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Approximate control of parabolic equations with on-off
shape controls by Fenchel duality

Camille Pouchol, Emmanuel Trélat, and Christophe Zhang

Abstract. We consider the internal control of linear parabolic equations through on-off shape con-
trols, i.e., controls of the formM.t/�!.t/ withM.t/ � 0 and !.t/ with a prescribed maximal meas-
ure. We establish small-time approximate controllability towards all possible final states allowed
by the comparison principle with nonnegative controls. We manage to build controls with constant
amplitude M.t/ � xM . In contrast, if the moving control set !.t/ is confined to evolve in some
region of the whole domain, we prove that approximate controllability fails to hold for small times.
The method of proof is constructive. Using Fenchel–Rockafellar duality and the bathtub principle,
the on-off shape control is obtained as the bang-bang solution of an optimal control problem, which
we design by relaxing the constraints. Our optimal control approach is outlined in a rather general
form for linear constrained control problems, paving the way for generalisations and applications to
other PDEs and constraints.

1. Introduction

1.1. Constrained internal control

This article is devoted to the internal approximate controllability problem at time T > 0 for
linear parabolic equations on a domain � by means of on-off shape controls, i.e., internal
controls taking the form

8t 2 .0; T /; 8x 2 �; u.t; x/ DM.t/�!.t/.x/;

where, at a given time t 2 .0; T /,

• M.t/ > 0 is the nonnegative amplitude of the control,

• �!.t/ is the characteristic function of the set !.t/ � �, i.e.,

�!.t/.x/ WD

´
1 if x 2 !.t/;

0 otherwise:
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Both the amplitude and location may be subject to constraints. This problem is a paradig-
matic simplification of many practical situations where one can act on a complex system
with on-off devices that can be moved in time, while their shape can also be modified.

In the introduction, we discuss our results for general operators A, while first illus-
trating them in the case of the controlled linear heat equation with Dirichlet boundary
conditions 8̂̂<̂

:̂
yt ��y D u in �;

y D 0 on @�;

y.0/ D y0 in �:

(1.1)

In this setting, � is an open connected bounded subset of Rd , with C 2 boundary, and
y0 2 L

2.�/.

Control without constraints. When constraints are removed, generic parabolic equa-
tions are well known to be approximately controllable [3, 43], and even null-controllable
[15,25] in arbitrarily small time by means of internal controls, acting only on an arbitrary
fixed measurable subset ! � � of positive measure.

This more precisely means that for any time T > 0, any measurable set ! � � of
positive measure, any " > 0, any y0 2 L2.�/ and target yf 2 L2.�/, there holds

9u 2L2..0;T /��/ such that 8t 2 .0;T /; supp.u.t; �//�! and ky.T /� yf kL2.�/ � ";

where supp.u/ refers to the essential support of a function u 2 L2.�/.

Constrained control. In view of applications where unilateral or bilateral or L1 con-
straints naturally appear, constrained controllability has been an active area of research
[1, 9, 45], whether in finite or infinite dimension.

In various contexts, control constraints have been shown to lead to controllability
obstructions, even for unilateral constraints. Some states are out of reach, regardless of
how large T > 0 may be [38, 42]. On the other hand, some states are reachable but only
for T large enough: constraints may lead to the appearance of a minimal time of control-
lability [28–30, 37].

In the case of unilateral constraints for linear control problems in finite dimension,
these obstructions can be categorised thanks to Brunovsky’s normal form as done in [29],
leading to the existence of a positive minimal time. In infinite dimension, however, we
are only aware of obstructions based on the comparison principle (see [28] and [38]). The
present work uncovers another type of obstruction, already hinted at in [37].

1.2. Main results

As our results require different sets of hypotheses and in order to give a quick glance at
the main ideas, we first present them in the simplified context of the heat equation (1.1).

Given a constraint set UC � L
2.�/, we will be considering control constraints of the

form
8t 2 .0; T /; u.t/ 2 UC:
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Here, the notation UC emphasises that we will always deal with constraints that include
the nonnegativity constraint, i.e., sets UC such that UC � ¹u 2 L

2.�/; u � 0º.
Now, when the control u satisfies u � 0, it follows from the parabolic comparison

principle satisfied by the Dirichlet Laplacian [18] that

8t � 0; y.t/ � et�y0; (1.2)

where .et�/t�0 denotes the heat semigroup with Dirichlet boundary conditions. Hence,
targets yf which do not satisfy yf � eT�y0 cannot be reached with nonnegative controls,
let alone on-off shape controls.

Taking into account the obstruction to controllability given by the inequality (1.2),
we adapt the usual definition of approximate controllability to the context of nonnegative
controls.

More precisely, we say that system (1.1) is nonnegatively approximately controllable
with controls in UC in time T > 0, if for all " > 0, and all y0; yf 2 L2.�/ such that
yf � e

T�y0, there exists a control u 2 L2..0; T / ��/ with values in UC such that the
corresponding solution to (1.1) satisfies ky.T / � yf kL2.�/ � ".

On-off shape control. For our first main result, we focus on nonnegative approximate
controllability with on-off shape controls: for a fixedL 2 .0; 1/, we consider the constraint
set

U
shape
L
WD
®
M�! ; ! � �; j!j � Lj�j; M > 0

¯
� L2.�/:

Within the above class of on-off shape controls, we establish nonnegative approximate
controllability in arbitrary time (see Theorem 3.1 for the precise and general statement),
whatever the value of L 2 .0; 1/.

Theorem A. For any L 2 .0; 1/, T > 0, system (1.1) is nonnegatively approximately
controllable with controls in UL

shape in time T .

To establish this result, we draw from the Lions strategy in [27], which develops a
constructive approach in studying the approximate controllability of a linear wave equa-
tion. The idea is to consider the requirement ky.T / � yf kL2.�/ � " as a constraint. With
LT u WD

R T
0
e.T�t/�u.t/ dt and since y.T / D LT uC eT�y0, Lions considers the con-

strained optimal control problem

� WD inf
°1
2
kuk2

L2..0;T /��/
; keT�y0 C LT u � yf kL2.�/ � "

±
:

The infimum satisfies � < C1 if and only if there exists u 2 L2..0; T / ��/ steering y0
to a closed "-ball around yf . To find minimisers, i.e., to build controls, note that

� D inf
u2L2..0;T /��/

1

2
kuk2

L2..0;T /��/
CGT;".LT u/

D inf
u2L2..0;T /��/

FT .u/CGT;".LT u/;
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with FT .u/ D 1
2
kuk2

L2..0;T /��/
and

GT;".y/ D

´
0 if keT�y0 C y � yf kL2.�/ � ";

C1 otherwise:

From this optimisation problem, one computes its Fenchel dual optimisation problem,
which reads

d WD � inf
pf 2L

2.�/
F �T .L

�
Tpf /CG

�
T;".�pf /

D � inf
pf 2L

2.�/

1

2
kL�Tpf k

2
L2..0;T /��/

CG�T;".�pf /;

where F �T (D FT ) and G�T;" are the Fenchel conjugates of FT and GT;", respectively, and
L�T is the adjoint of the linear bounded operator LT WL2..0; T / ��/! L2.�/. Recall
that for a given pf 2 L2.�/, p D L�Tpf is the solution to the adjoint equation ending at
pf , i.e., it solves 8̂̂<̂

:̂
pt C�p D 0;

p D 0 on @�;

p.T / D pf on �:

(1.3)

Under suitable conditions, the Fenchel–Rockafellar theorem [41] ensures that � D d .
As a result, one can then study the dual functional to establish that � D d < C1, and
that its minimum is attained. Typically, one proves that it is coercive, as a consequence of
a unique continuation property. Furthermore, the cost function FT is differentiable in this
case and the first-order optimality condition for the (unique) variable p?

f
minimising the

dual functional then reads

LTL
�
Tp

?
f D yf � e

T�y0 � "
p?
f

kp?
f
kL2.�/

:

The optimal control u? WD L�Tp
?
f

is thus constructed from the minimiser of the dual prob-
lem p?

f
.

Accordingly, in this paper we reframe constrained approximate controllability as an
optimal control problem, replacing the cost 1

2
kuk2

L2..0;T /��/
of [27] with a suitable cost

functional FT . This constitutes a novel generalisation of the Lions method.
One can choose between two different sufficient conditions for the equality � D d to

hold. One concerns the primal problem, and the other the dual problem. Importantly, they
are not symmetric (although the primal and dual problems are). These hypotheses, when
used on the primal problem, are useless when it comes to proving controllability: they
amount to assuming that controllability holds. Crucially, here we use these hypotheses in
terms of the dual problem; see Section 2.2 and Appendix A.4 for more details.
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The detailed statements in Theorem 3.1 and Proposition 3.8 show the following:

• Instead of using the L2 norm as in the optimal control problem studied in [27], we
will consider the cost functional

FT .u/ WD
1

2
sup
t2Œ0;T �

max
�
ku.t; �/kL1.�/;

ku.t; �/kL1.�/

Lj�j

�2
C ı¹u�0º.u/; (1.4)

where ı¹u�0º.u/ D 0 if u � 0 and C1 otherwise, and the supremum over t 2 Œ0; T �
is the essential supremum.

The rather unusual form of the minimisation criterion (1.4) is finely designed so
as to handle nonnegativity and the other (bound, volume) constraints we are dealing
with.

• The optimal controls have constant amplitude in time, i.e., M.t/ � xM .

• The proof is constructive: the optimal control u? can be computed from a unique
dual optimal variable p?

f
solving the corresponding Fenchel dual problem. This com-

putation generalises what is done in [27] to the broader case of costs that are not
differentiable but still convex. More precisely, u? is given by

u?.t; �/ D xM �¹p?.t;�/>h.p?.t;�//º; xM D

Z T

0

Z
¹p?.t;�/>h.p?.t;�//º

p?.t; x/ dx dt;

where hWL2.�/! R is a function that will be defined in Section 2.3, and p? solves
the adjoint equation (1.3) with p?.T / D p?

f
.

Obstructions to nonnegative controllability. In the spirit of the unconstrained case, one
may wonder whether nonnegative approximate controllability can be achieved with con-
trols acting only in some prescribed time-independent subdomain !. We emphasise that
our first result does not a priori prevent the control from visiting the whole domain �.

Our second result proves that visiting the whole of � is necessary in the following
sense: if the sets !.t/; t 2 .0;T / do not intersect some fixed open subset of�, nonnegative
approximate controllability is lost for small times.

Theorem B. Assume that the constraint set UC satisfies the following property: there
exists a ball B.x; r/ � � with x 2 � and r > 0 such that

8u 2 UC; supp.u/ \ B.x; r/ D ;:

Then there exists T ? > 0 such that the control system (1.1) is not nonnegatively approx-
imately controllable with controls in UC in time T � T ?.

We refer to Theorem 4.1 for the complete statement. Let us mention that obstructions
of this type have been reported for similar problems in [37].

Amplitude and time-optimal control. In Section 5 we gather several further results
regarding the dependence of the amplitude xM D xM.T; y0; yf ; "/ on its arguments. Using
duality once more, we study its dependence on the final time T .
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Focusing on the case y0 D 0, we then establish an equivalence between the optimal
control problem and the related minimal time problem

inf
®
T > 0; 9u 2 L2..0; T / ��/; kLT u � yf kL2.�/ � "; FT .u/ � �

¯
; � > 0:

1.3. General results

Theorems A and B above have been stated for the heat equation with Dirichlet boundary
conditions, in order to provide the reader with a quick overview of our main results. In fact,
they all hold for more general semigroups under suitable hypotheses presented hereafter.

