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Introduction by the Organizers

The workshop K-stability, Birational Geometry and Mirror Symmetry, organised
by Thibaut Delcroix (Montpellier), Liana Heuberger (Bath) and Susanna Zim-
mermann (Orsay) was well attended with 44 participants. The program of the
workshop consisted in three mini-courses of 4 hours each, delivered by pairs of
experts each morning from Monday to Thursday, 8 talks, and two sessions of 5
lightning talks of 10 minutes each. In what follows, we describe the main themes
covered by the workshop.

The mini-course on birational geometry, with lectures by Julia Schneider and
Jeremy Blanc, focused on recent major results on quotients of the Cremona group
(the group of birational self-maps of projective space) in various dimensions and
over various fields. One of the major means of understanding this classical group
(or, rather, the groupoid of birational maps between Mori fibre spaces), expanded
upon in detail during the mini-course, is its presentation in terms of Sarkisov links
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and elementary relations. Focusing first on surfaces with Julia Schneider’s two
lectures, and switching to higher dimensions in Jérémy Blanc’s talks, surveyed the
main ideas from groundbreaking results of Blanc, Lamy, Zimmermann, Schneider,
Yasinsky et al. on the quotients of the Cremona group, as well as highlighting key
ingredients of their proofs.

The mini-course on K-stability, by Ivan Cheltsov and Elena Denisova, centred
around recent techniques in K-stability applied to the explicit study of K-stability
for smooth Fano threefolds. They presented the vast programwhose results are col-
lected in the book “The Calabi problem for Fano threefolds” by Araujo, Cheltsov
et al. The purpose of this study is to determine which smooth Fano threefolds are
K-stable, as well as finding applications which study of their behaviour in families,
i.e. to determine the properties of K-moduli spaces. Here, a key input is Fujita
and Li’s valuative criterion for the K-stability of Fano manifolds, together with
Abban and Zhuang’s method of finding a lower bound of the delta invariant from
a geometrically relevant choice of flag of subvarieties. With these tools at hand,
the problem essentially reduces to a difficult and subtle, but explicit, study of the
birational geometry of Fano threefolds, and Sarkisov links appear again in this
setting.

The third mini-course, by Giulia Gugiatti and Andrea Petracci, presented re-
cent advances around the Fano/Landau-Ginzburg (F/LG) correspondence in mir-
ror symmetry. Various incarnations of this correspondence were discussed, cul-
minating in a construction of smoothings of affine singular toric threefolds by
Corti-Hacking-Petracci. A nuanced discussion of the limits of currently applicable
systematic methods crystallised in the study of Johnsson-Kollàr surfaces, whose
anticanonical system is known to be empty. A discussion of the homological mir-
ror symmetry (a stronger version of the mirror theorem than the F/LG corre-
spondence) for del Pezzo surfaces, by Auroux-Katzarkov-Orlov was incorporated
in this more general singular setting.

Some of the research talks shared striking similarities, highlighting the inter-
connectedness and broad impact of the chosen topics. The talks of Anne-Sophie
Kaloghiros and Yuchen Liu focussed on the topic of K-moduli spaces, which was
partly addressed in the mini-course, and expanded upon it in different directions.
The result of Kaloghiros describes certain irreducible components of K-moduli
space for Fano threefolds in the simplest possible non-trivial case (i.e. not reduced
to a point), namely when it is of dimension one, by combining birational geometry
with a technique from mirror symmetry which produces toric smoothings. Liu de-
livered, on the final day of the workshop, a talk on the moduli continuity method
for K-stability. In connection to the mini-course, he explained how to apply this
method to a family of smooth Fano threefolds (No. 2-15 in the Mori-Mukai list)
to explicitly determine its irreducible component in the K-moduli space using its
description as a GIT quotient.

In the last part of the workshop, the talks of Sébastien Boucksom and En-
rica Mazzon were hinging toward non-Archimedean techniques in two of the main
subjects of the workshop. Boucksom explained how non-Archimedean formalism
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allows for a valuative interpretation of K-stability beyond the Fano case, emphasiz-
ing that nonetheless explicit methods as presented in the mini-course are currently
out of reach in the general polarization case and require further research. Mazzon’s
talk introduced the SYZ conjecture in mirror symmetry, and explained how the
non-Archimedean approach first proposed by Kontsevich and Soibelman is giving
rise to exciting new results appearing in work of Yang Li and Hultgren-Jonsson-
Mazzon-McCleerey.

The remaining talks provide a wide overview of various recent advances and
fields of investigation in algebraic geometry, which we briefly summarize. Hendrik
Süß highlighted surprising relations between the notion of normalized volume of
singularities, underlying the valuative criterion for K-stability, and convex geome-
try in the setting of toric singularities. Ana-Maria Castravet’s talk introduced the
notion of higher Fano manifolds, and presented an overview of known examples
and non-examples. Carolina Araujo focused on a problem of Gizatullin, asking
when automorphisms of a quartic surface in the projective space are induced by
Cremona transformations of the projective space, and presented her results in this
direction relating to the Sarkisov program presented in the mini-courses. Finally,
Alex Duncan’s talk focused, in contrast to the mini-course, on small, finite sub-
groups of Cremona groups, measuring the complexity of the Cremona group in
terms of the representation dimension of its finite subgroups.

We ran two hour-long sessions of 10-minute lightning talks, so that partici-
pants could advertise a new result, a question or a key idea. Both junior and
senior participants were eager to contribute, resulting in a widely representative,
discussion-fuelling workshop. We also welcomed the input of an Oberwolfach Re-
search Fellow which was not originally planned as a participant of the workshop.
The lightning talks were given by Andrés Jaramillo Puentes, Jaroslaw Wisniewski,
Roland Púĉek, Egor Yasinsky, King Leung Lee, Eduardo Alves da Silva, Ignacio
Barros, Erroxe Etxabarri Alberdi, Tran Trung Nghiem and Jürgen Hausen.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Alexander R. Duncan in the “Simons Visiting Profes-
sors” program at the MFO.
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Abstracts

Sarkisov links and Cremona groups

Jérémy Blanc and Julia Schneider

Let K be a field. The Cremona group of rank n over K is the group of birational
transformations of the projective space of dimension n, written BirK(Pn). Non-
trivial normal subgroups of BirK(P2) have been constructed using geometric group
theory (see [CL13] for algebraically closed fields and [Lon16] for arbitrary fields).
The resulting quotients, however, are complicated and remain mysterious. In
fact, if K is algebraically closed, every non-trivial quotient of BirK(P2) contains
PGL3(K); in particular, there is no finite and no abelian quotients, except the
trivial group.

For fields that are not algebraically closed, this is no longer true, as was dis-
covered by Zimmermann who showed that the abelianisation of BirR(P

2) is iso-
morphic to

⊕
R Z/2Z [Zim18]. This opened up the approach of studying Cre-

mona groups via their group homomorphisms. For perfect fields K, quotients of
BirK(P2) that are a free product of direct sums of Z/2Z have been constructed in
[LZ20, Sch22, Zim22]. For n ≥ 3, quotients of BirC(P

n) that are a free product of
direct sums of Z/2Z have been constructed in [BLZ21], showing that complex Cre-
mona groups in higher dimensions are not simple. More quotients were constructed
in this setting [BY20, Zik23]. Finally, using motivic invariants of birational maps,
it was shown that Z is a quotient of BirC(P

n) for n ≥ 4, as well as of BirQ(P
n) for

n ≥ 3 [LS22]. Hence, these Cremona groups are not generated by elements of fi-
nite order, contrasting the case of plane Cremona groups over perfect fields which
are generated by involutions [LS24]. Notably, the question whether BirC(P

3) is
generated by elements of finite order remains open.

1. The results

Together with Egor Yasinsky, we studied BirK(S), where S is a non-trivial Severi-
Brauer surface over a perfect field K, that is, SK̄ ≃ P2

K̄
and S(K) = ∅.

Theorem 1. [BSY23] Let S be a non-trivial Severi-Brauer surface. For d ∈ {3, 6}
we denote by Pd the set of degree d points of S up to the action of AutK(S). Then,
|P3| ≥ 2 and for each p ∈ P3, there is a surjective group homomorphism

Ψ: BirK(S) →
⊕

P3\{p}

Z/3Z ∗
(
∗
P6

Z

)
.

In particular, BirK(S) is not a perfect group (and is thus not simple). Moreover,
if P6 6= ∅, then BirK(S) is not generated by elements of finite order.

As an application, we study fibrations X → B whose generic fibre is a non-
trivial Severi-Brauer surface S over C(B). Such S exist only if dimB ≥ 2, and
hence dimX ≥ 4. For n ≥ 4, we construct a surjective group homomorphism from
BirC(P

n) to F (C) = ∗C Z, the free group indexed by C. This implies the following:
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Theorem 2. [BSY23] Let n ≥ 4, and let G be any group of cardinality |G| ≤ |C|.
Then G is a quotient of BirC(P

n).

