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Lack of local controllability for a water-tank system
when the time is not large enough

Jean-Michel Coron, Armand Koenig, and Hoai-Minh Nguyen

Abstract. We consider the small-time local-controllability property of a water tank modeled by
one-dimensional Saint-Venant equations, where the control is the acceleration of the tank. It is
known from the work of Dubois et al. that the linearized system is not controllable. Moreover,
concerning the linearized system, they showed that a traveling time T� is necessary to bring the tank
from one position to another for which the water is still at the beginning and at the end. Concern-
ing the nonlinear system, Coron showed that local controllability around equilibrium states holds
for a time large enough. In this paper, we show that for local controllability of the nonlinear sys-
tem around the equilibrium states, the necessary time is at least 2T� even for the tank being still at
the beginning and at the end. The key point of the proof is a coercivity property for the quadratic
approximation of the water-tank system.

1. Introduction

1.1. Statement of the main result

We consider a water tank with a length L > 0 in the time interval .0; T / modeled by the
following one-dimensional Saint-Venant system (see Figure 1):8̂̂̂<̂

ˆ̂:
@tH C @x.vH/ D 0 for .t; x/ 2 .0; T / � .0; L/;

@tv C @x

�
gH C

v2

2

�
D �u.t/ for .t; x/ 2 .0; T / � .0; L/;

v.t; 0/ D v.t; L/ D 0 for t 2 .0; T /;

(1.1)

and
RD.t/ D u.t/ for t 2 .0; T /: (1.2)

Here H denotes the height of the water, v is the horizontal velocity field of the water, u
is the acceleration that is imposed on the tank, D is the position of the tank, and g is the
gravity. Given Heq > 0, one can easily check that .Heq; 0/ is a solution of (1.1) and thus
is an equilibrium of (1.1).

The well-posedness of system (1.1) will be discussed in Proposition 4.1. In this article,
we are interested in local controllability of this system, in the following sense:
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Figure 1. Water-tank problem.

Definition 1.1 (Local controllability of the water tank). Let T > 0, Heq > 0. The water-
tank system (1.1)–(1.2) is locally controllable around .H; v/ D .Heq; 0/ in time T if for
every " > 0, there exists � > 0 such that for every H0;H1 2 C 1.Œ0; L�/, with @xHi .0/ D
@xHi .L/, for every v0; v1 2 C 1.Œ0; L�/ with vi .0/ D vi .L/ D 0, and for every D0, D1,
s0, s1 2 R, if

kH0 �HeqkC 1 C kv0kC 1 < �; kH1 �HeqkC 1 C kv1kC 1 < �;

jD0 C s0T �D1j C js0 � s1j < �;

Z
Œ0;L�

H0 D

Z
Œ0;L�

H1 D LHeq;

there exists u 2 C 0.Œ0;T �/ such that u.0/D�@xH0.0/, kukC 0 < " and such that the solu-
tion .H;v;D; PD/ of the water-tank system (1.1)–(1.2) with initial conditions .H;v/.0; �/D
.H0; v0/ and .D; PD/.0/D .D0; s0/ is such that .H;v/.T; �/D .H1; v1/ and .D; PD/.T /D
.D1; s1/.

When T is too small, we prove that system (1.1)–(1.2) is not locally controllable
around .H;v/D .Heq; 0/. In fact, we exhibit a family of simple trajectories that are impos-
sible:

Theorem 1.2. Let L > 0, g > 0, and Heq > 0. Set

T� WD
Lp
Heqg

: (1.3)

Let T 2 .T�; 2T�/. There exists � > 0 such that for every u 2 C 0.Œ0; T �/ with u.0/ D 0
and kukC 0.Œ0;T �/ < �, if the solution .H; v/ 2 .C 1.Œ0; T � � Œ0; L�//2 of the water-tank
system (1.1) with the initial data

H.0; �/ D Heq and v.0; �/ D 0; (1.4)

satisfies
H.T; �/ D Heq and v.T; �/ D 0; (1.5)

and the solution D of (1.2) satisfies

PD.T / D PD.0/ D 0; (1.6)
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then
u D 0 in .0; T /:

Conditions (1.4) and (1.5) read “u steers the water-tank system from .Heq; 0/ to
.Heq; 0/ at time T ”, while condition (1.6) reads “the water tank ends with the same speed
as it started with”. As a consequence of Theorem 1.2, the water-tank system is not locally
controllable around .H;v/D .Heq; 0/ and .D; PD/D .0;0/ for time smaller than 2T� (with
controls small in C 0.Œ0; T �/).

Remark 1.3. Let us comment on Theorem 1.2:

(1) The regularity required for the control u, namely C 0, might be somehow unex-
pected. Standard well-posedness theorems for classical solutions of hyperbolic
systems [11, §3.4] and [27, Chapter 4] would assume the source term u is (small)
in C 1. The specific form of the source term (u.t/ instead of u.t; x/) is used for
this point.

(2) The time T� is the time needed for waves of the linearized equation to travel from
one end of the tank to the other end, as observed in [22].

(3) The water-tank system (1.1) is a hyperbolic system. As such, there is a finite speed
of propagation, and it is no surprise that local controllability fails in small time (see
Remark 4.2). The interest of this theorem is that local controllability fails even for
times larger than what the finite speed of propagation would suggest.

(4) Does a similar theorem hold for system (1.1) (without .D; PD/ as part of the
state)? This is an open problem, but an essential part of our method, the so-called
quadratic drift, irremediably breaks down. We discuss this in Remark 3.10.

The controllability of the water-tank system was initially considered by Dubois, Petit
and Rouchon [22], where the linearized system was considered. In particular, they proved
for the linearized system that, given T > T�, there exists a control that steers an equilib-
rium .Heq; 0/ back to itself while moving the water tank.

Concerning the nonlinear system, local controllability was investigated by Coron [12]
using the return method. More precisely, Coron proved that local controllability around
equilibrium states .Heq; 0/ for .H;v/ starting with . PD.0/;D.0// near .s0;D0/ and ending
with . PD.T /; D.T // near .s0; D0 C T s0/ for a time T large enough. In particular, local
controllability around .Heq; 0/ (for .H;v/) and .0;0/ (for . PD;D/) holds for a large enough
time.

Theorem 1.2 reveals new properties for local controllability of the nonlinear water-
tank problem. First, Theorem 1.2 reveals that for T� < T < 2T�, contrary to the linearized
system, one cannot steer an equilibrium H.0; x/ D Heq, v.0; x/ D 0 back to itself if the
water tank ends with the same speed as it started with (except for the trivial trajectory
where uD 0). Thus, Theorem 1.2 also points out that local controllability around .Heq; 0/

(for .H; v/) and .0; 0/ (for . PD;D/) proven by Coron [12] cannot hold in time less than
2T�.
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The optimal time for the boundary controllability of hyperbolic systems has been stud-
ied extensively; see [19–21, 24–26], where the controls are on one side. This is different
from the water-tank problem, which can be seen as a boundary control problem (see [22,
§2] or equations (4.1), (4.2)), where the control is the same on both sides. This rigid struc-
ture on the control yields new phenomena and obstructions that require new ingredients
to describe.

1.2. The main ideas of the proof and the organization of the paper

Using standard scaling arguments (see for instance [12, Section 2]), namely setting

H�.t; x/ WD
1

Heq
H

�
Lp
Heqg

t; Lx

�
;

v�.t; x/ WD
1p
Heqg

v

�
Lp
Heqg

t; Lx

�
;

we may assume that L D 1, g D 1, and Heq D 1 and this will be assumed from now on.
Note that in this case, T� defined in Theorem 1.2 is T� D 1.

The proof of Theorem 1.2 has its root in the power series expansion method; see, e.g.,
[16] and [14, Chapter 8]: since the linearized system does not give enough information to
conclude about the local controllability of (1.1), we consider the second-order approxima-
tion. Indeed, the linearized system of (1.1) around the equilibrium .1; 0/ is18̂̂<̂

:̂
@th1 C @xv1 D 0 for .t; x/ 2 .0; T / � .0; 1/;

@tv1 C @xh1 D �u.t/ for .t; x/ 2 .0; T / � .0; 1/;

v1.t; 0/ D v1.t; 1/ D 0 for t 2 .0; T /:

(1.7)

Simple computations prove that if h1.0; x/ D 0 and v1.0; x/ D 0, then h1.t; 1 � x/ D
�h1.t; x/ and v1.t; 1 � x/ D v1.t; x/ whatever u is. Thus, the linearized system is not
controllable. As usual, the second-order approximation system is given as8̂̂̂<̂

ˆ̂:
@th2 C @xv2 D �@x.h1v1/ for .t; x/ 2 .0; T / � .0; 1/;

@tv2 C @xh2 D �@x

�v21
2

�
for .t; x/ 2 .0; T / � .0; 1/;

v2.t; 0/ D v2.t; L/ D 0 for t 2 .0; T /:

(1.8)

The main idea is to prove that if a control steers the linearized system from 0 to 0, this
second order always lies in some half-space, at least when T < 2T�. More precisely,
for T� < T < 2T�, we prove that for well-chosen functions �,  , there exists c > 0

1We use lowercase h1 instead of H1, because h1 is not an approximation of H but of H � 1.
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such that for every control u that steers the linearized system from 0 to 0 and such thatR T
0
u.s/ ds D 0, with

U.t/ WD

Z t

0

u.s/ ds; (1.9)

we have the coercivity estimate

.h2.T; �/; �/C .v2.T; �/;  / � ckU k
2
L2
: (1.10)

This means that the quadratic approximation of the water-tank system cannot be steered
into the open half-space ¹.h; v/ 2 .L2.0; 1//2; .h; �/C .v; / < 0º. The rest of the proof
consists in estimating the difference between the quadratic approximation and the nonlin-
ear system in an appropriate way to deal with controls small in C 0.

We will use this notation U for the primitive of u that vanishes at zero throughout the
article. The paper is organized as follows:

(1) in Section 2 we characterize the controls that steer the linearized system from 0 to
0;

(2) in Section 3 we analyze the second-order term and prove that it satisfies a “condi-
tional H�1-coercivity” property;

(3) in Section 4 we study the nonlinear system, and in particular we prove that the
error between the nonlinear solution and the second-order approximation cannot
counter the positivity of the second-order term.

1.3. Bibliographical comments

Our proof relies on the positivity of a scalar product of the quadratic approximation of
the water-tank system (1.1). This kind of phenomenon was at the heart of several “lack of
small-time local controllability” results for systems modeled by partial differential equa-
tions. Concerning examples in a finite-dimensional system, we refer to Beauchard and
Marbach [5], and the references therein.

The quadratic obstructions for small-time local controllability were previously ob-
served for the Schrödinger equation with bilinear control [7, 9, 13], the viscous Burgers
equation [28], nonlinear heat equations [6], and a KdV system [18] where the speed of the
propagation is infinite. All these results share the same core idea: the scalar product of the
second-order approximation with appropriate test functions enjoys a coercivity property.
Let us give a little detail for each of these cases.