The underlying general setting is that of linear control problems of the form´
yt � Ay D u;

y.0/ D y0 in �;
(1.5)

where � is an open subset of Rd , and AWD.A/! L2.�/ is an operator generating a C0
semigroup .St /t�0 on L2.�/ [16, 36].

In this more general context, we define nonnegative approximate controllability as
follows.

Definition 1.1. Given a constraint set of nonnegative controls UC � L
2.�/, we say that

system (1.5) is nonnegatively approximately controllable with controls in UC in time T
if for all " > 0, and all y0; yf 2 L2.�/ such that yf � ST y0, there exists a control u 2
L2..0; T / ��/ with values in UC such that the corresponding solution to (1.5) satisfies
ky.T / � yf kL2.�/ � ".

General hypotheses for Theorem A. We have previously presented Theorem A for the
heat equation as a paradigmatic example. Nevertheless, the underlying hypotheses on
which some of our proofs rely are much more general in nature; we review them below.

• First, we consider the (unusual) unique-continuation-like property

8y 2 L2.�/; 9 t 2 .0; T /; Sty is constant over � H) y D 0: (GUC)

One sufficient condition for the above property to be satisfied is that the three assump-
tions below hold:

– for y 2 L2.�/, Sty 2 D.A/ for all t > 0 (for instance, this is true if .St /t�0 is
analytic [36]),

– the only constant function in D.A/ is the zero function,1

– St is injective for all t > 0.2

1This is the case for the Dirichlet Laplacian with domain D.A/ D H 2.�/ \H 1
0 .�/ if � has a C 2

boundary.
2This is the case for groups, such as the wave equation, and for parabolic equations thanks to the

parabolic maximum principle. This is also true for analytic semigroups: if Sty D 0 for some t > 0, then
Ssy D 0 for all s � t and by analyticity Ssy D 0 for all s � 0, which for s D 0 yields y D 0.
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• Second, we will be interested in analytic-hypoellipticity: @t �A is said to be analytic-
hypoelliptic if any distributional solution y to @ty � Ay D f on � � .0; T / with f
analytic in � is analytic in �, where analyticity refers to real-analyticity.

• Third, we will say that .St /t�0 satisfies the comparison principle if

8y 2 L2.�/; y � 0 H) 8t > 0; Sty � 0: (1.6)

The first two properties are sufficient for the generalisation of Theorem A; see The-
orem 3.1. The third will play an important role when it comes to minimal controllability
times, and is in line with our definition of nonnegative approximate controllability.

Elliptic operators. As a generalisation of the Dirichlet Laplacian, let us discuss a large
class of uniformly elliptic operators that do satisfy these properties and to which our
obstruction result Theorem B generalises (see Theorem 4.1).

Let us assume that � is a bounded, open, connected subset of Rd , with C 2 boundary.
Defining D.A/ WD H 1

0 .�/ \H
2.�/, we introduce operators of the form

8y 2 D.A/; Ay WD
X

1�i;j�d

@xj .aij .x/@xiy/ �

dX
iD1

bi .x/@xiy C c.x/y: (1.7)

When referring to operators of the form (1.7), we will always assume that the functions
aij D aj i , bi are in W 1;1.�/, c is in L1.�/, and that the operator is uniformly elliptic,
i.e., there exists � > 0 such that

8x 2 �; 8� 2 Rd ;
X

1�i;j�d

aij .x/�i�j � � j�j
2:

The adjoint of A is given by

8p 2 D.A�/; A�p D
X

1�i;j�d

@xi .aij .x/@xjp/

C

dX
iD1

bi .x/@xip C

�
c.x/ �

dX
iD1

@xi .bi .x//

�
p;

and we have D.A�/ D D.A/.
Both A and A� satisfy the parabolic comparison principle [18]; hence they satisfy the

comparison principle (1.6). They also satisfy the three conditions sufficient for the (GUC)
property to hold.3 Furthermore, both @t � A and @t � A� are analytic-hypoelliptic when-
ever all functions aij , bi and c are analytic [35].

3The analyticity of the semigroup is well known for this class of elliptic operators on open domains
with C 2 boundary. There are clearly no nonzero constant functions inH 2 \H 1

0 . Finally, injectivity follows
from the comparison principle (see footnote 2).
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1.4. Proof strategy and related works

In the unconstrained case, approximate controllability of the heat equation is a conse-
quence of the unique continuation property, thanks to a general property of linear control
problems (see for example [13, Section 2.3]). In the case of the heat equation, the latter
property can be obtained by the Holmgren uniqueness theorem [3]. In contrast to these
existence results, the variational approach developed in [27] (see Section 1.2), handles
approximate controllability in a constructive manner.

Our strategy consists in extending this approach to the constrained case: the main idea
is to find a suitable cost function FT such that optimal controls must satisfy the constraint
u 2 U

shape
L . A remarkable feature of our strategy lies in how we design the cost function:

we do so by building an adequate Fenchel dual function, instead of trying to find the cost
function directly.

Constrained controllability. Constrained control problems in infinite dimension have
been studied in papers such as [4–6, 17, 21]. In [17], sufficient conditions (in the form
of unique continuation properties) for controllability results are derived when the control
and states are constrained to some prescribed subspaces, but at the expense of controlling
only a finite-dimensional subpart of the final state. In [21], the authors deal with a form
of approximate controllability of the heat equation akin to ours, focusing on minimal time
problems. They derive bang-bang-type necessary optimality conditions for minimal time
controls, and then build such controls using an auxiliary optimisation problem.

The papers [4–6] address constrained exact controllability through modified observ-
ability inequalities, thus giving abstract necessary and/or sufficient conditions. One key
difference with our work is that constraint sets are assumed to be convex. In fact, all
examples handled by [4–6] feature isotropic constraints, i.e., constraints that are symmet-
rical with respect to 0, or more generally, are expressed using radial functions (such as
norms). This precludes, for instance, any type of positivity constraint.

It is noteworthy that all the above references introduce so-called dual functionals,
drawing from the variational formulation of the Hilbert Uniqueness Method (HUM). How-
ever, the formalism of Fenchel–Rockafellar duality in itself, as developed in [27], has
increasingly been abandoned in the literature. Some notable exceptions are [46] in the
context of stabilisation and [24] for parameterised problems, both in the unconstrained
case. To some extent, the work [5] uses Fenchel duality to study (constrained) null-
controllability in some specific settings.

We fully exploit the ideas hinted at in the latter paper by choosing a different type of
functional, which allows us to handle anisotropic, nonconvex constraints. In contrast with
the aforementioned trend in the literature, we work with Fenchel duality, but in a rather
unusual way, in that we will focus mainly on the dual problem. The nature of the actual
primal problem (optimal control problem) being solved follows effortlessly. To perform
the necessary computations, we will make extensive use of convex analysis. Doing so
bypasses many technical difficulties thanks to properties of subdifferentials and Fenchel
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conjugates, among others, and allows for the use of costs which are not differentiable but
still smooth in the convex analytic sense.

Bathtub principle for appropriate costs. The second main idea is what underlies our
choice of cost function FT , forcing optimal controls to satisfy the required on-off shape
constraint. As the set of on-off shape controls is a nonconvex cone, we are led to relaxation,
i.e., to consider the closure of its convex hull. In order to build relevant costs, we then rely
on the so-called bathtub principle (actually, a relaxed version of it) [26].

For a given function v 2 L2.�/, the latter principle solves

sup
u2 xUL

Z
�

u.x/v.x/ dx; xUL WD
®
u 2 L2.�/, 0 � u � 1 and

R
�
u � Lj�j

¯
:

This optimisation problem comes up naturally in some control problems similar to ours
[23, 31], or in shape optimisation problems [39].

Interpreting the bathtub principle as a Fenchel conjugate leads us to design the unusual
cost functional (1.4). This allows us to design dual problems such that optimal controls
exist, and are characterised as maximisers of some bathtub principle. Then, using ana-
lyticity properties for solutions of the dual problem, we prove their uniqueness and hence
their extremality, thereby uncovering that they are on-off shape controls.

Bang-bang property of optimal controls. Bang-bang controls (i.e., controls that saturate
their constraints) are a common feature in time-optimal control problems. A growing liter-
ature on the heat equation alone [33,34,44,47,49] shows that this property extends well to
some infinite-dimensional systems. In our case, we will see that the on-off shape controls
we have constructed can be understood as time-optimal controls. As these controls are
bang-bang, this yields another occurrence of the bang-bang property in the time-optimal
control of the heat equation.

Note, however, that in the references cited above, the controls are constrained to lie
in balls of specific function spaces, whereas we consider a nonnegative constraint on the
controls, which is an anisotropic constraint. Moreover, the bang-bang property is usually
established separately using optimality conditions, having established controllability at
the onset. In our case, the Fenchel–Rockafellar duality approach allows us to do all those
things simultaneously.

1.5. Extensions and perspectives

Operator, boundary conditions. The (GUC) property and analytic-hypoellipticity are
two key sufficient properties for nonnegative approximate controllability by on-off shape
controls. We have highlighted second-order elliptic operators with analytic coefficients
and Dirichlet boundary conditions as an example. Our results apply to such operators with
Robin boundary conditions of the form a.x/yC b.x/@�yD 0 over @� (with a, b analytic)
whenever the function a does not vanish on the whole of @� (more generally, whenever
a is nontrivial on any connected component of @�). This excludes the important case of
Neumann boundary conditions, which remains open.
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Our approach also accommodates subelliptic operators. This includes a large class of
Hörmander operators, i.e., operators of the form A D

Pm
iD1X

2
i CX0 C V Id with vector

fields X1; : : : ; Xm generating a Lie algebra that equals Rd on the whole of �. Under
general regularity assumptions and boundary conditions, such an operator and its adjoint
generate a strongly continuous semigroup on L2.�/, satisfy the comparison principle [7],
all three conditions sufficient for the (GUC) property, and are analytic-hypoelliptic for
instance if the characteristic manifold is an analytic symplectic manifold (see [32]).

Finally, going beyond the linear setting is a completely open problem, since our ap-
proach fundamentally relies on the Fenchel–Rockafellar theorem, which itself requires a
bounded linear operator (the role played by LT in our setting).

Control operator. Our results have been stated with the identity control operator. They
extend to the nonnegative control of´

yt � Ay D 'u;

y.0/ D y0 in �;

where ' 2 L1.�/ is positive, analytic.
An interesting perspective is to follow our proof strategy with boundary control oper-

ators, where on-off shape controls now refer to characteristic functions over the bound-
ary @�.

Other notions of controllability. In the case of unconstrained controllability with a con-
trol acting in some fixed subset !, any function that can be reached exactly is (at least)
analytic in � n !, preventing exact controllability from holding.

On the one hand, this argument for (non)-exact controllability by on-off shape controls
fails since the control may act everywhere. On the other hand, our approach heavily relies
on targeting a ball NB.yf ; "/ with " > 0. As a result, exact nonnegative controllability by
on-off shape controls is an open and seemingly difficult question.

A related matter is that of the cost of approximate controllability as a function of
"! 0.

Although our focus has been on L2-approximate controllability, we mention that one
may extend the same methodology to Lp-approximate controllability for 1 < p < C1,
by working in duality within the appropriate spaces: the bounded operator underlying the
Fenchel–Rockafellar duality is now LT 2 L.L

2.0; T ILp.�//;Lp.�//, meaning that the
dual functional is defined on Lq.�/ with q the dual exponent to p.

Controllability in large time. As evidenced by Theorem B, we provide obstructions for
small times T . We do not know whether nonnegative approximate controllability holds
for sufficiently large times.

