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Abstract. Materials can now be designed and architectured like structural
components for targeted mechanical and physical properties. Structures and
microstructures should not be studied independently and their design will
benefit from a multiscale approach combining nonlinear continuum mechan-
ics approaches and physical descriptions of elasticity, viscoplasticity, phase
transformations and damage of microstructures, at various scales. The aim
of the workshop was to gather outstanding junior and senior researchers in
the various branches of mathematics, physics and engineering sciences suited
to address the question of design of materials and structures by means of
multiscale discrete and continuum approaches to their constitutive behav-
ior. Examples include atomic or macroscopic lattices, random or periodic
cellular materials, smart materials like shape memory alloys, 3D woven com-
posites, acoustic and electromagnetic metamaterials, etc. Modern continuum
mechanics relies on sophisticated constitutive laws for anisotropic materials
exhibiting elastoviscoplastic behavior, still a field of intense research with new
mathematical concepts. In particular size-dependent properties are addressed
by resorting to generalized continua such as gradient or micromorphic and
phase field models. The latter are attractive for the simulation of microstruc-

ture evolution coupled with mechanics, due to thermodynamic and metallur-
gical processes and damage. Scale transition and homogenization methods
for continuous and discrete systems are required for the determination of
effective material and structural behavior. Metamaterials are architectured
materials specifically designed to achieve certain propagation and dispersion
properties of elastic and plastic waves. Optimization strategies for the design
of optimal architectures are involved in the design process. Target functions
for optimization are now based on multicriteria (stiffness, strength, thermal
expansion, transport properties, anisotropy etc.).
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Introduction by the Organizers

The workshop Multiscale design of advanced materials and structures attracted
43 participants with broad geographic representation (Germany, USA, Austria,
France, Italy, Czech Republic, Switzerland, The Netherlands, Spain, Poland).
This workshop comprised a well balanced blend of researchers with backgrounds
in mathematics, mechanics and materials science. The organizers successfully re-
cruited a significant number of younger representatives of the mentioned research
communities.

The sequence and duration of the sessions were defined on Monday morning.
They were moderated by session chairs and each consisted of 4-6 extended lectures
(20 to 30 minutes each, including discussion) presented to all participants of the
workshop. Two general lectures were scheduled to introduce two main branches
of the program, namely the mathematical and physical aspects of the mechan-
ics of heterogeneous materials, by G. Milton, and the multiscale computational
mechanics and physics of materials, by L. Capolungo. Ample time was devoted
to discussion, both during and following presentations. The format of the ses-
sions (subject to hard stops for lunch and dinner), including coffee breaks, gave
the flexibility to maximize productive discussion. Reports from the session chairs
were summarized and discussed extensively on Friday morning and are summa-
rized in this report. A DB strike lead to a more complicated situation on Friday
for travelers trying to reach airports and train stations!

The organizers regard this particular workshop as extremely successful in the
topical area of mechanics of materials, for several reasons. First, a number of
young participants were involved and highly active in presentations and discus-
sions, representing the next generation of applied mathematicians tackling prob-
lems in mechanics of materials. Computational mechanics applied to materials
was well-represented. Some young and some experienced researchers discovered
the Oberwolfach Stimmung for the first time and appreciated it. Second, the
discussions were detailed and deep into the subject, with many useful points and
counterpoints discussed. We believe that this workshop has launched many poten-
tially fruitful couplings of researchers, and has defined some specific target areas
as goals for mathematics, mechanics and materials science.

Tradition was respected with the usual long walk to Sankt-Roman, and its
famous Schwarzwälderkirschtorte, during a rainy Wednesday afternoon, and with
a piano concert on Thursday night thanks to the MFO Steinway grand piano.

Materials can now be designed and architectured like structural components or
civil engineering structures for targeted mechanical and physical properties. Struc-
tures and microstructures should not be studied independently and their design
will benefit from a multiscale approach combining modern nonlinear continuum
mechanics approaches and physical descriptions of elasticity, viscoplasticity, phase
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transformation and damage of microstructures, at various scales. The aim of the
workshop was to gather outstanding junior and senior researchers in the various
branches of mathematics, physics and engineering sciences suited to address the
question of design of materials and structures by means of multiscale discrete
and continuum approaches to their constitutive behavior. Examples of architec-
tured materials and structures include atomic or macroscopic lattices, random
or periodic cellular materials, smart materials like shape memory alloys, 3D wo-
ven composites, acoustic and electromagnetic metamaterials, etc. Modern contin-
uum mechanics relies on sophisticated constitutive laws for anisotropic materials
exhibiting elastic-viscoplastic behavior, still a field of intense research with new
mathematical concepts. In particular, size-dependent properties are addressed by
resorting to generalized continua such as gradient or micromorphic and phase field
models. The latter are attractive for the simulation of microstructure evolution
coupled with mechanics, due to thermodynamic and metallurgical processes and
damage. Predicting instabilities is still the main challenge by detecting symmetry
breaking conditions at various scales from local buckling phenomena in a truss
to macroscopic strain localization and fracture of heterogeneous materials. Scale
transition and homogenization methods for continuous and discrete systems are
required for the determination of effective material and structural behavior. Effi-
cient numerical techniques are thriving from FE to FFT methods. They incorpo-
rate stochastic aspects of morphology of phases and local properties thus allowing
for a statistical analysis of overall responses. Envisaged physical phenomena at
the constituent level are plasticity, viscoplasticity, crystal plasticity and twinning,
diffusive and displacive phase transformation in solids. Metamaterials are architec-
tured materials specifically designed to achieve certain propagation and dispersion
properties of elastic and plastic waves. Tailoring band gaps in the frequency do-
main is the challenge of the corresponding design. Although periodic patterns
dominate in this field, random sets may have attractive properties to widen the
frequency spectrum. Multimodal databases produced from experimental observa-
tion and numerical simulation serve as the basis for the understanding of complex
deformation and damage mechanisms and for the construction of overall reduced
order metamodels required for the design process. Multimodal experimental data
include field measurements of displacement, elastic strain, crystal lattice or fiber
orientation, phase morphology evolution by means of optical, X-ray, electron to-
mography and diffraction available in labs or in international facilities. Multimodal
numerical data emerge from large scale full field simulations of representative vol-
ume elements of materials or structures. These simulations are used to solve initial
boundary value problems of continuum mechanics and physics, by means of finite
element or FFT methods, or the evolution of discrete systems such as molecular
dynamics or discrete dislocation dynamics.

The exploration and interpretation of databases from a range of models and
experiments at various length and time scales can benefit from modern model re-
duction techniques and machine learning tools. Combining physical, mechanical,
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mathematical knowledge and artificial intelligence is required to accelerate de-
sign processes and increase the reliability of prediction by appropriate uncertainty
quantification. Optimization strategies for the design of optimal architectures for
targeted properties are required in the design process. Target functions for op-
timization are now based on multicriteria (stiffness, strength, thermal expansion,
transport properties, anisotropy etc.). Sophisticated mathematical and simulation
methods are available from level set to phase field techniques. Multiscale opti-
mization for composite design is even more challenging to reach the desired target
properties.

1. Design of materials and structures

Chair: Dennis Kochmann (March 4th, morning session)

The quest for materials with optimized, extreme, or peculiar properties has been
a challenge for centuries, originally stemming from the optimization of fabrication
routes for traditional materials and more recently also applying to the creation
of novel architected materials or metamaterials with as-designed properties and
functionality. Well-studied problems were reviewed in this session and included,
among others, the properties of cellular solids (i.e., two-phase composites in which
one phase is solid and the other is void), whose analysis has resulted in the class
of extremal composites, which are mathematically rooted in the soft modes of
the elasticity tensor and admit beneficial properties such as fluid-like behavior
(e.g., pentamode materials), insulation against shear waves (e.g., unimode ma-
terials for seismic insulation) or extremal elastic properties. Cellular solids also
include beam-, plate-, and shell-based architected materials, which have been op-
timzed for high stiffness-, strength-, and toughness-to-weight ratios, have enabled
the design of mechanical waveguides that exploit wave dispersion to direct stress
waves along pre-defined paths or attenuate waves at specific frequency. Besides
beam-based structures, a recent advance has been the use of spinodal-type cellular
architectures, which admit tuning of the effective elasticity and nonlinear response
through the choice of anisotropy in the underlying Gaussian random fields. A fur-
ther example is the link between microstructural features (such as the statistical
information contained in the grain size distribution and texture of a polycrys-
tal) and the effective mechanical response of materials (such as the stress-strain
response of polycrystalline metals), which calls for techniques to understand the
aforementioned link and to invert it towards the design of materials with optimal
properties.

2. Constitutive laws for crystalline materials

Chair: Thomas Hochrainer (March 4th afternoon, session)

Crystal plasticity modelling plays a central role in the nonlinear mechanics of ma-
terials. It tackles the difficult problem of the transition from dislocation mechanics
to continuum plasticity, a still widely open question. Six talks were presented on
this topic.
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Several presentations were dedicated to the discrete dislocation dynamics, a
computational methods to predict the motion, multiplication and interaction of
individual dislocations in a micrometer-sized box, based on the elasticity theory
with defects and special interaction rules. The method can be used to predict the
overall response of the volume element to macroscopic loading.

Katrin Schulz proposes a data-based derivation of internal stresses for the
coarse-graining in dislocation-based plasticity. This can be regarded as a way
of extracting information from huge data produced by DDD in the form of com-
plex dislocation entanglements. Thomas Hochrainer then presents another tool
in this endeavour: A translation invariant approximation of the Koopman opera-
tor for analysing discrete dislocation data. Yaovi Amouzou-Adoun also relies on
DDD simulations of cyclic plasticity to predict size effects and construct a strain
gradient continuum plasticity model. He shows that a strain gradient crystal plas-
ticity model can be calibrated to reproduce, at least qualitatively, the size effects
observed during cyclic shearing.

Anter El-Azab tackles a novel aspect of dislocation dynamics, namely mesoscale
plasticity of inhomogeneous alloys, linking chemistry and dislocation dynamics.
The interaction of dislocations with solute atoms is a fundamental aspect of me-
chanical metallurgy. It plays a role in solution hardening in alloys and in static
and dynamic strain ageing.

Finally, David McDowell presents a comprehensive thermodynamical frame-
work to formulate the constitutive equations of crystal plasticity by means of
nonequilibrium statistical mechanics of thermally activated dislocation ensembles
and internal state variable theory.

An important feature of dislocation based plasticity is the stochastic aspects
of slip avalanches and strain burst in crystals. Jaime Marian presents stochastic
solvers for crystal plasticity in order to match plastic and numerical discreteness.

3. Multiscale and multiphysics approaches

Chair: Javier Segurado (March 5th morning, session)

Six talks including discussion were presented, with very different scopes but all of
them covering multiscale aspects.

The first talk was an introductory lecture by Laurent Capolungo from Los
Alamos NL (USA). The talk focused on (1) showing the technological needs for
fundamental scientific developments (2) describing the overall multiscale modeling
paradigm and (3) emphasizing some of the epistemic gaps that require more atten-
tion to enable phenomenology free constitutive modeling. It was suggested that
many times models are pushed too far away from the limits of their applicabil-
ity, driven by the need of studying the response in critical and out-of-equilibrium
situations. A general conclusion was that there is a critical need to establish rigor-
ous mathematical linkages between microstructure configurations, energy barriers,
internal stress and entropic contributions to kinetic factors. They were many com-
ments and questions. To give one example, one question dealt with a mesoscopic
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approach to retrieve a GND distribution in nano-laminates, which may go beyond
a continuum model.

The second talk was presented by Mischa Blaszczyk, PhD student at Institute
of Mechanics of Materials, Ruhr-Universität Bochum and entitled “A fully coupled
multiscale model of cancellous bone considering mechanical, electric and magnetic
effects”. The motivation behind this multiscale and multiphysical modeling of
bone study was the osteoporosis, leading to bone disease worldwide. The model
is solved using two scales (FE2) and including electric and magnetic effects at the
two scales while a two-phase material was defined on the microscale (cortical bone
and bone marrow). Ostheoporosis effects were included explicitly in the definition
of the RVEs. The numerical results show a drastic reduction of the magnetic field
strength resulting from a small mechanical impact for later stages of the disease,
which is in conformity with experimental research. Regarding questions, there was
an interest of knowing if magnetic fields relaxation times are not an obstacle for
identifying ostheoporosis from magnetic measurements.

The third talk was a study of the chairman, Javier Segurado from “Universidad
Politécnica de Madrid” and IMDEA-Materials Institute (Spain), and was chaired
by David McDowell. The title was “Elastic interactions in Object kinetic Monte
Carlo for defect evolution: radiation defect migration”. First, an FFT based
approach was presented to introduce the elastic fields caused by any type of dislo-
cation, point defects, solute atoms and second phases in OkMC simulations. The
model was applied to study the migration of prismatic loops and self-interstitials
in iron, accounting for their mutual interaction and the presence of other immobile
dislocations. The second part of the talk presented a method to use non-regular
grids in FFT solvers to improve the resolution near dislocation cores in the com-
putation of the elastic fields produced by dislocation and other defects. During
the discussion, he was asked whether the non-regular technique corresponded to
a “mesh refinement” or if it was a transformation of the physical space. It was
explained that the method was just a translation of the discretization points to
better represent the solution, but all the operators were defined at the material
points.

The fourth talk was presented by Liming Xiong, from Iowa State University
(USA) and was entitled “Concurrent Atomistic-Continuum Simulation of Plas-
tic Flow in Heterogeneous Alloys”. In this talk, L. Xiong presents a concurrent
atomistic-continuum (CAC) methodology and its applications in modeling the
dislocation-mediated plastic flow. One main unique feature of CAC is to retain
the microscale dislocation slip, the atomic-scale diffusion and kink dynamics on
the dislocation line, as well as the nanoscale grain boundary (GB) structure evolu-
tion all within one model. The applicability of CAC is demonstrated through: (i)
modeling the dislocation loop nucleation and growth from atomistic to microscale;
(ii) characterizing the core structure/stress heterogeneity induced by atomic-level
diffusion along a micrometer-long dislocation line; (iii) quantifying the stress con-
centration induced by the slip-GB reaction. The main outcome of this talk is to



Mechanics of Materials 663

provide the community with an alternative vehicle to bridge atomistic with contin-
uum by formulating the local stress-/GB-state based metrics of slip transfer that
can be informed into higher scale models, as DD or CPFE. One main remaining
question is about how to consolidate the CAC simulation results into constitutive
rules or slip transfer metrics that can be used at the engineering scale. At the end
of the talk, the extension of CAC to finite-temperature through phonon density
states-based algorithm was also discussed.

The fifth talk was presented by Barbara Zwicknagl, from Humboldt-Universität
zu Berlin (Germany). The tile of the work was “Geometry of needle-like mi-
crostructures in martensites”. In their work, the modeling of needle-like mi-
crostructures – which are often observed experimentally near macro-interfaces in
certain shape-memory alloys – was analyzed. In particular, the focus lied on the
tapering length scale of the needle. It was shown that linearized elasticity is not
able to predict the value of the tapering length. In the questions, it was discussed
the need or not of including explicitly and interfacial energy in the formulation.

The last talk of the session was presented by Christian Wieners from Karlsruher
Institut für Technologie (KIT) in Germany. His talk initiated an open discussion
about waves in materials with heterogeneous microstructures. First, some known
results were summarized, including the response of linear waves in 1D and some
general marks about the 2-scale simulation. Then, the framework of the homoge-
nization of Maxwell equations was reviewed to explore if there exist some unified
approach for electro-magnetic and for elastic waves. As result, it was shown that
density in a two-scale problem can be directly replaced by the average in the mi-
crostructure. Finally, several open remarks were made around the conditions for
a FE2 formulation of wave propagation.

