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Guillermo Cortiñas, Buenos Aires

Søren Eilers, Copenhagen
Elizabeth Gillaspy, Missoula
Roozbeh Hazrat, Sydney

10 March – 15 March 2024

Abstract. This workshop aimed to strengthen ties and foster collaborations
between different communities working on combinatorial ∗-algebras, including
C∗-and pure algebraists.

Mathematics Subject Classification (2020): 16S88, 19K35, 37A55, 46L35, 46L55, 46L80.

License: Unless otherwise noted, the content of this report is licensed under CC BY SA 4.0.

Introduction by the Organizers

The half-size workshop Combinatorial ∗-algebras, organized by Guillermo Cortiñas
(Buenos Aires), Søren Eilers (Copenhagen), Elizabeth Gillaspy (Missoula) and
Roozbeh Hazrat (Sydney) was well attended with 26 participants with broad ge-
ographic representation from all continents. This workshop was a nice blend of
researchers with various backgrounds, including operator algebraists, ring theo-
rists and semigroup theorists. The participants ranged from leading experts in the
field to younger researchers and also some graduate students. Twenty-five 50min
talks presented a wide range of the latest results on the theory and its applications,
reflecting a good mix of nationalities and age groups.

Here is a more detailed description of the talks.

Groupoids and their full groups

Becky Armstrong considered, for an ample groupoid G with compact unit space,
the representation ρ : C[F (G)] → ACG of the complex group algebra of the full
group to the Steinberg algebra. She gave necessary and sufficient conditions for
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the injectivity/surjectivity of ρ, and discussed conditions under which the image
of ρ is dense in the full and the reduced C∗-algebras of G.

Xin Li presented a construction that associates a permutative category BG to
any ample groupoid G with locally compact Hausdorff unit space G(0). His main
results are that the groupoid homology of G is the (stable) homology of the K-
theory spectrum of K(BK) and that, under additional hypothesis, the homology
of the full group F (G) is that of the base space of the spectrum. This result has
far reaching implications including the proof of Matui’s AH conjecture for a large
class of groupoids.

Owen Tanner’s talk was concerned with the Stein group V (Λ, ℓ) associated to a
subgroup Λ of the real numbers and a positive real number ℓ. He explained how
V (Λ, ℓ) can be viewed as the full group of a certain groupoid, and used this together
with a result of Nekrashevych to show that the commutator subgroup DV (Λ, ℓ) is
finitely generated if and only if Λ is. He then explained some particular examples,
such as the Higman-Thompson groups, in more detail.

Groupoid algebras and Cartan subalgebras

Kevin Brix reported on results pertaining the description of the ideal lattice of
the C∗-algebra of a Deaconu-Renault groupoid. A Deaconu-Renault system on a
locally compact, second countable, Hausdorff space X is an action T of d commut-
ing local homeomorphisms on X . Such a system has an associated groupoid GT ;
a main result presented in the talk is that the lattice of ideals of C∗(GT ) embeds
into that of the open subsets of X × Td. Another is a description of the image of
the latter map under certain assumptions on T .

Anna Duwenig’s talk concerned Kumjian-Renault theory for Lie groupoids. The
classical theory gives a correspondence between Cartan pairs –consisting of a C∗-
algebra with a Cartan subalgebra– on one hand, and groupoid twists over effective
groupoids on the other. The talk introduced smooth Cartan triples and explained
that these are in correspondence with Lie groupoid twists.

Kathryn McCormick talked about Steinberg’s local bisection hypothesis. She
showed how the latter is used to reconstruct a groupoid twist from its (twisted)
Steinberg algebra. As another main result of the talk she explained that in the
C∗-algebra setting, the local bisection hypothesis is equivalent to the effectivity of
the groupoid.

Enrique Pardo talked about the Spielberg C∗-algebra of a left cancellative category.
He explained that the latter can be regarded as the C∗-algebra of a certain tight
groupoid in the sense of Exel, and how this viewpoint is useful, for example to
characterize simplicity. He defined groupoid actions on left cancellative categories
and their Zappa-Szép products, showed that left cancellative small categories with
nice length functions can be described as such products and analyzed the structure
of the tight groupoids associated to such products.
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Benjamin Steinberg characterized the ample groupoids G whose Steinberg algebra
AKG over a field K of characteristic zero is (graded) von Neumann regular. He
showed, for example, that AKG is regular if and only if G is a directed union of
quasi-compact open subgroupoids.

Jonathan Taylor spoke about the functoriality of groupoid C∗-algebras with re-
spect to actors. An actor is an action of an étale groupoid G on another étale
groupoidH with certain compatibility conditions, which under appropriate proper-
ness assumptions gives rise to a ∗-homomorphism from C∗(G) to C∗(H). A
main result explained in the talk determines conditions under which the induced
∗-homomorphism arising from an actor intertwines the Cartan-like structure of
groupoid C∗-algebras. Another is that the construction of the inductive limits of
Xin Li generalises to inductive systems of actors, and the intermediate groupoids
Li constructs from morphisms of Cartan pairs arise as transformation groupoids
associated to actors.

Shift spaces and their algebras

Daniel Gonçalves’ talk concerned –C∗ and purely algebraic– algebras associated
to a one-sided subshift not necessarily of finite type, of an arbitrary alphabet A,
with focus in the case of the Ott-Tomforde-Willis subshift associated to a set F
of words on A. A main result presented characterized conjugacy between Ott-
Tomforde-Willis subshifts in terms of the associated algebras.

Aidan Sims considered the problem of encoding the flow spaceM(σ) of a two-sided
shift space (X, σ) associated to a graph E in a C∗-algebra. He associated a graph
SℓE to each positive real ℓ, and presented results on the structure of C∗(SℓE). For
ℓ = m/n, the latter algebra is homotopy equivalent to C∗(DnE

m), the C∗-algebra
of the m-power graph of the n-delayed graph of E.

Classification problems and results

Guido Arnone’s talk pertained Hazrat’s graded classification conjecture for Leav-
itt path algebras. The latter asserts that the existence of an isomorphism of

pointed, ordered Z[t, t−1]-modules Kgr
0 (L(E))

∼=
−→ Kgr

0 (L(F )) between the graded
Grothendieck groups of two Leavitt path algebras implies that of a graded isomor-

phism L(E)
∼=
−→ L(F ). The main result presented in this talk asserts that if the

graphs E and F in the conjecture are finite and primitive, then there are unital
graded homomorphisms f : L(E)↔ L(F ) : g such that g ◦ f and f ◦ g are graded
homotopic to the respective identity maps.

Adam Dor-On reported on relations between shift equivalence of graphs (and their
incidence matrices) and equivalences of their associated algebras. A variant of
Hazrat’s classification conjecture says that a (not necessarily pointed) ordered
isomorphism between graded Grothendieck groups gives rise to a graded Morita
equivalence between Leavitt path algebras. An equivalent formulation says that
two square matrices A and B are shift equivalent if and only if the Leavitt path
algebras are Morita equivalent. The main theorem presented in Dor-On’s talk



734 Oberwolfach Report 12/2024

pertains the C∗-version of the latter conjecture. It states that two square matrices
A and B are shift equivalent if and only if the C∗-algebras of their associated
graphs are stably (gauge-) equivariantly homotopically equivalent.

Huanhuan Li talked about filtered algebraic K-theory of Leavitt path algebras
and its relation to the graded Grothendieck group of the algebra. A main result
of the talk was that a certain quotient of filtered K-theory, related to the filtered
K-theory of the graph C∗-algebra, is encoded in the graded Grothendieck group.
This was used to show that shift equivalence between matrices implies (not neces-
sarily gauge equivariant) Morita equivalence of the C∗-algebras of their associated
graphs.

Lia Vaš associated to a given graph E and a graded ideal I ⊳ L(E) a graph
P so that L(P ) is graded isomorphic to the quotient algebra L(E)/I. Then she
characterized the graphs E whose Leavitt path algebra admits a finite composition
series, that is, a finite ascending filtration L(E) = ∪ni=0In by graded ideals so that
the succesive quotients Ij+1/Ij are graded simple algebras. The latter class of
graphs includes all those with finitely many vertices. By the first announced
result, the succesive quotients in the filtration are graded isomorphic to Leavitt
path algebras, and graded simplicity implies that the underlying graphs are of four
possible types. Vaš proposed to use this fact to study Hazrat’s graded classification
conjecture for graphs with a composition series, and carried out this program for
certain families of graphs.

Efren Ruiz talked about the classification of graph C∗-algebras. These algebras
carry additional structure (a diagonal, a gauge action) and the classification ques-
tion can be formulated up to isomorphism or Morita equivalence, and preserving all
or part of this structure. One may ask what invariants are necessary/sufficient for
each of these classification questions, and whether one can connect two graphs in
the same equivalence class via a finite sequence of graph moves. The talk surveyed
some results and conjectures on each of these questions.

Inverse semigroups and their actions and algebras

Pere Ara’s talk concerned separated graphs and various algebraic objects associ-
ated to them. A separated graph consists of a graph E together with a family
C = {Cv}v∈E0 such that Cv is a partition of the set of all edges emitted by v. In
the talk an inverse semigroup S(E,C) was introduced. A main result presented
is a decomposition S(E,C) = E ×r

θ F as a restricted semidirect product of the
free group F on the set E1 of edges of E, acting on the idempotent semilattice
E ⊂ S(E,C). This decomposition induces analogous decompositions of the asso-
ciated universal and tight groupoids G(E,C) and Gtight(E,C), and thus of both
their Steinberg and C∗-algebras.

Diego Mart́ınez spoke about Fell bundles {As}s∈S over a unital inverse semigroup
S and the associated cross-sectional (full and reduced) C∗-algebras. He gave a
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sufficient condition for C∗
red({As}s∈S) to be nuclear. Then he introduced an ap-

proximation property for Fell bundles. He showed that if {As}s∈S has the approx-
imation property then the canonical map C∗

max({As}s∈S) → C∗
red({As}s∈S) is an

isomorphism and that if moreover if A1 is nuclear, then so is C∗
red({As}s∈S).

Leavitt path algebras, modules and automorphisms

Pham Ngoc Ánh’s talk concerned a family of modules over the path algebra on
the rose on n ≥ 2 leaves, that is, the free algebra Λ on n noncommuting variables
over a field K. He recalled that the Leavitt algebra Ln is a localization of Λ,
and more generally that for any finite graph E, LK(E) is a localization of the
usual path algebra KE. Then he associated a Λ-module Vλ to any λ ∈ Λ with
nonzero constant term. The main result on these modules stated in the talk are
that a factorization λ = λ1λ2 induces a direct sum decomposition Vλ = Vλ1

⊕Vλ2
,

that Vλ is simple if and only if λ is irreducible, and that Vλ ∼= Vµ if and only if
Λ/λΛ ∼= Λ/µΛ.

Giang Tran Nam talked about automorphisms of LK(E), and the modules and
algebras obtained from twisting by them. He introduced a new class of auto-
morphisms of LK(E) inspired in the Anick automorphisms of the free algebra.
Twisting simple Chen Ln-modules by these automorphisms he obtains new simple
modules not isomorphic to any Chen module. He also considered the Zhang twist
LK(E)φ by a graded automorphism φ and discussed some results, including that
LK(E) is always isomorphic to a subalgebra of LK(E)φ.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Becky Armstrong in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Leavitt path algebras as rings of quotients and applications

Pha.m Ngo.c Ánh

(joint work with joint works with M. Siddoway; F. Mantese)

The definition of Leavitt path algebra LK(E) of a digraph E over a fieldK involves
artificially the dual digraph E∗ and is, in fact, asymmetric. Namely, the Leavitt
path algebras of E and E∗ are, in general, not isomorphic. One needs to consider
the ”dual” Leavitt path algebra of E∗ defined by an immediate modification of
Cuntz-Krieger conditions (CKI) and (CKII) for getting the required isomorphism.
However, using Cohn’s localization by inverting matrices, or more generally, by
epimorphisms one obtains clearly the symmetry of the definition of Leavitt path
algebras together with an explanation to the role of infinite emitters. For every
regular vertex v in finite digraph E let Av be the row matrix (a1, · · · , al) of arrows
emitting from v to not necessarily pairwise different vertices v1, · · · , vl. Then the
Leavitt path algebra LK(E) of a row-finite digraph E is precisely the localization
of the quiver algebra KE inverting all matrices Av, that is, LK(E) is generated
by KE and entries a∗i of uniquely determined column matrices Bv =τ (a∗1, · · · , a

∗
l )

indexed by regular vertices v of E satisfying Cuntz-Krieger conditions (CKI) and
(CKII). Therefore the canonical ring homomorphism KE → LK(E) ← KE∗ are
clearly ring epimorphisms for a finite digraph E. Hence by Morita [4, Theorem
7.1] we have the following nice property of Leavitt path algebras.

Theorem 1. For a finite digraph E one has the canonical isomorphisms

LK(E) ∼= End(KELK(E)) ∼= End(LK(E)KE) ∼=

∼= End(KE∗LK(E)) ∼= End(LK(E)KE∗) ∼= LK(E).

Observing a close relation of flat epimorphisms to perfect Gabriel localizations
together with Siddoway we obtain the following descriptions of Leavitt path alge-
bras

Theorem 2. The Leavitt path algebra LK(E) is the ring of right quotients of KE
with respect to the Gabriel ideal topology defined by the ideal generated by all arrows
and sinks. In particular, the generic Leavitt algebra of module type (1, n) (n ≥ 2) is
isomorphic to the ring of right quotients of the free unital algebra with respect to the
Gabriel ideal topology defined by a two-sided ideal of codimension 1. This classifies
the generic Leavitt algebra up to the automorphism group of the free algebra.

Viewing Leavitt (path) algebras as localizations of corresponding quiver alge-
bras allows to use them as a tool to a deeper study of the original quiver algebras.
In particular, together with F. Mantese we use the generic Leavitt algebras to
investigate polynomials in noncommuting variables. Namely, to every polynomial
λ with nonzero constant term in noncommuting variables of degree ≥ 1 we as-
sign a finite-dimensional module Vλ over a corresponding free algebra Λ consisting



740 Oberwolfach Report 12/2024

of its (iterated) cofactors. Hence Vλ depends only on λ, i.e., on the set of vari-
ables appearing in λ. It turns out that this finite-dimensional module Vλ encodes
information on λ and its companion structures. We prove

Theorem 3. Let γ, λ ∈ Λ be polynomials with nonzero constant term of positive
degree and Vγ and Vλ the finite-dimensional left Λ-modules defined by γ and λ,
respectively. Then:

(1) λ is an irreducible polynomial if and only if Vλ is a simple Λ-module.
(2) If λ = π1 · · ·πm is a factorization of λ into a product of irreducible polyno-

mials, thenm is the length of Vλ and its composition factors are isomorphic
to the simple modules Vπi

, i = 1, · · ·m. In particular m is an invariant of
λ.

