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Abstract. Proof complexity is a multi-disciplinary research area that ad-
dresses questions of the general form “how difficult is it to prove certain
mathematical facts?” The current workshop focussed on recent advances in
our understanding that the analysis of an appropriately tailored concept of
“proof” underlies many of the arguments in algorithms, geometry or combi-
natorics research that make the core of modern theoretical computer science.
These include the analysis of practical Boolean satisfiability (SAT) solving
algorithms, the size of linear or semidefinite programming formulations of
combinatorial optimization problems, the complexity of solving total NP
search problems by local methods, and the complexity of describing winning
strategies in two-player round-based games, to name just a few important
examples.
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Introduction by the Organizers

The workshop Proof Complexity and Beyond was organised by Albert Atserias
(Barcelona), Jakob Nordström (Copenhagen/Lund), Meena Mahajan (Chennai)
and Alexander Razborov (Chicago). The workshop was held during March 24th-
29th and had 48 participants, including 4 remote participants. The program fea-
tured a total of 33 talks: 7 one-hour invited talks and 26 short talks. In addition,
there was an open problem session, and during breaks intensive interaction took
place in smaller groups.
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As originally conceived by Stephen Cook and Robert Reckhow in their seminal
article, propositional proof complexity is “the study of the length of the shortest
proof of a propositional tautology in various proof systems as a function of the
length of the tautology.” The original motivation for what came to be known
as Cook’s program was to shed light on the celebrated P vs. NP problem, to-
day one of the Clay Mathematical Institute Millenium Problems. But since that
time, numerous connections with other areas—such as combinatorial optimization,
practical Boolean satisfiability (SAT) solving, operation research, and extremal
combinatorics, to name just a few—have been discovered. In our workshop, we
attempted to “blend” Cook’s program proper and these more modern directions.

We now proceed to describing concrete talks delivered at the workshop, and we
attempt to loosely classify them into several categories. Our description is followed
by abstracts that are listed in the order of appearance at the workshop.

Algebraic and semi-algebraic proof systems. Just as was the case with its
predecessor (Proof Complexity and Beyond, 2017 edition), this was a major theme
of our workshop, although the focus slightly shifted towards algebraic proof sys-
tems. It stems from the following simple observation. Two most fundamental
mathematical results underlying algebraic and real geometry, Hilbert’s Nullstel-
lensatz and Stengle’s Positivestellensatz, are essentially proof systems for proving
unsatisfiability of a system of polynomial equations and inequalities, respectively.
In turn, the grading of “proofs” in such proof systems by their “complexity” under-
lies several of the successful applications of these results of classical mathematics
to theoretical computer science and affine areas.

The plenary talk by Risse reported a remarkable progress on the notoriously
difficult “Small Clique Problem” in the context of semi-algebraic proof systems.
Namely, the problem has been solved for the prominent system of Sherali-Adams
(with an additional restriction on coefficients). Conneryd spoke about another
recent major progress in the area, optimal polynomial calculus lower bounds for
non-colorability of sparse random graphs. In a somewhat similar vein, Potechin
reported an intriguing lower bound on the size of coefficients for the widely studied
pigeon-hole-principle and the most basic algebraic proof system, Nullstellensatz.

Other talks in this category were more open-ended. Tzameret spoke about
the functional lower bound method for analyzing strong proof systems and its ap-
plications. The talk by Toran was devoted to one of the most prominent tools
(pebbling tautologies) in the context of algebraic proof systems; the method led
to new strong separations between several such systems. The talk by Galesi

highlighted important connections between complexity of algebraic proofs and the
Tensor Isomorphism Problem, the latter being instrumental in several different
areas. Hirsch introduced so-called “tropical proof systems” that provide a very
nice connection between (semi)-algebraic proof complexity and tropical mathemat-
ics. Bonacina surveyed generalizations of the Max-SAT resolution proof system
when weights can be negative and showed how it leads to new algebraic and semi-
algebraic proof systems.

Proof, circuit, and communication complexity. Loosely speaking, circuit (or
computational) complexity studies what we can compute with limited resources,
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communication complexity studies how much information we must exchange to
compute in settings where the input is distributed, and proof complexity studies
what we can prove efficiently using only specific constructions that are allowed
by circuit and/or communication constraints. Intuitively, these tasks should be
related to each other. Quite remarkably, it turns out that these connections go
way deeper than this loose philosophical speculation, and this made for another
major theme at the workshop.

In her invited talk, de Rezende spoke about lifting techniques, a major de-
velopment connecting these three areas in particularly influential ways. Her talk
provided a game-theoretical perspective of the subject. Another invited talk given
by Sokolov reviewed, in a somewhat similar style, applications of sunflowers
in proof and circuit complexities. Initiated by Erdős and Rado in the context
of extremal combinatorics, this notion has become indispensable in several areas
of theoretical computer science. Göös spoke of very interesting applications of
the hardness condensation method, previously employed in circuit and proof com-
plexity, to some prominent problems in the communication complexity setting.
Sofronova presented top-down lower bounds for depth 4 circuits that make an
important step towards resolving one of the most fundamental (and notoriously
difficult) problems in circuit complexity. Hrubeš spoke about a well-known sys-
tem of monotone calculus and showed various connections to monotone arithmetic
circuits.

Logic-based propositional proof systems. These are proof systems in the
proper sense, i.e. those that encode normal mathematical arguments in a recog-
nizable form. Most talks in this section can be viewed as steps towards Cook’s
program.

Itsykson spoke about their recent major result that had generated quite a bit
of interest in the community: strong lower bounds for the regular variant of the
system “parity resolution”. Papamakarios showed how to extend a (relatively)
recent breakthrough result about non-automatability of resolution to bounded-
depth Frege: this is now the strongest proof system for which this can be reason-
ably hoped to be achieved with our current understanding. Håstad viewed the
same system from a different angle: his talk reported lower bounds for the pigeon-
hole-principle on the grid. Pang considered the notion of very strong trade-offs
previously established in circuit and proof complexity in several different contexts
and showed how to extend it to a fundamental tool in graph isomorphism testing
known as Weisfeiler-Leman algorithms.

Practical SAT Solving and Quantified Boolean Formulas (QBFs). The
tremendous success of SAT solvers on real-world instances has thrown up newer
challenges and opened new directions. In a survey talk aimed at highlighting
one such challenge, Nordström discussed the issue of certifying answers of SAT
solvers and other combinatorial solvers in succinct yet easily verifiable formats.
Thapen-II presented evidence that an approach using symmetry-breaking tech-
niques for SAT solving is plausibly stronger than extended resolution, since it can
encapsulate limited reasoning with QBFs.
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In a session looking at directions beyond propositional proofs, Mahajan gave
a brief overview of proof complexity for the more succinct formalism of QBFs.
Choudhury reported on initial steps towards analysing the dependency schemes
heuristic, used in many QBF solvers, from a rigorous proof-theoretic viewpoint.
Kache laid out the roadmap for obtaining lower bounds for the quantified version
of polynomial calculus.

Proof Complexity and Search Problems. This is yet another fascinating
connection which has seen a surge of advances and new insights after 2017. In
his plenary talk opening the workshop, Robere surveyed this theory and known
results, as well as outlined next steps to take. Fleming reported their recent
contribution affirming that the prominent class of search problems PPP is not
Turing-closed in the relevant (black-box) setting, thus providing strong evidence
that its “big” version is also not Turing-closed. Thapen-I connected this theory
to the feasible disjunction/feasible interpolation property that in particular led
to the first example of a proof system for which these two concepts behave very
differently.

Mathematical Logic, Meta-Complexity etc. In this category we list several
talks that are particularly well connected to the parent discipline, mathematical
logic. Oliveira surveyed the connections between (un)provability of statements
in various theories and the complexity of proving computational lower bounds,
presenting this study as a principled approach to understanding the difficulty of
proving lower bounds. Along these lines, Carmosino discussed the difficulty of
proving known circuit lower bounds in specific theories; provability of the size
hierarchy would then imply other circuit lower bounds. Jeřábek discussed the
theory of exponential integer parts, described some properties of these theories,
and, towards obtaining a finite axiomatization, presented an associated 2-player
game over the integers. Pudlák described how the additional strength of narrow
implicit proof systems based on quantified propositional calculi, using resolution
to certify the implictly described proofs, corresponds to a jump in the hierarchy.

Miscellaneous (Beyond Proof Complexity). There were several talks on
topics not directly in the area of proof complexity per se, but with significant
non-trivial connections. Kothari delivered an exposition on the Kikuchi matrix
method, that has found much use recently in solving problems about extremal
combinatorics, and highlighted where and how verifying unsatisfiablity plays a
role. Tulsiani followed up with describing a general framework for obtaining de-
coding algorithm, based on the Sum-of-Squares hierarchy of semidefinite programs
and proofs. Blekherman discussed (the undecidability of) certifying the unsat-
isfiability of graph homomorphism inequality problems, highlighting an interplay
between extremal combinatorics and real algebraic geometry. Grohe described
a lower bound for the k-dimensional Weisfeiler-Leman algorithms for graph iso-
morphism testing referred to earlier; such lower bounds imply lower bounds in
algebraic proof systems for formulas that formalise the existence of isomorphisms.
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Open Problems Session

On Tuesday evening at 20h an Open Problems Session was held in the main
auditorium. The session was attended by almost all participants, and was run by
Albert Atserias, one of the organizers of the workshop. On Monday morning the
participants were polled in a show of hands to express interest in having such a
session. In keeping with similar traditions in comparable workshop series, also with
the precedent settled in the previous edition of the Proof Complexity and Beyond
worskhop of 2017 (Oberwolfach 1733), the suggested format was to allocate 10 slots
of 5 minutes each. The slots would be filled on a first-come first-served basis by
volunteering presenters. The reception was enthusiastic. By Tuesday afternoon all
10 slots had been filled with names of presenters. In the actual session on Tuesday
we had one extra last-minute improvised open problem presentation. The session
ended within schedule at 21h.

What follows is a list of succinct descriptions of the open problems that were
presented. We made an effort to summarize each open problem with a single-
sentence interrogation. The interrogation is followed by some short clarifications
concerning the definitions, or by some known relevant facts on the state of the art.

1. Mika Göös. Is there a TFNP class beyond FP that is easy in the random oracle
model? One can see that PPP and PLS are hard in the random oracle model. For
example, it is well-known that it takes Ω(2n/2) queries to have a good chance of
finding a collision (let alone a preimage of 0n) in a random function from {0, 1}n
to {0, 1}n. Thus, PPP is hard in the random oracle model.

2. Robert Robere. Is it possible to randomly black-box reduce 3-PIGEON to
2-PIGEON? Here 3-PIGEON is the TFNP search problem of finding three out
of 2N + 1 pigeons that map to the same out of N holes, and 2-PIGEON is the
standard pigeonhole principle search problem of finding two out of N + 1 pigeons
that map to the same out of N holes; i.e., the defining problem of PPP.

3. Noah Fleming. Are Stabbing Planes and Cutting Planes, as proof systems
for integer linear programming, equivalent up to quasi-polynomial simulations? It
is known that Stabbing Planes quasi-polynomially simulates Cutting Planes. Re-
cently proved lower bounds for Stabbing Planes suggest that a converse simulation
might be possible too.

4. Greg Bleckermann. Is non-negativity of binomials of graph densities decidable?
A binomial of graph densities is a formal expression of the form a1t(G1) +a2t(G2)
where a1, a2 are integers and G1, G2 are finite graphs. The graph-density func-
tion of G, denoted by t(G), is the graph function defined by H 7→ t(G,H) =
|Hom(G,H)|/|V (H)||V (G)|; i.e., t(G,H) is the fraction of maps from V (G) to V (H)
that are homomorphisms from G to H . By standard tricks, the only interesting
case is a1 = 1 and a2 = −1, i.e., deciding if t(G1) ≥ t(G2).

5. Marco Carmosino. Does the two-sorted bounded-arithmetic theory VPV prove
the Non-Deterministic Time Hierarchy Theorem? It is known that the theory
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VPV is able to prove many theorems of computational complexity theory, in-
cluding the Deterministic Time Hierarchy Theorem in the form DTIME(n2c+1) 6⊆
DTIME(nc), for all c ≥ 1.

6. Marc Vinyals. Can one efficiently reduce the number of bits in the coefficients
of an n-variable linear threshold function from, say, n100 bits down to n2 bits? It
is known that O(n logn) bits suffice but no efficient algorithm is known to achieve
even polynomial compression.