4. Numerical methods and models for plasticity and damage

Chair: Stéphane Berbenni (March 5th, afternoon session)

Damage was first envisaged at interfaces in dual phase steels in the form of thin
ductile martensitic layer undergoing large plastic deformation and leading to grain
boundary sliding. The finite element simulation results can be compared with
experimental strain field measurements. Open questions remain regarding the
identification of physical parameters for interface damage mode initiation and
propagation, the effect of bi-cristallography between Martensite and Austenite
(KS or NW orientation relationships). Simulations at lower scales (atomistics)
could be used to derive physically based cohesive laws.

Quasi-brittle damage was also considered in polycrystals using the phase field
method combined with elasticity. Open questions remain regarding the tractability
of 3D simulations, on the proper choice of non-convex energy functionals. Inter-
sting outcomes could be the prediction of the effect of grain size distribution on
cracking.

A mathematical point of view was then given to handle non convexities in rate-
independent systems. Several algorithms, including viscosity regularization, were
then proposed.
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An alternative to finite element simulation is the use of spectral methods. FFT-
based methods have become very popular for the simulation of plastic deformation
in microstructures. Is it possible to go beyond periodic boundary conditions?
Periodic boundary conditions introduce a bias in the case on non-periodic images
of microstructures. Some proposals were made to extend spectral methods to
account for Dirichlet boundary conditions.

A FFT-solver was also applied to mesoscale field dislocation mechanics intro-
ducing dissipative mechanisms and defect energy. The existence of a back-stress
was demonstrated in a simple shear test under cyclic loading. Open questions
are related to the implementation of non-quadratic energy potential (logarithmic
of power law) in the FFT scheme, and to the introduction of a grain boundary
behaviour in such a discrete scheme.

New perspectives in quasi-brittle damage and fracture modelling are brought
by the so-called peri-dynamic approach which includes nonlocal kernel interactions
between material points with an horizon range. Point-wise discretisation eases
dynamic fracture simulations and makes the model a promising approach.

5. Phase transformation and thermodynamics

Chair: Thomas Antretter (March 6th, morning session)

The five talks of this session dealt with modeling and experimental determination
of energetic and dissipative stresses in plastic deformation (by T. Böhlke), a new
look at twin branching in shape memory alloys (a 1D continuum model and energy
dissipation effects, by S. Stupkiewicz), and thermomechanical coupling of phase
transformations and constitutive laws to describe microstructural evolution (by
M. Flachberger). S. Mesarovic presented advances on continuum modelling of
sintering processes in metals. The question of recrystallisation was addressed by
A. Ask, with a Cosserat continuum representation of crystal plasticity and grain
boundary migration. Finally, T. Antretter exposed a chemo-mechanically coupled
model of bainitic transformation in steels.

The discussions around the 5 talks of this session were focused on several critical
issues in materials and interface mechanics:

• Energy storage and dissipation in plasticity of metals
• Computational description of interface processes: orientation, lattice growth

and sliding
• Computational approach to phase transformations on the microscale and their

continuum representation

In spite of the complexity of the problems, significant progress has been made in the
last decade. Specifically, the power of the phase field computational approach has
been demonstrated on a large span of length scales. Given correct mathematical
formulation and sufficient computational power, predictive simulations of a variety
of complex physical processes are feasible.
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Nevertheless, several open problems emerged from discussion:

• What are the possible methods of distinguishing energy storage and dissipation
in plasticity? Is there a clear relation between this problem and configurational
and vibrational entropy production in plastic deformation.

• The question of representing relative misorientation of crystals at interfaces
within the phase field model remains open. Such representation must be com-
putationally efficient and represent the underlying physics correctly. This is
particularly relevant for anisotropic grain growth.

• While the problem of connecting heterologous (lattice and mass) continua in
the phase field framework appears resolved in principle, details of interface
processes: lattice growth and sliding need to be calibrated to the sharp inter-
face formulation (which is the basis for interpretation of experiments).

• The role of dissipation in continuum representation of discrete phase transfor-
mation events (twin branching) requires quantification.

• When many variants of microstructures appear equally energetically favorable,
computational distinction between them is an open problem. The problem of
bainite microstructures is the specific example of this difficulty.

6. Fundamentals of continuum theories including

gradient approaches

Chair: Arash Yavari (March 7th, morning session)

The six talks were related to problems in finite plasticity, crystal plasticity, com-
patibility equations of anelasticity in a Eulerian setting, coupling of Cahn-Hilliard
equation with heat equation, a rigorous formulation of nonlocal hyperelasticity,
Korn inequalities for general incompatibilities, and universal deformations in non-
linear elasticity and anelasticity. These are all important problems with direct
applications in the design of new materials and structures.

We anticipate that the following will represent immediate research challenges
worthy of investigation. The results of these studies will be presented in a future
Oberwolfach meeting.

• Making connections between compatibility equations in the Lagrangian and
rate formulations of anelasticity

• A notable limitation of the model proposed by Jebahi et al. is that it cannot
mimic scaling relationships with exponents less than 1, which are generally
predicted by DD observed in several small-scale experimental investigations.
This limitation underscores a significant challenge and opens a critical avenue
for further research within the domain of strain gradient plasy. It raises pivotal
questions about the capabilities of existing strain gradient plasticity models
to fully encapsulate the nuances of size effects. As such, this area remains ripe
for innovation, invitivancements that can bridge persisting gaps and provide
a more comprehensive understanding of material behaviors at small scales.

• Push and understand the case of generalized Korn’s inequalities in the con-
text of non-constant coefficients. This is crucial in considerations from visco-
elasticity.
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• Deriving a coupled heat equation using a given free energy (that is a function
of a phase field, velocity and velocity gradient, and temperature) and the first
and second laws of thermodynamics and ring it with the proposed heat flow
equations.

• Using the proposed nonlocal hyperelastic elasticity in solving some concrete
problems. One can start with simple problems that have already been investi-
gated using other nonlocal theories, e.g., beading formulated using Eringen’s
nonlocal theory.

• Solving Ericksen’s open problem: Find all the constant-principal invariant
universal deformations of homogeneous incompressible isotropic solids. This
has been an open problem since the 1950s.

• Working on several semi-inverse solutions in the mechanics of growth, remod-
eling, and visco-anelasticity.

7. Heterogeneous and architectured materials

Chair: Thomas Böhlke (March 7th, afternoon session)

The keywords of this session were: computational homogenization, higher-order
asymptotic homogenization, deep material networks, topology optimization.

The main topics and advances dealt with computational homogenization (cou-
pled linear problems). Based on homogenisation methods, the elastic and acoustic
properties of metamaterials can be manipulated with locally resonant metama-
terials (local resonance regime). The solid-fluid interaction was included by V.
Kouznetsova in the approach. Filtering of vibrational frequencies and negative
reflection were discussed for practical metamaterial design. The flexibility, effi-
ciency and accuracy of scale bridging techniques for nonlinear thermo-mechanical
behavior were reviewed. As an example, the generation of virtual open-cell-like
structures is discussed and used for solid-fluid-type simulations. The combination
of numerical scale bridging with an analytical macroscale model shows advantages
when the macroscale approach captures the main features of the macroscopic ma-
terial behavior.

In the context of higher order multiscale asymptotic homogenization of periodic
microstructures, first and higher order boundary corrections were recalled. Non-
periodic boundary conditions, in particular Dirichlet and mixed boundary condi-
tions, are discussed. The results show much better accuracy than the approaches
without higher order corrections. Outstanding issues relate to the following points:
Boundary layer effects for any shape of the boundary and any cut of the boundary,
the extension to small strain elastoplasticity (some mathematical attempts exist),
computations at the macroscale with strain gradient effective medium are needed
in some cases.

M. Schneider showed that Deep Material Networks (DMN) offer a numerically
efficient alternative to FE2 or FE-FFT approaches for modeling the macroscopic
nonlinear behaviour of fiber-reinforced polymers. DMNs are represented by a hi-
erarchy of laminates, where the local properties of the laminates (volume fraction,
laminate orientation) are identified by off-line linear elastic training. Based on the
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training restricted to the elastic fields on the microscale, the nonlinear material
behaviour can be predicted with surprising accuracy even for non-proportional
deformation paths in viscoelasticity and (visco)plasticity. Current research ques-
tions are: Are Deep Material Networks expressive, i.e., may the homogenization
function of any (two-phase) microstructure be approximated by a hierarchy of
laminates? Is there an improved design of Deep Material Networks (e.g., different
building blocks, different hierarchy) which is expressive? Is there an underlying
theory which explains why elastic training suffices for inelastic applications? Can
this insight be used to improve the selection of the training data?

A material design approach based on variable stiffness design was shown to
provide an alternative approach to shape optimisation. The transition between
single and multi-scale problems is discussed, specifically for truss structures, and
a two-stage optimisation algorithm was introduced by M. Doskar, including a
manufacturing tolerant design.

8. General discussion and prospects for a future Workshop

Vivid discussions took place on fundamental aspects of continuum mechanics, plas-
ticity and damage of materials. It is remarkable that the relation of plasticity and
damage to thermodynamics was at the center of discussions several times during
the symposium. There are still largely open questions regarding the theoretical
and experimental determination of stored energy, dissipation rate the formulation
of thermodynamically consistent theories, with significant advances reported at
the Workshop. Non-convexities in inelasticity and damage still remain challenging
mathematical, physical and computational issues.

Composite materials and metamaterials were explored in great detail with the
promising optimal design guideline, opening a new era in engineering sciences
including mathematical and materials science aspects.

Large scale multiscale computational methods are ubiquitous and require ade-
quate error estimations and analysis of convergence as illustrated in a few cases,
for a broad scope of discrete or continuous, physical and mechanical approaches.

Emergent topics that were discussed include the use of machine learning (ML)
and its applications. If large datasets are available, then tools such as neural
networks, variational autoencoders, or image/video diffusion models can be used to
(i) learn the forward homogenization problem of predicting the effective properties
of a given structure as a surrogate homogenization model, and (ii) to tackle the
inverse design problem of predicting structures with given effective properties.
Existing approaches are promising but only the tip of the iceberg, so that it is
an ongoing challenge to fully leverage ML-based tools for the forward and inverse
homogenization problems. It is expected that many more such strategies may be
exploited in the future. If datasets are small, ML tools can still be used such as the
application of Gaussian regression – both for forward and inverse homogenization
but also for intermediate steps (e.g., for predicting material microstructures for
given statistical microstructural information).
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There is tremendous interest for reducing the complexity of a microstructure
to low-dimensional microscale descriptors, which can be achieved through mathe-
matical morphology or ML tools. Especially when using experimental data as the
starting point, datasets are naturally limited, so that multi-modal approaches that
take into account both experimental and simulated data are promising. Further-
more, open challenges of course also pertain to fundamental questions in the design
of materials, e.g., the full exploration of extremal materials and their properties,
and the search for optimal microstructures that attain property bounds. When
it comes to the design of materials with extreme properties, another challenge
is the extension from periodic designs to spatially graded ones, for which classi-
cal homogenization approaches may not apply and multiscale techniques become
necessary (e.g., including multiscale topology optimization schemes).

There is still a work to be done on multiphysical models involving different scales
(for problems as additive manufacturing or corrosion), concurrent approaches for
two-scale simulation beyond mechanical behavior (e.g. in batteries).

Open problems in computational homogenization still remain: incorporation
of (thermo-)viscous dissipation into the computational homogenization framework
for elasto-acoustic metamaterials and the extension of the range of applicability of
the computational homogenization framework to the cases where the strict confine-
ment of the resonance in a longwave host medium does not hold and has to be re-
laxed. What are the most suitable theoretical, numerical and algorithmic settings
for computational homogenization, when accuracy, efficiency, and flexibility of ap-
plication are considered simultaneously? Are these strategies straightforwardly ex-
endable to multiphysics (electro-magneto-mechanical; thermo-mechanical; chemo-
mechanical) settings? In two-scale problems, how can local microscopic fields be
reconstructed from efficient, perhaps ML-based, macroscale descriptions?

Acknowledgement: The workshop organizers would like to thank MFO and the
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program (OWLG). A few PhD students of the Workshop benefited from partial
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Geometry of needle-like microstructures in martensites . . . . . . . . . . . . . . . 723



Mechanics of Materials 673

Abstracts

Dialogue strain gradient crystal plasticity and discrete dislocation
dynamics: kinematic hardening modeling.

Yaovi Armand Amouzou-Adoun

(joint work with Mohamed Jebahi, Samuel Forest, Marc Fivel)

The study of size effects requires the introduction of internal length scales as
classical plasticity theories fall short in modeling these effects. Strain gradient
(crystal) plasticity (SG(C)P) emerges as a powerful framework for investigating
the size-dependent behavior of materials at small scales [1]. In order to have
physically informed SGCP theories, dialogue with discrete dislocation dynamics
(DDD) is a suitable approach. The latter method is able to model size effects in a
quite natural way [2]. Using DDD, a shearing problem of a two-dimensional strip
with infinite length in x-direction and a small width h in y-direction, is treated.
DDD revealed a strengthening phenomenon with the apparent higher-order yield
stress evolving as h−0.2 and a strong kinematic hardening. The strengthening
is explained here are as consequence of a micro-plasticity process rather than a
delay of the onset of plastic flow. Inspired by the main results with DDD, a
SGCP model is developed in order to model the higher-order kinematic hardening
behavior. The present model is based on multi-kinematic decomposition strategy
to decompose the plastic slip gradients into recoverable and non-recoverable parts
[3]. Within this framework, the defect energy density is articulated through a
combination of quadratic and less-than-quadratic functions, providing a robust
basis for capturing complex material behavior. By manipulating specific model
parameters, the scaling exponent factor r in the scaling relationship (h−r) can be
easily adjusted within the interval [1.0, 2.0], demonstrating the model flexibility in
representing size effects over a range from linear to quadratic scaling. However, the
inability of SGCP theories to mimic scaling relationships with exponents less than
1 as obtained with DDD and/or experiments seems to be a notable limitation.
Fig. 1 shows the comparison of SGCP and DDD predictions for the shearing
problem. The different plastic regimes were successfully modeled by the proposed
SGCP in terms of the micro-plasticity process, the kinematic hardening and also
the presence of the uncommon type III (KIII) kinematic hardening of Asaro. Only,
the scaling law does not fit. It raises pivotal questions about the capabilities of
existing strain gradient plasticity models to fully encapsulate the nuances of size
effects. As such, this area remains ripe for innovation, inviting advancements that
can bridge persisting gaps and provide a more comprehensive understanding of
material behaviors at small scales.
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Figure 1. Comparison of size effects between DDD and SGCP: h is the
geometrical size.
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A coupled chemo-mechanical model for bainitic transformation

Thomas Antretter

(joint work with Swaroop G. Nagaraja)

Upon cooling carbon steel experiences a phase transformation from its original
face-cubic-centered parent phase to the body-cubic-centered product phase bai-
nite. Modeling its evolution requires taking into account various physical phenom-
ena: 1.) carbon diffusion whose velocity depends on the temperature, 2.) carbide
precipitation inside the bainite phase if the temperature is low, i.e., in the case
of lower bainite, 3.) transformation eigenstrains concomitant to the creation of
either a new phase including the formation of carbides, and 4.) accommodation
mechanics such as elasticity and crystal plasticity. The literature covers some of
the aspects mentioned above, see [1] and [2], but a comprehensive study treating
all phenomena in a monolithic way has not been reported so far. In the current
work the problem is tackled in a very general variational framework. Starting
point is the formulation of the energy storage function that, in addition to strain
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energy, contains the contributions due to strain hardening as well as a chemical
energy term depending on internal flux variables and gradients thereof. Next, suit-
able dissipation pseudopotentials have to be proposed that account for dissipation
due to plastic slip as well as due to the relevant chemical mechanisms such as dif-
fusion and phase transformation. We arrive at a total continuous-time potential
and, after Euler-backward time integration, eventually at a discrete-time potential
πτ whose extremum determines the design variables, where u is the displacment
field, γα the plastic slip on slip system α, γ+α the accumulated plastic slip, e the
internal flux variables and b the internal force variables.