For the Schrödinger equation with bilinear control, the existing results rely heavily on
explicit computation using the eigenfunctions and eigenvalues of the operator �@2x . Note
that in Coron’s result [13] as well as Beauchard and Morancey’s result [7], the equivalent
of our coercivity estimate (1.10) also has kU k2

L2
on the right-hand side, leading to a lack

of small-time local controllability with controls small in L1-norm. Bournissou [9] also
has a similar coercivity estimate, with the nth iterated integral of the control instead of
U , where n depends on the structure of the potential. This leads to a lack of small-time
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local controllability with controls small either in W �1;1 (when n D 1) or H 2n�3 (when
n � 2).

Marbach [28] considered a viscous Burgers equation with control u.t/ as a source
term. The main difficulty is the fact that the kernel of the quadratic approximation does
not seem to be explicitly computable in a usable form. To tackle the problem, he rescaled
the equation in time to transform the “small-time” aspect of the problem into a small-
viscosity problem. This allowed him to compute an asymptotic expansion of the kernel of
the quadratic approximation of the viscous Burgers equation in low-viscosity limit. Using
this, Marbach succeeded in disproving the small-time local controllability with controls
small in L2-norm. A striking feature of [28] is the fact that the coercivity is associated
with a noninteger Sobolev norm, which is in contrast with the finite-dimensional case; see
[5].

Beauchard and Marbach [6] considered a class of nonlinear heat equation. They exhib-
it a range of phenomena. For instance, for some nonlinearities, they prove a coercivity
estimate with theH�s-norm of the control for some s > 0 that depends on the nonlinearity
and that can be fractional. Also, for other nonlinearities, the quadratic term can actually
help recover the small-time local controllability. This is the first example in which the
quadratic term gives the local-controllability result.

Concerning the KdV equations [18], we proved that the KdV equation with Dirichlet
boundary conditions and Neumann boundary control on the right is not small-time locally
controllable with controls small in H 1 for some critical lengths, introduced previously
by Rosier [31]. This fact is surprising when compared with known results on internal
controls for the corresponding KdV system for which the small-time result holds (see, e.g.,
[30]). One of the main difficulties was to characterize the controls that steer the linearized
equation from 0 to 0. The analysis is based on a complete characterization of controls
which bring 0 to 0 for the linearized system that involves the Paley–Wiener theorem. The
equivalent of the coercivity estimate (1.10) has the H�2=3-norm of the control on the
right-hand side.

The result of this paper compares to the previous ones in the following aspects:

• The control is internal, as was the case for the bilinear Schrödinger equation and the
viscous Burgers equation, and unlike the KdV equation (where the control was at the
boundary).

• Even if the computations are lengthy, we are able to compute the kernel of the second-
order approximation in a very simple closed-form expression, which was more or less
the case for the bilinear Schrödinger equation, but was not the case for the viscous
Burgers equation and the KdV equation, where only an asymptotic expansion of the
kernel was computed in closed form.

• We are able to disprove the small-time local controllability with controls small in C 0,
which is a natural space for the known well-posedness results for C 1 solutions. This
is different from some bilinear Schrödinger equations, some nonlinear heat equations,
and the KdV equation, where the existing results require the control to be quite regular.
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It is worth noting that less regular controls can change the situation. This is done
for the Schrödinger equation by Bournissou [10], where the cubic terms surprisingly
help recover local controllability even in the case where the quadratic term gives the
obstruction if regular controls are used.

It is worth noting that the asymptotic stabilization of the water-tank control system
(1.1) is a challenging open problem. Since the linearized control system is not asymptoti-
cally stabilizable, the usual techniques relying on this asymptotic stabilizability cannot be
used. A possibility might be to use the phantom tracking method introduced in [2, 15]. A
first step in this direction is the construction in [17] of feedback laws which asymptotically
stabilize the linearized control system around the equilibrium (H.x/DHeq.1C
.L�2x//,
v.x/ D 0, u D �2
 ) if 
 is a constant such that j
 j is small enough but not 0.

Finally, we note that even with infinite speed of propagation in the linear setting,
there might not be small-time controllability when there is a concentration of eigenfunc-
tions [3,4,23] or when there is condensation of eigenvalues or eigenfunctions [8] (see also
references therein).

2. Preliminary properties of the linearized system

As explained in Section 1.2, without loss of generality, we may assume that g D 1 and
L D Heq D 1. Then the linearization of system (1.1) around the equilibrium .Heq; 0/ D

.1; 0/ is given by system (1.7).
This system can be rewritten as @tF CAF DU.t/with F D .h1;v1/2 .L2/2,U.t/D

.0;�u.t// and A is the unbounded operator on H D .L2/2 with domain D.A/ WD H 1 �

H 1
0 and defined by A.h; v/D .@xv; @xh/. One can prove this system is well posed thanks,

e.g., to the Lumer–Phillips theorem [29, Theorem 4.3].

2.1. Periodic change of variables

From now on, we denote
T WD R=2Z:

It is convenient to introduce the following periodic change of variables.

Definition 2.1. Given F D .h; v/ 2 .L2.0; 1//2, define C F 2 L2.T / by

C F.x/ D

´
h.x/C v.x/ for 0 < x < 1;

h.�x/ � v.�x/ for �1 < x < 0:

This change of variables transforms the linearized water-tank system into a transport
equation with periodic boundary conditions:

Proposition 2.2. Let .H; v/ 2 .C 1.Œ0; T � � Œ0; 1�//2 such that v.t; 0/ D v.t; 1/ D 0 and
denote

�.t; �/ D C.H.t; �/; v.t; �// for t 2 Œ0; T �:
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Then

• � is continuous in Œ0; T � � T and is C 1 in Œ0; T � � .T n ¹0; 1º/;

• if in addition W 2 L1.Œ0; T � � Œ0; 1�/2 and

@t .H; v/.t; x/CA.H; v/.t; x/ D W.t; x/ for .t; x/ 2 Œ0; T � � Œ0; 1�;

then

@t�.t; x/C @x�.t; x/ D C W.t; x/ for every t � 0 and x 2 T n ¹0; 1º: (2.1)

Proof. The fact that � D C.H; v/ is C 1 in Œ0; T � � .T n ¹0; 1º/ is a direct consequence of
the definition of C . The continuity at xD 0 and xD 1 results from the boundary conditions
v.t; 0/ D v.t; 1/ D 0.

The second point results from elementary computations.

Remark 2.3. We can check that C is an isometry (up to a factor 2) from L2.0; 1/2 to
L2.T /, and that if F D .H; v/ 2 C 1.Œ0; 1�/2 with v.0/ D v.1/ D 0, then kC F kW 1;1 �

2kF kC 1 .

Using the characteristic method, one can obtain the following formula for the solution
of (2.1):

�.t; x/ D

Z t

0

w.s; x C s � t / ds: (2.2)

The linearized system (1.7) with zero initial conditions can be rewritten in the �1.t; x/
D C.h1; v1/.t; x/ variable as

.@t C @x/�1.t; x/ D u.t/�.x/; �1.u; 0; �/ D 0; (2.3)

where � is a “square wave” function that is 2-periodic defined by

�.x/ D

´
1 on .�1; 0/;

�1 on .0; 1/:

By the characteristic formula (2.2), we have

�1.t; x/ D

Z t

0

u.s/�.x C s � t / ds:

Remark 2.4. We remark that �.x C 1/ D ��.x/, thus �1.t; x C 1/ D ��1.t; x/.

We will sometimes emphasize that �1.t; x/ depends on u by denoting it by �1.u; t; x/.
This will be useful later on when we are considering several controls in Sections 4.2 and
4.3. But as long as there is no ambiguity in the control, we refrain from doing so. We will
use similar notation for every quantity that depends on the control.

We will use the notation U defined in equation (1.9). Another useful formula for �1 is
the following:
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Lemma 2.5. Let u 2 L2.0; T /, extended by 0 for t < 0. Then, for 0 < x < 1 and t > 0,2

�1.t; x/ D �U.t/C 2

C1X
kD0

.�1/kU.t � x � k/:

Proof. If we define Q�1 as the right-hand side of this formula, we see that Q�1.t; 1/ D
�Q�1.t; 0/, so that the 1-antiperiodic extension of Q�1 is continuous in .t; x/ 2 Œ0; T � � T .
Moreover, we see that for 0 < x < 1 and t > 0,

.@t C @x/ Q�1.t; x/ D �u.t/:

Thus, if we still denote by Q�1 the 1-antiperiodic extension of Q�1, we have .@t C @x/ Q�1 D
u.t/�.x/. Thus, Q�1 D �1.

Let us finally give some estimates for �1. In what follows, for T > 0, we use the
notation L2tL

2
x and L1t L

2
x as shorthand for L2.0; T IL2.T // and L1.0; T IL2.T //.

Proposition 2.6. Let T > 0. The solution � of .@t C @x/� D w satisfies for some C inde-
pendent of w,

k�kL2tL2x
� CkwkL2tL2x

: (2.4)

Moreover, in the case that the right-hand side is w.t; x/ D u.t/�.x/, the solution �1
satisfies, for some C independent of u,

k�1kL2tL2x
� CkU kL2 :

Proof. The first inequality is standard, and is proved with the characteristic formula (equa-
tion (2.2)) and the Cauchy–Schwarz inequality:

k�k2
L2tL

2
x
D

Z
Œ0;T �3�T

1s1;s2�tw.s1; x C s1 � t /w.s2; x C s2 � t / ds1 ds2 dt dx

�

Z
Œ0;T �3�T

w.s1; x C s1 � t /
2 ds1 ds2 dt dx

D

Z
Œ0;T �3�T

w.s1; x
0/2 ds1 ds2 dt dx0;

where we also used the change of variables x0 D x C s1 � t . This implies the claimed
estimate (2.4).

The second estimate is a direct consequence of Lemma 2.5.

2Note that with this extension of u, we have for t � 0, U.t/ D 0, so that there are only a finite number
of nonzero terms in the sum.
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2.2. Control of the linearized system

We next discuss control properties for the linearized system. We give a controllability
result when the target is 1-antiperiodic and we characterize the controls that steer 0 to 0.

Lemma 2.7. Let T > 1. For any �T 2 H 1.T / that is 1-anti-periodic (i.e., �T .x C 1/ D
��T .x/), there exists a control u 2 L2.0; T / such that

R T
0
u.t/ dt D 0, the solution � of

the linear equation (2.3) with initial condition 0 satisfies �.T; �/ D �T , and kU kL2.0;T / �
Ck�T kL2.T/ for some C independent of �T .

Proof. We construct the control using the so-called flatness method. The main point,
inspired by Dubois, Petit, and Rouchon [22, Section 3.4], is that if 'WR!R is inH 1.R/,
then the function �WR � T ! R defined by

�.t; x/ D

8̂<̂
:
2'
�
t � x C

1

2

�
� '

�
t C

1

2

�
� '

�
t �

1

2

�
if 0 < x < 1;

�2'
�
t � x �

1

2

�
C '

�
t C

1

2

�
C '

�
t �

1

2

�
if �1 < x < 0;

satisfies .@t C @x/�.t; x/ D u.t/�.x/ with u.t/ WD '0.t C 1=2/C '0.t � 1=2/. We aim to
construct a function ' such that the trajectory associated to this formula goes from 0 at
time 0 to �T at time T .