(3) Vλ ∼= Vγ if and only if Λ/Λγ ∼= Λ/Λλ, that is, γ and λ are similar over Λ.

This result allows to find, in principle, all factorizations of λ. It extends the
classical factorizzation theory of polynomials in one variable to several ones with
nonzero constant terms and raises several questions connecting different areas of
associative ring theory.

For further applications of this approach see [1], [3] and [2].
We note also that one can use natural Schreier bases of quiver algebras to verify

well-known important properties of quiver algebras, like heredity, nonsingularity
etc. and then via localization technique to study Leavitt path algebras. Moreover,
for arbitrary digraphs one needs to use a weaker notion of Utumi’s rings of quotient
for Leavitt path algebras.
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Inverse semigroups of separated graphs and associated algebras

Pere Ara

(joint work with Alcides Buss, Ado Dalla Costa)

Inverse semigroups provide important tools in the study of several types of C∗-
algebras. Close connections between inverse semigroups, étale groupoids and op-
erator algebras were established in the work of Paterson [6], and this work was
later extended by Exel [4] with the introduction of the tight spectrum and the
tight C∗-algebra of an inverse semigroup.

In this talk, following [1], we will introduce the inverse semigroup S(E,C) of
a separated graph (E,C) and we will describe the structure of the tight algebras
associated with this inverse semigroup. To achieve this goal, we will examine
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the internal structure of the semigroup S(E,C), obtaining a detailed description
of its semilattice of idempotents, which is a crucial component in our analysis.
The inverse semigroup S(E,C) generalizes the graph inverse semigroup S(E) first
introduced by Ash and Hall in [3], which has been widely analized by several
authors.

Recall that a separated graph is a pair (E,C) consisting of a (directed) graph
E = (s, r : E1 → E0) and a separation C on E, meaning a partition C =

⊔
v∈E0 Cv

of its edges such that each Cv is a partition of s−1(v) for all v ∈ E0. The inverse
semigroup S(E,C) is defined as follows. Let (E,C) be a separated graph and let

Ê be the extended (or double) graph of E. The inverse semigroup of (E,C) is

the universal inverse semigroup S(E,C) generated by E0 ∪ Ê1 = E0 ∪ E1 ∪ E−1

subject to the following relations:

(1) vw ≡ δv,wv for all v, w ∈ E0;

(2) s(x)x ≡ x for all x ∈ Ê1;

(3) xr(x) ≡ x for all x ∈ Ê1;
(4) e−1f ≡ δe,f r(e) for all e, f ∈ X with X ∈ C.

Our main goal is to study the internal structure of the inverse semigroup S(E,C)
and its associated ∗-algebras, as well as C∗-algebras. As should be expected, the
∗-algebra K[S(E,C)] is a “tame” quotient of the Cohn algebra CK(E,C) intro-
duced in [2], namely the quotient by the ideal generated by the commutators
[e(x), e(y)] = e(x)e(y)− e(y)e(x) for x, y in the ∗-subsemigroup of CK(E,C) gen-
erated by E1. We denote this quotient ∗-algebra by CabK (E,C). Similarly, we can
define a tame quotient C∗-algebra T (E,C) of the C∗-envelope of CC(E,C). Using
these notations, a standard argument using their universal defining relations shows
that we have canonical isomorphisms :

(1) K[S(E,C)] ∼= Cab
K (E,C), C∗(S(E,C)) ∼= T (E,C).

In a similar way, we can define tame versions of the Leavitt path ∗-algebraLK(E,C)
introduced in [2] and its enveloping C∗-algebra C∗(E,C), and we denote these
tame quotients by LabK (E,C) and O(E,C), respectively. We show that these al-
gebras can be described in terms of the tight algebras of the inverse semigroup
S(E,C), more precisely we have canonical isomorphisms factoring (1):

(2) Ktight[S(E,C)] ∼= L
ab
K (E,C), C∗

tight(S(E,C))
∼= O(E,C).

The tight algebra of an inverse semigroup S can be understood once we have a
good knowledge of its canonical action on the spectrum Ê (i.e. the space of filters)

of the semilattice of idempotents E = E(S), and on the tight spectrum Êtight,

which is the closure in Ê of the space Ê∞ of maximal filters. Taking germs of
these actions of S on Ê and Êtight, one gets the universal groupoid G(S) of S,
and its tight quotient Gtight(S), with associated C∗-algebras C∗(G(S)) ∼= C∗(S)
and C∗(Gtight(S)) ∼= C∗

tight(S), respectively, and similarly for their reduced C∗-
algebras, or their abstract ∗-algebras over the ring K.

We show that elements of S(E,C) have a standard form, which we call the
Scheiblich normal form, because it is similar to the well-known Scheiblich normal
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form for the elements of the free inverse semigroup [5, Chapter 6]. More pre-
cisely, we show that every non-trivial element of S(E,C) can be represented as an
expression of the form

(3) (γ1γ
−1
1 ) · · · (γnγ

−1
n )λ

for certain words γi, λ in the free group F = F(E1) generated by the edge set
E1. Moreover, we show that this representation is unique if we add some natural
conditions on the words appearing in the above representation. The Scheiblich
normal form is essentially equivalent to a representation of the inverse semigroup
S(E,C) as a (restricted) semidirect product of the form

(4) S(E,C) ∼= Y ×r
θ F,

where Y is an isomorphic copy of the semilattice E = E(S(E,C)), which can be
described in different forms in terms of certain special words in F (and the vertices)
that take into account the structure of the separated graph (E,C). Here θ is a
certain special partial action of F on Y by partial semilattice isomorphisms between
ideals of Y. We also show that this partial action can be described internally
inside S(E,C) via the canonical partial representation F→ S(E,C) that extends
the inclusion map of E1 into S(E,C). In particular this shows that S(E,C) is
a well-behaved inverse semigroup: it is strongly E∗-unitary, which means that it
admits an idempotent pure partial homomorphism f : S(E,C)× → F, which we
view as a ‘grading’. This map reads off the element λ ∈ F in the Scheiblich normal
form (3).

The isomorphism (4) then leads immediately to a similar representation of the
groupoid G(E, S) := G(S(E, S)) and its tight quotient as semidirect products of
the form

G(E, S) ∼= Ŷ × F, Gtight(E, S) ∼= Ŷtight × F

with respect to the (dual) partial action of F on Ŷ induced from θ. We also describe

both Ŷ and Ŷtight in terms of certain subsets of words in F and the vertices. All
this implies analogous decompositions of the several tame algebras associated with
(E,C) as partial crossed products by partial actions of F:

CabK (E,C) ∼= CK(Ŷ)× F, T (E,C) ∼= C0(Ŷ)× F

and

LabK (E,C) ∼= CK(Ŷtight)× F, O(E,C) ∼= C0(Ŷtight)× F.

Here CK(X) denotes the commutative K-algebra of compactly supported locally
constant functions X → K from a totally disconnected locally compact Hausdorff
space X , and C0(X) the commutative C∗-algebra of continuous functions X → C

vanishing at infinity.
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Representing topological full groups in Steinberg algebras and

C*-algebras

Becky Armstrong

(joint work with Lisa Orloff Clark, Mahya Ghandehari, Eun Ji Kang,
and Dilian Yang)

Topological full groups of ample Hausdorff groupoids were introduced by Matui
[11] as a generalisation of the topological full groups associated to Cantor minimal
systems studied by Giordano, Putnam, and Skau [5]. In addition to providing
a useful groupoid invariant (see [12, Theorem 3.10]), topological full groups give
presentations of Thompson’s groups [10, 12, 13] and have been used to solve several
important open problems in group theory [8, 9, 14].

Steinberg algebras are a purely algebraic analogue of groupoid C*-algebras that
generalise both Leavitt path algebras and Kumjian–Pask algebras. Introduced
by Steinberg [15] and also independently by Clark, Farthing, Sims, and Tom-
forde [4], Steinberg algebras often given valuable insight into problems involving
groupoid C*-algebras (for instance, they were used in [3] to characterise simplicity
of C*-algebras of Hausdorff étale groupoids).

In my talk I presented necessary and sufficient conditions under which the nat-
ural representation of the topological full group of an ample Hausdorff groupoid
with compact unit space is injective and/or surjective in the groupoid’s complex
Steinberg algebra. I also discussed conditions under which the image of this rep-
resentation is dense in the full and reduced groupoid C*-algebras. This work
complements related work by Brix and Scarparo [2] studying the extension of
this representation to the full C*-algebra of the topological full group as well as
connections to C*-simplicity of certain topological full groups.

Let G be a Hausdorff étale groupoid with compact totally disconnected unit
space G(0). Then G is ample; that is, its topology has a basis of compact open
bisections. These compact open bisections form an inverse semigroup Bco(G), with
multiplication given by

(B1, B2) 7→ B1B2 := {γ1γ2 : γ1 ∈ B1, γ2 ∈ B2, s(γ1) = r(γ2)},

and inversion given by B 7→ B∗ := {γ−1 : γ ∈ B}. We say that a compact open
bisection B ∈ Bco(G) is full if r(B) = s(B) = G(0). The topological full group of G
is the subgroup

F (G) := {B ∈ Bco(G) : B is full}
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of Bco(G). By extending the multiplication and inversion operations of Bco(G) to
the free vector space CBco(G) = span{δB : B ∈ Bco(G)}, we obtain a ∗-algebra
with ∗-subalgebra CF (G).

The (complex) Steinberg algebra of G is the ∗-algebra obtained by equipping the
vector space

A(G) := span{1B : B ∈ Bco(G)}

of characteristic functions on compact open bisections of G with a multiplication
given by 1B1

1B2
= 1B1B2

and an involution given by 1∗B = 1B−1 . It follows that

A(G) = {f ∈ Cc(G) : f is locally constant},

and that A(G) is dense in both the full and reduced groupoid C*-algebras, C∗(G)
and C∗

r (G), respectively (see [4, Proposition 4.2]). The Steinberg algebra A(G) is
a quotient of the ∗-algebra CBco(G) (see [15, Page 699]). Since F (G) ⊆ Bco(G),
CF (G) embeds in CBco(G), and so it is natural to ask what the relationship is
between CF (G) and A(G). This is the question addressed in [1] and in my talk.

There is a ∗-homomorphism π : CF (G) → A(G) satisfying π(δB) = 1B for all
B ∈ F (G), which we call the representation of F (G) in A(G). In my talk, I
presented the following theorem relating to injectivity and surjectivity of this rep-
resentation, which appears as two separate results in our paper [1].

Theorem ([1, Theorem 3.2 and Corollary 4.4]). Let G be an ample Hausdorff
groupoid with compact unit space G(0). Denote the isotropy of G by Iso(G). The
representation π : CF (G) → A(G) is surjective if and only if G is a group, and it
is injective if and only if

(1) G = Iso(G) and G has at most one nontrivial isotropy group; or
(2) G 6= Iso(G) and

∣∣G \ G(0)
∣∣ < 3.

Even when π is not surjective, it is possible that the image of π is dense in the
full or reduced C*-algebras of G. For example, if G is the Cuntz groupoid (that
is, the boundary-path groupoid of the directed graph with a single vertex and
two loops), then F (G) is Thompson’s group V2, and π : CF (G) → A(G) extends
to a surjective representation of F (G) in the Cuntz algebra O2 = C∗(G); see [2,
Remark 4.7] and [7, Proposition 5.3].

In [1, Section 5] we study the image of the representation π in the setting where
the groupoid G is discrete and has finite unit space G(0) = {a1, . . . , an}. In this
setting, there is a ∗-representation T : A(G)→Mn(C) given by

T (f)ij :=
∑

γ∈G
ai
aj

f(γ), for each i, j ∈ {1, . . . , n},

where Gai
aj

:= {γ ∈ G : r(γ) = ai, s(γ) = aj}. We then have that for each

f ∈ π(CF (G)), there exists cf ∈ C such that all row and column sums of the
matrix T (f) are cf (see [1, Corollary 5.2]). We use this fact to prove the following
theorem, which I presented in my talk.

Theorem ([1, Theorem 5.3]). Let G be a discrete groupoid with finite unit space.
Then π(CF (G)) is dense in C∗(G) if and only if G is a group. Thus the extension
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πmax : C
∗(F (G)) → C∗(G) of π is an isomorphism if and only if G is a group. In

particular, if G is not a group, then 1γ /∈ π(CF (G))
‖·‖

max for any γ ∈ G.

Interestingly, the above theorem does not hold in the reduced setting, as the
following example shows.

Example ([1, Example 5.5]). Let G = F2 ⊔ F2 = {(t, i) : t ∈ F2, i ∈ {1, 2}},
where F2 = {g1, g2, g3, . . . } is the free group with two generators, with elements
listed in increasing order of their lengths (so |gi| ≤ |gi+1| for all i ≥ 1). Then

F (G) ∼= F2 × F2, and π(CF (G))
‖·‖

r = C∗
r (G). To see this, it suffices by symmetry

to show that for each t ∈ F2, we have 1{(t,1)} ∈ π(CF (G))
‖·‖

r . For this, we fix
t ∈ F2 and define a sequence of functions (φn)

∞
n=1 ⊆ π(CF (G)) ⊆ A(G) by

φn := π
( n∑

i=1

δ{(t,1),(gi,2)}

)
= 1{(t,1)} +

1

n

n∑

i=1

1{(gi,2)}.

We then prove that φn → 1{(t,1)} in C∗
r (G) by showing that 1

n

∑n
i=1 δgi → 0 in

C∗
r (F2). For this, we make use of Haagerup’s inequality [6, Lemma 1.5], which

says that for each f ∈ Cc(F2), we have ‖f‖2r ≤ 4
∑

s∈F2
|f(s)|2

(
1 + |s|4

)
.
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Graded bivariant K-theory and the classification of Leavitt

path algebras

Guido Arnone

We consider a variant of Hazrat’s graded classification conjecture for Leavitt path
algebras [6, Conjecture 1], replacing graded algebra isomorphisms by graded ho-
motopy equivalences. The latter are algebra homomorphisms which become iso-
morphisms modulo the graded homotopy relation we shall presently define. An el-
ementary homotopy between two Z-graded algebra homomorphisms f0, f1 : A→ B
is an algebra homomorphism h : A→ B[t] such that ev0 ◦ h = f0 and ev1 ◦ h = f1.
Here B[t] is the ring of polynomials with coefficients in B, where t is homoengeous
of degree zero, and ev0, ev1 are the evaluation maps at t = 0 and t = 1 respectively.
Elementary homotopies define a reflexive, symmetric relation on graded algebra
homomorphisms A→ B. We define polynomial graded homotopy as the transitive
closure of this relation and denote it by ∼.