{
u, γα, γ+α, e,b

}
= Arg

{
inf

u∈V τ
u

inf
γα

inf
γ+α

inf
e∈V τ

e

sup
b∈V τ

b

πτ
(
u, γα, γ+α, e,b

) }

For the chemical contributions to the total energy classical double well poten-
tials are chosen, both for the expressions governing carbon diffusion and for the
expressions governing the phase field evolution. The pseudopotential describing
the dissipation due to phase evolution as well as due to diffusion also contains a
term that accounts for the coupling of these two mechanisms. A crystal plastic
yield condition is added to the optimization problem as a side condition multiplied
by a Lagrange mulitplier. After numerical implementation of the presented frame-
work using the user-element subroutine functionality of the finite element program
of choice the computed field variables can be displayed, as exemplified by Figure 1
showing the carbon distribution trapped inside the bainite sheaf as diffusion veloc-
ities are low at the given temperature. The algorithm also provides the evolution
of the phase field parameters indicating the phase state (austenite, bainite or pre-
cipitate). The coupling of the chemical quantities with the displacment field is
demonstrated. As expected, disregarding any plastic accommodation mechanisms
would greatly exaggerate the mechanical driving forces of transformation thereby
unreasonably speeding up the process of bainite formation. This underlines the
importance of taking into account plasticity as it has been done in this work. There
are also some noteworthy numerical features: i) the chosen variational formulation
results in a symmetric system of equations for the coupled evolution problem [2],
ii) the fact that the coupling term between diffusion and phase formation is con-
tained in the dissipation formulation rather than the energy potential leads to a
sparse tangent operator, and iii) the plastic slip variables are determined by local
iterations at integration points leaving a reduced problem to be solved by global
iteration resulting in displacments, order parameters, concentration and chemical
potential as nodal variables of the finite element discretization.

The mechanical driving forces mentioned above are mainly due to transfor-
mation eigenstrains that are typically significant upon bainite transformation and
exhibit a strong anisotropy leading to the characteristic prolate shape of the bainite
phase. Determining the deformation gradient accompanying bainitic transforma-
tion is not trivial since at any time the bainite sheaf must satisfy a compatibility
constraint at the interface with the parent austenite phase. For the particular case
of bainite transformation this can only be ensured by additional plasticity in the
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Figure 1. Snapshot of the carbon distribution trapped in and
around the bainite phase (not shown here).

bainite sheaf. In a follow-up to this work realistic eigenstrains will be implemented
computed by a GUI based algorithm developed by Petersmann et al. [3].
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A Cosserat continuum representation of crystal plasticity and
recrystallization

Anna Ask

(joint work with Flavien Ghiglione, Samuel Forest)

The earliest evidence of metalworking—the combined application of force and heat
to metals to alter their macroscopic properties—date back to prehistory. Modern
experimental techniques have finally allowed the study of the microscopic processes
that are activated by the thermomechanical treatment. A significant amount of
energy is stored in the crystalline microstructure during viscoplastic deformation
due to the production of atomistic defects called dislocations. This energy can
be released by processes such as recombination of the dislocations into subgrain
boundaries (dynamic recovery) or the nucleation and growth of new, defect-free
crystalline grains (static or dynamic recrystallization). The old microstructure
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may be entirely replaced after thermomechanical treatment, and the metalwork-
ing allows a certain control of the average grain size and crystalline orientation
in the new microstructure. While extensively researched, several aspects of this
microstructure evolution are still not fully understood or quantified. Questions
remain regarding such issues as the exact conditions that favor recovery over re-
crystallization, or the relationship between the static and dynamic grain boundary
properties.

Several approaches have been proposed to model the microstructure evolution
that is produced by thermomechanical processing. In this work, a monolithic
continuum approach is adopted. The particularity of the proposed framework is
that it (i) treats the crystalline orientation as a degree of freedom, (ii) the energy
associated with lattice curvature is explicitly taken into account, as well as (iii)
the production and annihilation of dislocations in an averaged sense. The main
aim is to predict qualitatively the microstructure evolution. This is achieved by
combining a crystal plasticity model formulated for a Cosserat continuum and a
phase-field method[1]. The Cosserat framework provides the microrotational de-
grees of freedom which are constrained to follow the crystal orientation of the
grains. Unlike a classic crystal plasticity approach, the grain boundaries are dif-
fuse and mobile due to the inclusion of the phase-field dynamics. The phase-field
parameter is an order parameter that is sensitive to crystal lattice curvature. Sim-
ulations for single crystals and small polycrystals have demonstrated that the
proposed approach can predict subgrain boundary formation, dislocation driven
grain boundary migration, and possibly grain nucleation [2].
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Size-dependent elastoplasticity relying on Eulerian rates of elastic
incompatibilities

Lorenzo Bardella

(joint work with M.B. Rubin)

1. Summary

The notion of elastic incompatibilities considers elastic deformations from one
configuration to another. In this contribution elastically anisotropic materials are
discussed within the context of a large deformation Eulerian formulation that is
free from arbitrary choices of reference and intermediate configurations as well as
total and plastic deformation measures. An elastic deformation is defined from an
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arbitrary initial configuration that can have a state with elastic incompatibilities.
Necessary and sufficient conditions are obtained for additional elastic incompatibil-
ities developing from this initial configuration. Moreover, a second-order Eulerian
tensor Rij is proposed, based on the current curl of the rate of plastic deforma-
tion tensor, which measures the current rate of elastic incompatibilities related to
developing edge and screw dislocations. Rij can in fact be seen as an extension
of the elastic counterpart of the rate of the Nye-Kröner dislocation density tensor,
as originally defined for small strains and rotations. This allows the study of the
size-effect ensuing from a hardening law dependent on Rij . In order to unveil the
features of the proposed theory, the torsion of a cylinder is studied under both
monotonic and cyclic loading paths.

2. A Lagrangian formulation of total deformation incompatibility

Finite deformation total strains are purely kinematic variables that measure defor-
mation from a specified reference configuration to the current configuration. For
example, a material point located by X in the reference configuration is deformed
to its location x in the current configuration at time t by a one-to-one mapping

(1) x = X(X, t) ,

and the associated deformation gradient F is defined by

F = ∂x/∂X .

By definition, this mapping and the associated deformation gradient characterize
a compatible deformation field from the reference configuration to the present
configuration.

One question of compatibility arises when F is a specified function of (X, t) and
it is not known if an associated compatible deformation field with a mapping of
the form (1) exits. Yavari [1] discussed the history of this problem for nonlinear
elasticity and generalized the solution for multiply connected regions. Here, atten-
tion is confined to simply connected regions for which the necessary and sufficient
condition for a compatible mapping (1) to exist is that

∮

C

FdX =

∫

S

Curl(F)NdA = 0

for all closed paths C in the body, where Stoke’s theorem has been used to convert
the line integral to an integral over the enclosed surface. Moreover, Curl( ) is the
curl operator with respect to X, N is the unit normal to the surface S, right-
handed relative to the direction of integration on C, and dA is the reference area
element on the surface S. Assuming sufficient continuity, it follows that

Curl(F) = 0

at every point in the body.
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3. An Eulerian formulation of elastic deformation for

elastoplastic materials

Eckart [2] seems to be the first to propose an Eulerian formulation of constitu-
tive equations for elastically isotropic elastoplastic response of solids. A similar
formulation for polymeric liquids was formulated in [3]. These formulations are
Eulerian in the sense that they are free from arbitrary specification of reference
or intermediate configurations as well as total or plastic deformation measures
[4]. An Eulerian formulation of constitutive equations for elastoplastic response
of elastically anisotropic materials was developed in [5]. This formulation intro-
duces evolution equations for a right-handed triad mi of linearly independent
microstructural vectors of the forms

(2) ṁi = (L− Lp)mi ,

where ˙( ) denotes the material time derivative, L is the total velocity gradient,
and Lp is a general second-order tensor characterizing plastic rate, which requires
a constitutive equation. The microstructural vectors mi characterize elastic defor-
mations and orientation changes of anisotropic directions in the material relative
to a zero-stress state. They also determine the Cauchy stress T in the current
state. These microstructural vectors mi are internal state variables, as defined by
Onat [6], which are assumed to be measurable in the current state.

4. A Lagrangian formulation of elastic incompatibility for

elastoplastic materials

The notion of elastic compatibility is Lagrangian in the sense that it requires a
definition of elastic deformation between two configurations. Consequently, it is
convenient to define the values Mi of mi in the initial configuration at t = 0 and
the reciprocal vectors Mi at t = 0. Then, the elastic deformation Fm from this
initial configuration to the current configuration at time t is defined by

Fm(t) = ms(t) ⊗Ms , Fm(0) = I ,

where ⊗ denotes the tensor product, the usual summation convention applies to
repeated indices, and I is the identity tensor. This tensor Fm remains a mea-
sure of elastic deformation from the initial configuration even for a general initial
configuration in a state with residual stresses. Then, a Nye-Kröner-like tensor αe

[7, 8], which measures elastic incompatibilities from the initial configuration, can
be defined by

(3) αe = Curl(Fm) ,

where the Curl operator is relative to the initial configuration. If αe = 0 the
deformation, as described by Fm through the evolution of the microstructural
vectors mi(t), is compatible.
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5. Eulerian rates of elastic incompatibilities for elastoplastic

materials

By taking the material derivative of (3) and evaluating the result in the current
configuration, it can be shown that Eulerian rates of elastic incompatibility can
be defined by

(4) Rij = −curl(Lp) · (m′
i ⊗m′

j) ,

where the curl operator is defined relative to the current configuration, the distor-
tional microstructural vectors m′

i are defined by

m′
i = J−1/3

e mi with Je = m1 ×m2 ·m3 > 0 ,

and · and × denote, respectively, the inner and vector products. If restricted to
small strains and rotations, Rij is the opposite of the rate of the Nye-Kröner dislo-
cation density tensor [7, 8]. Therefore, its off-diagonal and diagonal components,
respectively, correspond to edge and screw dislocation density rates.

It is emphasized that the rates Rij are Eulerian as they depend only on the cur-
rent configuration and rate of deformation. Moreover, they are not pure kinematic
measures, being also dependent on the constitutive prescription for Lp. Also, the
definition (4) of Rij ensures its invariance under superposed rigid body motion,
such as each of its components can be used to introduce size-dependent hardening
in the modeling. This approach is an alternative to that followed in [9], which is an
Eulerian extension of the higher-order strain gradient plasticity theory of Gurtin
[10].

6. The torsion problem

Consider an isotropic cylinder of circular cross-section experiencing cyclic torsional
loading governed by the applied twist κ(t). The cylindrical polar base vectors
(er, eθ, ez) are defined relative to the fixed orthonormal triad of vectors ei by the
expressions

er = cos(θ̂)e1 + sin(θ̂)e2 , eθ = − sin(θ̂)e1 + cos(θ̂)e2 ,

ez = e3 , θ̂ = θ + κz .

Also, the current location of a material point x is given by

x = rer + zez ,

such as the total velocity gradient reads

L = zκ̇(eθ ⊗ er − er ⊗ eθ) + rκ̇eθ ⊗ ez .

This kinematic assumption may for instance be adequate to model severe plastic
deformation in higher-pressure torsion [11]. Equilibrium can be satisfied by a
radial body force equal to −∂Trr/∂r− (Trr − Tθθ)/r. Under these circumstances,
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the non-vanishing components of Rij are

(5)

R11 =
Lpθz

r
m2

1r ,

R22 =
∂Lpθz

∂r
m2

2θ −
(∂Lpθθ

∂r
+
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r

)
m2θm2z

+
∂Lpzz

∂r
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+
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)
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where m1r, m2θ, m2z, m3θ, and m3z are the five non-vanishing components of
the microstructural vectors mi. In the framework of small strains and rotations,
Lprr = Lpθθ = Lpzz = 0, m2z = m3θ = 0, and R23 = R32 = 0 [12].

Given that Lp depends on mi, in a complex nonlinear way also involving the
plastic spin rate [13], it turns out that the solution of this torsion problem is
obtained by integrating five nonlinear differential equations for m1r, m2θ, m2z,
m3θ, and m3z , which are functions of r and κ(t), to be coupled, in a system, with
the evolution equations for the adopted hardening laws. This system of equations
automatically satisfies the condition of isochoric total deformation, Je = 1.

This contribution aims at studying the effect on the torsional response of a
hardening law dependent on the rates of incompatibilities (5). A similar study has
already been carried out in [14] by neglecting finite deformations and the plastic
spin. Here, a conventional hardening law is enhanced by adding a dependence
on Rij using the smooth transition model proposed in [15, 16]. Among several
aspects, this investigation highlights the crucial role of the influence of the material
parameter controlling the plastic spin rate, thus confirming and enriching the
findings of [12] in the context of higher-order small-strain gradient plasticity.
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Elasto-viscoplastic FFT-based method for mesoscale field dislocation
mechanics with defect energy

Stéphane Berbenni

(joint work with Vincent Taupin, Ricardo A. Lebensohn)

A crystal plasticity elasto-viscoplastic FFT (Fast Fourier Transform) formulation
with a mesoscale continuum field dislocation mechanics model is presented. The
present approach accounts for plastic flow, hardening and densities of geometri-
cally necessary dislocations (GND), in addition to statistically stored dislocations
(SSD). Here, the model incorporates a defect energy density that depends on GND
densities and an associated internal length scale. This allows to thermodynamically
derive internal length scale dependent intra-crystalline backstress (energetic-type
hardening) and Peach-Koehler force acting on GND densities. The model considers
GND density evolution through a filtered numerical spectral approach [1], which
is coupled with stress equilibrium through the elasto-viscoplastic FFT algorithm
using Augmented Lagrangian (AL) algorithm. The discrete Fourier transform
method together with finite difference schemes [2, 3], is applied to solve both the
GND lattice incompatibility problem and the Lippmann-Schwinger equation.
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Numerical results are first reported for two-phase channel-type composites with
plastic single crystal channels and elastic precipitates for shear loadings. Channel
size effects are simulated and analyzed on the overall and local hardening behaviors
during monotonous loadings. In addition, the evolutions of GND densities and the
role of their associated backstress on size effects are examined during reversible
loading. In this case, it is shown that GND density piling-up/unpiling-up can be
simulated with this model. Furthermore, it is found that dislocation pile-up is more
extended with energetic-type hardening. In a second part, the role of the defect
energy internal length scale on polycrystal’s hardening is discussed, and compared
to those obtained using FFT-based mesoscale field dislocation mechanics without
defect energy [4, 5, 6].
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Multiscale modeling of cancellous bone considering mechanical,
electric and magnetic effects

Mischa Blaszczyk

(joint work with Verena Stieve, Klaus Hackl)

Osteoporosis is the leading bone disease worldwide. During the course of this
disease, cortical bone is replaced by bone marrow, making the bone weaker and
more susceptible to fracture. Modeling of bone can improve the understanding of
the disease and lead to new early detection tools such as the use of sonography
[1]. In addition to the well studied mechanical properties of bone, recent research
has laid the groundwork to also include electric and magnetic effects [2, 3].