Abstract constrained control. The strategy of proof developed in this article hints at
generalisations, where the method is applied to abstract linear control problems with
abstract constraint sets U.
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In particular, we expect it to lead to necessary and sufficient conditions for controllab-
ility when U is convex. When U is not convex, as is the case for on-off shape controls,
this requires one to study the convex hull of U, following the relaxation approach. This
abstract setting should allow us to discern how one can design a cost function FT , analog-
ous to (1.4), tailored to a given U.

Further sufficient conditions should be derived to ensure that optimal controls in the
convex hull of U actually are in the original constraint set U. In the present work, analytic-
hypoellipticity and the (GUC) property play that role in the case of on-off shape controls.

This will be the subject of a future article.

Regularity of the sets !.t/. Another problem is to analyse the complexity of the sets
!.t/ occupied by optimal controls over time. For instance, how smooth (BV regularity,
number of connected components, etc.) are the sets !.t/ achieving approximate control-
lability?

In view of applications, these are important issues for the controls to be implementable
in practice. For example, if the sets !.t/ are constrained to depend on a few parameters
restricting their geometry, or if they are restricted to rigid movements, controllability is a
totally open question.

Homogenisation approach. We acknowledge that an homogenisation approach to estab-
lishing nonnegative approximate controllability by on-off shape controls could certainly
be pursued. The underlying idea would be to “atomise” the sets !.t/ (see [2]). Contrary
to our technique, however, this approach would not be constructive.

Numerical approximation of optimal controls. Optimal controls are given explicitly in
terms of optimisers of the dual problem: the constructive nature of our approach means
that optimal controls may be numerically computed, at least on paper.

Providing reliable and efficient methods to compute optimal controls is a difficult issue
which has been studied in the case of Lions’ cost functional with " D 0 (i.e., exact con-
trollability) [8, 22]. Similar results in a generalised setting with our Fenchel–Rockafellar-
based approach would be valuable.

Contrary to Lions’ cost functional, we note that ad hoc algorithms are required in order
to cope with functions that are not necessarily differentiable, as is the case in the present
paper. Recent primal-dual algorithms designed for optimisation problems with objective
functions of the form F.u/CG.LT u/ are likely to be good candidates [11].

Outline of the paper. First, Section 2 lays out the convex analytic framework, that of
Fenchel–Rockafellar duality, and how it may be applied to constrained approximate con-
trollability. We then introduce the bathtub principle and interpret it in terms of Fenchel
conjugation in order to design a relevant optimal control problem for our purposes. Sec-
tion 3 is dedicated to the proof of our nonnegative approximate controllability result given
by Theorem 3.1, and Section 4 to that of the obstruction result, Theorem 4.1. Finally,
Section 5 gathers our results about further obstructions when the control amplitude is
bounded, along with our analysis of the corresponding minimal time control problem.
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2. Building the optimal control problem

2.1. Convex analytic framework

LetH be a Hilbert space. We let �0.H/ be the set of functions fromH to ��1;C1� that
are convex, lower semicontinuous (abbreviated lsc) and proper (i.e., not identicallyC1).
For f 2 �0.H/, we let

dom.f / D
®
x 2 H; f .x/ < C1

¯
be its domain.

Fenchel conjugate. For a proper function f WH ! ��1;C1�, we denote by f �WH !
��1;C1� its convex conjugate, given by the convex lsc function

f �.y/ WD sup
x2H

.hy; xi � f .x// 8y 2 H:

Support and indicator functions. Given a subset C �H , the indicator function of C is
the function defined by

ıC .x/ WD

´
0 if x 2 C ;

C1 if x … C ;
8x 2 H;

and the support function of C is defined by

�C .p/ WD sup
x2C

hp; xi D ı�C .p/ 8p 2 H;

i.e., the Fenchel conjugate function of the indicator function of C .

Subdifferentials. For f 2 �0.H/, we let

@f .x/ WD
®
p 2 H; 8y 2 H; f .y/ � f .x/C hp; y � xi

¯
;

be its subdifferential at a point x 2 H .
Various common properties of Fenchel conjugates, support functions and subdifferen-

tials are used throughout the article. These are all recalled in Appendix A, where a few
additional lemmas are proved.

2.2. Approximate controllability by Fenchel duality ([27])

Let us explain how the approximate controllability problem is reformulated in the con-
text of Fenchel–Rockafellar duality [41] (see Appendix A.4 for a general presentation),
following the strategy introduced by Lions [27]. We work with the control problem (1.5),
with the control space E WD L2..0; T / ��/ and the state space L2.�/.

By Duhamel’s formula y.T / D ST y0 C LT u, the inclusion y.T / 2 NB.yf ; "/ (where
the closed ball of centre yf and radius " is with respect to the L2.�/-norm) can equival-
ently be written as LT u 2 NB.yf � ST y0; "/.
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Given some cost functional FT WE ! Œ0;C1� 2 �0.E/, consider the optimal control
problem (which we will refer to as the primal problem)

� WD inf
u2E

FT .u/CGT;".LT u/;

where
GT;" WD ı NB.yf �ST y0;"/ 2 �0.L

2.�//:

Now consider the Fenchel dual to the above problem, which is written

d D � inf
pf 2L

2.�/
JT;".pf /; JT;".pf / WD F

�
T .L

�
Tpf /CG

�
T;".�pf /: (2.1)

Thanks to the formulae for conjugates, we find

G�T;".z/ D hyf � ST y0; ziL2 C "kzkL2 ;

leading to

JT;".pf / D F
�
T .L

�
Tpf / � hyf � ST y0; pf iL2 C "kpf kL2 :

We recall that p D L�Tpf solves the adjoint equation´
pt C A

�p D 0;

p.T / D pf in �:
(2.2)

Strong duality. The weak duality � � d always holds. According to the Fenchel–Rocka-
fellar duality theorem recalled in Appendix A.4, the existence of pf 2 dom.G�T;"/ such
that F �T is continuous at L�Tpf is a sufficient condition for the strong duality � D d to
hold. Since dom.G�T;"/ D L2.�/, this condition reduces to the existence of a point of
continuity of the form L�Tpf for F �T . In the cases covered here, we will check that the
chosen F �T is continuous at 0. When strong duality holds, it is therefore equivalent to
work with the dual problem, which is easier to handle especially when it has full domain,
i.e., its objective function is finite everywhere.

We note that an alternative to establishing strong duality is to find u 2 E such that G
is continuous at LT u and F.u/ <C1. This approach is bound to fail here since it would
require finding a control achieving the target ball, i.e., assuming that controllability holds.

Nontrivial strong duality. Furthermore, the primal value � is attained if finite, i.e., if
this equality is not the trivialC1D C1 (the uncontrollable case). Thus, if d is finite, �
is finite as well and attained: we may speak of optimal controls.

This requirement that d be finite is by far the subtlest one. It may be tackled by
proving that the functional JT;" underlying the dual problem (written in infimum form
infpf 2L2.�/ JT;".pf /) has a minimum. In practice, we will always find this to be the case,
as the dual problem is usually unconstrained (depending on the choice of FT ), unlike the
primal problem. Hence, both � and d will be attained and, from Proposition A.8, any
optimal dual variable p?

f
is such that any optimal control u? satisfies

u? 2 @F �T .L
�
Tp

?
f /: (2.3)
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Proposition 2.1. Assume that, for any y0; yf 2 L2.�/ such that yf � ST y0 and any
" > 0,

• there exists pf 2 L2.�/ such that F �T is continuous at L�Tpf ,

• d ¤ C1.

If for any dual optimal variable p?
f

, the controls characterised by (2.3) are in UC, then
the control system (1.5) is nonnegatively approximately controllable with controls in UC
in time T .

This shows how the choice of the cost FT impacts the existence and properties of
optimal controls. More precisely, it must be pointed out that all the hypotheses of Pro-
position 2.1 are formulated with respect to the dual problem. Accordingly, from the next
section onwards, our strategy will be to determine an adequate optimal control problem
by designing its dual problem.

Finally, we emphasise that (2.3) is only a necessary condition for the optimality of u?.
It becomes sufficient only when @F �T .L

�
Tp

?
f
/ is reduced to a singleton, which will occur

in our case.

2.3. Convex analytic interpretation of the bathtub principle

Starting from the set of on-off shape controls of amplitude 1,

UL WD
®
�! ; ! � �; j!j � Lj�j

¯
; (2.4)

where j � j denotes the Lebesgue measure, we define the closure of its convex hull (which
is also its weak-� closure for the L1.�/-topology)

xUL WD
®
u 2 L2.�/, 0 � u � 1 and

R
�
u � Lj�j

¯
: (2.5)

Given a fixed v 2 L2.�/, we consider the (static) maximisation problem

sup
u2 xUL

Z
�

u.x/v.x/ dx: (2.6)

This a relaxed version of the so-called bathtub principle, which gives the maximum value
as well as a characterisation of maximisers [26]. For the sake of readability, we intro-
duce the necessary results for what follows, but refer to Appendix B for a more detailed
statement. For a given v 2 L2.�/, we let

ˆv.r/ WD j¹v > rºj: (2.7)

and its pseudo-inverse function

ˆ�1v .s/ WD inf
r2R

®
ˆv.r/ � s

¯
D inf
r2R

®
j¹v > rºj � s

¯
: (2.8)

Finally, we set
h.v/ WD max.0;ˆ�1v .Lj�j//: (2.9)
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Remark 2.2. The function ˆ�1v is the Schwarz rearrangement of v; see [20].

Lemma 2.3 (Relaxed bathtub principle). Let v 2 L2.�/. The maximum in (2.6) equalsZ min.ˆv.0/;Lj�j/

0

ˆ�1v :

Furthermore, if all the level sets of the function v have measure zero, the maximum equalsR
¹v>h.v/º

v and is uniquely attained by

u? WD �¹v>h.v/º:

We refer to Lemma B.2 for the comprehensive statement of the relaxed bathtub prin-
ciple. We may interpret the above results as a formula for the support function of xUL in
L2.�/:

� xUL
.v/ D sup

u2 xUL

.hu; viL2 � ı xUL
.u// D sup

u2 xUL

Z
�

u.x/v.x/ dx D

Z min.ˆv.0/;Lj�j/

0

ˆ�1v :

First, using the characterisation of the subdifferential given in Appendix A, we arrive
at the following characterisation for the solutions to the maximisation problem given in
Lemma 2.3:

Proposition 2.4. Let v 2L2.�/. The maximisers of the relaxed bathtub problem are given
by the elements of @� xUL

.v/.

Proof. Using .ı xUL
/� D � xUL

along with (A.3) given in Appendix A.1, we have, for v 2
L2.�/,

arg max
u2 xUL

hu; viL2 D arg max
u2L2

hu; viL2 � ı xUL
.u/

D
®
u 2 L2.�/; hu; viL2 � ı xUL

.u/ D � xUL
.v/
¯
D @� xUL

.v/:

Remark 2.5. Proposition 2.4 implies that for any maximiser u of the relaxed bathtub
problem,

v 2 @ı xUL
.u/:

Proposition A.4 shows that this implies u 2 @ xUL. Propositions 2.3 and 2.4 characterise
exactly which elements of the boundary @ xUL are involved.

2.4. From the static bathtub principle to the dual problem
and its corresponding cost

Following Section 2.2 and recalling Proposition 2.1 and (2.3), we are looking for a cost
function FT such that the corresponding optimal controls are on-off shape controls, and
we have established that it suffices to find a conjugate functional F �T satisfying two key
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properties. First, if there exists pf 2 L2.�/ such that F �T is continuous at L�Tpf , and
if we can provide the existence of a minimiser p?

f
of JT;", then � is attained and there

exists at least one optimal control. Second, any optimal control u? should satisfy (2.3)
so F �T should be chosen so that the subdifferential @F �T .L

�
Tp

?
f
/ contains only character-

istic functions. Given Proposition A.4 and Section 2.3, elements of

@� xUL
.v/; v 2 L2.�/

are bang-bang, in the sense that they are characteristic functions, under some mild condi-
tions that v must satisfy.