Recall that a graph is primitive if there exists N ≥ 1 such that every pair of
vertices can be connected by a path of length N . Our main classification result
([2, Theorem 8.1]) reads as follows:

Theorem 1. Let ℓ be a field and E,F two finite primitive graphs. The following
two conditions are equivalent:

(i) There exists a Z-equivariant isomorphism of ordered groups

Kgr
0 (Lℓ(E))

∼
−→ Kgr

0 (Lℓ(F ))

mapping [Lℓ(E)] to [Lℓ(F )].
(ii) There exist unital graded algebra homomorphisms f : Lℓ(E)←→ Lℓ(F ) : g

such that g ◦ f ∼ idLℓ(E) and f ◦ g ∼ idLℓ(F ).

The primitivity hypothesis is in fact a simplicity hypothesis: namely, we use
that for each edge e of a primitive graph E, the idempotent ee∗ of Lℓ(E) is full as
an element of the subalgebra Lℓ(E)0 of homogeneous elements of degree zero.

Our main tool to prove the aforementioned classification result is graded bi-
variant algebra K-theory, introduced by Ellis in [5]. It consists of a triangulated
category kkgr equipped with a functor j : Alggrℓ → kkgr from Z-graded ℓ-algebras,
which is universal with respect to excision, homotopy invariance, and (graded)
matricial stability. We point out that the objects of kkgr are all Z-graded algebras
and j is the identity on objects.

In previous work joint with Guillermo Cortiñas [4], we study Leavitt path alge-
bras as objects of kkgr. In particular, we show that kkgr(ℓ, Lℓ(E)) ∼= Kgr

0 (Lℓ(E))
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for all graphs E, and that there is a “universal coefficient theorem” which states
that there is a short exact sequence of the following form:
(1)
K

gr
0
(Lℓ(Et))⊗L K

gr
1
(Lℓ(F )) →֒ kk

gr(Lℓ(E), Lℓ(F )) ։ homL(K
gr
0
(Lℓ(E)),Kgr

0
(Lℓ(F )))

Here L = Z[t, t−1] and Et is the dual graph of E. Using these results, we studied
the comparison map

j̄ : homAlggr

ℓ
(Lℓ(E), Lℓ(F ))→ kkgr(Lℓ(E), Lℓ(F ))

induced by j, and the extent to which it is surjective or injective. Namely, we
showed that j̄ satisfies the following two properties.

(a) If ξ ∈ kkgr(Lℓ(E), Lℓ(F )) is such that the induced map

ξ∗ := kkgr(ℓ, ξ) : Kgr
0 (Lℓ(E))→ Kgr

0 (Lℓ(F ))

is a Z-equivariant isomorphism of ordered groups mapping [Lℓ(E)] to
[Lℓ(F )], then ξ = j̄(f) for some unital graded algebra homomorphism
f : Lℓ(E)→ Lℓ(F ).

(b) If j̄(f) = j̄(g), then there exists a unit u ∈ Lℓ(F ) which is homogeneous
of degree zero and such that f ∼ ugu−1.

We use (1) to reduce our problem to one involving Kgr
0 and Kgr

1 . Condition
(a) was then proved using a previous lifting result, which says that Kgr

0 is a full
functor when restricted to Leavitt path algebras ([3, 7]). To obtain condition (b),
the main step was computing Kgr

1 of Leavitt path algebras as a Z[t, t−1]-module,
and in particular understaind its Z-action. We do this by proving an analogue of
a result of Ara and Pardo for Kgr

0 ([1, Lemma 3.6]), which characterizes the Z-
action on Kgr

0 (Lℓ(E)) in terms of a corner skew Laurent polynomial ring structure
of Lℓ(E).
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Ideal structure of Deaconu–Renault groupoid C*-algebras

Kevin Aguyar Brix

(joint work with Toke Meier Carlsen and Aidan Sims)

An ideal in a C*-algebra is always assumed to be closed and two-sided here. The
collection of all such ideals in a C*-algebra form a lattice, and it is a fundamental
(albeit very difficult) problem in C*-algebra theory to understand and describe the
ideal structure completely. An ideal is primitive if it is the kernel of an irreducible
*-representation, and the collection of primitive ideals may be equipped with the
hull-kernel topology. It transpires that the ideal lattice of a separable C*-algebra is
isomorphic to the lattice of open subsets of the primitive ideal space, so the general
problem may be reinterpreted as understanding the topology on the primitive
ideals.

I this talk, I discussed recent work of Carlsen, Sims, and myself [1], in which
we aim to describe the ideal structure of C*-algebras constructed from dynam-
ical systems. A Deaconu–Renault system is an action T of d commuting local
homeomorphisms on a (second-countable) locally compact Hausdorff space X .
The Deaconu–Renault groupoid of T is then a (second-countable) locally compact
Hausdorff and étale groupoid GT given as

GT =
⋃

k,l∈Nd

{(x, k − l, y) ∈ X × Z
d ×X : T kx = T ly},

and the groupoid C*-algebra C∗(GT ) is our object of interest. (Since GT is
amenable we do not distinguish between reduced or full C*-algebras).

This class of C*-algebras is wide and includes those coming from directed graphs
[3][2], Katsura’s topological graphs [4], one-dimensional subshifts, crossed prod-
ucts by Zd [6], higher-rank graphs, and some multidimensional symbolic systems.
Unfortunately, the available results for ideal structure that cover directed graphs
and topological graphs do not readily extend to the multidimensional case, e.g.
higher-rank graphs.

Inspired by a cornerstone result for crossed products by abelian groups (see [6]),
Sims and Williams [5] describe a surjective function

π : X × T
d → Prim(C∗(GT ))

and an equivalence relation ∼ on X × Td such that π(x, z) = π(x′, z′) precisely
when (x, z) ∼ (x′, z′). As opposed to the case of actions by abelian groups, π is
not open in general and does not descend to a homeomorphism; we merely obtain
a bijection π̃ : (X×T)d/ ∼→ Prim(C∗(GT )). Our first main result is that the map
π is continuous. We prove this using families of (homogeneous) open bisections
indexed over the isotropy of every unit x ∈ X . Such bisections always exist because
GT is étale.

The fact that π is continuous provides an injective lattice homomorphism θ
from the ideal lattice in C∗(GT ) into the open subsets of X×Td. A description of
the range of this map thus constitutes a complete description of the ideal lattice.
In general, the image of θ is not well understood.
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In this project, we made progress by assuming the existence of harmonious
bisection families in GT . A bisection family B at a unit x (again indexed over the
isotropy of x as above) is harmonious if it satisfies extra compatibility conditions.
These conditions allow us to make sense of B-saturation for subsets of X×Td, and
we prove that the image of θ consists of those open subsets that are B-saturated in
our sense. We formulate this result in various ways: as a description of the image
of θ, as a neighbourhood basis for each primitive ideal, and in terms of convergence
in the primitive ideal space.

We verify that examples classes such as directed graphs, actions by Zd, local
homeomorphisms, and — importantly — all row-finite 2-graphs without sources
all do admit harmonious bisection families. We emphasise that our results for the
ideal lattice provide the first description that covers all row-finite 2-graphs without
sources. At the moment, we do not know if all Deaconu–Renault groupoids admit
harmonious bisection families.

Therefore, it remains to determine precisely what the image of θ is for general
actions of commuting local homeomorphisms and whether harmonious bisection
families always exist.
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Shift equivalences through the lens of C*-bimodules

Adam Dor-On

(joint work with Boris Bilich, Efren Ruiz)

In a foundational 1973 paper [21], Williams recast conjugacy and eventual conju-
gacy problems for SFTs purely in terms of equivalence relations between adjacency
matrices of directed graphs. These are called Strong Shift Equivalence (SSE) and
Shift Equivalence (SE), respectively. It was shown by Kim and Roush [15, 16]
that shift equivalence is decidable, but the problem of decidability of SSE remains
a fundamental open problem in symbolic dynamics. Williams expected SSE and
SE to coincide, but after around 25 years the last hope for a positive answer was
extinguished by Kim and Roush [17, 18].
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Definition 1 (Williams). Let A and B be square matrices with entries in N. We
say A and B are

(1) shift equivalent with lag m ∈ N \ {0} if there are rectangular matrices R
and S with entries in N such that

Am = RS, Bm = SR,

SB = AS, AR = RB.

(2) elementary shift related if they are shift equivalent with lag 1.
(3) strong shift equivalent if they are equivalent in the transitive closure of

elementary shift relation.

In tandem with early attacks on Williams’ problem, Cuntz and Krieger [12, 11]
created a link between symbolic dynamics and operator algebras, where several
equivalence relations between SFTs are expressed through associated C*-algebras.
Cuntz and Krieger showed that SSE implies that the Cuntz-Krieger C*-algebras
OA and OB are stably isomorphic in a way preserving their gauge actions γA and
γB together with their diagonal subalgebras DA and DB. On the other hand,
by a theorem of Krieger [19], we know that the dimension group triples of SFTs
are isomorphic if and only if the associated matrices are SE. Thus, as a corollary
to Krieger’s theorem we get that if OA and OB are stably isomorphic in a way
preserving their gauge actions γA and γB, then A and B are SE, this is known
as Krieger’s corollary. For the purpose of distinguishing SFTs up to SSE, it is
important to determine whether the converse of Krieger’s corollary holds.

Decades later, the works on Cuntz-Krieger C*-algebras inspired a systematic
study of their purely algebraic counterparts [4, 1, 3], called Leavitt path algebras,
creating new interactions between the areas of pure algebra and analysis. In
his work Hazrat [14] proved an algebraic analog to Krieger’s corollary, and it is
similarly important to determine if the algebraic analog of the converse of Krieger’s
corollary is true. In the purely algebraic setting, this is now known as Hazrat’s
Conjecture.

Conjecture 2 (Hazrat). Let A and B be essential square matrices with entries
in N. Then the following are equivalent:

(1) The matrices A and B are shift equivalent.
(2) The Leavitt path algebras LA and LB are graded Morita equivalent.

Inspired by previous work of the author with Carlsen and Eilers on shift equiv-
alences involving relations between identifications of matrix multiplication [8], we
prove that a strengthening of SE, called Aligned Shift Equivalence (ASE), coin-
cides with SSE. Hence, the decidability question for SSE becomes equivalent to
the one for ASE. This also led us to consider a “quantized” module version of
ASE. Each rectangular V ×W matrix C with entries in N \ {0} can be associ-
ated with a C*-bimodule X(C) in such a way that fibered products correspond to
C*-bimodule balanced tensor products.

Definition 3. Let A and B be square matrices with entries in N indexed by V
and W respectively. Suppose m ∈ N \ {0}, and let R and S be matrices over
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V ×W and W × V (respectively) with entries in N. Suppose further that there
are isometric bimodule isomorphisms (with balanced tensor product)

ΦR : X(A)⊗c0(V ) X(R)→ X(R)⊗c0(W ) X(B),

ΦS : X(B)⊗c0(W ) X(S)→ X(S)⊗c0(V ) X(A),

ΨA : X(R)⊗c0(W ) X(S)→ X(Am), ΨB : X(S)⊗c0(V ) X(R)→ X(Bm).

We say that A and B are module aligned shift equivalent (MASE) of lag m via R
and S together with ΦR,ΦS ,ΨA,ΨB if

(ΨA ⊗ idX(A))(idX(R)⊗ΦS)(ΦR ⊗ idX(S)) = (idX(A)⊗ΨA),

(ΨB ⊗ idX(B))(idX(S)⊗ΦR)(ΦS ⊗ idX(R)) = (idX(B)⊗ΨB).

We use C*-bimodule theory to detect more refined information from MASE.
More precisely, using the theory of bicategories of C*-correspondences developed
by Meyer and his students [2], [20], we are able to show that MASE implies that
O(GA) and O(GB) are stably isomorphic in a way preserving their gauge actions.
Through a weakening of MASE, the strength of considering bimodule isomor-
phisms as opposed to mere matrix identifications is revealed. Indeed, this allows
us to view SE in an equivalent way as a homotopic version of MASE (with equality
in Definition 3 replaced by homotopy), which then provides a characterization of
SE in terms of homotopy equivalence of graph C*-algebras.

Theorem 4 (Bilich, Dor-On & Ruiz). Let A and B be square matrices with entries
in N. Then A and B are SE if and only if the graph C*-algebras O(GA) and O(GB)
are stably equivariantly homotopically equivalent.

A variation of homotopy has been considered in the context of Leavitt path
algebras in the ungraded situation [9, 10] and fairly recently also in the graded
situation when the matrices A and B are assumed to be primitive [6]. However,
due to the lack of an underlying topology for the algebras, the notion of homotopy
is quite different in the purely algebraic setting. Our approach via homotopy
equivalence uses the underlying topology of the C*-algebras, and completely avoids
K-theoretic classification techniques used in [9, 10] and [7, 6].

In a recent work of Abrams, Ruiz, and Tomforde [5], the authors proved that
an algebraic version of MASE implies that the Leavitt path algebras are graded
Morita equivalent. Our techniques are likely to lead to an algebraic analog of
Theorem 4 which will directly recover and strengthen known results on graded
homotopy classification of Leavitt path algebras.

References

[1] Gene Abrams and Gonzalo Aranda Pino, The Leavitt path algebra of a graph, J. Algebra,
293 (2005), 319–334.

[2] Suliman Albandik and Ralf Meyer, Colimits in the correspondence bicategory, Münster J.
of Math., 9 (2016), 51–76.

[3] Pere Ara, Maria A. Moreno, and Enrique Pardo, Nonstable K-theory for Graph Algebras,
Algebr Represent Theor 10 (2007), 157–178.
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Smooth Cartan triples and Lie groupoid twists

Anna Duwenig

(joint work with Aidan Sims)

The duality theorem of Gel’fand and Naimark provides a two-way street between
the realm of locally compact Hausdorff (LCH) spaces and that of commutative C∗-
algebras. One of the most studied expansion of this duality is Kumjian–Renault
theory: it describes the way back from C∗-algebras that are not themselves com-
mutative but at least contain certain MASAs, to groupoids. In [2], we analyzed
whether this reconstruction of groupoids can be refined to take geometry into
account, and this extended abstract will serve as a brief overview of our results.

