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Asymptotic stability for the Dirac–Klein–Gordon system
in two space dimensions

Shijie Dong and Zoe Wyatt

Abstract. We study the Dirac–Klein–Gordon system in 1 C 2 spacetime dimensions. We show
global existence of solutions, as well as sharp time decay and linear scattering. One key advance
is that we provide the first asymptotic stability result for the Dirac–Klein–Gordon system in 1 C
2 spacetime dimensions in the case of a massive Klein–Gordon field and a massless Dirac field.
The nonlinearities are below critical in two spatial dimensions, and so our method requires the
identification of special structures within the system and novel weighted energy estimates. Another
key advance is that our proof allows us to weaken certain conditions on the nonlinear structures that
have been assumed in the literature.

1. Introduction

We consider the initial value problem for a coupled Dirac–Klein–Gordon system (DKG)
in two spatial dimensions. Following Bachelot [4], the general DKG system describes a
spinor D .t;x/WR1C2!C2 of massM 2R and a scalar field vD v.t;x/WR1C2!R
of mass m � 0, whose dynamics are governed by

�i�@� CM D vF ;

��v Cm2v D  �H ;
(1.1)

with prescribed initial data at t D t0 D 2,

. ; v; @tv/.t0/ D . 0; v0; v1/: (1.2)

In the above DKG system, H and F are 2 � 2 matrices with constant coefficients. The
Dirac matrices ¹0; 1; 2º are a representation of the Clifford algebra, and are defined
by the identities

¹�; �º WD �� C �� D �2���I2; .�/� D ����
� ;

where �; � 2 ¹0; 1; 2º. Here, I2 is the 2 � 2 identity matrix, and B� D . NB/T denotes the
Hermitian conjugate of a matrix B . We also define � WD �dt2 C .dx1/2 C .dx2/2 and use
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� WD �˛ˇ@˛@ˇ D �@t@t C @x1@x1 C @x2@x2 to denote the Minkowski wave operator. In
the present paper, we study the case of a massless Dirac field and a massive scalar field,
and without loss of generality we hereon setM D 0 andmD 1 unless otherwise specified.

We define certain assumptions on the constant matrices F , H :

H1aW F �0 D 0F; H1bW F D I2;
H2aW H� D H; H2bW H D 0:

Conditions H1a and H2a are natural in the sense that H1a guarantees the conservation of
charge

d
dt

Z
R2

 � D 0;

while H2a ensures that the nonlinear term in the Klein–Gordon equation is real valued.
Conditions H1b and H2b are, respectively, special cases of H1a and H2a. We also note
that there exist nontrivial examples of the matrix F satisfying H1a, for instance F D �

for � D 0; 1; 2.

1.1. Main results

We first state our main theorems and then discuss their relation to previous results in the
literature, followed by an outline of the novel ideas used in our proof.

Theorem 1.1. Consider the initial value problem (1.1)–(1.2) under the assumptionsM D
0;mD 1, H1b, and H2a, and letN � 7 be an integer. There exists an "0 > 0, such that for
all " 2 .0; "0/, and all compactly supported initial data satisfying the smallness condition

k 0kHN C kv0kHNC1 C kv1kHN � ";

the Cauchy problem (1.1)–(1.2) admits a global solution . ; v/. There exists a constant
C > 0 such that the solution satisfies the following pointwise decay estimates:

j j � C"t�1=2.1C jt � jxj j/�1=2; jvj � C"t�1:

Furthermore, the solution . ; v/ scatters linearly in the energy space.

Theorem 1.2. Consider the initial value problem (1.1)–(1.2) under the assumptionsM D
0,mD 1, H1a, and H2b, and letN � 4 be an integer. There exists an "0 > 0, such that for
all " 2 .0; "0/, and all compactly supported initial data satisfying the smallness condition

k 0kHN C kv0kHNC1 C kv1kHN � "; (1.3)

the Cauchy problem (1.1)–(1.2) admits a global solution . ; v/. There exists a constant
C > 0 such that the solution satisfies the following pointwise decay estimates:

j j � C"t�1=2.1C jt � jxj j/�1=2; jvj � C"t�1: (1.4)

Furthermore, the solution . ; v/ scatters linearly in the energy space.
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Remark 1.3. In both Theorem 1.1 and Theorem 1.2, the pointwise decay of the solutions
is sharp in time in the sense that the solutions enjoy the same decay rates in time as the
linear equations. Thus we prove asymptotic stability for the two-dimensional DKG system
(1.1) under the relevant assumptions stated in the theorems. Indeed, our result provides the
first asymptotic stability result for the DKG system for the caseM D 0,mD 1 for smooth,
small, and compactly supported initial data.

Remark 1.4. Grünrock and Pecher [23] have shown global existence for the two-dimen-
sional DKG system (1.1) under the assumptionsM;m2R, H1b, and H2b and with (large)
low-regularity data

 0 2 L
2.R2/; v0 2 H

1=2.R2/; v1 2 H
�1=2.R2/:

Thus, our main contribution for the case M D 0, m D 1 is to show asymptotic stability
and to weaken the structural assumptions on the nonlinearities considered in [23]. In par-
ticular, in Theorem 1.1 we can allow for H ¤ 0. It is not yet clear whether the most
general case of H1a and H2a can be shown to admit small global solutions.

Remark 1.5. At present, most global existence and decay results for two-dimensional
coupled wave and Klein–Gordon equations restrict their analysis to the interior of a light
cone (i.e. the data is assumed to be compact). There is some work that does not require
this; see for instance [15, 45]. In three dimensions, there are methods which treat both the
interior and exterior regions of a light cone for the Maxwell–Klein–Gordon equations [22]
(see also [32] concerning the exterior region). It is, however, not yet clear to us whether
these methods can be used to remove our compactness assumptions.

1.2. Previous work on the DKG system

System (1.1) arises in particle physics as a model for Yukawa interactions between a scalar
field and a Dirac spinor. It appears in the theory of pions and in the Higgs mechanism [2].
We note that the nonlinearity  �0 is often written as N  , where N WD  �0 is the
Dirac adjoint, and thus transforms as a scalar under Lorentz transformations. The Cauchy
problem for the DKG system has been actively studied in various spacetime dimensions
and for different cases of the Klein–Gordon and Dirac masses (i.e. m � 0 and M � 0).

Three spatial dimensions. For high-regularity initial data, there are small-data results
that show global existence for certain subcases of (1.1) with asymptotic decay rates [4,27].
Similar results are also known for the closely related Dirac–Proca system [27,47]. For low-
regularity initial data, the problem is more difficult as the natural energy density associated
to these DKG systems does not have a definite sign. The lack of positive definite conserved
quantities makes it particularly difficult to prove global existence and scattering for low-
regularity data. For results (note under conditions H1b and H2b), see for example [6, 49]
and references within, and for large-data results, see for example [9,12,13] and references
cited within.
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Two spatial dimensions. For high-regularity initial data, global existence and asymptotic
stability to the DKG system (1.1) for the case M > 0, m > 0 was shown in [39, 43] for
smooth, small initial data. These results rely on transforming the DKG system (1.1) into
two coupled Klein–Gordon equations. The asymptotic stability (even the stability) result
for the other cases of M D 1, m D 0 or M D m D 0 remains open however. For low-
regularity initial data, there are local existence results under assumptions H1b and H2b
[8,11]. Global existence for low-regularity and possibly large data, again under conditions
H1b and H2b, is known by [23]. The study of two-dimensional Dirac equations [5,28,36]
is also relevant to our study.

1.3. Major difficulties and challenges

We first remind the reader of the important identity

� D .i�@�/.i�@� /: (1.5)

Thus we can think of (1.1) as encoding a coupled wave-like and Klein–Gordon system.
Proving global existence and asymptotic decay results for coupled nonlinear wave and
Klein–Gordon equations, such as in Theorems 1.1 and 1.2, is typically a challenging ques-
tion in two spatial dimensions. This is because linear wave w and linear Klein–Gordon v
equations have very slow pointwise decay rates in R1C2, namely

jwj . .1C t C jxj/�1=2.1C jt � jxj j/�1=2; jvj . .1C t C jxj/�1: (1.6)

Identity (1.5) also indicates that a linear massless Dirac field should obey the same slow
pointwise decay rates as jwj above. As a consequence of (1.6), when using Klainerman’s
vector field method [30] on quadratic nonlinearities, we might at best get an integral of
t�1. This leads to problems when closing the bootstrap argument and can possibly indicate
finite-time blow-up.

Another obstacle when studying Klein–Gordon equations, in the framework of the
vector field method, is that the scaling vector field L0 D t@t C x

1@x1 C x
2@x2 does

not commute with the Klein–Gordon operator �� C 1. The scaling vector field can be
avoided by using a spacetime foliation of surfaces Hs of constant hyperboloidal time
s D

p
t2 � jxj2. This idea originates in work by Klainerman [29,31] (see also Hörmander

[24]) on Klein–Gordon equations, and was later reintroduced to treat coupled wave and
Klein–Gordon equations by LeFloch and Ma [33] under the name of the “hyperboloidal
foliation method”. This method can be regarded as Klainerman’s vector field method
on hyperboloids. We also remind the reader of the pioneering work by Tataru showing
Strichartz estimates for wave equations in the hyperbolic space [46], and the work by
Psarelli [40] on the Maxwell–Klein–Gordon equations.

Returning now to the DKG problem (1.1), we use identity (1.5) to derive the following:

�� D i�@�.vF /; ��v C v D  �H : (1.7)
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If we ignore the structure here (indeed, under H2a the term  �H does not have any
special structure), we roughly speaking have obtained a wave-Klein–Gordon system of
the form

��w D @.vw/ D w@v C v@w; ��v C v D w2: (1.8)

The global existence of general small-data solutions to (1.8) is presently unknown in
R1C2. Furthermore, if we assume that w and v obey the linear estimates (1.6), then the
best we can expect from the nonlinearities (in the flat t D const. slices) is

k@.vw/kL2.R2/ . t�1; kw2kL2.R2/ . t�1=2:

Returning to the original PDE (1.1), for example under the assumptions H1b and H2a of
Theorem 1.1, the best we can expect appears to be

kv kL2.R2/ . t�1; k �H kL2.R2/ . t�1=2:

Thus one quantity is at the borderline of integrability and the other is strictly below the bor-
derline of integrability. In previous work of the authors [19], such a situation was termed
“below critical” in time decay, and indicates that if the classical vector field method is
to be successful, then new ideas are required to close both the lower- and higher-order
bootstraps.

1.4. Key ingredients and new ideas

To conquer the aforementioned difficulties in studying the DKG equations (1.1), we need
several ingredients and novel observations that go beyond classical methods for Klein–
Gordon equations such as in [29, 31]. The first ingredient is an energy functional, defined
on hyperboloids, for solutions to the Dirac equation. This was first derived by the authors
and LeFloch in [16]. Using this Dirac-energy functional, we find that the best behaviour
we can hope for is

k.s=t/ kL2
f
.Hs/
. 1; j j . t�1=2.t � jxj/1=2 . s�1;

kvkL2
f
.Hs/
. 1; jvj . t�1:

Here, Hs are constant s-surfaces defined in Section 2.1 and L2
f
.Hs/ is defined in (2.1).

