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On a Degenerating Limit Theorem of
DeMarco–Faber
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Abstract

One of our aims is to complement the proof of DeMarco–Faber’s degenerating limit theo-
rem for the family of the unique maximal entropy measures parametrized by a punctured
open disk associated to a meromorphic family of rational functions on the complex projec-
tive line, degenerating at the puncture. This complementation is done by our main result,
which rectifies a key computation in their argument. We also establish and use a direct
and explicit translation from degenerating complex dynamics into quantized Berkovich
dynamics, instead of using DeMarco–Faber’s more conceptual transfer principle between
those dynamics.
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§1. Introduction

Let K be an algebraically closed field that is complete with respect to a non-trivial

and non-archimedean absolute value. The action of a rational function h ∈ K(z)

on P1 = P1(K) extends continuously to that on the Berkovich projective line

P1 = P1(K), which is a compact augmentation of P1. If in addition deg h > 0,

then this extended action of h on P1 is surjective, open, and fiber-discrete and

preserves the type (among I, II, III, and IV) of each point in P1, and the local

degree function deg
�

h of h on P1 also extends upper semicontinuously to P1 so

that for every open subset V in P1 and every component U of h−1(V ), V ∋ S ′ 7→∑
S∈h−1(S′)∩U degS h ≡ deg(h : U → V ).
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The pushforward operator h∗ : C
0(P1) → C0(P1) is defined so that for every

ψ ∈ C0(P1), (h∗ψ)(·) :=
∑

S∈h−1(·)(degS h)ψ(S) on P1. The pullback operator

h∗ from the space M(P1) of all Radon measures on P1 to itself is defined by the

transpose of h∗, so that for every ν ∈M(P1),

(1.1) h∗ν =

∫
P1

( ∑
S′∈h−1(S)

(degS′ h)δS′

)
ν(S) on P1,

where for each point S ∈ P1, δS is the Dirac measure at S on P1; in particular,

(h∗δS)(P
1) = deg h.

§1.1. Factorization on P1 and quantization

We follow the presentation in [5, §4.2]. For each finite subset Γ consisting of type

II points (e.g., a semistable vertex set) in P1, the family

S(Γ) :=
{
either a component of P1 \ Γ or a singleton {S} for some S ∈ Γ

}
⊂ 2P

1

is a partition of P1; the measurable factor space P1/S(Γ) = S(Γ) equipped with

the σ-algebra 2S(Γ) is regarded as the measurable space (P1, 2S(Γ)), also regarding

2S(Γ) as a σ-subalgebra in the Borel σ-algebra on P1.

Let M(Γ) be the set of all complex measures ω on P1/S(Γ). The measurable

factor map

πΓ = πP1,Γ : P
1 → P1/S(Γ)

induces the pullback operator (πΓ)
∗ from the space of measurable functions on

P1/S(Γ) to that of measurable functions on P1 and, in turn, the transpose (pro-

jection operator) (πΓ)∗ : M(P1) → M(Γ) of (πΓ)
∗ (by restricting each element of

M(P1) to 2S(Γ)), so in particular that for every ν ∈M(P1),

(1.2) ((πΓ)∗ν)({U}) = ν(U) for any U ∈ S(Γ).

Set M1(P1) := {ω ∈ M(P1) : ω ≥ 0 and ω(P1) = 1} and M1(Γ) := {ω ∈ M(Γ) :

ω ≥ 0 and ω(P1/S(Γ)) = 1}, so that (πΓ)∗(M
1(P1)) ⊂M1(Γ). Also set

M1(Γ)† :=
{
ω ∈M1(Γ) : ω({S}) = 0 for every S ∈ Γ

}
.