Kumjian–Renault theory. Given a LCH étale groupoid G, we can construct the
reduced groupoid C∗-algebra A = C∗

r(G) as completion of the space Cc(G) with
the usual convolution and involution formulas, in the reduced norm built from the
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regular representations associated to point masses. If G is effective, meaning that
the interior of its isotropy is reduced to being just the unit space G(0), then the
commutative subalgebra D = C0(G

(0)) of A is Cartan: it is maximal abelian, its
normalizers span A, and it admits a faithful conditional expectation P : A→ D.

The remarkable insight of Kumjian [3] and Renault [4] is that the functional
analytic datum of a Cartan pair D ⊆ A is sufficient to reconstruct the groupoid
input—with a ‘twisted caveat’: there is a central groupoid extension

(1) T×G(0) ι
→֒ ΣA,D

q
։ GA,D

consisting of LCH groupoids Σ := ΣA,D and G := GA,D, with G effective and
étale, such that there is an isomorphism from A to the twisted groupoid C∗-algebra
C∗

r(G; Σ) which carries D to the canonical Cartan C0(G
(0)). The main ingredient

here is the collection of normalizers of D in A: elements n ∈ A which satisfy
n∗Dn, nDn∗ ⊆ D. The open G-support Un of any such n is a bisection of G, and
one can reconstruct not only the partial homeomorphism r ◦ s|−1

Un
: s(Un)→ r(Un)

from n but also a local trivialization ψn : T×Un ≈ q−1(Un) ⊆ Σ of the twist. The
upshot is that, from G(0), one is able to build G and Σ, both their algebraic and
their topological structure.

In very hand-wavy terms, the reconstruction theorems of Kumjian and Renault
‘add more algebra’ to the Gel’fand–Naimark duality between LCH spaces and
commutative C∗-algebras, and can be diagrammatically summed up as follows:

Σ G C∗
r(G; Σ) C0(G

(0))
top. twist over

effective groupoid
C∗-alg. with

Cartan subalg.
ΣA,D GA,D A D

⊇

construct

reconstruct

⊇

Adding geometry. In [1], Connes expanded on Gel’fand–Naimark duality in a dif-
ferent direction: he identified properties of a commutative C∗-algebra that ensure
that its Gel’fand spectrum is, in fact, a smooth manifold, and he then reconstructed
the C∞-structure from these properties. Roughly speaking:

smooth, oriented manifold

structure on X = D̂

certain spectral
triple over C(X) = D

construct

reconstruct

The natural question that arises is: Can such a reconstruction also be done
for C∞-structures on groupoids as in the set-up of Kumjian–Renault? Conversely,
suppose we are given an étale Lie groupoid, i.e., the topological groupoid G has
the structure of a smooth manifold with respect to which G(0) is a submanifold;
the maps r, s : G→ G(0) are not just local homeo- but even diffeomorphisms; and
all structure maps are smooth. What additional information about the inclusion
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of C0(G
(0)) in C∗

r(G) is required to capture this C∞-structure of G? Courtesy
of Connes’ theorem, we may take the manifold structure on G(0)–and with it the
subalgebra D∞ of smooth elements in D = C0(G

(0))–for granted.

Reconstructing Lie groupoids. Each of the local homeomorphisms r and s allows
us to equip G with a manifold structure by deeming either r or s a local diffeomor-
phism. These two structures are compatible exactly if the local homeomorphisms
s(U) ≈ r(U) of the manifold G(0) are diffeomorphisms, in which case the structure
maps of G are easily seen to be smooth. The bottom line:

Proposition 1. If G is an étale groupoid with G(0) a manifold, then G admits a
smooth structure with respect to which it is an étale Lie groupoid if and only if

(N∞) there exists a topology base consisting of bisections U for which r ◦ s|−1
U is

a diffeomorphism onto its image.

Translating from twisted groupoids to Cartan pairs of C∗-algebras, this condi-
tion becomes:

(N∗) There exists a collection N of normalizers of D in A that densely spans
A, normalizes the smooth subalgebra D∞, and such that n∗n, nn∗ ∈ D∞.

But what about the twist? A priori, the right definition of a ‘Lie twist’ should
be a topological twist in which both groupoids are Lie and “all maps in sight are
smooth”. The most concise definition turns out to be [2, Definition 4.2.]:

Definition 2. A (topological) twist as in (1) is Lie if G and Σ are Lie groupoids,
q : Σ→ G is a submersion, and ι : T×G(0) → Σ is smooth.

In this scenario, Σ turns out to be a smooth principal T-bundle, meaning that
there exist smooth trivializations ψ : T × U ≈ q−1(U), and ι is a diffeomorphism
onto its image. The forward implication of the following theorem is thus trivial;
one of our main observations in [2, Theorem 4.21] is the backwards implication.

Theorem 3. Let Σ be a topological twist over a Lie groupoid G. Then Σ is a
smooth principal T-bundle iff there exists a base {Un}n∈N of open bisections of G
and continuous trivializations ψn : T×Un ≈ q−1(Un) of Σ such that for all n,m, k:

(U∞) ψn is the identity on T×G(0); and
(S∞) the partial function G → T × G(0) which maps g to ι−1

(
ψm(g)ψk(g)

−1
)
,

is smooth.

The C∞-structure on Σ is unique such that the given family of trivializations is
smooth. Moreover, Σ is a Lie twist iff one can choose this family {ψn}n such that

(M∞) the partial function G(2) → T×G(0) which maps a composable pair (g, h)
to ι−1

(
ψn(g)ψm(h)ψk(gh)

−1
)
, is smooth.

Translating these into the realm of Cartan pairs, we arrive at the next definition,
where P denotes the conditional expectation and Ph the phase of a function:

Definition 4 ([2, Definition 5.9]). A smooth Cartan triple (A,D,N ) consists of a

Cartan pair D ⊆ A with D̂ a manifold, and a family N of normalizers of D which
satisfies D∞

c ⊆ N ∩D ⊆ D
∞, Condition (N∗), and for all n,m, k ∈ N :
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(U∗) Ph(P (n)) multiplies D∞
c (n) := D∞ ∩ Cc(supp

◦(n∗n));
(S∗) Ph(P (mk∗)) multiplies D∞

c (mk∗);
(M∗) Ph(P (nmk∗)) multiplies D∞

c (nmk∗).

Our main theorem is then summed up by this diagram, where X is a smooth
manifold:

Theorem 5 ([2, Theorem 5.17.]).

Lie twist Σ→ G

with unit space G(0) = X

Smooth Cartan triple (A,D,N )

with spectrum D̂ = X

construct

reconstruct
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Subshift algebras

Daniel Gonçalves

(joint work with Giuliano Boava, Gilles Gonçalves de Castro, Danilo Royer,
Daniel W. van Wyk)

Let A be a non-empty set, called an alphabet. The shift map on AN is the map
σ : AN → AN given by σ(x) = (yn), where x = (xn) and yn = xn+1. Elements of
A∗ :=

⋃∞
k=0 A

k are called blocks or words, and ω stands for the empty word.
Given F ⊆ A∗, we define the subshift XF ⊆ AN as the set of all sequences x

in AN such that no word of x belongs to F . The language of XF , denoted L,
consists of all blocks that appear in some element of XF . Given a subshift X over
an alphabet A and α, β ∈ L, we define

C(α, β) := {βx ∈ X : αx ∈ X}.

In particular, Zβ := C(ω, β) is called the cylinder set of β, and Fα = C(α, ω) the
follower set of α.

Let U be the Boolean algebra of subsets of X generated by all C(α, β) for

α, β ∈ L, and R a commutative unital ring. The unital subshift algebra ÃX is the
universal unital R-algebra with generators {pA : A ∈ U} and {sa, s

∗
a : a ∈ A},

subject to the relations:
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(i) pX = 1, pA∩B = pApB, pA∪B = pA + pB − pA∩B and p∅ = 0, for every
A,B ∈ U ;

(ii) sas
∗
asa = sa and s∗asas

∗
a = s∗a for all a ∈ A;

(iii) sβs
∗
αsαs

∗
β = pC(α,β) for all α, β ∈ L, where sω := 1 and, for α = α1 . . . αn ∈ L,

sα := sα1
· · · sαn

and s∗α := s∗αn
· · · s∗α1

.

In the analytical setting, the definition above, replacing the ring R with the
complex numbers C and taking the universal C*-algebra instead of the universal
R-algebra, yields a C*-algebra which, in the finite alphabet setting, coincides with
the one defined by Carlsen in [3].

Ott-Tomforde-Willis subshifts are introduced in [4]. Given a subshiftXF and an
indecomposable ring R, we have proved, in the algebraic setting, that spanR{sαs

∗
α :

α ∈ L} is isomorphic to the algebra of R-valued, locally constant functions on
the Ott-Tomforde-Willis subshift associated with XF . In the analytical setting,
spanC{sαs

∗
α : α ∈ L} is isomorphic to the continuous functions on the Ott-

Tomforde-Willis subshift associated with XF .
In our main result, we describe conjugacy between two Ott-Tomforde-Willis sub-

shifts (and isometric conjugacy of subshifts with the usual metric that induces the
product topology) via certain isomorphisms of the associated algebras, in terms
of conjugacy of the cover spaces (which are the Stone duals of the correspond-
ing boolean algebras), and in terms of isomorphism of the associated topological
groupoids, see [1, Theorem 7.6] and [2, Theorem 6.11].

We propose a non-unital version of a subshift algebra, for which it is necessary to
consider the Boolean algebra B of subsets of X generated by all C(α, β), for α, β ∈
L not both simultaneously equal to ω. In this case, the non-necessarily unital
subshift C*-algebra is defined as the universal C*-algebra generated by projections
{pA : A ∈ B} and partial isometries {sa : a ∈ A} subject to the relations:

(i) pA∩B = pApB, pA∪B = pA + pB − pA∩B, and p∅ = 0, for every A,B ∈ B;
(ii) sβs

∗
αsαs

∗
β = pC(α,β) for all α, β ∈ L \ {ω}, where for α = α1 . . . αn ∈ L \ {ω},

sα := sα1
· · · sαn

.
(iii) s∗αsα = pC(α,ω) for all α ∈ L \ {ω};
(iv) sβs

∗
β = pC(ω,β) for all β ∈ L \ {ω}.

The algebraic version of the above algebra is defined analogously. Moreover,
when the above algebra is unital it coincides with the subshift algebra we first
defined. If it is not unital then its unitization coincides with the algebra we first
defined.

Finally, at the end of the presentation, we provide a brief description of ongoing
joint work with Danilo Royer about the socle of a subshift algebra. Recalling that
the socle consists of the sum of all left minimal ideals of the algebra, we show that
the minimal left ideals are associated with irrational paths and describe a graph
associated with a subshift in a manner that the socle of the subshift algebra is
graded isomorphic to the Leavitt path algebra of the graph.
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Graded and filtered K-theories for Leavitt path algebras

Huanhuan Li

(joint work with Pere Ara, Roozbeh Hazrat)

The theory of Leavitt path algebras is intrinsically related, via graphs, to the the-
ory of symbolic dynamics and C∗-algebras where the major classification programs
have been a domain of intense research in the last 50 years. However, it is not yet
clear what is the right invariant for the classification of Leavitt path algebras, and
for that matter, graph C∗-algebras [13]. In the case of simple graph C∗-algebras
(i.e., algebras with no nontrivial ideals), it is now established that K-theory func-
tors K0 and K1 can classify these algebras completely [11, 12]. Following the early
work of Rørdam [10] and Restorff [9], it became clear that one way to preserve
enough information in the presence of ideals in a C∗-algebra, is to further consider
the K-groups of the ideals, their subquotients and how they are related to each
other via the six-term sequence. Over the next ten years since [10, 9] this approach,
which is now called filtered K-theory, was subsequently investigated and further
developed by Eilers, Restorff, Ruiz and Sørensen [2, 3], where it was shown that
the sublattice of gauge invariant prime ideals and their subquotient K-groups can
be used as an invariant. In a major work [4] it was shown that filtered K-theory
is a complete invariant for unital graph C∗-algebras. In [5] the four authors in-
troduced the filtered K-theory in the purely algebraic setting and showed that if
two Leavitt path algebras with coefficients in complex numbers C have isomorphic
filtered algebraic K-theory then the associated graph C∗-algebras have isomorphic
filtered K-theory.

Graded K-theory was initiated as a capable invariant for the classification of
graph algebras in [6] and further studied in [1, 7, 8]. We show that in the setting of
graph algebras, graded K-theory determines a large portion of filtered K-theory.
To be precise, we show that for two Leavitt path algebras over a field, if their graded
Grothendieck groups Kgr

0 are isomorphic, then certain precisely defined quotients
of their filteredK-theories are also isomorphic. This shows the richness of a graded
Grothendieck group as an invariant. Namely, the single group Kgr

0 (Lk(E)) of the
Leavitt path algebra Lk(E) associated to a graph E, with coefficients in a field k,
contains all the information about the K0 groups and the quotient reduced groups
K1 of K1 of the subquotients of graded ideals of Lk(E), and how they are related
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via the long exact sequence of K-theory. For the sake of precision, let us point
out that the graded Grothendieck group Kgr

0 is a graded invariant of Leavitt path
algebras, but not an algebra invariant: isomorphic Leavitt path algebras may have
non-isomorphic graded Grothendieck groups.

During the talk, the speaker first recalled the definition of algebraic filtered K-
theory and pointed out the motivation of the talk, to find filtered K-theory as an
invariant up to the isomorphism of graded Grothendieck groups for Leavitt path
algebras. Then the speaker introduced the definition of reduced filtered K-theory
for Leavitt path algebras. Finally the speaker stated the main result and gave the
sketch of the proof for it.
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Ample groupoids, topological full groups, algebraic K-theory spectra

and infinite loop spaces

Xin Li

Topological full groups have recently attracted attention because they led to solu-
tions of several outstanding open problems in group theory (see [7], [8] and [16]).

