On a Degenerating Limit Theorem of DeMarco–Faber

by

Yûsuke OKUYAMA

Abstract

One of our aims is to complement the proof of DeMarco–Faber's degenerating limit theorem for the family of the unique maximal entropy measures parametrized by a punctured open disk associated to a meromorphic family of rational functions on the complex projective line, degenerating at the puncture. This complementation is done by our main result, which rectifies a key computation in their argument. We also establish and use a direct and explicit translation from degenerating complex dynamics into quantized Berkovich dynamics, instead of using DeMarco–Faber's more conceptual transfer principle between those dynamics.

Mathematics Subject Classification 2020: 37P50 (primary); 37F10, 14G22 (secondary). Keywords: meromorphic family of rational functions, degeneration, maximal entropy measure, Berkovich projective line, balanced measure, quantization.

§1. Introduction

Let K be an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value. The action of a rational function $h \in K(z)$ on $\mathbb{P}^1 = \mathbb{P}^1(K)$ extends continuously to that on the Berkovich projective line $P^1 = P^1(K)$, which is a compact augmentation of \mathbb{P}^1 . If in addition deg $h > 0$, then this extended action of h on P^1 is surjective, open, and fiber-discrete and preserves the type (among I, II, III, and IV) of each point in P^1 , and the local degree function deg h of h on \mathbb{P}^1 also extends upper semicontinuously to P^1 so that for every open subset V in P^1 and every component U of $h^{-1}(V)$, $V \ni \mathcal{S}' \mapsto$ $\sum_{\mathcal{S}\in h^{-1}(\mathcal{S}')\cap U} \deg_{\mathcal{S}} h \equiv \deg(h: U \to V).$

Communicated by S. Mochizuki. Received March 13, 2020. Revised October 9, 2020.

Y. Okuyama: Division of Mathematics, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606- 8585, Japan;

e-mail: okuyama@kit.ac.jp

[©] 2024 Research Institute for Mathematical Sciences, Kyoto University.

This work is licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license.

The pushforward operator $h_*: C^0(\mathsf{P}^1) \to C^0(\mathsf{P}^1)$ is defined so that for every $\psi \in C^0(\mathsf{P}^1), (h_*\psi)(\cdot) \coloneqq \sum_{\mathcal{S} \in h^{-1}(\cdot)} (\deg_{\mathcal{S}} h)\psi(\mathcal{S})$ on P^1 . The pullback operator h^{*} from the space $M(P^1)$ of all Radon measures on P^1 to itself is defined by the transpose of h_* , so that for every $\nu \in M(\mathsf{P}^1)$,

(1.1)
$$
h^*\nu = \int_{\mathsf{P}^1} \bigg(\sum_{\mathcal{S}' \in h^{-1}(\mathcal{S})} (\deg_{\mathcal{S}'} h) \delta_{\mathcal{S}'} \bigg) \nu(\mathcal{S}) \text{ on } \mathsf{P}^1,
$$

where for each point $S \in \mathsf{P}^1$, δ_S is the Dirac measure at S on P^1 ; in particular, $(h^*\delta_{\mathcal{S}})(P^1) = \deg h.$

§1.1. Factorization on $P¹$ and quantization

We follow the presentation in [\[5,](#page-36-1) §4.2]. For each finite subset Γ consisting of type II points (e.g., a semistable vertex set) in P^1 , the family

 $S(\Gamma) \coloneqq \{ \text{either a component of } \mathsf{P}^1 \setminus \Gamma \text{ or a singleton } \{ \mathcal{S} \} \text{ for some } \mathcal{S} \in \Gamma \} \subset 2^{\mathsf{P}^1}$

is a partition of P^1 ; the measurable factor space $P^1/S(\Gamma) = S(\Gamma)$ equipped with the σ -algebra $2^{S(\Gamma)}$ is regarded as the measurable space $(\mathsf{P}^1, 2^{S(\Gamma)})$, also regarding $2^{S(\Gamma)}$ as a σ -subalgebra in the Borel σ -algebra on P^1 .

Let $M(\Gamma)$ be the set of all complex measures ω on $P^1/S(\Gamma)$. The measurable factor map

$$
\pi_{\Gamma} = \pi_{\mathsf{P}^1, \Gamma} \colon \mathsf{P}^1 \to \mathsf{P}^1 / S(\Gamma)
$$

induces the pullback operator $(\pi_{\Gamma})^*$ from the space of measurable functions on $P^1/S(\Gamma)$ to that of measurable functions on P^1 and, in turn, the transpose (projection operator) $(\pi_{\Gamma})_*: M(P^1) \to M(\Gamma)$ of $(\pi_{\Gamma})^*$ (by restricting each element of $M(\mathsf{P}^1)$ to $2^{S(\Gamma)}$, so in particular that for every $\nu \in M(\mathsf{P}^1)$,

(1.2)
$$
((\pi_{\Gamma})_*\nu)(\{U\}) = \nu(U) \text{ for any } U \in S(\Gamma).
$$

Set $M^1(\mathsf{P}^1) \coloneqq {\omega \in M(\mathsf{P}^1) : \omega \geq 0 \text{ and } \omega(\mathsf{P}^1) = 1}$ and $M^1(\Gamma) \coloneqq {\omega \in M(\Gamma) : \Omega}$ $\omega \geq 0$ and $\omega(\mathsf{P}^1/S(\Gamma)) = 1$, so that $(\pi_{\Gamma})_*(M^1(\mathsf{P}^1)) \subset M^1(\Gamma)$. Also set

$$
M^1(\Gamma)^{\dagger} := \{ \omega \in M^1(\Gamma) : \omega(\{\mathcal{S}\}) = 0 \text{ for every } \mathcal{S} \in \Gamma \}.
$$

For any finite subsets Γ and Γ' , $\Gamma \subset \Gamma'$, both consisting of type II points, the measurable factor map

$$
\pi_{\Gamma',\Gamma} \colon \mathsf{P}^1/S(\Gamma') \to \mathsf{P}^1/S(\Gamma)
$$

induces the pullback operator $(\pi_{\Gamma',\Gamma})^*$ from the space of measurable functions on $P^1/S(\Gamma)$ to that of measurable functions on $P^1/S(\Gamma')$ (so that $\pi_{\Gamma}^* = (\pi_{\Gamma'})^*(\pi_{\Gamma',\Gamma})^*$) and, in turn, the transpose (or projection operator) $(\pi_{\Gamma',\Gamma})_*: M(\Gamma') \to M(\Gamma)$ of $(\pi_{\Gamma',\Gamma})^*$, so in particular that for every $\omega \in M(\Gamma'),$

(1.3)
$$
((\pi_{\Gamma',\Gamma})_*\omega)(\{U\}) = \omega(\{V \in S(\Gamma') : V \subset U\}) \text{ for any } U \in S(\Gamma),
$$

and that $(\pi_{\Gamma',\Gamma})_*(\pi_{\Gamma'})_*= (\pi_{\Gamma})_*$. Then $(\pi_{\Gamma',\Gamma})_*(M^1(\Gamma')^{\dagger}) \subset M^1(\Gamma)^{\dagger}$.

Let us denote by S_G the Gauss (or canonical) point in $P¹$, which is a type II point (see Section [2.1\)](#page-7-0). For a rational function $h \in K(z)$ on \mathbb{P}^1 of degree > 0, noting that $h(\mathcal{S}_G)$ is also a type II point and setting

$$
\Gamma_G \coloneqq \{ \mathcal{S}_G \} \text{ and } \Gamma_h \coloneqq \{ \mathcal{S}_G, h(\mathcal{S}_G) \},
$$

the quantized pullback operator $h_G^*: M(\Gamma_h) \to M(\Gamma_G)$ is induced from the pullback operator h^* in [\(1.1\)](#page-1-0); for every $\omega \in M(\Gamma_h)$, the measure $h_G^*\omega \in M(\Gamma_G)$ in particular satisfies

$$
(h_G^*\omega)(\{U\}) = \int_{\mathsf{P}^1/S(\Gamma_h)} m_{V,U}(h)\omega(V) \quad \text{for any } U \in S(\Gamma_G),
$$

where the quantized local degree $m_{V,U}(h)$ of h with respect to each pair $(U, V) \in$ $S(\Gamma_G) \times S(\Gamma_h)$ is induced from the local degree function deg h on P^1 so that, fixing any $S' \in V$,

$$
m_{V,U}(h) = \begin{cases} (h^*\delta_{S'})(U) & \text{if } U \in S(\Gamma_G) \setminus \{\{\mathcal{S}_G\}\} \text{ and } V \in S(\Gamma_h) \setminus \{\{h(\mathcal{S}_G)\}\},\\ (h^*\delta_{S'})(\{\mathcal{S}_G\}) & \text{if } U = \{\{\mathcal{S}_G\}\} \end{cases}
$$

(the remaining case that $U \in S(\Gamma_G) \setminus \{\{\mathcal{S}_G\}\}\$ and $V = \{\{h(\mathcal{S}_G)\}\}\$ is more subtle) and that for every $V \in S(\Gamma_h)$, $\sum_{U \in S(\Gamma_G)} m_{V,U}(h) = \deg h$. In particular,

$$
(h_G^*\omega)(S(\Gamma_G)) = (\deg h) \cdot \omega(S(\Gamma_h)) \text{ for every } \omega \in M(\Gamma_h), \text{ and}
$$

$$
((\deg h)^{-1}h_G^*)(M^1(\Gamma_h)^{\dagger}) \subset M^1(\Gamma_G)^{\dagger}
$$

(see Section [2.5](#page-11-0) for more details, including the precise definitions of $m_{V,U}(h)$ and h_G^*).

§1.2. The f-balanced measures on $P¹$ and the maximal-ramification locus of f in P^1

From now on, let $f \in K(z)$ be a rational function on \mathbb{P}^1 of deg $f =: d > 1$.

The equilibrium (or canonical) measure ν_f of f on P^1 is the weak limit

(1.4)
$$
\nu_f := \lim_{n \to \infty} \frac{(f^n)^* \delta_{\mathcal{S}}}{d^n} \quad \text{in } M(\mathsf{P}^1) \text{ for any } \mathcal{S} \in \mathsf{P}^1 \setminus E(f)
$$

74 Y. Okuyama

(see [\[10\]](#page-36-2) for the details), and is the unique $\nu \in M^1(\mathsf{P}^1)$ not only having the fbalanced property

$$
f^*\nu = (\deg f) \cdot \nu \quad \text{on } \mathsf{P}^1,
$$

but also satisfying the vanishing condition $\nu(E(f)) = 0$. Here, the (classical) exceptional set $E(f) := \{a \in \mathbb{P}^1 : \# \bigcup_{n \in \mathbb{N} \cup \{0\}} f^{-n}(a) < +\infty\}$ of f is the union of all (superattracting) cycles of f in \mathbb{P}^1 totally invariant under f (so is at most countable).

The ramification locus $R(f) := \{S \in P^1 : \deg_S f > 1\}$ of f contains the (classical) critical set Crit $(f) := \{c \in \mathbb{P}^1 : f'(c) = 0\}$ of f, and the maximalramification locus

$$
\mathsf{R}_{\max}(f) \coloneqq \left\{ \mathcal{S} \in \mathsf{P}^1 : \deg_{\mathcal{S}}(f) = d \right\} (\subset \mathsf{R}(f))
$$

of f contains $E(f)$ (⊂ Crit (f)); since $\mathsf{R}_{\text{max}}(f)$ is connected (Faber [\[7,](#page-36-3) Thm. 8.2]), for every $c \in \mathsf{R}_{\max}(f) \cap \mathbb{P}^1$, $\mathsf{R}_{\max}(f)$ near c contains a closed interval $[c, \mathcal{S}]$ (see Section [2.1\)](#page-7-0) in P^1 for some $\mathcal{S} \in \mathsf{P}^1 \setminus \{c\}.$

Definition 1.1 (Tame maximal-ramification). For each $c \in \mathsf{R}_{\text{max}}(f) \cap \mathbb{P}^1$, we say f is tamely maximally ramified near c if $R_{\text{max}}(f)$ near c is a closed interval $[c, S]$ in P^1 for some $\mathcal{S} \in \mathsf{P}^1 \setminus \{c\}.$

Fact 1.2 (Consequence of Faber [\[7,](#page-36-3) Cor. 6.6]). The function f is tamely maximally ramified at every $c \in \mathsf{R}_{\max}(f) \cap \mathbb{P}^1$ if the residue characteristic of K is either $= 0$ or $> d$ ($=$ deg f) (e.g., when $K = \mathbb{L}$ as in Section [1.4](#page-5-0) below).

We note that when char $K = 0$,

$$
(1.5) \quad E(f) = \left\{ a \in \mathbb{P}^1 : f^{-2}(a) = \{a\} \right\} \quad \text{and} \quad \#E(f) \leq \#(\mathsf{R}_{\max}(f) \cap \mathbb{P}^1) \leq 2.
$$

The Berkovich Julia set $J(f) := \text{supp }\nu_f$ of f is in $\mathsf{P}^1 \setminus E(f)$ (by [\(1.4\)](#page-2-0)); both $J(f)$ and $E(f)$ are f-completely invariant. Any $\nu \in M^1(\mathsf{P}^1)$ (only) having the above f -balanced property on P^1 is written as

$$
\nu = \nu(\mathsf{J}(f)) \cdot \nu_f + \sum_{\substack{\mathcal{E} \subset E(f):\\ \text{a cycle of } f}} \nu(\mathcal{E}) \cdot \frac{\sum_{a \in \mathcal{E}} \delta_a}{\#\mathcal{E}} \quad \text{on } \mathsf{P}^1
$$

(by [\(1.4\)](#page-2-0) and the countability of $E(f)$). For every $n \in \mathbb{N}$, we also have $\nu_{f^n} = \nu_f$ in $M^1(\mathsf{P}^1)$ (so $\mathsf{J}(f^n) = \mathsf{J}(f)$) and $E(f^n) = E(f)$.

Recall that for any $S \in H^1 := P^1 \setminus \mathbb{P}^1$,

$$
(1.6) \t f^{-1}(\mathcal{S}) \neq \{\mathcal{S}\} \Leftrightarrow \nu_f(\{\mathcal{S}\}) < 1 \Leftrightarrow \text{supp}(\nu_f) \neq \{\mathcal{S}\} \Leftrightarrow \nu_f(\{\mathcal{S}\}) = 0 \Leftrightarrow \nu_f(\{\mathcal{S}\}) = 0
$$

(see e.g., [\[2,](#page-36-4) Cor. 10.33]), so in particular, $f^{-1}(\mathcal{S}) \neq \{ \mathcal{S} \}$ if and only if $f^{-n}(\mathcal{S}) \neq$ $\{S\}$ for every $n \in \mathbb{N}$. For every $\nu \in M^1(\mathsf{P}^1)$ having the f-balanced property on P^1 and every finite subset Γ in P^1 consisting of type II points, we have

(1.7)
$$
((\pi_{\Gamma})_* \nu)(S(\Gamma) \setminus F) = 0 \text{ for some countable subset } F \text{ in } S(\Gamma)
$$

 $(by (1.4))$ $(by (1.4))$ $(by (1.4))$ and

(1.8)
$$
(\pi_{\Gamma})_* \nu \in M^1(\Gamma)^{\dagger}
$$
 if in addition $f^{-1}(\mathcal{S}) \neq \{\mathcal{S}\}\$ for every $\mathcal{S} \in \Gamma$.

§1.3. Main result: The projections of the f-balanced measures on P^1 to $\mathsf{P}^1/S(\Gamma_G)$

Recall that $d \coloneqq \deg f > 1$ and that $\Gamma_G \coloneqq \{S_G\}$, and for each $n \in \mathbb{N}$, set

$$
\Gamma_n \coloneqq \Gamma_{f^n} = \{ \mathcal{S}_G, f^n(\mathcal{S}_G) \}.
$$

Let us say $\omega \in M^1(\Gamma_f)$ has the quantized f-balanced property if

(1.9)
$$
f_G^*\omega = d \cdot (\pi_{\Gamma_f, \Gamma_G})_* \omega \quad \text{in } M^1(\Gamma_G).
$$

Set $\Delta_f \subset M^1(\Gamma_G)$ (resp. $\Delta_f^{\dagger} \subset M^1(\Gamma_G)^{\dagger}$) as

(1.10) Δ_f (resp. Δ_f^{\dagger}) $\mathcal{L} := \left\{ \omega \in M^1(\Gamma_G) : \text{for (any) } n \gg 1, \text{ there is } \omega_n \in M^1(\Gamma_n) \text{ (resp. } \omega_n \in M^1(\Gamma_n)^\dagger \text{)} \right\}$ such that $\omega_n(S(\Gamma_n) \setminus F) = 0$ for some countable subset F in $S(\Gamma_n)$ and

that
$$
d^{-n}((f^n)_{G})^*\omega_n = \omega = (\pi_{\Gamma_n, \Gamma_G})_*\omega_n
$$
 in $M^1(\Gamma_G)$

for a subtlety on the first vanishing assumption on each ω_n , see Remark [5.3.](#page-23-0)

Our principal result is the following computations of Δ_f and Δ_f^{\dagger} when char $K = 0$, which in particular rectifies [\[5,](#page-36-1) Thm. 4.10, Cor. 4.13]; the assumption on the period of each $a \in E(f)$ is for simplicity, and f^2 always satisfies this condition, and the tame maximal-ramification condition for f near a in the case (ii) to obtain [\(1.11\)](#page-5-1) below always holds when $K = \mathbb{L}$ as in Section [1.4.](#page-5-0)

Theorem A. Let K be an algebraically closed field of characteristic 0 that is complete with respect to a non-trivial and non-archimedean absolute value, let $f \in$ $K(z)$ be a rational function on \mathbb{P}^1 of degree $d > 1$, and suppose that $f^{-1}(\mathcal{S}_G) \neq$ $\{S_G\}$ and that $f(a) = a$ (or equivalently $f^{-1}(a) = \{a\}$) for any $a \in E(f)$. Then one and only one of the following cases (i) and (ii) occurs:

(i)
$$
\Delta_f = \Delta_f^{\dagger} = \{(\pi_{\Gamma_G})_* \nu_f\};
$$

(ii) there is a (unique) $a \in E(f)$ such that $\lim_{n\to\infty} f^n(S_G) = a$ and that $f^n(S_G)$ is in the interval $(S_G, a]$ in P^1 for $n \gg 1$, and then $\deg_{f^n(S_G)}(f) \equiv d$ for $n \gg 1$, and $\{(\pi_{\Gamma_G})_* \nu_f\} \subsetneq \{(\pi_{\Gamma_G})_* \delta_a, (\pi_{\Gamma_G})_* \nu_f\} \subset \Delta_f^{\dagger}$.

In the case (ii), if in addition f is tamely maximally ramified near a , then

(1.11)
\n
$$
\Delta_f = \{ \omega \in M^1(\Gamma_G) : \text{satisfying } \begin{cases}\n\omega(\{U_{\vec{v}}\}) = s\nu_f(U_{\vec{v}}) \text{ for every } \vec{v} \in (T_{\mathcal{S}_G}P^1) \\
\omega(\{\{\mathcal{S}_G\}\}) = s', \text{ and } \\
\omega(\{U_{\overline{\mathcal{S}_G}a}\}) = (s\nu_f(U_{\overline{\mathcal{S}_G}a}) + (1-s)) - s'\n\end{cases}\}
$$

for some $s \in [0,1]$ and some $s' \in [0, \min\{s\nu_f(U_{\overline{S_Ga}}), (1-s)(1-\nu_f(U_{\overline{S_Ga}}))\}\]$,

which in particular yields

$$
\Delta_f^{\dagger} = \{ s \cdot (\pi_{\Gamma_G})_* \nu_f + (1 - s) \cdot (\pi_{\Gamma_G})_* \delta_a : s \in [0, 1] \},
$$

and moreover, the three statements

- $\deg_{f^n(S_G)}(f) \equiv d$ (i.e., $f^n(S_G) \in \mathsf{R}_{\max}(f)$) for any $n \in \mathbb{N} \cup \{0\},\$
- $\nu_f(U_{\overrightarrow{S_Ga}})=0$, and
- $\Delta_f = \Delta_f^{\dagger}$

are equivalent.

In the proof of Theorem [A,](#page-4-0) we will also point out that for some f (indeed $f(z) = z^2 + t^{-1}z \in (\mathcal{O}(\mathbb{D})[t^{-1}])[z] \subset \mathbb{L}[z]$ and its iterations), we have the proper inclusion $\Delta_f^{\dagger} \subsetneq \Delta_f$.