In this talk, we present a fully coupled multiscale approach considering mechan-
ical, electric and magnetic effects [4, 5, 6]. We use a two-phase material model at
the microscale, consisting of the phases cortical bone (modeled as a piezoelectric
and insulating solid) and bone marrow (modeled as a viscoelastic and conducting
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solid). The material model takes into account the full coupling of Maxwell’s equa-
tions. To solve the resulting partial differential equations, we resort to the finite
element square method (FE2).

We show simulation results for both scales. To apply the FE2, we constructed
different representative volume elements (RVEs), which differ in volume fractions
of cortical bone, simulating different stages of osteoporosis. The numerical results
show a drastic reduction of the magnetic field strength resulting from a small
mechanical impact for later stages of the disease, which is in conformity with
experimental research. Furthermore, we show that the inverse problem - recovering
the composition of the bone from the magnetic field strength - can be solved by
using Artificial Neural Networks (ANNs).
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Modeling and experimental determination of energetic and dissipative
stresses in plastic deformation

Thomas Böhlke

(joint work with Nikola Lalović, Alexander Dyck, Alexander Kauffmann,
Martin Heilmaier)

Many phenomenological thermomechanical material models in plasticity of metal-
lic materials use a constant Taylor-Quinney factor to describe the heat release
due to deformation induced dissipation. However, this approach often has several
shortcomings [1]. In this talk, we will present the derivation of a thermodynam-
ically consistent formulation for the heat source due to plastic deformation in a
small deformation setting (cf., [2,3]). The free energy function is determined by
specific assumptions on the material behavior motivated by dislocation theory.
In order to verify the model experimentally, a combination of mechanical and
thermal measurements is performed using infrared thermography during uniaxial
tensile tests on Al and Cu specimens. The materials are tested in two conditions,
recrystallized and work hardened with low and high initial defect density, respec-
tively. In order to determine and to separate dissipative and energetic parts of the
flow stress, an image processing algorithm is applied to reconstruct the heat source
due to plastic deformation [4]. Based on the identified heat sources, the dissipative
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and energetic parts of the flow stress as well as the Taylor-Quinney coefficient are
determined. The results suggest that the proposed thermodynamical model and
the experimental method applied can provide valuable insights into a consistent
thermomechanical framework of plasticity, since it captures both contributions to
flow stress, the energy storage in defects as well as the dissipation due to lattice
defect generation and transport.

Affiliations:
Thomas Böhlke, Alexander Dyck, Nikola Lalović: Karlsruhe Institute of Technol-
ogy (KIT), Germany, Institute of Engineering Mechanics – Chair for Continuum
Mechanics;
Martin Heilmeier, Alexander Kauffmann: Karlsruhe Institute of Technology (KIT),
Germany, Institute for Applied Materials – Materials Science and Engineering
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Open questions in multiscale mechanics of materials

Laurent Capolungo

Multiscale modeling as an enabler to material design is a vast and rich scientific
endeavor. This presentation was dedicated to (1) defining the technological needs
for fundamental scientific developments, (2) describing the overall multiscale mod-
eling paradigm and (3) emphasizing some of the epistemic gaps that require more
attention to enable phenomenology free constitutive modeling. Grounding our
reasoning on the connection between harmonic transition state theory and contin-
uum mechanics, the question of the homogenization of the energy landscape, in the
presence of long ranged perturbations induced by line defects, of the homogeniza-
tion of thermodynamic factors in the presence of disparate defects and of that of
attempt frequencies to overcome volumetric defects was present. It was shown in
the case of nanolaminate pillars subjected that higher order continuum mechanics
approaches can be tailored to emulate the long range field due to complex disloca-
tion pile-up arrangements. Yet, in light of the aforementioned questions related to
homogenization, the critical need to establish rigorous mathematical linkages be-
tween microstructure configurations, energy barriers, internal stress and entropic
contributions to kinetic factors is clear. The author further suggested that a likely
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key to unlock such problem could rely on the use of multi-level graphs as finger-
prints for microstructure.

Modular Structures and Mechanisms: Place where free-material and
topology optimizations meet on a journey from periodic multi-scale to

single-scale designs

Martin Doškář

(joint work with Marek Tyburec, Martin Kruž́ık, Jan Zeman)
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Figure 1. Overview of the proposed optimization scheme illus-
trating the module design shared for two compliant mechanisms:
a force inverter and a gripper.

Modular design has gained substantial traction due to its capacity to efficiently ad-
dress manufacturing, reusability, and sustainability while maintaining performance
comparable to their traditional non-modular counterparts. However, designing
such products poses a challenging task, which involves solving two optimisation
problems. First, modules must be optimally distributed within a product-scale do-
main. Second, the topology of individual modules should be optimized to ensure
their seamless cooperation when assembled. Addressing both problems simultane-
ously is considerably more complex, as it involves an intricate interplay of discrete
and continuous nature.

In our previous work on the minimum-compliance design of modular truss struc-
tures, we adopted a concurrent approach, combining a metaheuristic method for
updating the modular assembly plan with second-order cone programming to gen-
erate optimal truss-like module topologies. However, this approach relied on a
convex formulation, limiting its applicability. We now introduce a computationally
more efficient bi-level sequential strategy that bypasses the need for assembly-level
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meta-heuristics and is applicable to continuum structures and mechanisms. In ad-
dition, we incorporate manufacturing concerns by means of a three-field approach
and continuity constraints.

Our new approach starts by employing free material optimization on a coarse
regular discretization. This step yields optimal, element-wise constant stiffness
tensors. Subsequently, we partition these stiffness tensors into a predetermined
number of clusters, paying careful attention to any underlying symmetries. In-
terpreting the clustering results within the framework of the Wang tiling formal-
ism produces the assembly plan, where individual codes on module edges reflect
similarity among the optimized stiffness tensors. Finally, the topology of individ-
ual modules is determined through standard, single-scale topology optimization,
utilizing the Solid Isotropic Material with Penalization interpolation scheme and
reducing the design space through a mapping that reflects the modular assembly
plan.

We demonstrate the efficacy of our strategy through four two-dimensional prob-
lems, including the modular minimum-compliance Messerschmitt–Bölkow–Blohm
beam, two modular compliant mechanisms (an inverter and a gripper), and a
combined modular design of both mechanisms. This showcases the reusability of
optimized modules and highlights the seamless transition from a Periodic Unit
Cell-based design of material microstructures to traditional single-scale topology
optimization. The number of clusters in the partitioning step provides control,
opening the door to the rational design of modular metamaterials and mecha-
nisms at the material level. In practical implementation, the combined module
designs for the inverter and gripper mechanisms were realised through 3D print-
ing. These physical prototypes underwent rigorous mechanical testing utilizing
an in-house testing machine and digital image correlation. These practical trials
underscore the potential of the method, revealing a remarkable alignment between
the predicted and observed performance.
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Mesoscale Plasticity of Inhomogeneous Alloys: Linking Chemistry and
Dislocation Dynamics

Anter El-Azab

This talk is concerned with the impact of composition inhomogeneity on the plastic
deformation response of structural alloys. Chemical (composition) inhomogeneity
is encountered in many alloy systems of interest and it is caused by thermody-
namic and kinetic factors. Examples include but are not limited to spinodal alloys,
additive-manufactured alloys, high-entropy alloys, and irradiated structural alloys.
The chemical inhomogeneity results in two main effects, coherency stresses at the
lattice level and strong spatial dependence of the dislocation properties, especially
mobility. In this talk, I will summarize the important physical effects associated
with chemical inhomogeneity, present a mathematical, data-driven approach for
characterizing the spatial inhomogeneity in irradiated alloys along with a frame-
work of accounting for the chemical inhomogeneity in dislocation dynamics. We
will present a reformulation of Cahn’s theory of strength of spinodal decompo-
sition and some recent results from full, 3D dislocation dynamics simulations of
the mesoscale plasticity of an inhomogeneous ternary alloy. This work is funded
by the UD Department f Energy, Office of Fusion Energy Sciences under contract
number DE-SC0024585 at Purdue University.

Thermomechanical coupling of phase transformations and constitutive
laws to describe microstructural evolution

Wolfgang Flachberger

(joint work with Thomas Antretter)

This work presents a Lagrangian formulation for the coupling of diffusional phase
transformations and continuum mechanics using a mixed finite element scheme.
The emphasis on the Lagrange formalism is due to its convenience in automated
derivation of variational forms to be used with the FEM or other numerical
(Galerkin- or Ritz-type) methods. This work follows the principle minimum en-
tropy production [1] while ensuring conservation of energy and conservation of
mass of the diffusing species. The diffusion model used is thermodynamically
consistent and can also be used to employ the vacancy mechanism of diffusion of
substitutional alloys such as derived in [2]. Despite the fact that entropy is loosely
associated with “disorder” in a system we want to emphasize that an increase
of entropy in a nonequilibrium system can also be accompanied by creation of
patterns [3] as depicted in Figure 1.

The approach is used to investigate the impact of mechanical stresses on seg-
regation (Figure 2) and other damage mechanisms observed at the small scales of
microelectronic solders. The model is characterized by sharp transitions between
phases (sharp interface model) which is in strong contrast to other state-of-the-
art methods for describing diffusional phase transformations like the Phase Field
Method (PFM). It will however be shown that the presented model can actually
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Figure 1. Patterns in the concentration emerging from mechan-
ical anisotropy.

be related to the limiting case of having no interface energy and no regularization
in the Cahn Hilliard Model. A binary system is studied whose behaviour is de-
scribed by four differential equations which are solved by an implicit, fully coupled
scheme. The diffusion model is used to predict both the phase growth as well as
damage relevant phenomena such as trapping of components at grain boundaries
and other imperfections. Furthermore, the diffusion is coupled with a constitutive
model for the mechanical material behaviour. The coupling is done in both ways
considering the influence of diffusion on mechanics via phase-dependent material
parameters as well as by considering the influence of stresses and strains on the
diffusion. This enables a detailed investigation of the many phenomena that are
observed at the small scales of microelectronic solders.

Figure 2. Segregation triggered by large pressure gradients at grainboundaries.
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Multiscale analysis of composite structures based on higher-order
asymptotic homogenization with boundary layer correction

Samuel Forest

(joint work with Mouad Fergoug, Nicolas Feld, Basile Marchand, Augustin
Parret-Fréaud)

Asymptotic homogenization method is often used in multiscale analysis of peri-
odic structures instead of conducting a full field heterogeneous analysis, in order
to achieve computational feasibility and efficiency. When completed with a re-
localization process, this method may provide relevant estimates to microscale
fields within the material. Nevertheless, the construction of a solution near the
boundaries remains beyond the capabilities of classical relocalization schemes due
to the loss of periodicity in the vicinity of the boundaries. This paper proposes
a post-processing scheme in order to conduct the relocalization step within a fi-
nite element framework for periodic linear elastic composite materials. It also
assesses the boundary layer effect and a new general method, effective for various
boundary conditions (Dirichlet, Neumann or mixed), is proposed based on the idea
of computing corrective terms as solution of auxiliary problems on the unit-cell.
These terms are finally added to the usual fields obtained from the relocaliza-
tion process to obtain the corrected solution near the boundaries. The efficiency,
accuracy and limitation of the proposed approach are studied on various numeri-
cal examples [1]. Homogenized models are widely used in multiscale analysis for
their computational efficiency, but they often fail to provide sufficient accuracy
in regions exhibiting high variations in the so- lution fields. One way to address
this limitation is to adaptively couple the homogeneous model with a full field,
heterogeneous one in designated zones of interest. Within the framework of finite-
element based higher-order asymptotic homogenization [2], this work introduces
a modeling error estimator in order to detect regions where refining the mate-
rial model is necessary. We also analyze the competition between discretization
and modeling errors. We finally propose a multiscale enhancement of the classi-
cal displacement-based submodeling technique in order to adequately couple the
homogeneous and heterogeneous domains. The promise of the proposed methods
and the overall associated strategy is illustrated on various numerical examples of
elastic fiber-matrix composites [3].
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[1] M. Fergoug, A. Parret-Fréaud, N. Feld, B. Marchand, S. Forest, A general boundary layer
corrector for the asymptotic homogenization of elastic linear composite structures, Compos-
ite Structures 285 (2022), 115091.
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Phase field based modeling of damage in quasi-brittle polycrystalline
microstructures

Jakob Huber

(joint work with Christian Krempazsky and Ewald Werner)

Damage is a process that occurs on several scales. From the separation of atomic
bonds over the formation and localization of defects like microvoids and microc-
racks several mechanisms act conjointly in the damage process. Micromechanical
modeling is a way to describe and understand the effects of heterogeneous mi-
crostructures on the effective material behavior on the component scale. Effective
elastic and plastic material behavior has been successfully predicted by means of
micromechanical homogenization [1, 2]. For strongly heterogeneous microstruc-
tures the damage process is heavily influence by stress and strain concentrations
on the microscale [3].

The modeling of cracks as discontinuities can be divided into discrete and
smeared/diffused methods. Major challenges in discrete methods are the neces-
sary remeshing to reduce mesh dependency of crack paths and the need of enriched
shape functions near crack tips (see e.g. [4]).

The diffused phase field approach for damage in comparison is a straightfor-
ward and universal method that is based on a multi-field solution in which the
deformation and damage field variables are coupled in a bidirectional manner [5].
The phase field approach for damage is especially promising for modeling damage
on the microscale. Complex crack patterns due to heterogeneous micro stress and
strain fields as well as multiple crack initiation sites and coalescence of cracks can
be considered without any restrictions. A phase field approach can also depict par-
tial damage in a microstructure which potentially leads to a stress redistribution
and should therefore be incorporated in the microdamage simulation. Further-
more, strict discontinuities as modeled in discrete approaches are not necessarily
the optimal description of cracks unless one is looking at an ideal crack based on
the debonding of atomic layers. On scales larger than the atomic scale one has to
deal with a composition of several cracks and pores forming on a smaller scale in
the process zone of the crack that is to be modeled. The phase field approach for
damage as a diffused method is able to account for such a damage process zone in
the vicinity of a crack in a homogenized manner.
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In our contribution the promising phase field approach for damage is transferred
to polycrystalline microstructures. We compare two different formulations of the
surface density which is needed to compute the cumulative surface of microcracks
and the associated rate of dissipation. The standard formulation of the surface
density is written in terms of the order variable ϕ, which continuously decreases
from 1 to 0 during the damage process

(1) asurface =
1

2
lc |∇ϕ|

2
+

1

2lc
(1 − ϕ)

2
.

Here, the scale parameter lc controls the size of the zone of partial damage accom-
panying the core of a crack. A modified version proposed in the literature [6] can
be formulated by changing the local part to a linear function of the damage state

(2) asurface =
1
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lc |∇ϕ|

2
+

1

lc
(1 − ϕ) .

The cumulative crack surface is calculated by volume integration of (1) or (2) and
multiplication with a material dependent surface energy density.