Topological groupoids and their topological full groups arise in a variety of set-
tings, for instance from Cantor minimal systems, from shifts of finite type, or more
generally, from graphs (see for instance [12]), from self-similar groups or actions
and from higher rank graphs (see for instance [13, 15]). In this context, there
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is an interesting connection to C*-algebra theory because topological groupoids
serve as models for C*-algebras (see [18]) such as Cuntz algebras, Cuntz-Krieger
algebras, graph C*-algebras or higher rank graph C*-algebras, many of which play
important roles in the classification programme for C*-algebras. There is also an
interesting link to group theory because Thompson’s group V (see [4]) and many
of its generalizations and variations [6, 21, 1] can be described as topological full
groups of corresponding topological groupoids. In the case of V this observation
goes back to [14].

While general structural properties [11, 12, 13, 17, 10] and rigidity results have
been developed [19, 12], and several deep results have been established for par-
ticular examples of topological full groups [7, 8, 16, 20, 22], it would be desirable
to create a dictionary between dynamical properties and invariants of topological
groupoids on the one hand and group-theoretic properties and invariants of topo-
logical full groups on the other hand. This would allow us to study topological
full groups – which are very interesting but in many aspects still remain myste-
rious – through the underlying topological groupoids which are often much more
accessible. In my talk, I described recent work which develops this programme
in the context of homological invariants by establishing a link between groupoid
homology and group homology of topological full groups.

For the particular example class of Thompson’s group V and its generalizations,
the study of homological invariants and properties has a long history [3, 2]. It was
shown in [2] that V is rationally acyclic. Only recently it was established in [22]
that V is even integrally acyclic. The new approach in [22] also allows for many
more homology computations for Higman-Thompson groups. However, for other
classes of topological full groups, very little is known about homological invariants.

Inspired by [22], we have developed an approach to homological invariants of
topological full groups in [9]. Let us now formulate our main results. Let G
be a topological groupoid, i.e., a topological space which is at the same time a
small category with invertible morphisms, such that all operations (range, source,
multiplication and inversion maps) are continuous. We always assume the unit
space G(0) consisting of the objects of G to be locally compact and Hausdorff. In
addition, suppose that G is ample, in the sense that it has a basis for its topology
given by compact open bisections. If G(0) is compact, then the topological full
group F (G) is defined as the group of global compact open bisections. In the
general case, F (G) is the inductive limit of topological full groups of restrictions
of G to compact open subspaces of G(0). Given an ample groupoid G as above, we
construct a small permutative category BG of compact open bisections of G. Let
K(BG) be the algebraic K-theory spectrum of BG and Ω∞K(BG) the associated
infinite loop space.

Our first main result identifies reduced homology of K(BG) with groupoid ho-
mology of G as introduced in [5] and studied in [11].

Theorem 1. Let G be an ample groupoid with locally compact Hausdorff unit
space G(0). Then we have

H̃∗(K(BG)) ∼= H∗(G).
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For the second main result, we need the assumption that G is minimal, i.e.,
every G-orbit is dense in G(0). We also require G to have comparison, which
roughly means that G-invariant measures on G(0) control when one compact open
subspace of G(0) can be transported into another by compact open bisections of G.
In this setting, we can identify group homology of the topological full group F (G)
with the homology of Ω∞

0 K(BG), the connected component of the base point in
Ω∞K(BG).

Theorem 2. Let G be an ample groupoid, with locally compact Hausdorff unit
space G(0) without isolated points. Assume that G is minimal and has comparison.
Then we have

H∗(F (G)) ∼= H∗(Ω
∞
0 K(BG)).

Among other things, our results lead to

• general vanishing and acyclicity results, explaining and generalizing the
result that V is acyclic in [22],
• a complete description of rational group homology for large classes of topo-
logical full groups,
• a proof of Matui’s AH-conjecture for minimal, ample groupoids satisfying
comparison whose unit spaces have no isolated points.
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Amenability notions and Fell bundles

Diego Mart́ınez

(joint work with Alcides Buss)

There are, by now, numerous examples of interesting C∗-algebras arising from
dynamical systems (see [1, 2, 5, 6, 9] and references therein). Classically speaking,
a dynamical system [1] is given by an action of a (discrete) group Γ on a locally
compact Hausdorff space X , that is, a collection of homeomorphisms αγ : X → X
of X such that αγ1γ2

= αγ1
αγ2

for all γ1, γ2 ∈ Γ. More generally, the action α may,
instead, be on a non-commutative C∗-algebra A [2], in which case αγ : A → A is
a collection of ∗-isomorphisms. Even more generally, the action may be twisted
which, in this setting, means that αg may not be a ∗-isomorphism, but given by
a Hilbert A-A-bimodule Aγ , and the same kind of composition relations hold. In
the latter case the bimodules (Aγ)γ∈Γ form a Fell bundle of A over Γ, which is
usually denoted by (Aγ)γ∈Γ (cf. [5, 6, 11]).

Given one of the above actions or Fell bundles, one can construct certain crossed
product C∗-algebras, usually denoted by C0(X)⋊iΓ, A⋊iΓ or C∗

i ((Aγ)γ∈Γ), where
i ∈ {max, red} (cf. [2, 5, 6, 11]). These C∗-algebras have been known to exist for
a long time now, and their construction is based on (or, rather, inspired by) the
construction of the group measure construction from von Neumann algebras. The
main interest of these C∗-algebras cannot be overstated, and lies in, mainly, two
facts. On one hand, these algebras form an already very large class [4, 9], and
hence any understanding of their structure is interesting in its own right. On
the other hand, they implement the action spatially (cf. [2, 4, 5, 11]). For in-
stance, the reduced cross-sectional C∗-algebra of a Fell bundle (Aγ)γ∈Γ, denoted
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by C∗
red((Aγ)γ∈Γ), contains copies of the Banach spaces Aγ spanning a dense sub-

algebra and such that Aγ1
·Aγ2

= Aγ1γ2
for all γ1, γ2 ∈ Γ. In other words, the Fell

bundle (Aγ)γ∈Γ yields a Γ-grading when considered in C∗
red((Aγ)γ∈Γ).

In this talk we discussed and generalized the construction of cross-sectional
C∗-algebras to Fell bundles over inverse semigroups (cf. [3, 4, 11]), and gave a
sufficient condition to ensure that the algebra C∗

red((As)s∈S) is nuclear (cf. [4] or
the discussion below). Thereby, we generalize the main results of [1, 5, 6, 7, 8, 11].

Inverse semigroups were introduced independently by Wagner [12] and Pre-
ston [10] in the 1950’s. Recall that a semigroup S is said to be inverse if for every
s ∈ S there is a unique s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗. As groups
model the global bijections/symmetries of a space, inverse semigroups model those
that may only be partial. It is well known that inverse semigroups are closely re-
lated to étale groupoids, although that is not a point of view we will follow in
this text. Moreover, one can substitute Γ by an inverse semigroup S in the above
paragraph, and end up with an action of an inverse semigroup, or a Fell bundle
(As)s∈S . This kind of Fell bundle actions were introduced in the unpublished pa-
per [11]. Throughout the rest of the text, S will be a (discrete) inverse semigroup
with a unit, i.e. some (unique) 1 ∈ S such that s · 1 = 1 · s = s for all s ∈ S.

The construction of the reduced cross-sectional C∗-algebra C∗
red((As)s∈S) is

technical [3, 4], and relies on the weak conditional expectation P . Consider the
map P : C∗

max((As)s∈S) → A∗∗
1 that, when restricted to the subspaces As, is de-

fined by

P : As → A∗∗
1 , a 7→ a · 1s,1,

where 1s,1 is the unit of the multiplier algebra of the ideal Is,1 := 〈Ae | e ≤
s, 1〉 when considered in A∗∗

1 in the usual manner (see [3, 4] for a more detailed
construction). Such a map P is a weak conditional expectation, and can be used
to construct the reduced cross-sectional C∗-algebra of (As)s∈S as follows.

Definition 1. Let (As)s∈S be a Fell bundle over S.

(i) The nucleus of P is the ideal NP := {x | P (x∗x) = 0} ⊆ ⊕s∈SAs.
(ii) The algebraic cross-sectional ∗-algebra is C[(As)s∈S ] := ⊕s∈SAs/NP .
(iii) The reduced cross-sectional C∗-algebra is the (necessarily unique) C∗-

algebra C∗
red((As)s∈S) densely containing C[(As)s∈S ] and such that P in-

duces a faithful map C∗
red((As)s∈S)→ A∗∗

1 .

On the other hand, we may now study nuclearity (cf. [2]). This is a property
that has been most fruitful in the last decades (see [4, 2, 9] and references therein),
as it is a finite dimensional type of approximation for a given C∗-algebra. Recall
(cf. [2, Theorem 3.8.7]) that a C∗-algebra is nuclear if for any C∗-algebra B there
is only one C∗-norm in the algebraic tensor product A⊙B. This is equivalent to
saying that the canonical map A ⊗max B ։ A⊗min B is injective. In the talk we
discussed the following condition on a Fell bundle (As)s∈S .

Definition 2. The Fell bundle (As)s∈S has the approximation property (cf. [4,
Definition 4.3]) if there are finitely supported sections (ξi : S → A1)i∈I such that
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(i) supi∈I ‖
∑

p,t∈S 1p,tξi(p)
∗ξi(t)‖ <∞; and

(ii) ‖
∑

p,t∈S 1p,stξi(p)
∗aξi(t)− a‖ → 0 for every s ∈ S and a ∈ As.

The above definition of approximation property generalizes the homonymous
property for Fell bundles over groups introduced by Exel in [5] (see also [6] and [4,
Section 4]). On the other hand, it is proved in [4, Theorem 4.16] that the above
property also restricts to (topological) amenability1 of the associated groupoid of
germs in the case that (As)s∈S is induced by an action α : S y X . The main
interest of the approximation property above comes from the following.

Theorem 3. Let (As)s∈S be a Fell bundle with the approximation property. The
canonical map Λ: C∗

max((As)s∈S) ։ C∗
red((As)s∈S) is injective, and hence a ∗-

isomorphism. Moreover, if A1 is nuclear, then C∗
red((As)s∈S) is nuclear as well.

Sketch of proof. We refer the reader to [4, Theorems 6.2 and 6.7] for a complete
proof. The main ideas behind the first statement are the following. First, one
can use a version of “Fell’s absorption principle” in order to prove that there is a
faithful representation

πΛ : C∗
red

(
(As)s∈S

)
→֒ B

(
ℓ2π (S,H)

)

where ℓ2π(S,H) is a certain Hilbert space of sections of some bundle, and π =
(πs)s∈S is any given representation of the bundle (As)s∈S (cf. [4, Corollary 3.23]).
Secondly, in the case when the Fell bundle (As)s∈S has the approximation property
we can construct maps “in the wrong direction” (cf. [4, Lemma 6.1]), that is

Ψi : C
∗
red

(
(As)s∈S

)
→ C∗

max

(
(As)s∈S

)
, x 7→ T ∗

ξixTξi ,

where

Tξi : H → ℓ2π (S,H) , v 7→
∑

t∈S

π1 (ξi (t)) vδt.

It can then be proved that Ψi is a completely positive map such that Ψi(Λ(x))→ x
for all x ∈ C∗

max((As)s∈S), which shows the quotient map Λ: C∗
max((As)s∈S) →

C∗
red((As)s∈S) is injective, finishing the proof of the first statement.
The second statement, i.e. the fact that C∗

red((As)s∈S) is nuclear if A1 is nu-
clear, follows from the first and the (non-trivial) considerations that taking cross-
sectional C∗-algebras is a well-behaved process with respect to taking tensor prod-
ucts. We refer to [4, Section 5] for details. �
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The local bisection hypothesis for twists over étale

Hausdorff groupoids

Kathryn McCormick

(joint work with Becky Armstrong, Jonathan Brown, Gilles de Castro, Lisa
Orloff Clark, Kristen Courtney, Ying-Fen Lin, Jacqui Ramagge,

Benjamin Steinberg, Aiden Sims)

Let G be a locally compact Hausdorff étale (ample) groupoid, and let Σ
q
→ G be a

(discrete, R-) twist overG. Then using this data, one can build the twisted reduced
groupoid C*-algebra C∗

r (Σ;G) [8, 10], or the twisted Steinberg algebra AR(Σ;G)
in the ample groupoid, discrete twist setting [4, 3]. These algebras have obvious
abelian subalgebras by restricting to the twist above the units, C∗

r (q
−1(G(0));G(0))

and AR(q
−1(G(0));G(0)), respectively. The (twisted) groupoid C∗-algebra and

the (twisted) Steinberg algebra share some similar properties, despite one being
an analytic object and the other being a purely algebraic object. For example,
they both have uniqueness theorems that give sufficient conditions for which a
homomorphism from the algebra can be injective [6, 1, 7, 4]. In both the algebraic
and the C*-algebraic setting, it has also been fruitful and useful to study the
special case where the groupoid G is the groupoid for a directed graph or k-graph.

Building on ideas of Feldman and Moore, [8, 11, 9] show that given a Cartan pair
(A,B) of C∗-algebras, one can build an effective locally compact Hausdorff étale

groupoid G and twist Σ
q
→ G so that A ≃ C∗

r (Σ;G) and B ≃ C
∗
r (q

−1(G(0));G(0));
and moreover, if one starts with such a Cartan pair coming from a twisted groupoid
C∗-algebra, the twist Σ′ that one builds is isomorphic to Σ. Let R be an inde-
composable commutative unital ring. In [3], we show that given a discrete R-twist

Σ
q
→ G that satisfies the local bisection hypothesis, then we can recover the twist

as well. We will describe in more detail what the local bisection hypothesis is, and
summarize how the hypothesis gets used to reconstruct the groupoid twist in the
above result. We will also discuss how the obvious analogue of the local bisection
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hypothesis for C*-algebras is ‘hiding in plain sight’ in known C*-algebra work, but
also ends up being equivalent to G being effective.

The local bisection hypothesis was introduced in 2010 by Steinberg [12] in the

setting of graded ample Hausdorff groupoids. A discrete R-twist Σ
q
→ G satisfies

the local bisection hypothesis exactly when for every (algebraic) normaliser n of
AR(q

−1(G(0));G(0)), the open support q(supp(n)) is a bisection of G. This should
be compared to the “no nontrivial units” hypothesis on group rings, see [13]. For
example, if R is a reduced and indecomposable commutative ring, and there is a
dense subset of G(0) so that the isotropy over each x ∈ G(0) satisfies the unique
product property, then the twist satisfies the local bisection hypothesis [3, 9.3].
Another example of a setting in which the local bisection hypothesis applies is
when Γ is a countable higher rank graph that is row-finite with no sources and
there is a normalised R×-valued cocycle on Γ [3, 9.4]. Note that the twist satisfying
the local bisection hypothesis is more general than the groupoid G being effective.