To construct ', for T � 1=2 < x < T C 1=2, we set '.x/ WD �T .T � x C 1=2/=2,
and we extend this as a function in H 1.R/, which is still denoted by ', such that ' D 0
in .�1; 1=2� (this is possible because T > 1). This extension can be done so that �T 2
L2.T / 7! ' 2 L2.R/ is linear and continuous.

The first condition ensures that for 0 < x < 1, the corresponding trajectory � satisfies
�.T;x/D �T .x/. Since �T is 1-antiperiodic, we also have �.T;x/D �T .x/ for�1< x < 0.
The fact that ' is zero on Œ�1=2; 1=2� ensures that �.0; �/ D 0.

For the last points, recall that u.t/ D '0.t C 1=2/C '0.t � 1=2/ and ' D 0 on .�1;
1=2�, hence

U.t/ D

Z t

0

u.s/ ds D '.t C 1=2/C '.t � 1=2/:

Thus, Z T

0

u.t/ dt D �T .1/=2C �T .0/=2 D 0

because �T is assumed to be 1-antiperiodic. We also deduce that

kU kL2.0;T / � 2k'kL2.�1=2;TC1=2/ � Ck�T kL2 :

We now study the controls that steer 0 to 0. We only prove that the following condition
is necessary, which is all we need, but we could also prove that it is sufficient.

Proposition 2.8. Let T 2 .1; 2/ and let u 2 L2.0; T / such that the solution �1 of .@t C
@x/�1.t; x/ D u.t/�.x/, �1.0; �/ D 0 satisfies �1.T; �/ D 0. Then

u.t/ D 0 for t 2 .T � 1; 1/ and u.t C 1/ D u.t/ for t 2 .0; T � 1/:
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Proof. We use the formula for �1 given by Lemma 2.5. Since 1 < T < 2, U.T � x � k/
is zero whenever k � 2 and 0 < x < 1. Hence, for 0 < x < 1,

�1.T; x/ D �U.T /C 2U.T � x/ � 2U.T � x � 1/:

Since �1.T; x/ D 0, by differentiating in x, we get that for 0 < x < 1,

u.T � x/ D u.T � x � 1/:

If 0 < t < T � 1, we choose x D T � t � 1. This proves that u.t C 1/D u.t/ as claimed.
If T � 1 < t < 1, we choose x D T � t , which gives u.t/ D u.t � 1/. But u.t � 1/ D 0
(we extended u by 0 on .�1; 0/), which proves that u.t/ D 0.

3. Second-order approximation for the nonlinear system

3.1. Periodic change of variables

In this section, we deal with the second-order approximation system given by (1.8). We
rewrite it in the �2 D C.h2; v2/ variables, which is done thanks to the following compu-
tation:

Lemma 3.1. Let Q be the quadratic form on R2 defined by Q.a; b/ WD .3a2 � 2ab �

b2/=8. Let � D C.h; v/ for some .h; v/ 2 .C 1.Œ0; 1�//2 with v.0/ D v.1/ D 0. Set

w.x/ WD C.�@x.hv/;�@x.v
2=2// and r.x/ WD Q.�.x/; �.�x//:

Then
w.x/ D �@xr.x/:

In the case that �.x/ D �1.t; x/, we will denote accordingly w.x/ by w1.t; x/ and r.x/
by r1.t; x/.

Proof. First, using the definition of C ,

w.x/ D

8<:�@x.hv C v2=2/.x/ for 0 < x < 1;

�@x.hv � v
2=2/.�x/ for �1 < x < 0:

Inverting the relation � D C.h; v/, we get for 0 < x < 1,

h.x/ D
1

2
.�.x/C �.�x//;

v.x/ D
1

2
.�.x/ � �.�x//:
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So,

hv.x/ D
1

4
.�2.x/ � �2.�x//;

1

2
v2.x/ D

1

8
.�.x/ � �.�x//2;

thus,

hv.x/C
1

2
v2.x/ D

1

8
.3�2.x/ � 2�.x/�.�x/ � �2.�x//;

hv.x/ �
1

2
v2.x/ D

1

8
.�2.x/C 2�.x/�.�x/ � 3�2.�x//:

Finally, according to the definition of r , we rewrite this as

hv.x/C
1

2
v2.x/ D r.x/;

hv.x/ �
1

2
v2.x/ D �r.�x/:

In both cases 0 < x < 1 and �1 < x < 0, we find

w.x/ D �@xr.x/:

Moreover, since v.0/ D v.1/ D 0, � D C.h; v/ is continuous on T , and so is r . Thus, we
conclude that in the sense of distributions,

w D �@xr:

If we set
�2 WD C.h2; v2/;

according to Proposition 2.2 and Lemma 3.1,

.@t C @x/�2.t; x/ D �C.@x.h1v1/; @x.v
2
1=2// D w1.t; x/ D �@xr1.t; x/: (3.1)

Remark 3.2. We recall that �1.t; x C 1/ D ��1.t; x/, so that r1.t; x C 1/ D r1.t; x/. So,
w1 as well as �2 is 1-periodic in x.

3.2. Kernel for �2

In this section, we express �2 (or more precisely scalar products of �2) via a kernel that
we compute explicitly. For a; b 2 R, we denote

a _ b WD max¹a; bº and a ^ b WD min¹a; bº:
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We begin with the following lemma:

Lemma 3.3. Let � be a 1-periodic C 1 function. Let u 2 L2.0; T / and let �2.�; �/ be the
second-order correction for the water-tank system, i.e., the solution of .@t C @x/�2.t; x/D
w1.t; x/, �2.0; �/ D 0 (where w1 was defined in Lemma 3.1). There exists a symmetric
function Kt .�; �/ 2 L2..0; T /2/ (depending on �) such that

.�2.t; �/; �/L2.T/ D

Z
Œ0;t�2

Kt .s1; s2/u.s1/u.s2/ ds1 ds2:

This function is given by the following explicit formula, where q is the bilinear symmet-
ric form on R2 associated to the quadratic form Q defined in Lemma 3.1, i.e.,
q.a; b; a0; b0/ D .3aa0 � ab0 � a0b � bb0/=8, and where � D �.s1; s2/ D ¹.t1; t2/ 2

R2W 2.s1 _ s2 � t / < t1 C t2 < 0; 0 < t1 � t2 < 2º:

Kt .s1; s2/ WD

Z
�

�0.t1 C t � s1 _ s2/

� q
�
�.t1 � js2 � s1j/; �.t2 � js2 � s1j/; �.t1/; �.t2/

�
dt1 dt2: (3.2)

Proof. This is a mostly straightforward computation using the characteristics formula.
Since �2 satisfies the equation .@t C @x/�2.t; x/ D w1.t; x/ with �2.0; �/ D 0, then we
have according to the characteristics formula,

�2.t; x/ D

Z t

0

w1.s; s C x � t / ds:

Since w1.s; x/ D �@xr1.s; x/, integrating by parts in x, and keeping in mind that every-
thing is 2-periodic in x, we have

.�2.t; �/; �/L2.T/ D �

Z
T�Œ0;t�

�.x/@xr1.s; x C s � t / dx ds

D

Z
T�Œ0;t�

�0.x/r1.s; x C s � t / dx ds:

Since the integrand is in fact 1-periodic (r1 is according to Remark 3.2, and we assumed
that � is 1-periodic), we rewrite this as

.�2.t; �/; �/L2.T/ D 2

Z
Œ0;1��Œ0;t�

�0.x/r1.s; x C s � t / dx ds: (3.3)

Recall that if Q is a quadratic form on Cd and q is its associated bilinear form,
Fubini’s theorem implies that for any compact subset X of Rn and f WX ! Cd mea-
surable bounded, we have Q.

R
X
f .s/ ds/ D

R
X2
q.f .s1/; f .s2// ds1 ds2. Then, using

the fact that r1.s; x/ D Q.�1.s; x/; �1.s;�x// and �1.s; x/ D
R s
0
u.s0/�.x C s0 � s/ ds0,
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we get

r1.s; x/ D

Z
Œ0;s�2

q
�
u.s1/�.x C s1 � s/; u.s1/�.�x C s1 � s/; u.s2/�.x C s2 � s/;

u.s2/�.�x C s2 � s/
�

ds1 ds2

D

Z
Œ0;s�2

u.s1/u.s2/q
�
�.x C s1 � s/; �.�x C s1 � s/; �.x C s2 � s/;

�.�x C s2 � s/
�

ds1 ds2:

Plugging this into equation (3.3), we get that the formula

.�2.t; �/; �/ D

Z
Œ0;t�2

Kt .s1; s2/u.s1/u.s2/ ds1 ds2

holds with

Kt .s1; s2/ D 2

Z
Œ0;1��Œ0;t�

1s1;s2�s�
0.x/q

�
�.x C s1 � t /; �.�x C s1 � 2s C t /;

�.x C s2 � t /; �.�x C s2 � 2s C t /
�

dx ds:

We see from this expression and the symmetry of q that Kt .s1; s2/ D Kt .s2; s1/. Since
the integrand is 1-periodic in x, the change of variables x0 D x C s � t gives

Kt .s1; s2/ D 2

Z
Œ0;1��Œs1_s2;t�

�0.x � s C t /q
�
�.x C s1 � s/; �.�x C s1 � s/;

�.x C s2 � s/; �.�x C s2 � s/
�

dx ds:

Since Kt .s1; s2/ D Kt .s2; s1/, to simplify the notation, we may assume that s2 D s1 _ s2
and s1 D s1 ^ s2. Then the change of variables t1 D x C s2 � s, t2 D �x C s2 � s, which
satisfies dx ds D 1

2
dt1 dt2 and x � s C t D t1 � s2 C t proves

Kt .s1; s2/ D

Z
�

�0.t1 � s2 C t /q
�
�.t1 C s1 � s2/; �.t2 C s1 � s2/; �.t1/; �.t2/

�
dt1 dt2;

where � is the image of Œ0; 1� � Œs2; t � by the change of variables. Since x D .t1 � t2/=2
and s2 � s D .t1 C t2/=2, � D ¹0 < t1 � t2 < 2; 2.s2 � t / < t1 C t2 < 0º. By possibly
swapping s1 and s2, we assumed that s2 D s1 _ s2 and s1 D s1 ^ s2, hence this is the
claimed formula.

The following proposition, with the symmetry of Kt proved in the previous lemma,
allows us to compute Kt in closed form when 0 < t < 2.

Proposition 3.4. Let � be a C 1 1-periodic function and t 2 .0; 2/. Let Kt be the kernel
defined in Lemma 3.3. For every 0 < s1; s2 < t such that 1 < s2 � s1, we haveKt .s1; s2/D
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�Kt .s1 C 1; s2/. Moreover, for 0 < s1 < s2 < t and s2 � s1 < 1, we have

2Kt .s1; s2/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

Z 0

�2tC2s2

�.sC t�s2/ ds

C 2.t�s2/�.t�s2/

� 4.t�s2/�.t�s1/ if 2t�1 < s1Cs2 < 2t;Z 2�2tCs2Cs1

s2�s1

�.sC t�s2/ ds

C .�1C4t�3s2�s1/�.t�s2/

� .1C2t�3s2Cs1/�.t�s1/ if 2t�2 < s1Cs2 < 2t�1;Z 0

2�2tC2s2

�.sC t�s2/ ds

C .1C2t�2s2/�.t�s2/

� .�1C4t�4s2/�.t�s1/ if 2t�3 < s1Cs2 < 2t�2;Z 4�2tCs2Cs1

s2�s1

�.sC t�s2/ ds

C .�2C4t�3s2�s1/�.t�s2/

� .2C2t�3s2Cs1/�.t�s1/ if 2t�4 < s1Cs2 < 2t�3:

(3.4)

Proof. If 0 < s1 < s2 � 1 < s2 < t , we see that s1 _ s2 D .s1 C 1/ _ s2 and that the
integration set in formula (3.2) is the same for Kt .s1; s2/ and Kt .1C s1; s2/. Then, using
the fact that �.x C 1/ D ��.x/ and the bilinearity of q, we get that Kt .s1 C 1; s2/ D
�Kt .s1; s2/. Thus, we only need to compute Kt .s1; s2/ when 0 < s2 � s1 < 1.