For any finite subsets Γ and Γ′, Γ ⊂ Γ′, both consisting of type II points, the

measurable factor map

πΓ′,Γ : P
1/S(Γ′)→ P1/S(Γ)

induces the pullback operator (πΓ′,Γ)
∗ from the space of measurable functions on

P1/S(Γ) to that of measurable functions on P1/S(Γ′) (so that π∗
Γ = (πΓ′)∗(πΓ′,Γ)

∗)
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and, in turn, the transpose (or projection operator) (πΓ′,Γ)∗ : M(Γ′) → M(Γ) of

(πΓ′,Γ)
∗, so in particular that for every ω ∈M(Γ′),

(1.3) ((πΓ′,Γ)∗ω)({U}) = ω({V ∈ S(Γ′) : V ⊂ U}) for any U ∈ S(Γ),

and that (πΓ′,Γ)∗(πΓ′)∗ = (πΓ)∗. Then (πΓ′,Γ)∗(M
1(Γ′)†) ⊂M1(Γ)†.

Let us denote by SG the Gauss (or canonical) point in P1, which is a type

II point (see Section 2.1). For a rational function h ∈ K(z) on P1 of degree > 0,

noting that h(SG) is also a type II point and setting

ΓG := {SG} and Γh := {SG, h(SG)},

the quantized pullback operator h∗G : M(Γh) → M(ΓG) is induced from the pull-

back operator h∗ in (1.1); for every ω ∈ M(Γh), the measure h∗Gω ∈ M(ΓG) in

particular satisfies

(h∗Gω)({U}) =
∫
P1/S(Γh)

mV,U (h)ω(V ) for any U ∈ S(ΓG),

where the quantized local degree mV,U (h) of h with respect to each pair (U, V ) ∈
S(ΓG) × S(Γh) is induced from the local degree function deg

�

h on P1 so that,

fixing any S ′ ∈ V ,

mV,U (h) =

{
(h∗δS′)(U) if U ∈S(ΓG) \ {{SG}} and V ∈S(Γh) \ {{h(SG)}},
(h∗δS′)({SG}) if U = {{SG}}

(the remaining case that U ∈ S(ΓG) \ {{SG}} and V = {{h(SG)}} is more subtle)

and that for every V ∈ S(Γh),
∑

U∈S(ΓG)mV,U (h) = deg h. In particular,

(h∗Gω)(S(ΓG)) = (deg h) · ω(S(Γh)) for every ω ∈M(Γh), and

((deg h)−1h∗G)(M
1(Γh)

†) ⊂M1(ΓG)
†

(see Section 2.5 for more details, including the precise definitions of mV,U (h) and

h∗G).

§1.2. The f-balanced measures on P1 and the maximal-ramification

locus of f in P1

From now on, let f ∈ K(z) be a rational function on P1 of deg f =: d > 1.

The equilibrium (or canonical) measure νf of f on P1 is the weak limit

(1.4) νf := lim
n→∞

(fn)∗δS
dn

in M(P1) for any S ∈ P1 \ E(f)
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(see [10] for the details), and is the unique ν ∈ M1(P1) not only having the f -

balanced property

f∗ν = (deg f) · ν on P1,

but also satisfying the vanishing condition ν(E(f)) = 0. Here, the (classical) excep-

tional set E(f) := {a ∈ P1 : #
⋃

n∈N∪{0} f
−n(a) < +∞} of f is the union of all

(superattracting) cycles of f in P1 totally invariant under f (so is at most count-

able).

The ramification locus R(f) := {S ∈ P1 : degS f > 1} of f contains the

(classical) critical set Crit(f) := {c ∈ P1 : f ′(c) = 0} of f , and the maximal-

ramification locus

Rmax(f) :=
{
S ∈ P1 : degS(f) = d

}
(⊂ R(f))

of f contains E(f) (⊂ Crit(f)); since Rmax(f) is connected (Faber [7, Thm. 8.2]),

for every c ∈ Rmax(f) ∩ P1, Rmax(f) near c contains a closed interval [c,S] (see
Section 2.1) in P1 for some S ∈ P1 \ {c}.

Definition 1.1 (Tame maximal-ramification). For each c ∈ Rmax(f)∩P1, we say

f is tamely maximally ramified near c if Rmax(f) near c is a closed interval [c,S]
in P1 for some S ∈ P1 \ {c}.