One easy consequence of the local bisection hypothesis is that the canonical
conditional expectation P : A = AR(Σ;G) → B = AR(q

−1(G(0));G(0)) is imple-
mented by idempotents. That is, we have that for every normaliser n, there exists
an idempotent e of the subalgebra such that P (n) = en = ne. Moreover, if (A,B)
are an algebraic quasi-Cartan pair, then any conditional expectation implemented
by idempotents can be also realized as restriction to G(0) and for any normaliser
n, q(suppg(n)) is a bisection.

Moreover, the local bisection hypothesis allows us to connect the general setting
of an algebraic quasi-Cartan pair with the concrete setting of a twisted Steinberg
algebra. If we use the data (A,B) of an algebraic quasi-Cartan pair to build an
ample groupoid G and discrete twist Σ as in [3] such that A ≃ AR(Σ;G) and
B ≃ AR(q

−1(G(0));G(0)), then the twist Σ that we built will satisfy the local
bisection hypothesis [3, Cor. 6.7]. Finally, if we start with a twisted Steinberg

algebra AR(Σ;G) and build the associated twist Σ′ q′

→ G′, then Σ
q
→ G satisfies

the local bisection hypothesis if and only if the induced map between Σ and Σ′ is
a topological groupoid isomorphism. In summary, the local bisection hypothesis
is the necessary and sufficient condition to recover the original groupoid Σ from
our construction.

On the other hand, we can ask what the local bisection hypothesis might look
like in the C*-algebraic setting, which is the question we pursue in [2]. Given a

twist Σ
q
→ G, we say the twist satisfies the C*-algebraic local bisection hypothesis

if for every (C*-algebraic) normaliser n of C∗
r (q

−1(G(0));G(0)), the open support
q(supp(n)) is a bisection of G. It is known ([11, 4.8(ii)], [5]) that if G is effective,
then for any normaliser n of C∗

r (q
−1(G(0)), G(0)), q(supp(n)) is a bisection. In [2]

we show that the following are equivalent for a locally compact Hausdorff étale
groupoid G:

(1) G is effective

(2) For any twist Σ
q
→ G, (C∗

r (Σ;G), C
∗
r (q

−1(G(0));G(0))) is a Cartan pair
(3) For any normaliser n of C∗

r (q
−1(G(0));G(0)), q(supp(n)) is an open bisec-

tion of G
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Thus, for twisted groupoid C*-algebras, the analogue of the local bisection
hypothesis forces the stronger condition of having a Cartan pair.

The speaker would like to acknowledge the support of the AWM.
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A bicategorical perspective on generalized graph algebras and Leavitt

path algebras and their underlying groupoids

Ralf Meyer

(joint work with Celso Antunes, Suliman Albandik, Joanna Ko, Fabian Rodatz,
Muhammad Taufik bin Mohd Yusof)

Graph C*-algebras and Leavitt path algebras have been generalized in several
ways. A common feature of these generalizations is that they are groupoid C*-
algebras of suitable groupoids. This talk offers a bicategorical framework to study
their analogues for topological, self-similar, and higher-rank graphs, where any
combination of the three adjectives is possible. The underlying groupoid, its Stein-
berg algebra and its C*-algebra, that is, the generalized graph C*-algebra, are all
limits in suitable bicategories of groupoids, rings, or C*-algebras.

A bicategory is like a category, but it has another layer of structure, namely,
2-arrows between arrows. These come with two compositions, subject to a lengthy
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list of conditions. Classic examples are the bicategory of categories, functors,
and natural transformations or the bicategory of rings, bimodules, and bimodule
maps. The limit construction in a bicategory is even more interesting than in an
ordinary category because the commuting triangles that are used to define cones
now commute only up to a 2-arrow, that is, conditions are replaced by extra data.
As a result, the limit gets bigger than the data that is used to define it.

The simplest diagrams in a bicategory are homomorphisms from the monoid
(N,+) into it. Such a homomorphism is produced by an object with an endomor-
phism. In the C*-correspondence bicategory, this gives a single C*-correspondence,
that is, a Hilbert A-module with a nondegenerate left A-action by adjointable oper-
ators. In case the left action in the C*-correspondence is by compact operators, the
limit of the resulting diagram is exactly its Cuntz-Pimsner algebra (see [2]). More
generally, a diagram in the correspondence bicategory defined over a monoid P
is the same as an essential product system over P , and if the left actions on all
C*-correspondences in the diagram are by compact operators, then the limit is
the Cuntz-Pimsner C*-algebra of the product system (see [2]). In particular, the
C*-algebras of (self-similar and/or topological) graphs are defined as Katsura’s
variant of the Cuntz-Pimsner algebras of suitable C*-correspondences. However,
if the left action in this C*-correspondence is not by an injective homomorphism to
the compact operators, then the result above does not apply to Katsura’s variant.
Higher-Rank graph C*-algebras arise in a similar way, for homomorphisms defined
on the monoid (Nk,+).

In his thesis [1], this limit construction in the world of C*-algebras is lifted
to a suitable bicategory of groupoid correspondences. This is defined so that it
comes with a homomorphism to the bicategory of C*-correspondences. More pre-
cisely, the relevant groupoids are étale, locally compact, possibly non-Hausdorff,
and the homomorphism from groupoid to C*-correspondences takes a groupoid to
its groupoid C*-algebra. See also [4] for more details. Albandik’s main result is
that for diagrams over a monoid P that satisfy suitable Ore conditions, the C*-
algebra of the limit of the diagram in the bicategory of groupoid correspondences
is isomorphic to the Cuntz–Pimsner algebra of the corresponding product system
over P . A self-correspondence from a group to itself is the same as a self-similarity,
and self-similar graphs also give natural examples of self-correspondences. In fact,
it is useful to slightly generalise self-similar graphs and use groupoid correspon-
dences on discrete groupoids instead: I expect these to have very much the same
properties. A self-correspondence on an étale groupoid may then be interpreted
as a topological self-similar graph.

A limit in a bicategory is well defined only up to equivalence, which is the same
as Morita equivalence for the bicategory of groupoid correspondences. The partic-
ular groupoid constructed by Albandik may be characterised differently, using a
universal property that specifies its actions on topological spaces. This universal
property is used in [7] to define a groupoid model for any diagram of groupoid cor-
respondences. It is shown in [6] that any diagram has a groupoid model, and that
this is again locally compact if the diagram consists of proper correspondences.
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More recently, I have lifted these results about C*-algebras to the bicategory of
rings and bimodules. If the ring is unital and the bimodule is finitely generated
and projective as a right module, then the limit turns out to be its algebraic
Cuntz-Pimsner algebra, as defined by Carlsen and Ortega in [5]. This is shown
in unpublished work by me, available upon request. The homomorphism from
groupoid correspondences to C*-algebras has an algebraic counterpart, which gives
the Steinberg algebra of an ample groupoid. This homomorphism is defined in the
recent Master’s Thesis by Fabian Rodatz. For certain diagrams of ample groupoid
correspondences, he also proves that the Steinberg algebra of the groupoid model
is a limit in the bicategory of rings and bimodules. My doctoral student bin
Mohd Yusof is generalizing this theory to nonunital rings and non-proper groupoid
correspondences. The paradigm for this work is a characterisation of relative
Cuntz–Pimsner algebras of C*-correspondences in [8].
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On automorphisms of Leavitt path algebras and applications

Tran Giang Nam

In the last years, I studied automorphisms of a Leavitt path algebra LK(E) associ-
ated to a directed graph E with coefficients in a field K via Cuntz’s seminal paper
[6]. In [7] Kuroda and I constructed a new class of automorphisms of a Leav-
itt path algebra LK(E) being analogous to the Anick automorphisms of a free
associative algebra K〈x1, x2, . . . , xn〉. The Anick automorphism has been shown
by U. U. Umirbaev [9] to be a wild automorphism when n = 3 and K is a field
of characteristic 0. Using these Anick type automorphisms of Leavitt path alge-
bras, we constructed a new class of simple modules over the Leavitt path algebra
LK(Rn), where Rn is the rose with n petals, that is, the directed graph with one
vertex and n distinct edges. There are some by now well-known classes of simple
modules over a Leavitt path algebra established in [5, 1, 2], called Chen modules.
One instance of these modules occurs when considering a closed simple path c on

http://hdl.handle.net/11858/00-1735-0000-0028-87E8-C
http://www.math.uni-bielefeld.de/documenta/vol-20/38.html
https://nyjm.albany.edu/j/2022/28-56.html
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E and an irreducible polynomial f ∈ K[x]. The corresponding simple module is
denoted by Sf

c in [2]. The new simple modules are obtained from the Chen simple
modules Sf

c by twisting them by Anick type automorphisms of the Leavitt path
algebra LK(E). The main result of my paper together with Kuroda [7] is that for
some specific choices of closed simple paths on Rn, and some specific choices of
Anick type automorphisms of LK(Rn), the new simple modules obtained using the
above procedure are pairwise non-isomorphic, and also are not isomorphic to any
other Chen simple module. In [8], Srivastava, Vien and I provided an additional
class of simple modules over LK(Rn) from Chen modules V[p] associated with an
infinite path in Rn by twisting them by automorphisms associated with invertible
matrices P ∈ GLn(K).

One of the most frequently used tools to construct new examples of algebras
is twisting the multiplicative structure of original algebra. Classic examples of
algebras constructed by twisting multiplicative structure include skew polynomial
rings and skew group rings. A notion of twist of a graded algebra A was intro-
duced by Artin, Tate, and Van den Bergh in [3] as a deformation of the original
graded product of A with the help of a graded automorphism of A. Let σ be an
automorphism of the graded algebra A = ⊕An. Define a new multiplication ⋆ on
the underlying graded K-module ⊕An by a ⋆ b = aσn(b) where a and b are homo-
geneous elements in A = ⊕An and deg(a) = n. The new graded algebra with the
same underlying graded K-module ⊕An and the new graded product ⋆ is called
the twist of A and is denoted as Aσ. This notion of twist of a graded algebra was
later generalized by Zhang in [10], where he introduced the concept of twisting of
graded product with the help of a twisting system. Let τ = {τn | n ∈ Z} be a set of
graded K-linear automorphisms of A = ⊕An. Then τ is called a twisting system
if τn(yτm(z)) = τn(y)τn+m(z) for all n,m, l ∈ Z and y ∈ Am, z ∈ Al. For example,
if σ is a graded algebra automorphism of A, then τ = {σn | n ∈ Z} is a twisting
system. Thus, the twist of a graded algebra in the sense of Artin-Tate-Van den
Bergh can be viewed as a special case of the twist introduced by Zhang. Such a
twist of a graded algebra is now known as Zhang twist. Zhang twist of a graded
algebra has played a vital role in the interaction of noncommutative algebra with
noncommutative projective geometry. One of the main features of the study of
Zhang twist of a graded algebra is that if an algebra B is isomorphic to the Zhang
twist of an algebra A, then A is graded Morita equivalent to B. As a consequence
it follows that the noncommutative projective schemes associated with A and B
are equivalent ([4]).

In [8] Srivastava, Vien and I initiated the study of Zhang twist of Leavitt path
algebras with a larger goal to develop the geometric theory of Leavitt path algebras.
We twisted the multiplicative structure of Leavitt path algebras with the help of
specially graded automorphisms φ. In a rather surprising result we obtained that
the Leavitt path algebra LK(E) of an arbitrary graph E is always a subalgebra
of the Zhang twist LK(E)φ. We also characterized Leavitt path algebras LK(Rn)
of the rose graph Rn with n petals that are rigid to Zhang twist in the sense that
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LK(Rn) turns out to be isomorphic to its Zhang twist with respect to these graded
automorphisms.
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Modeling groupoid algebras using left cancellative small categories

Enrique Pardo

(joint work with Eduard Ortega)

In [14], Spielberg described a new method of defining C∗-algebras associated to
oriented combinatorial data, generalizing the construction of algebras from di-
rected graphs, higher-rank graphs, and (quasi-)ordered groups. To this end, he
introduced categories of paths –i.e. cancellative small categories with no (nontriv-
ial) inverses– as a generalization of higher rank graphs, as well as ordered groups.
The idea is to start with a suitable combinatorial object and define a C∗-algebra
directly from what might be termed the generalized symbolic dynamics that it
induces. Associated to the underlying symbolic dynamics, he presents a natural
Deaconu-Renault étale groupoid derived from this structure. The construction
also gives rise to a presentation by generators and relations, tightly related to the
groupoid presentation. In [15] he showed that most of the results hold when re-
laxing the conditions, so that right cancellation or having no (nontrivial) inverses
are taken out of the picture.

In [11], we studied Spielberg’s construction, using a groupoid approach based
in the Exel’s tight groupoid construction [5], showing that the tight groupoid for
these inverse semigroups coincide with Spielberg’s groupoid [13]. With this tool
at hand, following the approach of [2], we were able to characterize simplicity for
the algebras associated to finitely aligned left cancellative small categories, and
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in particular in the case of Exel-Pardo systems [8], by using an inverse semigroup
approach [7]. Finally, we gave, under mild and necessary hypotheses, a character-
ization of amenability for such a groupoid.

Therefore, it becames important to understand the internal structure of the
left cancellative small category to check the desired properties of the associated
groupoid, and hence of its associated (C∗-)algebra. A classical idea is to decompose
our complex object in different simple pieces with well-behaved relations between
them. This was well studied in [10], where it was proved that categories with
length functions on Nk with certain decomposition properties can be written as
the Zappa-Szép product of the groupoid of invertible elements of the category
and a higher-rank graph subcategory generated by a transversal of generators of
maximal right ideals. Zappa-Szép products of left cancellative small categories
and groups were studied by Bédos, Kaliszewski, Quigg and Spielberg in [1], where
they studied the representation theory for the Spielberg algebras of the new left
cancellative small category associated to this construction.

In [12], we extended the scope of [1] to actions of groupoids, To this end, we
defined groupoid actions on a left cancellative small category and their Zappa-
Szép products (inspired in the construction in [9]), and we showed that Zappa-
Szép products appear naturally in the context of left cancellative small categories
with length functions. Finally, we extended the results of [11, Sections 7 & 8] to
determine the essential properties of the tight groupoid associated to Zappa-Szép
products of groupoid actions on a left cancellative small category.