Since �.x/ 2 ¹�1; 1º the term q.�.t1 � s2 C s1/; �.t2 � s2 C s1/; �.t1/; �.t2// only
takes a finite number of values. To simplify notation, we set � D js2 � s1j, � D t � s2 and

˛� .t1; t2/ D q
�
�.t1 � �/; �.t2 � �/; �.t1/; �.t2/

�
:

The proof then consists in identifying which values ˛� takes and on which subsets of �.
Then we integrate

R
�0.t1C �/ on these sets and sum everything with the right coefficient.

We remark that if a, b, a0, b0 are equal to˙1, then q.a; b; a0; b0/ is equal to 0 or˙1=2.
Indeed, q.1; 1; 1; 1/D 0, q.1;�1; 1; 1/D 1=2, q.1;�1; 1;�1/D 1=2 and we get the other
values using the bilinearity and the symmetry of q.

Remark that ˛� can only change value when t1 or t2 crosses the value k or � C k for
some k 2 Z. We represent this in Figure 2.

We remark that the set where ˛� D 1=2 is the intersection of three rectangles and �:

.� \ Œ�2C �;�1� � Œ�3C �;�2�„ ƒ‚ …
�11

/ [ .� \ Œ�1C �; 0� � Œ�2;�1C ��„ ƒ‚ …
�12

/

[ .� \ Œ�; 1� � Œ�1; 0�„ ƒ‚ …
�13

/;
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𝑡1 − 𝑡2 = 0

𝑡1 + 𝑡2 = −2𝜏

𝑡1 + 𝑡2 = 0 𝑡2
𝑡1

𝜃(𝑡1 − 𝜎)𝜃(𝑡1)

𝜃(𝑡2) 𝜃(𝑡2 − 𝜎)

0 0 0011 1

1
1

1

1

11
−1
−1−1

−1
−1−1 0

0

0

0 0
0

0 0

2𝛼𝜍
1 1

1
1

0
0

0

𝑡1 − 𝑡2 = 2
−2 −2 + 𝜎 −1 −1 + 𝜎 𝜎 1

−1 + 𝜎
−1

−2 + 𝜎

−3 + 𝜎
−2

Figure 2. In light blue we show the potential thresholds for t1 and t2 where ˛� might change value.
On the right we show the values of �.t2 � �/ and �.t2/, and at the bottom, the values of �.t1 � �/
and �.t1/. The diagonally placed rectangle is �. Inside �, we write the value of 2˛� .t1; t2/.

while the set where ˛� D �1=2 is the intersection of two rectangles and �:

.� \ Œ�1;�1C �� � Œ�3C �;�1�„ ƒ‚ …
��11

/ [ .� \ Œ0; �� � Œ�2C �; 0�„ ƒ‚ …
��12

/:

In other words, with the notation above,

Kt .s1; s2/ D
1

2

Z
�11[�12[�13

�0.t1 C �/ dt1 dt2 �
1

2

Z
��11[��12

�0.t1 C �/ dt1 dt2:

Using Green’s theorem, we get

Kt .s1; s2/ D
1

2

3X
iD1

I
@�1i

�.t1 C �/ dt2 �
1

2

2X
iD1

I
@��1i

�.t1 C �/ dt2:

The only thing left to do is to identify the different cases where the �i;j are empty, trian-
gles, some other 4-polygon or 5-polygon and compute each of these integrals.

We detail one case, and give the results for the others with just a figure as explanation.
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𝑡1 − 𝑡2 = 0
𝑡1 + 𝑡2 = −2𝜏

𝑡1 + 𝑡2 = 0 𝑡2
𝑡1𝑡2 = −𝜎

𝑡2 = −2𝜏 − 𝜎𝑡2 = −2𝜏 𝑡1 − 𝑡2 = 2
𝜎 1

−1 + 𝜎
−1𝑡1 = −2𝜏 + 1

Figure 3. The equivalent of Figure 2 when 2t � 1 < s1 C s2.

Step 1: Case 2t � 1 < s1 C s2 < 2t (Figure 3). In this case, the domains �i;j look like
that of Figure 3.

2Kt .s1; s2/ D

Z �

0

�.s C �/ ds �
Z �

0

�.s C �/ ds„ ƒ‚ …
“Diagonal” part of

R
@��1;2

C 2��.�/ � 2��.� C �/„ ƒ‚ …
“Vertical” part of

R
@��1;2

�

Z �2�C1
�

�.s C �/ ds C
Z 1

�

�.s C �/ ds„ ƒ‚ …
“Diagonal” part of

R
@�13

� 2��.� C �/„ ƒ‚ …
“Vertical” part of

R
@�13

D

Z 1

�2�C1

�.s C �/ ds C 2��.�/ � 4��.� C �/

D

Z 0

�2tC2s2

�.s C t � s2/ ds C 2.t � s2/�.t � s2/ � 4.t � s2/�.t � s1/:

Step 2: Case s1 C s2 < 2t � 1 < 2s1 C 1 (Figure 4). We have

2Kt .s1; s2/ D

Z 2�2tCs2Cs1

s2�s1

�.s � s2 C t / ds

C .4t � 1 � 3s2 � s1/�.t � s2/ � .1C 2t � 3s2 C s1/�.t � s1/:

Step 3: Case 2s1 < 2t � 2 < s1 C s2 (Figure 5). We have

2Kt .s1; s2/ D �

Z s2�s1

2�2tCs2Cs1

�.s � s2 C t / ds

C .4t � 1 � 3s2 � s1/�.t � s2/ � .1C 2t � 3s2 C s1/�.t � s1/:
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𝑡1 − 𝑡2 = 0

𝑡1 + 𝑡2 = −2𝜏

𝑡1 + 𝑡2 = 0 𝑡2
𝑡1𝑡2 = −𝜎

𝑡2 = −2𝜏 − 𝜎𝑡2 = −2𝜏
𝑡1 − 𝑡2 = 2

−1 + 𝜎 𝜎 1
−1 + 𝜎
−1𝑡1 = −2𝜏 + 1 − 𝜎

Figure 4. The equivalent of Figure 2 when s1 C s2 < 2t � 1 < 2s1 C 1.

𝑡1 − 𝑡2 = 0
𝑡1 + 𝑡2 = −2𝜏

𝑡1 + 𝑡2 = 0 𝑡2
𝑡1𝑡2 = −𝜎

𝑡2 = −2𝜏
𝑡1 − 𝑡2 = 2

−2 −2 + 𝜎 −1 −1 + 𝜎 𝜎 1
−1 + 𝜎

−1
−2 + 𝜎

𝑡2 = −2𝜏 + 1 − 𝜎
𝑡1 = −2𝜏 + 2 − 𝜎

Figure 5. The equivalent of Figure 2 when 2s1 < 2t � 2 < s1 C s2.

Step 4: Case s1 C s2 < 2t � 2 < 2s2 (Figure 6). We have

2Kt .s1; s2/ D �

Z 2�2tC2s2

0

�.s C t � s2/ ds

C .1C 2t � 2s2/�.t � s2/ � .�1C 4t � 4s2/�.t � s1/:

Step 5: Case 2s2 � 1 < 2t � 3 < s1 C s2 (Figure 7). We have

2Kt .s1; s2/ D

Z 0

2�2tC2s2

�.s � s2 C t / ds

C .1C 2t � 2s2/�.t � s2/ � .�1C 4t � 4s2/�.t � s1/:
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𝑡1 − 𝑡2 = 0

𝑡1 + 𝑡2 = −2𝜏

𝑡1 + 𝑡2 = 0 𝑡2
𝑡1

𝑡2 = −2𝜏

𝑡2 = −𝜎
𝑡1 − 𝑡2 = 2

−2 −2 + 𝜎 −1 −1 + 𝜎 𝜎 1
−1 + 𝜎

−1
−2 + 𝜎

𝑡1 = −2𝜏 + 1𝑡2 = −2𝜏 + 1 − 𝜎

Figure 6. The equivalent of Figure 2 when s1 C s2 < 2t � 2 < 2s2.

Step 6: Case s1 C s2 < 2t � 3 < 2s1 C 1 (Figure 8). We have

2Kt .s1; s2/ D

Z 4�2tCs2Cs1

s2�s1

�.s C t � s2/ ds

C .�2C 4t � 3s2 � s1/�.t � s2/ � .2C 2t � 3s2 C s1/�.t � s1/:

Step 7: Case 2s1 < 2t � 4 < s1 C s2 (Figure 9). We have

2Kt .s1; s2/ D

Z 4�2tCs2Cs1

s2�s1

�.s C t � s2/ ds

C .�2C 4t � 3s2 � s1/�.t � s2/ � .2C 2t � 3s2 C s1/�.t � s1/:

When the control u steers the linearized equation (1.7) from 0 to 0, we can prove that
this kernel acts as another, simpler one.

Proposition 3.5. Let T 2 .1; 2/. Let � 2 C 1.T / be 1-periodic. We define the reduced
kernel Kred

T W Œ0; T � 1�
2 ! R by

Kred
T .s1; s2/ WD

3

2
.1 � js2 � s1j/.�.T � s1 _ s2/ � �.T � s1 ^ s2//:

Let u 2 L2.0; T / steer the linearized equation (2.3) from 0 to 0 (i.e., �1.T; �/D 0). Let
�2.�; �/ be the second-order correction for the water-tank system, i.e., the solution of (3.1).
Then

.�2.T; �/; �/L2.T/ D

Z
Œ0;T�1�2

Kred
T .s1; s2/u.s1/u.s2/ ds1 ds2: (3.5)

The two important points about this formula are that the expression of the reduced
kernel is simpler, and that we integrate on Œ0; T � 1�2 instead of Œ0; T �2.
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𝑡1 − 𝑡2 = 0

𝑡1 + 𝑡2 = −2𝜏

𝑡1 + 𝑡2 = 0 𝑡2
𝑡1𝑡2 = −𝜎

𝑡1 − 𝑡2 = 2
−2 −2 + 𝜎 −1 −1 + 𝜎 𝜎 1

−2

−1 + 𝜎
−1

−2 + 𝜎𝑡2 = −2𝜏 + 1𝑡2 = −2𝜏 + 1 − 𝜎
𝑡1 = −2𝜏 + 2

Figure 7. The equivalent of Figure 2 when 2s2 � 1 < 2t � 3 < s1 C s2.