Rough calculations, for instance under the assumptions H1b and H2a, lead us to the estim-
ates

kv kL2
f
.Hs/
. k.s=t/ kL2

f
.Hs/
k.t=s/vkL1.Hs/ . s

�1;

k �H kL2
f
.Hs/
. k.s=t/ kL2

f
.Hs/
k.t=s/ kL1.Hs/ . 1: (1.9)

We see that one term is at, and the other is below, the borderline of integrability. We
remark that the only other known work in the literature of coupled wave and Klein–Gordon
equations studying such a situation is our [19].
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Our first new insight is to notice that a field can be thought of as “Klein–Gordon type”
if its L2

f
.Hs/-norm is well controlled by the natural energy functionals. We know that

examples of Klein–Gordon-type fields include v, .s=t/@˛v and we discover the further
examples

.s=t/ ;  � .xa=t/0a :

We then uncover a decomposition (see Lemma 3.2) in the following Dirac–Dirac inter-
action term:

 �0 �
�
 �

xa

t
� a 

���
 �

xa

t
0a 

�
C

�s
t
 
���s

t
 
�

C

�
 �

xa

t
0a 

��
 : (1.10)

The key observation is that terms on the right-hand side above always involve at least one
Klein–Gordon-type factor. This observation is of vital importance in the proof of both
Theorems 1.1 and 1.2. For example when H D 0, (1.10) allows us to improve the initial
estimate given in (1.9) to

k �0 kL2
f
.Hs/
.
 � xa

t
� a 


L2
f
.Hs/
k kL1.Hs/ C � � � . s

�1:

Interestingly, we find that several other Dirac–Dirac interactions, such as  � , do not
possess the same useful decomposition (see Remark 3.3). In addition, we find that the
structure of the nonlinearity  �0 is preserved under commutation with the Lorentz
boosts (see Lemma 3.4) and thus the decomposition (1.10) can be applied at higher orders.

The next ingredient comes from using nonlinear transformations to remove slowly
decaying nonlinearities (see Lemma 4.4 and a new transformation for the Dirac field given
in Lemma 4.6) when estimating the low-order energy. This comes at the expense of intro-
ducing cubic nonlinearities and quadratic null forms and we are able to close the bootstrap
at lower orders, provided we can control these null forms.

One more ingredient, needed to control the null forms introduced in the previous para-
graph, is to obtain additional .t � r/-decay for the Dirac spinor. In the case of pure wave
equations it is well known that one can obtain extra .t � r/-decay with the aid of the
full range of vector fields ¹@˛; �ab; La; L0º (defined in Section 2.1). For instance, for
sufficiently regular functions � we have the estimate [44]

j@@�j . .1C jt � r j/�1
�
jL0@�j C

X
a

jLa@�j

�
: (1.11)

If we cannot control certain vector fields acting on our solution, then it is usually more
difficult to obtain extra .t � r/-control as in (1.11). We recall two examples of similar
situations: (1) obtaining extra .t � r/-decay in the case of nonlinear elastic waves by
Sideris [42], where Lorentz boosts La D t@a C xa@t are unavailable; (2) obtaining extra
.t � r/-decay in the case of coupled wave-Klein–Gordon equations by LeFloch–Ma [33,
§8.1, §8.2], where the scaling vector field L0 is absent.
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In the DKG model (1.1) we also cannot use L0, nor can we directly gain .t � r/-
decay by studying the wave equation in (1.7). Our insight, inspired by [33], is to rewrite
the Dirac operator in a frame adapted to the hyperboloidal foliation. The latter idea yields
the estimate

j@t j .
1

t � r

X
a

jLa j C
t

t � r
ji�@� j:

This argument gives us the extra .t � r/-decay for @ (see Lemma 3.5 and Proposi-
tion 4.3) required to close the null form estimates.

The final ingredient, key to closing the highest-order bootstrap for Theorem 1.1, is to
derive weighted energy inequalities. We recall that we cannot rely on nonlinear transform-
ations when estimating the highest-order energy, and the nonlinearities are below critical.
Our idea is to derive and rely on a .t � r/-weighted Dirac energy functional (see Proposi-
tion 2.3). Such weighted estimates were introduced in [3], and have recently been adapted
to the hyperboloidal setting, with applications to the Klein–Gordon–Zakharov system in
[15]. We utilise such weighted estimates here for the first time for Dirac equations.

Remark 1.6. We expect the ideas in the proof of Theorems 1.1 and 1.2 to have other
applications. For instance, they can be used to show uniform energy bounds for the solu-
tion to the three-dimensional DKG equations studied by Bachelot [4], as well as the
U.1/-Higgs model studied in [16].

Remark 1.7. Our decomposition approach in (1.10) in fact gives a reinterpretation of
structure identified by Bournaveas [7, 8]. Suppose that there exists � such that  D
i�@��. Using (1.5) one can show that ��� D i�vF @�� and also

 �0 D
�
.@t�/

�@t .
0�/ � ıij .@i�/

�@j .
0�/

�
C
�
�.@i�/

�@t .
i�/C .@t�/

�@i .
i�/
�
: (1.12)

The two bracketed terms in (1.12) are semilinear null terms, which are known to obey
better estimates (see for example Lemma 2.4). Such a null structure played an essential
role in previous works (for example [23], mentioned in Section 1.2) that rely on H2b. In
the case of Theorem 1.1, however, our approach allows us to weaken the assumption of
H2b to H2a.

1.5. Wave-Klein–Gordon literature

To conclude the introduction, we remind the reader of some of the literature concerning
global existence and decay for coupled wave-Klein–Gordon equations. In three dimen-
sions these include wave-Klein–Gordon equations derived from mathematical physics,
such as the Dirac–Klein–Gordon model, the Dirac–Proca and U.1/-electroweak model
[16, 27, 47], the Einstein–Klein–Gordon equations [26, 34, 35, 48], the Klein–Gordon–
Zakharov equations [38], the Maxwell–Klein–Gordon equations [22,32], and certain geo-
metric problems derived from wave maps [1].
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Very recently, there has been much research concerning global existence and decay
for wave-Klein–Gordon equations in two dimensions.

We mention for instance the works by Ma [37] and the present authors [19] for com-
pactly supported initial data; see also the references therein. There have also been works
[15,25,45] that have investigated wave and Klein–Gordon systems under certain null con-
ditions without the restriction to compactly supported data. Other work has looked at the
Klein–Gordon–Zakharov model in 1C 2 dimensions [14, 18, 21, 37], and the wave map
model derived in [1] has been studied in the critical case of 1C 2 dimensions in the recent
works [20, 21] (see also [50]). An analysis of general classes of cubic nonlinearities has
also been given in [10].

Outline. We organise the rest of the paper as follows. In Section 2 we introduce some
essential notation and the preliminaries of the hyperboloidal method. In Section 3 we
present the essential hidden structure within the nonlinearities. Finally, Theorems 1.1 and
1.2 are proved in Section 4 and Appendix A, respectively, by using a classical bootstrap
argument.

2. Preliminaries

2.1. Basic notation

We denote a spacetime point in R1C2 by .t; x/ D .x0; x/, and its spatial radius by r WDp
.x1/2 C .x2/2. Following Klainerman’s vector field method [30], we introduce the vec-

tor fields

@˛ WD @x˛ ; La WD t@a C xa@t ; �ab WD xa@b � xb@a; L0 WD t@t C x
a@a:

Such vector fields are referred to as translations, Lorentz boosts, rotations, and scaling
respectively. We also use the modified Lorentz boosts, first introduced by Bachelot [4]:

OLa WD La �
1

2
0a:

These are chosen to be compatible with the Dirac operator, in the sense that Œ OLa; i�@��D
0, where we have used the standard notation for commutators ŒA; B� WD AB � BA.

We restrict out study to functions supported within the spacetime region K WD

¹.t; x/W t � 2; t � jxj C 1º, which we foliate using hyperboloids. A hyperboloid Hs with
hyperboloidal time s � s0 D 2 is defined by Hs WD ¹.t; x/W t

2 D jxj2 C s2º. We find that
any point .t; x/ 2K \Hs with s � 2 obeys the relations

jxj � t; s � t � s2:

Without loss of generality we take s0 D 2, and we use KŒs0;s1� WD
S
s0�s�s1

Hs

T
K to

denote the spacetime region between two hyperboloids Hs0 , Hs1 . We follow LeFloch and
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Ma [33] and introduce the semi-hyperboloidal frame

@0 WD @t ; @a WD t
�1La D

xa

t
@t C @a:

The semi-hyperboloidal frame is adapted to the hyperboloidal foliation setting since the
set @a generates the tangent space to the hyperboloids. The usual partial derivatives, i.e.
those in a Cartesian frame, can be expressed in terms of the semi-hyperboloidal frame as

@t D @0; @a D �
xa

t
@t C @a:

Standard notation. We use C to denote a universal constant, and A . B to indicate
the existence of a constant C > 0 such that A � BC . For the ordered sets ¹Ziº5iD1 WD
¹@0; @1; @2; L1; L2º, ¹ yZiº5iD1 WD ¹@0; @1; @2; OL1; OL2º, and for any multi-index I D

.˛1; : : : ; ˛5/ of length jI j WD ˛1 C � � � C ˛5, we denote ZI D Z˛11 � : : : � Z
˛5
5 and yZI D

yZ
˛1
1 � : : : �

yZ
˛5
5 . Spacetime indices are represented by Greek letters while spatial indices

are denoted by Roman letters. We adopt the Einstein summation convention unless other-
wise specified. We will often write j@�j, respectively j@�j, to denote an estimate on j@��j
for arbitrary �, respectively j@a�j for arbitrary a.

2.2. Energy estimates for wave and Klein–Gordon fields on hyperboloids

Given a function � D �.t; x/ defined on a hyperboloid Hs , we define its k � kL1
f
.Hs/

norm
as

k�kL1
f
.Hs/
D

Z
Hs

j�.t; x/j dx WD
Z

R2

j�.
p
s2 C jxj2; x/j dx: (2.1)

With this, the norm k � kLp
f
.Hs/

for 1 � p < C1 can be defined. The subscript f comes
from that the fact that the volume form in (2.1) comes from the standard flat metric in R2.

Following [24,33], we define the followingL2-based energy of a function � D �.t;x/,
scalar valued or vector valued, on a hyperboloid Hs:

Em.s; �/ WD

Z
Hs

�X
˛

j@˛�j
2
C
xa

t
.@t�

�@a� C @a�
�@t�/Cm

2
j�j2

�
dx

D

Z
Hs

�
j.s=t/@t�j

2
C

X
a

j@a�j
2
Cm2j�j2

�
dx:

Note that in the abovem � 0 is a constant. From the last two equivalent expressions of the
energy functional Em, we easily obtainX

˛

k.s=t/@˛�kL2
f
.Hs/
C

X
a

k@a�kL2
f
.Hs/
� CEm.s; �/

1=2:

We also adopt the abbreviation E.s;�/D E0.s;�/. We have the following classical energy
estimates for wave and Klein–Gordon equations.



S. Dong and Z. Wyatt 1428

Proposition 2.1. Let � be a sufficiently regular function defined in the region KŒs0;s1� and
vanishing near @KŒs0;s1�. Then, for all s 2 Œs0; s1� we have

Em.s; �/
1=2
� Em.s0; �/

1=2
C

Z s

s0

k ��� Cm2�kL2
f
.H� /

d�:

2.3. Energy estimates for Dirac fields on hyperboloids

Let ‰.t; x/WR1C2! C2 be a complex-valued function defined in the region KŒs0;1/. We
introduce the energy functionals

EC.s; ‰/ WD

Z
Hs

�
‰ �

xa

t
0a 

���
‰ �

xa

t
0a‰

�
dx;

ED.s; ‰/ WD

Z
Hs

�
‰�‰ �

xa

t
‰�0a‰

�
dx:

These were first introduced in [16], and the following useful identity was also derived:

ED.s; ‰/ D
1

2

Z
Hs

s2

t2
‰�‰ dx C

1

2
EC.s; ‰/: (2.2)

From this identity we obtain the nonnegativity of the functional ED.s;‰/ and the inequal-
ity s

t
‰

L2
f
.Hs/
C

�I2 � xa
t
0a

�
‰

L2
f
.Hs/
� CED.s; ‰/1=2:

We have the following energy estimates (see [16, Prop. 2.3] for (2.3) and [17] for an
application of (2.4)).