To go from the static optimisation problem to the adequate dual problem, we add a
time dependency. Moreover, to ensure coercivity of the dual problem, we add a quadratic
exponent. All in all, we choose the following conjugate:

F �T .p/ WD
1

2

�Z T

0

� xUL
.p.t// dt

�2
D
1

2

�Z T

0

Z min. p̂.t/.0/;Lj�j/

0

ˆ�1p.t/.s/ ds dt

�2
8p 2 E: (2.10)

Since the approximate controllability problem corresponds to G�T;" WD � NB.yf �ST y0;"/,
this defines a dual problem of the form (2.1). As pointed out in Section 2.2, we are now
dealing with an unconstrained optimisation problem (i.e., the domain of the functions
involved is the whole space L2.�/).

We can now derive the corresponding constrained optimisation problem, by computing
the actual cost FT associated to the choice (2.10) for F �T . We find, as announced by (1.4)
in the introduction, the following:

Lemma 2.6. The function F �T defined by (2.10) satisfies F ?T 2 �0.E/. Defining

M.u/ WD max
�
kukL1 ;

kukL1

Lj�j

�
8u 2 L2.�/;

its Fenchel conjugate .F �T /
� D FT is given for u 2 E by

FT .u/ D
1

2

�
sup
t2Œ0;T �

M2.u.t; �//
�
C ı¹u�0º.u/

D
1

2

�
sup
t2Œ0;T �

max
�
ku.t; �/kL1 ;

ku.t; �/kL1

Lj�j

�2�
C ı¹u�0º.u/:

Proof. Lemma A.5 shows that F �T 2 �0.E/. We proceed by computing .F �T /
�. We have

F �T D
1
2
H 2, with H.p/ WD

R T
0
� xUL

.p.t; �// dt . Since � xUL
2 �0.L

2.�//, the definition
of the support function together with Lemma A.5 show that H 2 �0.E/ with

H�.u/ D

Z T

0

��xUL
.u.t; �// dt D

Z T

0

ı xUL
.u.t; �// dt:
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Furthermore, we find the conjugate of 1
2
H 2 by using (A.2) in Appendix A.1, which leads

to �1
2
H 2

��
.u/ D min

˛>0

�1
2
˛2 C ˛H�

�u
˛

��
;

where we used that dom.H/ D E. Clearly,

H�
�u
˛

�
D 0 if u � 0 and sup

t2Œ0;T �

M.u.t; �// � ˛;

and isC1 otherwise.
We end up with�1
2
H 2

��
.u/ D min

˛>0

�1
2
˛2 C ı¹supt2Œ0;T � M.u.t;�//�˛º.u/

�
C ı¹u�0º.u/ D FT .u/:

The lemma is proved.

Note that F �T is (positively) homogeneous of degree 2. Indeed, v 7! � xUL
is positively

homogeneous of degree 1, i.e., � xUL
.�v/ D �� xUL

.v/ for all � > 0, v 2 L2.�/.
We end this subsection by establishing a crucial property satisfied by F �T . It will play

a crucial role in proving that the dual functional is coercive, akin to that of the unique
continuation property in the Lions strategy described in Section 1.2.

Lemma 2.7. For all pf 2 L2.�/, if F �T .L
�
Tpf / D 0, then pf � 0.

Proof. It is easily seen that � xUL
� 0, and, for v 2 L2.�/, � xUL

.v/ > 0 whenever v > 0 on
a set of positive measure, by taking the scalar product of v against a well-chosen element
of xUL. Consequently, if � xUL

.v/ D 0, then v � 0.
Now recall that

F �T .L
�
Tpf / D

1

2

�Z T

0

� xUL
.L�Tpf .t; �// dt

�2
:

If F �T .L
�
Tpf /D 0, then, as � xUL

� 0, for almost every t 2 .0; T /, � xUL
.L�Tpf /D 0. Thus,

L�Tpf .t; �/� 0. In particular, sinceL�Tpf 2C.Œ0;T �IL
2.�//, this implies that pf � 0.

3. Approximate controllability results

In this section, we state and prove our main result on approximate controllability. The full
statement for our Theorem A is given with more details below, for general linear operators,
satisfying the properties given in Section 1.3.

We are considering the following optimal control problem:

� D inf
u2E

FT .u/CGT;".LT u/

D inf
u2E

²
1

2
sup
t2Œ0;T �

max
�
ku.t/kL1 ;

ku.t/kL1

Lj�j

�2
C ı NB.yf �ST y0;"/.LT u/

³
; (3.1)
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whose dual problem is

d D � inf
pf 2L

2.�/
JT;".pf /

D � inf
pf 2L

2.�/

²
1

2

�Z T

0

� xUL
.L�Tpf .t// dt

�2
�hyf � ST y0; pf iL2 C "kpf kL2

³
: (3.2)

Theorem 3.1. Assume that A� satisfies the (GUC) property and that @t �A� is analytic-
hypoelliptic. Then for the cost function FT defined by (1.4),

• the strong duality � D d holds,

• the dual problem (3.2) is attained at a unique minimiser p?
f
2 L2.�/,

• there exists a unique optimal control u? 2 E for the primal problem (3.1).

Furthermore, the optimal control is given by

u?.t; �/ D xM �¹p?.t;�/>h.p?.t;�//º; xM D

Z T

0

Z
¹p?.t;�/>h.p?.t;�//º

p?.t; x/ dt dx; (3.3)

where h is defined by (2.9), and where p? D L?Tp
?
f

is the solution of the adjoint equa-
tion (2.2) satisfying p?.T / D p?

f
.

Remark 3.2. In fact, if " > 0 is such that yf 2 NB.ST y0; "/, we prove that p?
f
D 0 and the

formula above returns u? D 0, which obviously does steer the system to the target ball.

Remark 3.3. As mentioned in the introduction, Theorem 3.1 holds for uniformly elliptic
operators of the form (1.7) with analytic coefficients, and in particular the classical heat
equation with Dirichlet boundary conditions, on a bounded, open, connected domain with
C 2 boundary.

Throughout this section, we assume the hypotheses sufficient for Theorem 3.1, i.e.,
that A� satisfies the (GUC) property and that @t � A� is analytic-hypoelliptic. The proof
is then scattered into the section as follows:

• First, we establish that strong duality holds.

• Second, we prove that the corresponding dual functional is coercive: hence, the dual
functional attains its minimum (the dual problem attains its maximum).

• Third we prove (3.3).

• Finally, we investigate the uniqueness of optimal variables.

Remark 3.4. As the proofs show, the first two steps and the uniqueness of dual optimal
variables are valid for any operator A. In particular, they do not require that A� satisfy
the (GUC) property and that @t � A� be analytic-hypoelliptic. Hence, strong duality and
existence of optimal controls do not require any specific assumption the semigroup must
satisfy. This remark will be of importance in the next subsection, where we manipulate
optimal controls without making these two hypotheses.
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3.1. Strong duality

Lemma 3.5. The cost function F �T is continuous at 0 D L�T 0.

Proof. By the Cauchy–Schwarz inequality,

8u 2 xUL; hu; viL2 � kukL2kvkL2 � j�j
1=2
kvkL2 ;

which leads to

� xUL
.v/ D

Z min.ˆv.0/;Lj�j/

0

ˆ�1v � j�j
1=2
kvkL2 :

As a result, we may bound with the Cauchy–Schwarz inequality again:

0 � F �T .p/ �
1

2
j�j

�Z T

0

kp.t; �/kL2 dt

�2
�
1

2
T j�j kpk2E ;

hence the continuity of F �T at 0 D L�T 0.

The above lemma shows that the first condition of Proposition 2.1 is satisfied, i.e.,
strong duality holds.

3.2. Coercivity of JT;", nonnegative approximate controllability

Proposition 3.6. The functional JT;" defined by

JT;".pf / D

�
1

2

Z T

0

� xUL
.L�Tpf / dt

�2
� hyf � ST y0; pf iL2 C "kpf kL2 (3.4)

is coercive on L2.�/, i.e.,
JT;".pf / ��������!

kpf kL2!1
1;

and thus attains its minimum.

Proof. Since we know that JT;" is convex, proper, strongly lsc, if JT;" is coercive then
infpf 2L2.�/ JT;".pf / ¤ �1, and it is actually attained.

We will actually prove a stronger condition than coercivity, namely

lim inf
kpf kL2!1

JT;".pf /

kpf kL2
> 0:

Our method of proof follows that of [14, 21]. Take a sequence kpn
f
kL2 !1. We denote

qn
f
WD

pn
f

kpn
f
kL2

. By positive homogeneity of F �T (of degree 2), we have

JT;".p
n
f
/

kpn
f
kL2

D kpnf kL2F
�
T .L

�
T q

n
f / � hyf � ST y0; q

n
f iL2 C ";
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and hence if lim infn!1 F �T .L
�
T q

n
f
/ > 0, then

lim inf
n!1

JT;".p
n
f
/

kpn
f
kL2

D C1:

Let us now treat the remaining case where lim infn!1F �T .L
�
T q

n
f
/D 0. Since kqn

f
kL2 D 1,

upon extraction of a subsequence, we have qn
f
* qf weakly in L2.�/ for some qf 2

L2.�/. Since L�T 2 L.L
2.�/;E/, we have L�T q

n
f
* L�T qf weakly in E.

Now, since F �T is convex and strongly lsc on E, it is (sequentially) weakly lsc and
taking the limit we obtain F �T .L

�
T qf / D 0. By Lemma 2.7, we infer that qf � 0.

Then, recalling that the target satisfies yf � ST y0 � 0, yf � ST y0, we end up with

lim inf
n!1

JT;".p
n
f
/

kpn
f
kL2

� �hyf � ST y0; qf iL2 C " � " > 0;

which concludes the proof.

3.3. Characterisation of the minimisers

In this subsection and the subsequent one, we will when needed consider the assumption

yf … NB.ST y0; "/: (3.5)

When it is satisfied, this means that the target is not reached with the trivial control uD 0.
Note that, if (3.5) is not satisfied, the control u D 0 steers y0 to the target, and is indeed a
control in UL

shape.
We first note the following fact:

Lemma 3.7. Assumption (3.5) holds if and only if any minimiser p?
f

of (3.2) satisfies
p?
f
¤ 0.

Proof. Suppose that p?
f
D 0 minimises (3.2). Then d D 0, and by strong duality, � D 0.

By Proposition 3.6, this value is attained: there exists some optimal control u? such that

FT .u
?/CGT;".LT u

?/ D 0:

This implies that FT .u?/ D GT;".LT u?/ D 0. On the one hand, this leads to u?.t; �/ D 0
for a.e t 2 .0; T /, i.e., u? D 0, and on the other hand GT;".LT u?/ D GT;".0/ D 0, which
is equivalent to 0 2 NB.yf � ST y0; "/, yf 2 NB.ST y0; "/. This contradicts assumption
(3.5).

Conversely, if assumption (3.5) does not hold, then u D 0 drives y0 to the target ball,
hence � D d D 0. Since JT;".0/ D 0, p?

f
D 0 minimises the dual problem (3.2).