Proof. Step 1: Expression ofKred
T as a function ofKT . According to Proposition 2.8, we

have for every T � 1 < s < 1, u.s/ D 0 and for every 0 < s < T � 1, u.s C 1/ D u.s/.
Thus, according to Proposition 3.4 we have

.�2.T; �/; �/ D

Z
Œ0;T �2

KT .s1; s2/u.s1/u.s2/ ds1 ds2

D

Z
Œ0;T�1�2

.KT .s1; s2/CKT .1C s1; s2/CKT .s1; 1C s2/

CKT .1C s1; 1C s2//u.s1/u.s2/ ds1 ds2:

Thus, equation (3.5) holds with

Kred
T .s1; s2/ D KT .s1; s2/CKT .1C s1; s2/CKT .s1; 1C s2/CKT .1C s1; 1C s2/:

Since KT (and also Kred
T ) are symmetric in s1, s2, we may assume that s1 � s2. Then,

with s02 WD 1C s2 and s01 WD s1, we have s01 C 1 � s
0
2; thus, according to Proposition 3.4,

we haveKT .s01; s
0
2/D�KT .1C s

0
1; s
0
2/. Thus,KT .s1; 1C s2/CKT .1C s1; 1C s2/D 0

and Kred
T .s1; s2/ D KT .s1; s2/CKT .1C s1; s2/.

We end the computation by using the formula for KT from Proposition 3.4. We have
0 < s1 � s2 < T � 1 and 1 < T < 2. So 2T � 4 < 0 < s1 C s2 < 2T � 2. We consider
two cases: 2T � 3 < s1 C s2 < 2T � 2 and 2T � 4 < s1 C s2 < 2T � 3.

Step 2: Case 2T � 3 < s1 C s2 < 2T � 2. To compute KT .s1; s2/, we use the third case
of expression (3.4) of KT . To compute KT .1C s1; s2/, we remark that with s01 WD s2 and
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𝑡1 − 𝑡2 = 0

𝑡1 + 𝑡2 = −2𝜏

𝑡1 + 𝑡2 = 0 𝑡2
𝑡1𝑡2 = −𝜎−2 −2 + 𝜎 −1 −1 + 𝜎 𝜎 1

−1 + 𝜎
−1

−2 + 𝜎
−2𝑡1 = −2𝜏 + 2 − 𝜎

𝑡1 − 𝑡2 = 2

𝑡2 = −2𝜏 + 1𝑡2 = −2𝜏 + 1 − 𝜎
Figure 8. The equivalent of Figure 2 when s1 C s2 < 2t � 3 < 2s1 C 1.

s02 WD 1C s1, we have s01 < s
0
2 and 2T � 2 < s01 C s

0
2 < 2T � 1. Thus, KT .1C s1; s2/ D

KT .s
0
1; s
0
2/ is computed with the second case of expression (3.4) of KT . We get

2Kred
T .s1; s2/ D 2KT .s1; s2/C 2KT .s

0
1; s
0
2/

D

Z 0

2�2TC2s2

�.s C T � s2/ ds C .1C 2T � 2s2/�.T � s2/

� .�1C 4T � 4s2/�.T � s1/C

Z 2�2TCs02Cs
0
1

s02�s
0
1

�.s C T � s02/ ds

C .�1C 4T � 3s02 � s
0
1/�.T � s

0
2/ � .1C 2T � 3s

0
2 C s

0
1/�.T � s

0
1/

D

Z 0

2�2TC2s2

�.s C T � s2/ ds C .1C 2T � 2s2/�.T � s2/

� .�1C 4T � 4s2/�.T � s1/C

Z 3�2TCs1Cs2

1Cs1�s2

�.s C T � s1/ ds

C .�4C 4T � 3s1 � s2/�.T � s1/ � .�2C 2T � 3s1 C s2/�.T � s2/

D

Z 0

2�2TC2s2

�.s C T � s2/ ds C
Z 3�2TCs1Cs2

1Cs1�s2

�.s C T � s1/ ds

C .3 � 3s2 C 3s1/�.T � s2/ � .3 � 3s2 C 3s1/�.T � s1/:
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𝑡1 − 𝑡2 = 0

𝑡1 + 𝑡2 = −2𝜏

𝑡1 + 𝑡2 = 0 𝑡2
𝑡1𝑡2 = −𝜎

𝑡1 − 𝑡2 = 2

𝑡2 = −2𝜏 + 2 − 𝜎
𝑡2 = −2𝜏 + 1𝑡1 = −2𝜏 + 3 − 𝜎

−2 −2 + 𝜎 −1 −1 + 𝜎 𝜎 1
−1 + 𝜎

−1
−2 + 𝜎

−3 + 𝜎
−2

Figure 9. The equivalent of Figure 2 when 2s1 < 2t � 4 < s1 C s2.

In the second integral, we make the change of variable s0 D s C s2 � s1:

2Kred
T .s1; s2/ D

Z 0

2�2TC2s2

�.s C T � s2/ ds C
Z 3�2TC2s2

1

�.s C T � s2/ ds

C 3.1 � s2 C s1/.�.T � s2/ � �.T � s1//

D 3.1 � s2 C s1/.�.T � s2/ � �.T � s1//;

where we used the 1-periodicity of � to cancel the two integrals. Since we swapped s1 and
s2 to have s1 D s1 _ s2 and s2 D s1 ^ s2, this is indeed the claimed formula.

Step 3: Case 2T � 4 < s1 C s2 < 2T � 3. This case is treated in the same way, the only
difference being that KT .s1; s2/ is computed using the fourth case of expression (3.4) of
KT , and KT .1C s1; s2/ is computed using the third case of the same expression. We get
the same formula.

3.3. Coercivity of the kernel

In this section we use the expression for .�2.T; �/; �/ given in Proposition 3.5 to prove
that when 1 < T < 2, j�2.T; �/j is lower-bounded by kU k2

L2
, where, as before, U.t/ DR t

0
u.s/ ds. To do that, we first have to choose the right function �.

Definition 3.6. Let 1 < T < 2 and let � be a C1 1-periodic function such that �.s/ D s
in Œ1; T �.
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We will discuss how we identified this test function as the right one in Remark 3.9.

Proposition 3.7. If 1 < T < 2 and u 2 L2.0; T / steers the solution of the linearized
equation (2.3) from 0 to 0 (i.e., �1.T; �/ D 0) and if

R T
0
u.t/ dt D 0, then,

.�2.T; �/; �/L2 � 3.2 � T /kU k
2
L2.0;T�1/

;

where � is a function given in Definition 3.6.

This proposition uses the following computation:

Lemma 3.8. Let I D .a; b/ with a < b, and let K 2 H 1.I 2/ \ H 2.I 2 n ¹s1 D s2º/.
Let R 2 L2.I 2/ such that for s1 ¤ s2, R.s1; s2/ D @s1;s2K.s1; s2/, let w.s/ WD @s1K.s;
s C 0/ � @s1K.s; s � 0/, and let g.s/ WD @s1K.s; b/ C @s2K.b; s/. Then, for every u 2
L2.a; b/, with U.t/ WD

R t
a
u.s/ ds, we haveZ

I2
K.s1; s2/u.s1/u.s2/ ds1 ds2 D

Z
I

w.s/jU.s/j2 ds

C

Z
I2
R.s1; s2/U.s1/U.s2/ ds1 ds2

� U.b/

Z
I

g.s/U.s/ ds CK.b; b/U.b/2:

Proof. First, integrate by parts in s1:Z
I2
K.s1; s2/u.s1/u.s2/ ds1 ds2 D �

Z
I2
@s1K.s1; s2/U.s1/u.s2/ ds1 ds2

C

Z
I

K.b; s2/U.b/u.s2/ ds2: (3.6)

Now we split the first integral into two parts: s2 < s1 and s1 < s2. With

	 D

Z
I2
@s1K.s1; s2/U.s1/u.s2/ ds1 ds2

one has

	 D

Z
I

�Z s1

a

@s1K.s1; s2/u.s2/ ds2 C
Z b

s1

@s1K.s1; s2/u.s2/ ds2

�
U.s1/ ds1

D

Z
I

�
�

Z s1

a

@s1;s2K.s1; s2/U.s2/ ds2 C @s1K.s1; s1 � 0/U.s1/

�

Z b

s1

@s1;s2K.s1; s2/U.s2/ ds2@s1K.s1; b/U.b/

� @s1K.s1; s1 C 0/U.s1/

�
U.s1/ ds1

D �

Z
I2
R.s1; s2/U.s1/U.s2/ ds1 ds2 �

Z
I

w.s/U.s/2 ds

C U.b/

Z
I

@s1K.s1; b/U.s1/ ds1:
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Moreover,Z
I

K.b; s2/u.s2/ ds2 D �
Z
I

@s2K.b; s2/U.s2/ ds2 CK.b; b/U.b/:

Plugging these two formulas into equation (3.6) proves the lemma.

Proof of Proposition 3.7. We first simplify the expression of Kred
T given by Proposition

3.5. For 0 < s1; s2 < T � 1, we have 1 < T � s1 _ s2 � T � s1 ^ s2 < T ; thus, according
to the definition of �, we have for 0 < s1; s2 < T � 1,

Kred
T .s1; s2/ D

3

2
.1 � js2 � s1j/..T � s1 _ s2/ � .T � s1 ^ s2//

D �
3

2
.1 � js2 � s1j/js2 � s1j

D
3

2
.�js2 � s1j C .s2 � s1/

2/:

Thus, according to Proposition 3.5, if u is as in the statement of Proposition 3.7,

.�2.u; T; �/; �/ D �
3

2

Z
Œ0;T�1�2

js2 � s1ju.s1/u.s2/ ds1 ds2

C
3

2

Z
Œ0;T�1�2

.s2 � s1/
2u.s1/u.s2/ ds1 ds2: (3.7)

With the notation of Lemma 3.8 with K D Kred
T , we have

R.s1; s2/ D �3; w.s/ D 3:

Moreover, since
R T
0
u.t/ dt D 0, according to Proposition 2.8, we haveZ T

0

u.t/ dt D 2
Z T�1

0

u.t/ dt D 0:

Hence the boundary term U.T � 1/ is zero. Plugging the formula of Lemma 3.8 into
expression (3.7), we get

.�2.u; T; �/; �/ D 3kU k
2
L2.0;T�1/

� 3

�Z T�1

0

U.s/ ds
�2
:

According to the Cauchy–Schwarz inequality, we haveˇ̌̌̌Z T�1

0

U.s/ ds
ˇ̌̌̌
�
p
T � 1kU kL2.0;T�1/:

Thus
.�2.u; T; �/; �/ � 3.2 � T /kU k

2
L2.0;T�1/

:
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Remark 3.9. How did we choose the � of Definition 3.6? It turns out that if � is monotone
on Œ1; T �, the assertionZ T�1

0

u.t/ dt D 0)
Z
Œ0;T�1�2

Kred
T .s1; s2/u.s1/u.s2/ ds1 ds2 � ckU k2L2.0;T�1/

is equivalent to the condition
R T
1
�0.s/ds

R T
1
.�0.s//�1 ds < .3� T /2 (we sketch the proof

of this fact in Appendix A). Hence, the smaller the left-hand side of this condition, the
larger the time for which we will be able to disprove local controllability. With some
calculus of variations, we can see that if � minimizes the left-hand side, then �0 is constant
on Œ1; T �, hence our choice of �.