Proposition 2.2. Let ‰.t; x/WR1C2 ! C2 be a sufficiently regular function with support
in the region KŒs0;s1�. Then, for all s 2 Œs0; s1� we have

ED.s; ‰/1=2 � ED.s0; ‰/
1=2
C

Z s

s0

ki�@�‰kL2
f
.H� /

d�; (2.3)

ED.s; ‰/ � ED.s0; ‰/C 2

Z s

s0

ki‰�0�@�‰kL1
f
.H� /

d�: (2.4)

2.4. Weighted energy estimates

Following ideas of Alinhac [3], we next derive weighted energy estimates. These have
been applied to coupled wave-Klein–Gordon systems in [14, Prop. 3.2], and here we pur-
sue similar estimates for Dirac equations.

We first define the .t � r/-weighted energy for a Dirac field:

EC.s; ‰; ı/ WD

Z
Hs

.t � r/�2ı
�
‰ �

xa

t
0a 

���
‰ �

xa

t
0a‰

�
dx;

ED.s; ‰; ı/ WD

Z
Hs

.t � r/�2ı
�
‰�‰ �

xa

t
‰�0a‰

�
dx:

(2.5)
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The following useful identity holds:

ED.s; ‰; ı/ D
1

2

Z
Hs

s2

t2
.t � r/�2ı‰�‰ dx C

1

2
EC.s; ‰; /: (2.6)

Proposition 2.3. For M � 0 consider a sufficiently regular function ‰ defined in the
region KŒs0;s�, vanishing near @KŒs0;s�, and satisfying

�i�@�‰ CM‰ D f:

Then, for ı > 0 we have

ED.s; ‰; ı/ � CED.s0; ‰; ı/C C

Z s

s0

k.t � r/�2ı‰�0f kL1
f
.H� /

d�:

Proof. As shown in [14], multiplying the Dirac equation by .t � r/�2ı@t‰�0 the proof
follows from the differential identity

@t ..t � r/
�2ı‰�‰/C @a..t � r/

�2ı‰�0a‰/ � @t ..t � r/
�2ı/‰�‰

� @a..t � r/
�2ı/‰�0a‰ D i‰�0f � if �0‰

and the fact that

� @t ..t � r/
�2ı/‰�‰ � @a..t � r/

�2ı/‰�0a‰

D .t � r/�2ı�1.‰ � .xa=r/
0a‰/�.‰ � .xa=r/

0a‰/ � 0:

2.5. Estimates for null forms and commutators

We next state a key estimate for null forms in terms of the hyperboloidal coordinates. The
proof is standard and can be found in [33, §4].

Lemma 2.4. Let �, ' be sufficiently regular functions with support in K and define
Q0.�; '/ WD �

˛ˇ@˛�@ˇ'. Then

jQ0.�; '/j .
�s
t

�2
j@t� � @t'j C

X
a

.j@a� � @t'j C j@t� � @a'j/C
X
a;b

j@a� � @b'j:

We also have the useful property that, for the Q0 null form,

LaQ0.�; '/ D Q0.La�; '/CQ0.�; La'/;

@˛Q0.�; '/ D Q0.@˛�; '/CQ0.�; @˛'/:

Besides the well-known commutation relations

Œ@˛;��Cm2� D ŒLa;��Cm2� D 0; Œi˛@˛; OLa� D 0;

valid form � 0, we also need the following lemma to control some other commutators. A
proof can be found in [33, §3] and [24].
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Lemma 2.5. Letˆ (resp. �) be a sufficiently regular C2-valued (resp. R-valued) function
supported in the region K . Then, for any multi-indices I , there exist generic constants
C D C.jI j/ > 0 such that

jŒ@˛; La�ˆj C jŒ@˛; OLa�ˆj � C
X
ˇ

j@ˇˆj;

jŒLa; Lb�ˆj C jŒ OLa; OLb�ˆj � C
X
c

jLcˆj;

jŒZI ; @˛��j � C
X
jJ j<jI j

X
ˇ

j@ˇZ
J�j;

jŒZI ; @a��j � C

� X
jJ j<jI j

X
b

j@bZ
J�j C t�1

X
jJ j�jI j

jZJ�j

�
:

Furthermore, there exists a constant C > 0 such that

j@˛.s=t/j � Cs
�1; jLa.s=t/j C jLaLb.s=t/j � C.s=t/:

Recall here that Greek indices ˛; ˇ 2 ¹0; 1; 2º and Roman indices a; b 2 ¹1; 2º.

2.6. Weighted Sobolev inequalities on hyperboloids

We need certain weighted Sobolev inequalities to obtain pointwise decay estimates for the
Dirac field and the Klein–Gordon field.

Proposition 2.6. Let � D �.t; x/ be a sufficiently smooth function supported in the region
K and  2 R. Then, for all s � 2 we have

sup
Hs

jt�.t; x/j � C
X
jJ j�2

kLJ�kL2
f
.Hs/

; (2.7)

sup
Hs

js�.t; x/j � C
X
jJ j�2

k.s=t/LJ�kL2
f
.Hs/

; (2.8)

sup
Hs

js.t � r/�.t; x/j � C
X
jJ j�2

k.s=t/.t � r/LJ�kL2
f
.Hs/

:

We recall that such Sobolev inequalities involving hyperboloids were first introduced
by Klainerman [29], and then later appeared in work by Hörmander [24]. In the above
proposition we have used the version given by Hörmander [24], where only the Lorentz
boosts are required. The estimate (2.8) follows by combining (2.7) with the commutator
estimates of Lemma 2.5 and is more convenient to use for wave components.

We also have the following modified Sobolev inequalities for spinors which make use
of the modified Lorentz boosts OLa. The proof follows from the fact that the difference
between La and OLa is a constant matrix.
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Corollary 2.7. Let‰ D ‰.t; x/ be a sufficiently smooth C2-valued function supported in
the region K . Then, for all s � 2 we have

sup
Hs

jt‰.t; x/j � C
X
jJ j�2

k OLJ‰kL2
f
.Hs/

;

as well as

sup
Hs

js‰.t; x/j � C
X
jJ j�2

k.s=t/ OLJ‰kL2
f
.Hs/

;

sup
Hs

js.t � r/ı‰.t; x/j � C
X
jJ j�2

k.s=t/.t � r/ı OLJ‰kL2
f
.Hs/

:
(2.9)

2.7. Linear scattering

To show linear scattering of the solution .v;  / in the energy space in Theorems 1.1 and
1.2, we need the following result, which gives a sufficient condition on linear scattering
for Klein–Gordon and Dirac equations.

Lemma 2.8. Consider the Klein–Gordon equation

��uC u D Fu; .u; @tu/.t0/ D .u0; u1/:

If the source term satisfies Z C1
t0

kFukL2.R2/ dt < C1;

then the solution u scatters linearly in the energy space. That is, there exists uC such that

lim
t!C1

.ku � uCkL2.R2/ C k@.u � u
C/kL2.R2// D 0;

in which uC is the solution to the free Klein–Gordon equation

��uC C uC D 0; .uC; @tu
C/.t0/ D .u

C
0 ; u

C
1 /;

for some .uC0 ; u
C
1 / 2 H

1.R2/ � L2.R2/.
Similarly, consider the Dirac equation

�i�@�‰ D F‰; ‰.t0/ D ‰0:

If the source term satisfies Z C1
t0

kF‰kL2.R2/ dt < C1;

then the solution ‰ scatters linearly in the energy space, i.e. there exists ‰C such that

lim
t!C1

k‰ �‰CkL2.R2/ D 0;
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in which ‰C is the solution to the free Klein–Gordon equation

�i�@�‰
C
D 0; ‰C.t0/ D ‰

C
0 ;

for some ‰C0 2 L
2.R2/.

The result in Lemma 2.8 is classical, and its proof can be found for instance in [18].
We note that the scattering result is valid on constant t slices, while we work on constant
s slices.

3. Hidden structure within the Dirac–Klein–Gordon equations

3.1. Transformations

In the present section we discuss three types of hidden structure which are present in the
DKG equations. These are in the spirit of Shatah’s normal form method [41]. Identifying
these structures plays an important role in our proof.

Type 1. Consider a Klein–Gordon equation of the type .��C 1/v D w2 C Fv; where w
satisfies an unspecified semilinear wave equation. If we set Qv D v � w2, then we have

.��C 1/ Qv D Fv � 2w.��w/C 2Q0.w;w/:

In particular, we can remove the wave–wave interaction w2 at the expense of bringing in
cubic and null terms. This strategy of treating wave–wave interactions in Klein–Gordon
equations was first introduced by Tsutsumi [47] to study the Dirac–Proca equations in
R1C3.

Type 2. Next we consider a wave equation with the form ��w D wv C Fw , where v
satisfies an unspecified semilinear Klein–Gordon equation. If we set zw D w C wv, then
we have

�� zw D Fw C .��w/v C w.��v C v/ � 2Q0.w; v/:

We can remove the interaction termwu at the expense of introducing null and cubic terms.

Type 3. In this final case, we consider a Dirac equation of the form �i�@� D vF ,
where v satisfies an unspecified semilinear Klein–Gordon equation. If we set Q D  C
i�@�.vF / and use (1.5) then we find

�i�@� Q D �i
�@� ��.vF /

D vF C .��v/F C vF.�� / � 2�˛ˇ@˛vF @ˇ :

Thus we arrive at

�i�@� Q D .��v C v/F C vF.�� / � 2Q0.v; F /:
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The nonlinear transformation has allowed us to cancel the Dirac–Klein–Gordon interac-
tion v at the expense of introducing null and cubic terms. Such a transformation has,
to the authors’ knowledge, not been used before and is clearly inspired by the two prior
transformations.

3.2. Hidden Klein–Gordon structure in the Lorentz scalar  �0 

We now consider the Dirac–Dirac interaction term  �0 and show that it can be decom-
posed into terms with Klein–Gordon-type factors. Roughly speaking, we call a field � of
Klein–Gordon type if its L2 norm k�kL2

f
.Hs/

can be well controlled. Examples of Klein–
Gordon type fields include

v; .s=t/@˛v; .s=t/ ;  � .xa=t/0a :

Definition 3.1. Let ‰ be a C2-valued function. We define

.‰/� WD ‰ �
xa

t
0a‰; .‰/C WD ‰ C

xa

t
0a‰:

If no confusion arises, we use the abbreviation ‰� D .‰/�.

Lemma 3.2. Let ‰, ˆ be two C2-valued functions. Then we have

‰�0ˆ D
1

4

�
.‰�/

�0ˆ� C .‰�/
�0ˆC C .‰C/

�0ˆ� C .s=t/
2‰�0ˆ

�
:

Proof. First we note that 2‰ D ‰� C‰C and 2ˆ D ˆ� CˆC. Thus we have

4‰�0ˆ D ..‰�/
�
C .‰C/

�/0.ˆ� CˆC/

D .‰�/
�0ˆ� C .‰�/

�0ˆC C .‰C/
�0ˆ� C .‰C/

�0ˆC:

We expand the last term above, noting that .0a/� D 0a, and find

.‰C/
�0ˆC D

�
‰� C

xa

t
‰�0a

�
0
�
ˆC

xb

t
0bˆ

�
D ‰�0ˆC

xa

t
‰�00aˆC

xa

t
‰�0a0ˆ

C
xa

t

xb

t
‰�0a00bˆ:

Simple calculations give us
xa

t
‰�00aˆC

xa

t
‰�0a0ˆ D 0

and
xa

t

xb

t
‰�0a00bˆ D

xaxb

t2
‰�0abˆ D �

r2

t2
‰�0ˆ: (3.1)

Thus we are led to

‰�C
0ˆC D ‰

�0ˆ �
r2

t2
‰�0ˆ D

s2

t2
‰�0ˆ: (3.2)

Gathering together the above results finishes the proof.
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Remark 3.3. The above lemma gives the key improvement that the quadratic interaction
term ‰�0ˆ can be written in terms of other quadratic interactions which always involve
at least one Klein–Gordon-type field. It is also interesting to note that other Dirac–Dirac
interactions terms do not possess the above useful decomposition. For example, replicating
the argument for  � in the proof of Lemma 3.2, we find (3.1) instead appears with a
positive sign C.r=t/2‰�0ˆ. This means that we cannot obtain a good factor of .s=t/2

as in (3.2). Similar problems occur for  �0� . In this sense, general nonlinear terms
 �H under assumption H1a are more difficult to treat.

