � u"/ dv dx

�

Z
��Rn

s�"
�
v � .v � u"/f " C v � .u" � Œu"��"/f

"
�

dv dx

D �

Z
��Rn

s�".rvf " � .v � u"/C jv � u"j2f "/ dv dx � ku"k2
L2.�"/

C .u"; Œu"��"/�" :

Combing the two expressions and completing the squares:

d
dt

H" ⩽ �
1

"

Z
��Rn

jrvf
" C .1C "s�"=2/.v � u"/f "j2

f "
dv dx

C
"

4

Z
��Rn

s�" jv � u"j2f " dv dx � ku"k2
L2.�"/

C .u"; Œu"��"/�"

⩽ �
1

"
	" C c"e.f "ju"/ � ku"k2L2.�"/ C .u

"; Œu"��"/�"

We have obtained (9.21).

Lemma 9.10. We have the following inequality:

d
dt

G" ⩽ CH .f "j�/C C
p

	" C C"C
ı

"
C ku"k2

L2.�"/
� .u"; Œu"��"/�" ; (9.23)

where C is independent of ".

Proof. Let us compute the derivative of each component of G"

d
dt
1

2

Z
�

�"juj2 dx D
Z
�

�
�".u" � u/ � ru � u � �"u � r log �C �"s�.Œu�� � u/ � u

�
dx

d
dt

Z
�n
�"u" � u dx D

Z
�

h
�".u" � u/ � ru � u" C �"r � u � �"u" � r log � � ru W R"

C �"s�".Œu"��" � u"/ � u

C �"s�.Œu�� � u/ � u" C
1

"
�".u"ı � u

"/ � u
i

dx

d
dt

Z
�n
�" log � dx; D

Z
�

�
�"u" � r log � � �"u � r log � � �"r � u

�
dx:

Thus,

d
dt

G" D

Z
�

�
ru W R" � �

".u" � u/ � ru � .u" � u/
�

dx C AC Aloc;
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where Aloc is the same local alignment terms as appeared in the previous section, and

A D

Z
�

�
�"s�.Œu�� � u/ � u � �"s�".Œu"��" � u"/ � u � �"s�.Œu�� � u/ � u"

�
dx

D ıAC ku"k2
L2.�"/

� .u"; Œu"��"/�" ;

where ıA is again the same alignment term that appeared in the previous section. We esti-
mate Aloc and ıA as before using (9.14) and the intermediate estimate in (9.15). We recall
that only (3.23) and (3.24) and regularity of the kernel �� are necessary to prove (9.15).
Since � ⩾ �� > 0 we have both by the assumptions. Thus,

ıAC Aloc ≲
Z
�

�"ju" � uj2 dx CW 2
1 .�

"; �/C
ı

"
:

Keeping in mind that both the macroscopic relative entropy
R
�
�"ju" � uj2 dx and

W 2
1 .�

"; �/ ⩽ k�" � �k21

are controlled by H .f "j�/ (see (9.18), (9.19)), we obtain

ıAC Aloc ≲ H .f "j�/C
ı

"
:

Next, given that u is smooth we haveˇ̌̌̌Z
�

�".u" � u/ � ru � .u" � u/ dx
ˇ̌̌̌
≲
Z
�

�"ju" � uj2 dx ⩽ H .f "j�/:

As to the Reynolds stress, we will use a well-known estimate from [66] that establishes
a bound in terms of information and energy. Let us rerun this argument to account for the
"-correction. We simply note that

R" D

Z
Rn

�
2rv

p
f " C .v � u"/

p
f "
�
˝
�
.v � u"/

p
f "
�

dv;

then we reinsert the "-correction to obtain

R" D

Z
Rn

h
2rv

p
f " C

�
1C

"s�"
2

�
.v � u"/

p
f "
i
˝
�
.v � u"/

p
f "
�

dv

� "s�"=2
Z

Rn

.v � u"/˝ .v � u"/f " dv:

So, Z
�

jR"j dx ≲
p

e.f "ju"/	" C "e.f "ju"/ ≲
p

	" C ":

Collecting the obtained estimates together we obtain (9.23).
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Combining the equations on H" and G", (9.21), (9.23), we see that the residual align-
ment-energy terms cancel, and we obtain

d
dt

H .f "j�/ ≲ H .f "j�/ �
1

"
	" C "C

ı

"
C

p
	"

⩽ H .f "j�/ �
1

2"
	" C 2"C

ı

"
≲ H .f "j�/C "C

ı

"
:

By Grönwall’s lemma, we obtain

H .f "j�/ ⩽ H .f "0 j�0/e
CT
C C

�
"C

ı

"

�
eCT ; 8t ⩽ T;

where C depends only on the parameters of the model and the regularity of .u; �/. This
finishes the proof.