2. The strategy: The Sarkisov program

Instead of just considering Bir(X) one can consider a larger class of birational
maps, namely the groupoid BirMori(X) consisting of birational maps between
Mori fibre spaces birational to X . The Sarkisov program states that BirMori(X)
is generated by Sarkisov links and isomorphisms of Mori fibre spaces, and every
relation between Sarkisov links is generated by elementary relations and trivial
relations (see [Isk96, Cor95, HM13, Kal13, LZ20, BLZ21]). In order to define
Mori fibre spaces, Sarkisov links and elementary relations in a uniform way, we
introduce rank r fibrations:

Assume first that X is a smooth projective surface over a perfect field K. A
surjective morphism π : X → B with connected fibres is a rank r fibration if B is
smooth with dim(B) < dim(X), relative Picard rank ρ(X/B) = r, and −KX is
relatively ample. Note that X/Spec(K) is a rank r fibration exactly if X is a del
Pezzo surface of Picard rank ρ(X) = r. The higher dimensional analogue of rank
r fibrations tries to capture some of the nice properties of del Pezzo surfaces in
terms of birational geometry. In particular (see [BLZ21] for the precise definition),
one requires that X is terminal and Q-factorial (mild singularities), X/B is a Mori
Dream space (hence one can run any MMP from X over B, and there are only
finitely many outputs), every output of an MMP fromX overB is againQ-factorial
and terminal and −KX is big over B.

For example, note that the Hirzebruch surface F2 is a rank 1 fibration over P1

but not a rank 2 fibration over Spec(K): −KF2
is big but the contraction of the

section with self-intersection −2 produces a singular surface (not terminal).
The observant reader might have realised by now that rank 1 fibrations are

exactly Mori fibre spaces. A rank 2 fibration Y/B dominates exactly two rank 1
fibrations X1/B1 and X2/B2, giving rise to a diagram as follows, called Sarkisov
diagram, where the dotted arrow denotes a pseudo-isomorphism:

Y = Y1 Y2

X1 X2

B1 B B2

A birational map χ : X1 99K X2 between two Mori fibre spaces is called Sarkisov
link exactly if it can be put into such a diagram. Depending on whether the
birational morphisms Yi → Xi are isomorphisms or divisorial contractions one
obtains four types of links; if both of them are divisorial the link is said to be a
Sarkisov link of type II.

A rank 3 fibration gives rise to a relation between Sarkisov links. These are the
elementary relations that generate relations, as explained before.

This allows us to define groupoid homomorphisms BirMori(X) → G as follows.
We choose a certain type of Sarkisov links, typically a link of type II, such that
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we have a good control over the elementary relations in which they appear. For
a Sarkisov link χ : X1 99K X2 of type II, denote by Γ ⊂ X1 the exceptional locus
of χ, and Y → X1 the blow-up at Γ. In the case of surfaces, Bertini involutions
where Γ is a point of degree 8 were used in [LZ20]: They do not appear in any
elementary relation (because Y is a del Pezzo surface of degree 1) but they do
satisfy the trivial relation χ = χ−1, giving a quotient of the form ∗P8

Z/2Z.
For Theorem 1 we use the fact that the degree of any point on a non-trivial

Severi-Brauer surface S is divisible by 3, and that any Sarkisov link χ from S
goes to the opposite Severi-Brauer surface Sop. The construction of the groupoid
homomorphism goes as follows, depending on the degree d of the base-point Γ of
χ. If d = 6, then χ does not appear in any elementary relation, so we send χ onto
1[Γ] ∈ ∗P6

Z. If d = 3, there is an elementary relation involving χ; we send χ onto
1[Γ] ∈

⊕
P3

Z/3Z.

In higher dimensions, [BLZ21] used links between conic bundles where Γ has
large covering gonality. To prove Theorem 2, we use Sarkisov links χ between Mori
fibre spaces whose generic fibre is a non-trivial Severi-Brauer surface, such that χ
induces a Sarkisov link χ̂ between the corresponding Severi-Brauer surfaces, and,
moreover, such that Γ has large covering genus.
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Calabi problem for smooth Fano threefolds

Ivan Cheltsov and Elena Denisova

(joint work with many people)

This is an abstract for four lectures given at the workshop. The goal of these
lectures were to explain how to prove K-stability of smooth Fano threefolds.

1. Inductive approach to K-stability

Let X be a smooth Fano threefold, let f : W → X be a birational morphism such
that W is normal, and let E be a prime divisor in W . We say that E is a divisor
over X , and we denote this as E/X . We can relate several numbers to E. One is
log-discrepancy AX(E) = 1+ordE

(
KW/X

)
, which is easy to compute. The second

one is the pseudo-effective threshold:

τ(E) = sup
{
u ∈ R>0

∣∣ f∗(−KX)− uE is pseudo-effective
}
,

which is not so easy to compute. The third number is the most difficult one:

SX(E) =
1

(−KX)n

∞∫

0

vol
(
−KX −uE

)
du =

1

(−KX)n

τ(E)∫

0

vol
(
f∗(−KX)−uE

)
du.

Let β(E) = AX(E)−SX(E). Then the Fujita–Li valuation criterion [6, 7] says
that X is X is K-stable ⇔ β(E) > 0 for every prime divisor E over X . This
criterion can be restated as follows. For every point P ∈ X , let

δP (X) = inf
E/X

P∈CX(E)

AX(E)

SX(E)

where the infimum is taken by all prime divisors overX whose center onX contains
the point P . Then X is K-stable if δP (X) > 1 for every P ∈ X .

To show that δP (X) > 1, we can use Abban–Zhuang theory [1] and Fujita’s
formula derived from this theory [2]. Namely, let us do the following:

(1) choose a surface S ⊂ X such that P ∈ S and S has Du Val singularities;
(2) compute τ = τ(S) = sup

{
u ∈ Q>0

∣∣ −KX − uS is pseudo-effective
}

(3) for u ∈ [0, τ ], compute
• P (u) = the positive part of the Zariski decomposition of −KX − uS,
• N(u) = the negative part of the Zariski decomposition of −KX −uS.
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Then SX(S) = 1
(−KX )3

τ∫
0

P (u)3du. If SX(S) > 1, then δP (X) 6 1. Thus, we may

assume SX(S) < 1. Then Abban–Zhuang theory and the Fujita’s formula give:

δP (X) > min

{
1

SX(S)
, δP
(
S,WS

•,•

)
}

for

δP
(
S,WS

•,•

)
= inf

F/S
P∈CS(F )

AS(F )

S
(
WS

•,•;F
) ,

where the infimum is taken by all prime divisors F over S such that P ∈ CS(F )
and

S
(
WS

•,•;F
)
=

3

(−KX)3

τ∫

0

(
P (u)2 · S

)
· ordF

(
N(u)

∣∣
S

)
du

+
3

(−KX)3

τ∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vF

)
dvdu.

Note that the number δP (S,W
S
•,•) has the same nature as δP (X), but it is always

easier to compute, because S is a surface. Moreover, to estimate δP (S,W
S
•,•), we

can apply Abban–Zhuang theory again.

2. δ-invariants of polarized surfaces

Abban–Zhuang theory can be applied to estimate δ-invariants of any polarized
variety. To illustrate this, let S be a smooth surface, and let D be a big and nef
R-divisor D on the surface S. For every prime divisor F over S, we set

SD(F ) =
1

D2

∞∫

0

vol
(
D − vF

)
dv

similar to what we did for smooth Fano threefold in Section 1. Then we let

δP
(
S,D

)
= inf

F/S
P∈CS(F )

AS(F )

SD

(
F
)

where the infimum is taken by all prime divisors F over S whose support contains
the point P .

To apply Abban–Zhuang theory to estimate δP (S,D), we do the following:

(1) choose a smooth curve C ⊂ S that passes through P ;

(2) compute τ = sup
{
v ∈ R>0

∣∣ the divisor D − vC is pseudo-effective
}
;

(3) for v ∈ [0, τ ], compute
• P (v) = the positive part of the Zariski decomposition of D − vC,
• N(v) = the negative part of the Zariski decomposition of D − vC.
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Then SD(C) = 1
D2

∞∫
0

vol
(
D − vC

)
dv = 1

D2

τ∫
0

P (v)2dv. Thus, we have

δP (S,D) 6
AS(C)

SD(C)
=

1

SD(C)
.

Set

S
(
WC

•,•;P
)
=

2

D2

τ∫

0

ordP
(
N(v)|C

)(
P (v) · C

)
dv +

1

D2

τ∫

0

(
P (v) · C

)2
dv

=
2

D2

τ∫

0

h(v)dv,

where

h(v) =
(
P (v) · C

)
×
(
N(v) · C

)
P
+

(
P (v) · C

)2

2
.

Then it follows from Abban–Zhuang theory and Fujita’s formula that

δP
(
S,D

)
> min

{
1

SD(C)
,

1

S
(
WC

•,•;P
)
}
.

We can apply Abban–Zhuang theory to the exceptional curve of a weighted
blow up of S at P . For simplicity, let us show how to do this for the usual blow

up. Namely, let f : S̃ → S be the blow up of the surface S at the point P , and let
E be the f -exceptional curve. Set

τ̃ = sup
{
v ∈ R>0

∣∣ the divisor f∗(D)− vE is pseudo-effective
}
.

For v ∈ [0, τ̃ ], let P̃ (v) and Ñ(v) be the positive and negative part of the Zariski
decomposition of the divisor f∗(D) − vE, respectively. Then AS(E) = 2 and

SD(E) = 1
D2

τ̃∫
0

P̃ (v)2dv. Thus, we have

δP (S,D) 6
2

SD(E)

Now, we for every point O ∈ E, we set

S
(
WE

•,•;O
)
=

2

D2

τ̃∫

0

ordO
(
Ñ(v)|E

)(
P̃ (v)|E

)
dv +

1

D2

τ̃∫

0

(
P̃ (v) ·E

)2
dv

=
1

D2

τ̃∫

0

h(v)dv,

where

h(v) =
(
P̃ (v) · E

)
×
(
Ñ(v) · E

)
P
+

(
P̃ (v) ·E

)2

2
.
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Then Abban–Zhuang theory gives

δP
(
S,D

)
> min

{
2

SD(E)
, inf
O∈E

1

S
(
WE

•,•;O
)
}
.