In the talk, we summarized these work as follows: First, we explained why Spiel-
berg’s algebras associated to left cancellative small categories provide a different
approach for studying algebras of second countable, ample groupoids; in partic-
ular, we explained how Donsig et al. [3, 4] and Exel [6] allowed us to connect
ample groupoids with tight groupoids of inverse semigroups. Once this was done,
we recalled some known results on small categories, and we defined length func-
tions and factorization properties needed in the sequel. Also, we defined groupoid
actions on left cancellative small categories, as well as the Zappa-Szép products
of certain groupoid actions on left cancellative small categories; in particular, we
showed that left cancellative small categories with nice length functions can be
described as Zappa-Szép products of the action of their groupoid of invertible el-
ements on certain nice subcategories. After recalling the basics on (topological)
groupoids and their algebras, we carefully explained the construction the Exel’s
tight groupoid of an inverse semigroup. Finally, we analyzed the structure of
the tight groupoid associated to Zappa-Szép products of groupoid actions to left
cancellative small categories, extending Exel’s construction.
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Classification of graph C
∗-algebras

Efren Ruiz

(joint work with Søren Eilers)

A graph C∗-algebra is a C∗-algebra defined by generators and relations governed
by an underlying directed graph. The class of graph C∗-algebras is a tractable
class of C∗-algebras due to the combinatorial tools from the directed graph that
defines a graph C∗-algebra. Structural properties of a graph C∗-algebra such
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as its ideal lattice, whether it is unital, stably finite, purely infinite, and its K-
theory are obtained through the underlying directed graph. The authors with
Restorff and Sørensen [10] exploited these combinatorial tools to obtain a geometric
classification of unital graph C∗-algebras. We proved that the equivalence relation
induced on all vertex-finite directed graphs (but possibly countably infinitely many
edges) by stable isomorphism of the associated graph C∗-algebras is the coarsest
equivalence relation containing a number of moves on the graphs. These moves
are all local in nature – affecting only the graph in a small neighborhood of the
vertex to which it is applied – and the basic moves have their origin in symbolic
dynamics, viz. in-splitting and out-splitting as defined and studied by Williams
([17]) as a way of characterizing conjugacy among shifts of finite type.

Recently, in a movement pioneered by Kengo Matsumoto, it has been discov-
ered that for finite essential graphs – the so-called Cuntz-Krieger algebras – have
rigidity properties when they are considered not as C∗-algebras alone, but as C∗-
algebras with additional natural structures. More precisely, the shifts of finite
type associated to finite essential graphs are remembered by the Cuntz-Krieger
algebras at varying level of precision depending upon how much structure is con-
sidered. The canonical objects associated to the Cuntz-Krieger algebra OA or its
stabilization OA⊗K are the diagonal, the gauge action, the stabilized diagonal, or
the stabilized gauge action (denoted by DA, γ

A, DA⊗c0 and γA⊗id, respectively).
Table 1 lists a collection of such results presently known, showing that standard
dynamical notions such as conjugacy and flow equivalence are indeed rigidly re-
membered by the operator algebras, and providing motivation for the study of
new concepts of sameness of such dynamical systems.

Notion Data Which SFTs? Ref.

Flow equivalence (OA ⊗ K,DA ⊗ c0) Irreducible [16]
All [7]

Conjugacy (OA ⊗ K,DA ⊗ c0, γ
A ⊗ id) All [8]

Shift equivalence (OA ⊗ K, γA ⊗ id) Primitive [5]
Irreducible [12]

Continuous orbit (OA,DA) Irreducible [14]
equivalence No isolated points [4]

All [1]
[9]

Eventual conjugacy (OA,DA, γA) Irreducible [15]
All [8]

Table 1. Assorted rigidity results

To systematically address questions of this nature, in [11], we give the following
definition. Let E and F be vertex-finite directed graphs. With x, y, z ∈ {0, 1} we
say that E and F are xyz-equivalent when there exists a ∗-isomorphism φ : C∗(E)⊗
K→ C∗(F )⊗K which additionally satisfies

• φ(1C∗(E) ⊗ e1,1) = 1C∗(F ) ⊗ e1,1 when x = 1

• φ ◦ (γEz ⊗ idK) = (γFz ⊗ idK) ◦ φ when y = 1

• φ(DE ⊗ c0) = DF ⊗ c0 when z = 1.
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The goal of our project is to generate each xyz-equivalence relation by a finite
collection of graph moves similar to [10]. We have defined a collection of moves

(O), (I+), (I-), (R+), (S), (C+), (P+), (K+)

and prove the appropriate xyz-equivalence for each move except (K+). More pre-
cisely,

(1) E and F are 111-equivalent when E and F are move equivalent via Move
(O) or Move (I+),

(2) E and F are 011-equivalent when E and F are move equivalent via Move
(I-),

(3) E and F are 101-equivalent when E and F are move equivalent via Move
(R+),

(4) E and F are 001-equivalent when E and F are move equivalent via Move
(S), and

(5) E and F are 100-equivalent when E and F are move equivalent via Move
(C+) or Move (P+).

Invariance of (K+) is the analytic analog to [13, Hazrat’s Conjecture] which con-
jectures that E and F should be 110-equivalent. At the moment, we are only able
to show that E and F are 100-equivalent when E and F are move equivalent via
Move (K+). This fact was independently proved by Ara, Hazrat, and Li [3] for
finite graphs.

For the class of countable vertex-finite graphs, we conjecture that

000 = 〈(O), (I-), (R+), (S), (C+), (P+), (K+)〉(0)

001 = 〈(O), (I-), (R+), (S)〉(1)

010 = 〈(O), (I-), (K+)〉(2)

011 = 〈(O), (I-)〉(3)

100 = 〈(O), (I+), (R+), (C+), (P+), (K+)〉(4)

101 = 〈(O), (I+), (R+)〉(5)

110 = 〈(O), (I+), (K+)〉(6)

111 = 〈(O), (I+)〉.(7)

We use the notation xyz to refer to the equivalence relation among vertex-finite

graphs defined by (E,F ) ∈ xyz if and only if E and F are xyz-equivalent. We
use 〈·〉 to denote the smallest equivalence relation generated by a collection of
relations.

The geometric classification of the authors with Restorff and Sørensen [10]
proves Conjecture (0). Conjecture (4) was completed by the authors with Arklint
in [2]. Brix in [6] proved that Conjecture (7) is true for the class of finite directed
graphs with no sinks. In [11], we proved these conjectures are true for several
subclasses of vertex-finite directed graphs. One such example is that

010 = 〈(O), (I-), (K+)〉 = 〈(O), (I-)〉 = 011

for acyclic directed graphs.
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C
∗-algebraic representations of suspensions of graphs

Aidan Sims

Let E = (E0, E1, r, s) be a directed graph; so E0 is a countable set whose elements
are the vertices of the graph, E1 is a countable set whose elements are the edges,
and r, s : E1 → E0 indicate the directions of the edges: the edge e points from the
vertex s(e) to the vertex r(e). For simplicity, we will discuss only the situation
where E is finite, in the sense that both E0 and E1 are finite, and has neither
sources or sinks in the sense that r, s : E1 → E0 are both surjective. The (one-
sided) infinite-path space E∞ of E is the space of words e0e1e2 . . . in the alphabet
E1 with the property that r(ei) = s(ei+1) for all i, given the topology inherited as
a subspace of

∏∞
i=1E

1. The map σ : E∞ → E∞ that deletes the first edge in an
infinite path is a local homeomorphism called the shift map, and the pair (E∞, σ) is
called the (one-sided) edge-shift of E. A well-known result from symbolic dynamics
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[8, Theorem 2.3.2] says that every one-sided subshift of finite type is conjugate to
an edge-shift.

In the world of two-sided shift spaces, an important invariant of a symbolic-
dynamical system (X, σ) is its flow spaceM(σ) := (X×R)/〈(x, t+1) ∼ (σ(x), t)〉—
that is, the mapping torus of the shift map. Two shifts are flow-equivalent if there
is a homeomorphism between their flow spaces that preserves orientation of the R

action and preserves R-orbits. Let AE denote the adjacency matrix of the graph
E. Work of Parry and Sullivan [11], Bowen and Franks [1] and of Franks [5]
showed that the pair (coker(I − AE), sign(det(I −AE))), now called the Bowen–
Franks invariant, is a complete invariant for flow-equivalence of irreducible shifts of
finite type. Subsequently Cuntz and Krieger showed [3, 2] that the Cuntz–Krieger
algebra of the matrix AE—or equivalently the graph C∗-algebra C∗(E) [4, 7]—
remembers coker(I−AE) as its K0-group. Matsumoto and Matui [9] later showed
that C∗(E) together with its natural Cartan subalgebra remembers the whole
Bowen–Franks invariant. The resulting interaction between symbolic dynamics
and C∗-algebras via graph algebras has been enormously productive.

In this talk I discussed the problem of encoding the flow-spaceM(σ) directly in
a C∗-algebra. The starting point is to build from the graph E a family of quivers
SlE indexed by positive real numbers l as follows. The space SlE0 of vertices is
independent of l and is the topological realisation of E: the space

(
(E1 × [0, 1]) ∪ E0

)
/〈(e, 0) ∼ s(e) and (e, 1) ∼ r(e)〉.

Roughly speaking, the space SlE1 of edges consists of continuous paths of length
l in this vertex space that respect the orientation of edges. When l = 1, the
infinite-path space S1E∞ with its natural shift map is exactly the flow-space of
E.

Unfortunately, SlE is neither a topological graph in the sense of Katsura [6]
nor a topological quiver in the sense of Muhly and Tomforde [10] because neither
the range nor the source map from SlE1 to SlE0 is open; and for the same reason
its natural groupoid model does not admit a Haar system in the sense of Renault
[12]. But one can associate a C∗-algebra to SlE “by hand:” for each v ∈ SlE0,
write SlE∗v for the (discrete) space of finite paths in SlE that terminate at v,
and let Hv := ℓ2(SlE∗v); then there are natural maps πv : C(SlE0)→ B(Hv) and
ψv : C(SlE1) → B(Hv) that, for l = 1, amount to a summand in the standard

path-space representation of E or of its dual Ê. Composing with the quotient map
qv : B(Hv)→ Q(Hv) onto the Calkin algebra gives maps π̃v : C(SlE0) → Q(Hv)

and ψ̃v : C(SlE1) → Q(Hv) whose images, when l = 1, contain a Cuntz-Krieger
E-family and generate a representation of C∗(E). We define

C∗(SlE) := C∗
(⊕

v

π̃v(C(S
lE0)),

⊕

v

ψ̃v(C(S
lE1))

)
.

The main results that I discussed in the talk appear in [13], and concern the
structure of C∗(SlE). When E is a simple cycle of length n, the C∗-algebra
C∗(SlE) is isomorphic to the rotation algebra Al/n. When l = 1, C∗(SlE) turns
out to be isomorphic to C([0, 1])⊗C∗(E), and so homotopy equivalent to C∗(E).



Combinatorial ∗-algebras 777

When l = m/n is rational, we obtain a similar homotopy result: if DnE
m is the

graph obtained by first delaying E by inserting n − 1 vertices along each edge
of E, and then by taking the mth higher-power graph of DnE (the graph whose
vertices are those of DnE but whose edges are paths of length m in DnE), then
C∗(Sm/nE) is homotopy equivalent to C∗(DnE

m). Since the edge shift of DnE
m

can naturally be regarded as the m
n th higher-power shift of the edge-shift of E, this

suggests that for irrational l, the C∗-algebra C∗(SlE) may be a natural candidate
for a C∗-algebraic representation of the lth higher-power shift of the graph E.
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On von Neumann Regularity of Ample Groupoid Algebras

Benjamin Steinberg

(joint work with Daniel van Wyk)

The notion of a regular ring was introduced by von Neumann in the 1930s. A
ring R is regular if, for all a ∈ R, there exists b ∈ R with aba = a. The class of
regular rings enjoys good closure properties and can be characterized elegantly as
the rings for which all modules are flat. The notion has since become fundamental
in ring theory [3].

Commutative regular rings are rings of compactly supported global sections
of sheaves of fields over a locally compact and totally disconnected Hausdorff
space. In particular, the ring of locally constant functions with values in a field
on a locally compact and totally disconnected Hausdorff space is regular. Connell
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characterized in the 1960s [2] which group algebras are regular: the group must
be locally finite and the characteristic of the field cannot divide the order of any
element of the group. Attempts were made to generalize this result to inverse
semigroups. The best result to date is due to Okniński [5]. He showed that if
K is a field of characteristic 0 and S is an inverse semigroup, then KS is regular
if and only if S is locally finite. His proof was analytic and took advantage of
the embedding of CS into the Banach algebra ℓ1S. Abrams and Rangaswamy
characterized the Leavitt path algebras which are regular as those coming from
acyclic graphs [1], which is quite restrictive.

One can generalize regularity to group-graded rings. A Γ-graded ring R =⊕
γ∈ΓRγ is graded regular if, for each homogeneous element a ∈ Rγ , there is

b ∈ R (necessarily in Rγ−1) with aba = a. Hazrat proved every Leavitt path
algebra is graded regular with respect to its natural Z-grading [4].

Ample groupoid algebras (aka Steinberg algebras) include algebras of locally
constant functions on locally compact and totally disconnected Hausdorff spaces,
group algebras, inverse semigroup algebras and Leavitt path algebras as special
cases. Our main result [6] is that if K is a field of characteristic 0 and G is an ample
groupoid, then KG is regular if and only if G is a directed union of quasicompact
open subgroupoids. This, in turn, is equivalent to the inverse semigroup of compact
open bisections being locally finite. The two key ingredients of the proof are the
embedding of CG into C∗

r (G), which plays the role of the embedding of CS into
ℓ1S in Okniński’s proof, and a classical result of Birkhoff from universal algebra
on the local finiteness of algebras belonging to the variety generated by a finite
collection of finite algebras. This generalizes the previous results in characteristic
0. We also have positive results [6] in characteristic p > 0, that were not discussed
in the talk.

Our second main result [6] says that if G is an ample groupoid with a locally
constant 1-cocycle c : G → Γ to a discrete group Γ, then the algebra KG is graded
regular with respect to the Γ-grading induced by c if and only if the homogeneous
component of the identity e, which is the groupoid algebra Kc−1(e), is regular.
This allows us to apply the results discussed above to graded regularity. In partic-
ular, we recover Hazrat’s theorem [4], as well as extend it to higher rank graphs.
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Stein’s groups as topological full groups

Owen Tanner

Topological full groups are a way to build simple groups with finiteness properties
from ample groupoids. More specifically, I focus on effective ample groupoids with
a compact unit space. The topological full group F(G) is the unital subgroup of
the inverse semigroup of compact open bisections. We can think of our topological
full group as a group of homeomorphisms of the unit space, since our groupoid is
effective.