Figure 1 shows the pattern of microdamage for both formulations at three dif-
ferent stages of the deformation. Stage A shows partial microdamage without
microcracks. In stage B a first microcrack appears. It grows further in stage C
where it is noticeably influenced in its path by the heterogeneous stress and strain
field in the microstructure. The main difference in the patterns of microdam-
age for the two formulations of the surface energy density is the zone of partial
damage. For the standard formulation, partial damage is observed in the entire mi-
crostructure, while partial damage is restricted to the vicinity of a microcrack for
the modified version. This affects also the path of the microcrack. The compact
zone of microdamage allows the crack to develop two approximately symmetric
branches in the case of a linear local part of the surface density (2). In the case
of a quadratic local part of the surface density (1), there is a favorable direction
for the crack growth due to perturbations by the heterogeneous field of partial
damage. Therefore, the microcrack tends to be only deflected without branch-
ing. For the entire volume element effective energy quantities can be calculated.
The predictions of macroscopic failure based on the effective strain energy density
and the effective energy release rate are compared. According to the numerical
results, the effective strain energy density shows noticeably less uncertainty than
the effective energy release rate regarding variations in the morphology of the mi-
crostructure. Additionally, the scale parameter leads to a size effect manifesting
in the energy release rate which makes the calibration cumbersome. Therefore,
the effective energy density is suggested as a more reliable microstructure based
criterion for macroscopic damage.
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We thank the Max Planck Institut für Eisenforschung in Düsseldorf for providing
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Figure 1. Patterns of microdamage with growth of microcracks
for standard (top) and modified (bottom) formulation of the sur-
face density. For the standard version (1) partial damage is ob-
served over the whole microstructure. For the modified version
(2) partial damage is restricted to the vicinity of a microcrack.
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Strain gradient plasticity modeling: current progress and
open questions

Mohamed Jebahi

(joint work with Yaovi Armand Amouzou-Adoun, Samuel Forest, Marc Fivel)

Strain gradient plasticity emerges as a highly promising framework for elucidating
the size-dependent behavior of materials at small scales, ranging from a few hun-
dreds of nanometers to a few tens of micrometers [1, 2]. The leading edge of this
research has seen the development of an advanced strain gradient plasticity model
specifically designed for single crystals. This model employs a multi-kinematic de-
composition strategy to decompose the plastic slip gradients into recoverable and
unrecoverable components [3]. Within this framework, the defect energy density is
articulated through a combination of quadratic and less-than-quadratic functions,
providing a robust basis for capturing complex material behaviors. To evaluate
the effectiveness of this model, it was applied to simulate the shear response of a
slender two-dimensional plate having an infinite length in x-direction and a small
width w in y-direction. For simplicity, only two slip systems are considered in this
plate, with the top and bottom edges assumed to be fully passivated (zero plastic
slips at these edges). Comparative analysis with discrete dislocation dynamics
(DDD) simulations [4], serving as the benchmark for this study, reveals the model
capabilities to qualitatively reproduce key size-dependent characteristics observed
by DDD. By manipulating specific model parameters, the scaling exponent fac-
tor r in the scaling relationship (w−r) can easily be adjusted within the interval
[1.0, 2.0], demonstrating the model flexibility in representing size effects over a
range from linear to quadratic scaling. However, a notable limitation of the model
is that it cannot mimic scaling relationships with exponents less than 1, which
are generally predicted by DDD and observed in several small-scale experimen-
tal investigations. This limitation underscores a significant challenge and opens a
critical avenue for further research within the domain of strain gradient plasticity.
It raises pivotal questions about the capabilities of existing strain gradient plas-
ticity models to fully encapsulate the nuances of size effects. As such, this area
remains ripe for innovation, inviting advancements that can bridge persisting gaps
and provide a more comprehensive understanding of material behaviors at small
scales.
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Exploration of structure-property linkages and inverse design of
materials by active learning

Markus Kästner

(joint work with Alexander Raßloff, Paul Seibert, Karl A. Kalina)

Being able to design, e.g., the microstructure of a material to achieve a desired be-
havior is a key enabler for innovation. To achieve this goal, knowledge about the in-
fluence of the local material structure on the mechanical properties of the material,
e.g. measured in terms of stiffness, strength or ductility, must be acquired. Ide-
ally, experiments and simulation results are combined to build structure-property
linkages. The key challenge is then to invert this knowledge to find a material
structure for a desired set of material properties. This process is known as inverse
design. While surely inverse design is challenging, even the forward prediction
of SP linkages using multiscale simulations of complex microstructures is still a
demanding task. The difficulties lie in (i) describing the features of the local
material structure, (ii) reconstructing plausible 3D statistically representative vol-
ume elements (SVEs), e. g., from 2D slices like microscopy images, (iii) modeling
the complex and non-linear effective constitutive response and (iv) using it in an
efficient multiscale scheme.

In this contribution, we present recently developed methods that aim at address-
ing these issues and it is shown how to integrate them in an efficient workflow. De-
scriptors are employed to characterize complex microstructures. Examples of such
descriptors are volume fraction, generalized spatial n-point correlations or Gram
matrices of pre-trained convolutional neural networks. Corresponding SVEs are
generated using differentiable microstructure characterization and reconstruction
(DMCR). An advantage of DMCR over similarly efficient reconstruction algo-
rithms is that it allows to prescribe generic high-dimensional microstructure de-
scriptors as long as they are differentiable. The reconstructed structures are then
used for numerical simulation and effective properties are obtained from homoge-
nization techniques. Together with the descriptors of the local material structure,
SP linkages are set up.

As engineering data, including the SP linkages, are generally costly to generate,
inverse design has to cope with scarce data. We therefore employ a Bayesian opti-
mization approach and it is shown that significantly less data are needed in com-
parison to classical sampling procedures and alternative inverse design methods
which is due to the iterative data augmentation. The approach is demonstrated
for spinodoid metamaterials. In future work, the active learning augmentation
loop could be applied to a broader range of materials.
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Computational Homogenization in Nonlinear Material Modeling:
Accuracy – Efficiency – Flexibility

Björn Kiefer

(joint work with Martin Abendroth, Geralf Hütter, Nils Lange, Alexander Malik,
Vincent von Oertzen)

This contribution reflects on recent work in our group regarding computational
homogenization approaches. A more general discussion, and corresponding litera-
ture references, of similar developments in the scientific community can be found
in the publications cited below. In a two-scale setting, the main goal of numerical
homogenization in solid mechanics is to predict effective behavior of a material or
structure on the macroscopic scale, while directly taking into account microstruc-
tural information. This can also be accomplished by semi-analytical microme-
chanics techniques, but computational homogenization approaches offer a much
broader range of applicability, e.g., regarding complexity of the microstructure, or
in accounting for physical and geometrical nonlinearities as well as multiphysical
phenomena. When different methods are compared in the literature, the discussion
typically centers on computational efficiency. More precisely, this usually means a
comparison of online simulation costs to achieve a certain level of accuracy, while
offline efforts, to train a neural network prior to the actual analysis of the prob-
lem, for instance, are seldom quantified. We believe that a fair comparison should
also include several other criteria, such as flexibility towards adaptation, effort of
implementation, information sought, or even required hardware. The method of
choice will therefore generally depend on the context in which it is to be employed,
and the fastest method might not necessarily be the most suitable.

The FE2 method has the advantage of enabling high-fidelity (HF) computa-
tional analyses of inhomogeneous physical fields on both scales. This inherently
comes at the price of very high computational effort. However, by means of
a monolithic solution approach as well as reduced-order modeling (ROM) and
hyper-integration techniques, numerical speed-up factors of up to three orders of
magnitude were recently achieved, see [1, 2]. This has significantly increased the
competitiveness of the FE2 method and enabled its application to much larger
nonlinear problems. Figure 1 shows an example of a complex two-scale problem
and the comparison of on- and offline computational costs for different variants of
the method. As an alternative approach to modeling such foam-like structures,
a hybrid methodology was recently presented in [3]. It builds on the format of
a classical non-associative plasticity formulation, but incorporates feed-forward
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(a) Two-scale simulation of a
flow-through filter with aWeaire-
Phelan-type microstructure.

(b) Computational effort (online and
offline costs) relative to high fidelity
FE analysis on both scales.

Figure 1. Application example of the monolithic FE2 method
employing reduced-order modeling and hyper integration, see [2].
A finite strain, hypo-elastic creep problem with a total of ≈ 52
million degrees of freedom is considered.

neural networks (NN) to allow accurate descriptions of complex yield surfaces and
plastic flow potentials. Such a technique is much more efficient in the FEA of
large foam structures and simultaneously very general with respect to the nature
of the macroscopic behavior it can capture. Its downside is the immense effort
necessary to generate sufficiently rich virtual data sets for the training of the NN,
which also have to be regenerated each time a new microstructural topology is
considered. The monolithic hyper ROM FE2 method also requires off-line effort in
certain training steps, but its share of the total computational time is much lower,
e.g., about 3% in the example of Figure 1. In consequence, the hybrid method
will generally be more suitable if many macroscale computations with the iden-
tical microstructure are to be carried out. The FE2 method, on the other hand,
has advantages if FEA with many different, or even evolving, microstructures is
of main interest, and perhaps detailed knowledge of microscopic fields is required.
Our computationally most efficient tool for the macroscopic analysis of inelastic
foam structures was recently presented in [4]. It relies entirely on analytical ex-
pressions for the central functions of associative/nonassociative plasticity, whose
parameters are identified by means of nonlinear optimization. This calibration
procedure is similar to the NN training in the hybrid approach, albeit with much
lower requirements regarding the size and diversity of the data base generated by
microscale RVE simulations. The computational efficiency in this case comes at
the cost of flexibility regarding the range of possible macroscale behavior and gives
no insight into stress- or strain concentrations within the microstructure.

Finally, first ideas for a much more general theoretical treatment of homoge-
nization in space and time, based on the notion of weighted averaging operators,
were proposed in [5]. Even though phase-field modeling was considered as the
particular area of application therein, these fundamental concepts very generally
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apply to scale transitions in solid mechanics, including those lacking clear sepa-
ration of the considered scales, which is a key requirement for the computational
homogenization techniques discussed above.

A much more detailed quantitative comparison of the discussed approaches and
their algorithmic implementations based on representative numerical examples will
be given in a forthcoming journal paper currently in preparation.
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Rate-independent systems with non-convexities: Examples, solution
concepts, (time-) discretization schemes

Dorothee Knees

Many mechanical models can be interpreted as rate-independent systems. Classical
examples are models from plasticity, phase-field fracture or damage models that
are based on Griffith’s criterion and many others. In a variational setting one
can characterize them by prescribing an energy (functional) and a dissipation
(pseudo-) potential. If the energy is not convex or if the dissipation potential not
only depends on the velocity/rate at which states change but also on the state,
then solutions to such systems might be discontinuous in time even if the applied
loads depend smoothly on the time variable. In the last 25 years, several solution
concepts were developed that allow for discontinuous solutions and introduce jump
conditions for the discontinuities, see [13] for an overview.

A simple example showing that a continuous solution might not exist is a friction
problem for a gliding mass point pulled via an elastic spring, [10]. It is assumed
that the friction coefficient depends on the position of the mass. Neglecting inertia
terms the problem can be formulated as follows: Let z : [0, T ] → R denote the
position of the mass at time t and let ℓ(t) − z(t) be the elongation of the spring
at time t. The elastic energy stored in the spring is given by E(ℓ, z) = a

2 (ℓ − z)2

with a > 0 denoting Hooke’s constant. For modeling the friction we assume that
the normal force between the mass and the surface is constant but the friction
coefficient µ : R → [0,∞) depends on the position of the mass. In terms of the
dissipation potential R(z, v) = µ(z)|v| and the energy functional E the evolution
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problem reads as follows: Given an initial position z0 and a function ℓ : [0, T ] → R

find z : [0, T ] → R satisfying z(0) = z0 and

0 ∈ ∂vR(z(t), ż(t)) + DzE(ℓ(t), z(t)) .(1)

Observe that this evolution inclusion in particular implies that along solutions we
necessarily have −DzE(ℓ(t), z(t)) ∈ [−µ(z(t)), µ(z(t))]. In particular, the trajec-

tories t 7→ (ℓ(t), z(t)) lie in the set S := {(ℓ, z) ∈ R2 ; z − ℓ ∈ [−µ(z)
a , µ(z)a ]}. Let

now µ− > µ+ > 0 and µ(z) = µ− for z ≤ 0, µ(z) = µ+ for z > 1 and linearly
interpolated in between. Figure 1 shows the set S for the case µ− − µ+ > a.
Assume now that z0 < 0 and ℓ(t) = t + z0. There exists a (unique) Lipschitz
continuous solution to (1) until t∗ with ℓ(t∗) = µ

−

a but it is not possible to extend
this solution in a continuous way beyond this point.

This phenomenon is intrinsic to rate-independent systems when the dissipation
potential depends on the state (as in our example) or when the energy functional
is not convex. We refer to [5, 9] for an example with a non-convex energy involving
a crack propagation problem based on the Griffith fracture criterion.

Several solution concepts were developed allowing for discontinuous solutions
and introducing different jump criteria. The most popular ones are the concept of
Global Energetic Solutions [14] and the concept of Balanced Viscosity Solutions,
[2, 11]. The first one is derived from a time-incremental global minimization
scheme while the latter solution class is based on a vanishing viscosity analysis.

In the following we focus on balanced viscosity solutions for phase field fracture
and damage models and discuss different time-discretization strategies to approx-
imate such solutions. To simplify the presentation we stay in the two-dimensional
setting and consider the model by Ambrosio and Tortorelli.

Let Ω ⊂ R2 be a bounded domain with a Lipschitz boundary characterizing
the physical body that is assumed to be linearly elastic and that may undergo
damage if the applied loadings are large enough. Let u : [0, T ] × Ω → R2 denote
the displacement field and z : [0, T ] × Ω → R the scalar damage variable. Here,
z(t, x) = 1 means no damage at all while z(t, x) = 0 indicates maximum damage
in the material point x at time t. For simplicity we assume homogeneous Dirichlet
boundary conditions for the displacement field u, hence the state space for u is
chosen as U := H1

0 (Ω;R2). Given time dependent loads ℓ : [0, T ] → U∗ the energy
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functional E : [0, T ] × U × Z → R is given by

E(t, u, z) =

∫

Ω

g(z)
2 Ce(u) : e(u) +H(z) +

1

2
|∇z|2 dx− 〈ℓ(t), u〉.

Here, e(u) = sym(∇u) is the linearised strain tensor, C the (material dependent)
elasticity tensor and g,H are quadratic and convex functions with g(0) > 0 and
g′(0) = 0. For µ > 0 the dissipation potential is given by

R(v) =

∫

Ω

µ|v| + χ(−∞,0](v) dx .

Here, χK is the characteristic function associated with the set K and takes values
in {0,∞}. Given ℓ and z0 ∈ Z := H1(Ω) the task is to find displacements
u : [0, T ] → U and the damage field z : [0, T ] → Z satisfying z(0) = z0 and

0 = DuE(t, u(t), z(t)) ,(2)

0 ∈ ∂R(ż(t)) + DzE(t, u(t), z(t)) .(3)

The first equation is the static balance of linear momentum while the second en-
codes the evolution law for the damage variable. The existence of global energetic
solutions to (2)–(3) was proved in [3, 12, 16] (also with more general assumptions
on E), while the existence of balanced viscosity solutions was established in the
papers [7, 8]. Adapted to our notation we have the following theorem (see [7] for
precise assumptions) stating the existence of a parametrized balanced viscosity
solution

Theorem 1. There exist functions t̂ : [0, S] → [0, T ], ẑ : [0, S] → Z (both Lipschitz
continuous) and functions û : [0, S] → U and λ : [0, S] → [0,∞) with ẑ(0) = z0,
t̂(0) = 0, t̂(S) = T and such that for almost all s ∈ [0, S] the normalization and
complementarity conditions

t̂′(s) ≥ 0, t̂′(s) + ‖ẑ′(s)‖Z ≤ 1, λ(s)t̂′(s) = 0 ,

and the balance and evolution laws hold:

0 = DuE(t̂(s), û(s), ẑ(s)) , 0 ∈ ∂R(ẑ′(s)) + λ(s)ẑ′(s) + DzE(t̂(s), û(s), ẑ(s)) .