3. Nemurro lemma

Now, we go back to smooth Fano threefolds. Let us use all assumptions and
notations of Section 1. Set

D = D(u) = P (u)|S .
for every u ∈ [0, τ ]. Consider the polarized pair (S,D). Here, the divisor D is nef
by construction. However, it may not be big in general (especially for u = τ), but
everything we described in Section 2 still works. Thus, arguing as in Section 2, we
can find an estimate

δP
(
S,D

)
> q(u)

for u ∈ [0, τ ], where q(u) : [0, τ ] → R>0 is a continuous non-negative function.
Following [3], let us show how to use this estimate for δP (S,D) to estimate δP (X).
Namely, observe than

S
(
WS

•,•;F
)
=

3

(−KX)3

τ∫

0

(
P (u)2 · S

)
· ordF

(
N(u)

∣∣
S

)
du

+
3

(−KX)3

τ∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vF

)
dvdu

6
3

(−KX)3

τ∫

0

(
P (u)2 · S

)
· ordF

(
N(u)

∣∣
S

)
du

+

(
3

(−KX)3

τ∫

0

D2

q(u)
du

)
AS(F )

for every prime divisor F over S. Thus, if P 6∈ Supp(N(u)) for u ∈ [0, τ ], then

δP
(
S,WS

•,•

)
>

1

3
(−KX)3

τ∫
0

D2

q(u)du

.

What if P ∈ Supp(N(u)) for some u ∈ [0, τ ]? In this case, we want to find a K > 0
such that

3

(−KX)3

τ∫

0

(
P (u)2 · S

)
· ordF

(
N(u)

∣∣
S

)
du 6 K ·AS(F )

for every prime divisor F over X . How to do this?



840 Oberwolfach Report 14/2024

Example 1. Suppose that there is a ∈ (0, τ) such that

N(u) =

{
0 for u ∈ [0, a],

(u− a)E for u ∈ [a, τ ],

where E is a prime divisor in X such that E 6= S. If (S,E|S) is log canonical, then

3

(−KX)3

τ∫

0

(
P (u)2 · S

)
·ordF

(
N(u)

∣∣
S

)
du

6

(
3

(−KX)3

τ∫

a

(
P (u)2 · S

)
(u− a)du

)
AS(F )

for every prime divisor F over S. This holds if S is smooth, and E|S is a smooth
curve.

4. Second Fujita’s formula

Let us use all assumptions and notations of Section 1. Suppose, in addition, that
S is smooth. Let us show a simple way how to estimate δP (X) using the second
Fujita’s formula found in [2]. To do this, fix a smooth curve C ⊂ S such that
P ∈ C. For every u ∈ [0, τ ], write

N(u)
∣∣
S
= d(u)C +N ′(u),

where N ′(u) is effective R-divisor such that C 6⊂ Supp(N ′(u)), and

d(u) = ordC
(
N(u)|S

)
.

Then, for every u ∈ [0, τ ], compute

t(u) = sup
{
v ∈ R>0

∣∣ the divisor P (u)
∣∣
S
− vC is pseudo-effective

}
.

After this, for every v ∈ [0, t(u)], compute

• P (u, v) = positive part of Zariski decomposition of P (u)|S − vC,
• N(u, v) = negative part of Zariski decomposition of P (u)|S − vC.

Finally, compute

S
(
WS

•,•;C
)
=

3

(−KX)3

τ∫

0

d(u)
(
P (u, 0)

)2
du+

3

(−KX)3

τ∫

0

t(u)∫

0

(
P (u, v)

)2
dvdu

compute

FP

(
WS,C

•,•,•

)
=

6

(−KX)3

τ∫

0

t(u)∫

0

(
P (u, v) · C

)
· ordP

(
N ′(u)

∣∣
C
+N(u, v)

∣∣
C

)
dvdu,
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and compute

S
(
WS,C

•,•,•;P
)
=

3

(−KX)3

τ∫

0

t(u)∫

0

(
P (u, v) · C

)2
dvdu + FP

(
WS,C

•,•,•

)
.

Then the second Fujita’s formula derived from Abban–Zhuang theory gives

δP (X) > min

{
1

SX(S)
,

1

S
(
WS

•,•;C
) , 1

S
(
WS,C

•,•,•;P
)
}
.

In many cases, this gives us the desired estimate δP (X) > 1.
However, if this approach does not work, we can blow up the surface S and

apply a similar formula to the exceptional curve [2]. Namely, let f : S̃ → S be
the blow up of the point P , and let F be the f -exceptional curve. Write

f∗
(
N(u)

∣∣
S

)
= d̃(u)F + Ñ ′(u),

where Ñ ′(u) is the strict transform on S̃ of N(u)|S , and d̃(u) = multP (N(u)|S).
For u ∈ [0, τ ], compute

t̃(u) = sup
{
v ∈ R>0

∣∣ the divisor f∗
(
P (u)

∣∣
S

)
− vF is big

}
.

Then, for every v ∈ [0, t̃(u)], compute

• P̃ (u, v) = positive part of Zariski decomposition of f∗(P (u)|S)− vF ,

• Ñ(u, v) = negative part of Zariski decomposition of f∗(P (u)|S)− vF .

After this, we compute

S
(
WS

•,•;F
)
=

3

(−KX)3

τ∫

0

d̃(u)
(
P (u, 0)

)2
du+

3

(−KX)3

τ∫

0

t̃(u)∫

0

(
P̃ (u, v)

)2
dvdu.

Then, for every point O ∈ F , compute

FO

(
W S̃,F

•,•,•

)
=

6

(−KX)3

τ∫

0

t̃(u)∫

0

(
P̃ (u, v) · F

)
· ordO

(
Ñ ′(u)

∣∣
F
+ Ñ(u, v)

∣∣
F

)
dvdu

and

S
(
W S̃,F

•,•,•;O
)
=

3

(−KX)3

τ∫

0

t̃(u)∫

0

(
P̃ (u, v) · F

)2
dvdu+ FO

(
W S̃,F

•,•,•

)
.

Then we have

δP (X) > min

{
1

SX(S)
,

2

S
(
WS

•,•;F
) , inf

O∈F

1

S
(
W S̃,F

•,•,•;O
)

}
.
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5. One application

Let Y = P1×P1, and let Z be a smooth curve in Y of degree (5, 1). Then, choosing
appropriate coordinates ([u : v], [x : y]) on the surface Y , we may assume that the
curve Z is given by

u
(
x5 + a1x

4y + a2x
3y2 + a3x

2y3
)
= v
(
y5 + b1xy

4 + b2x
2y3 + b3x

3y2
)

for some a1, a2, a3, b1, b2, b3. Consider the embedding Y →֒ P1 × P2 given by

(
[u : v], [x : y]

)
7→
(
[u : v], [x2 : xy : y2]

)
.

Identify Y and Z with their images in P1 × P2. Let π : X → P1 × P2 be the blow
up of the curve Z. Then X is a Fano threefold of degree −K3

X = 20.
Let pr1 : P

1 × P2 → P1 be the projection to the first factor. Set φ1 = pr1 ◦ π.
Then φ1 is a fibration into del Pezzo surfaces of degree 4.

Theorem 1 ([4]). Suppose that every singular fiber of the fibration φ1 has singular
points of type A1. Then X is K-stable.

Let us briefly explain how to prove this result. Suppose that every singular fiber
of the del Pezzo fibration φ1 has singular points of type A1. Fix a point P ∈ X .

To prove Theorem 1, it is enough to show that δP (X) > 1. Let Ỹ be the strict
transform on X of the surface Y .

Lemma 1 ([2, Lemma 5.68]). Suppose that P ∈ Ỹ . Then δP (X) > 1.

Proof. Apply results described in Section 4 with S = Ỹ and C being one of the

rulings of the smooth surface Ỹ ≃ Y ≃ P1 × P1 that passes through P . �

Thus, we may assume that P 6∈ Ỹ . Let us apply results of Section 1 with S
being the fiber of φ1 that contains P . Then τ = 2. Moreover, we compute

P (u) =

{−KX − uS for u ∈ [0, 1],

−KX − uS − (u− 1)Ỹ for u ∈ [1, 2]

and

N(u) =

{
0 for u ∈ [0, 1],

(u − 1)Ỹ for u ∈ [1, 2].

This gives SX(S) = 1
20

2∫
0

P (u)3du = 69
80 < 1.
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Set Z = Ỹ |S . For every prime divisor F over S whose support on S contains
the point P , we have

S
(
WS

•,•;F
)
=

3

20

( 1∫

0

∞∫

0

vol
(
−KS − vF

)
dvdu

+

2∫

1

∞∫

0

vol
(
−KS − (u− 1)Z − vF

)
dvdu

)

6
3

20

( ∞∫

0

vol
(
−KS − vF

)
dv +

∞∫

0

vol
(
−KS − vF

)
dv

)
=

=
3

10

( ∞∫

0

vol
(
−KS − vF

)
dv

)
=

6

5

(
1

4

∞∫

0

vol
(
−KS − vF

)
dv

)

=
6

5
SS(F ) 6

6

5
· AS(F )

δP (S)

Thus, if δP (S) >
6
5 , then δP (X) > 1. If S is smooth, then δP (S) >

6
5 [2], which

implies that δP (X) > 1. Thus, we may assume that S is singular.
As in Section 3, set D = P (u)|S for every u ∈ [0, 2]. Then, applying results

described in Section 2 to the minimal resolution of singularities of the surface S,
and arguing as in [5], we see that δP (S,D) > q(u) for

q(u) =





15− 3u2

16 + 3u− 9u2 + 2u3
for u ∈ [1, a],

15− 3u2

11− u3
for u ∈ [a, 2],

where a ∈ [1, 2] such that 3a3 − 9a2 +3a+5 = 0. Thus, for every prime divisor F
over the del Pezzo surface S whose support on S contains P , we have

S
(
WS

•,•;F
)
=

3

20

2∫

0

∞∫

0

vol
(
D − vF

)
dvdu

6
3

20
· 4AS(F )

δP (S)
+

(
3

20

2∫

1

(5− u2)

q(u)
du

)
AS(F ) 6

99

100
AS(F )

which implies that δP (S,W
S
•,•) >

100
99 . Then δP (X) > 1 by the inequality described

in Section 1. This shows that X is K-stable.
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Minicourse on Mirror Symmetry for Fano varieties

Giulia Gugiatti and Andrea Petracci

Mirror Symmetry for Fano varieties takes the shape of the Fano/Landau–Ginzburg
(LG) correspondence: conjecturally, the mirror of a Fano orbifold of dimension n
is an n-dimensional LG model (Y,w), i.e. a pair formed by a non compact manifold
Y and a complex-valued function w on Y called superpotential. Broadly speaking,
the correspondence interchanges the symplectic/complex geometry of X with the
complex/symplectic geometry of the critical points of w.