Remark 3.10. The hypothesis that
R T
0
u.t/ dt D 0 in Proposition 3.7 is essential. Indeed,

Kred
T is continuous and Kred

T .s; s/ D 0. Hence, if we choose a sequence .un/n2N that
approximates ıt0 nicely enough for some fixed t0 2 .0; T � 1/ (for instance un.t/ D
n'..t � t0/=n/ where ' 2 Cc.0; T � 1/, ' � 0,

R T�1
0

'.x/ dx D 1), we getZ
Œ0;T�1�2

Kred
T .s1; s2/un.s1/un.s2/ ds1 ds2 �����!

n!C1
Kred
T .t0; t0/ D 0:

Moreover, we have

Un.t/ WD

Z t

0

un.s/ ds �����!
n!C1

´
0 if t < t0;

1 if t > t0;

hence kUnkL2.0;T�1/ �����!
n!C1

p
T � t0 > 0. This proves that the quadratic map

u 7!

Z
Œ0;T�1�2

Kred
T .s1; s2/u.s1/u.s2/ ds1 ds2

has no “H�1-coercivity”.

4. Nonlinear equation

Proposition 3.7 shows that if the time T is smaller than 2 and if u steers the linearized
equation (2.3) from 0 to 0, then k�2.u;T; �/kL2 � ckU k2L2.0;T /. As in the previous section,
we fix T 2 .1; 2/. Our aim now is to prove that the solution of the nonlinear equation also
has this property, as long as kukC 0 is small enough. As a consequence, one cannot move
the water tank in time T with a control small in C 0-norm, and that finishes the proof of
Theorem 1.2.

To this end, we use the fact that if kuk is small enough, the solution of the nonlinear
equation is well approximated by .h1; v1/C .h2; v2/, where .h1; v1/ solves the linearized
system (1.7) and .h2; v2/ solves the second-order system (1.8).
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4.1. Well-posedness of the water-tank system

In this section we state several basic results on the nonlinear system related to the water-
tank system (1.1). We begin with the well-posedness of the water-tank system, where, as
in the rest of the article, g D 1 and L D 1 and U.t/ D

R t
0
u.s/ ds.

Proposition 4.1. Let T > 0. There exists " > 0 such that for .H0; v0/ 2 .C 1.Œ0; 1�//2 that
satisfies

kukC 0.Œ0;T �/ C k.H0; v0/ � .1; 0/kC 1.Œ0;1�/ < ";

as well as the compatibility conditions

@xH0.0/ D @xH0.1/ D �u.0/;

there exists a unique solution .Hnl; vnl/ 2 .C
1.Œ0; T � � Œ0; 1�//2 of the water-tank sys-

tem (1.1) with Hnl.0; x/ D H0.x/ and vnl.0; x/ D v0.x/. Moreover,

k.Hnl; vnl/�.1; 0/kC 1.Œ0;T ��Œ0;1�/ � C.kukC 0.Œ0;T �/Ck.H0; v0/�.1; 0/kC 1.Œ0;1�//;

for some positive constant C depending only on T .

Proof. In this proof, we omit the index nl and write just .H; v/ for .Hnl; vnl/.
Standard results for the classical solutions of hyperbolic systems (see for instance [11,

§3.4] and [27, Chapter 4]) assume that all coefficients are at least C 1, but here we assume
that u is only C 0. In order to achieve that, we note that if .H; v/ solves the water-tank
system (1.1), then with V defined by v.t; x/ D V.t; x/ � U.t/, the water-tank system
becomes 8̂̂̂<̂

ˆ̂:
@tH C @x..V � U/H/ D 0;

@tV C @x

�
H C

.V � U/2

2

�
D 0;

V .t; 0/ D V.t; 1/ D U.t/;

where all the coefficients are now C 1. This system can be written in the form

@t

�
H

V

�
C

�
V � U H

1 V � U

�
@x

�
H

V

�
D

�
0

0

�
in Œ0; T � � Œ0; 1� (4.1)

and
V.t; 0/ D V.t; 1/ D U.t/ in Œ0; T �: (4.2)

System (4.1) and (4.2) is in the standard form of the quasilinear hyperbolic system for U
with kU kC 1.0;T / small; see, e.g., [32, Theorem 2.1]. The proof of the well-posedness and
the estimate are based on fixed point arguments (see also [27, Chapter 4] and [20, proof
of Lemma 2.2]). For the convenience of the reader, we sketch the ideas of the proof.

Set
.H .0/; V .0//.t; x/ D .H0.x/; V0.x// in Œ0; T � � Œ0; 1�;
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and define .H .n/; V .n// in Œ0; T � � Œ0; L� for n � 1 by

@t

�
H .n/

V .n/

�
C

�
V .n�1/ � U H .n�1/

1 V .n�1/ � U

�
@x

�
H .n/

V .n/

�
D

�
0

0

�
in Œ0; T � � Œ0; 1�; (4.3)

with the corresponding boundary conditions. Let us assume that

k.H .n�1/
� 1; V .n�1/; U /kC 1.Œ0;T ��Œ0;1�/ � C1; (4.4)

for some small positive constant C1. Then, by considering (4.3) as a linear hyperbolic
system where the matrix �

V .n�1/ � U H .n�1/

1 V .n�1/ � U

�
is a given function of t and x and satisfies (4.4), and by applying the characteristic method
again, one gets the existence of a positive constant C2 (independent of " > 0 small enough
and n) such that

k.H .n/
� 1; V .n//kC 0.Œ0;T ��Œ0;1�/ � C2.kU kC 0.Œ0;T �/ C k.H0; V0/ � .1; 0/kC 0.Œ0;1�//:

By taking the derivative of (4.3) with respect to t , we also obtain 3

k.H .n/
� 1; V .n//kC 1.Œ0;T ��Œ0;1�/ � C2.kukC 0.Œ0;T �/ C k.H0; V0/ � .1; 0/kC 1.Œ0;1�//:

We derive that
k.H .n/

� 1; V .n//kC 1.Œ0;T ��Œ0;1�/ � C":

In order to prove the uniform equicontinuity of .rt;xH .n/;rt;xV
.n// in Œ0; T �� Œ0; 1�,

we estimate their modulus of continuity defined by

�n.r/ WD sup
j.t;x/�.s;y/j<r

.t;x/;.s;y/2Œ0;T ��Œ0;1�

j.rt;xH
.n/.t; x/ � rs;yH

.n/.s; y/;rt;xV
.n/.t; x/

� rs;yV
.n/.s; y//j:

Using the characteristics method again, we can prove that there exists a positive constant

 depending only on T such that for " sufficiently small,

�n.r/ � C
�

sup
jt�sj<
r
t;s2Œ0;T �

ju.t/ � u.s/j C sup
jx�yj<
r
x;y2Œ0;1�

j.H 00; V
0
0/.x/ � .H

0
0; V

0
0/.y/j

�
: (4.5)

3Rigorous arguments can start by first approximating .Hn�1; V n�1/ and U by smooth solutions and
then passing to the limit. The meaning of the broad solutions, see, e.g., [11], can also be used to give the
result. The details are omitted.
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Using Ascoli’s theorem, one can conclude from (4.5) that .H .n/; V .n// converges to
.H; V / in C 1.Œ0; T � � Œ0; 1�/ up to a subsequence.

It thus suffices to prove the uniqueness of .H;V / to conclude the proof. Let .H;V / and
. yH; yV / be two solutions in C 1.Œ0; T � � Œ0; 1�/ such that their norms in C 1.Œ0; T � � Œ0; 1�/
are bounded by C" for some positive constant C independent of ". Consider the system
solved by . yH �H; yV � V /: one can check that

k. yH �H; yV � V /kC 0.Œ0;T ��Œ0;1�/ � C"k. yH �H; yV � V /kC 0.Œ0;T ��Œ0;1�/: (4.6)

This implies . yH; yV / D .H; V / for " sufficiently small. The uniqueness is established.
The proof is complete.

Remark 4.2. We do not need this for the proofs below, but it is worth noting that standard
methods using the propagation along characteristics can be used to prove the lack of local
controllability around equilibrium states in time T < T�. Let us sketch it. Consider the
characteristic speeds �˙ and Riemann invariants R˙, which are given by4

�˙ D v ˙
p
H;

R˙ D v ˙ 2
p
H C U:

We have ´
.@t C �˙@x/R˙ D 0;

RC.t; 0/CR�.t; 0/ D RC.t; 1/CR�.t; 1/ D 2U.t/:

Consider also the characteristics, i.e., the solutions x˙ of the Cauchy problem´
@tx˙.t; t0; xt0/ D �˙.t; x˙.t; t0; xt0//;

x˙.t0; t0; xt0/ D xt0 :

Then, differentiating in t and using the equation for R˙, we get that R˙.t; x˙.t; t0; 0//
does not depend on t (as long as x˙.t; t0; 0/ is defined, i.e., stays inside Œ0; 1�). Hence

RC.t; xC.t; t0; 0// D RC.t0; 0/ and R�.t0; 0/ D R�.0; x�.0; t0; 0//:

Hence, if R˙.0; �/ D R˙.T; �/ D 0, 0 < t0 < T , and if xC.T; t0; 0/ and x�.0; t0; 0/ are
defined,

2U.t0/ D RC.t0; 0/CR�.t0; 0/ D RC.T; xC.T; t0; 0//CR�.0; x�.0; t0; 0// D 0:

The characteristic speed depends on the solution, and thus on the control, but if the control
is small, the characteristic speeds are �˙.t; x/ D ˙1 C O.kukC 0/, which implies that
x˙.t; t0; 0/ D ˙.t � t0/CO.kukC 0/. Hence, the computations outlined above are valid
if T < 1 �O.kukC 0/.

4The Riemann invariants as defined in [1, Section 1.4] do not have the CU term. But in our case, it is
convenient to add it.
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4.2. Error estimates

In this section, .Hnl; vnl/ D .1 C hnl; vnl/ is the solution of the water-tank system (1.1)
with control u. We will often conflate this solution and �nl WD C.hnl; vnl/. The same will be
done for the solution .h1; v1/ of the linearized system (1.7) and �1 WD C.h1; v1/ (solution
of (2.3)), as well as the solution .h2; v2/ of (1.8) and �2.u/ WD C.h2; v2/. If anything, this
will make the notation lighter.

We will also set wnl WD �C.@x.hnlvnl/; @x.v
2
nl=2//, so that �nl satisfies .@t C @x/�nl.t;

x/ D wnl.t; x/C u.t/�.x/. We also denote the right-hand side of equation (3.1) satisfied
by �2 by w1.t; x/, i.e., w1 D �C.@x.h1v1/; @x.v

2
1=2//. Finally, we set ı1 WD �nl � �1 and

ı2 WD �nl � �1 � �2.
We also keep the notation U.t/ D

R t
0
u.s/ ds of the previous sections.

In this subsection we prove estimates on the following error terms:

• in Lemma 4.4, an estimate on ı2 D �nl � �1 � �2,

• in Lemma 4.5, we bound �2. Qu; T; �/ � �2.u; T; �/.