§1.4. Application: The degenerating weak limit for the maximal entropy measures on $\mathbb{P}^1(\mathbb{C})$

We call an element $f \in (\mathcal{O}(\mathbb{D})[t^{-1}])$ (*z*) of degree say $d \in \mathbb{N} \cup \{0\}$ a meromorphic family of rational functions on $\mathbb{P}^1(\mathbb{C})$ (of degree d and parametrized by

$$
\mathbb{D} = \{ t \in \mathbb{C} : |t| < 1 \}
$$

if for every $t \in \mathbb{D}^* = \mathbb{D} \setminus \{0\}$, the specialization f_t of f at t is a rational function on $\mathbb{P}^1(\mathbb{C})$ of degree d. Let us denote by $\mathbb L$ the (algebraically closed and complete) valued field of formal Puiseux series/ $\mathbb C$ around $t = 0, \cdot$ i.e., the completion of the field $\mathcal{C}((t))$ of Puiseux series/C around $t = 0$ valuated by their vanishing orders at $t = 0$. Noting that $\mathcal{O}(\mathbb{D})[t^{-1}]$ is a subring of the field $\mathbb{C}((t))$ of Laurent series/ \mathbb{C}

¹The terminology "formal Puiseux series" might be informal. The field $\mathbb L$ is known as the Levi-Civita field.

around $t = 0$, we also regard f as an element of $\mathbb{L}(z)$. If in addition $d > 1$, then for every $t \in \mathbb{D}^*$, there is the equilibrium (or canonical, and indeed the unique maximal entropy) measure μ_{f_t} of f_t on $\mathbb{P}^1(\mathbb{C})$ (see Fact [3.2\)](#page-14-0). As already seen in Section [1.2,](#page-2-1) there is also the equilibrium (or canonical) measure ν_f of the $f \in L(z)$ of degree $d > 1$ on $\mathsf{P}^1(\mathbb{L})$.

If in addition $\nu_f({\{\mathcal{S}_G\}})=0$ or equivalently $f^{-1}(\mathcal{S}_G) \neq {\{\mathcal{S}_G\}}$ in $\mathsf{P}^1(\mathbb{L})$ (mentioned in (1.6) ; see also another equivalent condition (2.2) below), then recalling that $\Gamma_G \coloneqq \{\mathcal{S}_G\}$ as in Section [1.1](#page-1-1) and noting that

$$
S(\Gamma_G) \setminus \{ \{ \mathcal{S}_G \} \} = T_{\mathcal{S}_G}(\mathsf{P}^1(\mathbb{L})) \cong \mathbb{P}^1(k_{\mathbb{L}}) = \mathbb{P}^1(\mathbb{C}),
$$

where $k_{\mathbb{L}}$ (= \mathbb{C} as fields) is the residue field of \mathbb{L} and where the bijection between the tangent (or directions) space $T_{\mathcal{S}_G}(\mathsf{P}^1(\mathbb{L}))$ of $\mathsf{P}^1(\mathbb{L})$ at \mathcal{S}_G and $\mathbb{P}^1(k_{\mathbb{L}})$ is given by $\overline{S_G}a \leftrightarrow \tilde{a}$ for each $a \in \mathbb{P}^1(\mathbb{L})$ (see Section [2.2](#page-9-1) for the reduction $\tilde{a} \in \mathbb{P}^1(k_\mathbb{L})$ of a), the projection $(\pi_{\Gamma_G})_* \nu_f \in M^1(\Gamma_G)^\dagger$ of $\nu_f \in M_1(\mathsf{P}^1(\mathbb{L}))$ is also regarded as a purely atomic probability measure on $\mathbb{P}^1(\mathbb{C})$ (by (1.8)).

Using Theorem [A](#page-4-0) and by some new arguments relating the absolute value on L, which is an extension of the trivial (so non-archimedean) absolute value on $\mathbb{C} = k_{\mathbb{L}}$, with the (archimedean and non-trivial) Euclidean absolute value on \mathbb{C} , we complement the proof of the following degenerating limit theorem of DeMarco– Faber.

Theorem B ($[5, Thm. B]$ $[5, Thm. B]$). For every meromorphic family

 $f \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z) \subset \mathbb{L}(z))$

of rational functions on $\mathbb{P}^1(\mathbb{C})$ of degree > 1 , if $f^{-1}(\mathcal{S}_G) \neq {\mathcal{S}_G}$ in $\mathsf{P}^1(\mathbb{L})$, then

(1.12)
$$
\lim_{t \to 0} \mu_{f_t} = (\pi_{\Gamma_G})_* \nu_f \quad weakly \text{ on } \mathbb{P}^1(\mathbb{C}).
$$

We dispense with the intermediate "target bimeromorphically modified surface dynamics" part in the (conceptual) "transfer principle" from degenerating complex dynamics to quantized Berkovich dynamics in [\[5,](#page-36-1) Proof of Theorem B], and give and use a more direct and explicit translation from degenerating complex dynamics into quantized Berkovich dynamics (see Definition [4.3](#page-16-0) and Proposition [4.4\)](#page-17-0). We hope our argument could also be helpful for a further investigation of degenerating complex dynamics (see, e.g., [\[9,](#page-36-5) [6\]](#page-36-6)).

Organization of the paper

In Sections [2](#page-7-1) and [3,](#page-13-0) we recall some notions and facts from non-archimedean dynamics on P ¹ and also recall some details on DeMarco–Faber's degenerating balanced 78 Y. Okuyama

property for degenerating weak limit points of the maximal entropy measures on $\mathbb{P}^1(\mathbb{C})$, respectively. Section [4](#page-15-0) is one of the main parts in this paper, as mentioned in the above paragraph. Theorem \bf{A} \bf{A} \bf{A} is shown in Section [5,](#page-20-0) and our proof of Theorem [B](#page-6-0) is given in Section [6.](#page-28-0) In Section [7,](#page-34-0) a specific example, which motivated our computation of Δ_f (and Δ_f^{\dagger}) in Theorem [A,](#page-4-0) is discussed. In Section [8,](#page-34-1) we further develop our direct translation from degenerating complex dynamics into quantized Berkovich dynamics, for completeness.

§2. Background from Berkovich dynamics

Let K be an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value | · |.

§2.1. Berkovich projective line

We call $B(a,r) := \{z \in K : |z - a| \leq r\}$ for some $a \in K$ and some $r \in \mathbb{R}_{\geq 0}$ a K-closed disk; for any K-closed disks B, B', if $B \cap B' \neq \emptyset$, then either $B \subset B'$ or $B \supset B'$. The Berkovich projective line $P^1 = P^1(K)$ over K is a compact, uniquely arcwise connected, locally arcwise connected, and Hausdorff topological space; as sets,

$$
P1 = \mathbb{P}1 \cup H1 = \mathbb{P}1 \cup H1II \cup H1III \cup H1IV (the disjoint unions),\n\mathbb{P}1 = \mathbb{P}1(K) = K \cup {\infty} \cong {\{a\} = B(a, 0) : a \in K} \cup {\{\infty\}},\nH1II \cong {B(a, r) : a \in K, r \in |K^*|}, and\nH1III \cong {B(a, r) : a \in K, r \in \mathbb{R}_{>0} \setminus |K^*|}.
$$

More precisely, each element of $P¹$ is regarded as either the cofinal equivalence class of a decreasing (i.e., non-increasing and nesting) sequence of K-closed disks or $\infty \in \mathbb{P}^1$. The inclusion relation \subset among K-closed disks canonically extends to an ordering \leq on P^1 , so that ∞ is the maximum element in (P^1, \preceq) , and the diameter function diam $_{\text{L}}$ for K-closed disks also extends upper semicontinuously to P^1 , so that $\text{diam}_{|\cdot|}(\infty) = +\infty$. For $\mathcal{S}_1, \mathcal{S}_2 \in \mathsf{P}^1$, if $\mathcal{S}_1 \preceq \mathcal{S}_2$, then we set $[\mathcal{S}_1, \mathcal{S}_2] =$ $[\mathcal{S}_2, \mathcal{S}_1] \coloneqq \{ \mathcal{S} \in \mathsf{P}^1 : \mathcal{S}_1 \preceq \mathcal{S} \preceq \mathcal{S}_2 \}$, and in general there is the minimum element \mathcal{S}' in $\{\mathcal{S} \in \mathsf{P}^1 : \mathcal{S}_1 \preceq \mathcal{S} \text{ and } \mathcal{S}_2 \preceq \mathcal{S}\}\$ and we set

$$
[\mathcal{S}_1,\mathcal{S}_2]=[\mathcal{S}_2,\mathcal{S}_1]\coloneqq[\mathcal{S}_1,\mathcal{S}']\cup[\mathcal{S}',\mathcal{S}_2];
$$

we also set $(S_1, S_2] := [S_1, S_2] \setminus \{S_1\}$. Those (closed) intervals $[S, S']$ in P^1 equip $P¹$ with a (profinite) tree structure in the sense of Jonsson [\[12,](#page-36-7) §2].

For every $S \in \mathsf{P}^1$, the tangent (or direction) space $T_S \mathsf{P}^1$ of P^1 at S is

 $T_{\mathcal{S}}\mathsf{P}^1\coloneqq\big\{\vec{v} =$ $\overrightarrow{SS'}$: the germ of a non-empty left-half-open interval (S, S') ; then $\#T_{\mathcal{S}}\mathsf{P}^1 = 1$ if and only if $\mathcal{S} \in \mathbb{P}^1 \cup \mathsf{H}^1_{\mathrm{IV}}$, $\#T_{\mathcal{S}}\mathsf{P}^1 = 2$ if and only if $\mathcal{S} \in \mathsf{H}^1_{\mathrm{III}}$, and $T_{\mathcal{S}}\mathsf{P}^1 \cong \mathbb{P}^1(k)$ if and only if $\mathcal{S} \in \mathsf{H}^1_{\mathsf{II}}$ (see [\(2.1\)](#page-8-0) and Facts [2.3,](#page-9-2) [2.6](#page-10-0) below). Identifying each $\vec{v} \in T_{\mathcal{S}} \mathsf{P}^1$ with

$$
U_{\vec{v}} = U_{\mathcal{S}, \vec{v}} \coloneqq \left\{ \mathcal{S}' \in \mathsf{P}^1 \setminus \{ \mathcal{S} \} : \overrightarrow{\mathcal{SS}'} = \vec{v} \right\} \subset 2^{\mathsf{P}^1},
$$

the collection $(U_{\mathcal{S},\vec{v}})_{\mathcal{S}\in\mathsf{P}^1,\vec{v}\in T_{\mathcal{S}}\mathsf{P}^1}$ is a quasi open basis of the (Gel'fand, weak, pointwise, or observer) topology on P^1 , and both \mathbb{P}^1 and H^1_Π are dense in P^1), and for every $S \in H^1_{\text{II}}$, we identify $T_S P^1$ with $S({S}) \setminus {\{S\}}$ by the canonical bijection

$$
T_{\mathcal{S}}\mathsf{P}^1 \ni \vec{v} \leftrightarrow U_{\vec{v}} \in S(\{\mathcal{S}\}) \setminus \{\{\mathcal{S}\}\}.
$$

The Gauss (or canonical) point $S_G \in H^1_H$ is represented by (the constant sequence of) the K-closed unit disk, that is, the ring $\mathcal{O}_K = B(0, 1)$ of K-integers; the unique maximal ideal in \mathcal{O}_K is $\mathcal{M}_K := \{z \in K : |z| < 1\}$, and

$$
k=k_K\coloneqq \mathcal{O}_K/\mathcal{M}_K
$$

is the residue field of K , which is still algebraically closed under the standing assumption on K . The residue characteristic of K is char k .

The reduction $\tilde{a} \in \mathbb{P}^1(k)$ of a point $a \in \mathbb{P}^1(K)$ is defined by the point $\tilde{a}_1/\tilde{a}_0 \in$ $\mathbb{P}^1(k)$, where $a_1, a_0 \in K$ are chosen so that $a = a_1/a_0$ (regarding $1/0 = \infty \in \mathbb{P}^1$) and that $\max\{|a_0|, |a_1|\} = 1$ (so $\widetilde{\infty} = \infty \in \mathbb{P}^1(k) = k \cup \{\infty\}$). There is also a consider literation canonical bijection

(2.1)
$$
T_{\mathcal{S}_G} \mathsf{P}^1 \ni \overrightarrow{\mathcal{S}_{G}a} \leftrightarrow \tilde{a} \in \mathbb{P}^1(k).
$$

For more details on (dynamics on) P^1 , see e.g., the books $[2, 3]$ $[2, 3]$ and the survey article [\[12\]](#page-36-7).

§2.2. Dynamics on P^1 and their reductions

For every $h \in K(z)$, writing

$$
h(z) = \frac{P(z)}{Q(z)}, \quad P(z) = \sum_{j=0}^{\deg h} a_j z^j \in K[z], \text{ and } Q(z) = \sum_{\ell=0}^{\deg h} b_\ell z^\ell \in K[z],
$$

this h is regarded as the point $[b_0 : \cdots : b_{\deg h} : a_0 : \cdots : a_{\deg h}] \in \mathbb{P}^{2(\deg h)+1}(K)$. Then, choosing P, Q so that

$$
\max\{|b_0|,\ldots,|b_{\deg h}|,|a_0|,\ldots,|a_{\deg h}|\}=1,
$$

we obtain the point $\tilde{h} = [\tilde{b_0} : \cdots : \tilde{b_{\deg h}} : \tilde{a_0} : \cdots : \tilde{a_{\deg h}}] \in \mathbb{P}^{2(\deg h)+1}(k)$; this point $\tilde{h} \in \mathbb{P}^{2(\deg h)+1}(k)$ is formally written as

$$
\tilde{h}=H_{\tilde{h}}\phi_{\tilde{h}},
$$

where we set $\widetilde{P}(\zeta) \coloneqq \sum_{j=0}^{\deg h} \widetilde{a}_j \zeta^j \in k[\zeta], \widetilde{Q}(z) \coloneqq \sum_{\ell=0}^{\deg h} \widetilde{b}_\ell \zeta^\ell \in k[\zeta],$

$$
H_{\tilde{h}}(X_0, X_1) \coloneqq \text{GCD}\big(X_0^{\deg h}\widetilde{Q}(X_1/X_0), X_0^{\deg h}\widetilde{P}(X_1/X_0)\big) \in \bigcup_{\ell=0}^{\deg h} k[X_0, X_1]_{\ell} \setminus \{0\},\
$$

and
$$
\phi_{\tilde{h}}(\zeta) \coloneqq \frac{\widetilde{P}(\zeta)/H_{\tilde{h}}(1, \zeta)}{\widetilde{Q}(\zeta)/H_{\tilde{h}}(1, \zeta)} \in k(\zeta)
$$

 $(H_{\tilde{h}}$ is unique up to multiplication in k^*). The rational function $\phi_{\tilde{h}} \in k(\zeta)$ on $\mathbb{P}^1(k)$ is called the reduction of h, the degree of which equals deg h – deg $H_{\tilde{h}}$.

Notation 2.1. When deg $H_{\tilde{h}} > 0$, we denote by $[H_{\tilde{h}} = 0]$ the effective divisor on $\mathbb{P}^1(k)$ defined by the zeros of $H_{\tilde{h}}$ on $\mathbb{P}^1(k)$ taking into account their multiplicities, so that $\deg[H_{\tilde{h}} = 0] = \deg H_{\tilde{h}}$. When $\deg H_{\tilde{h}} = 0$, we set $[H_{\tilde{h}} = 0] \coloneqq 0$ on $\mathbb{P}^1(k)$ by convention.

The action on \mathbb{P}^1 of $h \in K(z)$ extends continuously to that on P^1 , and if in addition deg $h > 0$, then this extended action is surjective, open, and fiber-discrete, and preserves \mathbb{P}^1 , H^1_{II} , H^1_{III} , and H^1_{IV} , as already mentioned in Section [1.](#page-0-1) Then

(2.2)
$$
h^{-1}(\mathcal{S}_G) = \{ \mathcal{S}_G \} \Leftrightarrow \tilde{h} = \phi_{\tilde{h}} \Leftrightarrow \deg H_{\tilde{h}} = 0.
$$

Fact 2.2 (Rivera-Letelier [\[15\]](#page-36-9); see also [\[2,](#page-36-4) Cor. 9.27]). We have $\deg(\phi_{\tilde{h}}) > 0$ if and only if $h(\mathcal{S}_G) = \mathcal{S}_G$. Moreover,

(2.3)
$$
\phi_{\tilde{h}} \equiv \tilde{z} \text{ for some } z \in \mathbb{P}^1 \Rightarrow \overrightarrow{\mathcal{S}_{G}h(\mathcal{S}_{G})} = \overrightarrow{\mathcal{S}_{G}z}.
$$

Fact 2.3. The group $PGL(2, K)$ of Möbius transformations on \mathbb{P}^1 acts transitively on H^1_{II} , and $PGL(2, \mathcal{O}_K)$ is the stabilizer subgroup of \mathcal{S}_G in $PGL(2, K)$.

From now on, suppose that deg $h > 0$.

§2.3. The tangent maps and the directional/surplus local degrees of rational functions

For the details on this and the next subsections, see Rivera-Letelier [\[16,](#page-36-10) [15\]](#page-36-9); see also Jonsson [\[12,](#page-36-7) §4.5] for an algebraic treatment.

For every $S \in \mathsf{P}^1$, the tangent map $h_* = (h_*)_{\mathcal{S}} \colon T_{\mathcal{S}} \mathsf{P}^1 \to T_{h(\mathcal{S})} \mathsf{P}^1$ of h at S is defined so that for every $\vec{v} =$ Example $\overline{SS'} \in T_S P^1$, if S' is close enough to S, then h maps the interval $[\mathcal{S}, \mathcal{S}']$ onto the interval $[h(\mathcal{S}), h(\mathcal{S}')]$ homeomorphically, and

$$
h_*(\vec{v}) = \overrightarrow{h(\mathcal{S})h(\mathcal{S}')}.
$$

Moreover, for every $S \in H_{II}^1$ and every $\vec{v} \in T_{S}P^1$, there is the directional local degree $m_{\vec{v}}(h) \in \mathbb{N}$ (indeed $\in \{1, \ldots, \deg_{\mathcal{S}}(h)\}\)$ of h on $U_{\vec{v}}$ such that choosing any

 $A, B \in \text{PGL}(2, K)$ satisfying $B^{-1}(\mathcal{S}) = A(h(\mathcal{S})) = \mathcal{S}_G$ (so deg($\widetilde{A \circ h \circ B} > 0$ by Fact [2.2\)](#page-9-1) and writing $(B^{-1})_*(\vec{v}) = \overline{S_Gz}$ and $A_*(h_*(\vec{v})) = \overline{S_Gw}$ by some $z, w \in \mathbb{P}^1$, we have

(2.4)
$$
\phi_{\widetilde{A \circ h \circ B}}(\tilde{z}) = \tilde{w} \text{ and}
$$

(2.5)
$$
m_{\vec{v}}(h) = \deg_{\tilde{z}}(\phi_{\widetilde{A \circ h \circ B}}).
$$

For every $S \in \mathsf{P}^1 \setminus \mathsf{H}^1_{\Pi}$ and every $\vec{v} \in T_{\mathcal{S}}\mathsf{P}^1$, we set $m_{\vec{v}}(h) \coloneqq \deg_{\mathcal{S}}(h)$.

Fact 2.4 (Decomposition of the local degree [\[16,](#page-36-10) Prop. 3.5]). For every $S \in \mathsf{P}^1$, also using the notation in the above paragraph if $S \in H^1_{II}$, we have

(2.6)
$$
(1 \leq) \deg_{\mathcal{S}}(h) = \sum_{\vec{v} \in T_{\mathcal{S}} \mathsf{P}^1 : h_*(\vec{v}) = \vec{w}} m_{\vec{v}}(h) \left(= \deg(\phi_{\widetilde{A \circ h \circ B}}) \text{ if } \mathcal{S} \in \mathsf{H}^1_{\mathrm{II}}\right)
$$

for any $\vec{w} \in T_{h(\mathcal{S})} \mathsf{P}^1$;

in particular, $h_*: T_{\mathcal{S}} \mathsf{P}^1 \to T_{h(\mathcal{S})} \mathsf{P}^1$ is surjective.

Fact 2.5 (Non-archimedean argument principle [\[15,](#page-36-9) Lem. 2.1]). For every $S \in \mathsf{P}^1$ and every $\vec{v} \in T_{\mathcal{S}} \mathsf{P}^1$, there is the surplus local degree $s_{\vec{v}}(h) \in \{0, 1, \ldots, \deg_{\mathcal{S}}(h)\}\$ of h on $U_{\vec{v}}$ such that for every $\mathcal{S}' \in \mathsf{P}^1 \setminus \{h(\mathcal{S})\},\$

(2.7)
$$
(h^*\delta_{\mathcal{S}'})(U_{\vec{v}}) = \begin{cases} m_{\vec{v}}(h) + s_{\vec{v}}(h) & \text{if } U_{h_*(\vec{v})} \ni \mathcal{S}',\\ s_{\vec{v}}(h) & \text{otherwise}; \end{cases}
$$

moreover, $h(U_{\vec{v}})$ is either P^1 or $U_{h_*(\vec{v})}$, the latter of which is the case if and only if $s_{\vec{v}}(h) = 0$. For every $S \in \mathsf{P}^1$, $s_{\vec{v}}(h) > 0$ for at most finitely many $\vec{v} \in T_{\mathcal{S}}\mathsf{P}^1$, and then

(2.8)
$$
\sum_{\vec{v}\in T_{\mathcal{S}}P^1} s_{\vec{v}}(h) = \deg h - \deg_{\mathcal{S}}(h)
$$

since fixing any $\mathcal{S}' \in \mathsf{P}^1 \setminus \{h(\mathcal{S})\}\)$, we have

$$
\deg h = (h^* \delta_{\mathcal{S}'})(\mathsf{P}^1) = (h^* \delta_{\mathcal{S}'})(\mathsf{P}^1 \setminus \{\mathcal{S}\})
$$

=
$$
\sum_{\vec{v} \in T_{\mathcal{S}} \mathsf{P}^1 : h_*(\vec{v}) = \overline{\mathcal{S}\mathcal{S}'}} m_{\vec{v}}(h) + \sum_{\vec{v} \in T_{\mathcal{S}} \mathsf{P}^1} s_{\vec{v}}(h) = \deg_{\mathcal{S}}(h) + \sum_{\vec{v} \in T_{\mathcal{S}} \mathsf{P}^1} s_{\vec{v}}(h).
$$

Fact 2.6. In the case that $h \in \text{PGL}(2, K)$, the tangent map $h_*: T_{\mathcal{S}} \mathsf{P}^1 \to T_{h(\mathcal{S})} \mathsf{P}^1$ is bijective, and for every $S \in \mathsf{P}^1$ and every $\vec{v} \in T_{\mathcal{S}}\mathsf{P}^1$, $h(U_{\vec{v}}) = U_{h_*(\vec{v})}$.