Fact 1.2 (Consequence of Faber [7, Cor. 6.6]). The function f is tamely maxi-

mally ramified at every c ∈ Rmax(f) ∩ P1 if the residue characteristic of K is

either = 0 or > d (= deg f) (e.g., when K = L as in Section 1.4 below).

We note that when charK = 0,

(1.5) E(f) =
{
a ∈ P1 : f−2(a) = {a}

}
and #E(f) ≤ #(Rmax(f) ∩ P1) ≤ 2.

The Berkovich Julia set J(f) := supp νf of f is in P1 \ E(f) (by (1.4)); both

J(f) and E(f) are f -completely invariant. Any ν ∈ M1(P1) (only) having the

above f -balanced property on P1 is written as

ν = ν(J(f)) · νf +
∑

E⊂E(f):
a cycle of f

ν(E) ·
∑

a∈E δa

#E
on P1

(by (1.4) and the countability of E(f)). For every n ∈ N, we also have νfn = νf
in M1(P1) (so J(fn) = J(f)) and E(fn) = E(f).

Recall that for any S ∈ H1 := P1 \ P1,

f−1(S) ̸= {S} ⇔ νf ({S}) < 1⇔ supp(νf ) ̸= {S}(1.6)

⇔ νf ({S}) = 0⇔ νf ({f(S)}) = 0
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(see e.g., [2, Cor. 10.33]), so in particular, f−1(S) ̸= {S} if and only if f−n(S) ̸=
{S} for every n ∈ N. For every ν ∈M1(P1) having the f -balanced property on P1

and every finite subset Γ in P1 consisting of type II points, we have

(1.7) ((πΓ)∗ν)(S(Γ) \ F ) = 0 for some countable subset F in S(Γ)

(by (1.4)) and

(1.8) (πΓ)∗ν ∈M1(Γ)† if in addition f−1(S) ̸= {S} for every S ∈ Γ.

§1.3. Main result: The projections of the f-balanced measures

on P1 to P1/S(ΓG)

Recall that d := deg f > 1 and that ΓG := {SG}, and for each n ∈ N, set

Γn := Γfn = {SG, fn(SG)}.

Let us say ω ∈M1(Γf ) has the quantized f -balanced property if

(1.9) f∗Gω = d · (πΓf ,ΓG
)∗ω in M1(ΓG).

Set ∆f ⊂M1(ΓG) (resp. ∆
†
f ⊂M1(ΓG)

†) as

∆f (resp. ∆†
f )(1.10)

:=
{
ω ∈M1(ΓG) : for (any) n≫ 1, there is ωn ∈M1(Γn) (resp. ωn ∈M1(Γn)

†)

such that ωn(S(Γn) \ F )= 0 for some countable subset F in S(Γn) and

that d−n((fn)G)
∗ωn = ω = (πΓn,ΓG

)∗ωn in M1(ΓG)
}
;

for a subtlety on the first vanishing assumption on each ωn, see Remark 5.3.

Our principal result is the following computations of ∆f and ∆†
f when

charK = 0, which in particular rectifies [5, Thm. 4.10, Cor. 4.13]; the assumption

on the period of each a ∈ E(f) is for simplicity, and f2 always satisfies this con-

dition, and the tame maximal-ramification condition for f near a in the case (ii)

to obtain (1.11) below always holds when K = L as in Section 1.4.

Theorem A. Let K be an algebraically closed field of characteristic 0 that is

complete with respect to a non-trivial and non-archimedean absolute value, let f ∈
K(z) be a rational function on P1 of degree d > 1, and suppose that f−1(SG) ̸=
{SG} and that f(a) = a (or equivalently f−1(a) = {a}) for any a ∈ E(f). Then

one and only one of the following cases (i) and (ii) occurs:

(i) ∆f = ∆†
f = {(πΓG

)∗νf};



76 Y. Okuyama

(ii) there is a (unique) a ∈ E(f) such that limn→∞ fn(SG) = a and that fn(SG)
is in the interval (SG, a] in P1 for n ≫ 1, and then degfn(SG)(f) ≡ d for

n≫ 1, and {(πΓG
)∗νf} ⊊ {(πΓG

)∗δa, (πΓG
)∗νf} ⊂ ∆†

f .