7. Shuo Pang. In the Cops-Robber game on the k ×m cylinder grid, how many
rounds can the Robber survive if the number of cops is 5k/2? It is known that k+1
cops can catch the robber but they need Ω(m) rounds, while 3k cops can catch
the robber in O(logm) rounds.

8. Jakob Nordström. In the configuration model of Resolution with a baby version
of the redundancy-based rule added, how would one prove lower bounds? In the
baby version of the new rule, two restrictions are imposed: (1) the added clause
does not introduce any new variables, and (2) the implication test underlying the
rule is replaced by the much weaker containment test. In this model, the standard
pigeonhole principle formulas and the standard Tseitin formulas are easy.

9. Paul Beame. For PCR, can we get a better degree-automating algorithm than
Groebner basis which does not immediately kill the negated variables? In PCR,
variables come in pairs x and x with the axiom x+x−1 = 0 to avoid exponentially
many monomials when representing clauses. In such a situation, the first thing
the Groebner basis algorithm would do is to eliminate all occurrences of x and
replace them by 1 − x, or all occurrences of x and replace them by 1 − x. This
defeats the whole purpose of introducing the negated variables x.

10. Albert Atserias. Can one find PC/SA/SOS degree lower bounds for graph iso-
morphism formulas ISO(G,H) that do not come from CFI graphs or their small
variants? Here ISO(G,H) is a standard CNF encoding of the statement that G
and H are isomorphic. A concrete question: Writing vc(G) for the minimum
vertex cover size of G, find n-vertex graphs Gn and Hn with vc(Gn) < 0.51n
and vc(Hn) > 0.99n yet the SA-degree of refuting ISO(Gn, Hn) grows unbounded.
It is known, but not trivial, that such examples for SA would lift to similar exam-
ples for SOS.

11. Antonina Kolokolova. How strong is a deductive proof system in which lines
are represented by DNNF (Decomposable Negation Normal Form) formulas? Such
a system would simulate OBDD proofs, and also proofs with lines represented by
read-once branching programs (aka free BDDs), even if they are not ordered.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Propositional Proof Complexity and TFNP

Robert Robere

A recent line of work [1–8] has demonstrated many deep connections between
propositional proof systems and total NP search problems (TFNP). The basic
correspondence allows us to associate a total search problem S with each proposi-
tional proof system P such that the following holds: for every tautology T , T has
a short proof in P if and only if proving T can be “efficiently reduced” to proving
the totality of S. This allows us to define a theory of reducibility for proof systems
that is analogous to classical reducibility in complexity theory, it has led to the
resolution of a number of open problems in both proof complexity and the theory
of TFNP, and also has suggested new directions of study in both of these areas.

In this talk we will survey this connection, the recent progress that has been
made, and outline some next steps for the development to take.
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Black-Box PPP Is Not Turing Closed

Noah Fleming

(joint work with Stefan Grosser, Toniann Pitassi, Robert Robere)

The complexity class PPP contains all total search problems many-one reducible to
the Pigeon problem, where we are given a succinct encoding of a function mapping
n+1 pigeons to n holes, and must output two pigeons that collide in a hole. PPP is
one of the “original five” syntactically-defined subclasses of TFNP [3,9–11], and has
been extensively studied due to its defining problem — the pigeonhole principle —
which captures strong induction, which is the basic axiom underlying most formal
systems for mathematical reasoning. Additionally, PPP has strong connections to
other areas such as the theory of lattices and cryptography [1, 7, 8, 13], extremal
combinatorics [4, 12], and propositional proof complexity [2, 5, 6].

Despite the prominent role of PPP, it seems to lack certain robustness prop-
erties that all other natural TFNP classes enjoy. A prominent example of such
a property is closure under Turing reductions. (A TFNP class C is closed un-
der Turing reductions if any problem polynomial-time reducible to C via multiple
calls to a problem in C is also polynomial-time reducible to a single call to C.)
The classical TFNP classes are typically defined using closure under many-one
reductions, although, the original family of black-box separations between these
classes, proved by [2], already hold for the Turing closed variants. The later work
of Buss and Johnson [6] asked whether these classical TFNP classes are closed
under Turing reductions. They proved that four of the five original TFNP classes
PPA,PPAD,PPADS, and PLS are closed under Turing reductions, and they con-
structed an artificial TFNP subclass that was not Turing closed in the black-box
setting. Subsequently, with the exception of PPP, all other natural TFNP classes
have been shown to be Turing closed. Thus PPP stands as the only natural TFNP
class not known to be Turing closed. The question of whether PPP contains its
Turing closure was further highlighted by Daskalakis in his recent IMU Abacus
Medal Lecture.

In this joint work with Stefan Grosser, Toniann Pitassi and Robert Robere, we
prove that PPP is indeed not Turing-closed in the black-box setting, affirmatively
resolving the above conjecture and providing strong evidence that PPP is not
Turing-closed. In fact, we are able to separate PPP from its non-adaptive Turing
closure, in which all calls to the Pigeon oracle must be made in parallel. This
differentiates PPP from all other important TFNP subclasses, and especially from
its closely-related subclass PWPP — defined by reducibility to the weak pigeonhole
principle — which is known to be non-adaptively Turing-closed. Our proof requires
developing new tools for PPP lower bounds, and creates new connections between
PPP and the theory of pseudoexpectation operators used for Sherali-Adams and
Sum-of-Squares lower bounds. In particular, we introduce a new type of pseudo-
expectation operator that is precisely tailored for lower bounds against black-box
PPP, which may be of independent interest.
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TFNP Intersections and Feasible Disjunction

Neil Thapen

(joint work with Pavel Hubáček, Erfan Khaniki)

The complexity class CLS was introduced by Daskalakis and Papadimitriou [1] to
capture the computational complexity of important TFNP problems solvable by
local search over continuous domains and, thus, lying in both PLS and PPAD. It
was later shown that, e.g., the problem of computing fixed points guaranteed by
Banach’s fixed point theorem is CLS-complete by Daskalakis et al. [2]. Recently,
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Fearnley et al. [3] disproved the plausible conjecture of Daskalakis and Papadim-
itriou that CLS is a proper subclass of PLS ∩ PPAD by proving that CLS = PLS
∩ PPAD.

To study the possibility of other surprising collapses in TFNP, we connect
classes formed as the intersection of existing subclasses of TFNP with the phe-
nomenon of feasible disjunction in propositional proof complexity; where a proof
system has the feasible disjunction property if, whenever a disjunction F ∨G has
a small proof, and F and G have no variables in common, then either F or G
has a small proof [7, 8]. We study feasible disjunction for various systems and
notions of smallness, in particular extending work of Hakoniemi [5] to show a kind
of feasible disjunction for size and degree for Sherali Adams. Using this we sepa-
rate the classes formed by intersecting the classical subclasses PLS, PPA, PPAD,
PPADS, PPP and CLS, relying extensively on the lower bounds and connections
with proof systems shown recently by Göös et al. [4]. We also give the first exam-
ples of proof systems which have the feasible interpolation property, but not the
feasible disjunction property.

This work has appeared as [6].
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[6] Pavel Hubáček, Erfan Khaniki and Neil Thapen. TFNP Intersections Through the Lens
of Feasible Disjunction. In Innovations in Theoretical Computer Science Conference (ITCS
2024), LIPIcs Vol 287, pp. 63:1-63:24, 2024.
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A Variant of Monotone Calculus

Pavel Hrubeš

Monotone calculus is a Frege-style system which operates with implications A → B
where A and B are monotone. I will define a weakening of this system and show
its connections with monotone arithmetic circuits.
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Proof Complexity, Communication Complexity, and Lifting

Susanna F. de Rezende

Query-to-communication lifting theorems are methods of obtaining lower bounds
for communication models from lower bounds for weaker query models. This
method was used in [13] to separate the monotone NC hierarchy and to obtain
monotone circuit depth lower bounds for functions like st-connectivity and k-
clique. Soon after it was generalized in [2] to obtain lower bounds for tree-like
proof systems. It was later brought to light in [6] where it was shown that this
technique is more general than originally presented, and this gave rise to many new
result in proof and circuit complexity, including: optimal 2Ω(n) lower bounds on
the size of monotone boolean formulas computing an explicit monotone function in

NP [10] and near optimal 2Ω̃(n) for a function in monotone P [3]; the refinement of

the monotone ACi hierarchy from the monotone NCi hierarchy and new tradeoffs
for cutting planes proofs [4]; and a new family of techniques for proving lower
bounds on cutting planes proofs and monotone circuit size [5].

In this talk we will view proofs and circuits as games: the Prover-Adversary
game [1, 11] where a proof is seen as a protocol for solving the falsified clause
search problem Search(F ) for an unsatisfiable CNF formula F ; and the monotone
Karchmer-Wigderson game [7] where a monotone circuit is seen as communication
(dag-like) protocol [8,9,12,14] to solve the monotone Karchmer-Wigderson relation
mKW(f) for a monotone function f . We will see that, given an unsatisfiable CNF
formula F , we can define a (partial) monotone function f such that Search(F ) and
mKW(f) become exactly the same problem, and then see how lifting theorems can
be used to obtain lower bounds for protocols solving these search problems. In
particular we will argue that for a formula F encoding the pigeonhole principle, we
can obtain monotone circuit size and depth lower bounds for the clique-colouring
function from communication lower bounds for Search(F ) composed with the so-
called indexing gadget. These communication lower bounds can, in turn, be shown
via lifting theorems, such as those in [3,5,6,10,13], leading to the best known size
and depth lower bounds for the clique-colouring function.
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On the Automatability of Bounded-Depth Frege Systems

Theodoros Papamakarios

A large chunk of research in proof complexity concentrates on trying to show that
certain statements cannot have short proofs in some proof system. But even if
a statement does have short proofs in a proof system, such proofs may not be
easy to find. This motivates the notion of automatability [6]: A proof system P
is called automatable if, given a statement τ , one can find a P -proof of τ in time
polynomial in the size of the shortest P -proof of τ . Apart from being a natural
notion in itself, of central importance to automated theorem proving, the concept
of automatability is connected to other important threads in proof complexity,
e.g. canonical pairs and feasible interpolation [2, 6, 11].

Now, the stronger the proof system, the harder it is to automate it, and in-
deed, early results show non-automatability for strong systems under plausible
complexity theoretic assumptions [6, 10], and even, tightening the assumptions,
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weaker systems [1,5]. More recently, starting with [3], weak proof systems, includ-
ing resolution, res(k), cutting planes and various algebraic proof systems, have
been shown to be as hard to automate as possible [3, 7–9]. In this talk, we argue
how this can be extended to bounded-depth Frege systems.

We furthermore touch upon the problem of whether resolution is weakly au-
tomatable. A proof system P is weakly automatable if, given a statement τ , one
can find a Q-proof of τ in time polynomial in the size of the shortest P -proof of τ ,
where Q is a proof system that polynomially simulates P . Whereas we know that
resolution is as hard to automate as possible, whether it can be weakly automat-
able remains to a large extent open. An equivalent problem is whether depth-2
Frege systems have feasible interpolation [4, 5]. Focusing on the latter problem,
we present a version of the point-line game of [4], present some of its properties,
trying to suggest that the problem of weakly automating resolution might not be
as hard as the problem of (strongly) automating resolution.
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Functional Lower Bounds in Algebraic Proofs: Symmetry, Lifting,
and Barriers

Iddo Tzameret

(joint work with Tuomas Hakoniemi, Nutan Limaye)

Strong algebraic proof systems such as IPS (Ideal Proof System; Grochow–Pitassi
[7]) offer a general model for deriving polynomials in an ideal and refuting un-
satisfiable propositional formulas, subsuming most standard propositional proof
systems. One of the most successful approach to this day for lower bounding the
size of IPS refutations is the Functional Lower Bound Method (Forbes, Shpilka,
Tzameret and Wigderson [5]), which reduces the hardness of refuting a polynomial
equation f(x̄) = 0 with no Boolean solutions to the hardness of computing the
function 1/f(x̄) over the Boolean cube with an algebraic circuit. We consider this
approach in general terms, and attempt to understand how far it can lead with
respect to lower bounds, and where it cannot reach.