Fact 2.7 (Faber [\[7,](#page-36-3) Lem. 3.17]). For every $S \in H^1$ and every $\vec{v} \in T_S \mathsf{P}^1$, choosing any such $A, B \in \text{PGL}(2, K)$ that $B^{-1}(\mathcal{S}) = A(h(\mathcal{S})) = \mathcal{S}_G$ and any such $z \in \mathbb{P}^1$ that $(B^{-1})_*(\vec{v}) = \overline{S_Gz}$ (as in the paragraph before Fact [2.4\)](#page-10-1), we have

(2.9)
$$
s_{\vec{v}}(h) \begin{cases} = \text{ord}_{\zeta = \tilde{z}} \left[H_{\widetilde{A \circ h \circ B}} = 0 \right] & \text{if } \deg H_{\widetilde{A \circ h \circ B}} > 0, \\ = 0 & \text{otherwise.} \end{cases}
$$

§2.4. The hyperbolic metric ρ on H^1 and the piecewise affine action of h on (H^1,ρ)

The hyperbolic metric ρ on H^1 , which is defined so that

$$
\rho(S_1, S_2) = \log\left(\frac{\text{diam}_{|\cdot|} S_2}{\text{diam}_{|\cdot|} S_1}\right) \text{ if } S_1 \leq S_2,
$$

would be used at some part in the proof of Theorem [A.](#page-4-0) The topology on (H^1, ρ) is finer than the relative topology on H^1 from P^1 .

Fact 2.8 ([\[16,](#page-36-10) Prop. 3.5]). For every $S \in \mathsf{P}^1$ and every $\vec{v} = \overrightarrow{SS'} \in T_{\mathcal{S}}\mathsf{P}^1$, if \mathcal{S}' is close enough to S, then for every $\mathcal{S}'' \in (\mathcal{S}, \mathcal{S}'],$

(2.10)
$$
\rho(h(\mathcal{S}''),h(\mathcal{S}'))=m_{\vec{v}}(h)\cdot\rho(\mathcal{S}'',\mathcal{S}'),
$$

which still holds for $\mathcal{S}^{\prime\prime} \in [\mathcal{S}, \mathcal{S}^{\prime}]$ if $\mathcal{S} \in \mathsf{H}^1$.

§2.5. Quantized local degrees and quantized pullbacks

Let us precisely define the quantized local degree $m_{V,U}(h)$, mentioned in Section [1.1,](#page-1-1) in terms of the (directional/surplus) local degrees of h , and then also (re)define the quantized pullback operator $h_G^*: M(\Gamma_h) \to M(\Gamma_G)$. Recall

$$
\Gamma_G := \{ \mathcal{S}_G \}
$$
 and $\Gamma_h := \{ \mathcal{S}_G, h(\mathcal{S}_G) \}$ in H^1_{II} .

Definition 2.9 (Quantized local degree). For every $U_{\vec{v}} \in S(\Gamma_G) \setminus \{ \{ \mathcal{S}_G \} \} = T_{\mathcal{S}_G} \mathsf{P}^1$ and every $V \in S(\Gamma_h)$, set

$$
m_{V,U_{\vec{v}}}(h) := \begin{cases} m_{\vec{v}}(h) + s_{\vec{v}}(h) & \text{if } V \subset U_{h_*(\vec{v})}, \\ s_{\vec{v}}(h) & \text{if } V \cap U_{h_*(\vec{v})} = \emptyset, \\ = (h^* \delta_{\mathcal{S}'})(U_{\vec{v}}) & \text{for any } \mathcal{S}' \in V \text{ if } V \in S(\Gamma_h) \setminus \{\{h(\mathcal{S}_G)\}\}, \\ 0 & \text{otherwise} \end{cases}
$$

and for every $V \in S(\Gamma_h)$, set

$$
m_{V,\{\mathcal{S}_G\}}(h) := \begin{cases} \deg_{\mathcal{S}_G}(h) & \text{if } V = \{h(\mathcal{S}_G)\}, \\ 0 & \text{if } V \in S(\Gamma_h) \setminus \{\{h(\mathcal{S}_G)\}\}, \\ = (h^*\delta_{\mathcal{S}'})(\{\mathcal{S}_G\}) & \text{for any } \mathcal{S}' \in V. \end{cases}
$$

Fact 2.10. The fundamental equality

(2.11)
$$
\sum_{U \in S(\Gamma_G)} m_{V,U}(h) = \deg h \text{ for any } V \in S(\Gamma_h)
$$

holds; indeed, for every $V \in S(\Gamma_h) \setminus \{\{h(\mathcal{S}_G)\}\}\$, there is a unique $\vec{w} \in T_{h(\mathcal{S}_G)}\mathsf{P}^1$ satisfying $V \subset U_{\vec{w}}$, and then

$$
\sum_{U \in S(\Gamma_G)} m_{V,U}(h) = \sum_{\vec{v} \in T_{S_G} P^1 : h_*(\vec{v}) = \vec{w}} m_{\vec{v}}(h) + \sum_{\vec{v} \in T_{S_G} P^1} s_{\vec{v}}(h) + 0
$$

=
$$
\sum_{(2.6)\&(2.8)} \deg_{S_G}(h) + (\deg h - \deg_{S_G}(h)) = \deg h,
$$

and similarly,

$$
\sum_{U \in S(\Gamma_G)} m_{\{h(S_G)\}, U}(h) = \sum_{\vec{v} \in T_{S_G}P^1} s_{\vec{v}}(h) + \deg_{S_G}(h)
$$

$$
= (\deg h - \deg_{S_G}(h)) + \deg_{S_G}(h) = \deg h.
$$

The quantized pushforward operator $h_{G,*}$ from the space of measurable functions on $\mathsf{P}^1/S(\Gamma_G)$ to that of measurable functions on $\mathsf{P}^1/S(\Gamma_h)$ is defined so that for every measurable function ψ on $\mathsf{P}^1/S(\Gamma_G)$, the measurable function $h_{G,*}\psi$ on $\mathsf{P}^1/S(\Gamma_h)$ satisfies

$$
(h_{G,*}\psi)(V) = \sum_{U \in S(\Gamma_h)} m_{V,U}(h)\psi(U) \text{ for any } V \in S(\Gamma_h) \text{ or equivalently}
$$

$$
(\pi_{\Gamma_h})^*(h_{G,*}\psi) \equiv \sum_{U \in S(\Gamma_G)} m_{V,U}(h) \cdot ((\pi_{\Gamma_G})^*\psi)|U \text{ on each } V \in S(\Gamma_h),
$$

so, in particular,

$$
(2.12) \quad (\pi_{\Gamma_h})^*(h_{G,*}\psi) = \sum_{\vec{v}\in T_{S_G}P^1} (h^*\delta.)(U_{\vec{v}})\cdot((\pi_{\Gamma_G})^*\psi)|U_{\vec{v}} \text{ on } P^1\setminus\{h(\mathcal{S}_G)\}.
$$

The quantized pullback operator $h_G^*: M(\Gamma_h) \to M(\Gamma_G)$ is the transpose of this quantized pushforward operator $h_{G,*}$ so, in particular, for every $\omega \in M(\Gamma_h)$, the measure $h_G^*\omega \in M(\Gamma_G)$ satisfies

$$
(h_G^*\omega)(\{U\}) = \langle 1_{\{U\}}, h_G^*\omega \rangle = \langle h_{G,*}(1_{\{U\}}), \omega \rangle
$$

=
$$
\int_{\mathsf{P}^1/S(\Gamma_h)} \left(\sum_{W \in S(\Gamma_G)} m_{V,W}(h) \cdot 1_{\{U\}}(W) \right) \omega(V)
$$

(2.13)
$$
= \int_{\mathsf{P}^1/S(\Gamma_h)} m_{V,U}(h)\omega(V) \text{ for any } U \in S(\Gamma_G).
$$

§3. Degenerating balanced property for degenerating weak limit points of the maximal entropy measures on $\mathbb{P}^1(\mathbb{C})$

We follow the presentation in $[5, §2.1-\S2.4]$.

Fixing $r \in (0,1)$ (e.g., $r = e^{-1}$) once and for all, the field $\mathbb{C}((t))$ of Laurent series around $t = 0$ over $\mathbb C$ is equipped with the non-trivial and non-archimedean absolute value

(3.1)
$$
|x|_r = r^{\min\{n\in\mathbb{Z}\colon a_n\neq 0\}}
$$

for $x(t) = \sum_{n \in \mathbb{Z}} a_n t^n \in \mathbb{C}((t))$ (under the convention that $\min \emptyset = +\infty$ and $r^{+\infty} = 0$, which extends the trivial absolute value on \mathbb{C} to $\mathbb{C}((t))$.

An algebraic closure $\overline{\mathbb{C}((t))}$ of $\mathbb{C}((t))$ is the field of Puiseux series around $t = 0$ over $\mathbb{C}, |\cdot|_r$ extends to $\mathbb{C}((t))$ as an absolute value, and the completion L of $\mathbb{C}((t))$ is the field of formal Puiseux series around $t = 0$ over $\mathbb C$ and is still algebraically closed. We note that $\mathcal{O}(\mathbb{D})[t^{-1}] \subset \mathbb{C}((t)),$

$$
\mathbb{C} \subset \mathcal{O}(\mathbb{D}) \subset \mathcal{O}_{\mathbb{C}((t))} = \left\{ \sum_{n \in \mathbb{Z}} a_n t^n \in \mathbb{C}((t)) : a_n = 0 \text{ if } n < 0 \right\} = \mathbb{C}[[t]],
$$
\n
$$
\mathcal{M}_{\mathbb{C}((t))} = t \cdot \mathcal{O}_{\mathbb{C}((t))},
$$
\n
$$
k_{\mathbb{L}} = k_{\mathbb{C}((t))} = \mathbb{C} \text{ (as fields), and}
$$
\n
$$
T_{\mathcal{S}_G} \mathsf{P}^1(\mathbb{L}) \cong \mathbb{P}^1(k_{\mathbb{L}}) = \mathbb{P}^1(\mathbb{C}) \text{ (the bijection is the canonical one in (2.1))}.
$$

Notation 3.1. Let $M(\mathbb{P}^1(\mathbb{C}))$ be the space of all complex Radon measures on $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup {\infty}$. The pullback of each $\mu \in M(\mathbb{P}^1(\mathbb{C}))$ under a rational function $R \in \mathbb{C}(z)$ on $\mathbb{P}^1(\mathbb{C})$ of degree > 0 is $R^*\mu := \int_{\mathbb{P}^1(\mathbb{C})} (\sum_{w \in R^{-1}(z)} (\deg_w R) \delta_w) \mu(z)$ on $\mathbb{P}^1(\mathbb{C})$, where for each $z \in \mathbb{P}^1(\mathbb{C})$, δ_z is the Dirac measure at z on $\mathbb{P}^1(\mathbb{C})$; if R is constant, then $R^*\mu \coloneqq 0$ by convention. Also set

$$
M^1(\mathbb{P}^1(\mathbb{C})) := \{ \mu \in M(\mathbb{P}^1(\mathbb{C})) : \mu \ge 0 \text{ and } \mu(\mathbb{P}^1(\mathbb{C})) = 1 \} \text{ and }
$$

$$
M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger} := \{ \mu \in M^1(\mathbb{P}^1(\mathbb{C})) : \mu \text{ is purely atomic} \}.
$$

Fact 3.2 (Maximal entropy measure on $\mathbb{P}^1(\mathbb{C})$ [\[4,](#page-36-11) [14,](#page-36-12) [11\]](#page-36-13)). For a rational function $R \in \mathbb{C}(z)$ on $\mathbb{P}^1(\mathbb{C})$ of degree > 1 , the equilibrium (or canonical, and indeed the unique maximal entropy) measure μ_R of R on $\mathbb{P}^1(\mathbb{C})$ is the unique $\mu \in M^1(\mathbb{P}^1(\mathbb{C}))$ satisfying $R^*\mu = (\deg R)\mu$ on $\mathbb{P}^1(\mathbb{C})$ and $\mu(E(R)) = 0$, where $E(R) := \{a \in \mathbb{P}^1(\mathbb{C})\}$: $\#\bigcup_{n\in\mathbb{N}}R^{-n}(a) < +\infty$. Then, for every $n \in \mathbb{N}$, $\mu_{R^n} = \mu_R$ on $\mathbb{P}^1(\mathbb{C})$ and $E(R^n) = E(R)$. The measure μ_R is PGL(2, C)-equivariant in that for every Möbius transformation $M \in \text{PGL}(2, \mathbb{C})$ on $\mathbb{P}^1(\mathbb{C}), \mu_{M \circ R \circ M^{-1}} = M_* \mu_R$ on $\mathbb{P}^1(\mathbb{C}).$

When $R \in \mathbb{C}[z]$ or equivalently $R(\infty) = \infty \in E(R)$, μ_R is supported by $\partial(K_R)$, where the filled-in Julia set $K_R := \{z \in \mathbb{C} : \limsup_{n \to \infty} |R^n(z)| < +\infty\}$ of R is a compact subset in \mathbb{C} .

Let $h \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z) \subset \mathbb{L}(z)$ be a meromorphic family of rational functions on $\mathbb{P}^1(\mathbb{C})$, and let us regard $\tilde{h} = H_{\tilde{h}} \phi_{\tilde{h}} \in \mathbb{P}^{2(\deg h) + 1}(k_{\mathbb{L}})$ as a point in $\mathbb{P}^{2(\deg h) + 1}(\mathbb{C}),$ $\phi_{\tilde{h}}$ as a rational function on $\mathbb{P}^1(\mathbb{C})$ of degree deg $h-\deg H_{\tilde{h}}$, and the effective divisor $[H_{\tilde{h}} = 0]$ on $\mathbb{P}^1(k_{\mathbb{L}})$ as that on $\mathbb{P}^1(\mathbb{C})$ and in turn also as the Radon measure $\sum_{z \in \mathbb{P}^1(\mathbb{C})} (\text{ord}_z[H_{\tilde{h}} = 0]) \delta_z$ on $\mathbb{P}^1(\mathbb{C})$, under $k_{\mathbb{L}} = \mathbb{C}$ as fields. Then

(3.2) $\lim_{t\to 0} h_t = \phi_{\tilde{h}}$ locally uniformly on $\mathbb{P}^1(\mathbb{C}) \setminus (\text{supp}[H_{\tilde{h}} = 0]).$

Definition 3.3. For every $\mu \in M^1(\mathbb{P}^1(\mathbb{C}))$, the (possibly degenerating) pullback $\tilde{h}^*\mu \in M(\mathbb{P}^1(\mathbb{C}))$ of μ under \tilde{h} is defined by

(3.3)
$$
\tilde{h}^*\mu := (\phi_{\tilde{h}})^*\mu + [H_{\tilde{h}} = 0] \text{ on } \mathbb{P}^1(\mathbb{C}),
$$

still satisfying $(\tilde{h}^*\mu)(\mathbb{P}^1(\mathbb{C})) = \deg h$.

Recall Fact [2.2.](#page-9-1) The following target rescaling theorem is a special case of [\[13,](#page-36-14) Lem. 3.7 (see also $[5, \text{ Lem. } 2.1]$).

Theorem 3.4. For every meromorphic family $f \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z) \subset \mathbb{L}(z)$ of rational functions on $\mathbb{P}^1(\mathbb{C})$ of degree > 1, there is a meromorphic family $A \in$ $(\mathcal{O}(\mathbb{D})[t^{-1}])$ (z) of Möbius transformations on $\mathbb{P}^1(\mathbb{C})$ such that $(A \circ f)(S_G) = S_G$ in $\mathsf{P}^1(\mathbb{L})$. Such a family A is unique up to a postcomposition to A of any meromorphic $family B \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z)$ of Möbius transformations on $\mathbb{P}^1(\mathbb{C})$ satisfying $\widetilde{B} =$ $\phi_{\widetilde{B}} \in \mathrm{PGL}(2, \mathbb{C}).$

Also recall [\(2.2\)](#page-9-0). The degenerating f-balanced property of the pair $\mu =$ (μ_C, μ_E) (the former half in [\(3.4\)](#page-15-1)) is a consequence of [\(3.2\)](#page-14-1) and the complex argument principle. The proof of the purely atomicness of μ (the latter half in [\(3.4\)](#page-15-1)) is more involved.

86 Y. Okuyama

Theorem 3.5 (Consequence of $[5, Thms. 2.4 and A]$). Let

$$
f \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z) \,(\subset \mathbb{L}(z))
$$

be a meromorphic family of rational functions on $\mathbb{P}^1(\mathbb{C})$ of degree $d > 1$ satisfying $f^{-1}(\mathcal{S}_G) \neq \{\mathcal{S}_G\}$ in $\mathsf{P}^1(\mathbb{L})$, let $A \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z)$ be a meromorphic family of Möbius transformations on $\mathbb{P}^1(\mathbb{C})$ such that $(A \circ f)(S_G) = S_G$, and let

$$
\mu_C = \lim_{j \to \infty} \mu_{f_{t_j}}, \quad \mu_E = \lim_{j \to \infty} (A_{t_j})_* \mu_{f_{t_j}} \in M^1(\mathbb{P}^1(\mathbb{C}))
$$

be weak limit points on $\mathbb{P}^1(\mathbb{C})$ as $t \to 0$ of the families $(\mu_{f_t})_{t \in \mathbb{D}^*}$ and $((A_t)_*\mu_{f_t})_{t \in \mathbb{D}^*}$ of the unique maximal entropy measures μ_{f_t} and $(A_t)_*\mu_{f_t} = \mu_{A_t \circ f_t \circ A_t^{-1}}$ on $\mathbb{P}^1(\mathbb{C})$ of f_t and of $A_t \circ f_t \circ A_t^{-1}$, respectively, for some sequence $(t = t_j)$ in \mathbb{D}^* tending to 0 as $j \rightarrow \infty$. Then

$$
(3.4) \quad (\widetilde{A \circ f})^* \mu_E = d \cdot \mu_C \quad \text{on } \mathbb{P}^1(\mathbb{C}) \quad \text{and} \quad \mu := (\mu_C, \mu_E) \in (M^1(\mathbb{P}^1(\mathbb{C}))^\dagger)^2.
$$

§4. A direct translation

Pick a meromorphic family $f \in (\mathcal{O}(\mathbb{D})[t^{-1}])$ (z) ($\subset \mathbb{L}(z)$) of rational functions on $\mathbb{P}^1(\mathbb{C})$ of degree $d > 1$, and suppose that $f^{-1}(\mathcal{S}_G) \neq {\mathcal{S}_G}$ in P¹(L). Choose a meromorphic family $A \in (\mathcal{O}(\mathbb{D})[t^{-1}])$ (*z*) of Möbius transformations on $\mathbb{P}^1(\mathbb{C})$ such that $(A \circ f)(S_G) = S_G$ (by Theorem [3.4\)](#page-14-2). Also recall

$$
\Gamma_G \coloneqq \{ \mathcal{S}_G \} \text{ and } \Gamma_f \coloneqq \{ \mathcal{S}_G, f(\mathcal{S}_G) \} \text{ in } H^1_{\text{II}}(\mathbb{L}).
$$

From Fact 2.2 and (2.2) , the following five statements

$$
\Gamma_G = \Gamma_f
$$
, $f(\mathcal{S}_G) = \mathcal{S}_G$, $\deg(\phi_{\tilde{f}}) > 0$, and moreover,
 $A(\mathcal{S}_G) = \mathcal{S}_G$ and

 $\tilde{A} = \phi_{\tilde{A}} \in \text{PGL}(2, k_{\mathbb{L}}) = \text{PGL}(2, \mathbb{C})$ (under $k_{\mathbb{L}} = \mathbb{C}$ as fields, here and below)

are equivalent. Alternatively, when $\Gamma_G \neq \Gamma_f$, there are $h_A, a_A \in \mathbb{P}^1(\mathbb{C})$ such that

(4.1) supp[
$$
H_{\tilde{A}} = 0
$$
] = { h_A } in $\mathbb{P}^1(\mathbb{C})$, $\phi_{\tilde{A}} \equiv a_A$ on $\mathbb{P}^1(\mathbb{C})$,
and moreover $\phi_{\tilde{f}} \equiv h_A$ on $\mathbb{P}^1(\mathbb{C})$ (by (3.2) and Fact 2.2).