In this series of lectures we discussed certain aspects of the Fano/LG correspon-
dence.

Lecture 1 (AP). In this lecture we provided an introduction to the original
formulation of the Fano/LG correspondence, due to Batyrev, Givental, Hori, Vafa,
and others. This formulation predicts an identity between two cohomological
invariants: the regularised quantum period of X , which is a generating function
for certain Gromov–Witten invariants of X , and a period of (Y,w), encoding
information on the variation of cohomology of the smooth fibres of w.

The lecture primarily focused on a series of conjectures, first laid out by Coates,
Corti, Galkin, Golyshev, and Kasprzyk [17, 18, 9], according to whichQ-Gorenstein
(qG) deformation families of Fano orbifolds of dimension n should be mirror (in
the sense of the above-mentioned formulation) to mutation equivalence classes
of maximally mutable Laurent polynomials [12] in n variables. This conjectural
framework agrees with classical mirror constructions [15, 22] and finds theoretical
ground in the intrisic mirror symmetry program by Gross– Siebert [19]. How-
ever, it notably excludes Fano varieties with empty anticanonical linear system
[14, Remark 2.7].

Part of the lecture was devoted to define the quantum period of a Fano orbifold,
and to sketch some of the available techniques for its computation [16, 11, 13, 10,
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6, 8, 26, 28]. The lecture was supported by some running examples in dimension
two.

Lecture 2 (GG). The lecture was structured in two parts.
In the first part, we expanded on the complex geometry of LG models. We

revisited the notion of periods of a LG model and its specialisation to that of clas-
sical period of a Laurent polynomial [9, 29]. We discussed an equivalent formula-
tion of the Fano/LG correspondence in terms of polynomial ordinary differential
equations/complex local systems underlying a one-dimensional variation of (pure)
Hodge Structure. Throughout the exposition, we revisited the 2-dimensional ex-
amples encountered in the first lecture and computed the relative periods and
differential operators.

The focus of the second part of the lecture was on Fano varieties with empty
anticanonical linear system, currently lying beyond the context of any systematic
mirror construction. The simplest instance of such varieties is the series of log del
Pezzo surfacesX8k+4 ⊂ P(2, 2k+1, 2k+1, 4k+1), k ∈ N>0, first studied by Johnson
and Kollár [24]. The work of GG with Corti [14] builds the only known mirror series
to this series. In the lecture we sketched the main ideas of our mirror construction,
which builds upon the hypergeometric nature of the regularised quantum period
of the surfaces and the motivic origin of hypergeometric functions [7, 31].

Lecture 3 (AP). Since qG-deformations of del Pezzo surfaces are unobstructed
[20], it is clear what the general qG-deformation of a toric del Pezzo surface is.
In dimension ≥ 3 this is no longer true, and so one needs to study deformation
theory of Fano varieties more carefully. This has also applications to the moduli
theory of Fano varieties.

In this lecture we presented some features of deformation theory of toric Fano
varieties. In particular, we showed that there exist toric Fano 3-folds which deform
to different smooth Fano 3-folds [23, 30, 25]. This is reflected on the mirror side
by the fact that on the same polytope there might be different maximally mutable
Laurent polynomials. These examples and results on the deformation theory of
toric Fano 3-folds builds on the deformation theory of toric singularities studied
by Altmann [4, 3, 2, 1].

Lecture 4 (GG). This lecture approached the Fano/LG correspondence from
the point of view of Kontsevich’s Homological Mirror Symmetry (HMS) conjec-
ture [27]. One formulation of HMS predicts an equivalence between the bounded
derived category of coherent sheaves of X and the analog of the Fukaya category
for a symplectic fibration, namely the bounded derived category of Lagrangian
vanishing cycles of (Y,w). A rigorous definition of this category was proposed by
Seidel [32] in the case where w is a symplectic Lefschetz fibration.

After briefly sketching the construction of the category of Lagrangian vanishing
cycles, we focused on the implication of the above formulation of HMS at the
numerical level, i.e. at the level of the numerical Grothendieck groups of the two
categories [33, 21]. For smooth del Pezzo surfaces we reviewed the homological
mirror construction given in [5], and we explained how to recover the outputs of
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this construction from the Laurent polynomial mirrors to the surfaces. A special
focus was placed on the case of smooth del Pezzo surfaces of degree two. These
surfaces appear as the degenerate case (k = 0) of the series of log del Pezzo surfaces
constructed by Johnson–Kollár [24], for which HMS has not yet been established.

References

[1] Klaus Altmann. Computation of the vector space T 1 for affine toric varieties. J. Pure Appl.
Algebra, 95(3):239–259, 1994.

[2] Klaus Altmann. Minkowski sums and homogeneous deformations of toric varieties. Tohoku
Math. J. (2), 47(2):151–184, 1995.

[3] Klaus Altmann. Infinitesimal deformations and obstructions for toric singularities. J. Pure
Appl. Algebra, 119(3):211–235, 1997.

[4] Klaus Altmann. The versal deformation of an isolated toric Gorenstein singularity. Invent.
Math., 128(3):443–479, 1997.

[5] Denis Auroux, Ludmil Katzarkov, and Dmitri Orlov. Mirror symmetry for del Pezzo surfaces:
vanishing cycles and coherent sheaves. Invent. Math., 166(3):537–582, 2006.
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On the normalised volume of toric singularities

Hendrik Süß

(joint work with Joaqúın Moraga)

The notion of normalised volume for log terminal singularities was introduced by
Chi Li in [2]. In the special case of the anticanonical cone over a K-semistable
Fano variety it coincides with the usual anticanonical volume (aka Fano degree)
of the Fano variety.

In general the normalised volume is hard to calculate, but in the case of Goren-
stein toric singularities we obtain a nice formula in terms of convex geometry.
Given a full-dimensional polytope P ⊂ Rd−1, we consider the Gorenstein toric
variety X = Spec(k[σ∨∩Zd]) corresponding to the cone σ = R≥0 · (P ×{1}) ⊂ Rd.
We choose x ∈ X to be the (unique) torus fixed point. Then by [3] we have

v̂ol(X, x) = min {vol((P − v)∗) | v ∈ int(P )} .
Here, (P − v)∗ denotes the polar dual of the polytope P after translation by −v.
In convex geometry the (unique) point v ∈ int(P ) where the minimum is attained,
is known as the Santaló point of P . Moreover, for a convex body P the product

M(P ) = vol(P ) ·min {vol((P − v)∗) | v ∈ int(P )}
is known as the Mahler volume of P , which is an affine invariant of the polytope.
The Mahler volume appears in two remarkable inequalities. The first one is known
as the Blaschke-Santaló inequality and states that the Mahler volume of convex
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bodies of fixed dimension is maximised by the unit ball. In [3] we utilised this
inequality to show that for a fixed dimension and fixed ǫ > 0 there are only
finitely many toric singularieties with normalised volume being at least ǫ.

A second, but to this point only conjectural, inequality states that for dim(P ) =
d− 1 one has

M(P ) ≥ dd,

where the equality is achieved for simplices. The latter inequality is known as
the non-symmetric Mahler conjecture. It is natural to ask whether there is a
reasonable interpretation of this inequality in terms of algebraic geometry. Hence,
we are looking for an interpretation of the volume of P in terms of algebraic
geometry. But this volume is known to coincide with the Euler characteristic of a

crepant resolution X̃ of X (at least if such a resolution exists). However, even for
non-abelian quotient singularities does the corresponding inequality

(1) v̂ol(X, x)χ(X̃) ≥ dd

not longer hold. In [1] Gulotta suggests to replace χ(X̃) by another quantity
associated to non-commutative crepant resolutions of X in the sense of [4]. With
this adjustment the corresponding inequality of the type (1) does again hold (with
equality) for finite quotient singularities and we can also verify it for a range
of other examples, such as anticanonical cones over del Pezzo surfaces and cAn

singularities.
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Higher Fano Manifolds

Ana-Maria Castravet

(joint work with Carolina Araujo, Roya Beheshti, Kelly Jabbusch, Enrica
Mazzon, Svetlana Makarova, Will Reynolds, Libby Taylor,

Nivedita Viswanathan)

A Fano manifold X is a complex projective manifold with ample first Chern class
c1(TX). This condition has far reaching geometric implications. For instance, any
Fano manifold is rationally connected, i.e., there are rational curves connecting
any two points [6, 11]. A celebrated result of Graber, Harris and Starr states that
proper families of rationally connected complex projective manifolds over smooth
curves always admit sections [10]. This generalizes Tsen’s theorem in the case
of function fields of curves. A theorem of Tsen and Lang states that a family
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π : X → B of degree d hypersurfaces over a k-dimensional base B admit (rational)
sections if dk ≤ n. For hypersurfaces of degree d in Pn, being Fano or rationally
connected is equivalent to the numerical condition d ≤ n. Hence, for k = 1, the
result of Graber, Harris and Starr replaces the condition of being a hypersurface
of degree d ≤ n with the condition of being rationally connected.