In the case (ii), if in addition f is tamely maximally ramified near a, then

(1.11)

∆f =
{
ω ∈M1(ΓG) : satisfying


ω({Uv⃗}) = sνf (Uv⃗) for every v⃗ ∈ (TSG

P1)\
{ #     ‰SGa},

ω({{SG}}) = s′, and

ω({U #     ‰SGa}) = (sνf (U #     ‰SGa) + (1− s))− s′

for some s ∈ [0, 1] and some s′ ∈
[
0,min

{
sνf (U #     ‰SGa), (1− s)(1− νf (U #     ‰SGa))

}]}
,

which in particular yields

∆†
f =

{
s · (πΓG

)∗νf + (1− s) · (πΓG
)∗δa : s ∈ [0, 1]

}
,

and moreover, the three statements

� degfn(SG)(f) ≡ d (i.e., fn(SG) ∈ Rmax(f)) for any n ∈ N ∪ {0},
� νf (U #     ‰SGa) = 0, and

� ∆f = ∆†
f

are equivalent.

In the proof of Theorem A, we will also point out that for some f (indeed

f(z) = z2 + t−1z ∈ (O(D)[t−1])[z] (⊂ L[z]) and its iterations), we have the proper

inclusion ∆†
f ⊊ ∆f .

§1.4. Application: The degenerating weak limit for the maximal

entropy measures on P1(C)

We call an element f ∈ (O(D)[t−1])(z) of degree say d ∈ N ∪ {0} a meromorphic

family of rational functions on P1(C) (of degree d and parametrized by

D = {t ∈ C : |t| < 1}

if for every t ∈ D∗ = D \ {0}, the specialization ft of f at t is a rational function

on P1(C) of degree d. Let us denote by L the (algebraically closed and complete)

valued field of formal Puiseux series/C around t = 0,1 i.e., the completion of the

field C((t)) of Puiseux series/C around t = 0 valuated by their vanishing orders at

t = 0. Noting that O(D)[t−1] is a subring of the field C((t)) of Laurent series/C

1The terminology “formal Puiseux series” might be informal. The field L is known as the
Levi-Civita field.
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around t = 0, we also regard f as an element of L(z). If in addition d > 1, then

for every t ∈ D∗, there is the equilibrium (or canonical, and indeed the unique

maximal entropy) measure µft of ft on P1(C) (see Fact 3.2). As already seen in

Section 1.2, there is also the equilibrium (or canonical) measure νf of the f ∈ L(z)
of degree d > 1 on P1(L).

If in addition νf ({SG}) = 0 or equivalently f−1(SG) ̸= {SG} in P1(L) (men-

tioned in (1.6); see also another equivalent condition (2.2) below), then recalling

that ΓG := {SG} as in Section 1.1 and noting that

S(ΓG) \ {{SG}} = TSG
(P1(L)) ∼= P1(kL) = P1(C),

where kL (= C as fields) is the residue field of L and where the bijection between

the tangent (or directions) space TSG
(P1(L)) of P1(L) at SG and P1(kL) is given

by
#     ‰SGa ↔ ã for each a ∈ P1(L) (see Section 2.2 for the reduction ã ∈ P1(kL) of

a), the projection (πΓG
)∗νf ∈ M1(ΓG)

† of νf ∈ M1(P
1(L)) is also regarded as a

purely atomic probability measure on P1(C) (by (1.8)).

Using Theorem A and by some new arguments relating the absolute value

on L, which is an extension of the trivial (so non-archimedean) absolute value on

C = kL, with the (archimedean and non-trivial) Euclidean absolute value on C, we
complement the proof of the following degenerating limit theorem of DeMarco–

Faber.