We note that

$$
T_{f(\mathcal{S}_G)}\mathsf{P}^1(\mathbb{L})\underset{(A^{-1})_*}{\overset{\cong}{\leftarrow}} T_{\mathcal{S}_G}\mathsf{P}^1(\mathbb{L})\underset{(2.1)}{\cong}\mathbb{P}^1(k_{\mathbb{L}})=\mathbb{P}^1(\mathbb{C}),
$$

also recalling Fact [2.6.](#page-10-0)

Lemma 4.1. When $\Gamma_f \neq \Gamma_G$, we have

(4.2)
$$
(A^{-1})_{*}(\overrightarrow{\mathcal{S}_{G}A(\mathcal{S}_{G})}) = \overrightarrow{f(\mathcal{S}_{G})\mathcal{S}_{G}}.
$$

 $\overline{}$ $\overline{}$ *Proof.* If $(A^{-1})_*(\vec{v}) = \overrightarrow{f(\mathcal{S}_G)\mathcal{S}_G}$ (= $A^{-1}(\mathcal{S}_G)\mathcal{S}_G$ for some (indeed unique) $\vec{v} \in$ $T_{\mathcal{S}_G} \mathsf{P}^1(\mathbb{L})$, then we have $\mathcal{S}_G \in U_{(A^{-1})_*(\vec{v})}$, which yields $A(\mathcal{S}_G) \in A(U_{(A^{-1})_*(\vec{v})}) =$ $U_{A_*(A^{-1})_*(\vec{v})} = U_{\vec{v}}$ (using Fact [2.6\)](#page-10-0), and in turn $\vec{v} = \mathcal{S}_G A(\mathcal{S}_G)$. \Box

Lemma 4.2. When $\Gamma_f \neq \Gamma_G$, for any $\tilde{x}, \tilde{y} \in \mathbb{P}^1(k_\mathbb{L}) = \mathbb{P}^1(\mathbb{C})$ (and any representatives $x, y \in \mathbb{P}^1(\mathbb{L})$ of \tilde{x}, \tilde{y} , respectively), we have

$$
(4.3) \begin{cases} \overrightarrow{\mathcal{S}_G x} = \overrightarrow{\mathcal{S}_G f(\mathcal{S}_G)} \text{ in } T_{\mathcal{S}_G} P^1(\mathbb{L}) & \Leftrightarrow \tilde{x} = h_A \text{ in } \mathbb{P}^1(k_{\mathbb{L}}) = \mathbb{P}^1(\mathbb{C}), \\ (A^{-1})_*(\overrightarrow{\mathcal{S}_G y}) = \overrightarrow{f(\mathcal{S}_G)\mathcal{S}_G} \text{ in } T_{f(\mathcal{S}_G)} P^1(\mathbb{L}) & \Leftrightarrow \tilde{y} = a_A \text{ in } \mathbb{P}^1(k_{\mathbb{L}}) = \mathbb{P}^1(\mathbb{C}). \end{cases}
$$

Proof. The former assertion is by $\phi_{\tilde{f}} \equiv h_A$ on $\mathbb{P}^1(\mathbb{C})$ (in [\(4.1\)](#page-15-2)) and [\(2.3\)](#page-9-3). On the other hand, by (4.2) , we have

$$
(A^{-1})_{*}(\overrightarrow{S_Gy}) = \overrightarrow{f(S_G)S_G} \Leftrightarrow \overrightarrow{S_Gy} (= A_{*}(\overrightarrow{f(S_G)S_G})) = \overrightarrow{S_GA(S_G)},
$$

so the latter assertion holds by $\phi_{\tilde{A}} \equiv a_A$ on $\mathbb{P}^1(\mathbb{C})$ (in [\(4.1\)](#page-15-2)) and [\(2.3\)](#page-9-3).

Definition 4.3 (Admissibility of μ and construction of the measure ω_{μ}). For every $\mu = (\mu_C, \mu_E) \in (M^1(\mathbb{P}^1(\mathbb{C})))^2$ satisfying the following admissibility

$$
(4.4) \begin{cases} \tilde{A}^* \mu_E = \mu_C \text{ on } \mathbb{P}^1(\mathbb{C}) & \text{when } \Gamma_f = \Gamma_G \ (\Leftrightarrow \tilde{A} = \phi_{\tilde{A}} \Leftrightarrow A(\mathcal{S}_G) = \mathcal{S}_G), \\ \mu_C(\{h_A\}) + \mu_E(\{a_A\}) \ge 1 & \text{when } \Gamma_f \neq \Gamma_G \end{cases}
$$

(for A), there is a unique probability measure

$$
\omega_{\mu} \in M^1(\Gamma_f) \pmod{\text{indeed }\omega_{\mu} \in M^1(\Gamma_f)^{\dagger} \text{ if }\mu \in (M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger})^2}
$$

on $P^1/S(\Gamma_f) = S(\Gamma_f)$ such that, writing $\mu_C = \nu_C + \tilde{\nu}_C$ (resp. $\mu_E = \nu_E + \tilde{\nu}_E$) in $M(\mathbb{P}^1)$ where ν_C (resp. ν_E) has no atoms on $\mathbb{P}^1(\mathbb{C})$ and $\tilde{\nu}_C = \mu_C - \nu_C$ (resp. $\tilde{\nu}_E = \mu_E - \nu_E$) is purely atomic, when $\Gamma_f = \Gamma_G$,

$$
\begin{cases}\n\omega_{\mu}(\{\{\mathcal{S}_{G}\}\}) = \nu_{E}(\mathbb{P}^{1}(\mathbb{C})) \left(= \nu_{C}(\mathbb{P}^{1}(\mathbb{C})) \right) & \text{and} \\
\omega_{\mu}(\{U_{(A^{-1})_{*}(\overrightarrow{\mathcal{S}_{G}y})}\}) = \mu_{E}(\{\tilde{y}\}) & \text{for every } \tilde{y} \in \mathbb{P}^{1}(k_{\mathbb{L}}) = \mathbb{P}^{1}(\mathbb{C}) \\
(\underset{(4.4)k(2.4)}{\Leftrightarrow} \omega_{\mu}(\{U_{\overrightarrow{\mathcal{S}_{G}y}}\}) = \mu_{C}(\{\tilde{y}\}) & \text{for every } \tilde{y} \in \mathbb{P}^{1}(k_{\mathbb{L}}) = \mathbb{P}^{1}(\mathbb{C}))\n\end{cases}
$$

 \Box

and, when $\Gamma_f \neq \Gamma_G$, noting also Lemma [4.2\)](#page-16-3),

$$
(4.5) \begin{cases} \omega_{\mu}(\{\{S_{G}\}\}) = \nu_{C}(\mathbb{P}^{1}(\mathbb{C})), \\ \omega_{\mu}(\{U_{\overline{S_{G}}x}\}) = \mu_{C}(\{\tilde{x}\}) \text{ for every } \tilde{x} \in \mathbb{P}^{1}(\mathbb{C}) \setminus \{h_{A}\}, \\ \omega_{\mu}(\{\{f(S_{G})\}\}) = \nu_{E}(\mathbb{P}^{1}(\mathbb{C})), \\ \omega_{\mu}(\{U_{(A^{-1})_{*}(\overline{S_{G}}y)}\}) = \mu_{E}(\{\tilde{y}\}) \text{ for every } \tilde{y} \in \mathbb{P}^{1}(\mathbb{C}) \setminus \{a_{A}\}, \text{ and } \\ \omega_{\mu}(\{U_{\overline{S_{G}}f(S_{G})} \cap U_{\overline{f(S_{G})S_{G}}\}) = \mu_{C}(\{h_{A}\}) + \mu_{E}(\{a_{A}\}) - 1 \geq 0). \end{cases}
$$

For every $\mu = (\mu_C, \mu_E) \in (M^1(\mathbb{P}^1(\mathbb{C})))^2$ satisfying the admissibility [\(4.4\)](#page-16-2) (for A), we note that

$$
\omega_{\mu}(S(\Gamma_f) \setminus F) = 0 \quad \text{for some countable subset } F \text{ in } S(\Gamma_f),
$$

and also have

(4.6)
$$
\omega_{\mu} \in M^{1}(\Gamma_{f})^{\dagger} \Rightarrow (\pi_{\Gamma_{f},\Gamma_{G}})_{*}\omega_{\mu} \in M^{1}(\Gamma_{G})^{\dagger} \Rightarrow \mu_{C} = (\pi_{\Gamma_{f},\Gamma_{G}})_{*}\omega_{\mu} \quad \text{in } M^{1}(\mathbb{P}^{1}(\mathbb{C}))^{\dagger} = M^{1}(\Gamma_{G})^{\dagger}
$$

identifying $M^1(\Gamma_G)^\dagger$ with $M^1(\mathbb{P}^1(\mathbb{C}))^\dagger$ under the bijection

$$
S(\Gamma_G) \setminus \{ \mathcal{S}_G \} = T_{\mathcal{S}_G} \mathsf{P}^1(\mathbb{L}) \cong \mathbb{P}^1(k_{\mathbb{L}}) = \mathbb{P}^1(\mathbb{C}).
$$

The following direct translation from degenerating complex dynamics into quantized Berkovich dynamics is based on the above explicit definition of ω_{μ} and bypasses a correspondence between semistable models of $P^1(\mathbb{L})$ and semistable vertex sets in $P^1(\mathbb{L})$ from rigid analytic geometry (see, e.g., [\[1\]](#page-36-15)), which is used in [\[5\]](#page-36-1). See Section [8](#page-34-1) for a complement of this proposition.

Proposition 4.4 (Direct translation, cf. $[5, Prop. 5.1(1)]$). For every ordered pair $\mu = (\mu_C, \mu_E) \in (M^1(\mathbb{P}^1(\mathbb{C})))^2$ satisfying the admissibility [\(4.4\)](#page-16-2) (for A), we have

(4.7)
$$
(\widetilde{A \circ f})^* \mu_E = d \cdot \mu_C \quad in \ M(\mathbb{P}^1(\mathbb{C}))
$$

$$
\Rightarrow \quad f_G^* \omega_\mu = d \cdot (\pi_{\Gamma_f, \Gamma_G})_* \omega_\mu \quad in \ M(\Gamma_G).
$$

Proof. Pick an ordered pair $\mu = (\mu_C, \mu_E) \in (M^1(\mathbb{P}^1(\mathbb{C})))^2$ satisfying the admissi-bility [\(4.4\)](#page-16-2) (for A), and write $\mu_C = \nu_C + \tilde{\nu}_C$, $\mu_E = \nu_E + \tilde{\nu}_E$ as in Definition [4.3.](#page-16-0)

(a-1). When $\Gamma_f \neq \Gamma_G$, for every $\tilde{x} \in \mathbb{P}^1(\mathbb{C}) = \mathbb{P}^1(k_\mathbb{L}) \cong T_{\mathcal{S}_G} \mathsf{P}^1(\mathbb{L}) = S(\Gamma_G) \setminus \mathsf{P}^1(\mathbb{L})$ $\{S_G\}$ (and every representative $x \in \mathbb{P}^1(\mathbb{L})$ of \tilde{x}), recalling Definitions [2.9](#page-11-1) and [4.3,](#page-16-0)

we compute both

$$
(f_{G}^{*}\omega_{\mu})(\{U_{\overline{S_{G}}x}\})
$$
\n
$$
= \int_{\beta^{1}/S(\Gamma_{f})} m_{V,U_{\overline{S_{G}}x}(f)\omega_{\mu}(V)}
$$
\n
$$
= s_{\overline{S_{G}}x}(f) \cdot 1 + m_{\overline{S_{G}}x}(f) \cdot \omega_{\mu}(\{V \in S(\Gamma_{f}) : V \subset U_{f_{*}(\overline{S_{G}}x)}\})
$$
\n
$$
= s_{\overline{S_{G}}x}(f) + m_{\overline{S_{G}}x}(f) \times
$$
\n
$$
\begin{cases}\n1 - \omega_{\mu}(\{U_{\vec{w}} \in S(\Gamma_{f}) : \vec{w} \in (T_{f(S_{G})}P^{1}(\mathbb{L})) \setminus \{f_{*}(\overline{S_{G}}x)\}\} \cup \{\{f(S_{G})\}\}) \\
= 1 - \omega_{\mu}(\{U_{(A^{-1})_{*}(\overline{S_{G}}y)} : y \in \mathbb{P}^{1}(\mathbb{L}) \text{ satisfying } \tilde{y} \in \mathbb{P}^{1}(k_{\mathbb{L}}) \setminus \{a_{A}\}\}) \\
\vdots \\
\omega_{\mu}(\{f(S_{G})\}\}) \\
= \mu_{E}(\{a_{A}\}) \quad \text{if } f_{*}(\overline{S_{G}}x) = \overline{f(S_{G})S_{G}}, \\
\omega_{\mu}(\{U_{f_{*}(\overline{S_{G}}x)}\}) = \omega_{\mu}(\{U_{(A^{-1})_{*}(\overline{S_{G}}y)}\}) \\
\text{for any such } y \in \mathbb{P}^{1}(\mathbb{L}) \text{ that } f_{*}(\overline{S_{G}}x) = (A^{-1})_{*}(\overline{S_{G}}y) \quad \text{otherwise}
$$
\n
$$
= \sum_{(4,3)} s_{\overline{S_{G}}x}(f) + m_{\overline{S_{G}}x}(f) \cdot \mu_{E}(\{\tilde{y}\}) \quad \text{for any such } y \in \mathbb{P}^{1}(\mathbb{L})
$$
\n
$$
\text{that } (A \circ f)_{*}(\overline{S_{G}}x) = \overline{S_{G}}y \quad (\Leftrightarrow f_{*}(\overline{S_{G}}x) = (A^{-1})_{*}
$$

and

$$
((\pi_{\Gamma_f, \Gamma_G})_* \omega_\mu)(\{U_{\overline{S_G x}}\})
$$

\n
$$
= \omega_\mu(\{V \in S(\Gamma_f) : V \subset U_{\overline{S_G x}}\})
$$

\n
$$
= \begin{cases} 1 - \omega_\mu(\{U_{\vec{v}} \in S(\Gamma_f) : \vec{v} \in (T_{S_G}P^1(\mathbb{L})) \setminus \{\overline{S_G x}\}\} \cup \{\{S_G\}\} \\ 0 & = 1 - \mu_C(\mathbb{P}^1(\mathbb{C}) \setminus \{h_A\}) = \mu_C(\{h_A\}) \text{ if } \overline{S_G x} = \overline{S_G f(S_G)}, \\ \omega_\mu(\{U_{\overline{S_G x}}\}) \text{ otherwise} \end{cases}
$$

\n
$$
= \mu_C(\{\tilde{x}\}).
$$

Hence, if $(\widetilde{A \circ f})^* \mu_E = d \cdot \mu_C$ on $\mathbb{P}^1(\mathbb{C})$, then for the x, we have the equality $(f_G^*\omega_\mu)(\{U_{\overrightarrow{S_Gx}}\}) = (d\cdot(\pi_{\Gamma_f,\Gamma_G})_*\omega_\mu)(\{U_{\overrightarrow{S_Gx}}\}).$

(a-2). Moreover, we also compute both

$$
(f_G^*\omega_\mu)(\{\{\mathcal{S}_G\}\}) = \int_{\mathsf{P}^1/S(\Gamma_f)} m_{V,\{\mathcal{S}_G\}}(f)\omega_\mu(V) = \deg_{\mathcal{S}_G}(f) \cdot \omega_\mu(\{\{f(\mathcal{S}_G)\}\})
$$

$$
= \deg(\phi_{\widetilde{A\circ f}}) \cdot \nu_E(\mathbb{P}^1(\mathbb{C})) = ((\widetilde{A\circ f})^*\mu_E)(\mathbb{P}^1(\mathbb{C}) \setminus F_1)
$$

and

$$
((\pi_{\Gamma_f, \Gamma_G})_* \omega_\mu)(\{\{\mathcal{S}_G\}\}) = \omega_\mu(\{\{\mathcal{S}_G\}\}) = \nu_C(\mathbb{P}^1(\mathbb{C})) = \mu_C(\mathbb{P}^1(\mathbb{C}) \setminus F_2),
$$

where F_1 , F_2 are any sufficiently large countable subsets in $\mathbb{P}^1(\mathbb{C})$.

Hence, if $(\widetilde{A \circ f})^* \mu_E = d \cdot \mu_C$ on $\mathbb{P}^1(\mathbb{C})$, then we also have $(f_G^* \omega_\mu)(\{\{\mathcal{S}_G\}\}) =$ $(d \cdot (\pi_{\Gamma_f, \Gamma_G})_* \omega_\mu)(\{\{\mathcal{S}_G\}\})$. Now the proof is complete in this case.

(b-1). When $\Gamma_f = \Gamma_G$, for every $\tilde{x} \in \mathbb{P}^1(\mathbb{C}) = \mathbb{P}^1(k_\mathbb{L}) \cong T_{\mathcal{S}_G} \mathsf{P}^1(\mathbb{L}) = S(\Gamma_G) \setminus \mathsf{P}^1(\mathbb{L})$ $\{\mathcal{S}_G\}$, similarly to (a-1), we compute both

$$
(f_G^*\omega_\mu)(\{U_{\overline{S_Gx}}\})
$$

\n
$$
= \int_{(2.13)} \int_{\mathsf{P}^1/S(\Gamma_G)} m_{V,U_{\overline{S_Gx}}}(f)\omega_\mu(V) = s_{\overline{S_Gx}}(f) \cdot 1 + m_{\overline{S_Gx}}(f) \cdot \omega_\mu(\{U_{f_*(\overline{S_Gx})}\})
$$

\n
$$
= s_{\overline{S_Gx}}(f) + m_{\overline{S_Gx}}(f) \cdot \mu_E(\{\tilde{y}\})
$$

\nfor any such $y \in \mathbb{P}^1(\mathbb{L})$ that $f_*(\overline{S_Gx}) = (A^{-1})_*(\overline{S_Gy})$
\n
$$
= \sup_{\substack{(2.9),(2.5),\\(2.9),(2.5),}} \text{ord}_{\tilde{x}}[H_{\overline{A\circ f}} = 0] + (\deg_{\tilde{x}}(\phi_{\overline{A\circ f}})) \cdot \mu_E(\{\phi_{\overline{A\circ f}}(\tilde{x})\})
$$

\n
$$
= ((\widetilde{A\circ f})^*\mu_E)(\{\tilde{x}\})
$$

and

$$
((\pi_{\Gamma_f, \Gamma_G})_* \omega_\mu)(\{U_{\overrightarrow{S_Gx}}\}) = \omega_\mu(\{U_{\overrightarrow{S_Gx}}\}) = \mu_C(\{\tilde{x}\}).
$$

Hence, if $(\widetilde{A \circ f})^* \mu_E = d \cdot \mu_C$ on $\mathbb{P}^1(\mathbb{C})$, then we have the equality $(f_G^* \omega_\mu)(\{U_{\overline{S_Gx}}\})$ $=(d \cdot (\pi_{\Gamma_f, \Gamma_G})_* \omega_\mu)(\{U_{\overrightarrow{S_{G}x}}\}).$

(b-2). Similarly to (a-2), we also compute both

$$
(f_G^*\omega_\mu)(\{\{\mathcal{S}_G\}\}) = \int_{\mathsf{P}^1/S(\Gamma_G)} m_{V,\{\mathcal{S}_G\}}(f)\omega_\mu(V) = \deg_{\mathcal{S}_G}(f) \cdot \omega_\mu(\{\{\mathcal{S}_G\}\})
$$

=
$$
\deg(\phi_{\widetilde{A\circ f}}) \cdot \nu_E(\mathbb{P}^1(\mathbb{C})) = ((\widetilde{A\circ f})^*\mu_E)(\mathbb{P}^1(\mathbb{C}) \setminus F_1)
$$

and

$$
((\pi_{\Gamma_f, \Gamma_G})_* \omega_\mu)(\{\{\mathcal{S}_G\}\}) = \omega_\mu(\{\{\mathcal{S}_G\}\}) = \nu_C(\mathbb{P}^1(\mathbb{C})) = \mu_C(\mathbb{P}^1(\mathbb{C}) \setminus F_2),
$$

where F_1 , F_2 are any sufficiently large countable subsets in $\mathbb{P}^1(\mathbb{C})$.

Hence, if $(\widetilde{A \circ f})^* \mu_E = d \cdot \mu_C$ on $\mathbb{P}^1(\mathbb{C})$, then we also have $(f_G^* \omega_\mu)(\{\{\mathcal{S}_G\}\}) =$ $(d \cdot (\pi_{\Gamma_f, \Gamma_G})_* \omega_\mu)(\{\{\mathcal{S}_G\}\})$. Now the proof is also complete in this case. \Box

The following complements Theorem [3.5.](#page-15-3)

Proposition 4.5. If $\mu_C = \lim_{j\to\infty} \mu_{f_{t_j}}, \ \mu_E = \lim_{j\to\infty} (A_{t_j})_* \mu_{f_{t_j}}$ are weak limit points on $\mathbb{P}^1(\mathbb{C})$ as $t \to 0$ of $(\mu_{f_t})_{t \in \mathbb{D}^*}$, $((A_t)_*\mu_{f_t})_{t \in \mathbb{D}^*}$, respectively, for some sequence $(t=t_j)$ in \mathbb{D}^* tending to 0 as $j \to \infty$, then $\mu \coloneqq (\mu_C, \mu_E) \in (M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger})^2$ also satisfies the admissibility [\(4.4\)](#page-16-2) (for A).