In particular, using symmetry we provide a general way to obtain many new
hard instances against fragments of IPS via the functional lower bound method.
This includes hardness over finite fields and hard instances different from Subset
Sum variants both of which were unknown before, and stronger constant-depth
lower bounds. Conversely, we expose the limitation of this method by showing
it cannot lead to proof complexity lower bounds for any hard Boolean instance
(e.g., CNFs) for any sufficiently strong proof systems. Specifically, we discuss the
following new results:

Nullstellensatz degree lower bounds using symmetry: Extending [5] we
show that every unsatisfiable symmetric polynomial with n variables re-
quires degree > n refutations (over sufficiently large characteristic). Using
symmetry again, by characterising the n/2-homogeneous slice appearing
in refutations, we show that unsatisfiable invariant polynomials of degree
n/2 require degree ≥ n refutations.

Lifting to size lower bounds: Lifting our Nullstellensatz degree bounds to IPS-
size lower bounds, we obtain exponential lower bounds for any poly-
logarithmic degree symmetric instance against IPS refutations written as
oblivious read-once algebraic programs (roABP-IPS). For invariant poly-
nomials, we show lower bounds against roABP-IPS and refutations written
as multilinear formulas in the placeholder IPS regime (studied by Andrews-
Forbes [2]), where the hard instances do not necessarily have small roABPs
themselves, including over positive characteristic fields. This provides the
first IPS-fragment lower bounds over finite fields.

By an adaptation of the work of Amireddy, Garg, Kayal, Saha and
Thankey [1], we extend and strengthen the constant-depth IPS lower
bounds obtained recently in Govindasamy, Hakoniemi and Tzameret [6]
which held only for multilinear proofs, to poly(log logn) individual degree
proofs. This is a natural and stronger constant depth proof system than
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in [6], which admits small refutations for standard hard instances like the
pigeonhole principle and Tseitin formulas.

Barriers for Boolean instances: While lower bounds against strong proposi-
tional proof systems were the original motivation for studying algebraic
proof systems in the 1990s [3,4], we show that the functional lower bound
method alone cannot establish any size lower bound for Boolean instances
for any sufficiently strong proof systems, and in particular, cannot lead to
lower bounds against AC0[p]-Frege and TC0-Frege.

Overall, this work wraps up to some extent research on IPS lower bounds via the
functional lower bound method, showing how far it can be pushed, and where it
cannot be applied. It generalises and improves previous work on IPS lower bounds
obtained via the functional lower bound method in [5, 6]. We established size
lower bounds for symmetric instances, and hard instances qualitatively different
from previously known hard instances. This allows us also to show lower bounds
over finite fields, which were open. We then showed how to incorporate recent
developments on constant-depth algebraic circuit lower bounds [1] in the setting
of proof complexity. This enables us to improve the constant-depth IPS lower
bounds in [6] to stronger fragments, namely IPS refutations of constant depth
and poly(log logn)-individual degrees. As a corollary, we show a new finite field
functional lower bound for multilinear formulas which may be of independent
interest.

As for the barrier we uncovered, it is now evident that the functional lower
bound method alone cannot be used to settle the long-standing open problems
about the proof complexity of constant-depth propositional proofs with counting
gates. This does not rule out however the ability of IPS lower bounds, and the IPS
“paradigm” in general, to progress on these open problems, since other relevant
methods may be found helpful (the meta-complexity method established in [9], the
lower bounds for multiples method [2, 5], and the noncommutative reduction [8]).
Moreover, our barrier only shows that we cannot hope to use a single non-Boolean
unsatisfiable axiom f(x̄) = 0 and consider the function 1/f(x̄) over the Boolean
cube to obtain a CNF IPS lower bound (whenever the CNF is semantically implied
from f(x̄) = 0 over the Boolean cube). However, it does not rule out in general
the use of a reduction to matrix rank, which is the backbone of many algebraic
circuit lower bounds (as well as the functional lower bound method), and should
potentially be helpful in proof complexity as well.

A very interesting problem that remains open is to prove CNF lower bounds
using the functional method against fragments of IPS that sit below the reach
of the barrier, namely fragments that cannot derive efficiently the conjunction of
arbitrarily many polynomials (that is, systems that are not sufficiently strong in
the above terminology).
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bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc. (3),
73(1):1–26, 1996.

[4] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák, Alexander A. Razborov,
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Clique Is Hard on Average for Sherali-Adams with
Bounded Coefficients

Kilian Risse

(joint work with Susanna F. de Rezende, Aaron Potechin)

A fundamental problem of theoretical computer science is k-clique: given an n-
vertex graph, determine whether it contains a clique of size k. This problem can be
solved in time O(nk) by iterating over all subsets of vertices of size k and checking
whether one of them is a clique. This näıve algorithm is essentially the fastest
known; the constant in the exponent can be slightly improved [20] but, assuming
the exponential time hypothesis [6], this linear dependence on k in the exponent
is optimal in the worst-case.

Besides studying k-clique in the worst-case, one may consider it in the average-
case setting. Suppose the given graph is an Erdős-Rényi graph with edge prob-
ability around the threshold of containing a k-clique. Does k-clique require time
nΩ(k) on such graphs? Or, even less ambitiously, is there an algorithm running in
time no(k) that decides the nǫ-clique problem on such graphs? It is unlikely that
the hardness of such average-case questions can be based on worst-case hardness
assumptions such as P 6= NP or the exponential time hypothesis [5]. They are, in
fact, being used as hardness assumptions themselves: the planted clique conjecture

http://arxiv.org/abs/1412.8746
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states that n1/2−ǫ-clique requires time nΩ(logn) on Erdős-Rényi graphs with edge
probability 1/2.

In order to obtain evidence that the planted clique conjecture holds we intend
to prove it for bounded computational models. We consider the Sherali-Adams
proof system with bounded coefficients and show that, for k ≤ 2 logn, it requires
proofs of size nΩ(k) to refute the claim that a uniformly sampled graph contains
a clique of size n0.1. This establishes a quantitative version of the planted clique
conjecture for all algorithms captured by this proof system. Note that this proof
system is incomparable to resolution, as shown in [12]. Previously similar results
have been shown for tree-like resolution [4, 16] and for the Nullstellensatz proof
system without dual-variables [18].

If we are only interested in refuting the existence of a smaller clique, say of size
4 logn, then there are essentially optimal nΩ(k) average-case size lower bounds for
regular resolution [1, 21]. For resolution, there are two average-case lower bounds
that hold in different regimes: for n5/6 ≪ k ≤ n/3, Beame et al. [3] proved an
average-case exp(nΩ(1)) size lower bound and for k ≤ n1/3, Pang [21] proved a

2k
1−o(1)

lower bound. It is a long standing open problem, mentioned, e.g., in [4],
to prove an unconditional nΩ(k) resolution size lower bound for the unary encoding
– even in the worst case.

For the less usual binary encoding of the clique formula it is somewhat straight-
forward to prove almost optimal nΩ(k) resolution size lower bounds for the less
usual binary encoding of the k-clique formula [17] and these lower bounds can
even be extended to an nΩ(k) lower bound for the Res(s) proof system for con-
stant s [8].

An extended abstract previously appeared in the Proceedings of the 64th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’23) [10].
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Graph Colouring Is Hard on Average for Polynomial Calculus

Jonas Conneryd

(joint work with Susanna F. de Rezende, Jakob Nordström, Shuo Pang,
Kilian Risse)

Determining the chromatic number of a graph G, i.e., how many colours are needed
for the vertices of G if no two vertices connected by an edge should have the same
colour, is one of the original 21 problems shown NP-complete in the seminal work
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of Karp [12]. This graph colouring problem, as it is also referred to, has been
extensively studied since then, but there are still major gaps in our understanding.

It is widely believed that any algorithm that colours graphs optimally has to
run in exponential time in the worst case, and the currently fastest algorithm
for 3-colouring has time complexity O(1.3289n) [4]. To understand graph colour-
ing from the viewpoint of computational complexity, it is natural to investigate
bounded models of computation that are strong enough to describe the reasoning
performed by state-of-the-art algorithms for graph colouring and to prove uncon-
ditional lower bounds that hold in these models.

We investigate the hardness of graph colouring for algorithms based on algebraic
reasoning, where the idea is to encode the graph colouring problem as a set of
polynomials whose common roots correspond to proper colourings of the graph.
The goal is then to either find those roots or prove that they do not exist. This
leads us to the polynomial calculus proof system [1, 6], whose reasoning captures,
for instance, most implementations of the Gröbner basis algorithm as well as an
algorithm introduced in a well-known sequence of works [7–10] with surprisingly
strong practical performance.

It was previously known [2,13] that polynomial calculus requires linear degree,
and hence exponential size via the size-degree relation [11], to solve graph colour-
ing in the worst case. However, the hard instances in those papers come from
reductions to other problems, so it was consistent with our knowledge that graph
colouring is in fact easy for polynomial calculus except in some rather artificial
special cases. Stronger evidence for the hardness of graph colouring would be
an average-case lower bound, just as was established for resolution by Beame,
Culberson, Mitchell, and Moore [3].

In this work we establish optimal, linear, degree lower bounds and exponential
size lower bounds for polynomial calculus proofs of non-colourability of sparse
random graphs. Our results hold over any field and for both Erdős-Rényi random
graphs and random regular graphs.

An abridged version of this work appeared in the Proceedings of the 64th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’23) [5].
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and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

[12] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Springer, 1972.

[13] Massimo Lauria and Jakob Nordström. Graph colouring is hard for algorithms based on
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Pebble Games and Algebraic Proof Systems

Jacobo Torán

(joint work with Lisa-Marie Jaser)

Analyzing refutations of the well known pebbling formulas Peb(G) we prove some
new strong connections between pebble games and algebraic proof system, showing
that there is a parallelism between the reversible, black and black-white pebbling
games on one side, and the three algebraic proof systems Nullstellensatz, Monomial
Calculus [1] and Polynomial Calculus on the other side.

We prove that very similar results to those given in [3] for Nullstellensatz and
reversible pebbling are also true for the case of Monomial Calculus and black
pebbling. More concretely we show that for any DAG G with a single sink, if
there is a MC refutation for Peb(G) having simultaneously degree s and size t
then there is a black pebbling strategy on G with space s and time t + s. This is
done by proving that any Horn formula has a very especial kind of MC refutation,
which we call input monomial refutation since it is the same concept as an input
refutation in Resolution.

For the other direction, we show that from a black pebbling strategy for G
with space s and time t it is possible to extract a MC refutation for Peb(G)
having simultaneously degree s and size ts. The small loss in the time parameter
compared to the results in [3] comes from the fact that size complexity is measured
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in slight different ways in NS and MC. Using these results we are able to show
degree separations between NS and MC as well as strong degree-size tradeoffs for
MC in the same spirit as those in [3]. The results also show that strong degree
lower bounds for MC refutations do not imply exponential size lower bounds as it
happens in the PC proof system [4].

The degrees of the refutation for pebbling formulas in NS and MS correspond
exactly to the space in reversible and black games respectively. This is not the case
for PC degree and space in the black-white pebble game [2]. We notice however
that if instead of the degree we consider the complexity measure of variable space,
then the connection still holds. For any single sink DAG G the variable space
complexity of refuting Peb(G) in each of the algebraic proof systems NS, MC
and PC is exactly the space needed in a strategy for pebbling G in each of the
three versions reversible, black and black-white of the pebble game. This results
allow us to apply known separations between the pebbling space needed in the
different versions of the the game, in order to obtain separations in the variable
space measure between the different proof systems.
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On Small-Depth Frege Proofs for PHP

Johan Håstad

We study formal proofs for the Pigeon Hole Principle (PHP). The PHP states that
m + 1 pigeons can fly to m holes such that no two pigeons fly to the same hole.
It has (m + 1)m Boolean variables and variable xij is true iff pigeon i flies to the
hole j. The axioms say that for each i there is a value of j such that xij is true
and for each j there is at most one i such that xij . This is clearly a contradiction
and the questions is whether this can be established by a short proof using simple
and natural derivation rules and where each formula derived is of depth at most
d in the basis given by ∧ and ∨.

The case of d = 1 corresponds to resolution and an early milestone was obtained
by Haken [3] in 1985 when he established exponential size lower bounds for such a
proof. This was extended in a sequence of works [1,2,6,7] to prove that polynomial
size proofs require depth d at least Ω(log logn).