Since the Dirac–Dirac interaction term  �0 appears as a sourcing for the Klein–
Gordon equation when H2b is assumed, we will need to act unmodified Lorentz boosts L
on this term. The following lemma surprisingly shows that when distributing these Lorentz
boosts across the interaction term, they in fact turn into the modified boosts OL.

Lemma 3.4. For any multi-index jI j there exists a generic constant C D C.jI j/ > 0 such
that

jZI . �0 /j � C
X

jJ jCjKj�jI j

j. yZJ /�0 yZK j:

Proof. Let‰,ˆ be two C2-valued functions. We will only consider the case with Lorentz
boosts acting on the nonlinearity. Since � denotes the conjugate transpose, and .0a/� D
.0a/, we have the identity

La.‰
�/ D . OLa‰/

�
C
1

2
‰�.0a/�

D . OLa‰/
�
�
1

2
‰�a0;

and thus

La.‰
�0ˆ/ D La.‰

�/0ˆC‰�0La.ˆ/

D OLa.‰
�/0ˆ �

1

2
‰�a00 z‰ C‰�0 OLa.ˆ/C

1

2
 �00a z‰

D OLa.‰
�/0ˆC‰�0 OLa.ˆ/:

Hence

La. N  / D La. 
�0 /

D . OLa /
�0 C  �0. OLa /:

Similarly,

LbLa. N  / D . OLb OLa /
�0 C  �0 OLb OLa C . OLa /

�0. OLb /

C . OLb /
�0. OLa /:

Carrying on gives the general pattern.



Asymptotic stability for the Dirac–Klein–Gordon system 1435

3.3. Decay away from the light cone for differentiated Dirac components

The following lemma is inspired by a similar result in the context of wave equations
obtained in [33, §8.1, §8.2]. With the aid of Lemma 3.5, we will be able to prove better
estimates for the @ component; see for instance Propositions 4.3 and A.3.

Lemma 3.5. Let‰ be a C2-valued function solving i�@�‰ D F‰ , and supported in K .
Then we have the estimate

j@t‰j .
t

t � r

�X
a

j@a‰j C jF‰j

�
: (3.3)

Proof. We express the Dirac operator i�@� in the semi-hyperboloidal frame to get

i.0 � .xa=t/a/@t‰ C i
a@a‰ D F‰:

Multiplying both sides by .0 � .xb=t/b/ yields

i.0 � .xb=t/b/.0 � .xa=t/a/@t‰ C i.
0
� .xb=t/b/a@a‰

D .0 � .xb=t/b/F‰:

Simple calculations involving properties of the Dirac matrices imply

.0 � .xb=t/b/.0 � .xa=t/a/ D .s2=t2/:

This leads us to

i.s2=t2/@t‰ C i.
0
� .xb=t/b/a@a‰ D .

0
� .xb=t/b/F‰;

which further implies

j.s2=t2/@t‰j � j.
0
� .xb=t/b/a@a‰j C j.

0
� .xb=t/b/F‰j

.
X
a

j@a‰j C jF‰j:

Finally, we arrive at (3.3) by recalling the following relations, which hold within the
cone K:

s2 D t2 � r2 D .t � r/.t C r/; t � t C r � 2t:

4. Proof of Theorem 1.1

4.1. Bootstrap assumptions and preliminary estimates

FixN 2N a large integer (N � 7will end up working for our argument below). As shown
by the local well-posedness theory in [33, §11], initial data posed on the hypersurface
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¹t0 D 2º and localised in the unit ball ¹x 2 R2 W jxj � 1º can be developed as a solution of
(1.1) up to the initial hyperboloid ¹s D s0º with the smallness (1.3) conserved. Thus there
exists C0 > 0 such that the following bounds hold for all jI j � N :

E1.s0; Z
Iv/1=2 C ED.s0; yZ

I /1=2 � C0":

Next we assume that the following bounds hold for s 2 Œs0; s1/:

ED.s; yZI /1=2 C E1.s; Z
Iv/1=2 � C1"; jI j � N � 2;

ED.s; yZI /1=2 C E1.s; Z
Iv/1=2 � C1"s

ı ; jI j D N � 1;

ED.s; yZI ; 1/1=2 C s�1E1.s; Z
Iv/1=2 � C1"s

ı ; jI j D N:

(4.1)

In the above, the constant C1 � 1 is to be determined, "� 1 measures the size of the
initial data, and we let C1"� 1, and 0 < ı � 1

10
. For the rest of Section 4 we assume,

without restating the fact, that inequalities (4.1) hold on a hyperboloidal time interval
Œs0; s1/ where

s1 WD sup
®
sW s > s0; (4.1) holds

¯
:

With the bounds in (4.1), we obtain the following preliminary L2 and L1 estimates.

Proposition 4.1. For s 2 Œs0; s1/ we have

k.s=t/ yZI kL2
f
.Hs/
Ck.s=t/ZI kL2

f
.Hs/
Ck. yZI /�kL2

f
.Hs/
.

´
C1"; jI j � N� 2;

C1"s
ı ; jI j � N� 1; .s=t/ yZI 

.t � r/


L2
f
.Hs/
C

 .s=t/ZI 
.t � r/


L2
f
.Hs/
C

 . yZI /�
.t � r/


L2
f
.Hs/
. C1"sı ; jI j � N;

k.s=t/@ZIvkL2
f
.Hs/
Ck.s=t/ZI@vkL2

f
.Hs/
CkZIvkL2

f
.Hs/
.

8̂̂<̂
:̂
C1"; jI j � N� 2;

C1"s
ı ; jI j � N� 1;

C1"s
1Cı ; jI j � N:

Proof. The estimates for  follow from the definition of the energy functionals ED.s; /,
ED.s;  ; 1/, the decomposition (2.2), the commutator estimates in Lemma 2.5, and the
fact that the difference between La and OLa is a constant matrix. The estimates for the
Klein–Gordon field follow from the definition of the energy functional E1.s; v/ and the
commutator estimates in Lemma 2.5.

Next we derive the following pointwise estimates.

Proposition 4.2. For s 2 Œs0; s1/ we have

j yZI j C jZI j C .t=s/j. yZI /�j .

´
C1"s

�1; jI j � N � 4;

C1"s
�1Cı ; jI j � N � 3;

j@ZIvj C jZI@vj C .t=s/jZIvj .

´
C1"s

�1; jI j � N � 4;

C1"s
�1Cı ; jI j � N � 3:
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Proof. To show the estimates for the Klein–Gordon components v and @v we combine
the estimates from Proposition 4.1 with the Sobolev estimates from Proposition 2.6. To
prove the estimates for yZI , and thus ZI , we combine Proposition 4.1 with the Dirac-
type Sobolev estimates from Corollary 2.7. Finally, to prove the estimates for . /� and
derivatives thereof, we note that 00 D I2 in order to show the commutator identity

Œ OLb; 
0
� .xa=t/a� D �.xb=t/.0 � .xa=t/a/ D �.xb=t/0. /�:

This implies

Œ OLb; I2 � .x
a=t/0a� D Œ OLb; 

0.0 � .xa=t/a/� 

D Œ OLb; 
0�0 � C 

0Œ OLb; 
0
� .xa=t/a� 

D �.0b C .xb=t//. /�:

We can control this error term since jxb=t j � 1 in the cone. Using these calculations, we
can compute

Œ OLc OLb; I2 � .x
a=t/0a� D � .0c C .xc=t//. OLb /� � .

0b C .xb=t//. OLc /�

C Œ.xb=t/0c C .xc=t/0b C 2.xcxb/=t2� �:

Thus, using the first Sobolev estimate in Corollary 2.7,

sup
Hs

jt �j .
X
jJ j�2

k OLJ �kL2
f
.Hs/
D

X
jJ j�2

k OLJ .I2 � .x
a=t/0a/ kL2

f
.Hs/

.
X
jJ j�2

k. OLJ /�kL2
f
.Hs/

:

The estimates for . yZI /� follow in the same way and the proof is complete.

Proposition 4.3. The following weighted L2-estimates are valid for s 2 Œs0; s1/:

k.t � r/.s=t/@ZI kL2
f
.Hs/
C k.t � r/.s=t/@ yZI kL2

f
.Hs/
. C1"sı ; jI j � N � 2;

k.s=t/@ZI kL2
f
.Hs/
C k.s=t/@ yZI kL2

f
.Hs/
. C1"sı ; jI j � N � 1;

and the following pointwise estimates also hold for s 2 Œs0; s1/:

j@ZI j C j@ yZI j . C1".t � r/�1s�1Cı ; jI j � N � 4:

Proof. We first act yZI , with jI j � N � 4, to the  equation in (1.1) to find

�i�@� yZ
I D yZI .v /:

Then, by Lemma 3.5 we obtain

j@t yZ
I j .

t

t � r

�
t�1

X
a

jLa yZ
I j C j yZI .v /j

�
. C1".t � r/�1s�1Cı ;
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in which we used the pointwise decay results of Proposition 4.2. The estimates j@tZI j
are a simple consequence of the above, while the case j@a yZI j (with a D 1; 2) can be
seen from the relation

@a yZ
I D �

xa

t
@t yZ

I C @a
yZI :

Finally, the L2-type estimates follow in a similar way, by combining Lemma 3.5 with
Propositions 4.1 and 4.2.

4.2. Nonlinear transformations and corresponding estimates

Next we introduce nonlinear transformations in the spirit of Shatah’s normal form method
[41]. These are key to closing the low-order bootstraps.

Lemma 4.4. Let Qv WD v �  �H . Then Qv solves the following Klein–Gordon equation:

�� Qv C Qv D �i@�.v �/.H�/� C i �H�@�.v /C 2Q0. ;H /:

Proof. This nonlinear transformation was introduced in [47]. The required result follows
by using (1.1) to deduce

�� D i�@�.�i�@� / D i�@�.v /: (4.2)

Lemma 4.5. We have

kZI . �H�@�.v //kL2
f
.H� /
.

´
.C1"/

3��2C2ı ; jI j � N � 2;

.C1"/
3��1Cı ; jI j � N � 1;

kZI .@˛ 
�H@˛ /kL2

f
.H� /
. .C1"/2��2C2ı ; jI j � N � 1:

Proof. We estimate each of these three quantities in turn.