The aim is to prove that these terms cannot counter the positivity of the term 3.2 �

T /kU k2
L2

that appears in Proposition 3.7.
From now on, kukC 0 means kukC 0.Œ0;T �/. We start with an estimate for the nonlinear

equation, which is a consequence of the nonlinear well-posedness (Proposition 4.1) and
the linear estimates (Proposition 2.6):

Corollary 4.3. Let T > 0. There exist � > 0 and C > 0 such that for every u 2 C 0.Œ0;T �/
with u.0/ D 0 and kukC 0 < ı, there exists a unique solution .Hnl; vnl/ 2 .C

1.Œ0; T � �

Œ0; 1�//2 of the water-tank system (1.1) with .Hnl; vnl/.0; �/ D .1; 0/. Moreover, with the
notation �nl defined at the beginning of this section, we have for some C independent of u,

k�nlkL2tL
2
x
� CkU kL2.0;T /:

Proof. The existence and uniqueness are a consequence of the well-posedness (Proposi-
tion 4.1). Let us now prove the inequality. We write �nl D �1 C ı1.

We have .@t C @x/�1.u; t; x/ D u.t/�.x/ and .@t C @x/ı1.u; t; x/ D wnl.u; t; x/.
Hence, according to Proposition 2.6, we have k�1kL2tL2x � CkU kL2 and kı1kL2tL2x �
Ckwnlk

2
L2

. Since wnl can be written as �@xrnl, where rnl.t; x/ is a quadratic form of
�nl.t; x/ and �nl.t;�x/ (Lemma 3.1), we have kwnlkL2tL

2
x
� Ck@x�nlkL1k�nlkL2tL

2
x
. Thus,

k�nlkL2tL
2
x
� C.kU kL2 C k@x�nlkL1k�nlkL2tL

2
x
/:

Finally, since k@x�nlkL1 �kC.hnl;vnl/kW 1;1 � 2k.hnl;vnl/kC 1 (see Remark 2.3), we have
according to the well-posedness estimate of Proposition 4.1, k@x�nlkL1 � CkukC 0 � C�.
Thus,

k�nlkL2tL
2
x
� CkU kL2 C C�k�nlkL2tL

2
x
;

which implies for � small enough,

k�nlkL2tL
2
x
�

C

1 � C�
kU kL2 :
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Next we prove the approximation property:

Lemma 4.4. Let � 2 C 1.T /. Let T > 0 and u 2 C 0.0; T / with u.0/D 0 and kukC 0 < �.
Then, with the notation above, for some C > 0 independent of u,

kı1kL1t L2x
� CkU kL2.0;T /kukC 0 ;

j.ı2.T; �/; �/j � CkU k
2
L2.0;T /

kukC 0 :

Proof. Step 1: Estimate of ı1 in L2-norm. We have .@t C @x/ı1 D wnl; thus, using
Duhamel’s formula,

kı1kL1t L2x
� CkwnlkL1tL

2
x
:

Since wnl D � C.@x.hnlvnl/; @x.v
2
nl=2//, we can use Lemma 3.1 to write wnl D �@xrnl

with rnl.t; x/ D Q.�nl.t; x/; �nl.t;�x//. Thus,

kı1kL1t L2x
� Ck@xrnlkL2tL

2
x
:

SinceQ is a quadratic form (see Lemma 3.1), @xrnl is the sum of products of �nl and @x�nl

evaluated at .t; x/ or .t;�x/. Thus, we get

kı1kL1t L2x
� Ck�nlkL2tL

2
x
k@x�nlkL1t L

1
x

� Ck�nlkL2tL
2
x
k.hnl; vnl/kC 1.Œ0;T ��Œ0;1�/;

where we used that the change of variables C is such that for .h; v/ 2 C 1.Œ0; 1�/ with
v.0/ D v.1/ D 0, then kC.h; v/kW 1;1 � 2k.h; v/kC 1 (Remark 2.3). Finally, using the
well-posedness estimates of Proposition 4.1 and Corollary 4.3, we get

kı1kL1t L2x
� CkU kL2kukC 0 :

Step 2: Estimation on .ı2; �/. The function ı2 is a solution of .@t C @x/ı2 D wnl � w1.
Thus, using the characteristics formula (equation (2.2)),

.ı2.T; �/; �/ D

Z
x2T

ı2.T; x/�.x/ dx

D

Z
Œ0;T ��T

.wnl � w1/.s; x C s � T /�.x/ ds dx:

We can use Lemma 3.1 to write wnl D�@xrnl, with rnl.t; x/DQ.�nl.t; x/; �nl.t;�x// and
similarly for w1. Thus, integrating by parts,

.ı2.T; �/; �/ D

Z
Œ0;T ��T

.rnl � r1/.s; x C s � T /@x�.x/ ds dx:

Thus,
j.ı2.T; �/; �/j � krnl � r1kL1tL1x

k�.x/kC 1 :
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We recall that rnl.t; x/ D Q.�nl.t; x/; �nl.t;�x//, where Q is a quadratic form, and simi-
larly for r1. Thus, writing aa0 � bb0 D ..a � b/.a0 C b0/C .a0 � b0/.aC b//=2, we get

j.ı2.T; �/; �/j � C
�
k.�1 � �nl/.t; x/.�1.t; x/C �nl.t; x//kL1tL1x

C k.�1 � �nl/.t;�x/.�1.t; x/C �nl.t; x//kL1tL1x

C k.�1 � �nl/.t; x/.�1.t;�x/C �nl.t;�x//kL1tL1x

C k.�1 � �nl/.t;�x/.�1.t;�x/C �nl.t;�x//kL1tL1x

�
� Ck�1 � �nlkL2tL

2
x
.k�1kL2tL2x

C k�nlkL2tL
2
x
/:

Finally, using the estimate on ı1 we obtained in the first step, the regularity estimate on �1
of Proposition 2.6, and the estimate on �nl of Corollary 4.3,

j.ı2.T; �/; �/j � CkU kL2kukC 0kU kL2 :

In the following proposition, we make it explicit that �2 depends on u by denoting
it by �2.u; t; x/, and similarly for other quantities that depend on u, because we need to
estimate �2.u; �; �/ � �2. Qu; �; �/.

Lemma 4.5. Let � 2 C 1.T /, T > 0 and u; Qu 2 L2. With the notation of Lemma 4.4, and
with U.t/ WD

R t
0
u.s/ ds and zU.t/ WD

R t
0
Qu.s/ ds, for some C > 0 independent of u, Qu,

j.�2.u; T; �/ � �2. Qu; T �/; �/j � CkU � zU kL2.0;T /.kU kL2.0;T / C k zU kL2.0;T //:

Proof. We use the same notation w1 and r1 as Lemma 3.1. The function �2.u/ � �2. Qu/
satisfies

.@t C @x/.�2.u/ � �2. Qu// D w1.u/ � w1. Qu/:

Thus, according to the characteristics formula,

.�2.u;T; �/� �2. Qu;T �/;�/D

Z
Œ0;T ��T

.w1.u; s;xC s � T /�w1. Qu;s;xC s � T //� ds dx:

Since w1.u/ D �@xr1.u/, we integrate by parts to get

.�2.u;T; �/� �2. Qu;T �/;�/D

Z
Œ0;T ��T

.r1.u;s;xC s�T /� r1. Qu;s;xC s�T //@x� ds dx:

Thus,
j.�2.u; T; �/ � �2. Qu; T �/; �/j � Ckr1.u/ � r1. Qu/kL1tL1x

:

Recall that r1.u; t; x/ is a linear combination of quadratic terms involving �1.u; t; x/
and �1.u; t;�x/ (see Lemma 3.1). Thus, writing aa0 � bb0 D ..a � b/.a0 C b0/C .a0 �
b0/.aC b//=2, and using Hölder’s inequality, we get

j.�2.u; T; �/ � �2. Qu; T �/; �/j � Ck�1.u � Qu/kL2tL2x
.k�1.u/kL2tL2x

C k�1. Qu/kL2tL2x
/:

Finally, the regularity estimate for the linear equation (Proposition 2.6) proves the theo-
rem.
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4.3. Quadratic drift

We prove in this section a “quadratic drift” (in the words of Beauchard and Marbach [5,
§5.4]). Theorem 1.2 follows easily from this result. We keep the notation �nl, �1, ı1, etc.
defined at the start of the previous subsection.

Lemma 4.6. Let …W � 2 L2.T / 7! .� � �.� C 1//=2, which is the orthogonal projection
on the reachable space for the linearized equation (Remark 2.4 and Lemma 2.7). Let T 2
.1; 2/. There exist � 2 C1.T /, c D cT > 0, and � > 0 such that for every u 2 C 0.Œ0; T �/
with u.0/ D 0 and kukC 0 < �, if …�nl.u; T; �/ D 0 and

R T
0
u.t/ dt D 0,

.�; �nl.u; T; �//L2.T/ � ckU k
2
L2.0;T /

:

Proof. Let T 2 .1; 2/. Let � > 0 be such that Lemma 4.4 holds. Reducing � if necessary,
we may assume that � < 1. Let u 2 C 0.0; T / with u.0/ D 0 and kukC 0 < � such that
…�nl.u; T; �/ D 0.

Step 1: There exists a control Qu close to u that steers the linearized equation from 0 to 0.
We are looking for a control Qu close to u such that �1. Qu; T; �/ D 0. We look for Qu with the
form QuDuC �. The condition �1.uC �;T; �/D 0 is equivalent to �1.�;T; �/D��1.u;T; �/.
Since …�nl.u; T; �/ D 0 by hypothesis and since …�1.u; T; �/ D �1.u; T; �/ (Remark 2.4),
we rewrite this as

�1.�; T; �/ D …ı1.u; T; �/:

According to Lemma 2.7, such a control � exists, and we can also choose it such thatR T
0
�.t/dt D 0 and such that V.t/ WD

R t
0
�.s/ds satisfies kVkL2.0;T / � Ck…ı1.u;T; �/kL2

� Ckı1.u; T; �/kL2 . According to the estimate on ı1 of Lemma 4.4, this control is such
that

kVkL2.0;T / � CkukC 0kU kL2.0;T /: (4.7)

Step 2: Estimating the difference .�nl.u; T; �/; �/ � .�2. Qu; T; �/; �/. Since �1.u; T; �/ is 1-
antiperiodic (Remark 2.4), and since � is 1-periodic, .�1.u; T; �/; �/ D 0. Thus using the
triangle inequality,

j.�nl.u; T; �/ � �2. Qu; T; �/; �/j D j.�nl.u; T; �/ � �1.u; T; �/ � �2. Qu; T; �/; �/j

� j.�nl.u; T; �/ � �1.u; T; �/ � �2.u; T; �/; �/j

C j.�2.u; T; �/ � �2. Qu; T; �/; �/j:

The first term on the right-hand side is j.ı2.u; T; �/; �/j, and according to Lemma 4.4, we
have j.ı2.u; T; �/; �/j � CkU k2L2.0;T /kukC 0 . According to Lemma 4.5, the second term
is bounded by CkVkL2.0;T /.kU kL2.0;T / C kVkL2.0;T //. Thus,

j.�nl.u; T; �/ � �2. Qu; T; �/; �/j � CkU k
2
L2.0;T /

kukC 0

C CkVkL2.0;T /.kVkL2.0;T / C kU kL2.0;T //:
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Now, plugging in the estimate for kVkL2.0;T / (equation (4.7)), we get

j.�nl.u; T; �/� �2. Qu; T; �/; �/j � CkU k
2
L2.0;T /

kukC 0

C CkU kL2.0;T /kukC 0.kU kL2.0;T /kukC 0 CkU kL2.0;T //

D CkU k2
L2.0;T /

kukC 0 CCkU k
2
L2.0;T /

kukC 0.kukC 0 C 1/:

Since we assumed that kukC 0 < � < 1, we have

j.�nl.u; T; �/ � �2. Qu; T; �/; �/j � CkU k
2
L2.0;T /

kukC 0 : (4.8)

Step 3: Using the coercivity of the kernel. According to estimate (4.8) from the previous
step and the inverse triangle inequality, we have

.�nl.u; T; �/; �/ � .�2. Qu; T; �/; �/ � j.�nl.u; T; �/ � �2. Qu; T; �/; �/j

� .�2. Qu; T; �/; �/ � CkU k
2
L2.0;T /

kukC 0 :

Recall that �1. Qu; T; �/ D 0, and
R T
0
Qu.t/ dT D 0. Hence we can plug in the coercivity

estimate of Proposition 3.7, which gives us

.�nl.u; T; �/; �/ � 3.2 � T /k zU k
2
L2.0;T�1/

� CkukC 0kU k
2
L2.0;T /

; (4.9)

where zU.s/ D
R s
0
Qu.s0/ ds0.