Proposition 3.8. Any optimal control for (3.1) is of the form (3.3), where p? denotes the
solution of the adjoint equation (2.2) such that p?.T /D p?

f
, where p?

f
is any dual optimal

variable.
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Proof. Let u? be an optimal control. Thanks to Proposition 3.6, we know that JT;" defined
by (3.2) attains its minimum. Thanks to Lemma 3.5, we can apply the first identity of
(A.8) in Proposition A.8 (see Appendix A.4) to obtain u? 2 @F �T .L

�
Tp

?
f
/, where p?

f
is any

minimiser of JT;", i.e., an optimal dual variable.
We denote by p? the solution of the adjoint equation (2.2) such that p?.T / D p?

f
.

From Lemma 3.7, Using the notation H.p/ WD
R T
0
� xUL

.p.t// dt again, so that F �T D
1
2
H 2, we have H.p?/ � 0 and dom.H/ D L2.�/.

Then, applying the generalised chain rule (see [12, Theorem 2.3.9, point (ii)]) with the
functions x 7! 1

2
x2 and H , we compute the subdifferential of the convex functional F �T :

u? 2 H.p?/ @H.p?/: Applying Lemma A.5 to H , we find u?.t; �/ 2 xM@� xUL
.p?.t; �//

for a.e. t 2 .0; T /, with xM WD H.p?/.
Let us first suppose that assumption (3.5) holds. From Lemma (3.7), we have p?

f
¤ 0.

We now let t 2 .0;T / be fixed and let us justify that all level sets of p?.t; �/ are of measure
zero, i.e.,

j¹p?.t; �/ D �ºj D 0 8� 2 R;

Indeed, since the operator @t � A� is analytic-hypoelliptic, we know that p?.t; �/ is ana-
lytic on�. Hence, its level sets are of measure zero unless p?.t; �/D S�T�t p

?
f

is constant.
Using the (GUC) property, this leads to p?

f
D 0, contradicting (3.5).

Applying Propositions 2.3 and 2.4, and recalling that @� xUL
.p?.t; �// equals the sin-

gleton ¹�¹p?.t;�/>h.p?.t;�//ºº, we obtain the result.
Now suppose that assumption (3.5) does not hold. Then p?

f
D 0 is optimal and, using

the above notation for this specific dual optimal variable, we have p? D 0, xM D 0; hence
any optimal control satisfies u? D 0, which is of the form (3.3).

Remark 3.9. As evidenced by the proof, a weaker (but less workable) property than
analytic-hypoellipticity is sufficient to infer that optimal controls are on-off shape con-
trols. Indeed, it suffices to require either one of the following conditions (in decreasing
order of strength):

(i) All solutions t 7! p.t/ of the adjoint equation such that p.T / ¤ 0 have zero-
measure level sets.

(ii) For all solutions t 7! p.t/ of the adjoint equation such that p.T / ¤ 0, the level
sets ¹p.t; �/ D h.p.t; �//º (see (2.9) for the definition of h.p/) have measure 0.

(iii) For all solutions t 7! p.t/ of the adjoint equation such that p.T /¤ 0, and for a.e
t 2 Œ0; T �,´
j¹p.t; �/ D h.p.t; �//ºj D Lj�j � j¹p.t; �/ > h.p.t; �//ºj if h.p.t; �// ¤ 0;

j¹p.t; �/ D h.p.t; �//ºj D 0 if h.p.t; �// D 0:

Note that requirement (iii) is minimal (see Lemma B.2 and Remark B.3).
Finally, an even weaker requirement would be to restrict any of the above (i), (ii) or

(iii) to a single solution t 7! p?.t/ of the adjoint equation, namely that with p?.T /D p?
f

,
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where p?
f

is the unique dual optimal variable (see below for the uniqueness of optimal
variables).

3.4. Uniqueness

Our first uniqueness statement below (i.e., that of the dual optimal variable) is a con-
sequence of Fenchel–Rockafellar duality, and the fact that we work with a Hilbert space,
rather than specific properties of the evolution equation under consideration.

Remark 3.10. Still applying Proposition A.8, we get

LT u
?
2 @G�T;".�p

?
f / D @� NB.yf �ST y0;"/.�p

?
f /:

Using the Legendre–Fenchel identity (A.4), we get�p?
f
2 @ı NB.yf �ST y0;"/.LT u

?/. Thanks
to Proposition A.4, this means that LT u? lies at the boundary of the closed ball NB.yf �
ST y0; "/.

Proposition 3.11. Under the assumptions of Theorem 3.1, the primal-dual optimal pairs
.u?; p?

f
/ are unique.

Proof. Uniqueness of the dual optimal variable. First note that if assumption (3.5) does
not hold, then 0 is the unique optimal control, i.e.,®

LT u
?; u? is optimal

¯
D ¹0º: (3.6)

On the other hand, if assumption (3.5) holds, according to Remark 3.10, and since
the set of minimisers of a convex function is convex, the set ¹LT u?; u? is optimalº is a
convex subset of the sphere S.yf � ST y0; "/. The closed ball being strictly convex since
we are working in the Hilbert space L2.�/, there exists some y? 2 NB.yf � ST y0; "/ with
ky? � .yf � ST y0/kL2 D " such that

¹LT u
?; u? is optimalº D ¹y?º: (3.7)

Thus, in any case, the set of targets reached by optimal controls is always reduced to a
single point.

Now, let p?
f

be a dual optimal variable, and u? an optimal control. Then, as strong
duality holds, Proposition A.7 implies that the pair .u?; p?

f
/ satisfies the two optimality

conditions from (3.7). We then have

p?f 2 �@GT;".LT u
?/ D �@ı NB.yf �ST y0;"/.LT u

?/: (3.8)

If assumption (3.5) does not hold, then (3.8) and (3.6) imply p?
f
2�@ı NB.yf �ST y0;"/.0/.

If kyf � ST y0kL2 < ", then 0 2 B.yf � ST y0; "/ and

p?f 2 �@ı NB.yf �ST y0;"/.0/ D ¹0º: (3.9)
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Otherwise, 0 2 @B.yf � ST y0; "/ and (A.5) yield

p?f 2
°
�
yf � ST y0

"
; � � 0

±
D
®
�.yf � ST y0/; � � 0

¯
:

Restricting the function JT;" defining the dual problem (3.2) to the above half-line, using
the homogeneities of each of its terms, and the fact that kyf � ST y0kL2 D ", we get


0.�/ WD JT;".�.yf � ST y0// D a0�
2; � � 0: (3.10)

It is clear that 0 is the unique minimiser of 
0. From (3.9) and (3.10), 0 is the unique dual
optimal variable if (3.5) does not hold.

If assumption (3.5) holds, then (3.8) and (3.7) imply

p?f 2 �@ı NB.yf �ST y0;"/.y
?/ D �@ı NB.0;1/

�y? � .yf � ST y0/
"

�
:

Since y? lies at the boundary of NB.yf � ST y0; "/, formula (A.5) yields

p?f 2
°
�
�yf � ST y0 � y?

"

�
; � � 0

±
D
®
�.yf � ST y0 � y

?/; � � 0
¯
:

Restricting JT;" to the above half-line as previously, we find


.�/ WD JT;".�.yf � ST y0 � y
?// D a�2 C b�; � � 0;

where, using kyf � ST y0 � y?kL2 D " and the homogeneities involved,

a D F �T .L
�
T .yf � ST y0 � y

?// and b D �hyf � ST y0; yf � ST y0 � y
?
iL2 C "

2:

By coercivity, a > 0, and given Lemma 3.7, we have b < 0.
Thus, 
 has a unique minimiser �? WD�b=2a > 0. Hence, p?

f
D �?.yf �ST y0 � y

?/,
and the dual optimal variable is unique.

Uniqueness of the optimal control. If assumption (3.5) does not hold, then 0 is the unique
optimal control.

Now, suppose that assumption (3.5) holds. We know from the proof of Proposition 3.8
that a given dual optimal variable uniquely determines one optimal control. Moreover, as
we have proved that strong duality holds, we can apply Proposition A.7: for any pair of
primal and dual optimal variables, the relations (A.6) are satisfied. That is, any optimal
control u? is uniquely determined by the unique dual optimal variable p?

f
through the

identity u? 2 @F �T .L
�
Tp

?
f
/.

4. Obstructions to controllability

Here we prove Theorem B through the more general result below in the case of second-
order uniformly elliptic operators of the form (1.7). We use the notation A �� B to mean
that there exists a compact set K such that A � K � B .
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Theorem 4.1. Let UC � L
2.�/ be a constraint set of nonnegative controls. Assume that

there exists a ball B.x; r/ � � such that

8u 2 UC; supp.u/ \ B.x; r/ D ;:

Let A be a second-order uniformly elliptic operator of the form (1.7). Let y0 D 0 and
yf 2 L

2.�/ be any target such that yf � ST y0 D 0, yf ¤ 0 and supp.yf / � B.x; r/.
Then there exist T ? > 0 and " > 0 such that for any time T � T ?, no control with values
in UC can steer 0 to NB.yf ; "/.

The proof relies on the following lemma, inspired by [37].

Lemma 4.2. Let B.x; r/ �� �. Under the assumptions of Theorem 4.1, for any K �
B.x; r/ compact, there exists pf 2 L2.�/ and T ? > 0 such that

(i) pf < 0 on K,

(ii) for all T � T ?, the solution of (2.2) with p.T / D pf satisfies p.t; �/ � 0 on
� n B.x; r/ for all 0 � t � T .

Proof. Let us build pf such that for all 1 < r < C1, pf 2 W 2;r .�/ \W
1;r
0 .�/, with

pf < 0 on K, pf > 0 on � n B.x; r/, pf D 0 on @�, and @�pf < 0 on @�.
To that end, we denote by '1 the first eigenfunction of the Dirichlet Laplacian on

�, which satisfies '1 > 0 on � and @�'1 < 0 on @� and since � is of class C 2, '1 2
W 2;r .�/ \ W

1;r
0 .�/ for all 1 < r < C1 [10, Theorem 9.32]. We then set pf D �'1,

where � 2 C1.�/ is chosen to satisfy � D 1 on � n B.x; r/ and � D �1 on K. The
function pf satisfies all the required properties (note that pf D '1 locally around @�
since B.x; r/ �� �, hence @�pf D @�'1 < 0 on @�).

Let q solve the (forward) adjoint equation (2.2) for t � 0, with q.0/ D pf . Then,
by parabolic regularity, we have both q 2 C.Œ0;C1/ � x�/ and @�q 2 C.Œ0;C1/ �
@�/ [37, Theorem 8.1]. As a result, by continuity there exists T ? such that @�q < 0 over
Œ0; T ?� � @�, hence there exists some compact set K1 containing B.x; r/ such that q � 0
on Œ0; T ?� � .� nK1/. Then, upon reducing T ? if necessary and by continuity again, we
have q � 0 over Œ0; T ?� � .K1 n B.x; r//.

To conclude the proof, we fix any T � T ? and let p be the solution of (2.2) on Œ0; T �
with p.T /Dpf . Then for all 0� t � T , p.t/D q.T � t /, hence p.t; �/� 0 on� nB.x;r/
for all 0 � t � T .

Proof of Theorem 4.1. Upon reducing r , we may without loss of generality assume that
B.x; r/ �� �. Letting K WD supp.yf /, we consider pf and T ? as given by Lemma 4.2.

Let T � T ? be fixed. For any control u 2 E, any y0; yf 2 L2.�/, any solution to the
adjoint equation (2.2) such that p.T / D pf , we have d

dt
hy.t/; p.t/iL2 D hp.t/; u.t/iL2 .

As a result and owing to y0 D 0,

hy.T /; pf iL2 D

Z T

0

hp.t/; u.t/iL2 dt: (4.1)
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We now assume by contradiction that, for any " > 0 there exists a nonnegative control
u" 2 E satisfying that for all t 2 .0; T /, supp.u".t// \ B.x; r/ D ; and steering y0 D 0
to the ball NB.yf ; "/ in time T . We inspect the sign of the equality (4.1) along the controls
u", " > 0.