Step 1: Estimate of kZI . �H�@�.v //kL2
f
.H� /

with jI j � N � 2. We first decompose
the term into three pieces:

kZI . �H�@�.v //kL2
f
.H� /

.
X

jI1jCjI3j�N�3
jI2j�jI j

kjZI1 j jZI2@vj jZI3 jkL2
f
.H� /

C

X
jI1jCjI2j�N�3
jI3j�jI j

kjZI1 j jZI2vj jZI3@ jkL2
f
.H� /

C

X
jI2jCjI3j�N�3
jI1j�jI j

kjZI1 j jZI2vj jZI3 jkL2
f
.H� /
DW A1a CA1b CA1c :
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We now bound

A1a .
X

jI1jCjI3j�N�3
jI2j�jI j

kZI1 kL1.H� /kZ
I2@vkL2

f
.H� /
kZI3 kL1.H� /

.
X

jI1jCjI3j�N�3
jJ j�jI jC1

kZI1 kL1.H� /kZ
J vkL2

f
.H� /
kZI3 kL1.H� / . .C1"/

3��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.2. We continue to estimate

A1b .
X

jI1jCjI2j�N�3
jI3j�jI j

kZI1 kL1.H� /k.t=�/Z
I2vkL1.H� /k.�=t/Z

I3@ kL2
f
.H� /

.
X

jI1jCjI2j�N�3
jJ j�jI jC1

kZI1 kL1.H� /k.t=�/Z
I2vkL1.H� /k.�=t/Z

J kL2
f
.H� /

. .C1"/3��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.2. We then get

A1c .
X

jI2jCjI3j�N�3
jI1j�jI j

k.�=t/ZI1 kL2
f
.H� /
k.t=�/ZI2vkL1.H� /kZ

I3 kL1.H� /

. .C1"/3��2Cı ;

in which we used Propositions 4.1 and 4.2.
Thus we obtain

kZI . �H�@�.v //kL2
f
.H� /
. .C1"/3��2C2ı ; jI j � N � 2:

Step 2: Estimate of kZI . �H�@�.v //kL2
f
.H� /

with jI j � N � 1. We decompose the
term into three pieces:

kZI . �H�@�.v //kL2
f
.H� /

.
X

jI1jCjI3j�N�4
jI2j�jI j

kjZI1 j jZI2@vj jZI3 jkL2
f
.H� /

C

X
jI1jCjI2j�N�3
jI3j�jI j

kjZI1 j jZI2vj jZI3@ jkL2
f
.H� /

C

X
jI2jCjI3j�N�3
jI1j�jI j

kjZI1 j jZI2vj jZI3 jkL2
f
.H� /
DW A2a CA2b CA2c :
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We first estimate

A2a .
X

jI1jCjI3j�N�4
jI2j�jI j

kZI1 kL1.H� /kZ
I2@vkL2

f
.H� /
kZI3 kL1.H� /

.
X

jI1jCjI3j�N�4
jJ j�jI jC1

kZI1 kL1.H� /kZ
J vkL2

f
.H� /
kZI3 kL1.H� / . .C1"/

3��1Cı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.2. We now bound

A2b .
X

jI1jCjI2j�N�3
jI3j�jI j

kZI1 kL1.H� /k.t=�/Z
I2vkL1.H� /k.�=t/Z

I3@ kL2
f
.H� /

.
X

jI1jCjI2j�N�3
jJ j�jI j

kZI1 kL1.H� /k.t=�/Z
I2vkL1.H� /k.�=t/@Z

J kL2
f
.H� /

. .C1"/3��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.2 and 4.3. We then obtain

A2c .
X

jI2jCjI3j�N�3
jI1j�jI j

k.�=t/ZI1 kL2
f
.H� /
k.t=�/ZI2vkL1.H� /kZ

I3 jkL1.H� /

. .C1"/3��2C2ı ;

in which we used Propositions 4.1 and 4.2.
In conclusion, we get

kZI . �H�@�.v //kL2
f
.H� /
. .C1"/3��1Cı ; jI j � N � 1:

Step 3: Estimate of kZI .@˛ �H@˛ /kL2
f
.H� /

with jI j �N � 1. First, according to Lem-
mas 2.5 and 2.4 we have

kZI .@˛ 
�H@˛ /kL2

f
.H� /

.
X

jI1jCjI2j�jI j

k.�=t/2j@tZ
I1 j j@tZ

I2 jkL2
f
.H� /

C

X
jI1jCjI2j�jI j;a

kj@aZ
I1 j j@tZ

I2 jkL2
f
.H� /

C

X
jI1jCjI2j�jI j;a;b

kj@aZ
I1 j j@bZ

I2 jkL2
f
.H� /
DW A3a CA3b CA3c :

We next estimate

A3a .
X
jI1j�jI j
jI2j�N�4

k.�=t/@tZ
I1 kL2

f
.H� /
k.�=t/@tZ

I2 jkL1.H� / . .C1"/
2��2C2ı ;
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in which we used Proposition 4.3. We then bound

A3b .
X
jI1j�jI j
jI2j�N�4;a

k.�=t/.t � r/�1LaZ
I1 kL2

f
.H� /
k��1.t � r/@tZ

I2 jkL1.H� /

C

X
jI1j�N�4
jI2j�jI j;a

k��1LaZ
I1 kL1.H� /k.�=t/@tZ

I2 kL2
f
.H� /

.
X

jJ j�jI jC1
jI2j�N�3;a

k.�=t/.t � r/�1ZJ kL2
f
.H� /
k��1.t � r/@tZ

I2 jkL1.H� /

C

X
jJ j�N�3
jI2j�jI j;a

k��1ZJ kL1.H� /k.�=t/@tZ
I2 kL2

f
.H� /

. .C1"/2��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.3. We can easily show

A3c . .C1"/2��2:

To sum up, we get

kZI .@˛ 
�H@˛ /kL2

f
.H� /
. .C1"/2��2C2ı ; jI j � N � 1:

Next we introduce a nonlinear transformation of Type 3 as discussed in Section 3.1.

Lemma 4.6. Let Q WD  C i�@�.v /. Then Q solves the Dirac equation

�i�@� Q D . 
�H / C i�v@�.v / � 2@˛v@

˛ :

Proof. A straightforward application of (1.1), (1.5), and (4.2) yields the desired result.

Lemma 4.7. We have

k yZI .. �H / /kL2
f
.H� /
. .C1"/3��1Cı ; jI j � N � 1;

k yZI .�v@�.v //kL2
f
.H� /
. .C1"/3��2C2ı ; jI j � N � 1;

k yZI .@˛v@
˛ /kL2

f
.H� /
.

´
.C1"/

2��2C2ı ; jI j � N � 2;

.C1"/
2��1Cı ; jI j � N � 1:

Proof. We bound the terms one by one.

Step 1: We start by estimating k yZI .. �H / /kL2
f
.H� /

for jI j � N � 1. We find that

k yZI .. �H / /kL2
f
.H� /

.
X

jI1jCjI2jCjI3j�jI j

k.ZI1 /�H.ZI2 / yZI3 kL2
f
.H� /
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.
X

jI1jCjI2j�N�4
jI3j�jI j

kjZI1 j jZI2 j j yZI3 jkL2
f
.H� /

C

X
jI1j�jI j

jI2jCjI3j�N�4

kjZI1 j jZI2 j j yZI3 jkL2
f
.H� /

DW B1a CB1b :

Easily, we get

B1a .
X

jI1jCjI2j�N�4
jI3j�jI j

k.t=�/jZI1 j jZI2 jkL1.H� /k.�=t/
yZI3 kL2

f
.H� /
. .C1"/3��1Cı ;

in which we used Propositions 4.1 and 4.2. In the same way, we have

B1b . .C1"/3��1Cı ;

and hence we arrive at

k yZI .. �H / /kL2
f
.H� /
. .C1"/3��1Cı ; jI j � N � 1:

Step 2: Next we estimate k yZI .�v@�.v //kL2
f
.H� /

for jI j � N � 1. We note that

k yZI .�v@�.v //kL2
f
.H� /

.
X

jI1jCjI2j�N�3
jI3j�jI j

kjZI1vj jZI2vj jZI3@ jkL2
f
.H� /

C

X
jI1jCjI3j�N�3
jI2j�jI j

kjZI1vj jZI2@vj jZI3 jkL2
f
.H� /

C

X
jI1j�jI j

jI2jCjI3j�N�3

kjZI1vj jZI2vj jZI3 jkL2
f
.H� /

C

X
jI1jCjI2j�N�3
jI3j�jI j

kjZI1vj jZI2vj jZI3 jkL2
f
.H� /

DW B2a CB2b CB2c CB2d :

For the term B2a, we have

B2a .
X

jI1jCjI2j�N�3
jI3j�jI j

k.t=�/jZI1vj jZI2vjkL1.H� /k.�=t/@Z
I3 kL2

f
.H� /

. .C1"/3��2C2ı ;
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in which we used Lemma 2.5 and Propositions 4.2 and 4.3. For the term B2b , we get

B2b .
X

jI1jCjI3j�N�3
jI2j�jI j

k.t=�/jZI1vj jZI3 jkL1.H� /k.�=t/@Z
I2vkL2

f
.H� /

. .C1"/3��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.2. For the third term B2c , we
obtain

B2c .
X
jI1j�jI j

jI2jCjI3j�N�3

kZI1vkL2
f
.H� /
kjZI2vj jZI3 jkL1.H� / . .C1"/

3��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.2. For the last term B2d , we have

B2d .
X

jI1jCjI2j�N�3
jI3j�jI j

k.t=�/jZI1vj jZI2vjkL1.H� /k.�=t/Z
I3 kL2

f
.H� /

. .C1"/3��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.2.
To conclude, we have

k yZI .�v@�.v //kL2
f
.H� /
. .C1"/3��2C2ı ; jI j � N � 1:

Step 3: We now turn to k yZI .@˛v@˛ /kL2
f
.H� /

for jI j � N � 2. Recalling Lemmas 2.5
and 2.4, we find that

k yZI .@˛v@
˛ /kL2

f
.H� /

.
X

jI1jCjI2j�jI j;a;b

�
k.�=t/2@tZ

I1v@tZ
I2 kL2

f
.H� /
C k@tZ

I1v@aZ
I2 kL2

f
.H� /

C k@aZ
I1v@tZ

I2 kL2
f
.H� /
C k@aZ

I1v@bZ
I2 kL2

f
.H� /

�
DW B3a CB3b CB3c CB3d :

We have

B3a .
X

jI1j�N�3
jI2j�jI j

k.�=t/.t � r/�1@tZ
I1vkL1.H� /k.�=t/.t � r/@tZ

I2 kL2
f
.H� /

C

X
jI1j�jI j
jI2j�N�4

k.�=t/@tZ
I1vkL2

f
.H� /
k.�=t/@tZ

I2 kL1.H� /

. .C1"/2��2C2ı ;
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in which we used Propositions 4.1, 4.2, and 4.3. In succession, we get

B3b .
X

jI1j�N�3
jI2j�jI j;a

k��1@tZ
I1vkL1.H� /k.�=t/LaZ

I2 kL2
f
.H� /

C

X
jI1j�jI j
jI2j�N�4;a

k.�=t/@tZ
I1vkL2

f
.H� /
k��1LaZ

I2 kL1.H� /

. .C1"/2��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.2. Similarly, we obtain

B3c .
X

jI1j�N�4
jI2j�jI j;a

k.t=�/.t � r/�1t�1LaZ
I1vkL1.H� /k.�=t/.t � r/@tZ

I2 kL2
f
.H� /

C

X
jI1j�jI j
jI2j�N�4;a

kLaZ
I1vkL2

f
.H� /
kt�1@tZ

I2 kL1.H� /

. .C1"/2��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1, 4.2, and 4.3. Easily, we get

B3d . .C1"/2��2:

To conclude, we get

k yZI .@˛v@
˛ /kL2

f
.H� /
. .C1"/2��2C2ı ; jI j � N � 2:

Step 4: Finally, we estimate k yZI .@˛v@˛ /kL2
f
.H� /

for jI j � N � 1. The estimate is very
similar to Step 3 above, but we write it out for completeness. We first bound

k yZI .@˛v@
˛ /kL2

f
.H� /

.
X

jI1jCjI2j�jI j;a;b

�
k.�=t/2@tZ

I1v@tZ
I2 kL2

f
.H� /
C k@tZ

I1v@aZ
I2 kL2

f
.H� /

C k@aZ
I1v@tZ

I2 kL2
f
.H� /
C k@aZ

I1v@bZ
I2 kL2

f
.H� /

�
DW B4a CB4b CB4c CB4d :

We have

B4a .
X

jI1j�N�4
jI2j�jI j

k.�=t/@tZ
I1vkL1.H� /k.�=t/@tZ

I2 kL2
f
.H� /

C

X
jI1j�jI j
jI2j�N�4

k.�=t/@tZ
I1vkL2

f
.H� /
k.�=t/@tZ

I2 kL1.H� /

. .C1"/2��1Cı ;
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in which we used Propositions 4.1, 4.2, and 4.3. In succession, we get

B4b .
X

jI1j�N�4
jI2j�jI j;a

k��1.t � r/@tZ
I1vkL1.H� /k.�=t/.t � r/

�1LaZ
I2 kL2

f
.H� /

C

X
jI1j�jI j
jI2j�N�4;a

k.�=t/@tZ
I1vkL2

f
.H� /
k��1LaZ

I2 kL1.H� /

. .C1"/2��1Cı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.2. Similarly, we obtain

B4c .
X

jI1j�N�4
jI2j�jI j;a

k.t=�/t�1LaZ
I1vkL1.H� /k.�=t/@tZ

I2 kL2
f
.H� /

C

X
jI1j�jI j
jI2j�N�4;a

kLaZ
I1vkL2

f
.H� /
kt�1@tZ

I2 kL1.H� /

. .C1"/2��2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1, 4.2, and 4.3. Easily, we get

B4d . .C1"/2��2:

To conclude, we have

k yZI .@˛v@
˛ /kL2

f
.H� /
. .C1"/2��1Cı ; jI j � N � 1:

4.3. Improved estimates for low-order energy

In order to improve the lower-order energy bounds for Klein–Gordon and Dirac fields, we
use nonlinear transformations (see Sections 3.1 and 4.2) to remove the slowly decaying
terms. This is at the expense of introducing null and cubic terms, yet nevertheless allows
us to obtain the desired energy bounds. Our strategy is to first estimate the new variables
Qv, Q in Lemmas 4.4 and 4.6, and then use these to estimate the original unknowns v,  .