These bounds remained the strongest lower bounds for any tautology until
Pitassi et al [8] obtained super-polynomial lower bounds for depths up to o(

√
logn).
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The tautology considered was first studied by Tseitin [9] and considers a set linear
equations modulo two defined by a graph. The underlying graph for [8] is an
expander. These results were later extended to depth almost logarithmic by H̊astad
and Risse [4,5] and in this case the underlying graph is the two-dimensional grid.

We continue this line of research and prove that similar bounds apply to the
PHP and to make use of previous work we study the graph PHP where the un-
derlying graph is an odd size two-dimensional grid. If one colors this graph as a
chess board, the corners are of the same color and let us assume this is white. In
the graph PHP on the grid, there is a pigeon on each white square and it should
fly to one of the adjacent black squares that define the holes.

Phrased slightly differently, the PHP on the grid says that there is a perfect
matching of the odd size grid while Tseitin tautology on the same graph states
that it is possible to assign Boolean values to the edges of the grid such that
there is an odd number of true variables next to any node. As a perfect matching
would immediately yield such an assignment, the PHP is a stronger statement and
possibly easier to refute. The statements are, however, quite similar and indeed we
our proof follow along the same lines as [5] and use many ideas from that paper.

As in most previous papers the main technical tool is to prove a “switching
lemma”. By assigning values to most variables in a formula it is possible to switch
a small depth-two formula from being a CNF to being a DNF and the other way
around. By choosing a very special way of assigning values we are able to preserve
the graph PHP and hence prove our theorem by induction over d.
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Lower Bounds for Regular Resolution Over Parities

Dmitry Itsykson

(joint work with Klim Efremenko, Michal Garĺık)

The proof system resolution over parities (Res(⊕)) [7,8] operates with disjunctions
of linear equations (linear clauses) over F2; it extends the resolution proof system
by incorporating linear algebra over F2. Over the years, several exponential lower
bounds on the size of tree-like Res(⊕) refutations have been established [1–4, 6,
7, 9–11]. However, proving a superpolynomial lower bound on the size of dag-like
Res(⊕) refutations remains a highly challenging open question.

We prove an exponential lower bound for regular Res(⊕). Regular Res(⊕) is a
subsystem of dag-like Res(⊕) that naturally extends regular resolution. This is the
first known superpolynomial lower bound for a fragment of dag-like Res(⊕) which
is exponentially stronger than tree-like Res(⊕). In the regular regime, resolving
linear clauses C1 and C2 on a linear form f is permitted only if, for both i ∈ {1, 2},
the linear form f does not lie within the linear span of all linear forms that were
used in resolution rules during the derivation of Ci.

Namely, we show that the size of any regular Res(⊕) refutation of the binary

pigeonhole principle BPHPn+1
n is at least 2Ω( 3

√
n/ logn). A corollary of our result

is an exponential lower bound on the size of a strongly read-once linear branch-
ing program solving a search problem. This resolves an open question raised by
Gryaznov, Pudlák, and Talebanfard [5].

As a byproduct of our technique, we prove that the size of any tree-like Res(⊕)
refutation of the weak binary pigeonhole principle BPHPm

n is at least 2Ω(n) using
Prover-Delayer games. We also give a direct proof of a width lower bound: we
show that any dag-like Res(⊕) refutation of BPHPm

n contains a linear clause C
with Ω(n) linearly independent equations.
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Some Applications of Sunflowers

Dmitry Sokolov

Sunflowers is an extremely powerful object that is widely used in theoretical com-
puter science. The original notion was defined by Erdős, Rado [2].

Definition 1. (k, ℓ)-sunflower:

• S1, S2, S3, . . . , Sℓ ⊆ {0, 1}n of size k;
• Z :=

⋂
Si;

• ∀i, j Si ∩ Sj = Z.

And recently generalization of it was considered by Rossman [5].

Definition 2. (p, ε)-robust sunflower:

• S1, S2, S3, · · · ⊆ {0, 1}n of size k;
• Z :=

⋂
Si;

• Pr
W∼Up

[∃i,W ⊆ (Si \ Z)] ≥ 1 − ε.

At first viewing, it is not clear why robust sunflowers is the more general notion
of usual sunflowers. However, through applications of sunflowers, one can note
that properties that we typically want from sunflowers are exactly what we see in
the definition of robust version. In this talk, we will try to show it and discuss the
following questions:

• For which problems sunflowers and robust sunflowers are useful?
• What is the spreadness of a set? Is it useful to think about spreadness

instead of sunflowers?
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During this talk, we consider the following applications:

• monotone circuit lower bounds for clique [1, 4];
• lower bounds for Res(k)-proofs of random formulas via sunflowers;
• depth-3 circuit lower bounds via sunflowers (simplification of [3]).
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Hardness Condensation by Restriction

Mika Göös

(joint work with Ilan Newman, Artur Riazanov, Dmitry Sokolov)

Hardness condensation is a lower-bound technique in boolean function complex-
ity, where one transforms an n-variate problem f of complexity k ≪ n into a
related problem f ′ defined over Θ(k) variables such that the complexity is pre-
served at Θ(k). This approach was first introduced by Buresh-Oppenheim and
Santhanam [3] in the context of circuit complexity. Later, it was put to concrete
use in the context of proof complexity by Razborov [9] and then further devel-
oped in [2, 6, 10, 11]. In these works, the function f ′ was obtained from f by
expander-based function composition.

We study hardness condensation by restriction, the simplest operation that
reduces the number of variables. Our work focuses on two computational measures:
query complexity and communication complexity.

Our first result shows that there exists a function with query complexity k
such that any its restriction that leaves O(k) variables free has query complexity
O(k3/4poly(log k)). The function that exhibits this is constructed using cheat
sheets [1].

Randomized communication complexity is generally non-condensable in a very
strong sense: Hambardzumyan, Hatami, and Hatami [7] have shown that there
exists a 2n-by-2n matrix with communication complexity Θ(n0.9) such that all its
2n/2-by-2n/2 submatrices have constant communication complexity.

Our second result shows that condensation is possible for a very important
function: sink-of-xor. This function was used by Chattopadhyay, Mande, and
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Sherif [4] to refute log approximate rank conjecture (LARC): they show that 2(n2)-

by-2(n2) matrix describing sink-of-xor has approximate rank O(n4) and randomized
communication complexity Ω(n). We show that there exists 2O(n)-by-2O(n) sub-
matrix of sink-of-xor that retains communication cost Ω(n). On the other hand,
we show that every submatrix of this size has approximate rank at most O(n3),
achieving the stronger negation of LARC conjectured by Chattopadhyay, Garg,
and Sherif [5].

The main open question that we leave open is whether the deterministic com-
munication complexity can be condensed by restriction. In a concurrent works
Hrubes [8] shows that it can be condensed with a polynomial loss, namely that ev-

ery 2n-by-2n matrix with deterministic communication complexity k has a 2O(
√
k)-

by-2O(
√
k) submatrix of deterministic communication complexity Ω(

√
k). Can we

show that some polynomial loss is necessary?
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Top-Down Lower Bounds for Depth-Four Circuits

Anastasia Sofronova

(joint work with Mika Göös, Artur Riazanov, Dmitry Sokolov)

We present a top-down lower-bound method for depth-4 boolean circuits. In par-
ticular, we give a new proof of the well-known result that the parity function
requires depth-4 circuits of size exponential in n1/3. Our proof is an application
of robust sunflowers and block unpredictability.

The working complexity theorist has three main weapons in their arsenal when
proving lower bounds against small-depth boolean circuits (consisting of ∧, ∨, ¬
gates of unbounded fanin). The most wildly successful ones are the random restric-
tion method [1,7] and the polynomial approximation method [14,19]. The random
restriction method, in particular, is applied bottom-up: it starts by analysing the
bottom-most layer of gates next to input variables and finds a way to simplify the
circuit so as to reduce its depth by one. The third main weapon, which is the
subject of this work, is the top-down method: starting at the top (output) gate
we walk down the circuit in search of a mistake in the computation.

It has been an open problem (posed in [9,12]) to prove exponential lower bounds
for depth-4 circuits by a top-down argument. We develop such a lower-bound
method in this work and use it to prove a lower bound for the parity function.
It has been long known using bottom-up methods that the depth-4 complexity of
n-bit parity is 2Θ(n1/3) [8, 21]. We recover a slightly weaker bound.

Theorem 1. Every depth-4 circuit computing the n-bit parity requires 2n
1/3−o(1)

gates.

Our top-down proof of this theorem is a relatively simple application of two
known techniques: robust sunflowers [2, 13, 15] and unpredictability from partial
information [12, 18, 20], which we generalise to blocks of coordinates (obtaining
essentially best possible parameters).

A major motivation for the further development of top-down methods is that
the method is, in a precise sense, complete for constant-depth circuits, in that
it can be used to prove tight lower bounds (up to polynomial factors) for any
boolean function. The same is not known to hold for the aforementioned bottom-
up techniques. For example, there is currently no known bottom-up proof for the
depth-3 circuit lower bound that underlies the oracle separation AM 6⊆ Σ2P [4,
11, 16]. We suspect more generally that top-down methods could prove useful in
settings where the bottom-up methods have failed so far, such as proving lower
bounds against AC0 ◦ ⊕ circuits computing inner-product [5, 6, 10, 17] or against
the polynomial hierarchy in communication complexity [3].
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The Kikuchi Matrix Method

Pravesh Kothari

A 3-SAT formula is a collection of disjunctive 3-clauses (i.e., OR of 3 literals) on
a given collection of n truth variables. In the well-known 3-SAT problem, we are
given such a 3-SAT formula with m clauses on n variables and our goal is to find an
assignment that satisfies all the constraints (if one exists) and if not, find a short
(i.e., polynomial size in n) witness or certificate of unsatisfiability of the formula.
3-SAT is a well-known (and in many a sense, the first) NP-complete problem. It is
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also a problem that turns out to be hard to approximate. In a more fine-grained
picture, denser instances of 3-SAT (i.e., when m grows super-linearly in n) ap-
pear intuitively easier (more “easily accessible” information about the satisfying
assignment, in the form of additional clauses, if there is one or more “likelihood”
of a short contradiction when there are more clauses) but this ease only amounts
to an asymptotic gain for formulas with ω(n2) constraints. Specifically, we know a

2O(n1−δ) time algorithm to find an assignment that gets within (1− ǫ) factor of the
optimal (along with a certificate of approximate optimality) if the formula has at

least Õ(n2+δ) constraints and a polynomial time algorithm if the formula has at
least O(n3) constraints. Back in the late 1980s, in the context of proof complex-
ity, researchers [5] posed the question of whether random 3-SAT formulas could
be easier than the worst-case. Such formulas are unsatisfiable with high proba-
bility if m ≥ O(n). Indications of comparative easiness of such formulas finally
arrived with the work of Goerdt and Krivilevich [9] and Coja-Oghlan, Goerdt and

Lanka [6] in 2004 who proved that random 3-SAT formulas with Õ(n1.5) clauses
admit efficient refutation algorithms, i.e., polynomial time algorithms that gener-
ate a certificate of unsatisfiability of the given formula. And about a decade later,
Raghavendra, Rao and Schramm [16], building on the work of Allen, O’Donnell

and Witmer [2] proved that there is a 2n
1−δ

time algorithm to find certificates of

unsatisfibility with high probability for formulas with at least Õ(n1.5−δ/2) clauses.
To top this work off, while we lack tools for proving NP-hardness of such average-
case problems, there are lower bounds in various restricted models [15] (e.g., the
sum-of-squares hierarchy of convex relaxations) that show that the running time
vs clause density trade-offs achieved in the above works are nearly tight. Finally,
all the above story extends naturally to k-SAT (and in fact, all constraint satisfac-
tion problems that generalize k-SAT) for any constant k ∈ N with the two relevant

threshold values of m being Õ(nk/2) and Õ(n1+(1−δ)(k/2−1)).
Random k-SAT formulas appear a lot easier than their worst-case counterparts.