Theorem B ([5, Thm. B]). For every meromorphic family

f ∈ (O(D)[t−1])(z) (⊂ L(z))

of rational functions on P1(C) of degree > 1, if f−1(SG) ̸= {SG} in P1(L), then

(1.12) lim
t→0

µft = (πΓG
)∗νf weakly on P1(C).

We dispense with the intermediate “target bimeromorphically modified sur-

face dynamics” part in the (conceptual) “transfer principle” from degenerating

complex dynamics to quantized Berkovich dynamics in [5, Proof of Theorem B],

and give and use a more direct and explicit translation from degenerating complex

dynamics into quantized Berkovich dynamics (see Definition 4.3 and Proposition

4.4). We hope our argument could also be helpful for a further investigation of

degenerating complex dynamics (see, e.g., [9, 6]).

Organization of the paper

In Sections 2 and 3, we recall some notions and facts from non-archimedean dynam-

ics on P1 and also recall some details on DeMarco–Faber’s degenerating balanced
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property for degenerating weak limit points of the maximal entropy measures on

P1(C), respectively. Section 4 is one of the main parts in this paper, as mentioned

in the above paragraph. Theorem A is shown in Section 5, and our proof of Theo-

rem B is given in Section 6. In Section 7, a specific example, which motivated our

computation of ∆f (and ∆†
f ) in Theorem A, is discussed. In Section 8, we further

develop our direct translation from degenerating complex dynamics into quantized

Berkovich dynamics, for completeness.

§2. Background from Berkovich dynamics

Let K be an algebraically closed field that is complete with respect to a non-trivial

and non-archimedean absolute value | · |.

§2.1. Berkovich projective line

We call B(a, r) := {z ∈ K : |z − a| ≤ r} for some a ∈ K and some r ∈ R≥0 a

K-closed disk; for any K-closed disks B, B′, if B ∩B′ ̸= ∅, then either B ⊂ B′ or

B ⊃ B′. The Berkovich projective line P1 = P1(K) over K is a compact, uniquely

arcwise connected, locally arcwise connected, and Hausdorff topological space; as

sets,

P1 = P1 ∪ H1 = P1 ∪ H1
II ∪ H1

III ∪ H1
IV (the disjoint unions),

P1 = P1(K) = K ∪ {∞} ∼=
{
{a} = B(a, 0) : a ∈ K

}
∪ {{∞}},

H1
II
∼=
{
B(a, r) : a ∈ K, r ∈ |K∗|

}
, and

H1
III
∼=
{
B(a, r) : a ∈ K, r ∈ R>0 \ |K∗|

}
.

More precisely, each element of P1 is regarded as either the cofinal equivalence

class of a decreasing (i.e., non-increasing and nesting) sequence of K-closed disks

or ∞ ∈ P1. The inclusion relation ⊂ among K-closed disks canonically extends

to an ordering ⪯ on P1, so that ∞ is the maximum element in (P1,⪯), and the

diameter function diam|·| for K-closed disks also extends upper semicontinuously

to P1, so that diam|·|(∞) = +∞. For S1,S2 ∈ P1, if S1 ⪯ S2, then we set [S1,S2] =
[S2,S1] := {S ∈ P1 : S1 ⪯ S ⪯ S2}, and in general there is the minimum element

S ′ in {S ∈ P1 : S1 ⪯ S and S2 ⪯ S} and we set

[S1,S2] = [S2,S1] := [S1,S ′] ∪ [S ′,S2];

we also set (S1,S2] := [S1,S2] \ {S1}. Those (closed) intervals [S,S ′] in P1 equip

P1 with a (profinite) tree structure in the sense of Jonsson [12, §2].