Lemma 4.8. We have

E1.s; Z
I
Qv/1=2 .

´
"C .C1"/

3=2; jI j � N � 2;

"C .C1"/
3=2sı ; jI j � N � 1:

Proof. Using the energy estimate in Proposition 2.1 for Klein–Gordon equations, together
with the estimates in Lemma 4.5, we get for the Qv component that

E1.s; Z
I
Qv/1=2 . E1.s0; Z

I
Qv/1=2 C

Z s

s0

kZI
�
�i@�.v 

�/.H�/� C i �H�@�.v /

C 2@˛ 
�H@˛ 

�
kL2

f
.H� /

d�

.

´
"C .C1"/

2; jI j � N � 2;

"C .C1"/
2sı ; jI j � N � 1:
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Proposition 4.9. We have

E1.s; Z
Iv/1=2 .

´
"C .C1"/

3=2; jI j � N � 2;

"C .C1"/
3=2sı ; jI j � N � 1:

Proof. We note that

E1.s; Z
Iv/1=2 . E1.s; Z

I
Qv/1=2 C E1.s; Z

I . �H //1=2;

so we only need to bound E1.s; Z
I . �H //1=2. For jI j � N � 2, we know that

E1.s; Z
I . �H //1=2 . k.s=t/@tZI . �H /kL2

f
.Hs/

C

X
a

k@aZ
I . �H /kL2

f
.Hs/
C kZI . �H /kL2

f
.Hs/

DW B1a CB1b CB1c :

We find that

B1a .
X

jI1j�N�1
jI2j�N�3

k.s=t/ZI1 kL2
f
.Hs/
kZI2 kL1.Hs/ . .C1"/

2s�1C2ı ;

in which we used Propositions 4.1 and 4.2. To proceed, we have

B1b .
X

jI1j�N�1
jI2j�N�3

k.s=t/ZI1 kL2
f
.Hs/
ks�1ZI2 kL1.Hs/ . .C1"/

2s�2C2ı ;

in which we used Lemma 2.5 and Propositions 4.1 and 4.2. We also get

B1c .
X

jI1j�N�2
jI2j�N�4

k.s=t/ZI1 kL2
f
.Hs/
k.t=s/ZI2 kL1.Hs/ . .C1"/

2;

in which we used Propositions 4.1 and 4.2. Thus we get

E1.s;Z
Iv/1=2 . E1.s;Z

I
Qv/1=2 C E1.s;Z

I . �H //1=2 . "C .C1"/2; jI j � N � 2:

In a similar way, we get

E1.s; Z
Iv/1=2 . "C .C1"/2sı ; jI j � N � 1:

Lemma 4.10. We have

ED.s; yZI Q /1=2 .

´
"C .C1"/

3=2; jI j � N � 2;

"C .C1"/
3=2sı ; jI j � N � 1:
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Proof. According to energy estimate (2.3) for Dirac equations, we have

ED.s; yZI Q /1=2 . ED.s0; yZ
I Q /1=2

C

Z s

s0

k yZI .. �H / C i�v@�.v / � 2@˛v@
˛ /kL2

f
.H� /

d�

. "C .C1"/2sı ; jI j � N � 1;

in which we used the estimates in Lemma 4.7. As a consequence, we obtain

k.s=t/ yZI Q kL2
f
.Hs/
C k. yZI Q /�kL2

f
.Hs/
. "C .C1"/2sı ; jI j � N � 1;

j. yZI Q /�j . ."C .C1"/2/t�1sı ; jI j � N � 3:
(4.3)

On the other hand, for jI j � N � 2, we apply energy estimate (2.4) for Dirac equations to
get

ED.s; yZI Q /

. ED.s0; yZ
I Q /

C

Z s

s0

k.�=t/. yZI Q /�0 yZI .. �H / C i�v@�.v / � 2@˛v@
˛ /kL1

f
.H� /

d�

. ED.s0; yZ
I Q /C

Z s

s0

k.�=t/. yZI Q /�0 yZI .. �H / /kL1
f
.H� /

d�

C

Z s

s0

k.�=t/ yZI Q kL2
f
.H� /
k yZI .i�v@�.v / � 2@˛v@

˛ /kL2
f
.H� /

d�

DW D1 CD2 CD3:

For the term D3, the estimates in Lemma 4.7 and (4.3) imply that

D3 . .C1"/3:

Then we treat the term D2, and according to Lemma 3.2 we find that

D2 .
X

jI1jCjI2j�jI j

Z s

s0

k.�=t/. yZI Q /�0 yZI1 ZI2. �H /kL1
f
.H� /

d�

.
X

jI1jCjI2j�jI j

Z s

s0

k.�=t/j. yZI Q /�j j. yZ
I1 /Cj jZ

I2. �H /jkL1
f
.H� /

d�

C

X
jI1jCjI2j�jI j

Z s

s0

k.�=t/j. yZI Q /Cj j. yZ
I1 /�j jZ

I2. �H /jkL1
f
.H� /

d�

C

X
jI1jCjI2j�jI j

Z s

s0

k.�=t/j. yZI Q /�j j. yZ
I1 /�j jZ

I2. �H /jkL1
f
.H� /

d�

C

X
jI1jCjI2j�jI j

Z s

s0

k.�=t/3j yZI Q j j yZI1 j jZI2. �H /jkL1
f
.H� /

d�

DW D2a CD2b CD2c CD2d :
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We proceed to have (recall that j. yZI1 /Cj . j yZI1 j)

D2a .
X
jI1j�jI j
jI2j�N�3

Z s

s0

k. yZI Q /�kL2
f
.H� /
k.�=t/. yZI1 /CkL2

f
.H� /
kZI2. �H /kL1.H� / d�

C

X
jI1jCjJ1j�N�3
jJ2j�jI j

Z s

s0

k. yZI Q /�kL2
f
.H� /
k. yZI1 /CkL1.H� /kZ

J1 kL1.H� /

� k.�=t/ZJ2 kL2
f
.H� /

d�

. .C1"/4
Z s

s0

��2C2ı d� . .C1"/4;

in which we used the estimates in (4.3) and Propositions 4.1 and 4.2. In turn we get (using
again that j. yZI /Cj . j yZI j)

D2b .
X
jI1j�jI j
jI2j�N�3

Z s

s0

k.�=t/. yZI Q /CkL2
f
.H� /
k. yZI1 /�kL2

f
.H� /
kZI2. �H /kL1.H� / d�

C

X
jI1jCjJ1j�N�3
jJ2j�jI j

Z s

s0

k.�=t/. yZI Q /CkL2
f
.H� /
k.t=�/. yZI1 /�kL1.H� /

� kZJ1 kL1.H� /k.�=t/Z
J1 kL2

f
.H� /

d�

. .C1"/4
Z s

s0

��2C3ı d� . .C1"/4;

in which again we used the estimates in (4.3) and Propositions 4.1 and 4.2. Since the
analysis for bounding the other two terms is very similar, we write the final estimates
directly, without further details:

D2c CD2d . .C1"/4:

To sum things up, we have shown

ED.s; yZI Q / . "2 C .C1"/3; jI j � N � 2;

and thus the proof is complete.

Proposition 4.11. We have

ED.s; yZI /1=2 .

´
"C .C1"/

3=2; jI j � N � 2;

"C .C1"/
3=2sı ; jI j � N � 1:

Proof. We recall that

ED.s; yZI /1=2 . ED.s; yZI Q /1=2 C ED
�
s; yZI .�@�.v //

�1=2
;
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so it suffices to show

ED
�
s; yZI .�@�.v //

�1=2 . ´ .C1"/2; jI j � N � 2;

.C1"/
2sı ; jI j � N � 1:

By the definition and decomposition of the energy functional ED in (2.5)–(2.6), we need
to bound

ED
�
s; yZI .@.v //

�1=2 . k yZI .@.v //kL2
f
.Hs/

:

We only estimate for the case jI j � N � 2 as the case of jI j D N � 1 can be bounded
in a very similar way. For jI j � N � 2 we have

k yZI .@.v //kL2
f
.Hs/
.

X
jI1jCjI2j�jI j

.kZI1@vZI2 kL2
f
.Hs/
C kZI1vZI2@ kL2

f
.Hs/

/

DW C1 C C2:

We proceed to get

C1 .
X
jI1j�jI j
jI2j�N�3

kZI1@vZI2 kL2
f
.Hs/
C

X
jI1j�N�4
jI2j�jI j

kZI1@vZI2 kL2
f
.Hs/

.
X

jJ j�jI jC1
jI2j�N�3

kZJ vkL2
f
.Hs/
kZI2 kL1.Hs/

C

X
jJ j�N�3
jI2j�jI j

k.t=s/ZJ vkL1.Hs/k.s=t/Z
I2 kL2

f
.Hs/

. .C1"/2s�1C2ı ;

in which we used the estimates in Lemma 2.5 and Propositions 4.1 and 4.2. Next we bound

C2 .
X
jI1j�jI j
jI2j�N�4

kZI1vZI2@ kL2
f
.Hs/
C

X
jI1j�N�3
jI2j�jI j

kZI1vZI2@ kL2
f
.Hs/

.
X
jI1j�jI j
jI2j�N�3

kZI1vkL2
f
.Hs/
kZJ kL2

f
.Hs/

C

X
jI1j�N�3
jJ j�jI jC1

k.t=s/ZI1vkL1.Hs/k.s=t/Z
J kL2

f
.Hs/

. .C1"/2s�1C2ı ;

in which again we used the estimates in Lemma 2.5 and Propositions 4.1 and 4.2. Thus
we arrive at

ED.s; yZI /1=2 . .C1"/2s�1C2ı ; jI j � N � 2:
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Analogously, we can show

ED.s; yZI /1=2 . .C1"/2sı ; jI j � N � 1;

which concludes the proposition.

4.4. Improved estimates for the highest-order energy

Our goal now is to close the highest-order energy bootstrap. An essential difference com-
pared with the lower-order energy estimates is that nonlinear transformations are invalid
due to issues with regularity. It seems impossible to close the highest-order bootstrap at
first glance of the nonlinearities. Fortunately, the special structure of the DKG system, the
Klein–Gordon decomposition within the nonlinearities and our .t � r/-weighted energy
estimate (see Proposition 2.3) will allow us to reach the desired goals.