Proof. When $\Gamma_f = \Gamma_G$ or equivalently $\tilde{A} = \phi_{\tilde{A}}$, by the uniform convergence [\(3.2\)](#page-14-1) and supp $[H_{\tilde{A}} = 0] = \emptyset$, we have $\tilde{A}_*\mu_C = \mu_E$ on $\mathbb{P}^1(\mathbb{C})$, that is, the admissibility $\tilde{A}^*\mu_E = \mu_C$ on $\mathbb{P}^1(\mathbb{C})$ in this case holds.

When $\Gamma_f \neq \Gamma_G$, for $0 < \varepsilon \ll 1$, by the outer regularity of μ_E , there is a continuous test function ψ on $\mathbb{P}^1(\mathbb{C})$ such that $\psi \geq 0$ on $\mathbb{P}^1(\mathbb{C})$, that $\psi \equiv 1$ on an open neighborhood of a_A , and that $\mu_E(\{a_A\}) + \varepsilon/2 > \int_{\mathbb{P}^1(\mathbb{C})} \psi \mu_E$. Then, for any continuous test function η on $\mathbb{P}^1(\mathbb{C})$ supported by $\mathbb{P}^1(\mathbb{C}) \setminus {\hat{h}_A}$ and satisfying $0 \leq \eta \leq 1$ on $\mathbb{P}^1(\mathbb{C})$, we have

$$
\mu_E(\{a_A\}) + \varepsilon > \int_{\mathbb{P}^1(\mathbb{C})} \psi((A_{t_j})_* \mu_{f_{t_j}}) = \int_{\mathbb{P}^1(\mathbb{C})} (\psi \circ A_{t_j}) \mu_{f_{t_j}} \geq \int_{\text{supp}\,\eta} (\psi \circ A_{t_j}) \cdot \eta \mu_{f_{t_j}} \quad \text{for } j \gg 1.
$$

Then, by the uniform convergence (3.2) and the first item in (4.1) , we even have $\mu_E(\{a_A\})+\varepsilon > \int_{\operatorname{supp}\eta} 1\cdot \eta \mu_{f_{t_j}} = \int_{\mathbb{P}^1(\mathbb{C})} \eta \mu_{f_{t_j}}$ for $j\gg 1$, so that $\mu_E(\{a_A\}) + \varepsilon$ $\varepsilon \geq \int_{\mathbb{P}^1(\mathbb{C})} \eta \mu_C$ making $j \to \infty$. Hence, by the inner regularity of μ_C , we have $\mu_E(\{a_A\}) + 2\varepsilon \geq \mu_C(\mathbb{P}^1(\mathbb{C}) \setminus \{h_A\}),$ and in turn $\mu_E(\{a_A\}) \geq \mu_C(\mathbb{P}^1(\mathbb{C}) \setminus \{h_A\}),$ that is, the admissibility $\mu_C(\lbrace h_A \rbrace) + \mu_E(\lbrace a_A \rbrace) \geq (\mu_C(\mathbb{P}^1(\mathbb{C})) = 1$ in this case also holds. □

§5. Proof of Theorem [A](#page-4-0)

Let K be an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value $|\cdot|$, and let $f \in K(z)$ be a rational function on \mathbb{P}^1 of deg $f =: d > 1$. Recall that

$$
\Gamma_G \coloneqq \{ \mathcal{S}_G \}
$$
 and $\Gamma_n \coloneqq \Gamma_{f^n} \coloneqq \{ \mathcal{S}_G, f^n(\mathcal{S}_G) \}$ in H^1_{Π}

for each $n \in \mathbb{N}$, and the definitions of Δ_f , Δ_f^{\dagger} in Section [1.3.](#page-4-2)

Lemma 5.1 (Cf. [\[5,](#page-36-1) Lem. 4.4]). For every $\nu \in M^1(\mathsf{P}^1)$, if ν has the f-balanced property $f^*\nu = d \cdot \nu$ on P^1 and satisfies $\nu({f(\mathcal{S}_G)}) = 0$, then for every $n \in \mathbb{N}$, $(\pi_{\Gamma_n})_*\nu \in M^1(\Gamma_n)$ has the quantized f^n -balanced property (see [\(1.9\)](#page-4-3)), and if in addition $f^{-1}(\mathcal{S}_G) \neq \{\mathcal{S}_G\}$, then $(\pi_{\Gamma_G})_* \nu \in \Delta_f^{\dagger}$.

Proof. Under the assumption on ν , for every $U \in S(\Gamma_G) \setminus \{\{\mathcal{S}_G\}\}\)$, we compute

$$
(f_G^*((\pi_{\Gamma_f})_*\nu))(\{U\}) = \langle (\pi_{\Gamma_f})^*(f_{G,*}1_{\{U\}}), \nu \rangle
$$

\n
$$
= \int_{(2,12)} \int_{\mathsf{P}^1 \setminus \{f(\mathcal{S}_G)\}} ((f^*\delta.)(U))\nu = \langle (f^*\delta.)(U), \nu \rangle = \langle 1_U, f^*\nu \rangle
$$

\n
$$
= \langle (\pi_{\Gamma_G})^*1_{\{U\}}, d \cdot \nu \rangle = d \cdot ((\pi_{\Gamma_G})_*\nu)(\{U\})
$$

\n
$$
= d \cdot ((\pi_{\Gamma_f, \Gamma_G})_*((\pi_{\Gamma_f})_*\nu))(\{U\}),
$$

so that also recalling (1.7) , $(\pi_{\Gamma_f})_* \nu \in M^1(\Gamma_f)$ has the quantized f-balanced prop-erty [\(1.9\)](#page-4-3). On the other hand, for any $n \in \mathbb{N}$, we have $(f^n)^* \nu = d^n \cdot \nu$ on P^1 , and in turn

$$
0 = d^{n-1} \cdot (\deg_{\mathcal{S}_G} f) \cdot \nu({f(\mathcal{S}_G)}) = d^{n-1} \cdot (f^*\nu)(\{\mathcal{S}_G\})
$$

= ((f^n)^*\nu)(\{\mathcal{S}_G\}) = \deg_{\mathcal{S}_G}(f^n) \cdot \nu({f^n(\mathcal{S}_G)}) \ge \nu({f^n(\mathcal{S}_G)}) \ge 0),

so $\nu({f^n(\mathcal{S}_G)})=0$. Hence the former assertion holds, and so does the latter by \Box $(1.6), (1.7), (1.8), \text{ and } (\pi_{\Gamma_G})_* = (\pi_{\Gamma_n, \Gamma_G})_*(\pi_{\Gamma_n})_*).$ $(1.6), (1.7), (1.8), \text{ and } (\pi_{\Gamma_G})_* = (\pi_{\Gamma_n, \Gamma_G})_*(\pi_{\Gamma_n})_*).$ $(1.6), (1.7), (1.8), \text{ and } (\pi_{\Gamma_G})_* = (\pi_{\Gamma_n, \Gamma_G})_*(\pi_{\Gamma_n})_*).$ $(1.6), (1.7), (1.8), \text{ and } (\pi_{\Gamma_G})_* = (\pi_{\Gamma_n, \Gamma_G})_*(\pi_{\Gamma_n})_*).$ $(1.6), (1.7), (1.8), \text{ and } (\pi_{\Gamma_G})_* = (\pi_{\Gamma_n, \Gamma_G})_*(\pi_{\Gamma_n})_*).$ $(1.6), (1.7), (1.8), \text{ and } (\pi_{\Gamma_G})_* = (\pi_{\Gamma_n, \Gamma_G})_*(\pi_{\Gamma_n})_*).$

Proof of Theorem [A](#page-4-0). Suppose that $f^{-1}(\mathcal{S}_G) \neq {\mathcal{S}_G}$, which is equivalent to

(5.1)
$$
\nu_f(\{f(\mathcal{S}_G)\}) = \nu_f(\{\mathcal{S}_G\}) = ((\pi_{\Gamma_G})_* \nu_f)(\{\{\mathcal{S}_G\}\}) = 0
$$

(by [\(1.6\)](#page-3-0)). Then, by Lemma [5.1,](#page-20-1) we have $(\pi_{\Gamma_G})_* \nu_f \in \Delta_f^{\dagger}$. Suppose also that char K = 0 (so $\#E(f) \le 2$) and, in turn, that for any $a \in E(f)$, $f(a) = a$ or equivalently $f^{-1}(a) = \{a\}$. Then, for every $a \in E(f)$, by Lemma [5.1,](#page-20-1) we also have $(\pi_{\Gamma_G})_*\delta_a \in \Delta_f^{\dagger}$. Moreover, for every $a \in E(f)$, every $n \in \mathbb{N}$, and every $\vec{v} \in (T_{S_G}P^1) \setminus {\overline{S_{G}}a}$, by Facts [2.5](#page-10-7) and [2.4,](#page-10-1) we have

(5.2)
$$
s_{\vec{v}}(f^n) = 0 \iff f^n(U_{\vec{v}}) = U_{(f^n)_*\vec{v}} \text{ and}
$$

(5.3)
$$
(f^n)_*(\vec{v}) \neq f^n(\mathcal{S}_G) a,
$$

and for every $a \in E(f)$ and every $n \in \mathbb{N}$, we also have

(5.4)
$$
s_{\overrightarrow{S_Ga}}(f^n) = d^n - \deg_{\mathcal{S}_G}(f^n) \quad \text{(also using (2.8))} \quad \text{and}
$$

(5.5)
$$
(f^{n})_{*}(\overrightarrow{S_{G}a}) = \overrightarrow{f^{n}(S_{G})a}
$$
 (also using Fact 2.4).

(a). Let us see the former half in Theorem [A.](#page-4-0) If, for any $\vec{v} \in T_{S_G} \mathsf{P}^1$, we have

(5.6)
$$
\limsup_{n\to\infty}\frac{s_{\vec{v}}(f^n)}{d^n}\geq \nu_f(U_{\vec{v}})\left(=(\left(\pi_{\Gamma_G}\right)_*\nu_f)(\{U_{\vec{v}}\}),\right)
$$

then for every $\omega \in \Delta_f$ and $n \gg 1$, fixing $\omega_n \in M^1(\Gamma_n)$ such that $\omega_n(S(\Gamma_n) \setminus F) = 0$ for some countable subset F in $S(\Gamma_n)$ and that $d^{-n}(f^n)_{G}^*\omega_n = \omega = (\pi_{\Gamma_n,\Gamma_G})_{*}\omega_n$ in $M^1(\Gamma_G)$, also recalling Definition [2.9,](#page-11-1) for every $\vec{v} \in T_{\mathcal{S}_G} \mathsf{P}^1$, we have

$$
\omega(\{U_{\vec{v}}\}) = \limsup_{n \to \infty} \frac{((f^n)_{G}^{*}\omega_n)(\{U_{\vec{v}}\})}{d^n} \geq \limsup_{n \to \infty} \left(\frac{s_{\vec{v}}(f^n)}{d^n} \cdot \omega_n(\mathsf{P}^1/S(\Gamma_n))\right)
$$

$$
= \limsup_{n \to \infty} \frac{s_{\vec{v}}(f^n)}{d^n} \geq ((\pi_{\Gamma_G})_{*}\nu_f)(\{U_{\vec{v}}\}),
$$

which with [\(5.1\)](#page-21-0) and [\(1.7\)](#page-4-4) yields $\omega = (\pi_{\Gamma_G})_* \nu_f$ in $M^1(\Gamma_G)$. Hence we have $\Delta_f = \Delta_f^{\dagger} = \{(\pi_{\Gamma_G})_* \nu_f\}$, i.e., the case (i) in Theorem [A](#page-4-0) holds, under this "surplus equidistribution" assumption (5.6) (see $[5, p. 27]$).

(b.1). Alternatively, suppose that there is $\vec{u} \in T_{\mathcal{S}_G} \mathsf{P}^1$ not satisfying [\(5.6\)](#page-21-1). Then, fixing any $S \in \mathbb{P}^1 \setminus E(f)$ $(\subset \mathsf{P}^1 \setminus (E(f) \cup \{f^n(\mathcal{S}_G) : n \in \mathbb{N}\}))$, we have

$$
\nu_f(U_{\vec{u}}) \leq \limsup_{n \to \infty} \frac{((f^n)^* \delta_S)(U_{\vec{u}})}{d^n} \n\leq \limsup_{(2.7)} \frac{m_{\vec{u}}(f^n)}{n \to \infty} + \limsup_{n \to \infty} \frac{s_{\vec{u}}(f^n)}{d^n} < \limsup_{n \to \infty} \frac{m_{\vec{u}}(f^n)}{d^n} + \nu_f(U_{\vec{u}}),
$$

the first inequality in which is by the inner regularity of ν_f and (1.4) , and the equality holds if $S_G \in \mathsf{P}^1 \setminus \mathsf{J}(f)$. Hence $0 < \limsup_{n \to \infty} (m_{\vec{u}}(f^n)/d^n) =$ $\prod_{j=0}^{\infty} (m_{(f^j)_*(\vec{u})}(f)/d)$, so that $m_{(f^n)_*(\vec{u})}(f) \equiv d \; (>1)$ for $n \gg 1$, and in turn, also recalling [\(2.6\)](#page-10-3) (and the maximal-ramification locus $R_{\text{max}}(f)$ of f in Section [1.2\)](#page-2-1), that

(5.7)
$$
\deg_{f^n(\mathcal{S}_G)}(f) \equiv d, \text{ i.e., } f^n(\mathcal{S}_G) \in \mathsf{R}_{\max}(f), \text{ for } n \gg 1;
$$

then $f^{n+1}(\mathcal{S}_G) \neq f^n(\mathcal{S}_G)$ for $n \gg 1$ under the assumption that $f^{-1}(\mathcal{S}_G) \neq \{S_G\}$.

Also recall that $R_{\text{max}}(f)$ of f is connected in P^1 . Hence, for $n \gg 1$, we have $f^{-1}([f^n(\mathcal{S}_G), f^{n+1}(\mathcal{S}_G)]) = [f^{n-1}(\mathcal{S}_G), f^n(\mathcal{S}_G)] \subset \mathsf{R}_{\text{max}}(f)$, and then f restricts to a homeomorphism from $[f^{n-1}(\mathcal{S}_G), f^n(\mathcal{S}_G)]$ onto $[f^n(\mathcal{S}_G), f^{n+1}(\mathcal{S}_G)]$ and, recalling [\(2.6\)](#page-10-3), we also have $S \mapsto m \frac{1}{\mathcal{S}f^n(\mathcal{S}_G)}(f) = \deg_S(f) \equiv d \; (>\; 1)$ on $[f^{n-1}(\mathcal{S}_G), f^n(\mathcal{S}_G)].$ Then, for any $m \ge n \gg 1$, $\rho(f^{m}(\mathcal{S}_{G}), f^{m+1}(\mathcal{S}_{G})) = d^{m-n} \cdot \rho(f^{n}(\mathcal{S}_{G}), f^{n+1}(\mathcal{S}_{G}))$ by (2.10) . Consequently, also by the upper semicontinuity of deg (f) on P^1 , there is $a \in \mathbb{P}^1$ such that

$$
\{f^{n}(a): n \in \mathbb{N} \cup \{0\}\} \subset (\mathbb{P}^{1} \cap R_{\max}(f)) \cap \bigcap_{N \in \mathbb{N}} \overline{\{f^{n}(\mathcal{S}_{G}) : n \geq N\}},
$$

which with $\#(\mathbb{P}^1 \cap R_{\max}(f)) \leq 2$ (mentioned in [\(1.5\)](#page-3-1)) still implies

$$
a \in E(f).
$$

94 Y. Okuyama

Under the assumption that $f(a) = a$ (or equivalently $f^{-1}(a) = \{a\}$ so $f'(a) = 0$), we conclude that $\lim_{n\to\infty} f^n(\mathcal{S}_G) = a$ (and $\mathcal{S}_G \in \mathsf{P}^1 \setminus \mathsf{J}(f)$) and, moreover, that $f^{n}(\mathcal{S}_{G}) \in (\mathcal{S}_{G}, a]$ for $n \gg 1$, using [\[8,](#page-36-16) Thm. F] and [\(2.10\)](#page-11-3) (see [\[5,](#page-36-1) p. 25]) (or now assuming that f is tamely maximally ramified near this $a \in E(f) \subset \mathsf{R}_{\text{max}}(f) \cap \mathbb{P}^1$, for simplicity).

Remark 5.2. Conversely, if there is such an $a \in E(f)$ that $\lim_{n\to\infty} f^n(\mathcal{S}_G) = a$ and that $f^{n}(\mathcal{S}_{G}) \in (\mathcal{S}_{G}, a]$ for $n \gg 1$, then (5.7) is the case (since there is $\mathcal{S} \in$ $(a, \mathcal{S}_G]$ so close to a that $(a, \mathcal{S}] \subset R_{\max}(f)$, and (5.7) together with (5.2) and (5.4) implies that the inequality [\(5.6\)](#page-21-1) for this a does not hold for some $\vec{v} \in T_{\mathcal{S}_G} \mathsf{P}^1$.

(b.2). Once such an $a \in E(f)$ is at our disposal, noting that $f^{-1}(a) = \{a\}$, that $\lim_{n\to\infty} f^n(\mathcal{S}_G) = a$, and that $f^n(\mathcal{S}_G) \in (\mathcal{S}_G, a]$ for $n \gg 1$, we have

(5.8)
$$
f(U_{\overrightarrow{f^n(S_G)a}}) = U_{\overrightarrow{f^{n+1}(S_G)a}} \text{ for } n \gg 1
$$

(also by Fact [2.5](#page-10-7) applied to \overline{a} $\overline{$ $f^n(\mathcal{S}_G)$ a $\in T_{f^n(\mathcal{S}_G)}\mathsf{P}^1$ and have not only

(5.9)
$$
\nu_f(U_{\overrightarrow{f^n(\mathcal{S}_G)\mathcal{S}_G}}) = 1 \quad \text{for } n \gg 1
$$

but also $S_G \in \mathsf{P}^1 \setminus \mathsf{J}(f)$ (also since $a \in \mathsf{P}^1 \setminus \mathsf{J}(f)$ and $f(\mathsf{J}(f)) = \mathsf{J}(f)$). Hence fixing such $n_0 \gg 1$ that $\deg_{\mathcal{S}_G}(f^n)/d^n$ is constant for $n \geq n_0$ (by [\(5.7\)](#page-22-0)) and fixing any $S \in \mathsf{P}^1 \setminus E(f)$, for every $n \geq n_0$, we also have

$$
0 < \frac{\deg_{\mathcal{S}_G}(f^n)}{d^n} \left(\frac{1}{(5.4)} \frac{d^n - s_{\overline{\mathcal{S}_G}a}(f^n)}{d^n} \right) =
$$
\n
$$
= \sum_{\substack{(5.5)\& (2.7) \\ \text{when } n \gg 1}} 1 - \frac{(f^n)^* \delta_{\mathcal{S}}}{d^n} (U_{\overline{\mathcal{S}_G}a}) \equiv 1 - \limsup_{n \to \infty} \frac{(f^n)^* \delta_{\mathcal{S}}}{d^n} (U_{\overline{\mathcal{S}_G}a}) =
$$
\n
$$
(5.10) \qquad \qquad \prod_{\substack{(1.4)\& \text{if } \delta_{\mathcal{S}} \in \mathsf{P}^1 \setminus \mathsf{J}(f)}} 1 - \nu_f (U_{\overline{\mathcal{S}_G}a});
$$

in particular, $\nu_f(U_{\overrightarrow{S_Ga}}) < 1$, and in turn $(\pi_{\Gamma_G})_* \nu_f \neq (\pi_{\Gamma_G})_* \delta_a$.

Now the case (ii) in Theorem [A](#page-4-0) holds under this "surplus inequidistribution" assumption, and the proof of the former half in Theorem [A](#page-4-0) is complete.

Remark 5.3. In [\[5,](#page-36-1) §4.6], the condition $J(f) \subset P^1 \setminus (U_{\overrightarrow{S_Ga}} \cup {\mathcal{S}_G})$ was assumed with loss of some generality; under this condition, the vanishing assumption on each ω_n in the definition [\(1.10\)](#page-4-5) of Δ_f does not matter (and did not appear in

[\[5,](#page-36-1) §4.6]). By [\(5.10\)](#page-23-1) (and deg $(f) \in \{1, \ldots, d\}$, the statement $\nu_f(U_{\overline{S_Ga}}) = 0$ (\Leftarrow $\mathsf{J}(f) \subset \mathsf{P}^1 \setminus (U_{\overrightarrow{\mathcal{S}_{G}a}} \cup {\{\mathcal{S}_{G}\}})$ is equivalent to

(5.7')
$$
\deg_{f^n(\mathcal{S}_G)}(f) \equiv d \text{ for any } n \in \mathbb{N} \cup \{0\},
$$

and is indeed not always the case (as seen in Section [7](#page-34-0) below).