The proof starts from a time-discrete and viscously regularized version of (2)–
(3) and shows the convergence of (subsequences of) discrete solutions to balanced
viscosity solutions provided that the time step size and the viscosity parameter
vanish in a suitable relation. This approach could also serve as a starting point
for numerical procedures. However, as observed in [9], in practice it is difficult to
choose the time-step size and the viscosity parameter in a way such that discrete
solutions show the correct behavior when it comes to jump discontinuities.

A different discretization approach was introduced and analyzed in [2] for a finite
dimensional setting, extended in [4] to an infinite dimensional model class and in
[1] to phase field damage models. The idea is to consider trajectories of solutions
in a parametrized framework as in Theorem 1 and to discretize with respect to the
parameter s. This automatically enforces some time-adaptivity close to points,
where the solutions have a jump (with respect to the physical time).
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The scheme reads as follows: Fix a locality parameter ρ > 0 and a norm ‖ · ‖V
with V = Lα(Ω) and α large enough (depending on regularity properties). Given
(tk, uk, zk) determine the values (tk+1, uk+1, zk+1) as follows

(1) Constrained minimization: Determine (uk+1, zk+1) with

uk+1 = argmin{E(tk, v, zk+1) ; v ∈ U}

zk+1 = argmin{E(tk, uk+1, ζ) + R(ζ − zk) ; ζ ∈ Z, ‖ζ − zk‖V ≤ ρ}

(2) Time update: tk+1 := tk + ρ− ‖zk+1 − zk‖V .
(3) Repeat until tk+1 = T .

In [1, 15], we combined this idea with an alternate minimization scheme to solve
the minimization problems. It is shown in [1] that discrete solutions generated
with this scheme for ρ → 0 converge to V-parametrized balanced viscosity solu-
tions. The numerical experiments show that this scheme also is reasonable from a
numerical point of view.

In practice, for approximating solutions to models of Ambrosio-Tortorelli type,
pure alternate minimization schemes (staggered schemes) are frequently used.
In [15] we present an example with a separately quadratic and separately con-
vex energy (but not convex as a whole) and of a similar structure as in the
Ambrosio-Tortorelli case, where pure alternate minimization in the limit neither
generates global energetic solutions nor balanced viscosity solutions. Hence, a
physical/mechanical interpretation of solutions generated with a pure alternate
minimization scheme is not entirely clear, see also the analysis in [6].
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Multiscale Design of Architected Materials

Dennis M. Kochmann

(joint work with Jan-Hendrik Bastek, Siddhant Kumar, Li Zheng)

Advances in additive manufacturing have enabled the fabrication of architected
materials (often referred to as metamaterials) with the aim of creating novel
materials with as-designed, optimized, peculiar, extreme, or generally beneficial
properties. Among the mechanical properties of interest are, e.g., high specific
stiffness, strength, fracture toughness, but also energy absorption or the guidance
of mechanical linear and nonlinear stress waves. Designing such structures with
target properties requires theoretical-computational approaches for their inverse
design, answering the question: given target properties, what multiscale design re-
alizes those? By ‘multiscale design’ we refer to the optimization process on (at
least) two scales: while the macroscopic optimization problem aims for an opti-
mal geometric shape that beneficially distributes the mass of the body for a given
loading scenario, the microscopic inverse design problem aims to additionally iden-
tify microstructural designs on a smaller scale. Altogether this admits not only
optimizing a macroscopic objects (as in classical topology optimization), but it
moreover optimizes the local mechanical properties of that structure (by tuning
its architecture on a smaller scale).
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Classical approaches to enable such multiscale design include, e.g., two-scale
topology optimziation of beam lattices [1], in which the architecture on the smaller
scale selects unit cells with optimal local homogenized mechanical properties, while
the macroscale optimization routine (enabled by finite elements) yields optimal
shapes – altogether resulting in a spatially graded beam network with, e.g., max-
imum stiffness for a given load case. Besides beam-based designs, an analogous
two-scale topology optimization approach was used for spinodal-type architectures
representated by Gaussian random fields [2, 3]. Since the microscale architecture in
both cases (beam lattices and spinodoids) is not isotropic, the obtained optimized
structures can beneficially surpasse classical SIMP-based topology optimization.
Going beyond quasistatics, multiscale design can also tackle dynamic material
properties such as wave guidance in graded 2D beam networks. A recent approach
used ray tracing [4] combined with an adjoint-based optimization scheme to pre-
dict spatially variant beam lattices that were tuned to, e.g., redirect waves, focus
diverse waves at a point, or to split waves based on frequency [5].

In recent years, tools of machine learning (ML) have offered new opportunities
for the design of architected materials. For example, the combination of neural
networks for the forward prediction of effective material properties (such as the
homogenized effective stiffness of periodic beam unit cells) and for the inverse
prediction of structures with target properties have proven to be a powerful tan-
dem neural network strategy to accelerate both property prediction and inverse
design [6]. Trained on a large dataset of beam unit cells with their associated
pre-computed, homogenized 3D anisotropic elastic stiffness properties, the neu-
ral networks were able to accurately predict beam lattices with target anisotropic
stiffness for applications, e.g., in bone implants whose properties mimic that of nat-
ural bone [6]. Moreover, the use of variational autoencoders allowed to interpolate
between beam unit cells and to optimize their effective properties, interestingly
predicting structures with properties far outside the limites of all structures con-
tained in the training set [7]. Finally, video diffusion models have recently been
shown to impressively predict cellular structures (accounting for an elastoplastic
base material as well as frictional contact between parts of the structure) with an
as-designed nonlinear stress-strain response in compression [8]. Inspired by ML-
generated videos, this video diffusion approach yields not only optimal structures
with as-designed stress-strain behavior, but it also provides videos of the full-field
displacement and stress distribution inside the compressed structures (thus bypass-
ing costly finite element calculations, which were required only for the training set
generation).

Such ML-based approaches are generally beneficial when the underlying archi-
tecture can be described by a small set of microstructural descriptors and when
the target response (such as the elasticity tensor or the stress-strain curve) can be
described by a small set of parameters. It is to be expected that the emerging ML-
based tools for the inverse design of architected materials is only the beginning,
and more powerful and versatile tools are yet to come.
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Computational homogenization of metamaterials including solid-fluid
interaction

Varvara Kouznetsova

(joint work with Renan Liupekevicius, Hans van Dommelen, Marc Geers)

This talk will first present a brief overview of dynamic metamaterials, that pos-
sess architected substructure specifically designed to manipulate elastic/acoustic
waves. The microstructure of dynamic metamaterials is designed to provoke inter-
action between propagating mechanical waves and fine scale mechanisms, leading
to emerging phenomena, such as band gaps, i.e. frequency ranges in which waves
do not propagate or highly attenuated, negative refraction index etc. The un-
derlying physical mechanisms used in the design of dynamic metamaterials make
use of either Bragg scattering phenomenon, e.g. in Phononic Crystals (PC), or
localized microstructural resonances, which is the underlying principle of Locally
Resonant Acoustic Metamaterials (LRAM); a combination of these two distinct
physical mechanisms has also been proposed. This talk will specifically focus on
LRAM type of metamaterials. A few selected examples of potential applications
of LRAM metamaterials will be shown, e.g. filtering of forced vibration frequencies
in a metamaterial plate [1], wave filtering by positive/negative refraction [2] and
negative reflection from an LRAM metasurface [3].

Next, the need for computational methodologies able to describe the behaviour
of finite size metamaterial structures subjected to non-trivial (boundary) con-
straints and excitations will be addressed. To this, aim a computational ho-
mogenization framework is proposed. Departing from the previously developed
computational homogenization approach for solid LRAMs [4, 5], this contribution
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specifically focusses on air saturated poroelastic metamaterials with localized res-
onances [6]. At the unit cell scale, the linear elastic structural domain and the
fluid domain are modelled explicitly using the respective balance equations and
the fluid-structure interaction conditions at the interfaces. At the macroscale a
mixture approach is adopted. The micro- and macroscale problems are coupled
through an extended version of the Hill-Mandel principle, leading to a variationally
consistent averaging scheme of the microscale fields. The effective macroscopic
constitutive relations are obtained by replacing the microscale problem with a
reduced-order model. The reduced micro-scale model is obtained by projecting
the fully-resolved micro-scale model on the longwave basis and the local resonance
basis, yielding the closed-form expressions for the homogenized material prop-
erties. The resulting macroscopic model is an enriched porous continuum with
internal variables that represent the microscale local resonance dynamics at the
macroscale. The Biot model is recovered from the homogenized model as a special
case. Numerical examples demonstrate the framework’s validity in modeling wave
transmission through a porous layer, Figure 1.

Finally, the proposed framework is specialized and demonstrated for acoustic
labyrinthine metamaterials, consisting of a fluid (air) domain coiled by rigid solid
walls, exhibiting localized resonance in the fluid phase [7].

Figure 1. Transmission through an acoustic metamaterial layer,
computed using the fully resolved direct numerical simulation and
the proposed homogenization approach.
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Multi-scale modelling of plasticity and damage in dual-phase steels

Varvara Kouznetsova

(joint work with Lei Liu, Francesco Maresca, Johan Hoefnagels, Tijmen Vermeij,
Marc Geers)

Damage initiation in many multi-phase materials can be attributed to a peculiar
deformation mode, where one of the phases deforms anisotropically by forming ser-
rated, jagged interface impinging on another (approximately isotropic) phase. This
locally induces large strain concentrations at the fine scale in the near-interface
second phase, where nano-voids can form and grow, leading to damage and crack
formation. Examples include twins impinging on a grain boundary [1], crystalline-
amorphous interface [2] or martensite-ferrite interface in advanced multi-phase
steels, where martensite islands typically deform by sliding on the retained austen-
ite films [3].

This contribution presented multi-scale modelling framework to predict the
damage initiation and propagation at such interfaces using the dual-phase steel
(DP) microstructure as an example. Two scales are considered: the DP steel
mesoscale consisting of multiple lath martensite (M) islands embedded in a fer-
rite (F) matrix, and the microscale M/F interfacial zone unit cell resolving the
martensite substructure. Based on the emerging microscopic damage initiation
pattern associated with the substructure boundary sliding, an effective M/F in-
terface damage indicator is determined from the microstructural response, along
with the effective sliding of the martensite island. Relating these two effective
quantities leads to an effective interface damage indicator model in terms of the
mesoscopic kinematics [4]. The proposed multi-scale modelling framework is next
used to predict the damage initiation locations in an experimentally characterized
DP steel microstructure. At the majority of the considered M/F interface loca-
tions the damage indicator predicted by the model qualitative correlates very well
with the experimental observations [5].

Finally, an model for the interface damage propagation has been developed. In
addition to the classical cohesive interface deformation mechanism, the anisotropic
deformation of one phase, when favourably oriented, induces a distinct interface
opening mechanism. The proposed computational homogenization framework cap-
tures these two microscopic mechanisms, i.e. jagged damage and cohesive opening.
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(a) (b)

Figure 1. Martensite-Ferrite interface damage initiation in a
dual-phase steel (a) predicted by the developed multi-scale frame-
work and (b) identified experimentally.

The mesostructure, comprising multiple anisotropic particles in an isotropic ma-
trix, is modelled with interfaces represented by enriched cohesive zones. The micro-
scopic interfacial zone unit cell resolves the laminated structure of the anisotropic
phase, defining the effective interface separation and internal kinematic quantities
associated with the jagged and cohesive deformation mechanisms. The generalized
Hill-Mandel condition yields tractions work-conjugated to these internal kinematic
quantities, leading to a mesoscale enriched cohesive law identified through repre-
sentative microscopic unit cell simulations. Computational examples demonstrate
the importance of the jagged deformation mechanism on the interface damage de-
velopment, but also on the strain partitioning among the phases. The proposed
microphysics-based effective interface model provides a valuable tool for under-
standing and predicting interface damage in complex materials.
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Nonlocal hyperelasticity: Analysis of variational models involving
finite-horizon fractional gradients

Carolin Kreisbeck

(joint work with Javier Cueto and Hidde Schönberger)

Peridynamics, which was initiated in the early 2000s in a seminal work by Silling
and has attracted increased attention since (see, e.g. [3] and the references therein),
is a nonlocal formulation of continuum mechanics that models material behavior
based on the interactions between individual points. Unlike conventional mechan-
ics, it is a derivative-free approach that naturally accommodates discontinuities
like cracks and fractures, making it well-suited for modeling failure in complex
materials. While bond-based peridynamics models are rather limited in the mate-
rial properties they can describe, the generalization to state-based peridynamics,
where one considers the combined effect of bonds in a neighborhood of each point,
offers more flexibilty.

In this context, Bellido, Cueto & Mora-Corral in [1, 2] recently proposed a model
of nonlocal hyperelasticity, where the energy functionals are integral functionals
depending on nonlocal gradients, instead of usual deformation gradients as in the
classical theory; precisely,

E(u) =

∫

Ω

f(x,Ds
δu) dx for u ∈ Hs,p,δ

0 (Ω;Rm),(1)

with Ω ⊂ Rn a bounded Lipschitz domain, p ∈ (1,∞), and f : Ω × Rm×n → R

a Carathéodory function with p-growth and p-coercivity. The operators Ds
δ are

derived from the Riesz fractional gradient Ds (see e.g. [6, 4, 7]) with fractional
parameter s ∈ (0, 1); with its natural invariance and homogeneity properties, the
latter is a concept of fractional derivative well-suited for applications. The gradi-
ents Ds

δ combine these features with the benefits of a finite range of interaction,
called horizon δ > 0, which is particularly relevant for models on bounded do-
mains. For smooth functions ϕ ∈ C∞

c (Rn;Rm), the finite-horizon gradient Ds
δ is

given by

Ds
δϕ(x) = cn,s,δ

∫

Rn

ϕ(y) − ϕ(x)

|y − x|n+s
⊗

y − x

|y − x|
wδ(y − x) dy

with a non-negative smooth cut-off function wδ compactly supported in the ball
Bδ(0) ⊂ Rn and normalizing constant cn,s,δ > 0. Via duality, this definition can
be extended to weak derivatives, and the associated function spaces are defined
analogously to classical Sobolev spaces. After prescribing volumetric boundary
conditions by requiring zero values in a collar of thickness δ round the boundary

of the domain, one obtains the function space Hs,p,δ
0 (Ω;Rm), for which relevant

technical tools such as Poincaré inequalities and compact embeddings [1, 5] are
available. Besides, we mention a lemma about strong convergence in the collar
region. It follows as a consequence of a nonlocal Leibniz rule and states that

any weakly converging sequence in Hs,p,δ
0 (Ω;Rm) converges strongly in Lp in any

compact set contained in Ω \ Ω−δ with Ω−δ := {x ∈ Ω : dist (x, ∂Ω) > δ}.
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The overall goal of the featured work [5] is to contribute to the development
of an existence theory and asymptotic analysis for variational problems involving
nonlocal gradients, both of which are substantial for putting nonlocal hyperelas-
ticity on a solid mathematical footing. Based on the direct method, we address
the following aspects: Characterization of weak lower semicontinuity of E , varia-
tional convergence for parameter-dependent families of nonlocal integral function-
als, including relaxation and homogenization, and localization as the fractional
parameter tends to 1.