Proposition 4.12. We have

E1.s; Z
Iv/1=2 . "C .C1"/2s1Cı ; jI j D N:

Proof. Recall the energy estimate for the Klein–Gordon equations in Proposition 2.1, and
for jI j D N we find that

E1.s; Z
Iv/1=2 . E1.s0; Z

Iv/1=2 C

Z s

s0

kZI . �H /kL2
f
.H� /

d�:

Direct calculations show that

kZI . �H /kL2
f
.H� /

.
X

I1CI2DI

k.ZI1 /�HZI2 kL2
f
.H� /

.
X

jI1�N�4
jI1j�jI j

k.t=�/.t � r/ZI1 kL1.H� /k.�=t/.t � r/
�1ZI2 kL2

f
.H� /

. .C1"/2�ı ;

in which we used the estimates in Propositions 4.1 and 4.2, and the fact that

k.t=�/.t � r/��1kL1.H�\K/ . 1:

Thus we arrive at

E1.s; Z
Iv/1=2 . "C .C1"/2

Z s

s0

�ı d� . "C .C1"/2s1Cı :

Proposition 4.13. We have

ED.s; yZI ; 1/1=2 . "C .C1"/3=2sı ; jI j D N:



Asymptotic stability for the Dirac–Klein–Gordon system 1451

Proof. We apply a .t � r/-weighted energy estimate for the Dirac equation of yZI (with
jI j D N ) in Proposition 2.3 with ı D 1 to get

ED.s; yZI ; 1/ . ED.s0; yZ
I ; 1/C

Z s

s0

k.�=t/.t � r/�2. yZI /�0 yZI .v /kL1
f
.H� /

d�:

We apply Lemma 3.2 to get

k.�=t/.t � r/�2. yZI /�0 yZI .v /kL1
f
.H� /

.
X

jI1jCjI2j�jI j

k.�=t/.t � r/�2. yZI /�0ZI1v yZI2 kL1
f
.H� /

.
X

jI1jCjI2j�jI j

k.�=t/.t � r/�2jZI1vj j. yZI /�j j. yZ
I2 /�jkL1

f
.H� /

C

X
jI1jCjI2j�jI j

k.�=t/.t � r/�2jZI1vj j. yZI /�j j. yZ
I2 /CjkL1

f
.H� /

C

X
jI1jCjI2j�jI j

k.�=t/.t � r/�2jZI1vj j. yZI /Cj j. yZ
I2 /�jkL1

f
.H� /

C

X
jI1jCjI2j�jI j

k.�=t/.t � r/�2jZI1vj.�=t/2j yZI j j yZI2 jkL1
f
.H� /

DW A1 CA2 CA3 CA4:

We next estimate each of these four terms.
We start with the term A1, and we first decompose it into two parts:

A1 �

X
jI1jCjI2j�jI j
jI1j�jI2j

k.�=t/.t � r/�2jZI1vj j. yZI /�j j. yZ
I2 /�jkL1

f
.H� /

C

X
jI1jCjI2j�jI j
jI1j�jI2j

k.�=t/.t � r/�2jZI1vj j. yZI /�j j. yZ
I2 /�jkL1

f
.H� /

DW A1a CA1b :

In conjunction, we further get

A1a .
X

jI1j�N�4
jI2j�jI j

k.�=t/ZI1vkL1.H� /

 . yZI /�
.t � r/


L2
f
.H� /

 . yZI2 /�
.t � r/


L2
f
.H� /

. .C1"/3��1C2ı ;

in which we used Propositions 4.1 and 4.2. We also find

A1b .
X
jI1j�jI j
jI2j�N�4

kZI1vkL2
f
.H� /

 . yZI /�
.t � r/


L2
f
.H� /

 .�=t/. yZI2 /�
.t � r/


L1.H� /

. .C1"/3��1C2ı ;
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in which we used Propositions 4.1 and 4.2, as well as the fact that

k.�=t/.t � r/�1t�1kL1.H�\K/ . ��2:

Thus we get
A1 . .C1"/3��1C2ı :

Next we bound the term A2 as

A2 �

X
jI1jCjI2j�jI j
jI1j�jI2j

k.�=t/.t � r/�2jZI1vj j. yZI /�j j. yZ
I2 /CjkL1

f
.H� /

C

X
jI1jCjI2j�jI j
jI1j�jI2j

k.�=t/.t � r/�2jZI1vj j. yZI /�j j. yZ
I2 /CjkL1

f
.H� /

DW A2a CA2b :

To proceed, we have

A2a .
X

jI1j�N�4
jI2j�jI j

kZI1vkL1.H� /

 . yZI /�
.t � r/


L2
f
.H� /

 .�=t/ yZI2 
.t � r/


L2
f
.H� /

. .C1"/3��1C2ı ;

in which we used Propositions 4.1 and 4.2, and

A2b .
X
jI1j�jI j
jI2j�N�4

kZI1vkL2
f
.H� /

 . yZI /�
.t � r/


L2
f
.H� /

 .�=t/ yZI2 
.t � r/


L1.H� /

. .C1"/3��1C2ı ;

in which we used Propositions 4.1 and 4.2, as well as the fact that

k.�=t/.t � r/�1��1kL1.H�\K/ . ��2:

Thus we obtain
A2 . .C1"/3��1C2ı :

In a very similar manner to estimating the term A2, we can show

A3 CA4 . .C1"/3��1C2ı :

By gathering these estimates, we arrive at

ED.s; yZI ; 1/ . "2 C .C1"/3
Z s

s0

��1C2ı d� . "2 C .C1"/3s2ı ; jI j D N:

The proof is complete.
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4.5. Proof of Theorem 1.1

Proof. Global existence and time decay. The results of Propositions 4.9, 4.11, 4.12, and
4.13 imply that for a fixed 0 < ı � 1 and N 3 N � 7 there exists an "0 > 0 sufficiently
small that for all 0 < " � "0 we have

ED.s; yZI /1=2 C E1.s; Z
Iv/1=2 �

1

2
C1"; jI j � N � 2;

ED.s; yZI /1=2 C E1.s; Z
Iv/1=2 �

1

2
C1"s

ı ; jI j D N � 1;

ED.s; yZI ; 1/1=2 C s�1E1.s; Z
Iv/1=2 �

1

2
C1"s

ı ; jI j D N:

(4.4)

We can now conclude the bootstrap argument. By classical local existence results for
nonlinear hyperbolic PDEs, the bounds (4.1) hold whenever the solution exists. Clearly
s1 > s0 and, moreover, if s1 <C1 then one of the inequalities in (4.1) must be an equality.
However, we see from (4.4) that by choosing C1 sufficiently large and "0 sufficiently
small, the bounds (4.1) are in fact refined. This then implies that we must have s1 DC1.
Finally, the decay estimates (1.4) follow from (4.4) combined with the Sobolev estimates
(2.7) and (2.9).

Scattering. We next show the scattering of the solution .v;  /. We will only illustrate the
proof for the Klein–Gordon field v, as the proof for the Dirac field  is analogous. Due to
Lemma 2.8, it suffices to show thatZ C1

t0

k �H kL2.R2/ dt < C1:

However, this does not seem possible. So we instead show the scattering for the variable
Q in Lemma 4.4. In any case, we need to first derive the bounds of kZI kL2.R2/ (i.e.

on constant t -slices) from the known ones kZI kL2
f
.Hs/

(i.e. on constant s D
p
t2 � r2-

slices). To do so, for any large T > t0 C 2 the conservation of charge implies that

k .T /kL2.R2/ D k 0kL2.R2/ . ":

In addition, for the yZ equation we integrate the differential identity

@t .. yZ /
�. yZ //C @a.. yZ /

�0a. yZ //

D i. yZ /�0..Zv/ C v. yZ // � i..Zv/ C v. yZ //�0 yZ 

over the spacetime region R0 WD ¹.t; x/W t � T; t2 � jxj2 � s20º \ ¹.t; x/W t � jxj C 1º to
get

k. yZ /.T /k2
L2.R2/

. ED.s0; yZ /C

Z
R0

j. yZ /�0..Zv/ C v. yZ //j dx dt

. "2 C
Z

KŒs0;T �

j. yZ /�0..Zv/ C v. yZ //j dx dt:
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To proceed, we haveZ
KŒs0;T �

j. yZ /�0..Zv/ C v. yZ //j dx dt

.
Z T

s0

k.�=t/. yZ /�0..Zv/ C v. yZ //kL1
f
.H� /

d�

.
X

jI jCjJ j�1

Z T

s0

k.�=t/ yZ kL2
f
.H� /
k yZI kL1.H� /kZ

J vkL2
f
.H� /

d�

. .C1"/3
Z T

s0

��1 d� . .C1"/3 logT:

Next we use Lemma 2.4 to bound

k@˛ H@
˛ kL2.R2/

. k.s2=t2/j@t j2kL2.R2/

C

X
a

kj@t jt
�1
jLa jkL2.R2/ C

X
a;b

kt�1jLa jt
�1
jLb jkL2.R2/

. .C1"/2t�3=2 log t;

which is an integrable quantity. Thus we getZ C1
t0

k@˛ H@
˛ kL2.R2/ dt < C1:

Similarly, we can showZ C1
t0

.k �H�@�.v /kL2.R2/ C k@˛ H@
˛ kL2.R2// dt < C1:

Thus there exists a free Klein–Gordon component vC, such that

lim
t!C1

�X
˛

k@˛. Qv � v
C/kL2.R2/ C kQv � v

C
kL2.R2/

�
D 0:

We note that for all t � t0 it holds thatX
˛

k@˛. 
�H /kL2.R2/ C k 

�H kL2.R2/ . .C1"/2t�1=2 log t ! 0 as t !C1:

Finally, we conclude that

lim
t!C1

�X
˛

k@˛.v � v
C/kL2.R2/ C kv � v

C
kL2.R2/

�
D 0:

The proof is complete.
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A. Proof of Theorem 1.2

We note that the proof for Theorem 1.2 is similar to, and even easier than, the proof of
Theorem 1.1. Given this, we omit some details for certain estimates in the proof.

A.1. Bootstrap assumptions and preliminary estimates

Fix N 2 N a large integer (N � 4 will work for our argument below). The local well-
posedness theory guarantees that there exists C0 > 0 such that the following bounds hold
for all jI j � N :

E1.s0; Z
Iv/1=2 C ED.s0; yZ

I /1=2 � C0":

Next we assume that the following bounds hold for s 2 Œs0; s1/:

ED.s; yZI /1=2 C E1.s; Z
Iv/1=2 � C1"; jI j � N � 1;

ED.s; yZI /1=2 C E1.s; Z
Iv/1=2 � C1"s

ı ; jI j � N:
(A.1)

In the above, the constant C1 � 1 is to be determined, "� 1 measures the size of the
initial data, and we let C1"� 1, and 0 < ı � 1

10
. For the rest of the appendix we assume,

without restating the fact, that (A.1) hold on a hyperboloidal time interval Œs0; s1/, where
s1 is defined as

s1 WD sup
®
sW s > s0; (4.1) holds

¯
:

Similarly to Propositions 4.1, 4.2, and 4.3, we have the following preliminary L2 and
L1 estimates.

Proposition A.1. For s 2 Œs0; s1/ we have

k.s=t/ yZI kL2
f
.Hs/
Ck.s=t/ZI kL2

f
.Hs/
Ck. yZI /�kL2

f
.Hs/
.

´
C1"; jI j � N �1;

C1"s
ı ; jI j � N;

k.s=t/@ZIvkL2
f
.Hs/
C k.s=t/ZI@vkL2

f
.Hs/
C kZIvkL2

f
.Hs/
.