For every S ∈ P1, the tangent (or direction) space TSP
1 of P1 at S is

TSP
1 :=

{
v⃗ =

#    ‰

SS ′ : the germ of a non-empty left-half-open interval (S,S ′]
}
;
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then #TSP
1 = 1 if and only if S ∈ P1 ∪ H1

IV, #TSP
1 = 2 if and only if S ∈ H1

III,

and TSP
1 ∼= P1(k) if and only if S ∈ H1

II (see (2.1) and Facts 2.3, 2.6 below).

Identifying each v⃗ ∈ TSP1 with

Uv⃗ = US,v⃗ :=
{
S ′ ∈ P1 \ {S} :

#    ‰

SS ′ = v⃗
}
⊂ 2P

1

,

the collection (US,v⃗)S∈P1,v⃗∈TSP1 is a quasi open basis of the (Gel’fand, weak, point-

wise, or observer) topology on P1(, and both P1 and H1
II are dense in P1), and for

every S ∈ H1
II, we identify TSP

1 with S({S}) \ {{S}} by the canonical bijection

TSP
1 ∋ v⃗ ↔ Uv⃗ ∈ S({S}) \ {{S}}.

The Gauss (or canonical) point SG ∈ H1
II is represented by (the constant

sequence of) the K-closed unit disk, that is, the ring OK = B(0, 1) of K-integers;

the unique maximal ideal in OK isMK := {z ∈ K : |z| < 1}, and

k = kK := OK/MK

is the residue field of K, which is still algebraically closed under the standing

assumption on K. The residue characteristic of K is char k.

The reduction ã ∈ P1(k) of a point a ∈ P1(K) is defined by the point ã1/ã0 ∈
P1(k), where a1, a0 ∈ K are chosen so that a = a1/a0 (regarding 1/0 = ∞ ∈ P1)

and that max{|a0|, |a1|} = 1 (so ∞̃ = ∞ ∈ P1(k) = k ∪ {∞}). There is also a

canonical bijection

(2.1) TSG
P1 ∋ #     ‰SGa↔ ã ∈ P1(k).

For more details on (dynamics on) P1, see e.g., the books [2, 3] and the survey

article [12].

§2.2. Dynamics on P1 and their reductions

For every h ∈ K(z), writing

h(z) =
P (z)

Q(z)
, P (z) =

deg h∑
j=0

ajz
j ∈ K[z], and Q(z) =

deg h∑
ℓ=0

bℓz
ℓ ∈ K[z],

this h is regarded as the point [b0 : · · · : bdeg h : a0 : · · · : adeg h] ∈ P2(deg h)+1(K).

Then, choosing P , Q so that

max
{
|b0|, . . . , |bdeg h|, |a0|, . . . , |adeg h|

}
= 1,

we obtain the point h̃ = [b̃0 : · · · : b̃deg h : ã0 : · · · : ãdeg h] ∈ P2(deg h)+1(k); this

point h̃ ∈ P2(deg h)+1(k) is formally written as

h̃ = Hh̃ϕh̃,
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where we set P̃ (ζ) :=
∑deg h

j=0 ãjζ
j ∈ k[ζ], Q̃(z) :=

∑deg h
ℓ=0 b̃ℓζ

ℓ ∈ k[ζ],

Hh̃(X0, X1) := GCD
(
Xdeg h

0 Q̃(X1/X0), X
deg h
0 P̃ (X1/X0)

)
∈

deg h⋃
ℓ=0

k[X0, X1]ℓ \ {0},

and ϕh̃(ζ) :=
P̃ (ζ)/Hh̃(1, ζ)

Q̃(ζ)/Hh̃(1, ζ)
∈ k(ζ)

(Hh̃ is unique up to multiplication in k∗). The rational function ϕh̃ ∈ k(ζ) on

P1(k) is called the reduction of h, the degree of which equals deg h− degHh̃.

Notation 2.1. When degHh̃ > 0, we denote by [Hh̃ = 0] the effective divisor on

P1(k) defined by the zeros of Hh̃ on P1(k) taking into account their multiplicities,

so that deg[Hh̃ = 0] = degHh̃. When degHh̃ = 0, we set [Hh̃ = 0] := 0 on P1(k)

by convention.