Remark 9.11. The same observation can be made here as in the monokinetic case. If we
quantify the initial entropy

H .f "0 j�0/ ⩽ ";

then the proof produces the bound

H .f "j�/ ⩽ "C
ı

"
:

So, again, the optimal convergence is achieved when ı � "2. However, unlike in the
monokinetic case, here we do not loose on the magnitude of the entropy at positive times.

9.3. Remarks on the pressureless Euler-alignment system

We will leave discussion of the well-posedness of macroscopic systems that arise from
general models M to future research; see [15, 44, 60, 70, 82, 94] for the literature on
this problem, specifically for smooth communication models. The most clear-cut result
obtained in [15] pertains to the regularity of the one-dimensional pressureless EAS based
on the Cucker–Smale protocol

@tuC uux D ��u � .u�/� :

Here, one finds an additional conserved quantity

e D ux C �� ;

which controls ux , and hence regularity of the system. In fact, e satisfies

@te C @x.ue/ D 0;

or in Lagrangian coordinates associated with u,

d
dt
e D e�� � e

2
D e.�� � e/;
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which is a non-homogeneous logistic ordinary differential equation.The critical threshold
for regularity becomes e0 ⩾ 0.

In multiple dimensions, the law of e is given by

e D divuC �� ; @te Cr � .ue/ D .r � u/
2
� Tr

�
.ru/2

�
: (9.24)

Although the right-hand side in this case involves ru, in some cases this still allows one
to obtain partial regularity results in multiple dimensions, for example, for small data or
for unidirectional flocks; see [44, 60, 94]. The latter are solutions of the form

u D .u.x1; : : : ; xn/; 0; : : : ; 0/:

For these the right-hand side of (9.24) vanishes.
While the existence of e is attributed to the particular commutator structure of the

alignment forcing of the Cucker–Smale model, in general, it can be seen as a consequence
of another property of the model, namely, transport of the specific strength function s�
itself. Indeed, let us notice that in the MCS-case we have

@t s� Cr � .s�Œu��/ D 0; (9.25)

simply because �� is transported by the Favre-filtration uF D .u�/�=�� . This turns out to
be the general reason for the conservation of e.

Lemma 9.12. If for any solution of the pressureless EAS (9.2) the strength function sat-
isfies (9.25), then e D div u C s� satisfies (9.24). In particular, e is conserved for all
solutions in one dimension and unidirectional solutions in multiple dimensions.

Proof. By direct verification.

The above observation motivates to consider a system where the strength is not fixed,
but rather evolves according to the “natural law” (9.25), whereby the strength itself bec-
omes another unknown. This leads to the following system:

@t�Cr � .u�/ D 0; @t sCr � .sŒu��/ D 0; @tuC u � ru D s.Œu�� � u/:

All such systems will satisfy the e-law by design, where e D divuC s.
For example, if we start from the initial Favre-based model, Œu�� D uF and set s0 D 1,

like for instance in the MMT-model, the future value of strength will be determined by the
transport along the averaged velocity Œu��, rather than being forcefully set at s D 1 for all
times. Given that both s and �� solve the same continuity equation in this case, we also
have transport of the ratio

@t
s
��
C uF � rx

s
��
D 0:

This implies that
c1�� ⩽ s ⩽ c2�� ; 8.t; x/ 2 Œ0;1/ ��;



Environmental averaging 401

if initially so. In particular, s remains uniformly bounded regardless of the regularity
of uF (!).

A thorough study of this model has been recently completed for Favre-based modes
in [89] during the review of this present work.

A. Proof of (2.6)

We start as in [53, Lemma 5.2]. Let us fix x 2 � and consider a cover of the ball BR.x/
by balls of radius r=2:

BR.x/ �

I[
iD1

Br=2.xi /;

where N depends only on n and R=r . Then assuming (2.4), we obtain�
�

�
1�ˇ
�

�
�

.x/ D

Z
BR.x/

�.y/�.x � y/

.
R
�
�.z/�.y � z/ dz/1�ˇ

dy

⩽
IX
iD1

Z
Br=2.xi /

�.y/�.x � y/

.
R
Br=2.xi /

�.z/�.y � z/ dz/1�ˇ
dy:

Since y; z 2 Br=2.xi /, we have jy � zj ⩽ r , and by the lower bound on the kernel we
obtain �

�

�
1�ˇ
�

�
�

.x/ ≲
IX
iD1

Z
Br=2.xi /

�.y/�.x � y/

.
R
Br=2.xi /

�.z/ dz/1�ˇ
dy:

If ˇ D 0, we remove the kernel by k�k1, and the rest adds up to I .
In the case where ˇ > 0, we have�

�

�
1�ˇ
�

�
�

.x/ ≲
IX
iD1

Z
Br=2.xi /

�.y/�.x � y/R
Br=2.xi /

�.z/ dz

�Z
Br=2.xi /

�.z/ dz
�ˇ

dy:

Treating

1Br=2.xi /.y/
�.y/R

Br=2.xi /
�.z/ dz

dy

as a probability measure for each integral, by the Hölder inequality, we obtain�
�

�
1�ˇ
�

�
�

.x/ ≲
IX
iD1

�Z
Br=2.xi /

�.y/�1=ˇ .x � y/R
Br=2.xi /

�.z/ dz

Z
Br=2.xi /

�.z/ dz dy
�ˇ

D

IX
iD1

�Z
Br=2.xi /

�.y/�1=ˇ .x � y/ dy
�ˇ

⩽ k�k1�ˇ1

IX
iD1

�Z
Br=2.xi /

�.y/�.x � y/ dy
�ˇ

⩽ Ik�k1�ˇ1 �
ˇ
� .x/:
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B. Averagings on finite sets and proof of Proposition 3.12

In this section we will prove Proposition 3.12.
To achieve this, we first study properties of models on finite sets – to which, as we will

see, the result is reduced. Below, we will use the notation of Example 2.11.
For models on finite sets, being conservative is equivalent to

A>� D �; � D .�1; : : : ; �N /:

Denoting K D diag¹�1; : : : ; �N º, one can see that being symmetric is equivalent to the
matrix KA being symmetric,

.KA/> D KA:

Similarly, the ball-positivity is equivalent to the matrix A being ball-coercive relative to
the inner product .�; �/K D .K�; �/:

.Au; u/K ⩾ .Au;Au/K :

Lemma B.1. If M is ball-positive on a 2-point set, then M is symmetric.

Proof. The result reduces to showing that �1a12 D �2a21 for any ball-coercive model.
Coercivity is equivalent to

�1a11u
2
1 C .�1a12 C �2a21/u1u2 C �2a22u

2
2

⩾ �1.a11u1 C a12u2/
2
C �2.a21u1 C a22u2/

2:

Collecting coefficients in front of each monomial we obtain

˛u21 C ˇu1u2 C 
u
2
2 ⩾ 0;

where

˛ D �1a11 � �1a
2
11 � �2a

2
21;

ˇ D �1a12 C �2a21 � 2�1a11a12 � 2�2a21a22;


 D �2a22 � �1a
2
12 � �2a

2
22:

This means that the determinant of the quadratic form is non-negative

4˛
 ⩾ ˇ2:

Using stochasticity of A and after a long but elementary computation, the above condition
reduces to

.�1a12 � �2a21/
2 ⩽ 0;

which proves the result.
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Proof of Proposition 3.12. Since the averages act coordinatewise it is sufficient to prove
the result for scalar fields u.

Let us fix �. Let us pick any partitioning of � into two sets A; B and assume that
�.A/; �.B/ > 0. Let us denote

a11 D
1

��.A/

Z
A

Œ1A�� d��; a12 D
1

��.A/

Z
A

Œ1B �� d��I

a21 D
1

��.B/

Z
B

Œ1A�� d��; a22 D
1

��.B/

Z
B

Œ1B �� d��:

Note that the matrix AD .aij /2i;jD1 is right stochastic. Denoting �1 D ��.A/, �2 D ��.B/
and verifying coercivity on functions of the form u D u11A C u21B , we obtain

�1a11u
2
1 C .�1a12 C �2a21/u1u2 C �2a22u

2
2 ⩾

Z
�

ju1Œ1A�� C u2Œ1B ��j
2 d��:

Breaking down the integral and using the Hölder inequality, we obtainZ
�

ju1Œ1A�� C u2Œ1B ��j
2 d��

D

Z
A

ju1Œ1A�� C u2Œ1B ��j
2 d�� C

Z
B

ju1Œ1A�� C u2Œ1B ��j
2 d�

⩾
1

��.A/

ˇ̌̌̌Z
A

.u1Œ1A�� C u2Œ1B ��/ d��

ˇ̌̌̌2
C

1

��.B/

ˇ̌̌̌Z
B

.u1Œ1A�� C u2Œ1B ��/ d��

ˇ̌̌̌2
D �1.a11u1 C a12u2/

2
C �2.a21u1 C a22u2/

2;

which implies that the 2-point model with A and � defined above is ball-positive. The
previous lemma implies that Z

A

Œ1B �� d�� D
Z
B

Œ1A�� d��: (B.1)

We further concludeZ
�

Œ1A�� d�� D
Z
A

Œ1A�� d�� C
Z
B

Œ1A�� d��

D

Z
A

Œ1A�� d�� C
Z
A

Œ1B �� d�� D
Z
A

Œ1��� d�� D ��.A/:

In other words, the conservative property holds for all characteristic functions. Since it
is also linear and the average, by our assumption, is a bounded operator on L2.��/, we
obtain the result by the standard approximation.