There are two fundamental background results about topological full groups.

Theorem 1 (Matui’s Isomorphism Theorem [2]). Let G1,G2 be minimal, effective,
Cantor groupoids. TFAE:

• G1 ∼= G2 as topological groupoids.
• F(G1) ∼= F(G2) as abstract groups.

Theorem 2 (Nekrashevych’s Theorem [1]). Let G be an ample effective Cantor
groupoid that is minimal and expansive. Then, the derived subgroup of F(G) is
simple and finitely generated.

Recently, I have become interested in a class of topological full groups called
Stein’s groups, which are certain generalisations of Thompson’s group V [3].

Definition 3. Let Λ be a subgroup of the positive real numbers with respect to
multiplication, and let ℓ be a positive real number. Then Stein’s group V (Λ, ℓ) is
the group of piecewise linear, right continious bijections of [0, ℓ] with finitely many
slopes, all in Λ, and finitely many nondifferentiable points, all in Z[Λ].

I was able to prove the following in my preprint on the ArXiV [4]. The first
nontrivial thing to show is that these admit a nice groupoid model. The groupoid
model is a certain full corner in Patersons universal groupoid of the cancellative
semigroup formed of the semidirect product of Z[Λ] ∩ [0,+∞) by Λ where the
action is by multiplication. Next I show via Nekrashevych’s theorem:

Theorem 4. D(V (Λ, ℓ)) is finitely generated iff Λ is finitely generated.

In this talk, I make use of Matui’s isomorphism theorem and the diversity of
the groupoid models to explain 3 interesting cases in greater detail:

• The Higman-Thompson groups Vk,r ∼= V (〈k〉, r) where k, r are natural
numbers, are associated to certain graph groupoids. Namely, the graph
groupoid of the rose with k petals and a stem of length r − 1. It is
mentioned that via this connection, and via Leavitt path algebras, Pardo
completed the classification of these groups [5].
• In the case where Λ is generated by k > 1 integers, we can associate V (Λ, 1)
to a certain class of single-vertex k-graphs. This allows us to show that
these examples of Stein’s groups are always rationally acyclic, appealing
to the homology framework of Li. An open question is mentioned– the
classification of these groups is open.
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• The case where Λ is generated by an irrational number, which is interesting
from the perspective of homology because it is not always a rationally
acyclic, or even virtually simple group.

We hope to inspire interest in this class of groups, and the connection via groupoids
to combinatorial *-algebras.
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Functoriality for étale groupoid algebras

Jonathan Taylor

With the exception of some particular classes, continuous functors between
groupoids do not generally lift to homomorphisms of their (C∗-)algebras. For
(discrete) groups, group homomorphisms lift covariantly to homomorphisms of
their associated algebras, whereas continuous maps between topological spaces
lift contravariantly via pullback to their algebras of continuous functions. View-
ing groupoids as a hybrid of these two concepts with morphisms that generalise
both these listed above, any way of lifting morphisms to homomorphisms of the
groupoid algebras needs to be simultaneously covariant along source/range fibres
in the groupoid and contravariant along the unit space. The two main classes of
groupoid functor that satisfy this are open embeddings (where one may use the
continuous partial inverse to reverse the direction of arrows on the unit space),
and fibrewise-bijective continuous functors (allowing one to reverse the direction
of arrows along the fibres).

Buneci and Stachura [1] introduced a morphism between groupoids as an al-
ternative to considering functors. A morphism from a groupoid G to a groupoid
H consists of a left action of G on H that commutes with the right multipli-
cation of H on itself. Buneci and Stachura showed that such morphisms in-
duce ∗-homomorphisms from the C∗-algebra of G to the multiplier algebra of
the C∗-algebra of H via a convolution formula using the action multiplication in
place of the multiplication in H . We call such morphisms actors. Buneci and
Stachura showed that actors lift functorially to ∗-homomorphisms of the groupoid
C∗-algebras, providing at least one answer to the question of functoriality for
groupoid C∗-algebras. Moreover, the ∗-homomorphisms induced by open embed-
dings and fibrewise bijective continuous functors arise as special cases of actors,
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unifying two of the main approaches to constructing ∗-homomorphisms between
groupoid C∗-algebras.

When considering étale groupoids and their C∗-algebras, we gain some ex-
tra structure. The algebra of continuous functions on the unit space of an étale
groupoid embeds into the groupoid C∗-algebra, and there is a canonical condi-
tional expectation from the groupoid C∗-algebra to this subalgebra of functions.
One may then consider ∗-homomorphisms that also preserve this structure, that
is, ∗-homomorphisms between étale groupoid C∗-algebras that intertwine the con-
ditional expectations. An actor that is free, that is, an actor where only units act
trivially, will induce such a ∗-homomorphism. Moreover, if the domain groupoid
for the actor is Hausdorff, then the induced ∗-homomorphism intertwines expecta-
tions if and only if the actor is free. If the groupoids concerned are effective, and
so lift to Cartan pairs of C∗-algebras with the canonical subalgebras of functions
on the unit spaces, then any non-degenerate ∗-homomorphism between these two
groupoid C∗-algebras that preserves the Cartan structure then arises from an actor
of the underlying groupoids. This leads to an equivalence of categories between
effective étale groupoids and the C∗-pairs they induce (cf. [3], [4]). By extending
the construction of actors to twists over effective groupoids, this equivalence can
be extended one between the category of twist over effective groupoids and all
Cartan pairs.

In his seminal paper [2], Li demonstrated that the inductive limit of Cartan pairs
is again a Cartan pair. In particular, inductive limits of these groupoid C∗-algebras
are again groupoid C∗-algebras. The main methodology used to show this involves
reconstructing ∗-homomorphisms between Cartan pairs as a combination of those
arising from open inclusions and proper fibrewise-bijective functors between the
underlying groupoids, with an intermediate groupoid filling in part of the resulting
zig-zag. By viewing the ∗-homomorphism as arising from an actor between the
underlying groupoids, the intermediate groupoid defined by Li can be identified
with the transformation groupoid associated to the actor, and the construction
of the inductive limit groupoid can be framed in this language too. Using this
heuristic, given an inductive system of free actors, one may construct the inductive
limit groupoid mimicking the construction of Li for Cartan pairs. This inductive
limit groupoid is the colimit object for this diagram in the category of groupoids
with actors. Moreover, the functor to C∗-algebras will lift this colimit groupoid to
the colimit of the inductive system of C∗-algebras induced by the system of actors.
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Porcupine-quotient graphs, the fourth primary color, and some

updates about the Graded Classification Conjecture

Lia Vaš

If E is a directed graph and K a field the Leavitt path algebra LK(E) is naturally
graded by the group of integers. The lattice of graded LK(E)-ideals corresponds
to the lattice of pairs of certain sets of vertices called the admissible pairs. The
ideal I(H,S) corresponding to an admissible pair (H,S) is graded isomorphic to
the Leavitt path algebra of a graph introduced in [2] which is called the porcupine
graph. The porcupine graph resembles the older construction of a hedgehog graph
([1, Definitions 2.5.16 and 2.5.20]) except that the “spines” added to the “body”
determined by H ∪ S are longer, so the name “porcupine” was chosen to reflect
that. While the Leavitt path algebra of the hedgehog of (H,S) is isomorphic to
I(H,S), this isomorphism does not have to be graded. In contrast, the Leavitt
path algebra of the porcupine of (H,S) is graded isomorphic to I(H,S).

One can also define the quotient graph E/(H,S) ([1, Definition 2.4.14]) in such
a way that the quotient LK(E)/I(H,S) is graded isomorphic to the Leavitt path
algebra of E/(H,S). We present a construction from [3] which generalizes both
the porcupine and the quotient graph constructions and enables one to represent
the quotient of two graded ideals as the Leavitt path algebra of this newly defined
graph. Specifically, if (H,S) and (G, T ) are admissible pairs such that (H,S) ≤
(G, T ) (in the sense which corresponds exactly to I(H,S) ⊆ I(G, T )), we define
the porcupine-quotient graph (G, T )/(H,S) and show that its Leavitt path algebra
is graded isomorphic to the quotient I(G, T )/I(H,S).

We also consider two pre-ordered monoids, ME and MΓ
E , originated in rela-

tion to some classification questions. The graph monoid ME is isomorphic to the
monoid V(LK(E)) of the isomorphism classes of finitely generated projective mod-
ules. The natural grading of a Leavitt path algebra induces an action of the infinite
cyclic group Γ = 〈t〉 ∼= Z on the graded isomorphism classes of finitely generated
graded projective LK(E)-modules and there is a Γ-isomorphism of the monoid
VΓ(LK(E)) of such graded isomorphism classes and the monoid MΓ

E , also known
as the talented monoid or the graph Γ-monoid. In particular, the following lattices
are isomorphic: the lattice of order-ideals of ME , the lattice of Γ-order-ideals of
MΓ

E , the lattice of graded ideals of LK(E), and the lattice of admissible pairs of E.
If (G, T )/(H,S) is the porcupine-quotient graph,M(G,T )/(H,S) is isomorphic to the

quotient of the order-ideals corresponding to (G, T ) and (H,S) and MΓ
(G,T )/(H,S)

is isomorphic to the quotient of the Γ-order-ideals corresponding to (G, T ) and
(H,S).

We say that LK(E) has a graded composition series if there is a finite and
increasing chain of graded ideals, starting with the trivial ideal and ending with
the improper ideal, such that the quotient of each two consecutive ideals is graded
simple. Since a Leavitt path algebra is graded simple if and only if the underly-
ing graph is cofinal, the porcupine-quotient construction enables us to relate the
existence of a graded composition series of LK(E) with the existence of a finite
and increasing chain of admissible pairs, starting with the trivial pair and ending
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with the improper pair, such that the porcupine-quotient of two consecutive pairs
is cofinal. If such a chain exists, we say that E has a composition series. For any
graph, the following conditions are equivalent.

(1) E has a composition series.
(2) LK(E) has a graded composition series.
(3) ME has a composition series.
(4) MΓ

E has a composition series.

We characterize the existence of the above composition series by a set of conditions
on E which can be directly checked and which produce a specific composition
series. In order to obtain this result, we start by introducing a type of vertices
which are “terminal” in the same sense as the vertices of any of the three types
below.

(1) A sink is a vertex which emits no edges. A sink connects to no other vertex
in the graph except, trivially, to itself.

(2) A cycle without exits is a cycle whose vertices emit only one edge to another
vertex in the cycle. The vertices in such a cycle do not connect to any
vertices outside of the cycle.

(3) An extreme cycle is a cycle such that the range of every exit from the
cycle connects back to a vertex in the cycle. The vertices in such a cycle
c connect only to the vertices on cycles in the same “cluster” as c.

The significance of these three groups of vertices lies in the fact that the Leavitt
path algebra of a finite graph is graded simple exactly when there is a unique
“cluster” of vertices of one of the three types above. Because of this, the three
graphs below are the three quintessential examples of graphs with the above three
types of vertices. The authors of [1] refer to the Leavitt path algebras of these
three graphs as the three primary colors of Leavitt path algebras.

• // • // • • // • • dd • dd qq
��
QQ

However, if the graph is not finite, its Leavitt path algebra can be graded simple
without having exactly one cluster of the three types of vertices as above. For
example, the Leavitt path algebras of the graph below is graded simple and the
graph has neither cycles nor sinks.

• ??
��
• ??

��
• ??

��
•

We introduce terminal paths as the infinite paths whose vertices are terminal in
the same sense as the above three types. According to this definition, every infinite
path of the above graph is terminal. Then, we characterize graded simplicity of a
Leavitt path algebra LK(E) by a set of conditions on E which are direct to check
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and which are given in terms of the existence of exactly one cluster of the four
types of terminal vertices. The existence of the fourth type does not contradict
the Trichotomy Principle ([1, Proposition 3.1.14]), but it refines it: it distinguishes
between sinks and terminal paths.

Using the previous results, we present a set of conditions on E which are equiv-
alent with E having a composition series. Such conditions are constructive in the
following sense: given a graph, one can construct a chain of admissible pairs such
that the porcupine-quotient graphs of two consecutive pairs are cofinal and check
if such a chain terminates after finitely many steps. Informally, such a chain is
obtained by iteratively cutting the terminal vertices (and their breaking sets if E
is not row-finite). A direct corollary of this characterization is that every unital
Leavitt path algebra has a graded composition series.

The last portion of the talk contained some new developments, soon to be sub-
mitted for publication, regarding the the Graded Classification Conjecture (GCC).
The GCC states that the pointed Kgr

0 -group is a complete invariant of the Leavitt
path algebras of finite graphs when these algebras are considered with their nat-
ural grading by Z. The conjecture has been shown to hold in some special cases
including finite graphs such that each cycle has no exits (edges leaving the cycle).
We prove that the conjecture holds for graphs with cycles which can have exits
– we consider graphs with a composition series such that each composition factor
is a cofinal graph with either a unique sink or a unique cycle without exits. This
class of graphs coincides with the class of graphs with disjoint cycles, finitely many
infinite emitters, sinks and cycles and such that every infinite path ends in a cycle.
We say that a graph in this class is a composition S-NE graph (where S stands for
sink and NE for no-exits). For the main result, we also require infinite emitters
of a graph to emit only countably many edges. In particular, our result holds for
finite graphs with disjoint cycles (the Toeplitz graph is such, for example) and we
formulate it also for the graph C∗-algebras. As a consequence of this result, the
Isomorphism Conjecture also holds for the class of graphs we consider.

For S-NE graphs we regard, we show that the two conditions from the GCC are
equivalent also with a condition expressed only in terms of properties of graphs. In
particular, we introduce an invariant we refer to as the S-NE-invariant. Featuring
this invariant, our main result does more than prove the GCC for the class of graph
we consider – it describes the graded (*-)isomorphism class of a graph from this
class. Such description is relevant for the active program of classification of the
graph C∗-algebras. The S-NE invariant and the methods of our proof indicate that
the GCC should generally be considered also with the graph-theoretic condition
and that using the length of a composition series for induction is promising when
attempting to prove the GCC for other types of graphs.
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