On the one hand, because of condition (ii) in Lemma 4.2 satisfied by p, and owing to
u" � 0, the right-hand side of (4.1) is nonnegative, i.e.,

hy.T /; pf iL2 � 0: (4.2)

On the other hand, the left-hand side of (4.1) satisfies

hy.T /; pf iL2 D hyf ; pf iL2 C hy.T / � yf ; pf iL2 � hyf ; pf iL2 C "kpf kL2 :

Now, hyf ; pf iL2 < 0, because of Lemma 4.2 (i). As a result, there exists ˛ > 0 such that
pf � �˛ on K, so that

hyf ; pf iL2 � �˛

Z
K

yf < 0;

because yf is nonnegative and nontrivial on K by assumption.
Hence, for " > 0 small enough, hy.T /; pf iL2 < 0, which contradicts (4.2).

Remark 4.3. As the proof shows, the obstruction to nonnegative approximate controllab-
ility in UC does not rely on the comparison principle, but is of dual nature. As evidenced
by the proof above, the core idea is indeed to construct pf and yf such that the equal-
ity (4.1) prevents y.T / from being close to yf . The proof of Theorem 4.1 follows directly
from the existence of pf satisfying the assumptions of Lemma 4.2. Hence, this obstruc-
tion to nonnegative approximate controllability is rather general and will be satisfied by
any operator (including uniformly second-order elliptic operators of the form (1.7)) for
which such an element pf can be built.

5. Further comments

5.1. Properties of the value function in the general case

For general linear operators generating a C0 semigroup, fixing �, L, ", y0 and yf , we
analyse the dependence with respect to the final time T , for the optimal control problem
(3.1) studied in Section 3 for system (1.5).

By Lemma 3.5 and Proposition 3.6, the optimal control problem (3.1) is well posed,
i.e., optimal controls exist (see also Remark 3.4); hence we may consider

….T / WD
1

2
. xM.T //2 WD inf

®
FT .u/; u 2 E; kLT u � .yf � ST y0/kL2 � "

¯
; T > 0:

(5.1)
When A� satisfies the (GUC) property and @t � A� is analytic-hypoelliptic, xM.T / is the
amplitude of the unique optimal control in Proposition 3.8.
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Recall that by strong duality, we have

….T / D
1

2
. xM.T //2 D �JT;".p

?
T / 8T � 0; (5.2)

where p?T is the unique minimiser of JT;". This is exactly the identity obtained for the
Hilbert Uniqueness Method (HUM) where the cost functional FT is just 1

2
k � k2E .

We first establish the continuity of T 7! xM.T /.

Proposition 5.1. The amplitude xM (and thus …) are continuous on .0;C1/.

Proof. Using (5.2), we prove the continuity by showing that .pf ; T / 7! JT;".pf / (given
by (3.4)) satisfies the assumptions of Lemma A.9 with H D L2.�/ and Z D .0;C1/.
Clearly, the first, second and fourth assumptions are satisfied; hence we are left with
proving that .pf ; T / 7! JT;".pf / is weak-strong lower semicontinuous over L2.�/ �
.0;C1/. The last two terms of (3.4) are easily seen to be weak-strong lower semicon-
tinuous over L2.�/ � .0;C1/; hence we investigate the property for the remaining term
F �T .L

�
Tpf /.

Given pf 2L2.�/ and T > 0, let .pn
f
/ and .Tn/ be two sequences such that pn

f
*pf ,

Tn ! T . We decompose

F �Tn.L
�
Tn
pnf / D F

�
T .L

�
Tp

n
f /C .F

�
Tn
.L�Tnp

n
f / � F

�
T .L

�
Tp

n
f //:

By weak (sequential) lower semicontinuity of F �T over L2.0; T IL2.�//, we find that the
first term satisfies

F �T .L
�
Tpf / � lim inf

n!C1
F �T .L

�
Tp

n
f /:

To conclude, we only need to prove that the second term tends to 0 as n!C1.
Using the notation qn for the solution to the forward adjoint problem such that qn.0/D

pn
f

, i.e., qn.t/ D S�t p
n
f

, we have

F �Tn.L
�
Tn
pnf / � F

�
T .L

�
Tp

n
f /

D
1

2

�Z Tn

0

� xUL
.qn.Tn � t // dt

�2
�
1

2

�Z T

0

� xUL
.qn.T � t // dt

�2
D
1

2

�Z Tn

T

� xUL
.qn.t// dt

��Z Tn

0

� xUL
.qn.t// dt C

Z T

0

� xUL
.qn.t// dt

�
:

Using the bound 0 � � xUL
.p/ � j�j1=2kpkL2 (see the proof of Lemma 3.5) and the

estimate kStkL.L2.�// � C valid for all t 2 Œ0; T C 1� with C > 0 some constant inde-
pendent of n, we haveˇ̌̌̌Z Tn

0

� xUL
.qn.t// dt C

Z T

0

� xUL
.qn.t// dt

ˇ̌̌̌
� C j�j1=2.T C Tn/kp

n
f kL2 ;

a bounded quantity, andˇ̌̌̌Z Tn

T

� xUL
.qn.t// dt

ˇ̌̌̌
� C j�j1=2jT � Tnjkp

n
f kL2 ;

which tends to 0 as n!C1.
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We now study the behaviour of xM.T / near T D 0 and T DC1. We recall that xM.T /

also depends on all other parameters y0, yf , " and L.
We now recall (see [36]) that there exist Cs > 0, ˛ 2 R such that for all t � 0,

kStkL.L2.�// � Cse
˛t , and the semigroup generated by .A; D.A// is said to be expo-

nentially stable if ˛ < 0.

Proposition 5.2. We have

8T > 0; xM.T / � j˛j
kyf � ST y0kL2 � "p

Lj�j.1 � e˛T /
: (5.3)

Proof. Let u?T be an optimal control in time T for the optimal control problem (5.1); then

kLT u
?
T kL2 D





Z T

0

ST�tu
?
T .t; �/ dt






L2
�

Z T

0

kST�tu
?
T .t; �/kL2 dt

�

Z T

0

e˛.T�t/ku?T .t; �/kL2 dt �
1

j˛j
.1 � e˛T / xM.T /

p
Lj�j:

Now, by definition of our control problem, for all T >0, kyf �ST y0kL2�"�kLT u?T kL2 ,
and the result follows.

Corollary 5.3. Assume that yf … NB.y0; "/. Then,

1

T
D O
T!0

. xM.T //: (5.4)

In particular, xM.T / ���!
T!0

C1.

Assume that yf … NB.0; "/. If, additionally, .St /t�0 is exponentially stable, then

lim inf
T!C1

xM.T / > 0: (5.5)

Proof. Estimate (5.4) is obtained by passing to the limit in (5.3), using that ST y0 tends to
y0 as T tends to 0: the lower bound behaves as

kyf � y0kL2 � "p
Lj�j

1

T
:

The inequality (5.5) is obtained by passing to the limit T ! C1 in (5.3), using that
ST y0 ����!

T!1
0:

lim inf
T!C1

xM.T / � j˛j
kyf kL2 � "p

Lj�j
> 0:

5.2. Obstructions

We further investigate the behaviour of xM , and establish results on the corresponding
minimal time problem (5.7). The comparison principle formulated in (1.6) will be a key
ingredient in our study.
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5.2.1. Obstruction to reachability and small-time controllability. Given the control-
lability result of Theorem 3.1, in order to study possible obstructions, we introduce a new
bound on the amplitude of the control, of the form

M.u/ WD 2
p
FT .u/ �Mmax; u 2 E; (5.6)

for someMmax > 0. Note that such a constraint imposes nonnegativity of the control. With
this new constraint on the controls, we illustrate a general property that is well known for
finite-dimensional systems: exponential stability prevents reachability.

In particular, the result below holds for uniformly elliptic operators of the form (1.7)
with 0th order coefficient satisfying c � 0.

Proposition 5.4. Assume that .St /t�0 is exponentially stable. Let .y0; yf / be such that
for all T � 0, yf � ST y0 and kST y0 � yf kL2 � ı for some ı > 0. Then, for all 0 < " < ı
there exists MmaxM.y0; yf ; "/ > 0 satisfying the following:

• If Mmax > Mmax.y0; yf ; "/, there exists a time T > 0 and a control u 2 E satisfy-
ing (5.6), steering y0 to NB.yf ; "/ in time T . If A� satisfies the (GUC) property and
@t � A

� is analytic-hypoelliptic, the control may be chosen to be in UL
shape.

• If Mmax < Mmax.y0; yf ; "/, no such control exists.

Moreover, for all Mmax > 0, the control system (1.5) is not nonnegatively approxim-
ately controllable with controls in ¹M.u/ �Mmaxº in any time T > 0.

Proof. Given Corollary 5.3, the function xM.T / goes toC1 as T ! 0, is bounded away
from 0 at infinity and does not vanish over the interval .0;C1/. Since it is continuous,
we define

Mmax.y0; yf ; "/ WD inf
T>0

xM.T / > 0;

and the first two claims follow. When A� satisfies the (GUC) property and @t � A� is
analytic-hypoelliptic, the control may be chosen to be in UL

shape by Theorem 3.1.

Then, let Mmax > 0. Take yf 2 L2.�/ such that kyf kL2 >
p
Lj�j
j˛j

Mmax C " and
y0 2 L

2.�/ such that yf � ST y0 and kST y0 � yf kL2 � ı > 0. Thanks to the proof
of Corollary 5.3, we infer

Mmax.y0; yf ; "/ � j˛j
kyf kL2 � "p

Lj�j
> Mmax:

It follows from the second claim that y0 cannot be steered to yf in any time T > 0 with a
control u such thatM.u/ �Mmax. Thus, system (1.5) is not nonnegatively approximately
controllable with such controls in any time T > 0.

5.2.2. Characterisation of minimal time controls. Throughout this section, we let " >
0, yf 2L2.�/, we assume that (3.5) holds and let y0D 0. Hence we must have kyf kL2 >"
and the condition (3.5) is independent of T . Finally, yf � ST y0 here simply amounts to
yf � 0.
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Given the obstruction result of Proposition 5.4, we consider the minimal time control
problem:

T ?.�/ D inf
®
T > 0; 9u 2 E; kLT u � yf kL2 � "; FT .u/ � �

¯
; � > 0: (5.7)

From our study of the optimal control problem (3.1), we know that this minimal time is
well defined for � 2 xM..0;C1//. Under appropriate assumptions, we will show that it is
reached, and characterise the minimal time controls, by establishing a form of equivalence
between the optimal control problem and the corresponding minimal time problem. This
is now a well-known feature for parabolic equations (see [21, 40, 48]).

Further study of the value function xM . Using strong duality again, we will establish
that xM is a nonincreasing function under the assumption that A� satisfies the comparison
principle (1.6). We start with the following general lemma:

Lemma 5.5. Given any 0<T1<T2, and y0D 0, for a general unbounded linear operator
A, the dual functional defined by (3.4) satisfies

JT1;".pf / � JT2;".pf / 8pf 2 L
2.�/; (5.8)

with equality if and only if

L�T2pf .t/ � 0 8t 2 Œ0; T2 � T1�: (5.9)

Proof. Since y0 D 0, inequality (5.8) follows immediately from the comparison of the
integral terms in the expression of the JTi ;", i 2 ¹1; 2º. Moreover, for pf 2 L2.�/, one
has JT1;".pf / D JT2;".pf / if and only ifZ T1

0

� xUL
.L�T1pf .t// dt D

Z T2

0

� xUL
.L�T2pf .t// dt;

i.e., by definition of the operators L�Ti (see (2.2)) which are obviously related by
L�T1;"pf .t/ D L

�
T2;"

pf .T2 � T1 C t / for all t 2 .0; T1/,Z T2�T1

0

� xUL
.L�T2pf .t// dt D 0:

Using the definition of the support function � xUL
(see the proof of Lemma 2.7), this is

equivalent to (5.9).