(c.1). Let us show the latter half, i.e., the equality [\(1.11\)](#page-5-1), in Theorem [A.](#page-4-0) For $n \gg 1$, by [\(5.9\)](#page-23-2), [\(5.2\)](#page-21-2), the $fⁿ$ -balanced property of ν_f on P^1 , and Fact [2.5,](#page-10-7) for every $\vec{v} \in (T_{\mathcal{S}_G}P^1) \setminus {\overline{\mathcal{S}_G a}}$, we have the equivalence

(5.11)
$$
\nu_f(U_{\vec{v}}) > 0 \Leftrightarrow (f^n)_*(\vec{v}) = \overrightarrow{f^n(\mathcal{S}_G)\mathcal{S}_G} \Leftrightarrow f^n(U_{\vec{v}}) = U_{\overrightarrow{f^n(\mathcal{S}_G)\mathcal{S}_G}}
$$

(one of) which is the case for at least one $\vec{v} \in (T_{\mathcal{S}_G} \mathsf{P}^1) \setminus {\{\overrightarrow{\mathcal{S}_G} a\}}$ since $\nu_f(U_{\overrightarrow{\mathcal{S}_G} a}) < 1$. Hence, for $n \gg 1$, using the $fⁿ$ -balanced property of ν_f on P^1 again, for every Thence, for $n \gg 1$, using the *f* -balanced property
 $\vec{v} \in (T_{\mathcal{S}_G}P^1) \setminus {\overline{\mathcal{S}_G}a}$ satisfying $\nu_f(U_{\vec{v}}) > 0$, we have

(5.12)

$$
(0 <)\nu_f(U_{\vec{v}}) = \frac{(f^n)^*\nu_f}{d^n}(U_{\vec{v}}) = \frac{1}{d^n} \int_{f^n(U_{\vec{v}})} ((f^n)^*\delta_S)(U_{\vec{v}})\nu_f(S)
$$

$$
= \frac{m_{\vec{v}}(f^n) + s_{\vec{v}}(f^n)}{d^n} \cdot \nu_f(U_{\overline{f^n(S_G)S_G}}) = \frac{m_{\vec{v}}(f^n)}{d^n}
$$

(and $m_{(f^n)_*\vec{v}}(f) \equiv d$). On the other hand, for $n \gg 1$, by [\(5.3\)](#page-21-5), [\(5.5\)](#page-21-4), [\(5.11\)](#page-24-0), and Fact [2.4,](#page-10-1) we have

(5.13)
$$
\{(f^n)_*(\vec{v}) : \vec{v} \in (T_{\mathcal{S}_G} \mathsf{P}^1) \setminus \{\overrightarrow{\mathcal{S}_G a}\} \text{ satisfying } \nu_f(U_{\vec{v}}) = 0\}
$$

$$
= (T_{f^n(\mathcal{S}_G)} \mathsf{P}^1) \setminus \{\overrightarrow{f^n(\mathcal{S}_G) a}, \overrightarrow{f^n(\mathcal{S}_G) \mathcal{S}_G}\}.
$$

Now we assume that f is tamely maximally ramified near this $a \in E(f) \subset R(f) \cap$ \mathbb{P}^1 . Then there is $S \in (\mathcal{S}_G, a] \setminus \{a\}$ such that $\mathsf{R}_{\max}(f) \cap U_{\mathcal{S}_a} = (\mathcal{S}, a]$, and in turn for every $S' \in (S, a] \setminus \{a\}$ and every $\vec{w} = \vec{S'S''}$ $\overline{S'S''} \in (T_{S'}P^1) \setminus {\overline{S'a}} \stackrel{\overline{S'}}{\longrightarrow} \overline{S'S''}$ $\mathcal{S}'\hat{\mathcal{S}}\},\$ diminishing $[\mathcal{S}', \mathcal{S}'']$ if necessary, we have $m_{\vec{w}}(f) = m_{\overline{\mathcal{S}''\mathcal{S}'}}(f) \le \deg_{\mathcal{S}''}(f) < d$ by (2.10) and [\(2.6\)](#page-10-3). Hence, by [\(5.13\)](#page-24-1), for $n \gg 1$, since $\lim_{n\to\infty} f^n(\mathcal{S}_G) = a$ and $f^n(\mathcal{S}_G) \in (\mathcal{S}_G, a]$, (2.0). Hence, by (3.13), for $n \gg 1$, since $\lim_{n \to \infty} f(\mathcal{O}_G) = a$ and for every $\vec{v} \in (T_{\mathcal{S}_G}P^1) \setminus {\overline{\mathcal{S}_G}a}$ satisfying $\nu_f(U_{\vec{v}}) = 0$, we have

(5.14)
$$
m_{(f^n)_*(\vec{v})}(f) \leq d-1.
$$

(c.2). Pick $\omega \in \Delta_f$ and, for $n \gg 1$, fix $\omega_n \in M^1(\Gamma_n)$ satisfying $\omega_n(S(\Gamma_n))$ F) = 0 for some countable subset F in $S(\Gamma_n)$ and $d^{-n}(f^n)_{G}^*\omega_n = \omega = (\pi_{\Gamma_n,\Gamma_G})_{*}\omega_n$

in $M^1(\Gamma_G)$. Then, by the latter equality $\omega = (\pi_{\Gamma_n,\Gamma_G})_*\omega_n$, ω also satisfies $\omega(S(\Gamma_G) \setminus F) = 0$ for some countable subset F in $S(\Gamma_G)$.

Let us compute $\omega({U})$ for each $U \in S(\Gamma_G)$. For $n \gg 1$, using the equality $d^{-n}(f^n)_{G}^*\omega_n = \omega$ (and recalling Definition [2.9\)](#page-11-1), we have both

(5.15)
$$
\omega(\lbrace U_{\vec{v}} \rbrace) = \frac{m_{\vec{v}}(f^n)}{d^n} \cdot \omega_n(\lbrace V \in S(\Gamma_n) : V \subset U_{(f^n)_*(\vec{v})} \rbrace)
$$

for any $\vec{v} \in (T_{\mathcal{S}_G} \mathsf{P}^1) \setminus \lbrace \overline{\mathcal{S}_G a} \rbrace$

and

(5.16)
$$
\omega_n(\{\{f^n(\mathcal{S}_G)\}\}) = \frac{d^n \cdot \omega(\{\{\mathcal{S}_G\}\})}{\deg_{\mathcal{S}_G}(f^n)} = \frac{\omega(\{\{\mathcal{S}_G\}\})}{1 - \nu_f(U_{\overline{\mathcal{S}_G}d})}.
$$

Then, for $n \gg 1$, by [\(5.15\)](#page-25-0), [\(5.11\)](#page-24-0), and [\(5.12\)](#page-24-2), we have $\omega_n({V \in S(\Gamma_n): V \subset$ Then, for $h \gg 1$, by (5.15), (5.11), and (5.12), we have $\omega_n(\sqrt{v} \in S(\Gamma_n) \cdot v \in$
 $U_{\overline{f^n(S_G)S_G}}$) = $\omega({U_{\vec{v}}})/\nu_f(U_{\vec{v}})$ for every $\vec{v} \in (T_{S_G}P^1) \setminus {\overline{S_G}a}$ satisfying $\nu_f(U_{\vec{v}}) > 0$. Hence there exists a constant $s_\omega \in [0,1]$ such that for $n \gg 1$,

(5.17)
$$
\omega_n(\lbrace V \in S(\Gamma_n) : V \subset U_{\overrightarrow{f^n(S_G)S_G}} \rbrace) \equiv s_\omega
$$

and that for every $\vec{v} \in (T_{\mathcal{S}_G} \mathsf{P}^1) \setminus {\overbrace{\mathcal{S}_G a}}^{\bullet}$ satisfying $\nu_f(U_{\vec{v}}) > 0$,

(5.18)
$$
\omega(\lbrace U_{\vec{v}} \rbrace) = s_{\omega} \nu_f(U_{\vec{v}}).
$$

Moreover, for every $\vec{v} \in (T_{\mathcal{S}_G} \mathsf{P}^1) \setminus {\overbrace{\mathcal{S}_G a}}$ satisfying $\nu_f(U_{\vec{v}}) = 0$, we have

$$
0 \le \omega(\{U_{\vec{v}}\}) \le \frac{m_{\vec{v}}(f^n)}{d^n} \cdot 1 = \prod_{j=0}^{n-1} \frac{m_{(f^j)_*(\vec{v})}(f)}{d} \underset{(5.14)}{\to} 0 \quad \text{as } n \to \infty,
$$

so we still have

(5.19)
$$
\omega(\lbrace U_{\vec{v}} \rbrace) = 0 = s_{\omega} \nu_f(U_{\vec{v}}).
$$

Now, for $n \gg 1$, we also have

$$
\omega(\{U_{\overrightarrow{S_Ga}}\}) = 1 - \omega(\{U_{\vec{v}} \in S(\Gamma_G) : \vec{v} \in (T_{\mathcal{S}_G}P^1) \setminus \{\overrightarrow{S_Ga}\}\} \cup \{\{\mathcal{S}_G\}\}\)
$$

$$
\begin{pmatrix} = & \sqrt{(5.18)(5.19)}, 1 - s_{\omega}\nu_f(P^1 \setminus U_{\overrightarrow{S_Ga}}) - \omega(\{\{\mathcal{S}_G\}\}) \\ \& (1.7) \\ = & (s_{\omega}\nu_f(U_{\overrightarrow{S_Ga}}) + (1 - s_{\omega})) - \omega(\{\{\mathcal{S}_G\}\}). \end{pmatrix}
$$

(c.3). Let us also see the desired estimate on $\omega({\{\mathcal{S}_G\}})$. For $n \gg 1$, recalling $f^n(\mathcal{S}_G) \in (\mathcal{S}_G, a],$ we compute

$$
0 \leq \omega_n \left(\{ U_{\overline{f^n(S_G)S_G}} \cap U_{\overline{S_Ga}} \} \right)
$$

\n
$$
\left(= \omega_n \left(\{ V \in S(\Gamma_n) : V \subset U_{\overline{f^n(S_G)S_G}} \} \right) \right)
$$

\n
$$
- \omega_n \left(\{ U_{\vec{v}} \in S(\Gamma_n) : \vec{v} \in (T_{S_G} \mathsf{P}^1) \setminus \{ \overline{S_Ga} \} \} \cup \{ \{ \mathcal{S}_G \} \} \right)
$$

\n
$$
\equiv \equiv_{(5.17)\&(5.20)} s_\omega + \left(\left(s_\omega \nu_f (U_{\overline{S_Ga}}) + (1 - s_\omega) \right) - \omega \left(\{ \{ \mathcal{S}_G \} \} \right) - 1 \right)
$$

\n
$$
= s_\omega \nu_f (U_{\overline{S_Ga}}) - \omega \left(\{ \{ \mathcal{S}_G \} \} \right),
$$

which yields the upper bound $\omega(\{\{\mathcal{S}_G\}\}) \leq s_{\omega} \nu_f(U_{\overrightarrow{\mathcal{S}_G}a})$. Moreover, for $n \gg 1$, by $(5.13), (1.7), (5.15), \text{ and } (5.19), \text{ we have}$ $(5.13), (1.7), (5.15), \text{ and } (5.19), \text{ we have}$ $(5.13), (1.7), (5.15), \text{ and } (5.19), \text{ we have}$ $(5.13), (1.7), (5.15), \text{ and } (5.19), \text{ we have}$ $(5.13), (1.7), (5.15), \text{ and } (5.19), \text{ we have}$ $(5.13), (1.7), (5.15), \text{ and } (5.19), \text{ we have}$ $(5.13), (1.7), (5.15), \text{ and } (5.19), \text{ we have}$ $(5.13), (1.7), (5.15), \text{ and } (5.19), \text{ we have}$

(5.22)
$$
\omega_n(\big\{U_{\vec{w}}\in S(\Gamma_n):\vec{w}\in (T_{f^n(S_G)}\mathsf{P}^1)\setminus \{\overrightarrow{f^n(S_G)a},\overrightarrow{f^n(S_G)S_G}\}\big\})=0,
$$

and using the equality $(\pi_{\Gamma_n,\Gamma_G})_*\omega_n = \omega$ in $M^1(\Gamma_G)$ (and [\(1.3\)](#page-2-2)), we also have

$$
(5.23) \omega_n(\lbrace V \in S(\Gamma_n) : V \subset U_{\overrightarrow{S_Ga}} \rbrace) = \omega(\lbrace U_{\overrightarrow{S_Ga}} \rbrace)
$$

=
$$
(\underset{(5.20)}{s_{\omega}} \nu_f(U_{\overrightarrow{S_Ga}}) + (1 - s_{\omega})) - \omega(\lbrace \lbrace S_G \rbrace \rbrace).
$$

Then, for $n \gg 1$, we compute

$$
0 \leq \omega_n \left(\{ U_{\overline{f^n(S_G)}a} \} \right)
$$

= $\omega_n \left(\{ V \in S(\Gamma_n) : V \subset U_{\overline{S_G}a} \} \right) - \omega_n \left(\{ U_{\overline{f^n(S_G)S_G}} \cap U_{\overline{S_G}a} \} \right)$
 $-\omega_n \left(\{ U_{\vec{w}} : \vec{w} \in (T_{f^n(S_G)}P^1) \setminus \{ \overline{f^n(S_G)a}, \overline{f^n(S_G)S_G} \} \} \right) - \omega_n \left(\{ \{ f^n(S_G) \} \} \right)$
= $\sum_{(5.23),(5.21), (5.22), (5.16)} (1 - s_\omega) - \frac{\omega(\{\{ S_G\} \})}{1 - \nu_f(U_{\overline{S_G}a})},$

which yields the other upper bound $\omega(\{\{\mathcal{S}_G\}\}) \leq (1 - s_{\omega})(1 - \nu_f(U_{\overline{\mathcal{S}_G a}}))$. Hence Δ_f is contained in the right-hand side in [\(1.11\)](#page-5-1).

(c.4). Conversely, pick ω in the right-hand side in [\(1.11\)](#page-5-1), so that for some $s \in [0,1]$ and some $s' \in [0, \min\{s\nu_f(U_{\overrightarrow{S_Ga}}), (1-s)(1-\nu_f(U_{\overrightarrow{S_Ga}}))\}],$ we have

$$
\omega({U_{\vec{v}}}) = s\nu_f(U_{\vec{v}}) \text{ for every } \vec{v} \in (T_{\mathcal{S}_G}P^1) \setminus {\overrightarrow{\mathcal{S}_G a}},
$$

$$
\omega({\{\mathcal{S}_G\}}) = s', \text{ and}
$$

$$
\omega({U_{\overrightarrow{\mathcal{S}_G a}}}) = (s\nu_f(U_{\overrightarrow{\mathcal{S}_G a}}) + (1 - s)) - s'.
$$

For $n \gg 1$, recalling that $\lim_{n\to\infty} f^n(\mathcal{S}_G) = a$, that $f^n(\mathcal{S}_G) \in (\mathcal{S}_G, a]$, and that $\nu_f(U_{\overrightarrow{S_Ga}}) < 1$, there is $\omega_n \in M^1(\Gamma_n)$ such that

$$
\begin{cases}\n\omega_n(\{\{S_G\}\}) = s', \\
\omega_n(\{\{f^n(S_G)\}\}) = \frac{s'}{1 - \nu_f(U_{\overline{S_G}a})}, \\
\omega_n(\{U_{\vec{v}}\}) = \begin{cases}\ns\nu_f(U_{\vec{v}}) & \text{for every } \vec{v} \in (T_{S_G}P^1) \setminus \{\overline{S_G}a\}, \\
0 & \text{for every } \vec{v} \in (T_{f^n(S_G)}P^1) \setminus \{f^n(S_G)a, f^n(S_G)\} \\
\omega_n(\{U_{\overline{S_G}a} \cap U_{\overline{f^n(S_G)}S_G}\}) = s\nu_f(U_{\overline{S_G}a}) - s' \ge 0), \text{ and} \\
\omega_n(\{U_{\overline{f^n(S_G)}a}\}) = 1 - s - \frac{s'}{1 - \nu_f(U_{\overline{S_G}a})} \ge 0)\n\end{cases}
$$

(indeed, $\omega_n \geq 0$ and $\omega_n(\mathsf{P}^1/S(\Gamma_n)) = 1 - s + s\nu_f(\mathsf{P}^1 \setminus {\mathcal{S}_G}) = 1$) and that $\omega_n(S(\Gamma_n) \setminus F) = 0$ for some countable subset F in $S(\Gamma_n)$ (by (1.7)). Then, for $n \gg 1$, we have $(\pi_{\Gamma_n,\Gamma_G})_* \omega_n = \omega$ in $M^1(\Gamma_G)$ (also by (1.3)). Moreover, for $n \gg 1$, recalling Definition [2.9,](#page-11-1)

(I) for every $\vec{v} \in (T_{\mathcal{S}_G} \mathsf{P}^1) \setminus {\overline{\{\mathcal{S}_G a\}}}$ satisfying $\nu_f(U_{\vec{v}}) > 0$, we have

$$
(d^{-n}(f^n)_{G}^*\omega_n)(\{U_{\vec{v}}\}) = \n\sum_{\substack{(2.13), (5.2),\\ \& (5.11))}}\n\frac{m_{\vec{v}}(f^n) \cdot \omega_n(\{V \in S(\Gamma_n) : V \subset U_{\overline{f^n(S_G)S_G}}\})}{d^n}
$$
\n
$$
= \n\sum_{\substack{(5.12)\&(1.7) \\ (5.1)} \quad \text{and} \quad \
$$

(II) for every $\vec{v} \in (T_{\mathcal{S}_G} \mathsf{P}^1) \setminus {\overline{\{\mathcal{S}_G a\}}}$ satisfying $\nu_f(U_{\vec{v}}) = 0$,

$$
(d^{-n}(f^n)_{G}^*\omega_n)(\{U_{\vec{v}}\})_{\substack{=\\(2.13)\&(5.2)}} \frac{m_{\vec{v}}(f^n) \cdot \omega_n(\{U_{(f^n)_*(\vec{v})}\})}{d^n}
$$

$$
= 0 = s\nu_f(U_{\vec{v}}) = \omega(\{U_{\vec{v}}\}),
$$

(III) and we have

$$
(d^{-n}(f^n)_{G}^{*}\omega_n)(\{\{\mathcal{S}_{G}\}\}) = \frac{\deg_{\mathcal{S}_{G}}(f^n) \cdot \omega_n(\{\{f^n(\mathcal{S}_{G})\}\})}{d^n}
$$

=
$$
(1 - \nu_f(U_{\overline{\mathcal{S}_{G}}a})) \cdot \omega_n(\{\{f^n(\mathcal{S}_{G})\}\})
$$

=
$$
s' = \omega(\{\{\mathcal{S}_{G}\}\}),
$$

and then

$$
(d^{-n}(f^n)_{G}^{*}\omega_n)(\{U_{\overline{S_{G}}a}^{*}\}) = 1 - (d^{-n}(f^n)_{G}^{*}\omega_n)(S(\Gamma_G) \setminus \{U_{\overline{S_{G}}a}^{*}\})
$$

= 1 - \omega(S(\Gamma_G) \setminus \{U_{\overline{S_{G}}a}^{*}\}) = \omega(\{U_{\overline{S_{G}}a}^{*}\}).

Hence, for $n \gg 1$, we also have $d^{-n}(f^n)_{G}^* \omega_n = \omega$ in $M^1(\Gamma_G)$, and the right-hand side in (1.11) is contained in Δ_f .

(d). Once the equality (1.11) is at our disposal, the final assertion in case (ii) in Theorem [A](#page-4-0) (under the assumption that f is tamely maximally ramified near a) is clear, also recalling Remark [5.3.](#page-23-0) Now the proof of Theorem [A](#page-4-0) is complete. \Box

§6. Proof of Theorem [B](#page-6-0)

We use the notation in Sections [3](#page-13-0) and [4.](#page-15-0) Let

$$
f \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z) (\subset \mathbb{L}(z))
$$

be a meromorphic family of rational functions on $\mathbb{P}^1(\mathbb{C})$ of degree $d > 1$, and suppose that $f^{-1}(\mathcal{S}_G) \neq \{\mathcal{S}_G\}$ in $\mathsf{P}^1(\mathbb{L})$. Then $f^{-n}(\mathcal{S}_G) \neq \{\mathcal{S}_G\}$ for every $n \in \mathbb{N}$ (see Section [1.2\)](#page-2-1). Recall that char $\mathbb{L} = \text{char } k_{\mathbb{L}} = \text{char } \mathbb{C} = 0$ and that the absolute value $|\cdot|_r$ on L is (the extension of) [\(3.1\)](#page-13-2), fixing $r \in (0,1)$ once and for all. Since $\nu_{f^2} = \nu_f$ on $\mathsf{P}^1(\mathbb{L}), \mu_{(f_t)^2} = \mu_{f_t}$ on $\mathbb{P}^1(\mathbb{C})$ for every $t \in \mathbb{D}^*, E(f^2) = E(f)$, and $\#E(f) \leq 2$, replacing f with f^2 if necessary, we can assume that $f(a) = a$ or equivalently $f^{-1}(a) = \{a\}$ for any $a \in E(f)$ with no loss of generality.