To provide some more detail, we start by pointing out that quasiconvexity,
the natural convexity notion in the classical calculus of variations, turns out to
characterize weak lower semicontinuity also in the nonlocal setting.

Theorem 1 [5, Theorem 5]. The functional E is (sequentially) weakly lower
semicontinuous if and only if f(x, ·) is quasiconvex for a.e. x ∈ Ω−δ.

As a consequence of a general Γ-convergence statement (see [5, Theorem 6]),
one can infer nonlocal analogs of classical relaxation and homogenization results.
These allow to capture the effective behavior of materials with microstructure
formation and periodic small-scale heterogeneities, respectively.

Theorem 2 [5, Corollary 3 and 4]. (i) The relaxation Erlx of the functional E,
that is, its weak lower semicontinuous envelope, is given by

Erlx(u) =

∫

Ω
−δ

fqc(x,Ds
δu) dx+

∫

Ω\Ω
−δ

f(x,Ds
δu) dx

for u ∈ Hs,p,δ
0 (Ω;Rm), where fqc is the quasiconvexification of f .

(ii) Suppose Eε for ε > 0 is given as in (1) with a density fε := f( ·
ε , ·) and

f : Rn × Rm×n → R (0, 1)n-periodic in the first variable. Then,

Ehom(u) = Γ(Lp)- lim
ε→0

Eε(u) =

∫

Ω
−δ

fhom(Ds
δu) dx+

∫

Ω\Ω
−δ

f(Ds
δu) dx

for u ∈ Hs,p,δ
0 (Ω;Rm), where fhom denotes the homogenized integrand determined

via the classical multicell formula, and f is obtained by taking the average of f in
the first variable.

Note that the integral contributions over Ω−δ in the previous theorem feature
precisely the same integrands as in the corresponding (by now) standard local
theories. The reason for this parallel is rooted in the translation method explained
below. On the other hand, the behavior in the boundary layer is due to the strong
convergence in the collar.

Finally, as a consistency check for the newly proposed model, we establish a
rigorous link with its classical counterpart by studying the limiting behavior as the
fractional index s tends to 1. The nonlocal gradient Ds

δ localizes to the classical
one and the same can be confirmed for the associated variational problems.

Theorem 3 [5, Theorem 7]. Let Es for s ∈ (0, 1) be as in (1) with f quasiconvex
in its second variable. Then, the family (Es)s is equi-coercive and Γ-converges with



710 Oberwolfach Report 11/2024

respect to Lp-convergence as s→ 1 to a limit functional that is determined (up to
a constant) by

E1(u) =

∫

Ω
−δ

f(x,∇u) dx for u ∈W 1,p
0 (Ω−δ;R

m).

Our analysis and the proofs of Theorems 1-3 rely significantly on one key techni-
cal ingredient, namely, suitable translation operators that facilitate switching be-
tween the nonlocal and classical gradients. Precisely, it holds for ϕ ∈ C∞

c (Rn;Rm)
that

Ds
δϕ = ∇(Qs

δ ∗ ϕ) and ∇ϕ = Ds
δ(Ps

δϕ),

where Qs
δ is a compactly supported integrable kernel function, and Ps

δ is the inverse
of the convolution with Qs

δ, see [1, 5]. A generalization of these identities to
functions in (nonlocal) Sobolev spaces (see [5, Theorem 2]) gives rise to a useful
method for transferring well-established results on local problems to the nonlocal
setting, with applicability also beyond the problems discussed here.
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Optimal Korn-Maxwell-Sobolev inequalities

Peter Lewintan

(joint work with Franz Gmeineder, Patrizio Neff, Stefan Müller,
Jean Van Schaftingen)

We present a complete picture of coercive Korn-type inequalities for generalised
incompatible fields, and optimally extend and unify several previously known in-
equalities that are crucial to the existence theory for a variety of models in con-
tinuum mechanics. More precisely, we classify completely the interplay between a

space dimension n ∈ N, an integrability p ≥ 1, an algebraic part map A : V → Ṽ
and a linear homogeneous k-th order differential operator B =

∑
|α|=k

Bα∂
α with
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linear Bα : V → W , whereby V , Ṽ and W denote finite dimensional spaces, such
that

‖P‖Xk,p(Rn) ≤ c
(
‖A [P ]‖Xk,p(Rn) + ‖BP‖Lp(Rn)

)
∀ P ∈ C∞

c (Rn;V ),

with a constant c = c(n, p,A ,B) > 0 and function spaces Xk,p(Rn) chosen in such
a way that this inequality scales suitably.
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Natural fluctuations in slip-dominated mechanics: Stochastic solver
for crystal plasticity simulations

Jaime Marian

The deformation of crystalline materials by dislocation motion takes place in dis-
crete amounts determined by the Burgers vector. Dislocations may move indi-
vidually or in bundles, potentially giving rise to intermittent slip. This confers
plastic deformation a certain degree of variability that can be interpreted as being
caused by stochastic fluctuations in dislocation behavior. However, crystal plas-
ticity (CP) models are almost always formulated in a continuum sense, assuming
that fluctuations average out over large material volumes and/or cancel out due
to multi-slip contributions. Nevertheless, plastic fluctuations are known to be im-
portant in confined volumes at or below the micron scale, at high temperatures,
and under low strain rate/stress deformation conditions. Here, we present a sto-
chastic solver for CP models based on the residence-time algorithm that naturally
captures plastic fluctuations by sampling among the set of active slip systems in
the crystal. The method solves the evolution equations of explicit CP formula-
tions, which are recast as stochastic ordinary differential equations and integrated
discretely in time. The stochastic CP model is numerically stable by design and
naturally breaks the symmetry of plastic slip by sampling among the active plastic
shear rates with the correct probability. This can lead to phenomena such as in-
termittent slip or plastic localization without adding external symmetry-breaking
operations to the model. To demonstrate its capabilities, the method is applied
to body-centered cubic tungsten single crystals under a variety of temperatures,
loading orientations, and imposed strain rates.
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Concepts in Linking Nonequilibrium Statistical Mechanics of
Thermally Activated Dislocation Ensembles to Internal State

Variable Theory

David McDowell

This work lends new insight into the interpretation of internal state variable (ISV)
theory and fundamentals of the behavior of thermally activated dislocation en-
sembles. We formally define physical concepts undergirding ISV theory such as
configurational subsystems (e.g., individual grains or phases), constrained local
equilibrium, and thermally activated dislocation reactions in the context of crys-
tal plasticity and then implement these concepts within a nonequilibrium statisti-
cal thermodynamics framework. The primal importance of the Gibbs free energy
barrier to dislocation reactions within each subsystem is emphasized since the
enthalpy barriers are affected by local constraint and resulting long-range and
short-range athermal internal stresses acting within subsystems. On this basis,
thermal and configurational intrinsic entropy change are formally introduced at
each step in the same way as in first principles methods based on probability
of pending dislocation reactions. We distinguish equilibrium thermodynamics up
to the saddle point of reactions, for which change of both configurational and
thermal entropy applies, from post-saddle point extended glide of dislocations,
which couples with the thermal bath via dispersive phonon dynamics. We in-
troduce the concept of “degree-of-correlation” of thermally activated dislocation
processes both within each subsystem and across the overall ensemble of subsys-
tems, based on the ratio of the weighted average enthalpy barrier to the maximum
(rate-limiting) enthalpy barrier, and argue that nonequilibrium trajectories pro-
gressively trend towards correlated behavior of the ensemble by virtue of internal
stress redistribution among subsystems that are favorable and unfavorable to reac-
tions. The degree-of-correlation is a many-body concept involving populations of
dislocations within and among various configurational subsystems. The maximal
intrinsic entropy production heuristic is considered in light of the concept of pro-
gressive increase in the degree-of-correlation of enthalpy barriers within and among
subsystems. It is suggested that this framework may be useful as a scaffold for
application of machine learning to use disparate information from atomistic and
discrete dislocation dynamics simulations to inform likely estimates of reduced
order ISV models.

Computations with heterologous continua: Mesoscale phase field
model for high T solid mechanics

Sinisa Mesarovic

The mechanisms of sintering and creep are based on diffusion of atoms: through
the bulk of crystals, through interfaces between the grains, and, through surfaces
(grain-gas interfaces), and their subsequent deposition on the surface. The process
is driven by surface energy of internal surfaces and it may be aided by applied
macroscopic stress, and even by plastic deformation. To study the mechanisms on
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the mesoscale, a computational phase field model for moving interfaces is indicated,
which should include stress and concentration driven diffusion through bulk and
surfaces, as well as the growth of new lattice. In the early stages of sintering,
the gas flows out of the domain, while in the later stages, when pores cease to
percolate, the gas is compressed in closed pores.

Modeling of solids with diffusion requires formulation of lattice continuum,
whereby the material is represented by lattice sites (as opposed to the traditional
mass continuum where the material is identified with mass). With gas represented
by mass continuum, we are faced with the problem of formulating the phase field
model which encompasses heterologous continua.

Specifically, the unique continuous velocity/displacement fields that character-
ize the phase field formulation must undergo rapid transitions at (diffuse) in-
terfaces. These transitions account for lattice growth rates of grains which are
diffusion-controlled and defined relative to the lattice velocity. We present prelim-
inary computational results and theoretical analysis.

A few outstanding problems in the theory of composites

Graeme Milton

This talk presented three outstanding problems in the theory of composites. The
first concerned extremal materials in linear elasticity. In three dimensions the
non-trivial ones can be classed as unimode, bimode, trimode, quadramode, and
pentamode, according to the number of independent easy modes of deformation,
or equivalently according to the number of very small eigenvalues of the elasticity
tensor [8]. (The prefixes come from those of polygons) The simplest pentamodes
have a diamond like structure with each bond being replaced by a double cone, so
that four conical tips meet at each node. Balance of forces means that the tension
in one double cone determines the tension in the three other double cones that
meet it at the node, and by induction the stress in the material. Like rubber they
can be stiff to hydrostatic compression, yet very compliant to shearing. Unlike
rubber, pentamodes can be structured so that the stiff mode is not hydrostatic
but rather a linear combination of a hydrostatic and a shear loading. This allows
them to be useful for guiding stress. Applications of pentamodes include cloaking
[14, 15] and using them for seismic isolators [16]. Both isotropic and anisotropic
pentamodes have been studied numerically, physically constructed, and studied
experimentally: see, for example, [3, 4, 17, 5, 2, 18, 13, 7]. The bicycle company
Specialized uses what are essentially pentamodes in some of its bicycle seats that
are manufactured by the 3-d printing company Carbon. By superimposing pen-
tamodes, distorting the structures to avoid clashes, if necessary, one can obtain
any extremal material. However, this construction is rather unsatisfactory when
one considers finite, rather than infinitesimal, deformations as then the pentamode
substructures will collide, or interact with each other if the intervening space is
filled with an extremely compliant material rather than void. So one question
is whether one can get all possible materials that in addition to being extremal
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still function under finite deformation? One can, for example, get quadramode
materials by adding additional double cone links between nodes in a pentamode
structure, but it is doubtful whether one can get all quadramode materials in this
way.

A second problem concerns three or two dimensional composites of an elastic
materials with void (or for technical reasons it may just be extremely compliant
rather than being truly void). Confining attention to isotropic composites the ef-
fective (bulk, shear) moduli are confined to a rectangle in the (bulk, shear) plane
given by the well-known Hashin-Shtrikman bounds [1]. One question is weather
one can improve these bounds, or alternatively identify microostructure attaining
the Hashin-Shtrikman shear modulus bound, but not the Hashin-Shtrikman bulk
modulus bound. Microstructures have been identified that attain the Hashin-
Shtrikman bulk modulus bound, but which have arbitrarily small shear modu-
lus bound [11]. However these microstructures get ripped apart under any finite
shearing deformation. So the question is then whether one can obtain bounds and
optimal microstrucure for finite shears, rather than just infinitesimal ones. Similar
questions can be asked for anisotropic composites [11].

A final question concerned deformations of periodic arrangements, in two or
three dimensions, of rods linked by hinges. The Guest-Hutchington modes are
revealed by looking for periodic infinitesimal deformations. However, deformations
need not be macroscopically affine: see, for example, [9, 10]. So the problem is
to identify the deformations that are not macroscopically affine. Can they be
obtained from the periodic deformations in the limit as the size of their unit cell,
relative to the size of the unit cell of the underlying periodic rod-hinge structure
approaches infinity?

Of course there are many more open questions, some of which are discussed in
the paper [12]. One of them has been solved by Christian Kern, who, much to my
surprise, found that hierarchical laminate materials could reproduce the change of
sign of the Hall coefficient found in interlocking ring structures [6].
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Extensions of the Cahn-Hilliard equation to temperature
dependent settings

Anja Schlömerkemper

The Cahn-Hilliard equation is an equation of mathematical physics that models
the dynamics of binary media. This talk is a presentation of the main ideas
of the article [1]. We derive and di extensions of the Cahn-Hilliard equation.
The derivation of the models is based on a combination of methods from non-
equilibrium thermodynamics and an energetic variational approach. Furthermore,
we use approach to derive models available in the literature. For a comparison of
the various models see [1]. The standard double-well potential in Cahn-Hilliard is
replaced by a temperature dependent variant that allows a transition from double-
well to single-well potentials as temperature increases. Moreover, tickness of the
diffuse interface is allowed to vary with temperature. That is, the starting point
is a free energy of the form

ψ(φ,∇φ, θ) =
ǫ̃(θ)

2
|∇φ|2 +

1

ǫ̃(θ)

(
W (φ) + c(θ)φ2

)
− g(θ),

where φ denotes the phase field function and θ the temperature. We focus on
two different assumptions on the transport property of the temperature. In a first
model we assume that the temperature is transported along the trajectory of the
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flow map of the effective vel of the microscopic particles. In a second model we
assume that the temperature is fixed on a background and is thus independent of
the flow map. By assuming in addition suitable dissipation potentials, wain two
models that satisfy the first and second law of thermodynamics. We address the
question of which model is to be considered more appropriate from a mathematical
perspective. We investigate well-posedness of the systems, which might be used
as a selection criterion. Whhe first model causes difficulties due to a singularity
of the phase field parameter, the second model is proven to have unique classical
solution. To this end, we work on the whole space and consider smaitial data in
Besov spaces. Then, by a fixed-point argument and use of the Littlewood-Paley
decomposition, we prove existence of classical solutions for small times.

References
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Essential boundary conditions in FFT-based
computational micromechanics

Matti Schneider

(joint work with Lennart Risthaus)

Computational homogenization methods based on the Fast Fourier Transform
(FFT) have been established in recent years as powerful computational approaches
to handle materials with heterogeneous microstructure represented on a discrete
(voxel) grid.

In its original formulation, the method imposes periodic boundary conditions
on the displacement fluctuation. There is a number of situations, however, where
other boundary conditions like essential, i.e., clamping, boundary conditions would
be more favorable, i.e., for non-periodic microstructures, e.g., coming from micro-
CT, or when actual micro-experiments are simulated. Unfortunately, the approach
which is successful for thermal conductivity, i.e., using the discrete sine transform,
does not work, essentially due to the mixing of sine and cosine terms appearing
for the shear terms. Workarounds in the literature impose essential boundary
conditions via Lagrange multipliers, which is possible, but comes at the expense
of a deteriorated numerical performance.