There has been quite some effort towards finding suitable geometric conditions
on the fibers of π : X → B that generalize the Tsen-Lang theorem for higher
dimensional bases B. More generally one can consider the following problem:
Find intrinsic (geometric) conditions Fk such that

– Hypersurfaces of degree d in Pn satisfy Fk iff dk ≤ n,
– Projective manifolds satisfying Fk are covered by rational k-folds,
– The Tsen–Lang Theorem holds for a family π : X → B over a k-dimensional
base B if the fibers of π satisfy Fk (modulo the Brauer obstruction).

For k = 1, the condition F1 can hence be taken as either the condition of being
Fano or the condition of being rationally connected.

In a series of papers [7, 8, 9], de Jong and Starr asked if for k = 2 the condition
F2 can be taken to be rationally simply connected, a technical condition taking
inspiration from topology which requires (at the very least) that a suitable irre-
ducible component of the space of rational curves through two general points is
itself rationally connected. De Jong, He and Starr proved that rational homoge-
neous spaces and hypersurfaces of degree d in Pn with d2 ≤ n are rationally simply
connected and that they satisfy the Tsen-Lang theorem. However, the condition of
being rationally simply connected is hard to verify in practice and it is desirable to
have natural geometric conditions that imply it. In this context, 2-manifolds were
introduced by de Jong and Starr in [8, 9]. More generally, consider the following:

Definition. [9, 1] A complex projective manifold X is k-Fano if X is Fano and
the i-th graded piece of the Chern character chi(TX) ∈ H2i(X,Z) is positive for
all i ∈ {1, . . . , k}, i.e., chi(TX) · Z > 0 for all Z ⊂ X with dim(Z) = i.

The following may be easily verified:

(1) The n-dimensional projective space Pn is n-Fano.

(2) Hypersurfaces of degree d in Pn are k-Fano if and only if dk ≤ n. In
particular, hypersurfaces of degree d in Pn are 2-Fano if and only if d2 ≤ n.

Question. [1] Can one take the condition Fk to be “X is k-Fano”?

Some evidence towards an affirmative answer has been given in [9, 1]. Roughly
speaking, we know that 2-Fano manifolds are covered by rational surfaces and 3-
Fano manifolds are covered by rational threefolds. The approach taken in [1] is to
consider the implications of the k-Fano condition on the spaces of minimal rational
curves Hx through a general point x ∈ X . For example, one may compute all the
Chern characters of Hx in terms of the Chern characters of X and a canonical
polarization on Hx coming from the map Hx → P(Tx(X)) that associates to a
rational curve through x its tangent line at x. One can prove that there is an
inductive structure: If X is 2-Fano, then Hx is Fano [9, 1], and similarly, if X is
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3-Fano, then Hx is 2-Fano [1] (under certain technical assumptions). Results in
the same spirit have been obtained in the case when X is k-Fano by Nagaoka [12]
and Suzuki [13].

There are however few examples of higher Fano manifolds. What is known:

(1) Complete intersections Xd1,...,dc
⊂ P(a0, . . . , an) are k-Fano iff

∑
dki <

∑
aki .

(2) The only 2-Fano surface is P2.

(3) The only 2-Fano threefolds are P3 and the quadric hypersurface Q ⊂ P4 [1].

(4) The only 3-Fano threefold is P3 [1].

(5) The only known examples of 3-Fano manifolds are complete intersections

Xd1,...,dc
⊂ P(a0, . . . , an),

∑
d3i <

∑
a3i .

(6) A classification of 2-Fano manifolds X of index ≥ dim(X) − 2 was given in
[3]: they are either complete intersections Xd1,...,dc

in weighted projective spaces
P(a0, . . . , an) or certain rational homogeneous spaces of Picard number ρ = 1 or
certain complete intersections in them [3]. A classification of 2-Fano manifolds
among rational homogeneous spaces with ρ = 1 was also given in [3]:

Theorem 1. [3] Classification of 2-Fano rational homogeneous spaces with ρ = 1:

- An/P
k, k = 1, n

2 ,
n+1
2 , n

- Bn/P
k, k = 1, 2n−1

3 , n

- Cn/P
k, k = 1, 2n+2

3 , n

- Dn/P
k, k = 1, 2n+2

3 , n− 1, n

- E6/P
1,E6/P

2,E6/P
3,E7/P

1,E7/P
2,E7/P

7,E8/P
1,E8/P

2,E8/P
8

- F4/P
4

- G2/P
1, G2/P

2

(Here we use the Bourbaki labeling of vertices in a Dynkin diagram.)

(7) Products X × Y with dim(X), dim(Y ) ≥ 1 are not 2-Fano.

(8) Projectivizations P(E) of vector bundles E of rank ≥ 2 over a positive dimen-
sional base are not 2-Fano.

(9) No blow-up of a projective manifold along a smooth subvariety of codimension
at least 2 is known to be 2-Fano. One is hence lead to the following:

Question. Do all 2-Fano manifolds have Picard number one?

Problem. Find examples of 3-Fano manifolds other than complete intersections
in weighted projective spaces.

Conjecture. [3] Let X be a k-Fano manifold of dimension n. If k ≥ ⌈log2(n+1)⌉,
then X ∼= Pn.

We now concentrate on the toric case:

Conjecture. If X a toric 2-Fano manifold, then X ∼= Pn.
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Assume X a smooth projective toric variety with lattice N and fan Σ. We
denote by G(Σ) ⊂ N set of primitive vectors generating the rays of Σ.

Definition. A set P = {v0, . . . , vr} ⊆ G(Σ) is called a primitive collection if

– 〈v0, . . . , vr〉 /∈ Σ, but
– 〈v0, . . . , v̂i, . . . , vr〉 ∈ Σ for all i = 0, . . . , r

If σ(P ) = 〈w1, . . . , ws〉 is the smallest cone in Σ containing v0 + . . . + vr, then
v0 + . . . + vr = µ1w1 + . . . + µsws, for some µ1, . . . µs ∈ Z>0. We say that the
primitive collection P = {v0, . . . , vr} is centered if σ(P ) = 0, i.e.,

v0 + . . .+ vr = 0.

Furthermore, as relations between the primitive vectors in G(Σ) correspond to
numerical equivalence classes of 1-cycles on X , via this correspondence primitive
relations correspond to effective 1-cycle classes that generate the Mori cone of X .

A theorem of Batyrev [5] asserts that centered primitive relations always exist.
In [4] it is proved that for every centered primitive relation v0 + . . .+ vr = 0 one
may associate a torus invariant open set U ⊆ X which comes with a Pr-bundle
structure π : U → W and the centered primitive relation corresponds to the classes
of lines in the fibers of π. A theorem of Chen-Fu-Hwang states that all minimal
covering families of rational curves on X may be described in this way.

Definition. [4] The minimal P-dimension m(X) is the smallest r > 0 such that
Σ has a centered primitive collection {v0, . . . , vr}.

If X is a toric projective manifold of dimension n, it is not difficult to see that
m(X) = n implies that X ∼= Pn. Furthermore, if X is Fano and m(X) = n − 1,
one can prove that X is the blow-up of Pn along a linear subspace of codimension
2 (which is not 2-Fano). We prove:

Theorem 2. [4] Assume X is a Fano toric projective manifold of dimension n.

(1) If m(X) = n − 2, then ρ ≥ 3 and X belong to 8 explicit isomorphism
classes. In particular X is not 2-Fano.

(2) If m(X) = 1, then X is not 2-Fano.

One can see from the classification of Fano toric manifolds in small dimensions
that the toric Fano varieties X with m(X) = 1 form the largest class:

dim(X) # Fanos m=1 m=2 m=3 m=4 m=5 m=6

4 124 107 15 1 1
5 866 744 112 8 1 1
6 7622 6333 1174 105 8 1 1

Table 1. The minimal P-dimension of toric Fano manifolds of
low dimension.
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On K-moduli spaces of Fano 3-folds

Anne-Sophie Kaloghiros

The notion of K-polystability was introduced to characterise the existence of
Kähler–Einstein metrics on Fano manifolds. More precisely, the Yau–Tian–
Donaldson conjecture (now a theorem, due to Chen–Donaldson and Sun) states
that a Fano manifold is Kähler–Einstein precisely when it is K-polystable.

Recent advances in the theory of K-stability have shown that this notion also
allows one to construct moduli spaces for Fano varieties. More precisely:

Theorem 1. [1] There is a projective good moduli space MKps
n,V whose points

parametrise K-polystable Q-Fano varieties of dimension n and volume V .

In each dimension, there are finitely many families of smooth manifolds, which
have been classified in dimension up to 3. There are 10 families of smooth del
Pezzo surfaces and 105 families of smooth Fano 3-folds. For each of these families,
we can ask the following questions:
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(A) Is the general member of the family K-polystable? (In other words, is the

associated component of MKps
n,V non-empty?)

(B) Is every (smooth) member of the family K-polystable?

(C) What is the compactification of the associated component of MKps
n,V ? In

particular, what are the K-polystable limits of Fano manifolds in the fam-
ily?