Recall that

$$
\Gamma_G := \{ \mathcal{S}_G \} \text{ and } \Gamma_n = \Gamma_{f^n} := \{ \mathcal{S}_G, f^n(\mathcal{S}_G) \} \text{ in } H^1_{\Pi}(\mathbb{L})
$$

for every $n \in \mathbb{N}$, and that $M^1(\Gamma_G)^\dagger$ is identified with $M^1(\mathbb{P}^1(\mathbb{C}))^\dagger$ under the bijection $S(\Gamma_G) \setminus \{S_G\} = T_{S_G} \mathsf{P}^1(\mathbb{L}) \cong \mathbb{P}^1(k_{\mathbb{L}}) = \mathbb{P}^1(\mathbb{C})$. For every $n \in \mathbb{N}$, pick a meromorphic family

$$
A_n \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z)
$$

of Möbius transformations on $\mathbb{P}^1(\mathbb{C})$ such that $(A_n \circ f^n)(\mathcal{S}_G) = \mathcal{S}_G$ in $\mathsf{P}^1(\mathbb{L})$ (by the existence part of Theorem [3.4\)](#page-14-2).

Let

$$
\mu_0 = \lim_{j \to \infty} \mu_{f_{t_j}}
$$

be any weak limit point of $(\mu_{f_t})_{t\in\mathbb{D}^*}$ on $\mathbb{P}^1(\mathbb{C})$ as $t\to 0$, where the sequence (t_j) in \mathbb{D}^* tends to 0 as $j \to \infty$. Then, taking a subsequence of (t_j) if necessary, for any $n \in \mathbb{N}$, there also exists the weak limit

$$
\mu_E^{(n)} := \lim_{j \to \infty} ((A_n)_{t_j})_* \mu_{f_{t_j}} \quad \text{on } \mathbb{P}^1(\mathbb{C}).
$$

For every $n \in \mathbb{N}$, by Theorem [3.5](#page-15-3) and Proposition [4.5,](#page-20-2) the ordered pair

$$
\mu^{(n)} \coloneqq (\mu_0, \mu_E^{(n)}) \in (M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger})^2
$$

not only has the degenerating $fⁿ$ -balanced property (the former half in (3.4)) but also satisfies the admissibility (4.4) (for A_n), and in turn also by Proposition [4.4,](#page-17-0) we have

$$
\omega_0 \coloneqq (\pi_{\Gamma_n, \Gamma_G})_* \omega_{\mu^{(n)}} \in \Delta_f^{\dagger};
$$

this measure ω_0 is indeed independent of $n \in \mathbb{N}$, and is identified with μ_0 under the identification of $M^1(\Gamma_G)^\dagger$ with $M^1(\mathbb{P}^1(\mathbb{C}))^\dagger$ (by [\(4.6\)](#page-17-1)).

Hence, in the case (i) in Theorem [A,](#page-4-0) we have the desired $\mu_0 = (\omega_0) = (\pi_{\Gamma_G})_* \nu_f$ in $M^1(\Gamma_G)^\dagger = M^1(\mathbb{P}^1(\mathbb{C}))^\dagger$.

(a). Suppose now that the case (ii) in Theorem [A](#page-4-0) occurs. Then there is $a =$ $a(t) \in E(f)$ ($\subset \mathbb{P}^1(\mathbb{L})$) such that $\lim_{n\to\infty} f^n(\mathcal{S}_G) = a$ and that $f^n(\mathcal{S}_G) \in (\mathcal{S}_G, a]$ for $n \gg 1$, and then $\deg_{f^n(S_G)}(f) \equiv d$ for $n \gg 1$; since $\nu_{f^n} = \nu_f$ on $\mathsf{P}^1(\mathbb{L})$ for every $n \in \mathbb{N}, \mu_{(f_t)^n} = \mu_{f_t}$ on $\mathbb{P}^1(\mathbb{C})$ for every $t \in \mathbb{D}^*$ and every $n \in \mathbb{N}$, and $E(f^n) = E(f)$ for every $n \in \mathbb{N}$, replacing f with f^{ℓ} for some $\ell \gg 1$ if necessary, we also assume that for every $n \in \mathbb{N}$, $f^{n}(\mathcal{S}_{G}) \in (\mathcal{S}_{G}, a]$ (so $\Gamma_{n} \neq \Gamma_{G}$), $\deg_{f^{n}(\mathcal{S}_{G})}(f) \equiv d$, and both (5.8) and (5.10) hold, with no loss of generality.

(b). Set

$$
B_1(z) := \begin{cases} \frac{1}{z-a} & \text{if } a \in \mathcal{O}_{\mathbb{L}}, \\ \frac{-z}{(z/a)-1} & \text{if } a \in \mathbb{L} \setminus \mathcal{O}_{\mathbb{L}}, \\ z & \text{if } a = \infty \in \mathbb{P}^1(\mathbb{L}) \ (=\mathbb{L} \cup \{\infty\}) \end{cases} \in \mathrm{PGL}(2, \mathcal{O}_{\mathbb{L}}),
$$

so that $B_1(a) = \infty$ and that $B_1(\mathcal{S}_G) = \mathcal{S}_G$ (or equivalently $B_1 = \phi_{\widetilde{B_1}} \in \mathrm{PGL}(2, k_{\mathbb{L}})$ = PGL(2, \mathbb{C}), and then $B_1^{-1} = \phi_{\widetilde{B_1}^{-1}} = \phi_{\widetilde{B_1}}^{-1}$ $\overline{\widetilde{B}_1}^{\mathfrak{t}} \in \mathrm{PGL}(2,k_{\mathbb{L}}) = \mathrm{PGL}(2,\mathbb{C})$, and set

$$
f_{B_1} \coloneqq B_1 \circ f \circ {B_1}^{-1} \in \mathbb{L}[z].
$$

(c.1). Write $f_{B_1}(z) = \sum_{j=0}^d c_j(t) z^j \in \mathbb{L}[z]$ (so $c_d \in \mathbb{L} \setminus \{0\}$) and set $d_0 := \max\Bigl\{j\in\{0,1,\ldots,d\}: |c_j|_r = \max_{i\in\{0,1,\ldots,d\}} |c_i|_r\Bigr\}.$

Then, noting that $f_{B_1}(\mathcal{S}_G) \in (\mathcal{S}_G, \infty]$, we have $|c_{d_0}|_r > 1$, and $f_{B_1}(\mathcal{S}_G)$ is represented by (the constant sequence of) the L-closed disk $B(0, |c_{d_0}|_r)$. Setting

$$
B_2(z)\coloneqq c_{d_0}^{-1}z\in \mathbb{L}[z]\cap\operatorname{PGL}(2,\mathbb{L}),
$$

so that $(B_2 \circ f_{B_1})(\mathcal{S}_G) = \mathcal{S}_G$, we have $\phi_{\widetilde{B_2 \circ f_{B_1}}}(\zeta) = \sum_{j=0}^{d_0} \widetilde{\frac{c_j}{c_{d_0}}} \cdot \zeta^j$,

(6.1)
$$
d_0 = \deg(\phi_{\widetilde{B_2 \circ f_{B_1}}}) = \deg_{\mathcal{S}_G}(B_2 \circ f_{B_1})
$$

=
$$
\deg_{f(\mathcal{S}_G)}(B_2 \circ B_1) \cdot \deg_{B_1^{-1}(\mathcal{S}_G)}(f) \cdot \deg_{\mathcal{S}_G}(B_1^{-1}) = \deg_{\mathcal{S}_G}(f) \quad (>0),
$$

and $(H_{\widetilde{B_2 \circ f_{B_1}}}(\zeta_0, \zeta_1) = \zeta_0^{d-d_0}$, so in particular)

(6.2)
$$
\text{ord}_{\zeta=\infty}[H_{\widetilde{B_2 \circ f_{B_1}}} = 0] = d - d_0 = d - \deg_{\mathcal{S}_G}(f).
$$

(c.2). For each $j \in \{0, \ldots, d\}$, set

$$
C_j = C_j(t) := \frac{c_j}{c_{d_0}} \cdot c_{d_0}^{j - d_0} \in \mathbb{L}, \quad \text{so that } C_{d_0} = 1 \text{ and that } |C_j|_r < 1 \text{ if } j < d_0,
$$

and also set

$$
f_{B_2B_1}(w) := (B_2 \circ f_{B_1} \circ B_2^{-1})(w) = c_{d_0}^{d_0} \left(w^{d_0} + \sum_{j \in \{0,1,\dots,d\} \setminus \{d_0\}} C_j w^j \right) \in \mathbb{L}[z].
$$

Then, using Fact [2.6](#page-10-0) and (2.4) (for $B_2^{-1}, B_2 \in \mathrm{PGL}(2, \mathbb{L})$), we have

(6.3)
$$
f_{B_2B_1}(U_{\overrightarrow{S_G\infty}})
$$

\n
$$
= (B_2 \circ f_{B_1})(B_2^{-1}(U_{\overrightarrow{S_G\infty}})) = (B_2 \circ f_{B_1})(U_{\overrightarrow{B_2^{-1}(S_G)\infty}})
$$

\n
$$
= (B_2 \circ f_{B_1})(S_G) = S_G (B_2 \circ f_{B_1})(U_{\overrightarrow{f_{B_1}(S_G)\infty}}) = B_2(f_{B_1}(U_{\overrightarrow{f_{B_1}(S_G)\infty}}))
$$

\n
$$
= (5.8) \text{ applied} \quad B_2(U_{\overrightarrow{f_{B_1}(S_G)\infty}}) = U_{\overrightarrow{((B_2 \circ f_{B_1})(S_G))\infty}}
$$

\n
$$
\subsetneq P^1(\mathbb{L}).
$$

Claim 1. Either $d_0 = d$ or there is $j > d_0$ such that $|C_j|_r \geq 1$.

Proof. Otherwise, $d_0 < d$ and $|C_j|_r < 1$ for every $j \in \{0, \ldots, d\} \setminus \{d_0\}$. Then, since $|c_{d_0}^{d_0}|_r = |c_{d_0}|_r^{d_0} > 1$, we have $H_{\widetilde{f_{B_2B_1}}}(\zeta_0, \zeta_1) = \zeta_0^{d-d_0} \zeta_1^{d_0}$ (and $\phi_{\widetilde{f_{B_2B_1}}} \equiv \infty \in$ $\mathbb{P}^1(k_{\mathbb{L}})$, so that ord_{$\zeta = \infty$} $[H_{\widetilde{f_{B_2B_1}}} = 0] = d - d_0$. In particular, we must have

$$
s_{\widetilde{\mathcal{S}_G \infty}}(f_{B_2B_1}) = \mathrm{ord}_{\zeta = \infty}[H_{\widetilde{f_{B_2B_1}}} = 0] = d - d_0 > 0
$$

(by Fact [2.7\)](#page-11-4), so $f_{B_2B_1}(U_{\overrightarrow{S_G\infty}}) = \mathsf{P}^1(\mathbb{L})$ (by Fact [2.5\)](#page-10-7). This contradicts [\(6.3\)](#page-30-0). \Box

(c.3). Since this $a \in E(f)$ is a fixed point in $\mathbb{P}^1(\mathbb{L})$ of $f \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z)$, this $a = a(t)$ is indeed in $\mathbb{P}^1(\mathbb{K})$ over a finite algebraic field extension K of the quotient field of the domain $\mathcal{O}(\mathbb{D})[t^{-1}]$, that is, for $0 < s_0 \ll 1$, by the substitution/change of indeterminants $t = s^m$ for some $m \in \mathbb{N}$, we have

$$
a = a(s^m) \in \mathbb{P}^1(\mathcal{O}(\mathbb{D}_{s_0})[s^{-1}]) \ (\subset \mathbb{P}^1(\mathbb{L})),
$$

where $\mathbb{D}_{s_0} := \{s \in \mathbb{C} : |s| < s_0\}$ (cf. [\[5,](#page-36-1) Proof of Corollary 5.3]). Then, decreasing $0 < s_0 \ll 1$ if necessary, we have not only $c_j(s^m), C_j(s^m) \in \mathcal{O}(\mathbb{D}_{s_0})[s^{-1}] \subset \mathbb{L}$ for every $j \in \{0, 1, ..., d\}$ but also $(B_1)_{s^m}, (B_2)_{s^m} \in \text{PGL}(2, \mathcal{O}(\mathbb{D}_{s_0})[s^{-1}])$ (⊂ $PGL(2, \mathbb{L})$ and indeed $(B_1)_{s^m} \in \text{PGL}(2, \mathcal{O}_\mathbb{L})$, and still $(B_1)_{s^m}(\mathcal{S}_G) = \mathcal{S}_G$ in $\mathsf{P}^1(\mathbb{L})$ or equivalently $\widetilde{(B_1)_{s^m}} = \phi_{\widetilde{(B_1)_{s^m}}} (= \phi_{\widetilde{B_1}} = \widetilde{B_1})$ in PGL(2, C) = PGL(2, k_L).

Let us, for notational simplicity, denote by

$$
A := A_1 = (A_1)_t \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z)
$$

the meromorphic family A_1 (A_n for $n = 1$) of Möbius transformations on $\mathbb{P}^1(\mathbb{C})$, and also by

$$
\mu_E := \mu_E^{(1)} \in M^1(\mathbb{C})^{\dagger}
$$
 and $\mu := \mu^{(1)} = (\mu_0, \mu_E) \in (M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger})^2$

the probability measure $\mu_E^{(1)}$ E ⁽¹⁾ and the ordered pair μ ⁽¹⁾, respectively. Set

$$
D = D_s := (B_2 \circ B_1)_{s^m} \circ (A_{s^m})^{-1} \in \mathrm{PGL}(2, \mathcal{O}(\mathbb{D}_{s_0})[s^{-1}]) \, (\subset \mathrm{PGL}(2, \mathbb{L})),
$$

so that $\widetilde{D} = \phi_{\widetilde{D}}$ in PGL(2, C) = PGL(2, k_L) (by the uniqueness part in The-orem [3.4\)](#page-14-2) since $((B_2 \circ B_1)_{s^m} \circ f_{s^m})(\mathcal{S}_G) = (B_2 \circ f_{B_1})_{s^m}((B_1)_{s^m}(\mathcal{S}_G)) = (B_2 \circ f_{B_1})_{s^m}$ $(f_{B_1})_{s^m}(\mathcal{S}_G)=\mathcal{S}_G=(A\circ f)_{s^m}(\mathcal{S}_G).$

Claim 2. supp $((\phi_{\widetilde{D}})_*\mu_E) \subset \mathbb{P}^1(\mathbb{C}) \setminus {\infty}.$

Proof. Recall that $|\cdot|_r$ and $|\cdot|$ are the absolute values on \mathbb{L} and on \mathbb{C} , respectively. For every $s \in \mathbb{D}_{s_0}^*$ and every $z \in \mathbb{C}$, we compute

$$
(f_{B_1})_{s^m}(c_{d_0}(s^m)z) = (c_{d_0}(s^m))^{d_0+1} z^{d_0} \cdot \left\{1 + \sum_{j \in \{0,1,\dots,d\} \setminus \{d_0\}} C_j(s^m) z^{j-d_0}\right\}.
$$

Let us see that for $\ell \gg 1$, if $0 < |s| \ll s_0$, then

$$
\inf_{|z|=\ell} \left| 1 + \sum_{j \in \{0,1,\dots,d\} \setminus \{d_0\}} C_j(s^m) z^{j-d_0} \right| \ge \frac{1}{2} \ (>0);
$$

for, in the latter case in Claim [1,](#page-30-1) we set

$$
d_1 := \max\Big\{j \in \{d_0 + 1, \ldots, d\} : |C_j|_r = \max_{j > d_0} |C_j|_r \ \ (\geq 1) \Big\},\
$$

so that $(d_1 > d_0, \text{ that}) \limsup_{s\to 0} |C_{d_1}(s^m)| \in (0, +\infty]$ (since $|C_{d_1}(s^m)|_r =$ $|C_{d_1}|_r^m \ge 1$), and that for every $j > d_0$, $C_j(s^m)/C_{d_1}(s^m) \in \mathcal{O}(\mathbb{D}_{s_0})$, which vanishes

at $s = 0$ if $j > d_1$ (since $|C_j(s^m)/C_{d_1}(s^m)|_r = |C_j|^m_r/|C_{d_1}|_r^m$ is ≤ 1 if $j > d_0$, and is $\langle 1 \text{ if } j > d_1 \rangle$. Then, for $\ell \gg 1$ (so that the second and third inequalities below hold), if $0 < |s| \ll s_0$ (so that the first and fourth ones below hold), then

$$
\left| \sum_{j < d_0} C_j (s^m) z^{j - d_0} \right|
$$
\n
$$
\left(\leq \sum_{j < d_0} (0 + 1) \ell^{j - d_0} \quad \text{(by } |C_j (s^m)|_r = |C_j|_r^m < 1 \text{ if } j < d_0 \text{)}
$$
\n
$$
\leq d_0 \quad \text{(noting that the sum above is over } j < d_0 \text{)}
$$
\n
$$
\leq \left(\min \left\{ 1, 2^{-1} \cdot \limsup_{s \to 0} |C_{d_1}(s^m)| \right\} \right)
$$
\n
$$
\times \left(\ell^{d_1 - d_0} \left(1 - \sum_{d_1 > j > d_0} \left(\left| \frac{C_j(s^m)}{C_{d_1}(s^m)} \right| \middle|_{s = 0} + 1 \right) \ell^{j - d_1} \right) - 1 \right) - \frac{3}{2}
$$
\n
$$
\leq |C_{d_1}(s^m)| \cdot \left(\ell^{d_1 - d_0} - \sum_{d_1 > j > d_0} \left| \frac{C_j(s^m)}{C_{d_1}(s^m)} \middle| \ell^{j - d_0} - \sum_{j > d_1} \left| \frac{C_j(s^m)}{C_{d_1}(s^m)} \middle| \ell^{j - d_0} \right| - \frac{3}{2} \right)
$$
\n
$$
\leq \left| \sum_{j > d_0} C_j (s^m) z^{j - d_0} \right| - \frac{3}{2}
$$

on $\{z \in \mathbb{C} : |z| = \ell\}$, which yields the desired inequality in this case. Similarly, in the former case $(d_0 = d)$ in Claim [1,](#page-30-1) for $\ell \gg 1$ (so that the final inequality below holds), if $0 < |s| \ll s_0$ (so that the second inequality below holds), then

$$
\left| \sum_{j < d_0} C_j(s^m) z^{j - d_0} \right| \le \sum_{j < d_0} |C_j(s^m)| \ell^{j - d_0} \le \sum_{j < d_0} (0 + 1) \ell^{j - d_0} \le \frac{1}{2}
$$

on $\{z \in \mathbb{C} : |z| = \ell\}$, which still yields the desired inequality in this case.

Hence, since $d_0 \ge 1$ (in [\(6.1\)](#page-30-2)) and $|c_{d_0}(s^m)|_r = |c_{d_0}|_r^m > 1$, fixing $\ell_0 \gg 1$, if $0 < |s| \ll s_0$, then $(f_{B_1})_{s^m} (\{ z \in \mathbb{C} : |z| = |c_{d_0}(s^m)|\ell_0 \}) \subset \{ z \in \mathbb{C} : |z| \ge$ $|c_{d_0}(s^m)|^{d_0+1}\ell_0^{d_0}/2\} \subset \{z \in \mathbb{C} : |z| \geq 2|c_{d_0}(s^m)|\ell_0\}$, which with the maximum modulus principle for holomorphic functions applied to $1/((f_{B_1})_{s^m}(1/w))$ near $w = 0 \in \mathbb{C}$ in turn yields

$$
(f_{B_1})_{s^m}\big(\big\{z\in\mathbb{C}:|z|>|c_{d_0}(s^m)|\ell_0\big\}\big)\subset\big\{z\in\mathbb{C}:|z|>2|c_{d_0}(s^m)|\ell_0\big\},\,
$$

so that $\text{supp}(((B_1)_{s^m})_*(\mu_{f_{s^m}}))$ $(=\text{supp}(\mu_{(f_{B_1})_{s^m}})) \subset \{z \in \mathbb{C} : |z| \leq |c_{d_0}(s^m)|\ell_0\}$ (see Fact [3.2\)](#page-14-0). Hence, for $0 < |s| \ll s_0$, recalling that $(B_2)_{s^m}(z) = (c_{d_0}(s^m))^{-1}z$, we have

$$
\mathrm{supp}((D_s)_*(A_{s^m})_*\mu_{f_{s^m}})\left(\mathrm{supp}\big(((B_2\circ B_1)_{s^m})_*\mu_{f_{s^m}}\big)\right)\subset\big\{z\in\mathbb{C}:|z|\leq\ell_0\big\}.
$$

Recall that $\mu_E := \lim_{j \to \infty} (A_{t_j})_* \mu_{f_{t_j}}$ weakly on $\mathbb{P}^1(\mathbb{C})$, and pick a sequence (s_j) in \mathbb{D}^* so that $t_j = s_j^m$ for every $j \in \mathbb{N}$. Then $\lim_{j \to \infty} D_{s_j} = \phi_{\widetilde{D}} = (\widetilde{D})$ uniformly on $\mathbb{D}^1(\mathbb{C})$. $\mathbb{P}^1(\mathbb{C})$ (by [\(3.2\)](#page-14-1)). Now the above inclusion for $s = s_j$, $j \gg 1$, completes the proof of Claim [2,](#page-31-0) by making $j \to \infty$. \Box

(d). Recalling that $\omega_0 = (\pi_{\Gamma_f, \Gamma_G})_* \omega_\mu \in \Delta_f^{\dagger} \, (\subset \Delta_f)$, there are $s \in [0, 1]$ and $s' \in [0, \min\{s\nu_f(U_{\overrightarrow{S_Ga}}), (1-s)(1-\nu_f(U_{\overrightarrow{S_Ga}}))\}]$ such that

$$
\begin{cases}\n\omega_0(\{U_{\vec{v}}\}) = s\nu_f(U_{\vec{v}}) \text{ for every } \vec{v} \in (T_{\mathcal{S}_G} \mathsf{P}^1) \setminus \{\overrightarrow{\mathcal{S}_G a}\}, \\
\omega_0(\{\{\mathcal{S}_G\}\}) = s', \text{ and} \\
\omega_0(\{U_{\overrightarrow{\mathcal{S}_G a}}\}) = (s\nu_f(U_{\overrightarrow{\mathcal{S}_G a}}) + (1 - s)) - s',\n\end{cases}
$$

using the computation [\(1.11\)](#page-5-1) of Δ_f under the standing assumption that the case (ii) in Theorem [A](#page-4-0) occurs and by char $k_{\mathbb{L}} = 0$. Since $\omega_0 \in \Delta_f^{\dagger}$, we first have $s' = 0$.