But could this ease simply be a quirk of the specific random model? Said differ-
ently, how “robust” are our conclusions (and our algorithms) with respect to the
specific, and rather arbitrary, choice of the random model for the formulas? Such
questions [8] were posed in pioneering works of Blum and Spencer and later Feige
and Kilian in the 1990s for graph problems. In 2007, Feige [7] proposed a semi-
random model to formally tackle this question for k-SAT. Feige’s goal was to pose
a model where an instance is chosen by a combination of random and worst-case
choices. The random choices will hopefully steer clear of the worst-case hard for-
mulas while the worst-case component would, in principle, prevent overfitting to
specific, brittle properties of a specific random model. Formally, he proposed the
smoothed model of j-SAT where a formula is chosen by 1) starting with an ar-
bitrary, worst-case k-SAT formula, and, 2) perturbing each literal pattern (i.e.,
negation pattern on each literal appearing in every clause) independently with
some small constant probability, say, 0.1. If the number of clauses m ≥ O(n) then
such a formula is unsatisfiable with high probability no matter what formula we
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begin with. Feige asked the question of whether such smoothed k-SAT formu-
las admit efficient refutation algorithms and in particular, are they easier than
worst-case and in fact, as easy as random k-SAT formulas?

The algorithms that work for random k-SAT formulas strongly exploit the ran-
domness in the variables appearing in the clauses – an aspect completely lost in the
smoothed model where the only randomness is the random perturbation of worst-
case literal patterns that we begin with. Nevertheless, he managed to find new
combinatorial techniques that, when combined with some spectral methods allow
weak1 refutation algorithms for such smoothed 3-SAT formulas. These ideas, how-
ever, did not yield strong refutation algorithms for 3-SAT and did not generalize
to k-SAT for any k ≥ 4.

In this talk, we presented recent progress and some surprising applications there-
of on Feige’s smoothed model. In a joint work with Abascal and Guruswami [1],

we found strong refutation algorithms for smoothed k-SAT formulas with Õ(nk/2)
clauses based on new combination of combinatorial and spectral methods. These
results were then generalized to obtain the same running time vs clause density

trade-off (i.e., 2n
1−δ

time for formulas with Õ(n1+(1−δ)(k/2−1)) clauses) in a later
joint work with Manohar and Guruswami [10] based on a new tool called Kikuchi
matrices combined with a new regularity decomposition for hypergraphs. Simpler
proof was later found in a joint work with Hsieh and Mohanty [11] and with
Munha-Correia and Sudakov [12].

Somewhat surprisingly, these new algorithms have applications to problems in
combinatorics and coding theory that we also discussed in the talk. The principle
behind these applications is simple if somewhat strange. In principle, the truth
of any mathematical statement can be efficiently encoded into a satisfiability of a
3-SAT formula thus reducing a mathematical problem to understanding whether
the formula produced by the reduction is satisfiable. This abstract idea, however,
is too general to be useful as a tool for actually establishing mathematical results.
In our applications, however, we’d be able to encode the truth of certain kinds
of combinatorial statements as the satisfiability of a family of SAT formulas and
thus, to disprove the truth of such a statement, it is enough to prove that one of
these formulas, say a randomly chosen member, is unsatisfiable. While this may
appear to get us closer to random SAT formulas, the resulting formulas are far from
random. In fact, in a precise sense, they can be described by a number of random
bits that is significantly smaller (in applications nǫ for ǫ ≪ 1 or even poly logn)
than the number of variables that disallows straightforward probabilistic analy-
ses. Nevertheless, it turns out that the analysis of the refutation algorithms for
smoothed formulas above can be adapted with some work to apply to even such
randomness-starved formulas. Notice that we do not need any efficient algorithm

1A weak refutation algorithm certifies unsatisfiability of a 3-SAT formula, as opposed to
a strong refutation algorithm that certifies that the every assignment must violate a constant
fraction of the clauses in the input formula. The results discussed for random 3-SAT above all
yield strong refutation algorithms.
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for proving unsatisfiability of the SAT formula in such an application. The algo-
rithm arises purely as a tool for arguing the unsatisfiability (indeed, we know of
no other proofs, in general, for establishing such a result).

The applications of this technique so far include a new cubic (improving on the
quadratic) lower bounds on the blocklength of a 3-query locally decodable codes [3],
exponential (improving on cubic) lower bounds [13] on the block length of 3-query,
linear, locally correctable codes (with applications to almost resolving the Hamada
conjecture from the theory of algebraic designs for 4-designs), a super-polynomial
lower bound [14] for non-linear 3-query locally correctable codes, the resolution of
Feige’s conjecture [10] on the hypergraph Moore bound, and improved bounds on
three-term arithmetic progressions with random common differences [3, 4]. In the
talk, we focused largely on the lower bounds on the local codes.
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Decoding Codes via Proofs

Madhur Tulsiani

The problem of finding the nearest codeword to a possibly corrupted received
word, can naturally be viewed as an optimization problem. Over the past few
years, approaching this optimization problem via continuous relaxations have led
to new unique decoding and list decoding algorithms for several code families.

This talk discussed a general framework for obtaining such algorithms using re-
laxations based on the Sum-of-Squares (SoS) hierarchy of semidefinite programs.
In particular, this framework is an adaptation of the well-known “proofs to al-
gorithms” paradigm to the setting of codes [1]. If the proof of the fact that all
pairs of codewords have large distance can be expressed in a (positivestellensatz)
proof system corresponding to the SoS hierarchy, then one can use it to obtain
a list decoding algorithm for the corresponding code. This can easily be seen to
be the case for several code families based on expander graphs, where the proofs
of distance rely on spectral properties of these graphs [2, 3]. Using the fact that
spectral bounds can be phrased as SoS inequalities, this yields the first efficient
list-decoding algorithms for several such families of codes.
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Graph Homomorphisms and Polynomials

Grigoriy Blekherman

If we are given a polynomial expression in traces of powers of real symmetric
matrices, such as

3[tr(A2)]2 tr(B4) − 4 tr(A4)[tr(B2)]2,

is there an algorithm to decide whether this expression is nonnegative for all real
symmetric matrices A, B of all sizes? What happens if we replace trace by

normalized trace t̃r(A) = tr(A)
n , where n is the size of the matrix?

The first (unnormalized) problem is undecidable, while the second one is de-
cidable. The key to the hardness of the unnormalized problem is the beautiful
geometry of the image of the probability simplex under the Vandermonde map.

For any n × n matrix A recall that tr(Ad) = λd
1 + · · · + λd

n, where λi are the
eigenvalues of A. Let pd to denote the d-th power sum polynomial: pd(x) =
xd
1 + · · ·+xd

n. Testing whether 3[tr(A2)]2 tr(B4)− 4 tr(A4)[tr(B2)]2 is nonnegative
on all real symmetric matrices of all sizes is equivalent to understanding whether
3p22(x)p4(y)− 4p4(x)p22(y) is nonnegative on all real vectors x and y of any dimen-
sion. Define the d-th Vandermonde map νn,d by sending a point in Rn to its image
under the first d power sums:

νn,d(x) = (p1(x), . . . , pd(x)).

Let ∆n−1 be the probability simplex in R
n: ∆n−1 consists of all vectors with non-

negative coordinates with the sum of coordinates equal to 1. The image νn,d(∆n−1)
is called the the (n, d)-Vandermonde cell and is denoted by Πn,d. Observe that
the first coordinate of Πn,d is identically 1, and so we may project it out, and see
Πn,d as the subset of Rd−1, which is the image of ∆n−1 under (p2, . . . , pd).

Since all of our exponents are even, and the polynomial 3p22(x)p4(y)−4p4(x)p22(y)
is bi-homogeneous in x and y, it follows that deciding nonnegativityof 3p22(x)p4(y)−
4p4(x)p22(y) for all x, y ∈ Rn is equivalent to deciding nonnegativity 3b− 4a on the

product Πn,2 × Πn,2 via the substituion a = p4(x)
p2
2(x)

, b = p4(y)
p2
2(y)

.

By considering only even exponents, and only multihomogeneous polynomials,

we can by taking ratios of the form p2k(x)

pk
2 (x)

reduce the problem to understanding

the geometry of the Vandermonde cell Πn,d. The image of Πn,3 looks as follows:

Figure 1. The sets Πn,3 for n = 3, 4, 5
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The Vandermonde cell Πn,3 has n special points of the form (1/k, 1/k2) for
k = 1, . . . , n. The lower boundary of the image consists of concave curves joining
the special points (1/k, 1/k2). As n goes to infinity we get infinitely many isolated
points on the curve y = x2. The upper boundary of the limit cell Π∞,3 is given
by the curve y2 = x3 for 0 ≤ x ≤ 1.

Once we have several matrix variables, we will get one copy of Πn,3 for ev-
ery matrix variable, and so we will want to test nonnegativity of polynomials on
products Πn,3 × Πn,3 × · · · × Πn,3. This allows us to prove undecidability using
the existing reduction of Hatami and Norin [4], who applied it in the context of
proving undecidability of inequalities in graph homomorphism densities. The de-
tails are provided in [1], and we describe a connection between geometry of the
Vandermonde map and graph homomorphism density inequalities.

Given two simple graphs G,H a homomorphism ϕ : G → H is a map from the
vertex set V (G) of G to the vertex set V (H) of H such that ϕ preserves adjacency
of vertices. The homomorphism density t(H,G) is defined by

t(H,G) =
#homomorphismsG → H

total # of mapsV (G) → V (H)
.

One can ask for complexity of deciding whether a polynomial expression in
t(Gi, H) is nonnegative for all target graphs H , and it was shown by Hatami and
Norin that this problem is undecidable [4]. We now describe an alternative proof
of this result using the geometry of the Vandermonde map.

For a graph H let AH denote the adjacency matrix of H . It is well known that
for an even cycle C2k we have

t(C2k, H) =
trA2k

H

|V (H)|2k .

Therefore we have

t(C6, H)

t(C2, H)3
=

trA6
H

(trA2
H)3

, and
t(C4, H)

t(C2, H)2
=

trA4
H

(trA2
H)2

.

If we do not restrict to adjacency matrices of graphs, then we are simply looking
at the Vandermonde cell Πn,3. However, one can show that as we go over all graphs
H with any number of vertices, we actually get the full Vadermonde cell Πn,3 [2].

However, for undecidability we need a product of independent copies of Πn,3.
We can obtain these independent copies by considering necklace graphs. The even
cycles are 2k copies of complete graph K2 glued together in a circular fashion.
One can similarly take 2k copies of the triangle K3 and glue them together in
circular fashion, producing a necklace graph on 4k vertices. One can show that
using necklace graphs for larger complete graphs Km we can obtain independent
copies of Πn,3 and use the same undecidability reduction [3] [2].
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On the Algebraic Proof Complexity of Tensor Isomorphism

Nicola Galesi

(joint work with Joshua A. Grochow, Toniann Pitassi, Adrian She)

The Tensor Isomorphism problem (TI) has recently emerged as having connec-
tions to multiple areas of research within complexity and beyond, but the current
best upper bound is essentially the brute force algorithm. Being an algebraic prob-
lem, TI (or rather, proving that two tensors are non-isomorphic) lends itself very
naturally to algebraic and semi-algebraic proof systems, such as the Polynomial
Calculus (PC) and Sum of Squares (SoS). For its combinatorial cousin Graph

Isomorphism, essentially optimal lower bounds are known for approaches based
on PC and SoS [1]. Our main results are an Ω(n) lower bound on PC degree or
SoS degree for Tensor Isomorphism, and a nontrivial upper bound for testing
isomorphism of tensors of bounded rank.

We also show that PC cannot perform basic linear algebra in sub-linear degree,
such as comparing the rank of two matrices (which is essentially the same as 2-TI),
or deriving BA = I from AB = I. As linear algebra is a key tool for understanding
tensors, we introduce a strictly stronger proof system, PC+Inv, which allows as
derivation rules all substitution instances of the implication AB = I → BA = I.
We conjecture that even PC+Inv cannot solve TI in polynomial time either, but
leave open getting lower bounds on PC+Inv for any system of equations, let alone
those for TI. We also highlight many other open questions about proof complexity
approaches to TI.
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Announcing Tropical Proof Systems

Edward A. Hirsch

(joint work with Yaroslav Alekseev, Dima Grigoriev)

Tropical (min-plus) arithmetic has many applications in various areas of mathe-
matics. The operations are the real addition (as the tropical multiplication) and
the minimum (as the tropical addition). Recently, [1,4,6] demonstrated a version
of Nullstellensatz in the tropical setting.