In dimension 2, (A) and (B) were answered by Tian [2] and (C) was answereed
in degree 4 by Mabuchi and Mukai and in general by Odaka-Spotti-Sun [3].

Following Fujita and Li’s valuative criterion for K-polystability [6, 7], a purely
algebraic theory of (K-poly)stability was formulated, and this has lead to much
progress in recent years. Notably, Abban and Zhuang [4] developed techniques to
determine K-stability using flags and Zhuang showed how to exploit symmetries
effectively [5]; these have yielded many results in explicit K-stability of Fano 3-
folds. We now know:

Theorem 2. [9] Let X be the general member of one of the 105 deformation
families of Fano 3-folds. Then one of:

• X belongs to family MM2−26, or
• X belongs to one of the 26 deformation families of K-divisorially unstable
Fano 3-folds classified by Fujita [8], or

• X is K-polystable

This answers (A) above in dimension 3; 78 families have smooth K-polystable
members, and in some cases the families contain both K-polystable and non-K-
polystable smooth Fano 3-folds. The answer to (B) is known for 58 out of 78
families with K-polystable members.

Relatively few known examples of K-moduli spaces of Fano 3-folds are known:
Liu and Xu have shown that the K-moduli space of cubic threefolds coincides with
the GIT moduli space [10], and a number of recent works have considered specific
families.

We could also investigate specifically K-moduli spaces of small dimension. 44
of the 105 deformation families of Fano 3-folds have 0-dimensional moduli, and

out of these, 21 yield a non-empty component of the associated K-moduli MKps
3,V .

There are 8 families with 1-dimensional moduli, and 6 of these yield a non-empty

component of the associated K-moduli MKps
3,V . My collaborators and I show:

Theorem 3. [11] All one dimensional components of MKps
3,V associated to families

of smoothable Fano 3-folds are isomorphic to P1.

As a by-product, we obtain:

Corollary 1. [11] All singular K-polystable limits of Fano 3-folds in families
MM2−22, MM2−24, MM2−25, MM3−12, MM3−13 and MM4−13 are constructed ex-
plicitly.

Finally, I present a construction of the 3-dimensional component of MKps
3,24 asso-

ciated to the deformation family MM4−1. Smooth members of MM4−1 are divisors
of multidegree (1, 1, 1, 1) in P1 × P1 × P1 × P1.
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Theorem 4 ([12]). A K-polystable limit of members of MM4−1

• either an irreducible divisor (1, 1, 1, 1) ⊂ P1 × P1 × P1 × P1 of the form

(*) X = {a(x1x2x3x4 + y1y2y3y4) + b(x1x2y3y4 + x3x4y1y2)+

+ c(x1x3y2y4 + x2x4y1y3) + d(x1x4y2y3 + x2x3y1y4) = 0}

for (a : b : c : d) ∈ P3.
• or an irreducible (2, 2) ⊂ P(1, 1, 2)× P(1, 1, 2) of the form

(**) X = {w1w2 + αs1t1s2t2 + β(s21s
2
2 + t21t

2
2) + γ(s21t

2
2 + t21s

2
2) = 0}

for (α : β : γ) ∈ P2.

We show:

Theorem 5. The component of K-moduli space MKps
3,24 associated to family MM4−1

is the blowup of P(1, 3, 4, 6) at the smooth point {[2 : 2 : 0 : 0]} with weights (1, 2, 3).
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On a problem of Gizatullin

Carolina Araujo

1. Overview

Our work is motivated by the general problem of describing automorphisms of
smooth hypersurfaces in projective spaces. Let Xd ⊂ Pn+1 be a smooth complex
hypersurface of degree d. Apart from the two exceptional cases (n, d) = (1, 3)
and (n, d) = (2, 4), every automorphism of Xd is the restriction of a linear auto-
morphism of the ambient space Pn+1 ([8], [4]). It is natural to wonder where the
automorphisms of Xd come from in the two exceptional cases.

For (n, d) = (1, 3), that is, when C = X3 ⊂ P2 is a smooth cubic curve, the
automorphism group of C is well known:

Aut(C) = C ⋊ Zm, for some m ∈ {2, 4, 6},
where C is viewed as an elliptic curve acting on itself by translation. In this case,
every automorphism of C is the restriction of a Cremona transformation of P2

([10, §2]). To see this, first make a linear change of coordinates to write C in
Weierstrass form. Then write down the expression for the translation by a point
on the curve in these coordinates, and check that this expression gives a Cremona
transformation of P2 inducing the given translation on C. The automorphisms in
the finite factor Zm are easily seen to be restrictions of linear automorphisms of
P2. The group of Cremona transformations of P2 stabilizing the curve C is called
the decomposition group of C and is denoted by Dec(P2, C), while the group of
Cremona transformations fixing the curve C pointwise is called the inertia group
of C and is denoted by In(P2, C). So we have an exact sequence

1 → In(P2, C) → Dec(P2, C) → Aut(C) → 1 .

Generators of the decomposition group Dec(P2, C) were given in [11], while the
inertia group In(P2, C) was investigated in [3].

For (n, d) = (2, 4), S = X4 ⊂ P3 is a K3 surface, and Aut(S) can be infinite
and fairly complicated. The following question is attributed to Gizatullin:

Problem (Gizatullin). Which automorphisms of a smooth quartic surface S ⊂ P3

are restrictions of Cremona transformations of P3?

In [9], Oguiso constructed a smooth quartic surface S ⊂ P3 with Picard rank
ρ(S) = 2, Aut(S) ∼= Z and trivial decomposition group, Dec(P3, S) = {1}. So
no nontrivial automorphism of S is induced by a Cremona transformation of P3.
In [10], Oguiso constructed a smooth quartic surface S ⊂ P3 with ρ(S) = 3,
Aut(S) ∼= Z2∗Z2∗Z2, and such that every automorphism of S is the restriction of a
Cremona transformation of P3. Inspired by these examples, Oguiso asked whether
every automorphism of finite order of a smooth quartic surface is the restriction of
a Cremona transformation of P3. This question was negatively answered by Paiva
and Quedo in [12], with the construction of a smooth quartic surface S ⊂ P3 with
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ρ(S) = 2, Aut(S) ∼= Z2 ∗Z2 (and hence Aut(S) is generated by involutions), while
Dec(P3, S) = {1}.

In this talk, we present a general framework that can be used to study Gizat-
ullin’s problem and to investigate the decomposition and inertia groups of a quartic
surface S ⊂ P3, namely, the birational theory of Calabi-Yau pairs. We also report
on recent progress on these problems in collaboration with Alessio Corti and Alex
Massarenti, and with Daniela Paiva and Sokratis Zikas.

2. Birational geometry of Calabi-Yau pairs

Let S ⊂ P3 be a smooth quartic surface. The pair (P3, S) is an example of a Calabi-
Yau pair, and an element of its decomposition group Dec(P3, S) is an example of
a volume preserving birational self-map of P3 with respect to the pair (P3, S). In
this section, we introduce these notions in a more general context, and explain
how they allow us to use tools from the Minimal Model Program (MMP) in order
to investigate Gizatullin’s problem.

Definition. A Calabi-Yau (CY) pair is a pair (X,D) consisting of a terminal
projective variety X and an effective Weil divisor D on X such that KX +D ∼ 0
and (X,D) has klt singularities.

Let (X,DX) and (Y,DY ) be CY pairs, and f : X 99K Y a birational map. We
say that f is volume preserving if, for every geometric valuation E with center
on both X and Y , the discrepancies of E with respect to the pairs (X,DX) and
(Y,DY ) are equal: a(E,KX +DX) = a(E,KY +DY ).

The birational group of a CY pair (X,D) is the group Bir(X,D) of birational
self-maps of X which are volume preserving with respect to (X,D).

Remark. The terminology is explained by the following interpretation. Given a
CY pair (X,D), there is a rational volume form ω on X , unique up to scaling,
such that D + div(ω) = 0. A birational self-map of X is volume preserving with
respect to (X,D) if and only if it preserves the volume form ω up to scaling.

When the CY pair (X,D) has canonical singularities, a birational self-map of
X is volume preserving if and only if it restricts to a birational self-map of D.
This is the case with the pair (P3, S), where S ⊂ P3 is a quartic surface with at
worst rational double points as singularities. In this case, the decomposition group
Dec(P3, S) coincides with the birational group Bir(P3, S) of the pair (P3, S), which
can be studied with tools of the MMP, as we now explain.

Given a uniruled variety, the MMP produces a Mori fiber space that is bira-
tionally equivalent to it. In general, there might be several different Mori fiber
spaces in the same birational equivalence class. The Sarkisov program provides
a factorization theorem for birational maps between Mori fiber spaces in terms
of simpler birational maps, called Sarkisov links. It was established in dimen-
sion 3 in [5], and in higher dimensions in [7]. The Sarkisov program has become a
powerful tool to investigate the Cremona group, as it allows one to factorize any
birational self-map of Pn as a composition of Sarkisov links between Mori fiber
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spaces. In [6], Corti and Kaloghiros established the following volume preserving
version of the Sarkisov program:

Theorem 1. A volume preserving birational map between Mori fibered CY pairs
is a composition of volume preserving Sarkisov links.

3. The decomposition group of quartic surfaces

We end this report by discussing a few consequences of Theorem 1. In [1], in
collaboration with Alessio Corti and Alex Massarenti, we developed a framework
to study the birational geometry of CY pairs. By our first main result ([1, Theorem
A]), if the quartic surface S ⊂ P3 is very general, then the group Bir(P3, S) is
trivial. More generaly:

Theorem 2. Let D ⊂ Pn+1 be a hypersurface of degree n+ 1. Suppose that D is
terminal and Cl(D) = Z ·

[
OPn+1(1)|D

]
. Then Bir(Pn+1, D) = {1}.