Corollary 5.6. The function xM (and hence …) are nonincreasing on .0;C1/.

We now denote �� D ��.yf / WD limT!C1….T / D limT!C1
1
2
xM.T /2. Note that

�� 2 Œ0;C1/, and if the semigroup generated by A is exponentially stable, �� > 0 as
established by (5.5) in Corollary 5.3.

Proposition 5.7. Assume A� satisfies the comparison principle (1.6). Then there exists
T` D T`.yf / 2 .0;C1� such that xM is decreasing on Œ0; T`/, and constant on ŒT`;C1/.
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Remark 5.8. The proposition above implies in particular that xM either decreases on the
whole of .0;C1/ to its limit �� (if T` D C1), or reaches it at T` < C1 and then
remains constant.

Proof of Proposition 5.7. By strong duality, Lemma 5.5 implies that xM is nonincreasing.
Let T2 > T1 > 0, and denote by p?T1 ; p

?
T2

the associated dual minimisers. Assume that

xM.T1/ D xM.T2/: (5.10)

From Lemma 5.5, and by definition of p?T1 , we know that

JT1;".p
?
T1
/ � JT1;".p

?
T2
/ � JT2;".p

?
T2
/: (5.11)

From (5.2), (5.10) implies that JT1;".p
?
T1
/ D JT2;".p

?
T2
/, so that all the inequalities in

(5.11) are actually equalities.
By uniqueness of the dual optimal variable (Proposition 3.11), the first equality implies

that
p?T1 D p

?
T2
DW p?f : (5.12)

From Lemma 5.5, the second equality implies that

L�T2p
?
f .t/ � 0 8t 2 Œ0; T2 � T1�: (5.13)

From (5.12) and (5.13), we get p?T D p?
f

for all T 2 ŒT1; T2�. Now, for T > T2, the
comparison principle (1.6) and inequality (5.13) imply that L�Tp

?
f
.t/ � 0 for all t 2 Œ0;

T � T1�. From Lemma 5.5, we then get JT;".p?f /D JT1;".p
?
f
/; which implies JT;".p?f /D

JT1;".p
?
f
/ � JT;".p

?
T /. By definition of the dual minimiser p?T of JT;", we also have

JT;".p
?
T /� JT;".p

?
f
/, and then finally, JT;".p?T /D JT;".p

?
f
/, i.e., p?T D p

?
f

. This implies,
thanks to (5.2), that xM.T / D xM.T1/ D xM.T2/, which proves the proposition.

Remark 5.9. It follows from all the above and (5.13) that, when A� satisfies the compar-
ison principle (1.6), if T` < C1, then

L�Tp
?
T`
.t/ � 0 8T � T`; 8t 2 Œ0; T � T`�;

and

u?T .t/ D

8<: 0 if t 2 .0; T � T`/;

u?T`
.t � T C T`/ if t 2 .T � T`; T /;

8T � T`

is an optimal control on Œ0; T � whenever uT` is an optimal control on Œ0; T`�.

We now establish the relationship between the optimal control problem (5.1) and the
minimal time control problem.
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Proposition 5.10. Assume that A� satisfies the comparison principle (1.6). Then, for all
T 2 .0; T`/, any optimal control for (5.1) on Œ0; T � is a minimal time control, i.e.,

T ?.….T // D T: (5.14)

Moreover, for any � > ��,
….T ?.�// D �:

Proof. We proceed by contradiction. Assume that T ?.….T // < T . Then there exists ı > 0
and a control uı 2 L2.0; T � ıIL2.�// such that FT .uı/ � ….T /. Now, any optimal
control u?

ı
(in the sense of optimal control problem (5.1) in time T � ı) satisfies FT .u?ı /�

FT .uı/ (the inequality is not necessarily strict, as uı could be an optimal control), i.e.,
….T � ı/ D FT .u

?
ı
/ � FT .uı/ � ….T /, which contradicts the fact that T 7! ….T / is a

decreasing function on .0; T`/. Thus, (5.14) holds.
Now let � > ��. From Corollaries 5.3, 5.6 and Proposition 5.1, there exists T 2

.0; T`/ such that ….T / D �. Applying T ? to the above and using (5.14), we get T ?.�/ D
T ?.….T // D T . Then, applying … to the above yields ….T ?.�// D ….T / D �.

We can also formulate the above result in the following way: for all � > ��,

T ?.�/ D inf
®
T > 0; ….T / � �

¯
;

i.e., T ? is the pseudo-inverse of … on .��;C1/.
In terms of the time-optimal control problem, we now have a complete characterisation

of time-optimal controls for (5.7):

Theorem 5.11. Assume that A� satisfies the comparison principle (1.6). For any � > ��,
T ?.�/ < C1 and T ?.�/ ����!

�!1
0,

T ?.�/ ����!
�!��

C1:

As a consequence, the domain of definition of T ? is .��;C1/, and on its domain of
definition, T ? is continuous and decreasing.

Moreover, if A� satisfies the (GUC) property and @t � A� is analytic-hypoelliptic,
there exists a unique minimal time control for (5.7), given by the optimal control problem
(3.1), and it lies in UL

shape .

A. Convex analysis

A.1. Core properties of Fenchel conjugation

A fundamental property of conjugation is involution (over �0.H/):

Theorem A.1 (Fenchel–Moreau). Given any f 2 �0.H/, there holds f � 2 �0.H/ and
f �� D f .



C. Pouchol, E. Trélat, and C. Zhang 1496

Analogously to the classical gradient, the subdifferential can be used to study optim-
ality:

Proposition A.2 (Fermat’s rule). Let f 2 �0.H/. Then f attains a finite global minimum
over H in x? if and only if

0 2 @f .x?/:

We now list further useful properties of the Fenchel conjugate:

• multiplication by a real number: for ˛ 2 R,

. f̨ /�.y/ D

8<: f̨ �
�y
˛

�
if ˛ ¤ 0;

�dom.f /.y/ if ˛ D 0:
(A.1)

• the (suitably normalised) squared norm is its own conjugate:�1
2
k � k

2
H

��
D
1

2
k � k

2
H : (A.2)

Let us also mention a result about composition [19]. First, let f 2 �0.H/ and g 2
�0.R/ be nondecreasing. Then,

.g ı f /�.y/ D min
˛�0

�
g�.˛/C f̨ �

�y
˛

��
:

Following (A.1), the convention for ˛ D 0 is 0f �.y
0
/ D �dom.f /.y/.

Link with the subdifferential. We now give another characterisation of the subdifferen-
tial set, which illustrates the link with convex conjugation: for f 2 �0.H/,

@f .x/ D
®
p 2 H; hp; xiH � f .x/ D f

�.p/
¯

D
®
p 2 H; hx; piH � f

�.p/ D f .x/
¯
: (A.3)

Essentially, the subdifferential is the set of linear forms on which the convex conjugate is
attained.

Using this characterisation, we then get the Legendre–Fenchel identity, which allows
us to “flip” subdifferentials:

p 2 @f .x/ ” x 2 @f �.p/; f 2 �0.H/; 8x; p 2 H: (A.4)

A.2. Some properties of indicator and support functions

Indicator functions are a crucial tool to encode constraints in convex optimisation prob-
lems. Their properties are closely linked to topological properties of their indicated sets:

Proposition A.3. We have ıC ; �C 2 �0.H/ whenever C is nonempty, convex and closed.

The characterisation (A.3) of the subdifferential yields a useful result on indicator
functions:
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Proposition A.4. Let C � H be a closed convex set with nonempty interior. Then, for
x 2 H we have the following:

x 2 @C ” @ıC .x/ is a nontrivial cone:

Equivalently, by convex conjugation,

9p ¤ 0; x 2 arg max
v2C

hv; pi ” 9p ¤ 0; x 2 @�C .p/ ” x 2 @C:

Indicator function of a ball in a Hilbert space. Consider the closed unit ball NB.0; 1/ of
H . We have seen before that

� NB.0;1/.y/ D .ı NB.0;1//
�.y/ D kykH :

Using (A.3), we get the following: for x 2 NB.0; 1/,

@ı NB.0;1/.x/ D
®
p 2 H; hp; xiH D � NB.0;1/.p/

¯
D
®
p 2 H; hp; xiH D kpkH

¯
:

From the Cauchy–Schwarz inequality we know that hp; xiH � kpkHkxkH ; it follows
that hp; xiH D kpkH if and only if x D p

kpkH
. This implies that

@ı NB.0;1/.x/ D

´
¹0º if kxkH < 1;

¹�x; � � 0º if kxkH D 1:
(A.5)

A.3. Technical lemmas

Lemma A.5. Let f 2 �0.H/ be such that

F Wu 2 L2.0; T IH/ 7�!

Z T

0

f .u.t// dt;

is well defined and proper. Then F 2 �0.L2.0; T IH//, and its Fenchel conjugate and
subdifferential are given by

8p 2 L2.0; T IH/; F �.p/ D

Z T

0

f �.p.t// dt;

@F.u/ D
®
p 2L2.0; T IH/; p.t/2 @f .u.t//; for a.e. t 2 .0; T /

¯
; 8u2L2.0; T IH/:

Proof. Since F is obviously convex, we only need to justify that F is lsc to infer
that F 2 �0.L2.0; T IH//. We let un ! u be in L2.0; T IH/ and must show that
F.u/ � lim infF.un/. Upon extraction of a subsequence, we may assume that F.un/!
lim infF.un/, and that un.t/! u.t/ in H for a.e. t 2 .0; T /. Then, successively using
the lsc of f and Fatou’s lemma, we find

F.u/D

Z T

0

f .u.t//dt �

Z T

0

lim inff .un.t//dt � lim inf
Z T

0

f .un.t//dt D lim infF.un/:



C. Pouchol, E. Trélat, and C. Zhang 1498

For p 2 L2.0; T IH/, we compute

F �.p/ D sup
u2L2.0;T IH/

hp; uiL2.0;T IH/ �

Z T

0

f .u.t// dt

D

Z T

0

�
sup
u2H

hp.t/; uiH � f .u.t//
�
dt D

Z T

0

f �.p.t// dt:

Using the characterisation given in (A.3), and Lemma A.5, we have the following:

@F.u/ D arg max
p2L2.0;T IH/

¹hp; ui � F �.p/º

D arg max
p2L2.0;T IH/

²Z T

0

hp.t/; u.t/i dt �

Z T

0

f �.p.t// dt

³
D arg max
p2L2.0;T IH/

²Z T

0

�
hp.t/; u.t/i � f �.p.t//

�
dt

³
D
®
p 2 L2.0; T IH/; p.t/ 2 arg maxp2H ¹hp; u.t/i � f

�.p/º
¯
;

and the result follows by the same characterisation of the subdifferential set @f .u.t//.

A.4. Fenchel–Rockafellar duality

Let E and F be two Hilbert spaces. Let f and g be functions in �0.E/ and �0.F /,
respectively, and AWE ! F be a bounded operator. Consider the (primal) optimisation
problem

� D inf
x2E

.f .x/C g.Ax// (C )

and its dual problem

d D sup
z2F

.�f �.A�z/ � g�.�z// D � inf
z2F

.f �.A�z/C g�.�z//: (D)

With the above notation, weak duality always holds, i.e., we always have � � d . The
Fenchel–Rockafellar theorem states when and how the strong duality holds, i.e., when
d D � [41].