It would seem like (B.1) is suggestive of symmetry as it holds for any pair of par-
titioning sets. However, to prove general symmetry one would have to make the same
conclusion for any pair of disjoint sets not necessarily partitioning �, or for any triple
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of partitioning sets. The above argument fails to do it, and in fact the implication “ball-
positive) symmetric” is generally not true. A finite-dimensional example can be found
via a 3-point construction.

Example B.2. Let us assume for simplicity that � D 1D .1;1;1/. Then we are looking for
a matrix that is non-symmetric yet doubly stochastic, A1 D A>1 D 1, and ball-positive.

Thanks to stochasticity, A leaves the space X D 1? invariant, and so it is enough to
properly define A on the two-dimensional space X only. Let us fix a non-orthogonal basis
in X : e1 D .1;�1; 0/, e2 D .1; 0;�1/, and complement it to e3 D 1. We define

Ae1 D �1e1; Ae2 D �2e2;

where 1 > �i > 0 and �1 ¤ �2. This choice guarantees that the matrixA is not symmetric.
Now, we need to make sure that A is ball-positive. Again, by stochasticity, ball-positivity
reduces to that of the restriction AjX . The latter is equivalent to the condition

.e1 C te2/ � .�1e1 C t�2e2/ ⩾ j�1e1 C t�2e2j
2

for all t 2 R. Expanding, we obtain

.�2 � �
2
2/t

2
C

h1
2
.�1 C �2/ � �1�2

i
t C �1 � �

2
1 ⩾ 0:

This is equivalent to

.�1 C �2 � 2�1�2/
2 ⩽ 16.�2 � �

2
2/.�1 � �

2
1/: (B.2)

In addition, we need to ensure that all the entries of the matrix A in the original system of
coordinates are non-negative. We can write down these entries explicitly:

A D
1

3

0@1C �1 C �2 1C �2 � 2�1 1C �1 � 2�2
1 � �1 1C 2�1 1 � �1
1 � �2 1 � �2 1C 2�2

1A :
So the only conditions to guarantee are

1C �2 � 2�1 ⩾ 0; 1C �1 � 2�2 ⩾ 0: (B.3)

There are plenty of choices to fulfill both (B.2) and (B.3). For example, �1D1=2;�2D1=3.
This concludes the construction.

C. On spectral gaps

With regard to the discussion of Remark 4.10, we prove a lemma that establishes equiva-
lence of numerical ranges on the space of zero-momenta and the mean-zero functions.
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Lemma C.1. Suppose M is conservative and satisfies the following

c0 ⩽ s�.x/ ⩽ c1; 8x 2 supp �; (C.1)

sup
®
.u; Œu��/�� W u 2 L

2
0.��/; kuk2 D 1

¯
⩽ 1 � ":

Then
sup

®
.u; Œu��/�� W u 2 L

2.��/; xu D 0; kuk2 D 1
¯
⩽ 1 � "

c0

c0 C c1
:

Conversely, if

sup
®
.u; Œu��/�� W u 2 L

2.��/; xu D 0; kuk2 D 1
¯
⩽ 1 � ı;

then
sup

®
.u; Œu��/�� W u 2 L

2
0.��/; kuk2 D 1

¯
⩽ 1 � ı

c0

c0 C c1
:

Proof. First let us observe that the bounds on s� in (C.1), imply bounds on ��-masses

c0 ⩽ ��.�/ ⩽ c1: (C.2)

Let us denote P WL2.��/! Rn the orthogonal projection onto the space of constant
fields. For all u with xu D 0, we haveˇ̌̌̌Z

�

.u � Pu/� dx
ˇ̌̌̌
D jPuj D

1p
��.�/

kPuk2:

On the other hand, by (i),ˇ̌̌̌Z
�

.u � Pu/� dx
ˇ̌̌̌
D

ˇ̌̌̌Z
�

.u � Pu/
1

s�
d��

ˇ̌̌̌
⩽

p
��.�/

c0
ku � Puk2:

Using compatibility of masses (C.2),

ku � Puk2 ⩾
c0

c1
kPuk2:

Hence,
kuk22 D ku � Puk22 C kPuk

2
2 ⩾

�
1C

c0

c1

�
kPuk22;

or
kPuk22 ⩽

c1

c0 C c1
kuk22: (C.3)

Now, let us compute the numerical range, noting that ŒPu�� D Pu,

.u; Œu��/�� D .u � Pu; Œu � Pu��/�� C .u � Pu;Pu/��

C .Pu; Œu � Pu��/�� C kPuk
2
2:
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The second term vanishes due to orthogonality. For the third term we observe that due to
the conservative property of the average integrating against a constant field produces the
same result as integrating without the average. So,

.Pu; Œu � Pu��/�� D .Pu; u � Pu/�� D 0:

Using the spectral gap condition for the first term and (C.3) for the last one, we obtain

.u; Œu�/�� ⩽ .1 � "0/ku � Puk22 C kPuk
2
2 D .1 � "0/kuk

2
2 C "0kPuk

2
2

⩽

�
1 � "0 C "0

c1

c0 C c1

�
kuk22 D

�
1 � "0

c0

c0 C c1

�
kuk22:

To obtain the converse statement, apply the same argument replacing the roles of �
and ��, and note that 1=c1 ⩽ 1=s� ⩽ 1=c0.

D. Categorial considerations

Environmental averagings form an “ecosystem” of models. On a more formal level they
can be thought of as a category of objects and we can discuss relationships between them.

For a couple of models M0, M00 defined over �0 and �00, respectively, a morphism
M0 !M00 is defined by a volume preserving homeomorphism � W�0 ! �00 such that if
�00 ı � D �0 and u00 ı � D u0, then

Œu00�00�00 ı � D Œu
0�0�0 ;

and there exist two constants c; C > 0 such that

c d�0�0 ⩽ d�00�00 ı � ⩽ C d�0�0 :

For material models, the latter can be restated in terms of specific strengths

cs0�0 ⩽ s00�00 ı � ⩽ C s0�0 :

We have tacitly employed this concept in Appendix B when discussing models on finite
sets.

On a given environment �, all models can be partially ordered is several ways. The
most straightforward definition of M0 �M00 is

ŒŒu�0��
00
� D ŒŒu�

00
��
0
� D Œu�

0
�; 8u 2 L

1.�/:

For example, among rough segregation models we have MF 0 �MF 00 provided F 0 � F 00.
The identity model MI is the finest of all material ones (although if we defined it to be
Œu� D u irrelevant of the supp �, then it would have become the finest of all). At the same
time Mglob is the coarsest among all conservative ones with s� D 1.
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A more refined definition of order can be given on classes of equivalence where we
say M0 �M00 if there exist intermediate averagings M1; : : : ;Mn such that for any � 2 P ,
there exist �1; : : : ; �n 2 P such that

Œ: : : ŒŒu�00��
1
�1
: : :�n�n D Œu�

0
�; 8u 2 L

1.�/;

and there exist intermediate averagings MnC1; : : : ;MnCm such that for any � 2 P , there
exist �nC1; : : : ; �nCm 2 P such that

Œ: : : ŒŒu�0��
nC1
�nC1

: : :�nCm�nCm
D Œu�00�; 8u 2 L

1.�/:

Then for a pair of models representing their equivalence classes we say M0 � M00 if
only one half of the definition above holds, namely, there exist intermediate averagings
M1; : : : ;Mn such that for any � 2 P , there exist �1; : : : ; �n 2 P such that

Œ: : : ŒŒu�00��
1
�1
: : :�n�n D Œu�

0
�; 8u 2 L

1.�/:

Under this partial ordering, more subtle examples emerge. For instance, for Cucker–
Smale models with Bochner-positive kernels, it can be seen from the identity (4.33) that
if � D  �  , and assuming that

R
 D 1, then the MCS-model based on  is finer than

that based on �, M
�
CS �M

 
CS. The same applies for MMT-models as those are based on

the same averaging.
One can build new averaging models from old ones by superimposing averages as long

as they are defined over the same strength measures. So, if

Mi D
®
.��; Œ � �

i
�/ W � 2 P .�/

¯
; i D 1; 2

are two averaging models, then

M2 ıM1 D
®
.��; ŒŒ � �

1
��
2
�/ W � 2 P .�/

¯
defines another averaging model.

Certain compositions preserve special properties. For example, if Mi are ball-positive
and symmetric the conjugation .��; ŒŒŒ � �1��

2
��
1
�/ is also ball-positive and symmetric.
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