Therefore, if we want to produce interesting subgroups of the Cremona group
Bir(P3) using CY pairs (P3, S), then the quartic surface S ⊂ P3 must be chosen
special. Namely, either S should be singular, or it must have Picard rank ρ(S) ≥ 2.
The singular case was treated in [1, Theorem B]:

Theorem 3. Let S ⊂ P3 be a general singular quartic surface, so that S has a
unique rational double point of type A1, and Cl(S) = Z ·

[
OP3(1)|S

]
. Then we have

a split exact sequence

1 → In(P3, S) → Bir(P3, S)
x−→ Bir(S) ∼= Z2 → 1,

and the inertia group In(P3, S) is a form of Gm over C(x, y), i.e., In(P3, S) is an
algebraic group over the field C(x, y) which is isomorphic to Gm over the algebraic

closure C(x, y).

Gizatullin’s problem for smooth quartic surfaces S ⊂ P3 with ρ(S) = 2 was
addressed in [12] and in the recent paper [2], in collaboration with Daniela Paiva
and Sokratis Zikas. Let S ⊂ P3 be a general smooth quartic surface with ρ(S) = 2.
In a suitable basis for Pic(S) ∼= Z2, the intersection product is given by a matrix
of the form (

4 b
b 2c

)
,

with b, c ∈ Z. Denote by r = b2 − 8c the discriminant of S. It follows from [12]
that Dec(P3, S) = {1} whenever r > 233. In [2], we determined the image of
the restriction homomorphism Dec(P3, S) → Aut(S) for each value of r ≤ 233.
In particular, there are examples of smooth quartic surfaces S with ρ(S) = 2,
Aut(S) ∼= Z2, Z or Z2∗Z2, and such that every automorphism of S is the restriction
of a Cremona transformation of P3.
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Finite subgroups of Cremona groups and representation dimension

Alexander Duncan

(joint work with Jason Bailey Heath, Christian Urech)

For a field k and a positive integer n, the Cremona group of degree n over k,
denoted Crn(k), is the group of birational automorphisms of the projective space
Pn
k . We are interested in understanding how complicated its finite subgroups can

be.
We have Cr1(k) ∼= PGL2(k), so the finite subgroups are completely classified

for all fields when n = 1. The finite subgroups of Cr2(C) were (almost) completely
classified by Dolgachev and Iskovskikh in [2], building on work going back more
than a century. Over other fields there has been abundant progress towards full
classifications of finite subgroups, but much work still needs to be done. In higher
dimensions, there is some hope for Cr3(k), but a full classification in higher degrees
seems out of reach of current techniques.

Rather than a full classification, a coarser approach is to merely bound the
complexity of finite subgroups of Crn(k). For some “small” fields, such as number
fields, one can bound the order of finite subgroup groups as was done by Serre for
Cr2(k) in [4]. However, there is no finite bound on order for k = C — even for n =
1. Another alternative is to study the Jordan constant of Crn(k), which bounds
the index of normal abelian subgroups of the finite subgroups. As a consequence of
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Birkar’s proof of the BAB Conjecture [1], Prokhorov and Shramov [3] have shown
that the Jordan constant is finite for Crk(n) for all n and all fields of characteristic
0.

Here we consider another measure of complexity. The representation dimension
of a finite group G over k, denoted rdimk(G), is the minimal N such that there is
an embedding G →֒ GLN (k). For a field k and a positive integer n, define

cn(k) := sup {rdimk(G) | G finite group such that G ⊆ Crn(k)} .

We are able to compute cn(k) exactly for small n and arbitrary fields.

c1(k) =





2 if char(k) = 2,

3 if char(k) ≥ 3,

3 if char(k) = 0 and −1 is a sum of two squares,

2 otherwise.

c2(k) =





∞ if char(k) 6= 0,

8 if char(k) = 0 and
√
−3 ∈ k,

6 otherwise.

In the important special case of the complex space Cremona group, we have
the following bounds

15 ≤ c3(C) ≤ 62208

where we do not believe that the upper bound is sharp.
We also prove that cn(k) is infinite for all n ≥ 2 and all fields k of positive

characteristic. As a consequence of the finiteness of the Jordan constant, we can
show that cn(k) is finite for all n when k = C or k is a number field. Indeed, it is
likely that cn(k) is finite for all fields of characteristic 0.

Finally, by investigating the automorphism groups of (possibly non-split) toric
varieties, we obtain lower bounds for all dimensions n and all fields k

n 1 2 3 4 5 6 ≥ 7
cn(k) ≥ 2 6 12 24 40 72 2n

While explicit upper bounds for cn(k) for large n is difficult with current tech-
niques, we do think it is worth trying to find new lower bounds and encourage the
community to try to improve the numbers above.
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A valuative criterion for K-stability: beyond the Fano case

Sébastien Boucksom

(joint work with Mattias Jonsson)

The notion of K-stability was introduced in complex differential geometry as a
conjectural—and now partially confirmed—algebro-geometric criterion for the ex-
istence of special Kähler metrics. Lately, it has also become a subject in its own
respect. The main purpose of this talk is to review a series of two joint papers
with Mattias Jonsson [BJ21, BJ22b], in which we show how global pluripotential
theory over a trivially valued field, as developed in [BoJ22a], can be used to study
K-stability.

Let X be a projective variety (reduced and irreducible) of dimension n ≥ 1 over
an algebraically closed field k of characteristic 0, and L an ample Q-line bundle
on X . The definition of K-stability of the polarized variety (X,L), as given by
Donaldson, involves the sign of an invariant attached to (ample) test configurations
for (X,L), which can be interpreted as a non-Archimedean version of the Mabuchi
K-energy functional. Filtrations of the section ring of (X,L) provide another,
widely used description of test configurations; more precisely, the latter correspond
to Z-filtrations of finite type, as first pointed out by Witt Nyström. Chi Li’s recent
breakthrough on the Yau–Tian–Donaldson conjecture for cscK metrics shows that
a stronger form of uniform K-stability, formulated in terms of filtrations, indeed
implies the existence of a cscK metric.

To describe this, note that each filtration χ can be canonically approximated
by a sequence χd of finitely generated Z-filtrations, i.e. test configurations. The
proper definition of K-stability for filtrations relies on a detailed study of the
non-Archimedean Mabuchi K-energy functional M(χ). For a test configuration,

the latter decomposes into ‘energy’ terms E(χ),EKX (χ), and an ‘entropy’ term
Ent(χ) :=

∫
AX MA(χ), where AX is the log dicrepancy function, defined on the

set Xdiv of divisorial valuations, and the Monge–Ampère measure MA(χ) is a
divisorial measure, i.e. a probability measure with finite support in Xdiv. Our
first main result is as follows:

Theorem 1. There exists a unique extension of E(χ), EKX (χ), MA(χ) to arbi-
trary filtrations χ, obtained as the limits of the corresponding quantities for the
canonical approximants χd.

Here MA(χ) is a positive measure on the Berkovich space Xan, a natural com-
patification of Xdiv. Since AX extends to Xan [BFJ08], this provides a natural
extension of M(χ) to all filtrations. Our second main result is then:

Theorem 2. The Monge–Ampère operator induces a 1–1 correspondence between
the set of divisorial filtrations (up to translation by a constant) and that of diviso-
rial measures. Furthermore, K-stability for filtrations can be tested on the subset
of divisorial filtrations.
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Moduli Continuity method in K-stability

Yuchen Liu

(joint work with Chenyang Xu, Junyan Zhao)

This talk is a report on the paper [12] joint with Chenyang Xu and the preprint
[14] joint with Junyan Zhao.

It is remarkable that K-stability, a notion introduced by Tian [19] and Don-
aldson [6] to characterize Kähler–Einstein metrics on Fano varieties, provides the
correct condition to construct compact moduli spaces of Fano varieties. As a con-
sequence of about a dozen important recent papers, the K-moduli theorem states
that for every fixed dimension n and volume V , there exists a projective scheme
MK

n,V , known as the K-moduli space, parameterizes all n-dimensional K-polystable

Fano varieties X with (−KX)n = V .
Despite the general theory being completed, a natural question remains: can

we determine the K-moduli space for explicit Fano varieties? More precisely, the
question often asks to describe a certain irreducible component MK of MK

n,V that
compactifies a given family of smooth Fano manifolds. A notable approach to this
question, called the moduli continuity method, is based on the study of singularities
and volumes and crucially uses the compactness of K-moduli spaces. The moduli
continuity method first appeared in Tian’s solution of the Kähler–Einstein problem
for smooth del Pezzo surfaces [18]. Later, Mabuchi–Mukai [15] and Odaka–Spotti–
Sun [16] used this method to successfully describe K-moduli spaces of del Pezzo
surfaces. In this note, we shall focus on two families of Fano threefolds: cubic
threefolds and blow-ups of P3 along a genus 4 curve. For further families in higher
dimensions, see e.g. [17, 11, 2].

Theorem 1 ([12]). The K-moduli space of cubic threefolds is isomorphic to the
corresponding GIT moduli space.

Theorem 2 ([14]). The K-moduli space of blow-ups of P3 along a genus 4 curve
is isomorphic to a variation of GIT moduli space of slope 22

51 of (2, 3)-complete

intersections in P3.

Below, we sketch the proofs of these results using the moduli continuity method.
Note that the a priori estimate for singularities is good enough to determine the
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K-moduli space in the first family. Nonetheless, some new ingredients such as
moduli of K3 surfaces and Sarkisov links are needed in the second family.