Step 4: Conclusion. We claim that k zU k2
L2.0;T /

D 2k zU k2
L2.0;T�1/

. Indeed, recall that

�1. Qu; T; �/ D 0 and
Z T

0

Qu.s/ ds D 0:

Hence, according to the characterization of the linear controls that steer 0 to 0 (Propo-
sition 2.8), Qu.t C 1/ D Qu.t/ for 0 < t < T � 1 and Qu.t/ D 0 for T � 1 < t < 1. Thus,R T�1
0

Qu.s/ ds D 1
2

R T
0
Qu.s/ ds D 0 and

zU.t/ D

Z t

0

Qu.s/ ds D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

zU.t/ for 0 < t < T � 1;Z T�1

0

Qu.s/ ds C
Z t

T�1

0 ds D 0 for T � 1 < t < 1;Z T�1

0

Qu.s/ ds C
Z 1

T�1

0 ds

C

Z T

1

Qu.s � 1/ ds D zU.t � 1/ for 1 < t < T :

This proves the claim that k zU k2
L2.0;T /

D 2k zU k2
L2.0;T�1/

. Plugging this into equation (4.9),
we get

.�nl.u; T; �/; �/ �
3

2
.2 � T /k zU k2

L2.0;T /
� CkukC 0kU k

2
L2.0;T /

: (4.10)



J.-M. Coron, A. Koenig, and H.-M. Nguyen 1360

We now bound the term k zU k2
L2.0;T /

from below. We have

2.U;V/L2.0;T / �
1

2
kU k2

L2.0;T /
C 2kVk2

L2.0;T /
:

Since, Qu D uC �, this implies

k zU k2
L2.0;T /

D kU k2
L2.0;T /

� 2.U;V/L2.0;T / C kVk
2
L2.0;T /

�
1

2
kU k2

L2.0;T /
� kVk2

L2.0;T /
:

Using the bound on kVkL2.0;T / (equation 4.7), and reducing � if necessary, we get

k zU k2
L2.0;T /

�
1

2
kU k2

L2.0;T /
� Ckuk2

C 0
kU k2

L2.0;T /

�
1

4
kU k2

L2.0;T /
:

Finally, plugging this into equation (4.10), we get

.�nl.u; T; �/; �/ �
3

8
.2 � T /kU k2

L2.0;T /
� CkukC 0kU k

2
L2.0;T /

�

�3
8
.2 � T / � C�

�
kU k2

L2.0;T /
:

Reducing � if necessary, this proves the claimed estimate.

A. On the positivity of a class of quadratic forms

In this appendix, we sketch the proof of the following proposition.

Proposition A.1. Let I D Œa; b� with a < b, let �W I ! R be C 1 and such that �0 �
c > 0 and �0 nonconstant, and let " 2 R�. Set K.s1; s2/ WD .1 C "js2 � s1j/.�.s1 ^

s2/ � �.s1 _ s2//, and denote by QK the associated quadratic form, i.e., QK.u/ WDR
I2
K.s1; s2/u.s1/u.s2/ ds1 ds2. The following assertions are equivalent:

(1) there exists c > 0 such that for every u 2 L2.I / with
R b
a
u.t/ dt D 0, QK.u/ >

ckU k2
L2.I /

, where U.t/ WD
R t
a
u.s/ ds;

(2)
R
I
�0.s/ ds

R
I

ds
�0.s/

< .b � aC 2"�1/2.

On the other hand, if
R
I
�0.s/ds

R
I
.�0.s//�1 ds > .b � aC 2"�1/2, there exist u1;u2 2

L2.I / with
R
I
u1.s/ ds D

R
I
u2.s/ ds D 0 such that QK.u1/ > 0 and QK.u2/ < 0.

The hypothesis that �0 is not constant is useful to avoid some degeneracy several times
in the proof, but the result still holds if �0 is constant by perturbing �.

We first start by recasting the quadratic form in a more manageable way for us. This
is done thanks to the following lemma.
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Lemma A.2. DefineQK as in Proposition A.1. Then, for every u2L2.I /with
R T
0
u.t/dt

D 0,

QK.u/ D 2

Z
I

�0.s/.U.s//2 ds C 2"
Z
I

�0.s/U.s/ ds
Z
I

U.s/ ds;

where U.t/ WD
R t
a
u.s/ds. We will denote the right-hand side of the expression as zQK.U /,

which makes sense for each U 2 L2.I /. With this notation, QK.u/ D zQK.U /.

This formula actually holds without the assumptions �0.s/ � c > 0 and " D 0, with
the same proof.

Sketch of the proof. With K as in Proposition A.1 and w, R as in Lemma 3.8, straight-
forward computations show that w.s/ D 2�0.s/ and R.s1; s2/ D ".�0.s1/C �0.s2//. The
terms g.s/ and K.b; b/ do not matter since U.b/ D 0.

The expression of this lemma suggests that we work in the weighted space L2�0 WD
L2.I; �0.s/ ds/. This is where the hypothesis �0.s/ > 0 is useful: to make sense of this
space. We will denote by k � k�0 the norm in L2�0 and by .�; �/�0 the scalar product. The
main consequence of working in this space is that on a space of codimension 2,QK.u/D
2kU k2�0 .

Lemma A.3. Let zQK be as in Lemma A.2. Let S be the symmetric operator (for the L2�0
scalar product) associated with zQK . LetE WD ¹U 2 L2�0 ;

R
I
U.s/ds D

R
I
�0.s/U.s/ds D

0º and F WD Span.1; .�0/�1/. Then,

• E is the orthogonal of F (for the L2�0 scalar product);

• E and F are stable by S ;

• the restriction of S on E is SjE D 2I .

Sketch of the proof. The orthogonality of E and F results from simple computations.
Since E is of codimension 2, E C F D L2�0 . For the other two points, let us denote by
M.U / the constant function equal to

R
I
U.s/ ds and M � the adjoint of this operator M

for the L2�0 -scalar product. Straightforward computations show that

S.U / D 2U C ".M.U /CM �.U // D 2U C "

�Z
I

U.s/ ds C
1

�0

Z
I

�0.s/U.s/ ds
�
:

With this expression of S , the last two points are immediate.

With these lemmas, we can prove Proposition A.1.

Sketch of the proof of Proposition A.1. The main idea is that according to Lemma A.3,
the only possible counterexamples to the coercivity inequality QK.U / � ckU k2�0 are in
F ; thus we are left to study whether a 2 � 2 matrix is positive.

Let us first compute the matrix of the restriction of zQK to F in the basis .1; .�0/�1/.
Here, we use the fact that �0 is not constant; otherwise, the family .1; .�0/�1/would not be



J.-M. Coron, A. Koenig, and H.-M. Nguyen 1362

linearly independent. For simplicity, write U1 WD 1, U2 WD .�0/�1, andM.U / the constant
function equal to

R
I
U.s/ ds. Then

A WD Matrix.U1;U2/. zQK/jF

D

�
2jU1j

2 C 2".M.U1/; U1/ 2.U1; U2/C ".M.U1/; U2/C ".U1;M.U2//

2.U1; U2/C ".M.U1/; U2/C ".U1;M.U2// 2jU2j
2 C 2".M.U2/; U2/

�
;

where all the norms and scalar products are taken inL2�0 . Finally, if we set ˛ WD
R
I
�0.s/ds

and ˇ WD
R
I
.�0.s//�1 ds, some straightforward (again) computations prove that this matrix

is

A D

�
2˛.1C ".b � a// 2.b � a/C ".b � a/2 C "˛ˇ

2.b � a/C ".b � a/2 C "˛ˇ 2ˇ.1C ".b � a//

�
:

To study the positivity of zQK , we compute the trace and determinant of A. Straight-
forward computations show that

Tr.A/ D 2.˛ C ˇ/.1C ".b � a//; (A.1)

det.A/ D �"2.˛ˇ � .b � a/2/.˛ˇ � .b � a � 2"�1/2/: (A.2)

Finally, let us note that thanks to the Cauchy–Schwarz inequality, .b � a/2 < ˛ˇ,
where the inequality is strict because we assumed that �0 is not constant.

Step 1: .1/) .2/. If assertion (1) holds, zQK is positive definite, thus the matrix A is
positive definite. Hence, det.A/ > 0. Since .b � a/2 < ˛ˇ, according to expression (A.2)
of det.A/, we have ˛ˇ < .b � aC 2"�1/2, which is exactly assertion (2).

Step 2: .2/) .1/. If assertion (2) holds, according to expression (A.2) of det.A/ and the
fact .b � a/2 < ˛ˇ, we have det.A/ > 0. Moreover, since .b � a/2 < ˛ˇ < .b � a C

2"�1/2, we have b � a < jb � aC 2"�1j, i.e., b � a < b � aC 2"�1 or b � a < �.b �
a/ � 2"�1. In both cases, we get 1C ".b � a/ > 0. Hence, according to expression (A.1)
of Tr.A/, we have Tr.A/ > 0. Thus, A is positive definite. Finally, according to Lemma
A.3, we deduce that for each U 2 L2, zQK.U / > ckU k2�0 . Since �0 � c > 0, the L2�0 and
L2 norm are equivalent, hence assertion (1) holds.

Step 3: Last assertion. If ˛ˇ > .b � aC 2"�1/2, according to expression (A.2) of det.A/
and the fact .b � a/2 < ˛ˇ, we have det.A/ < 0, hence A has a positive and a negative
eigenvalue, and so does zQK . Hence, we can find zU1; zU2 2 L2.I / such that zQK. zU1/ > 0
and zQK. zU2/ < 0. By approximating zUi in the L2-norm by some Ui 2 H 1

0 .I /, we find
U1; U2 2H

1
0 .I / such that zQK.U1/ > 0 and zQK.U2/ < 0. SinceQK.U 0/D zQK.U /, this

proves the proposition.
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