The action on P1 of h ∈ K(z) extends continuously to that on P1, and if in

addition deg h > 0, then this extended action is surjective, open, and fiber-discrete,

and preserves P1, H1
II, H

1
III, and H1

IV, as already mentioned in Section 1. Then

(2.2) h−1(SG) = {SG} ⇔ h̃ = ϕh̃ ⇔ degHh̃ = 0.

Fact 2.2 (Rivera-Letelier [15]; see also [2, Cor. 9.27]). We have deg(ϕh̃) > 0 if

and only if h(SG) = SG. Moreover,

(2.3) ϕh̃ ≡ z̃ for some z ∈ P1 ⇒
#                  ‰

SGh(SG) =
#     ‰SGz.

Fact 2.3. The group PGL(2,K) of Möbius transformations on P1 acts transitively

on H1
II, and PGL(2,OK) is the stabilizer subgroup of SG in PGL(2,K).

From now on, suppose that deg h > 0.

§2.3. The tangent maps and the directional/surplus local degrees of

rational functions

For the details on this and the next subsections, see Rivera-Letelier [16, 15]; see

also Jonsson [12, §4.5] for an algebraic treatment.

For every S ∈ P1, the tangent map h∗ = (h∗)S : TSP
1 → Th(S)P

1 of h at S is

defined so that for every v⃗ =
#    ‰

SS ′ ∈ TSP1, if S ′ is close enough to S, then h maps

the interval [S,S ′] onto the interval [h(S), h(S ′)] homeomorphically, and

h∗(v⃗) =
#                     ‰

h(S)h(S ′).

Moreover, for every S ∈ H1
II and every v⃗ ∈ TSP

1, there is the directional local

degree mv⃗(h) ∈ N (indeed ∈ {1, . . . ,degS(h)}) of h on Uv⃗ such that choosing any
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A,B ∈ PGL(2,K) satisfying B−1(S) = A(h(S)) = SG (so deg( ˜A ◦ h ◦B) > 0 by

Fact 2.2) and writing (B−1)∗(v⃗) =
#     ‰SGz and A∗(h∗(v⃗)) =

#       ‰SGw by some z, w ∈ P1,

we have

ϕ
Ã◦h◦B(z̃) = w̃ and(2.4)

mv⃗(h) = degz̃(ϕÃ◦h◦B).(2.5)

For every S ∈ P1 \ H1
II and every v⃗ ∈ TSP1, we set mv⃗(h) := degS(h).

Fact 2.4 (Decomposition of the local degree [16, Prop. 3.5]). For every S ∈ P1,

also using the notation in the above paragraph if S ∈ H1
II, we have

(1 ≤) degS(h) =
∑

v⃗∈TSP1:h∗(v⃗)=w⃗

mv⃗(h) (= deg(ϕ
Ã◦h◦B) if S ∈ H1

II)(2.6)

for any w⃗ ∈ Th(S)P
1;

in particular, h∗ : TSP
1 → Th(S)P

1 is surjective.

Fact 2.5 (Non-archimedean argument principle [15, Lem. 2.1]). For every S ∈P1

and every v⃗ ∈ TSP1, there is the surplus local degree sv⃗(h) ∈ {0, 1, . . . ,degS(h)}
of h on Uv⃗ such that for every S ′ ∈ P1 \ {h(S)},

(2.7) (h∗δS′)(Uv⃗) =

{
mv⃗(h) + sv⃗(h) if Uh∗(v⃗) ∋ S ′,
sv⃗(h) otherwise;

moreover, h(Uv⃗) is either P
1 or Uh∗(v⃗), the latter of which is the case if and only

if sv⃗(h) = 0. For every S ∈ P1, sv⃗(h) > 0 for at most finitely many v⃗ ∈ TSP1, and

then

(2.8)
∑

v⃗∈TSP1

sv⃗(h) = deg h− degS(h)

since fixing any S ′ ∈ P1 \ {h(S)}, we have

deg h = (h∗δS′)(P1) = (h∗δS′)(P1 \ {S})

=
∑

v⃗∈TSP1:h∗(v⃗)=
#    ‰

SS′

mv⃗(h) +
∑

v⃗∈TSP1

sv⃗(h) = degS(h) +
∑

v⃗∈TSP1

sv⃗(h).