Step 0. We show that the K-moduli spaceMK is non-empty. In other words, this
is saying that there exists at least one K-stable member of the given family of Fano
varieties. Usually, one finds a member (sometimes singular) with large symmetry
and apply the equivariant K-stability criterion [22]. Then, by the openness of
K-(semi)stability [3, 20], a general member of the given family is K-stable. For
cubic threefolds, we choose the Fermat cubic threefold. For blow-ups of P3 along a
genus 4 curve, we choose a specific curve with large symmetry; see [1, Proposition
4.33].

Step 1. We establish an a priori estimate for singularities that can appear in
X ∈ MK. The key estimate is the following local-to-global volume comparison
from [10] (after [7]):

(1)
(−KX)n

(−KPn)n
≤ v̂ol(x,X)

v̂ol(p,Pn)
.

Here n = dimX , p ∈ Pn is a point, and v̂ol stands for the local volume (also known
as normalized volume) of a klt singularity introduced by C. Li in [9]. Let us restrict
to the case of Fano threefolds. Together with the finite degree formula for local
volumes [21] and the ODP Gap Theorem in dimension 3 [12], the inequality (1)
implies that as long as (−KX)3 ≥ 20, every smoothable Q-Cartier Weil divisor L
on X is Cartier; in particular, X is Gorenstein canonical.

Step 2. We describe the geometry of X ∈ MK by investigating the linear system
|L| for a suitable divisor L. Let X → T be a Q-Gorenstein smoothing of X ∼= X0

over a pointed smooth curve 0 ∈ T .
If Xt is a cubic threefold for t 6= 0, we take L to be the degeneration of OXt

(1)
as a Weil divisor. Then L is Q-Cartier ample as −KX ∼ 2L. From Step 1, we
conclude that L is Cartier. Thus [8] implies that |L| is very ample and induces a
closed embedding X →֒ P4 as a (possibly singular) cubic hypersurface.

If πt : Xt → P3 is the blow-up along a genus 4 curve Ct for t 6= 0, we take L to
be the divisor on the total space X such that L|Xt

= π∗
tOP3(1), and let L = L|X0

.
Then we encounter a major issue as L may not be Q-Cartier since it is no longer

proportional to −KX/T . To resolve this, we take a small Q-Cartierization X̃ → X
so that the strict transform L̃ of L on X̃ is Q-Cartier and ample over X . Then we

prove that L̃ is indeed big and semiample over T , and X ∼= X̃0 is still a blow-up of
P3. This is achieved by Reid’s technique of general elephants, a delicate analysis
of moduli of lattice-polarized K3 surfaces, and the Sarkisov link structure on these
Fano threefolds as blow-ups of singular cubic threefolds.

Step 3. We show that the K-moduli space MK is isomorphic to a suitable GIT
moduli space MGIT. In summary, the previous steps show that every X ∈ MK

belongs to a suitable parameter space W with an action of a reductive group G.
If the above estimates are strong enough, then we often have that the Picard rank
of W is small, and the CM line bundle λCM on W is ample. Thus we can take
the GIT quotient MGIT = W //λCM

G. By the Paul–Tian criterion, we have an
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injective birational morphism

φ : MK → MGIT.

Since MK is proper [4, 13], we conclude that φ is an isomorphism by Zariski’s main
theorem. For cubic threefolds, we take W = PH0(P4,O(3)) and G = PGL(5), and
Theorem 1 follows. For blow-ups of P3 along genus 4 curves, we take W to be the
projective bundle over P9 = PH0(P3,O(2)) parameterizing (2, 3)-intersections in
P3, and G = PGL(4). Then computations of the CM line bundle show that λCM

has slope 22
51 in the Picard group of W , which has rank 2. Thus Theorem 2 follows.

Finally, we note that the variation of GIT in Theorem 2 was studied in detail
in [5], where it was shown that the VGIT moduli spaces provide models for the
Hassett–Keel program of genus 4 curves. Therefore, our K-moduli space MK for
the second family of Fano threefolds appears as a specific model in the Hassett–
Keel program.
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Non-archimedean approach to SYZ conjecture

Enrica Mazzon

Mirror symmetry is a fast-moving research area at the boundary between mathe-
matics and theoretical physics. Originated from observations in string theory, it
suggests the existence of a duality between Calabi–Yau (CY) manifolds, complex
manifolds with a nowhere vanishing holomorphic form of maximal degree. It pre-
dicts that every CY manifold X has a mirror partner X̌, such that the complex
geometry of X̌ is equivalent to the symplectic geometry of X , in some appropriate
sense, and vice versa.

Various approaches have been developed to find a rigorous definition of a mirror
pair (X, X̌), and methods to construct mirror partners; a geometric explanation
was proposed by Strominger, Yau and Zaslow (SYZ) in [SYZ96]. In its current
formulation, the SYZ conjecture concerns CY manifolds in certain degenerating
families rather than individual manifolds. More precisely, consider a projective
family (Xt)t of CY varieties of dimension n over a punctured disk, such that the
family is maximally degenerate, i.e. the monodromy operator on the degree n
cohomology of Xt has a Jordan block of maximal size, that is n+ 1.

Conjecture 1 (SYZ conjecture). For all sufficiently small t, Xt admits a fibration
π : Xt → B, whose fibres are special Lagrangian tori, away from a locus ∆
of codimension 2 in B. Moreover, the mirror partner X̌t of Xt is obtained by
dualizing the special Lagrangian toric fibres of π and by suitably compactifying
the resulting space.

While some examples of special Lagrangian torus fibrations can be produced,
dealing with the general case seems very difficult. The insight of Kontsevich and
Soibelman is to replace the above conjecture by an analogous one in the non-
archimedean world, and to interpret the latter as an asymptotic limit of the com-
plex phenomenon when t → 0.

More precisely, one can associate to the degenerating family X = (Xt)t the
Berkovich non-archimedean space Xan, whose points are valuations defined lo-
cally on X . Given a degeneration X of X , we say that X is snc (respectively dlt)
if the pair (X ,X0) is strict normal crossing (respectively divisorially log terminal),
where X0 is fiber over t = 0; see [Kol13] for more details. Given any snc or dlt
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degeneration, the dual intersection complex D(X0) is a simplicial complex encod-
ing the combinatorics of the multiple intersections of the components of X0. It
admits a canonical embedding in Xan, whose image is called the skeleton of X and
denoted Sk(X ), and a retraction ρX : Xan → Sk(X ). Among various degenera-
tions, minimal (in the sense of MMP) dlt models X of X determine a canonical
skeleton Sk(X) = Sk(X ), called the essential skeleton of X and independent of the
choice of the minimal model; see [MN15, NX16] for more details. The essential
skeleton and the retractions ρX : Xan → Sk(X ) are of particular relevance in the
non-archimedean approach to the SYZ conjecture, as we will see in the sequel.

By the celebrated Yau theorem, Xt carries a unique Kähler form ωt such that
[ωt] ∈ c1(Lt) and ωn

t = CtΩt ∧ Ωt for a constant Ct. Finding such form ωt boils
down to solving an equation, called complex Monge–Ampère equation. By the
works [CL06, BFJ15], non-archimedean Monge–Ampère equations can be defined
on Xan as well, and solved for any measure supported on a subset D(X0) of X

an.
In particular, let Ψ be the solution to

MANA(Ψ) = dµSk(X),

where MANA denotes the non-archimedean Monge–Ampère operator, and dµSk(X)

the Lebesgue measure on Sk(X). Up to fixing a reference metric, we can think of
Ψ as a function on Xan. In [Li23] Li reduced the SYZ conjecture to a conjecture
in non-archimedean geometry about Monge–Ampère metrics

Theorem 1 ([Li23]). Let X be a maximally degenerate family of Calabi–Yau
varieties. If there exists a degeneration X of X such that the solution Ψ is invariant
with respect to the retraction ρX , i.e.

Ψ = Ψ ◦ ρX on ρ−1
X (Int(τ)),

over the interior of any maximal face τ of D(X0), then an SYZ fibration exists on
a large region Ut ⊆ Xt.

This approach reduces the construction of SYZ fibrations to a property in non-
archimedean geometry. In [HJMM24], Hultgren, Jonsson, McCleerey and I pro-
vided first evidence for such conjecture, when X is not one-dimensional or an
abelian variety. More precisely, let X = {z0z1 . . . zn+1 + tf(z) = 0} ⊂ Pn+1 be
a family of Calabi–Yau hypersurfaces where f is a generic polynomial of degree
n+ 2. In this case, the essential skeleton Sk(X) is a sphere and can be identified
with the boundary of the standard unit simplex in Rn+1.

Theorem 2 ([HJMM24]). If ν is a symmetric measure on Sk(X), then the solution
to MANA(·) = ν is the restriction of a symmetric toric metric on OPn+1(n+2)an,
thus is determined by the restriction to Sk(X) of a convex function on Rn+1.

Applying Theorem 2 to ν = dµSk(X), we show that the characterization of the
solution Ψ provided by the theorem is sufficient to prove the invariance property
of Theorem 1. We conclude therefore that SYZ fibrations exist on large regions of
CY hypersurfaces. See
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Institut de Mathématiques
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Equipe AGA
rue Michel Magat
91405 Orsay Cedex
FRANCE

Dr. Giulia Gugiatti

Mathematics Section
The Abdus Salam International Centre
for Theoretical Physics (ICTP)
Strada Costiera, 11
34151 Trieste
ITALY

Prof. Dr. Jürgen Hausen

Fachbereich Mathematik
Universität Tübingen
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