Theorem A.6. If there exists Nx 2 E such that g is continuous at A Nx and f . Nx/ < C1,
then

� D d and d is attained if finite:

Symmetrically, if there exists Nz 2F such that f � is continuous atA� Nz and g�.�Nz/ <C1,
then

d D � and � is attained if finite:

The second part of the theorem is obtained by applying the first part to (D),
infz2F .f �.A�z/ C g�.�z//, which is seen as a primal problem, and (C ), rewritten as
supx2E .�f .x/ � g.Ax//, which is seen as its dual problem. This yields �d � �� , with
equality under the corresponding assumptions.
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Lagrangian and saddle-point interpretation. Let us now define the Lagrangian for
.x; y/ 2 E � F by

L.x; y/ WD hy;Axi C f .x/ � g�.y/:

If .x?; y?/ is a saddle point of the Lagrangian, i.e.,

x? 2 arg min
x2E

L.x; y?/ and y? 2 arg max
y2F

L.x?; y/;

then .x?; z?/ (with z? D �y?) is a pair of primal and dual optimal variables, and strong
duality holds.

What matters is the converse: if .x?; z?/ is a pair of primal and dual optimal variables
and if strong duality holds, then .x?; y?/ (with y? D �z?) is a saddle point of L.

Whenever .x?; y?/ is a primal-dual optimal pair, Fermat’s rule and the Legendre–
Fenchel identity yield

x? 2 arg min
x2E

L.x; y?/ ” �A�y? 2 @f .x?/ ” x? 2 @f �.�A�y?/;

as well as

y? 2 arg max
y2F

L.x?; y/ ” Ax? 2 @g�.y?/ ” y? 2 @g.Ax?/:

Summing up, we have the following proposition:

Proposition A.7. Let .x?; z?/ be a pair of primal and dual optimal variables. If strong
duality holds, then

x? 2 @f �.A�z?/; Ax? 2 @g�.�z?/; (A.6)

z? 2 �@g.Ax?/; A�z? 2 @f .x?/:

Reinterpreting the Fenchel–Rockafellar theorem with the above and in a way that is
useful for controllability issues, we end up with the following proposition:

Proposition A.8. Under the assumption that there exists Nx 2 E such that g is continuous
at A Nx and f . Nx/ <C1, if � is finite, and attained at x? 2 E, then d is attained at z? 2 F
satisfying

z? 2 �@g.Ax?/; A�z? 2 @f .x?/: (A.7)

Conversely, if .x?; z?/ satisfies (A.7); .x?; z?/ is a pair of primal and dual optimal vari-
ables.

Similarly, under the assumption that there exists Nz 2 E such that f � is continuous
at A� Nz and g�.�Nz/ < C1, if d is finite, and attained at z? 2 F , then � is attained at
x? 2 E satisfying

x? 2 @f �.A�z?/; Ax? 2 @g�.�z?/: (A.8)

Conversely, if .x?; z?/ satisfies (A.8); .x?; z?/ is a pair of primal and dual optimal vari-
ables.
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A.5. Parametric convex optimisation

Lemma A.9. Let H be a Hilbert space, Z be a metric space, f WH �Z ! R [ ¹C1º.
Assume that

• 8˛ 2 Z, f .�; ˛/ is convex on H ,

• 8x 2 H , f .x; �/ is continuous on Z,

• f is sequentially weak-strong lower semicontinuous on H �Z, i.e.,

8xn * x; 8˛n ! ˛; f .x; ˛/ � lim inf
n!C1

f .xn; ˛n/;

• there exists a unique x˛ 2 H such that infx2H f .x; ˛/ D f .x˛; ˛/.

Then the mapping
˛ 2 Z 7�! inf

x2H
f .x; ˛/

is continuous on Z.

Proof. Let ˛n! ˛. Denotingm.˛/D infx2H f .x;˛/D f .x˛; ˛/, let us show thatm.˛n/
converges to m.˛/.

Upper semicontinuity. For x 2 H fixed, thanks to the continuity of f .x; �/, we pass
to the limit in f .x; ˛n/ � m.˛n/ and find

m.˛/ D inf
x2H

f .x; ˛/ � lim sup
n!C1

m.˛n/:

Lower semicontinuity. We denote xn D x˛n . Let us for the moment admit that .xn/ is
bounded. Upon extraction, we may assume that xn * Nx for some x 2 H . By sequential
weak-strong lower semicontinuity,

f . Nx; ˛/ � lim inf
n!C1

f .xn; ˛n/ D lim inf
n!C1

m.˛n/:

Since the left-hand side is bounded from below by m.˛/, we have proved lower semicon-
tinuity (and in fact Nx D x˛).

We are left to prove the boundedness of .xn/ to conclude the proof. Assume that .xn/
is not bounded. Upon extraction, we may assume that

yn WD
xn

kxnkH
* y;

for some y 2 H . For any fixed � > 0, we will prove that x˛ C �y minimises f .�; ˛/,
which contradicts the fourth assumption that there exists a single minimum point.

Indeed, we notice that�
1 �

�

kxnkH

�
x˛ C

�

kxnkH
xn * x˛ C �y:
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Hence, by weak-strong lower semicontinuity, convexity, the fact that xn minimises
f .�; ˛n/ and continuity,

f .x˛ C �y; ˛/ � lim inf
n!C1

f

��
1 �

�

kxnkH

�
x˛ C

�

kxnkH
xn; ˛n

�
� lim inf
n!C1

�
1 �

�

kxnkH

�
f .x˛; ˛n/C

�

kxnkH
f .xn; ˛n/

� lim inf
n!C1

�
1 �

�

kxnkH

�
f .x˛; ˛n/C

�

kxnkH
f .x˛; ˛n/

D lim inf
n!C1

f .x˛; ˛n/ D f .x˛; ˛/:

B. The classical bathtub principle

The classical bathtub principle characterises the maximisers of, and gives the maximum
value of, the constrained scalar product maximisation

sup
u2 zU�L

Z
�

u.x/v.x/ dx; (B.1)

where v 2 L2.�/ is arbitrary and

zU�L WD
®
u 2 L2.�/, 0 � u � 1 and

R
�
u D Lj�j

¯
is the convex hull (and L1 weak-� closure) of the set of characteristic functions whose
support has the corresponding fixed measure

zUL WD ¹�! ; ! � �; j!j D Lj�jº:

Recalling the notation (2.7) and (2.8) introduced in Section 2.3, the classical bathtub
principle reads as follows (we refer to [26]):

Lemma B.1 (Classical bathtub principle). Let v 2 L2.�/. Denote �.v/ WD ˆ�1v .Lj�j/.
The maximum in (B.1) equals

�.v/.Lj�j � j¹v > �.v/ºj/C

Z
v>�.v/

v D

Z Lj�j

0

ˆ�1v ;

and the maximisers are given by

u? WD �¹v>�.v/º C c�¹vD�.v/º;

where c is any measurable function such that 0 � c � 1 andZ
¹vD�.v/º

c D Lj�j � j¹v > �.v/ºj:
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In particular, if all the level sets of the function v have zero measure, then the maximum is
uniquely attained by

u? WD �¹v>�.v/º;

and the maximum hence equals
R
¹v>�.v/º

v.

Now recall that we defined UL by (2.4) and its convex hull xUL by (2.5) in Section
2.3. They are respective relaxations of zUL, and its convex hull zU�L.

For v 2 L2.�/, we consider the relaxed version of (B.1):

sup
u2 xUL

Z
�

u.x/v.x/ dx: (B.2)

Then the complete solution of Lemma 2.3 is given by the following:

Lemma B.2 (Relaxed bathtub principle). Let v 2 L2.�/ and denote h.v/ D max.0;
ˆ�1v .Lj�j// D max.0; �.v//. Then the maximum in (B.2) equalsZ min.ˆv.0/;Lj�j/

0

ˆ�1v ;

and the maximisers are given by

u? WD �¹v>h.v/º C c�¹vDh.v/º;

where c is any measurable function such that 0 � c � 1 and8̂̂<̂
:̂
Z
¹vDh.v/º

c D Lj�j � j¹v > h.v/ºj if h.v/ > 0;Z
¹vDh.v/º

c � Lj�j � j¹v > h.v/ºj if h.v/ D 0:

Remark B.3. In particular, if h.v/ > 0, there is a unique maximiser in (B.2) if and only
if

j¹v > h.v/ºj C j¹v D h.v/ºj D Lj�j:

Indeed, when the above does not hold, c can be chosen to have values in .0; 1/ on a set of
nonzero measure, and the maximisers are no longer unique.

On the other hand, if h.v/ D 0, when j¹v D h.v/ºj > 0 the maximisers are no longer
unique.

Proof of Lemma B.2. Let us first note that the supremum exists and is attained, as (B.2)
consists in maximising a continuous function on a weak-� compact set. Also note that any
maximiser u? obviously satisfies suppu? � ¹v � 0º.

To prove the relaxed bathtub principle, we distinguish two cases:
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(1) We first consider the case where j¹v > 0ºj � Lj�j.
Let u? be a maximiser. SupposeZ

�

u? < Lj�j: (B.3)

If j¹u? < 1º \ ¹v > 0ºj > 0, then there exists a set ! � ¹u? < 1º \ ¹v > 0º
of nonzero measure with j!j � Lj�j, so that

0 <

Z
!

1 � u? � Lj�j �

Z
�

u?:

Then,
R
�
u? C �!.1 � u

?/ � Lj�j andZ
�

.u? C �!.1 � u
?//v >

Z
�

u?v;

which contradicts the fact that u? is a maximiser. Thus u? D 1 a.e. on suppu? \
¹v > 0º.

Then assumption (B.3) implies jsuppu? \ ¹v > 0ºj<Lj�j, so that there exists
a measurable set ! satisfying j!j � Lj�j and

suppu? \ ¹v > 0º ¨ ! � ¹v > 0º:

We then have Z
�

u?v D

Z
suppu?\¹v>0º

v <

Z
!

v D

Z
�

�!v;

which contradicts the fact that u? is a maximiser.
By contradiction we have thus proved that any maximiser u? satisfies

R
�
u? D

Lj�j, so that the relaxed problem reduces to the classical bathtub problem.
The assumption on v implies that �.v/ � 0. Hence, if h.v/D 0, then �.v/D 0

i.e., j¹v > 0ºj D Lj�j and j¹v D 0ºj D 0. Thus, applying the classical bathtub
principle yields the unique maximiser u?D�¹v>0º. On the other hand, if h.v/ > 0,
�.v/ D h.v/ and a straightforward application of the classical bathtub principle
yields the maximisers �¹v>h.v/º C c�¹vDh.v/º, where c is a measurable function
such that 0 � c � 1 andZ

¹vDh.v/º

c D Lj�j � j¹v > h.v/ºj:

(2) We now turn to the case where j¹v > 0ºj < Lj�j. This implies that h.v/ D 0.
Let u? be a maximiser. From the assumption on v and the constraints on u?,R

¹v>0º
u? < Lj�j. From the same argument as above, u? D 1 on ¹v > 0º.

Finally, the values of u? on ¹v D 0º do not affect the quantity in (B.2). The
only requirement on u?

j¹vD0º
is that it be measurable, andZ

¹vD0º

u? � Lj�j �

Z
¹v>0º

u? D Lj�j � ¹v > 0º;
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in order to satisfy the integral constraint on u?. We can thus write u? as �¹v>0º C
c�¹vD0º with 0 � c � 1 andZ

¹vD0º

c � Lj�j � j¹v > 0ºj;

which concludes the proof.
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