In the talk, we introduce a trick which permits to impose essential boundary
conditions in FFT-based computational micromechanics in such a way that the
entire solver technolology established in the periodic setting becomes available in
the case at hand, as well. We demonstrate the potential of the novel piece of
technology by dedicated computational experiments.
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A data-based derivation of internal stress for the coarse-graining in
dislocation-based plasticity

Katrin Schulz

The plasticity properties of metal, such as strength and ductility, are governed
by the movement and the interaction of dislocations. Therefore, for small scale
simulations, incorporating the knowledge regarding dislocation dynamics becomes
more important due to the existence of size effect and micro level heterogeneity.
Among the pioneer works, a key component capturing the microscopic character-
istics is the back stress conjugated with the defect energy potential [1]. The defect
energy potential is often assumed to be of a quadratic form and derived based
on thermodynamic consistency. The resulting back stress will be of the second
order gradient of plastic strain, and shows good capability for simulating mate-
rial behaviour at smaller scales. However, until now, the exact formulation of the
defect energy potential and the back stress term as well as the connection to the
dislocation characteristics stay unclear.

In this presentation, we thus introduce a framework for the derivation of the
back stress term based on the statistical analysis of data from discrete dislocation
dynamic simulations. By investigating the dislocation structure formation within
the coarse graining benchmark systems under various combinations of numerical
and microstructure conditions, e.g. element size, initial dislocation density, and
the gradient of geometrically necessary dislocations, the heterogeneous dislocation
structures formation within an element is identified. The resulting structure can
be further predicted by the collected data base statistically or by a machine learn-
ing approach. We derive the near field correction stress within a coarse-grained
system according to the uneven stress field induced by the heterogeneous dislo-
cation structure formation. The derivation is assumed to be a mechanism-based
explanation applicable to the back stress within gradient plasticity theory.
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Elastic interactions in Object kinetic Monte Carlo for defect
evolution: Hydrogen and radiation defect migration

Javier Segurado

(joint work with Rodrigo Santos-Güemes, Gonzalo Álvarez, Christophe Ortiz)

Object Kinetic Monte Carlo (OkMC) allows to study evolution of defects as well as
solute atoms in materials without the severe time and size limitations of atomistic
approaches. In OkMC migration takes place by overcoming an energy barrier. In
the presence of an elastic field this barrier is modified, and the defects jump with
probabilities biased by the spatially dependent elastic fields. This work will present
first an FFT based approach to introduce the elastic fields caused by any type of
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dislocation, point defects, solute atoms and second phases in OkMC simulations
[1]. The elastic fields of mobile and immobile dislocation lines are pre-computed
using Field Dislocation Mechanics with a non-singular core description solved using
a FFT approach. During the OkMC simulation, for each possible defect jump, the
elastic energy contribution is computed multiplying the external stress with the
defect strain field moved to the position of interest by the shift theorem. The model
will be applied to study the migration of prismatic loops and self-interstitials in
iron, accounting for their mutual interaction and the presence of other immobile
dislocations. The second part of the talk will propose a method to use non-
regular grids in the computation of the elastic fields produced by dislocation and
other defects [2]. This method allows to concentrate several Fourier points near
dislocation lines to accurately represent their core and inelastic strain.
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A new look at twin branching in shape memory alloys: a 1D
continuum model and energy dissipation effects

Stanis law Stupkiewicz

(joint work with Seyedshoja Amini, Mohsen Rezaee-Hajidehi)

Twin branching is a commonly observed phenomenon in martensitic transfor-
mations in shape memory alloys. Competition between interfacial and elastic
strain energy contributions leads to the refinement of twin laminates close to the
macroscopic interface between twinned martensite and austenite. The correspond-
ing scaling laws have been widely studied starting from the work of Kohn and
Müller [1]. In a discrete setting, Seiner et al. [2] developed an explicit, low-energy
construction of the branched microstructure that is able to realistically predict the
twin spacing and the number of branching generations.

In this work, we develop a 1D continuum model of twin branching. The free
energy of the branched microstructure comprises the interfacial and elastic strain
energy contributions, the latter calibrated using the respective upper-bound esti-
mate derived by Seiner et al. [2]. The total free energy is then minimized, and
the corresponding Euler-Lagrange equation is solved numerically using the finite
element method. The results show a good agreement with the model of Seiner
et al. [2] in the entire range of physically relevant parameters. Importantly, our
continuum framework admits incorporation of energy dissipation. The effect of
rate-dependent and rate-independent dissipation on the evolution of the branched
microstructure can thus be studied.
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Different peridynamic approaches to wave propagation and
dynamic fracture

Kerstin Weinberg

In the sense of a non-local continuum formulation, peridynamics describes the
interactions between material points. In its original version it refers to only one
spring-like stiffness parameter and, thus, the standard bond-based peridynamic
model is not consistent with classical linear elasticity. Several extensions have been
introduced since. In this contribution, we present different current peridynamic
material formulations and study their ability to model motion, wave propagation
and dynamic fracture.

In general, the position of a material point inside a body B0 is described in a
reference placement as X and in its current position as

(1) x = X + u

with the displacement u(X). In peridynamics, material points interact with other
points inside of their a neighborhood H, which is defined as the set of points inside
a sphere with the radius δ ∈ R

+, also named the horizon. The interaction of
the point X with its neighbor X′ is called bond. The evaluation of the bond
interactions for all X ∈ B0 results in the peridynamic integro-differential equation
of motion, cf. [1, 2].

ρ0 ü(X, t) =

∫

H0

f(X,∆X, t)dV ′ + b0

ext(X, t) ∀X ∈ B0 , t ≥ 0 .(2)

For numerical simulation, the continuum is typically point-wise discretized,
which, together with the underlying non-local continuum mechanics formulation,
makes it ideally suited for dynamic fracture simulation. An important implica-
tion is the correct treatment of elastic waves, such as pressure and stress waves
inside a body. This motivated us to investigate and compare the elastic wave
propagation behavior of a bond-based peridynamic, a continuum-kinematics-based
peridynamic, and a non-ordinary state-based peridynamic formulation [3, 4].

As illustrated in Figure 1, we found significant differences in the ability of the
different peridynamic formulations to reproduce a material’s wave speed. Using
the example of a longitudinal pressure wave inside an elastic bar, we show that the
different formulations approach the the classical solutions to a different extent.

All simulations are performed with our Julia package Peridynamics.jl [5].
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Figure 1. Wave propagation velocity c, calculated with different
discretizations from 6400 up to 2700000 material points
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Waves in materials with heterogeneous microstructures

Christian Wieners

Materials with periodic microstructures are well studied in the literature:

• The effective equations for static and quasi-static elasticity can be com-
puted efficiently with the FE2 approach (see [6] for an efficient implemen-
tation also for quasi-static plasticity with damage).

• The limit equation for compressional waves in a layered medium is explic-
itly known (also for stochastic material parameters, see [5]).

• The two-scale limit of the linear Maxwell model is the Debey model with
convolution in time [7]. Therefore, the technique of periodic unfolding is
adapted to the Symmetric Friedrichs System

Lδu = Mδ∂tu +Dδu +Au , u = (E,H)⊤
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with periodic symmetric matrices Mδ, Dδ, and Au = (− curlH, curlE)⊤

(see [2, 1] for the comprehensive analysis).

Here we show that the two-scale analysis can be generalized to weak solutions of
general symmetric Friedrichs systems and that this approach also applies to visco-
elastic solids. The homogenization limit for the corresponding first-order system
for velocity and stress (v,σ)⊤ with A(v,σ)⊤ = (div σ,∇symv)⊤ also yields a
convolution in time. A special case are Generalized Standard Linear Solids [4],
where the convolution kernel is approximated by memory variables.

For the evaluation of the effective model we use the formulation for weak so-
lutions of first-order systems summarized in [3] based on the LL∗ method which
yields a uniform bound for the solution in L2 for δ ∈ (0, δ0), so that a weak limit
for δ −→ 0 exists.

Finally we indicate that also for general microstructures which are not neces-
sarily periodic an adaption of the FE2 in form of a Petrov-Galerkin system can be
derived to approximate the effective solution on a coarse mesh with suitable test
functions which are defined backward in time and can be approximated on a fine
mesh.
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Concurrent Atomistic-Continuum Simulation of the Plastic Flow in
Heterogeneous Alloys

Liming Xiong

In this talk, we present a concurrent atomistic-continuum (CAC) methodology
and its applications in modeling the dislocation-mediated plastic flow in hetero-
geneous alloys. As a multiscale simulation tool built upon a formulation that
unifies the atomistic and continuum description of materials, one main unique fea-
ture of CAC is to retain the microscale dislocation slip, the atomic-scale dif- fusion
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and kink dynamics on the dislocation line, as well as the nanoscale grain bound-
ary (GB) structure evolution all within one model. The applicability of CAC is
demonstrated through: (i) modeling the dislocation loop nucleation and growth
from atomistic to microscale; (ii) characterizing the core structure/stress hetero-
geneity induced by atomic-level diffusion along a micrometer-long dislo- cation
line; (iii) quantifying the stress concentration induced by the slip-GB reaction
and its contribution to the subsequent structure changes, such as GB structure
reconfiguration, phase transformation, dislocation transmission and so on. The
limitations of the single-scale methods in modeling these material defor- mation
behaviors are highlighted. The extension of CAC to a finite-temperature CAC
through phonon density states-based algorithm are discussed.

Outcome: Providing the community with an alternative vehicle to bridge
atom- istic with continuum by formulating the local stress-/GB-state based metrics
of slip transfer that can be informed into higher scale models, such as dislocation
dynamics (DD) or crystal plasticity finite element (CPFE); for simulating the
plastic flow in heterogeneous alloys under deformation.

Open Questions: How to consolidate the CAC simulation results into the
constitutive rules or slip transfer metrics that can be used in computer software
at the engineering scale?

Universal Deformations in Nonlinear Elasticity and Anelasticity

Arash Yavari

For a given class of materials, universal deformations are those deformations that
can be maintained in the absence of body forces and by applying only bound-
ary tractions. Universal deformations play a crucial role in nonlinear elasticity:
i) They have had an important organizational role in the semi-inverse solutions
in nonlinear elasticity (and anelasticity), and ii) they offer guidance for designing
experiments for determining the constitutive relations of a specific material. Their
systematic study was initiated in the 1950s by Jerry Ericksen [2, 1] for homoge-
neous compressible and incompressible isotropic solids.

First, universal deformations for homogeneous transversely isotropic, ortho-
tropic, and monoclinic solids are discussed [3]. In this case, there are no general
solutions unless universal material preferred directions are also specified. It is
shown that for compressible transversely isotropic, orthotropic, and monoclinic
solids universal deformations are homogeneous and that the material preferred di-
rections are uniform. Next, for incompressible transversely isotropic, orthotropic,
and monoclinic solids we derive the corresponding universality constraints. These
are constraints that are imposed by equilibrium equations and the arbitrariness
of the energy function. We show that these constraints include those of incom-
pressible isotropic solids. Hence, we consider the known universal deformations
for each of the six known families of universal deformations for isotropic solids
and find the corresponding universal material preferred directions for transversely
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isotropic, orthotropic, and monoclinic solids. We next extend Ericksen’s analy-
sis of universal deformations to inhomogeneous compressible and incompressible
isotropic and anisotropic solids [4, 5]. We show that a necessary condition for
the known universal deformations of homogeneous isotropic solids to be universal
for inhomogeneous solids is that inhomogeneities respect the symmetries of the
deformations. Symmetries of a deformation are encoded in the symmetries of its
pulled-back metric (or its right Cauchy-Green strain). We show that this necessary
condition is sufficient as well for all the known families of universal deformations
except for Family 5. Finally we consider both compressible and incompressible in-
homogeneous transversely isotropic, orthotropic, and monoclinic solids. We show
that the universality constraints for inhomogeneous anisotropic solids include those
of the corresponding inhomogeneous isotropic and homogeneous anisotropic solids.
For compressible solids, universal deformations are homogeneous and the mate-
rial preferred directions are uniform. For each of the three classes of anisotropic
solids we find the corresponding universal inhomogeneities–those inhomogeneities
(position dependence of the energy function) that are consistent with the uni-
versality constraints. For incompressible anisotropic solids we find the universal
inhomogeneities for each of the six known families of universal deformations.
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Geometry of needle-like microstructures in martensites

Barbara Zwicknagl

(joint work with Sergio Conti, Nora Lüthen, Martin Lenz, Martin Rumpf, and
Jan Verhülsdonk)

In this talk, we discuss recent analytical and numerical results obtained in [1, 2, 3,
4] on special martensitic microstructures as they have been observed experimen-
tally in a variety of materials, such as shape-memory materials including NiAl-
alloys or YBCO materials (see e.g. [7]). These needle-like patterns are essentially
two-dimensional laminated structures where one variant occurs in a needle-type
shape that thins out close to a macrointerface. Such structures can be observed
at length scales from nano- to milimeters.

Our aim is to understand the geometry of these needle-type structures, in par-
ticular the tapering length scale and the bending angle.
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We follow the variational approach to model pattern formation in martensites
in the framework of the phenomenological theory of martensite (see [5]). We
focus on a cell of periodicity of the laminated structure and characterize optimal
needle-structures as solutions to a shape-optimization problem, minimizing the
elastic energy in the transition layer around the macrointerface. For that, we
consider both, geometrically nonlinear and geometrically linear elasticity. It has
been observed in several numerical studies in the literature before (see e.g. [2, 4]
for an overview of some references) that models based on linearized elasticity are
often not able to reproduce the experimentally observed patterns, while on the
other hand geometrically linear models have proven to be sufficient to predict the
bending of the needle from its (measured) tapering length (see e.g. [6] and the
references therein).

Our findings support these observations and underline in particular that ge-
ometrically nonlinear elasticity is necessary to determine the length scale of the
needle tapering. Precisely, we study numerically and analytically the infimal en-
ergy in terms of three problem parameters, namely the order parameter δ related
to the eigenstrains of the martensitic variants, the tapering length ℓ of the needle,
which determines the size of the transition layer, and the volume fractions of the
two variants in the laminated structure. It turns out that in the geometrically
linearized setting, the minimal energy in the transition layer decays as ℓ−1 as the
tapering length of the needle ℓ tends to infinity. This shows that the optimal ta-
pering length scale in the geometrically linearized setting is +∞, which does not
reflect experimental finding. In contrast, in the geometrically nonlinear setting,
the optimal tapering length behaves as δ−1, i.e., it is inversely proportional to
the order parameter. This is shown numerically in [2, 3] and made analytically
rigorous in terms of scaling laws for the infimal energies in [1, Theorems 3.1 and
4.1]. A main ingredient in the quantitative numerical comparison of the nonlinear
and the linearized setting are problem-adapted elastic free energy densities (see
[3, 4] and the references therein).

We also consider more complex interfaces where needle-type structures of differ-
ent orientation meet. Experimental findings often show certain long-range effects.
More precisely, needle tips seem to influence the shapes of the other laminate in
front of them (see e.g. [7]). Our numerical results in [3] indicate that such trans-
parency effects can also be explained as a result of elastic energy minimization.
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[2] S. Conti, M. Lenz, N. Lüthen, M. Rumpf and B. Zwicknagl, Geometry of martensite needles
in shape memory alloys, Comptes Rendus Mathematique 9-10 (2020), pp. 1047–1057.
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Institut für Mathematik
Universität Würzburg
Emil-Fischer-Straße 40
97074 Würzburg
GERMANY

Jun.-Prof. Dr. Matti Schneider

Universität Duisburg-Essen
Abteilung Bauwissenschaften
Institut für Ingenieurmathematik
Universitätsstr. 2
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