´
C1"; jI j � N � 1;

C1"s
ı ; jI j � N:

Proposition A.2. For s 2 Œs0; s1/ we have

j yZI j C jZI j C .t=s/j. yZ /�j .

´
C1"s

�1; jI j � N � 3;

C1"s
�1Cı ; jI j � N � 2;

j@ZIvj C jZI@vj C .t=s/jZIvj .

´
C1"s

�1; jI j � N � 3;

C1"s
�1Cı ; jI j � N � 2:

Proposition A.3. The following weighted L2-estimates are valid for s 2 Œs0; s1/:

k.t � r/.s=t/@ZI kL2
f
.Hs/
C k.t � r/.s=t/@ yZI kL2

f
.Hs/
. C1"sı ; jI j � N � 1;

and the following pointwise estimates also hold for s 2 Œs0; s1/:

j@ZI j C j@ yZI j . C1".t � r/�1s�1Cı ; jI j � N � 3:
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A.2. Improved estimates for the Klein–Gordon field

In order to improve the energy bounds for the Klein–Gordon field, we apply two different
arguments for the lower-order energy case and for the top-order energy case. For the lower-
order case, we rely on a nonlinear transformation (of Type 1 in Section 3.1) to remove the
slowly decaying term  �0 . This is at the expense of introducing null and cubic terms,
yet nevertheless allows us to obtain uniform energy bounds.

On the other hand, when deriving the refined bound for the top-order Klein–Gordon
energy, the nonlinear transformation is invalid due to issues with regularity. Thus, in this
case we need to utilise the hidden Klein–Gordon structure of the nonlinearities as shown
in Lemmas 3.2 and 3.4. Using this we can improve the energy bounds with the aid of the
linear behaviour of  in the lower-order case.

Lemma A.4. Let Qv WD v �  �0 . Then Qv solves the Klein–Gordon equation

�� Qv C Qv D �i@�.v �/�0 C i �0�@�.v /C 2�˛ˇ@˛ �0@ˇ : (A.2)

Proof. The proof is straightforward.

Lemma A.5. We have

E1.s; Z
I
Qv/1=2 . "C .C1"/2; jI j � N � 1:

Proof. Acting ZI with jI j � N � 1 on equation (A.2) produces

��ZI Qv CZI Qv D ZI
�
�i@�.v 

�/�0 C i �0�@�.v /C 2@˛ 
�0@˛ 

�
:

The energy estimates of Proposition 2.1 then imply

E1.s; Z
I
Qv/1=2 . E1.s0; Z

I
Qv/1=2

C

Z s

s0

ZI � � i@�.v �/�0 C i �0�@�.v /
C 2@˛ 

�0@˛ 
�
L2
f
.H� /

d�:

The proof follows similarly to Lemma 4.5, where we bound each of the terms to get
the desired estimates.

The following lemma is the key to closing the top-order bootstraps for the Klein–
Gordon field.

Lemma A.6. We have

kZI . �0 /kL2
f
.Hs/
. .C1"/2s�1Cı ; jI j � N:

Proof. By Lemma 3.4 we find

jZI . �0 /j �
X

jI1jCjI2jDN

j. yZI1 /�0 yZI2 j:
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Next we apply Lemma 3.2 to reveal the hidden Klein–Gordon structure of the nonlinearity:

ZI . �0 / D
1

4

X
jI1jCjI2jDN

�
. yZI1 /�

�0. yZI2 /� C . yZ
I1 /�

�0. yZI2 /C

C . yZI1 /C
�0. yZI2 /� C

��
t

�2
. yZI1 /�0. yZI2 /

�
:

We recall that . yZI1 /� can be regarded as a Klein–Gordon component in the sense that it
enjoys the sameL2-type andL1 estimates as Klein–Gordon components, while . yZI1 /C
enjoys the same good bounds as yZI1 . We proceed to bound

kZI . �0 /kL2
f
.Hs/

.
X

jI1jCjI2jDN

�
k. yZI1 /�

�0. yZI2 /�kL2
f
.Hs/
C k. yZI1 /�

�0. yZI2 /CkL2
f
.Hs/

C k.s=t/2. yZI1 /�0. yZI2 /kL2
f
.Hs/

�
:

We first show X
jI1jCjI2jDN

k. yZI1 /�
�0. yZI2 /�kL2

f
.Hs/

.
X

jI1j�N�3
jI2j�N

k. yZI1 /�kL1.Hs/k.
yZI2 /�kL2

f
.Hs/

C

X
jI1j�N�2
jI2j�N�1

k. yZI1 /�kL1.Hs/k.
yZI2 /�kL2

f
.Hs/

. .C1"/2s�1Cı ;

in which the assumption N � 4 was used in the first inequality. Similarly, we also haveX
jI1jCjI2jDN

k. yZI1 /�
�0. yZI2 /CkL2

f
.Hs/

.
X

jI1j�N�3
jI2j�N

k.t=s/. yZI1 /�kL1.Hs/k.s=t/.
yZI2 /CkL2

f
.Hs/

C

X
jI1j�N�2
jI2j�N�1

k.t=s/. yZI1 /�kL1.Hs/k.s=t/.
yZI2 /CkL2

f
.Hs/

C

X
jI1j�N
jI2j�N�3

k. yZI1 /�kL2
f
.Hs/
k.s=t/. yZI2 /CkL1.Hs/

C

X
jI1j�N�1
jI2j�N�2

k. yZI1 /�kL2
f
.Hs/
k.s=t/. yZI2 /CkL1.Hs/

. .C1"/2s�1Cı :
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We then estimateX
jI1jCjI2jDN

k.s=t/2. yZI1 /�0. yZI2 /kL2
f
.Hs/

.
X

jI1j�N�3
jI2j�N

k.s=t/ yZI1 kL1.Hs/k.s=t/.
yZI2 /kL2

f
.Hs/

C

X
jI1j�N�2
jI2j�N�1

k.s=t/ yZI1 kL1.Hs/k.s=t/.
yZI2 /kL2

f
.Hs/

. .C1"/2s�1Cı :

Gathering the above estimates, we obtain

kZI . �0 /kL2
f
.Hs/
. .C1"/2s�1Cı ; jI j C jJ j � N:

Proposition A.7. We have

E1.s; Z
Iv/1=2 .

´
"C .C1"/

2; jI j � N � 1;

"C .C1"/
2sı ; jI j � N:

Proof. We first show the improved energy estimates in the case of jI j � N . We act the
Klein–Gordon equation in (1.1) with ZI to get

��ZIv CZIv D ZI . �0 /:

The energy estimates of Proposition 2.1 and the key result of Lemma A.6 imply

E1.s; Z
I
Qv/1=2 . E1.s0; Z

I
Qv/1=2 C

Z s

s0

kZI . �0 /kL2
f
.H� /

d�

. "C .C1"/2
Z s

s0

��1Cı d�

. "C .C1"/2sı :

We next turn to the uniform energy bounds for jI j � N � 1. Due to the uniform
estimates of Lemma A.5, we just need to study the difference between v and Qv. This is a
quadratic term  �0 which, for jI j � N � 1, is controlled using Lemma A.6 as

E1.s; Z
I . �0 //1=2

. k.s=t/@tZI . �0 /kL2
f
.Hs/
C

X
a

k@aZ
I . �0 /kL2

f
.Hs/

C kZI . �0 /kL2
f
.Hs/

. .C1"/2s�1Cı :

In conclusion we find, for jI j � N � 1,

E1.s; Z
Iv/1=2 . E1.s; Z

I
Qv/1=2 C E1.s; Z

I . �0 //1=2 . "C .C1"/2:
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A.3. Improved estimates for the Dirac field

In order to improve the energy bounds for the Dirac field, we also use two different
arguments for the lower-order energy case and for the top-order energy case. For the
lower-order case, our strategy is to introduce the new variable

Q D  C i�@�.vF /;

and derive a uniform energy bound for its lower-order energy. This is a nonlinear trans-
formation of Type 3 in Section 3.1 and it allows us to remove the slowly decaying nonlin-
earity v at the expense of introducing null and cubic terms. After obtaining lower-order
uniform energy bounds for Q we can then easily get improved bounds for the lower-order
energy of  since the difference between  and Q is a quadratic term.

Similarly to the strategy for the Klein–Gordon field, this transformation to Q is not
valid at top order. Nevertheless, with the linear behaviour of the fields , v in the bootstrap
assumptions (A.1), we can also close the bootstrap for the top-order energy estimates.

Lemma A.8. Let Q WD  C i�@�.vF /. Then Q solves the Dirac equation

�i�@� Q D . 
�0 /F C i�v@�.vF / � 2@˛vF @

˛ :

Proof. The proof is straightforward.

Lemma A.9. Let the estimates in (A.1) hold. Then, for s 2 Œs0; s1/ we have

ED.s; yZI Q /1=2 . "C .C1"/2; jI j � N � 1:

Proof. From Proposition 2.2 we see that we need to controlX
jI j�N�1

Z s

s0

k yZI .i�@� Q /kL2
f
.H� /

d�:

Mimicking the analysis in Lemma 4.7, we can show (recall Lemma A.8) thatX
jI j�N�1

k yZI .i�@� Q /kL2
f
.H� /
. .C1"/2��2C2ı ;

which leads us to

ED.s; yZI Q /1=2 . ED.s0; yZ
J Q /1=2 C .C1"/

2

Z s

s0

��2C2ı d�

. "C .C1"/2; jI j � N � 1:

Proposition A.10. Let the estimates in (A.1) hold. Then, for s 2 Œs0; s1/ we have

ED.s; yZI /1=2 .

´
"C .C1"/

2; jI j � N � 1;

"C .C1"/
2sı ; jI j � N:
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Proof. We begin with the estimate at top order. For jI j � N , and given N � 4, we have

k yZI .vF /kL2
f
.Hs/
.

X
jI1j�N
jI2j�N�3

kZI1vkL2
f
.Hs/
k yZI2 kL1.Hs/

C

X
jI1j�N�3
jI2j�N

k.t=s/ZI1vkL1.Hs/k.s=t/
yZI2 kL2

f
.Hs/

C

X
jI1j�N�1
jI2j�N�2

kZI1vkL2
f
.Hs/
k yZI2 kL1.Hs/

C

X
jI1j�N�2
jI2j�N�1

k.t=s/ZI1vkL1.Hs/k.s=t/
yZI2 kL2

f
.Hs/

. .C1"/2s�1Cı :

Note that in the final step we carefully used the uniform energy bounds from Proposition
A.1 and the sharp pointwise estimates from Proposition A.2 so as not to pick up an s2ı

growth.
Thus the energy inequality of Proposition 2.2 implies

ED.s; yZI /1=2 . ED.s0; yZ
I /1=2 C

Z s

s0

k yZI .vF /kL2
f
.H� /

d�

. "C .C1"/2
Z s

s0

��1Cı d� . "C .C1"/2sı :

As for the case of jI j � N � 1, we can show (similarly to the proof of Proposition
4.11), that

ED.s; yZI /1=2 . ED.s; yZI Q /1=2 C E1
�
s; yZI .iv@�.vF //

�1=2 . "C .C1"/2:
A.4. Proof of Theorem 1.2

Proof of Theorem 1.2. The results of Propositions A.7 and A.10 imply that, for a fixed
0 < ı � 1 and N 3 N � 4, there exists an "0 > 0 sufficiently small, such that for all
0 < " � "0 we have for all s 2 Œs0; s1/,

ED.s; yZI /1=2 C E1.s; Z
Iv/1=2 �

1

2
C1"0; jI j � N � 1;

ED.s; yZI /1=2 C E1.s; Z
Iv/1=2 �

1

2
C1"0s

ı ; jI j � N:

Similarly to the argument in the proof of Theorem 1.1, we can deduce from the above
that s1 D C1. As for the time decay and scattering, the proof is very similar to that of
Theorem 1.1, and so we omit the details.
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