Recalling the identification $\omega_0 = \mu_0$ in $M^1(\Gamma_G)^\dagger = M^1(\mathbb{P}^1(\mathbb{C}))^\dagger$ and the degenerating f-balanced property (the former half in [\(3.4\)](#page-15-1)) of $\mu = (\mu_0, \mu_E)$, we compute

$$
(s\nu_f(U_{\overline{S_G}a}) + (1-s)) - s' = \omega_0(\{U_{\overline{S_G}a}\}) = \mu_0(\{\tilde{a}\})
$$

$$
= \frac{(\widetilde{A \circ f})^*\mu_E}{d}(\{\tilde{a}\}) = \frac{((\phi_{\widetilde{A \circ f}})^*\mu_E + [H_{\widetilde{A \circ f}} = 0])(\{\tilde{a}\})}{d}
$$

and, moreover, recalling that $\widetilde{D} = \phi_{\widetilde{B}_1}$, $\widetilde{B}_1 = \phi_{\widetilde{B}_1} \in \text{PGL}(2, \mathbb{C})$, that $a = B_1^{-1}(\infty)$, that $(B_2 \circ f_{B_1})(\infty) = \infty$, and that $\deg(\phi_{\widetilde{B_2 \circ f_{B_1}}}) = d_0 > 0$ (in [\(6.1\)](#page-30-2)) and using Claim [2,](#page-31-0) we compute

$$
\begin{aligned} ((\phi_{\widetilde{A\circ f}})^*\mu_E)(\{\tilde{a}\}) &= ((\phi_{(D^{-1}\circ \widetilde{B_2\circ B_1\circ f \circ B_1^{-1}})})^*\mu_E)(\{\infty\}) \\ &= ((\phi_{\widetilde{B_2\circ f_{B_1}}})^*(\phi_{\widetilde{D}})_*\mu_E)(\{\infty\}) \\ &= (\deg_{\infty}(\phi_{\widetilde{B_2\circ f_{B_1}}})) \cdot ((\phi_{\widetilde{D}})_*\mu_E)(\{\infty\}) = 0, \end{aligned}
$$

and on the other hand, we compute

$$
\operatorname{ord}_{\zeta=\tilde{a}}[H_{\widetilde{A\circ f}}=0]\left(\underset{(2.9)}{=} s_{\overrightarrow{\mathcal{S}_{G}}\circ a}(f) \underset{(2.7)}{=} s_{(B_1)_* (\overrightarrow{\mathcal{S}_{G}}\circ a)}(f_{B_1}) \underset{(2.4)}{=} s_{\overrightarrow{\mathcal{S}_{G}}\circ b}(f_{B_1}) =\right)
$$

$$
= \operatorname{ord}_{\zeta=\infty}[H_{\widetilde{B_2\circ f_{B_1}}} = 0] = d - \deg_{\mathcal{S}_G}(f) \underset{\begin{subarray}{l} (5.10) \\ \text{for } n=1 \end{subarray}}{=} d \cdot \nu_f(U_{\overrightarrow{\mathcal{S}_{G}}\circ a}).
$$

Hence we also have $s' = (1 - s)(1 - \nu_f(U_{\overrightarrow{S_Ga}})).$

Consequently, we have not only $s' = 0$ but also $s = 1$ since $\nu_f(U_{\overrightarrow{S_Ga}}) < 1$ (which is a consequence of (5.10)) in the case (ii) in Theorem [A.](#page-4-0) Then we still have the desired $\mu_0 = \omega_0 = (\pi_{\Gamma_G})_* \nu_f$ in $M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger} = M^1(\Gamma_G)^{\dagger}$ (also by [\(1.2\)](#page-1-2)).

Now the proof of Theorem [B](#page-6-0) is complete.

Remark 6.1. The arguments in steps $(c.1)$, $(c.2)$, and $(c.3)$ in the proof of Theo-rem [B](#page-6-0) relate the non-archimedean absolute value $|\cdot|_r$ on \mathbb{L} , which is an extension of the trivial absolute value on $\mathbb{C} = k_{\mathbb{L}}$, with the Euclidean absolute value $|\cdot|$ on $\mathbb C$ and complement [\[5,](#page-36-1) Proof of Theorem B]. The final assertion in [5, Cor. 5.3], which [\[5,](#page-36-1) Proof of Theorem B] is based on, was shown in [\[5\]](#page-36-1) under the condition [\(5.7](#page-24-4)′) (see also Remark [5.3\)](#page-23-0).

§7. Examples

Pick a meromorphic family

$$
f(z) = z^2 + t^{-1}z \in (\mathcal{O}(\mathbb{D})[t^{-1}])[z] \,(\subset \mathbb{L}[z])
$$

of quadratic polynomials on $\mathbb{P}^1(\mathbb{C})$. Then $f^{-1}(\infty) = {\infty} = E(f)$, and the case (ii) (for $a = \infty$) in Theorem [A](#page-4-0) occurs (indeed, $(\mathcal{S}_G, a] \ni f^n(\mathcal{S}_G) = \mathcal{S}_{B(0, |t^{-2^{n-1}}|_r)} \to \infty$ as $n \to \infty$ since S_G is represented by (the constant sequence of) the L-closed disk $\mathcal{O}_{\mathbb{L}} = B(0,1), f(0) = 0, |f(1)|_r = |t^{-1}|_r \ (>1), |f(t^{-1})|_r = |t^{-2}|_r > |t^{-1}|_r$, and $|f(z)|_r = |z|_r^2$ on $\mathbb{L} \setminus B(0, |t^{-1}|_r)$; see [\(3.1\)](#page-13-2) for the absolute value $|\cdot|_r$ on \mathbb{L}). Since $f'(z) = 2z + t^{-1} \in \mathbb{L}[z]$, the point $-t^{-1} + 1 \in U_{\overline{S_G\infty}} \cap \mathbb{L}$ is a (classical) repelling fixed point of f (indeed $f(-t^{-1}+1) = -t^{-1}+1$ and $|f'(-t^{-1}+1)|_r = |t^{-1}|_r > 1$), which is in $J(f) = \sup p \nu_f$, so we in particular have $\nu_f(U_{\overrightarrow{S_{G\infty}}}) > 0$. Hence [\(5.7](#page-24-4)′) in Remark 5.3 is not the case for this f .

§8. A complement of Proposition [4.4](#page-17-0)

Let us continue to use the notation in Sections [3](#page-13-0) and [4.](#page-15-0) Let

$$
f \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z) \,(\subset \mathbb{L}(z))
$$

be a meromorphic family of rational functions on $\mathbb{P}^1(\mathbb{C})$ of degree $d > 1$, and suppose that $f^{-1}(\mathcal{S}_G) \neq {\mathcal{S}_G}$ in $\mathsf{P}^1(\mathbb{L})$. Recall that $\Gamma_G := {\mathcal{S}_G}$ and $\Gamma_n :=$ $\Gamma_{f^n} := \{ \mathcal{S}_G, f^n(\mathcal{S}_G) \}$ in $H^1_{\Pi}(\mathbb{L})$ for every $n \in \mathbb{N}$ and that $M^1(\Gamma_G)^\dagger$ is identified with $M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger}$ under the bijection $S(\Gamma_G)\backslash\{S_G\} = T_{S_G}\mathsf{P}^1(\mathbb{L}) \cong \mathbb{P}^1(k_{\mathbb{L}}) = \mathbb{P}^1(\mathbb{C})$.

For every $n \in \mathbb{N}$, pick a meromorphic family $A_n \in (\mathcal{O}(\mathbb{D})[t^{-1}])(z)$ of Möbius transformations on $\mathbb{P}^1(\mathbb{C})$ such that $(A_n \circ f^n)(S_G) = S_G$ in $\mathsf{P}^1(\mathbb{L})$ (by Theorem [3.4\)](#page-14-2), and set

$$
A\coloneqq A_1.
$$

We note that for any $\mu = (\mu_C, \mu_E) \in (M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger})^2$ satisfying the admissibility [\(4.4\)](#page-16-2) (for this A), we still have $\omega_{\mu} \in M^{1}(\Gamma_{f})^{\dagger}$ (and $\omega_{\mu}(S(\Gamma_{f}) \setminus F) = 0$ for some countable subset F in $S(\Gamma_f)$.

 \Box

106 Y. Okuyama

Conversely, for every $\omega \in M^1(\Gamma_f)^\dagger$ satisfying $\omega(S(\Gamma_f) \setminus F) = 0$ for some countable subset F in $S(\Gamma_f)$, there is a unique ordered pair

$$
\mu_{\omega} = (\mu_{\omega,C}, \mu_{\omega,E}) \in (M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger})^2 = (M^1(\Gamma_G)^{\dagger})^2
$$

such that when $\Gamma_f = \Gamma_G \; (\Leftrightarrow \tilde{A} = \phi_{\tilde{A}}),$

$$
\begin{cases}\n\mu_{\omega,C} := (\pi_{\Gamma_f,\Gamma_G})_* \omega \in M^1(\Gamma_G)^\dagger = M^1(\mathbb{P}^1(\mathbb{C}))^\dagger, \\
\mu_{\omega,E} := \tilde{A}_*(\pi_{\Gamma_f,\Gamma_G})_* \omega = \tilde{A}_*\mu_{\omega,C} \in M^1(\Gamma_G)^\dagger = M^1(\mathbb{P}^1(\mathbb{C}))^\dagger\n\end{cases}
$$

and that when $\Gamma_f \neq \Gamma_G$, noting that $\{f(\mathcal{S}_G)\} \subset \Gamma_f \subset \mathsf{H}^1_{\Pi}(\mathbb{L}),$

$$
\begin{cases} \mu_{\omega,C}(\{\tilde{x}\}) := ((\pi_{\Gamma_f,\Gamma_G})_*\omega)(\{U_{\overrightarrow{\mathcal{S}_{G}x}}\}) & \text{for every } \tilde{x} \in \mathbb{P}^1(k_{\mathbb{L}}) = \mathbb{P}^1(\mathbb{C}),\\ \mu_{\omega,E}(\{\tilde{y}\}) := ((\pi_{\Gamma_f,\{f(\mathcal{S}_G)\}})_*\omega)(\{U_{(A^{-1})_*(\overrightarrow{\mathcal{S}_{G}y})}\}) & \text{for every } \tilde{y} \in \mathbb{P}^1(k_{\mathbb{L}}) = \mathbb{P}^1(\mathbb{C}). \end{cases}
$$

Then this ordered pair $\mu_{\omega} = (\mu_{\omega,C}, \mu_{\omega,E})$ satisfies the admissibility [\(4.4\)](#page-16-2) (for A) (by Lemma [4.2](#page-16-3) when $\Gamma_f \neq \Gamma_G$), and in turn we have both

(8.1)
$$
\omega_{\mu_{\omega}} = \omega \text{ in } M^{1}(\Gamma_{f})^{\dagger} \text{ and } \mu_{\omega_{\mu}} = \mu \text{ in } (M^{1}(\mathbb{P}^{1}(\mathbb{C}))^{\dagger})^{2},
$$

that is, the map $(M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger})^2 \ni \mu \mapsto \omega_{\mu} \in M^1(\Gamma_f)^{\dagger}$ is bijective.

We conclude with the following complement of Proposition [4.4.](#page-17-0)

Proposition 8.1 (Cf. [\[5,](#page-36-1) Prop. 5.1 and Thm. 5.2]). There is the bijection

$$
\left\{ (\mu_C, \mu_E) \in \left(M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger} \right)^2 : satisfying \ the \ admissible (4.4) \ (for \ A) \ and
$$

the degenerating f-balanced property $(\widetilde{A \circ f})^* \mu_E = d \cdot \mu_C$ in $M(\mathsf{P}^1) \right\} \ni \mu$
 $\mapsto \omega_{\mu} \in \{ \omega \in M^1(\Gamma_f)^{\dagger} : satisfying \ \omega(S(\Gamma_f) \setminus F) = 0 \ for \ some \ countable \ subset \ F$
in $S(\Gamma_f) \ and \ f_G^* \omega = d \cdot (\pi_{\Gamma_f, \Gamma_G})_* \omega \ in \ M(\Gamma_G) \},$

the inverse of which is given by the map $\omega \mapsto \mu_{\omega}$. This bijection induces the bijection

$$
\Delta_0^{\dagger} \ni \mu_C \mapsto (\pi_{\Gamma_n, \Gamma_G})_* (\omega_{(\mu_C, \mu_E^{(n)})}) \in \Delta_f^{\dagger},
$$

where

$$
\Delta_0^{\dagger} := \left\{ \mu_C \in M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger} : \text{for (any) } n \gg 1, \text{ there is } \mu_E^{(n)} \in M^1(\mathbb{P}^1(\mathbb{C}))^{\dagger} \right\}
$$

such that $(\widetilde{A_n \circ f^n})^* \mu_E^{(n)} = d \cdot \mu_C \right\}.$

Proof. The former assertion follows from (8.1) and the computations in $(a-1)$ and $(b-1)$ in the proof of Proposition [4.4.](#page-17-0) Then the latter assertion holds also by (4.6) . \Box

Acknowledgement

The author thanks the referee for very careful scrutiny and invaluable comments. The author was partially supported by JSPS Grant-in-Aid for Scientific Research (C) , 19K03541, Institut des Hautes Études Scientifiques, and Fédération de recherche mathématique des Hauts-de-France (FR CNRS 2956). The author was a long term researcher at RIMS, Kyoto University in the period of April 2019–March 2020, and also thanks the hospitality there.

References

- [1] M. Baker, S. Payne, and J. Rabinoff, [On the structure of non-Archimedean analytic curves,](https://doi.org/10.1090/conm/605/12113) in Tropical and non-Archimedean geometry, Contemporary Mathematics 605, American Mathematical Society, Providence, RI, 2013, 93–121. [Zbl 1320.14040](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1320.14040&format=complete) [MR 3204269](http://www.ams.org/mathscinet-getitem?mr=3204269)
- [2] M. Baker and R. Rumely, [Potential theory and dynamics on the Berkovich projective line](https://doi.org/10.1090/surv/159), Mathematical Surveys and Monographs 159, American Mathematical Society, Providence, RI, 2010. [Zbl 1196.14002](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1196.14002&format=complete) [MR 2599526](http://www.ams.org/mathscinet-getitem?mr=2599526)
- [3] R. L. Benedetto, [Dynamics in one non-archimedean variable](https://doi.org/10.1090/gsm/198), Graduate Studies in Mathematics 198, American Mathematical Society, Providence, RI, 2019. [Zbl 1426.37001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1426.37001&format=complete) [MR 3890051](http://www.ams.org/mathscinet-getitem?mr=3890051)
- [4] H. Brolin, [Invariant sets under iteration of rational functions,](https://doi.org/10.1007/BF02591353) Ark. Mat. 6 (1965), 103–144. [Zbl 0127.03401](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0127.03401&format=complete) [MR 194595](http://www.ams.org/mathscinet-getitem?mr=194595)
- [5] L. De Marco and X. Faber, [Degenerations of complex dynamical systems,](https://doi.org/10.1017/fms.2014.8) Forum Math. Sigma 2 (2014), art. no. e6, 36 pp. [Zbl 1308.37023](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1308.37023&format=complete) [MR 3264250](http://www.ams.org/mathscinet-getitem?mr=3264250)
- [6] R. Dujardin and C. Favre, Degenerations of $SL(2,\mathbb{C})$ representations and Lyapunov expo[nents,](https://doi.org/10.5802/ahl.24) Ann. H. Lebesgue 2 (2019), 515–565. [Zbl 1439.37089](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1439.37089&format=complete) [MR 4015916](http://www.ams.org/mathscinet-getitem?mr=4015916)
- [7] X. Faber, [Topology and geometry of the Berkovich ramification locus for rational functions,](https://doi.org/10.1007/s00229-013-0611-4) [I,](https://doi.org/10.1007/s00229-013-0611-4) Manuscripta Math. 142 (2013), 439–474. [Zbl 1288.14014](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1288.14014&format=complete) [MR 3117171](http://www.ams.org/mathscinet-getitem?mr=3117171)
- [8] X. Faber, [Topology and geometry of the Berkovich ramification locus for rational functions,](https://doi.org/10.1007/s00208-012-0872-3) [II,](https://doi.org/10.1007/s00208-012-0872-3) Math. Ann. 356 (2013), 819–844. [Zbl 1277.14020](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1277.14020&format=complete) [MR 3063898](http://www.ams.org/mathscinet-getitem?mr=3063898)
- [9] C. Favre, [Degeneration of endomorphisms of the complex projective space in the hybrid](https://doi.org/10.1017/s147474801800035x) [space,](https://doi.org/10.1017/s147474801800035x) J. Inst. Math. Jussieu 19 (2020), 1141–1183. [Zbl 1508.37061](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1508.37061&format=complete) [MR 4120806](http://www.ams.org/mathscinet-getitem?mr=4120806)
- [10] C. Favre and J. Rivera-Letelier, Théorie ergodique des fractions rationnelles sur un [corps ultram´etrique,](https://doi.org/10.1112/plms/pdp022) Proc. Lond. Math. Soc. (3) 100 (2010), 116–154. [Zbl 1254.37064](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1254.37064&format=complete) [MR 2578470](http://www.ams.org/mathscinet-getitem?mr=2578470)
- [11] A. Freire, A. Lopes, and R. Mañé, [An invariant measure for rational maps,](https://doi.org/10.1007/BF02584744) Bol. Soc. Brasil. Mat. 14 (1983), 45–62. [Zbl 0568.58027](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0568.58027&format=complete) [MR 736568](http://www.ams.org/mathscinet-getitem?mr=736568)
- [12] M. Jonsson, [Dynamics of Berkovich spaces in low dimensions,](https://doi.org/10.1007/978-3-319-11029-5_6) in Berkovich spaces and applications, Lecture Notes in Mathematics 2119, Springer, Cham, 2015, 205–366. [Zbl 1401.37103](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1401.37103&format=complete) [MR 3330767](http://www.ams.org/mathscinet-getitem?mr=3330767)
- [13] J. Kiwi, [Rescaling limits of complex rational maps,](https://doi.org/10.1215/00127094-2916431) Duke Math. J. 164 (2015), 1437–1470. [Zbl 1347.37089](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1347.37089&format=complete) [MR 3347319](http://www.ams.org/mathscinet-getitem?mr=3347319)
- [14] M. J. Ljubich, [Entropy properties of rational endomorphisms of the Riemann sphere,](https://doi.org/10.1017/S0143385700002030) Ergodic Theory Dynam. Systems 3 (1983), 351–385. [Zbl 0537.58035](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0537.58035&format=complete) [MR 741393](http://www.ams.org/mathscinet-getitem?mr=741393)
- [15] J. Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Astérisque 287 (2003), 147–230. [Zbl 1140.37336](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1140.37336&format=complete) [MR 2040006](http://www.ams.org/mathscinet-getitem?mr=2040006)
- [16] J. Rivera-Letelier, [Points p´eriodiques des fonctions rationnelles dans l'espace hyperbolique](https://doi.org/10.4171/CMH/27) p[-adique](https://doi.org/10.4171/CMH/27) Comment. Math. Helv. 80 (2005), 593–629. [Zbl 1140.37337](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1140.37337&format=complete) [MR 2165204](http://www.ams.org/mathscinet-getitem?mr=2165204)