In this talk we introduce “tropical proof systems”: (semi)algebraic proof sys-
tems that use min-plus arithmetic. This allows us to view some known proof sys-
tems from a different angle. In particular, we provide a static Nullstellensatz-based
tropical proof system MP-NS that (equipped with dual Boolean variables) polyno-
mially simulates daglike resolution and also has short proofs for the propositional
pigeon-hole principle. Its dynamic version strengthened by an additional deriva-
tion rule (a tropical analogue of resolution by linear inequality) is equivalent to
the system Res(LP) [5], which derives nonnegative linear combinations of linear in-
equalities; this latter system is known to polynomially simulate Kraj́ıček’sRes(CP)
[7] with unary coefficients. No exponential lower bounds are known for this sys-
tem; there are recent results [2, 3] for a treelike version only. For the truth values
encoded by {0,∞}, dynamic tropical proofs are equivalent to Res(∞), which is a
small-depth Frege system called also DNF resolution.

Therefore, tropical proof systems give a finer hierarchy of proof systems below
Res(LP) for which we still do not have exponential lower bounds. For the weakest
of them, MP-NS mentioned above, we can prove an exponential lower bound for a
non-CNF (and very simple) system of inequalities (it expresses that a large trop-
ical power of a Boolean variable equals a non-Boolean constant). The method of
proving the bound is also simple enough: we construct a directed graph on mono-
mials occurring in a tropical algebraic combination and analyze the coefficients of
the algebraic combination this way. Therefore, we hope for new superpolynomial
lower bounds for tropical proof systems of intermediate power.

The new notion of a tropical proof system leaves multiple open questions and
directions for further research.
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Meta-Mathematics of Complexity Theory

Igor C. Oliveira

Despite significant efforts from computer scientists and mathematicians, the P vs.
NP problem and other fundamental questions about the complexity of computa-
tions seem to remain out of reach for existing techniques. The difficulty of making
progress on such problems has motivated a number of researchers to investigate the
logical foundations of computational complexity. Over the last few decades, sev-
eral works at the intersection of logic and complexity theory showed that certain
fragments of Peano Arithmetic collectively known as Bounded Arithmetic (see,
e.g., [6, 7]) can formalize a large fraction of results from algorithms and complex-
ity (e.g., the PCP Theorem [11] and complexity lower bounds against restricted
classes of Boolean circuits [10]). It is natural to consider if the same theories can
settle longstanding problems about the inherent difficulty of computations.

In the first part of this talk, we survey a few recent results [1–4, 8, 9, 12] on the
unprovability of statements of interest to complexity theory in theories of Bounded
Arithmetic and highlight some open problems. In the second part of the talk, we
will cover new results on the reverse mathematics of complexity lower bounds [5],
a research direction which seeks to determine which axioms are necessary to prove
certain results. We explore reversals in the setting of bounded arithmetic, with
Cook’s theory PV1 as the base theory, and show that several natural lower bound
statements about communication complexity, error correcting codes, and Turing
machines are equivalent to widely investigated combinatorial principles such as
the weak pigeonhole principle for polynomial-time functions and its variants. As
a consequence, complexity lower bounds can be formally seen as fundamental
mathematical axioms with far-reaching implications. Time permitting, we will
also present several implications of these results:

• Under a plausible cryptographic assumption, the classical single-tape Tur-
ing machine Ω(n2)-time lower bound for Palindrome is unprovable in
Jerábek’s theory APC1.

• While APC1 proves one-way communication lower bounds for Set Disjoint-
ness, it does not prove one-way communication lower bounds for Equality,
under a plausible cryptographic assumption.

• An amplification phenomenon connected to the (un)provability of some
lower bounds, under which a quantitatively weak n1+ε lower bound is
provable if and only if a stronger (and often tight) nc lower bound is
provable.
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• Feasibly definable randomized algorithms can be feasibly defined deter-
ministically (APC1 is ∀Σb

1-conservative over PV1) if and only if one-way
communication complexity lower bound for Set Disjointness are provable
in PV1.
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On the Theory of Exponential Integer Parts

Emil Jeřábek

An integer part (IP) of an ordered ring R is a discretely ordered subring I ⊆ R
such that every x ∈ R is within distance 1 from I. (By abuse of language, we will
conflate a discretely ordered ring I with the ordered semiring I≥0.) A classical
result of Shepherdson [6] characterizes models of IOpen (= Robinson’s arithmetic
+ induction for open formulas in the language LOR = 〈0, 1,+, ·, <〉):
Theorem 1. Integer parts of real-closed fields are exactly the models of IOpen.

Let an exponential field be an ordered field R endowed with an isomorphism
exp: 〈R, 0, 1,+, <〉 → 〈R>0, 1, 2, ·, <〉, optionally satisfying the growth axiom (GA)
exp(x) > x. Introduced by Ressayre [5], an exponential integer part (EIP) of an
exponential ordered field 〈R, exp〉 is an IP I ⊆ R such that I≥0 is closed under exp.
We are interested in the question of characterizing (non-negative parts of) ordered
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rings that are EIP of real-closed exponential fields (RCEF), and in particular,
what is the first-order theory of such rings. This problem (and in particular, the
question whether this theory properly extends IOpen) was raised by Jeřábek [2],
who provided an upper bound: all countable models of the bounded arithmetical
theory VTC0 in LOR are EIP of RCEF.

Extensions of Theorem 1 to exponential ordered fields were previously studied
by Boughattas and Ressayre [1] and Kovalyov [4], but they focused on generaliz-
ing the other direction of the theorem (e.g., what additional properties of RCEF
ensure that their EIP are models of open induction in a language with exponen-
tiation?). Moreover, they were mostly concerned with EIP in a language with
the binary powering operation xy = exp(y log x). Since 〈I,+, ·, <, xy〉 can define
approximations of exp on its fraction field F , we can canonically extend exp to the
completion of F ; but no such direct construction seems possible for EIP in LOR

or LOR ∪ {2x}, hence our arguments will be of different nature.
The main goal of this talk is to present complete axiomatizations of the first-

order theories of EIP of RCEF in LOR∪{2x}, LOR∪{P2} (where P2 is a predicate
for the image of 2x), and LOR, denoted TEIP2x , TEIPP2 , and TEIP, and to deter-
mine some basic properties of these theories.

The theories TEIP2x and TEIPP2 are axiomatized over IOpen by a finite list
of a few obvious axioms. The theory TEIP is more involved: it has an infinite
schema of axioms PWin0

n expressing, for each n ∈ N, that the second player has a
winning strategy in the power-of-two game PowGn. This game is played between
two players, Challenger (C) and Powerator (P), in n rounds: in round 0 ≤ i < n,
C picks xi > 0, and P responds with ui > 0 such that ui ≤ xi < 2ui. C wins if
uiuj < uh < 2uiuj for some h, i, j < n, otherwise P wins. The motivation for the
game is that if 〈M, P2〉 � TEIPP2 , then “play ui ∈ P2” is a winning strategy for P.

Using the existence of a nonstandard model of IOpen that is a UFD (Smith [7]),
we can show that TEIP properly extends IOpen.

The main problem about basic properties of TEIP is whether it is finitely axiom-
atizable over IOpen. As a partial progress, we show that the formulas PWin1

n(u),
n ∈ N, form a strictly increasing hierarchy over Th(N), where PWin1

n(u) expresses
that P wins the game PowG1

n(u) defined like PowGn, but with the first move of
P fixed as u. To this end, we prove reasonably tight upper and lower bounds
on the complexity measure c(u) = min{n : C wins PowG1

n+1(u)}, showing that

{c(u) : u not a power of 2} = N>0. For example, k + 1 ≤ c
(
62

2k !) ≤ k + 4.
These bounds also imply that there are models 〈M, P2〉 � Th(N) +TEIPP2 such

that P2 is incomparable with the set of “oddless numbers” (i.e., whose all nontrivial
divisors are even); indeed, u ∈ P2 may even be divisible by 3.

This talk is based on [3]. The work was supported by the Czech Academy of
Sciences (RVO 67985840) and GA ČR project 23-04825S.
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Quantified Propositional Calculi and Narrow Implicit Proofs

Pavel Pudlák

Quantified Propositional Calculus G. This is the sequent calculus that uses
quantified propositions and all rules, including quantifier rules [2]. We have to
specify how the quantifier rules are used because in propositional calculus there
are no terms. In this paper we will use quantifier-free formulas in place of terms
in LK in the quantifier rules.

Fragments Gi of G. The classes Σq
i ,Π

q
i of quantified propositional formulas are

defined in the usual way. For i ≥ 1, Gi denotes the Σq
i fragment of G, which is G

restricted to formulas of Σq
i .

Implicit proofs and narrow implicit proofs. Jan Kraj́ıček [1] defined an oper-
ation that from two proof systems P and Q produces another proof system, which
he denoted by [P,Q]. The proof system [P,Q] can be roughly described as follows.
A proof of φ in [P,Q] is a pair (Π, C), where C is a Boolean circuit that succinctly
defines a possibly exponential size Q-proof of φ, and Π is a P -proof of a formula
that expresses this fact. In the special case when P = Q, Kraj́ıček calls such a
proof system implicit P and denotes it by iP . For natural proof systems P , this
operation seems to produce from P an essentially stronger proof system iP .

Kraj́ıček also defined a restricted version of [P,Q] and denoted it by [P,Q]m;
we will call it the narrow implicit proof system defined by P,Q. Unlike the general
concept of implicit proofs, narrow implicit proof systems are only defined when
the proof system Q is based on formulas.

Definition 1. Let P be an arbitrary proof system and Q a formula based proof
system with a class of formulas F and a set of deduction rules R1, . . . , Rl. A proof
of a formula φ in [P,Q]m (the narrow implicit proof system defined by P,Q) is
a pair (Π, C) where C is a circuit computing a Boolean function fC : {0, 1}n →
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{0, 1}m and Π is a P -proof of the formula γC,φ which says that fC correctly encodes
a Q-proof of φ. In more detail, γC,φ should express the following condition:

• For an i ∈ {0, 1}n, C(i), the bit-string that C outputs, encodes a string
consisting of a formula and k + 1 numbers (φi; i1, . . . , ik; j) such that
i1, . . . , ik < i and φi follows from φi1 , . . . , φik using rule Rj;

where we view strings in {0, 1}n as numbers in the interval [0, 2n − 1]; for formal-
izing C in the propositional calculus, we use variables for every vertex of C and
clauses expressing that the values correspond to the gates at the vertices.

We denote by Res the resolution proof system.

Theorem 1. [Res,Gi]
m is polynomially equivalent to Gi+1 for i ≥ 1, i.e., the two

proof systems polynomially simulate each other.

The existence of the simulation of [Res,Gi]
m by Gi+1 is proved by proving

soundness of [Res,Gi]
m in T i

2. It is well-known that provability of the soundness
of a proof system P in T i

2 implies the existence of a polynomial simulation of P
by Gi, see [2].

The opposite simulation is based on cut-elimination. Given a proof Π in Gi+1,
we eliminate all cuts with Σq

i+1 formulas. Thus the resulting proof Π′ is a proof in
Gi. The proof has exponential size, if one uses substitutions instead of repeating
parts of Π, and can be succinctly defined by a polynomial size circuit. To make
an implicit proof from Π′, one has to solve a number of technical problems.
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[1] J. Kraj́ıček: Implicit proofs, J. of Symbolic Logic, 69(2), (2004), pp.387-397.
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Compressing CFI Graphs and Lower Bounds for the
Weisfeiler–Leman Refinements

Martin Grohe

(joint work with Moritz Lichter, Daniel Neuen, and Pascal Schweitzer)

The k-dimensional Weisfeiler-Leman (k-WL) algorithm is a simple combinatorial
algorithm that was originally designed as a graph isomorphism heuristic. It nat-
urally finds applications in Babai’s quasipolynomial-time isomorphism algorithm,
practical isomorphism solvers, and algebraic graph theory. However, it also has
surprising connections to other areas such as logic, combinatorial optimization,
machine learning, and proof complexity.

The algorithm iteratively computes a coloring of the k-tuples of vertices of a
graph. Since Fürer’s linear lower bound [1], it has been an open question whether
there is a super-linear lower bound for the iteration number for k-WL on graphs.
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We answer this question affirmatively, establishing an Ω(nk/2)-lower bound for all
k.
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Supercritical and Robust Trade-offs for Resolution Depth Versus
Width and Weisfeiler–Leman

Shuo Pang

(joint work with Duri Janett, Jakob Nordström)

We study trade-offs in proof complexity and Weisfeiler–Leman algorithms. In a
trade-off between a pair of complexity measures, if the first measure is constrained
to be small, then usually, the lower bound on the second measure stays below the
trivial worst-case upper bound. By contrast, in a so-called supercritical trade-
off, the lower bound on the second measure is larger than its worst-case upper
bound (see e.g. [1, 3–6, 8]). We present the first resolution width-depth trade-off
which is supercritical not only measured in variable size but also in formula size,
and which has non-trivial robustness. More specifically, we prove that low width
implies depth superlinear in the formula size, where the width is allowed to go up
to twice the minimum.

We give analogous trade-offs for the Weisfeiler–Leman algorithm, a fundamental
tool in graph isomorphism testing. Namely, for all k ≥ 2 and c ≤ k−2, if N is large
enough, we show that there are vertex-size N graph pairs that are distinguishable
by k-dimensional Weisfeiler–Leman, but even with dimension k + c the algorithm
nonetheless requires Ω(Nk/(c+2)) many iterations. This improves the result in [7]
which was proved in the case c = 0, solving an open problem there asking for
lower bounds that hold for dimensions larger than the minimum. The result also
translates into trade-offs between number of variables and quantifier depth in first-
order logic.

Both results follow from lower bounds on a combinatorial game, closely linked
to Tseitin formulas and Cai-Fürer-Immerman graphs. The game is the compressed
Cop-Robber game introduced by [7]. It is a variant of the classical Cop-Robber
game on a graph, where in addition a vertex-identification and edge-identification is
posed, called a “compression”. From a proof-complexity perspective, the compres-
sion induces a structured variable substitution under which the (Tseitin) formula
size shrinks, a feature that is not possessed by the popular variable substitution
based on XOR gadgets and expander graphs.

Our main technical contribution is a new compression scheme of the game and
its analysis. Namely, for each c ∈ {1, . . . , k− 1} we give a compressed game where
k + 1 Cops can win, but the Robber can survive Ω(nk/(c+1)) rounds even against
k + c Cops.
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Proof Complexity and QBF

Meena Mahajan

This talk gave a short overview of proof complexity for Quantified Boolean For-
mulas (QBFs).

While traditionally the complexity of propositional proofs has been at the centre
of research, the past two decades have witnessed a surge in proof complexity of
QBFs. Some of the main paradigms used to extend propositional proof systems
to QBFs include expansion, universal reduction, literal merging, and incremental
strategy construction. (In particular, applying these paradigms gives multiple
QBF proof systems based on resolution alone.) Soundness is often demonstrated
by proving that from proofs in these systems, Herbrand functions (equivalently,
winning strategies for the universal player in the two-player evaluation game) can
be extracted.

There are not too many techniques for proving lower bounds in QBF proof
systems. In most systems, propositional hardness transfers directly. But this is
not the “genuine” QBF hardness we seek to understand, the hardness that would
persist in a QBF solver even given access to, say, a SAT oracle. The principal
technique for understanding such hardness is transferring computational hardness.
Proofs contain, even if implicitly, information about winning strategies. Identifying
the right computational model in which such extracted strategies can be computed
enables the required transfer.
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The most successful practical SAT solvers are based on the CDCL (Conflict-
Driven Clause Learning) template, which is known to be equivalent to Resolution.
In the QBF world, not only is there no unique analogue of Resolution, there is also
no unique way of extending the algorithm template to Quantified QCDCL. Recent
work has formalised proof systems underlying QCDCL-style algorithms and has
also proposed more generalised proof systems, providing some analagues of the
CDCL=Resolution equivalence.

An overview of QBF proof complexity can be found in [1], and of relations
between QBF solving and proof complexity in [2].
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Dependency Schemes in CDCL-Based QBF Solving: A Proof
Theoretic Study

Abhimanyu Choudhury

(joint work with Meena Mahajan)

With the success of propositional SAT solvers, there are many ambitious attempts
now to tackle more expressive/succinct formalisms. In particular, for the PSPACE-
complete problem of deciding the truth of Quantified Boolean Formulas (QBF),
there are now many solvers, as well as a rich (and still growing) theory about the
underlying formal proof systems. Designing solvers for QBFs is a useful enterprise
because many industrial applications seem to lend themselves more naturally to
expressions involving both existential and universal quantifiers; see for instance
[1,2]. The proof system Resolution can be lifted to the QBF setting in many ways.
The “CDCL way” is to add a universal reduction rule, giving rise to the system Q-Res
and the more general QU-Res. Allowing contradictory literals to be merged under
certain conditions gives rise to the system long-distance Q-Resolution LDQ-Res.
Another “CDCL” way is to lift the CDCL algorithm itself to a QCDCL algorithm:
decide values of variables, usually respecting the order of quantified alternation,
propagate unit constraints, interpreting unit modulo universal reductions, repeat
until a conflict is reached, learn a new clause, backtrack and continue. For false
formulas, the learning process yields a long-distance Q-resolution refutation. In [3],
a formal proof system QCDCL was abstracted out of the QCDCL algorithm.

A heuristic that has been found to be useful in many QBF solvers, and has
been formalised in proof systems, is to eliminate easily-detectable spurious depen-
dencies. In a prenex QBF, a variable ”depends” on the variables preceding it in
the quantifier prefix; where ”depends” means that a Herbrand/Skolem function
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for the variable is a function of the preceding variables. However, a Herbrand-
function or countermodel may not really need to know the values of all preceding
variables. A dependency scheme filters out as many of such unnecessary depen-
dencies as it can detect, producing what is in effect a Dependency QBF, DQBF.
Although DQBF is a significantly richer formalism that is known to be NEXP-
complete (see [4, 5]), these heuristics are not aiming to solve DQBFs in general.
Rather, they algorithmically detect spurious dependencies and disregard them as
the algorithm proceeds.

Now, the universal reduction rule in the proof systems (say in Q-Res, LDQ-Res)
can be applied in more settings because there are fewer dependencies, and this
can shorten refutations significantly. See for instance [6–8]. Note that the use of
a dependency scheme must be proven to be sound and complete, and this in itself
is often quite involved. The notion of a dependency scheme being “normal” was
introduced in [8], where it is shown that adding any normal dependency scheme
to LDQ-Res preserves soundness and completeness.

We examine how the usage of a dependency scheme can affect proof systems
underlying the QCDCL algorithm. Specifically, we focus on the proof system
QCDCL , underlying most QCDCL-based solvers, and on the dependency scheme
Drrs which has been studied in the context of Q-Res and LDQ-Res, see [6–8]. We
note that the proof system QCDCL can be made aware of dependency schemes
in more than one way. We identify two natural ways: (1) use a dependency
scheme D to preprocess the formula, performing reductions in the initial clauses
whenever permitted by the scheme, and (2) use a dependency scheme D in the
QCDCL algorithm itself, in enabling unit propagations and in learning clauses.
Denoting the first way as D + QCDCL and the second as QCDCL(D), and noting that
we could even use different dependency schemes in both these ways, we obtain the
system D1 + QCDCL(D2). When D1 and D2 are both the trivial dependency scheme
mathttDtrv inherited from the linear order of the quantifier prefix, this system is
exactly QCDCL.

Our contributions are as follows:

(1) We formalise the proof system D′ + QCDCL(D) for dependency schemes D, D′,
and note that whenever D′, D are normal schemes, D′ + QCDCL(D) is sound
and complete .

(2) For D, D′ ∈ {Dtrv, Drrs}, we study the four systems D′ + QCDCL(D). As ob-
served above, one of them is QCDCL itself, while the others are new systems.
We compare these systems with each other and show that they are all pair-
wise incomparable We also show that each of them is incomparable with
each of the systems QCDCLLEV−ORD

NO−RED Q-Res, Q(Drrs)Res and QU-Res.

In other words, making QCDCL algorithms dependency-aware is a “mixed bag”:
in some situations this shortens runs while in others it is disadvantageous.
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Polynomial Calculus for Quantified Boolean Logic: Circuit
Characterisation and Lower Bounds

Kaspar Kasche

(joint work with Olaf Beyersdorff, Luc Nicolas Spachmann)

We research the extension of the proof system PC (Polynomial Calculus) from
propositional logic to Quantified Boolean Formulas. This extension is called Q-PC
and is defined by a general construction in [2].

Our first result is a tight circuit characterisation of Q-PC proof size by circuit
size in an appropriate circuit model. The circuit model in question is a general-
isation of decision lists [7], which are lists of simple statements of the form: If

(condition on existential variables) Then (assignment to universal variables). The
decision lists – termed PDLs here for polynomial decision l ists – have polynomial
equations in existential variables as conditions and compute a complete assignment
to the universal variables. Semantically, a PDL for a quantified set of polynomial
equations Φ computes a countermodel for Φ in the two-player game semantics of
QBFs.

We show that the minimal proof size for Φ (of bounded quantifier complexity)
in Q-PC is polynomially equivalent to the minimal size of a PDL for Φ. In fact,
we show a more general result that applies to a whole class of QBF proof systems
with bounded capacity [6] (and fulfilling some closure properties). The result is
parameterised by the lines of the proof system, which in turn correspond to the
conditions in the decision lists. This generalises a result for Q-Resolution [4] and
lifts it to Q-PC.
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Having the PDL characterisation in place, we can obtain a size-degree result,
relating minimal proof size in Q-PC to the minimal degree of polynomials in the
refutation. This is similar in spirit to the size-degree method known for propo-
sitional PC [5], albeit the actual relation is different and includes the quantifier
depth of the QBF. Technically, the result is shown via the degree-preserving trans-
fer from Q-PC to PDLs and back explained above, together with an additional
size-degree relation that we show for PDLs. The technique is similar to a prior
size-width result for Q-Resolution [4].

Having both the PDL characterisation and size-degree relation at hand opens
the door to new lower bounds for degree and size in Q-PC. Specifically, we show
that the parity and more generally the modulo k functions modk

n on n variables as
well as the majority function majn all require high-degree PDLs over all subfields
of C. Using a general construction from [1,2] we can turn any Boolean function f
into a QBF Q-f that has f as its only countermodel. Together with our results
above this implies that the Q-modk

n and Q-majn QBFs require both linear degree
and exponential monomial size in Q-PC.

In addition to using the size-degree method to prove lower bounds for PDLs
and hence for Q-PC proofs, we show that for finite fields of characteristic p, PDLs
can be efficiently transformed into AC0[p] circuits. This allows to directly transfer
circuit lower bounds of [3] into Q-PC proof lower bounds. As a result, either if F
and G are both finite fields of different characteristics, or if F is finite and G is a
subfield of C, then the systems Q-PC over F and G are incomparable.

References

[1] Beyersdorff, O., Chew, L. & Janota, M. New Resolution-Based QBF Calculi and Their Proof
Complexity. (2019)

[2] Beyersdorff, O., Bonacina, I., Chew, L. & Pich, J. Frege Systems for Quantified Boolean
Logic. J. ACM. 67, 9:1-9:36 (2020)

[3] Smolensky, R. Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity. (STOC). pp. 77-82 (1987)

[4] Beyersdorff, O., Blinkhorn, J., Mahajan, M. & Peitl, T. Hardness Characterisations and
Size-width Lower Bounds for QBF Resolution. ACM Trans. Comput. Log.. 24, 10:1-10:30
(2023)

[5] Impagliazzo, R., Pudlák, P. & Sgall, J. Lower Bounds for the Polynomial Calculus and the
Gröbner Basis Algorithm. Comput. Complex.. 8, 127-144 (1999)

[6] Beyersdorff, O., Blinkhorn, J. & Hinde, L. Size, Cost, and Capacity: A Semantic Technique
for Hard Random QBFs. Logical Methods In Computer Science. 15 (2019)

[7] Rivest, R. Learning Decision Lists. Machine Learning. 2, 229-246 (1987)

Proof Systems for MaxSAT

Ilario Bonacina

(joint work with Maria Luisa Bonet and Jordi Levy)

MaxSAT is the problem of finding an assignment satisfying the maximum number
of clauses in a CNF formula. Proof systems for MaxSAT are formal systems that
can be used to certify the optimum value of a MaxSAT instance. The interest
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in studying them arises naturally from practical concerns related to SAT- and
MaxSAT-solvers, although some of the systems for MaxSAT are also studied for
theoretical motivations, for instance due to connections with TFNP classes, see for
instance [6]. One relevant proof system for MaxSAT is MaxSAT-Resolution [1, 7]
which proves a lower bound s on the minimum number of falsified clauses in a set
of clauses F in the following way: The proof is a sequence of multisets of clauses
Γ0, . . . ,Γℓ such that (1) Γ0 = F , (2) Γℓ contains at least s copies of the empty
clause ⊥, and (3) Γi+1 is obtained from Γi one of the following two substitution
rules:

C ∨ x C ∨ ¬x
C

C

C ∨ x C ∨ ¬x ,

where C are clauses and x is a variable. The clauses in a MaxSAT-Resolution
proof can be thought as being weighted clauses with weight 1.

In this talk we survey some of the consequences of considering the natural
generalization of MaxSAT-Resolution to weighted clauses using weights in {±1},
or natural/integer weights encoded in binary. When negative weights are allowed
the soundness of the systems is not automatically enforced and extra conditions
on Γℓ are needed. Varying those extra conditions and the weights allowed in
the proofs, we have systems of different strength. For instance, (semi-)algebraic
static proof systems such as Nullstellensatz (over Z) and Sherali-Adams can be
described naturally in this language [3,5]. This can be used, for instance, to show
how natural combinatorial principles capture the strength of Nullstellensatz (over
Z) and Sherali-Adams, with unary and binary coefficients [4].

In [2] we showed a similar approach to construct proof systems for MaxSAT
based not on weighted clauses but on weighted polynomials. Starting from Poly-
nomial Calculus over a finite field we showed how to adapt its inference rules to
have a sound and complete system for MaxSAT. As in the case of weighted clauses,
restricting the weights allowed also restricts the strength of the resulting MaxSAT
system. In presence of integer weights, Polynomial Calculus for MaxSAT gives
a natural proof system strictly stronger than Sherali-Adams while allowing the
modular reasoning enabled by extending Polynomial Calculus over Fq.

References
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Certifying Combinatorial Solving Using Cutting Planes with
Strengthening Rules

Jakob Nordström

Combinatorial optimization is the use of mathematical techniques to solve prob-
lems where, loosely speaking, solutions have to be constructed by combining ob-
jects in suitable ways, but where these objects cannot be subdivided (i.e., they
are discrete). This leads to a combinatorial explosion in the number of cases that
need to be considered, and in theory many combinatorial problems are known to
be computationally very challenging (typically NP-hard or hard for even stronger
complexity classes).

On the applied side, however, the last couple of decades has witnessed a rev-
olution in combinatorial optimization algorithms in paradigms such as Boolean
satisfiability (SAT) solving and optimization, constraint programming, and mixed
integer linear programming, with modern so-called combinatorial solvers being
used routinely to solve large-scale real-world problems. There is currently a very
limited understanding of why these algorithms are so much more successful than
theory would predict, and this is becoming more and more of an obstacle to further
progress. Another critical concern is that modern solvers struggle with correct-
ness. It is well documented in the literature that state-of-the-art solvers, both in
academia and industry, sometimes erroneously claim optimality, or return “solu-
tions” that do not satisfy the constraints in the input, or even claim simultaneously
a solution and a bound ruling out this very solution. This can be fatal for appli-
cations where correctness is a non-negotiable demand.

The purpose of this presentation was to describe how proof complexity can be
leveraged to design certifying solvers, which output not only an answer but also a
machine-verifiable proof that this answer is correct—this process is also known as
proof logging. With such a certifying combinatorial solver, the workflow becomes
as follows (see also Figure 1):

(1) Run the solver on a problem to obtain not only a result, but also a proof.
(2) Feed the problem, result, and proof to a special computer program, called

a proof checker.
(3) Accept the result if the proof checker says that the proof is valid.

Importantly, such a proof should be possible to produce with minimal overhead
by the solver, which means that the proof system used has to be very expressive.
At the same time, one would want the proof to be based on very simple rules,
so that it is obvious how to verify mechanically that it is correct. Also, reading
and understanding the proof should not require knowing the inner workings of the
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Figure 1. Schematic workflow for solver with proof logging.

solver or trusting that it has been implemented correctly, but should be possible
with a fully independent, stand-alone proof checker.

Asking for all of this is quite a tall order, and it is far from clear a priori whether
one should expect this to be possible in practice. Quite surprisingly, it turns
out that the cutting planes proof system [4], if suitably extended with so-called
strengthening rules, seems to hit a sweet spot between simplicity and expressivity,
making it a convenient proof system for a wide range of applications. A proof
checker for this proof system has been implemented in the tool VeriPB [18].
To date, VeriPB has been used to develop certifying versions of state-of-the-art
solvers and techniques in

• Boolean satisfiability (SAT) solving (including advanced techniques such
as Gaussian elimination [12] and symmetry breaking [3]);

• SAT-based optimization (MaxSAT solving) [1,2,17] including preprocess-
ing [14];

• SAT-based pseudo-Boolean solving [11];
• subgraph solving (maximum clique, subgraph isomorphism, and maximum

common connected subgraph) [7–9];
• dynamic programming and decision diagrams [5];
• presolving in 0–1 integer linear programming [13]; and
• constraint programming [6, 10, 15, 16].

The proof system underlying VeriPB has been developed in a sequence of joint
works with Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen,
Andy Oertel, and Yong Kiam Tan.
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Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the
Pigeonhole Principle

Aaron Potechin

(joint work with Aaron Zhang)

Given a system {pi = 0 : i ∈ [m]} of m polynomial equations, a Nullstellensatz
proof of infeasibility is an equality of the form 1 =

∑m
i=1 piqi for some polynomials

{qi = 0 : i ∈ [m]}. Hilbert’s Nullstellensatz1 says that the Nullstellensatz proof
system is complete, i.e., a system of polynomial equations has no solutions over an
algebraically closed field if and only if there is a Nullstellensatz proof of infeasibil-
ity. However, Hilbert’s Nullstellensatz does not give any bounds on how large a
Nullsellensatz proof must be in order to refute an infeasible system of polynomial
equations.

Previously, most research on Nullstellensatz has analyzed the size and degree
of Nullstellenstaz proofs. In this work, instead of investigating the size or degree
of Nullstellensatz proofs, we investigate the total coefficient size of Nullstellensatz
proofs, i.e., the sum of the magnitudes of the coefficients of the monomials in
the proof. Our main reason for this is that total coefficient size is a reasonably
natural measure which is relatively unexplored (though there has been consider-
able research on closely related measures such as unary Nullstellensatz size, unary
Sherali-Adams size, and the total bit complexity of proofs [1–3, 5, 7]). That said,
there are several other reasons why total coefficient size bounds are interesting.

First, analyzing the total coefficient size of proofs may give insight into proof
size in settings where we currently cannot prove size lower bounds. If we can prove
a large total coefficient size lower bound, this shows that any proof must either
have large size or involve large coefficients. Unless there is a reason to suspect that
large coefficients are helpful for making the proof shorter, this gives considerable
evidence for a lower bound on proof size.

Second, lower bounds on total coefficient size have some direct implications. As
observed by [5], a total coefficient size lower bound for the stronger Sherali-Adams
proof system implies a lower bound for the reversible resolution proof system which
captures the Max-SAT resolution proof system (see [4]) for Max SAT. Similarly, [5]
observes that a total coefficient size lower bound for Nullstellensatz implies a lower

1Technically, this is the weak form of Hilbert’s Nullstellensatz. Hilbert’s Nullstellensatz actu-
ally says that given polynomials p1, . . . , pm and another polynomial p, if p(x) = 0 for all x such
that pi(x) = 0 for each i ∈ [m] then there exists a natural number r such that pr is in the ideal
generated by p1, . . . , pm.

https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB
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bound for the reversible resolution with terminals proof system, which is a weaker
variant of reversible resolution.

Finally, investigating the total coefficient size of proofs gives insight into the
following question. Are there natural examples where having fractional coefficients
greatly reduces the total coefficient size needed for Nullstellensatz and/or Sherali-
Adams proofs? Proving total coefficient size lower bounds for a problem rules out
this possibility for that problem. Conversely, if there is a natural example where
the minimum proof size is large but the total coefficient size is small, this would
be quite interesting.

In this work, we show that the minimum total coefficient size of a Nullstellensatz
proof of the pigeonhole principle is 2Θ(n). More precisely, we show the following
bounds.

Theorem 1. For all n ≥ 2, any Nullstellensatz proof of the pigeonhole principle

with n pigeons and n− 1 holes has total coefficient size Ω
(
n

3
4

(
2√
e

)n)
.

We note that this lower bound also holds for the functional pigeonhole principle,
where each pigeon must go to exactly one hole (instead of at least one hole).

Theorem 2. For all n ≥ 2, there is a Nullstellensatz proof of the pigeonhole
principle with n pigeons and n− 1 holes with total coefficient size at most 25n.

This is joint work with Aaron Zhang which will appear in ICALP 2024. The
full version of our paper is on arXiv [6]. This research was supported by NSF
grant CCF-2008920 and NDSEG fellowship F-9422254702.
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Strength of the Dominance Rule

Neil Thapen

(joint work with Leszek Aleksander Ko lodziejczyk)

It has become standard that, when a SAT solver decides that a CNF Γ is unsat-
isfiable, it produces a certificate of unsatisfiability in the form of a refutation of
Γ in some proof system. The system typically used is DRAT, which is equivalent
to extended resolution (ER) – for example, until this year DRAT refutations were
required in the annual SAT competition.

Recently Bogaerts et al. [1] introduced a new proof system, associated with the
tool VeriPB, which is at least as strong as DRAT and is further able to handle
certain symmetry-breaking techniques. We show that this system simulates the
proof system G1, which allows limited reasoning with QBFs and forms the first
level above ER in a natural hierarchy of proof systems [2]. This hierarchy is not
known to be strict, but nevertheless this is evidence that the system of [1] is
plausibly strictly stronger than ER and DRAT. In the other direction, we show
that symmetry-breaking for a single symmetry can be handled inside ER.
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Provability of Circuit Size Hierarchies

Marco Carmosino

(joint work with Valentine Kabanets, Antonina Kolokolova and Igor C. Oliveira)

A gate is an atomic device that computes a single Boolean function. A circuit is an
arrangement of wires between gates. Each circuit computes a particular Boolean
function on a fixed number of input bits by propagating values along the wires.
To measure the circuit complexity of a function f , we fix a set of gates B — for
example, two-bit {AND,OR} and NOT gates — and count the minimum number
of B-gates required to compute f .

Despite decades of study, basic questions about circuit complexity remain open.
Straightforward counting arguments show that most Boolean function on n bits
require huge circuits: roughly 2n/n gates [4]. Yet, explicit functions that require
even super-linear circuit size are unknown. The best known lower bounds for
circuits over B are 5n−o(n), but the explicit functions identified can be computed
using only 5n + o(n) gates [1, 2]. So, new ideas are required for explicit circuit
lower bounds in the general1 setting.

1Super-polynomial lower bounds are indeed known for constant-depth circuit classes and
under certain other structural restrictions.
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Motivated by the apparent difficulty of making progress, some researchers are
exploring mathematical logic to understand why some questions about circuits
resist all known proof techniques. A weak fragment of Peano Arithmetic called
PV1 (for “Polynomially Verifiable”) captures “efficient” reasoning, by limiting the
induction principle to work only on formulas quantifying “small” numbers. Even
so, PV1 formalizes many theorems about computational complexity — including
the Cook-Levin and PCP theorems — which seem to require intricate proofs [3].

The immediate meta-mathematical question is: how much circuit complexity
can be accomplished inside PV1? In particular, the Circuit Size Hierarchy (CSH) is
a classical result: larger circuits compute strictly more functions. CSH is proved by
straightforward counting and encoding of Boolean functions. But a “constructive”
proof of CSH remains unknown, and the existing arguments do not produce explicit
hard functions. Formally, we ask: is CSH a theorem of PV1?

This talk shared preliminary evidence that it is difficult to prove CSH in PV1.
If CSH is a theorem of PV1, then there are super-linear circuit lower bounds for
a function computable in PTIME — a breakthrough. This reduces the problem
of proving super-linear citcuit lower bounds to a question about the existence of
feasible proofs.

However, our work remains in progress because it seems natural to ask for
a better relationship between PV1-provability of CSH and breakthrough circuit
lower bounds. Suppose PV1 proves that, for each k ∈ N, circuits of size n5k

compute functions that are hard for circuits of size nk. We hope to obtain from
this assumption, for each k, a language Hk ∈ PTIME that requires nk+ε circuit
size, with ε > 0. Intuitively, despite our preliminary result, it remains open to
“extract all the hardness” from a PV1-proof of CSH.
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