Fact 2.6. In the case that h ∈ PGL(2,K), the tangent map h∗ : TSP
1 → Th(S)P

1

is bijective, and for every S ∈ P1 and every v⃗ ∈ TSP1, h(Uv⃗) = Uh∗(v⃗).
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Fact 2.7 (Faber [7, Lem. 3.17]). For every S ∈ H1
II and every v⃗ ∈ TSP1, choosing

any such A,B ∈ PGL(2,K) that B−1(S) = A(h(S)) = SG and any such z ∈ P1

that (B−1)∗(v⃗) =
#     ‰SGz (as in the paragraph before Fact 2.4), we have

(2.9) sv⃗(h)

{
= ordζ=z̃

[
H

Ã◦h◦B = 0
]

if degH
Ã◦h◦B > 0,

≡ 0 otherwise.

§2.4. The hyperbolic metric ρ on H1 and the piecewise affine action of

h on (H1, ρ)

The hyperbolic metric ρ on H1, which is defined so that

ρ(S1,S2) = log
(diam|·| S2
diam|·| S1

)
if S1 ⪯ S2,

would be used at some part in the proof of Theorem A. The topology on (H1, ρ)

is finer than the relative topology on H1 from P1.

Fact 2.8 ([16, Prop. 3.5]). For every S ∈ P1 and every v⃗ =
#    ‰

SS ′ ∈ TSP1, if S ′ is
close enough to S, then for every S ′′ ∈ (S,S ′],

(2.10) ρ(h(S ′′), h(S ′)) = mv⃗(h) · ρ(S ′′,S ′),

which still holds for S ′′ ∈ [S,S ′] if S ∈ H1.

§2.5. Quantized local degrees and quantized pullbacks

Let us precisely define the quantized local degree mV,U (h), mentioned in Section

1.1, in terms of the (directional/surplus) local degrees of h, and then also (re)define

the quantized pullback operator h∗G : M(Γh)→M(ΓG). Recall

ΓG := {SG} and Γh := {SG, h(SG)} in H1
II.

Definition 2.9 (Quantized local degree). For every Uv⃗ ∈S(ΓG)\{{SG}}=TSG
P1

and every V ∈ S(Γh), set

mV,Uv⃗
(h) :=

mv⃗(h) + sv⃗(h) if V ⊂ Uh∗(v⃗),

sv⃗(h) if V ∩ Uh∗(v⃗) = ∅,

=
(2.7)

(h∗δS′)(Uv⃗) for any S ′ ∈ V if V ∈ S(Γh) \ {{h(SG)}},
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and for every V ∈ S(Γh), set

mV,{SG}(h) :=

{
degSG

(h) if V = {h(SG)},
0 if V ∈ S(Γh) \ {{h(SG)}},

=
(1.1)

(h∗δS′)({SG}) for any S ′ ∈ V .

Fact 2.10. The fundamental equality

(2.11)
∑

U∈S(ΓG)

mV,U (h) = deg h for any V ∈ S(Γh)

holds; indeed, for every V ∈ S(Γh) \ {{h(SG)}}, there is a unique w⃗ ∈ Th(SG)P
1

satisfying V ⊂ Uw⃗, and then∑
U∈S(ΓG)

mV,U (h) =
∑

v⃗∈TSG
P1:h∗(v⃗)=w⃗

mv⃗(h) +
∑

v⃗∈TSG
P1

sv⃗(h) + 0

=
(2.6)&(2.8)

degSG
(h) + (deg h− degSG

(h)) = deg h,

and similarly,∑
U∈S(ΓG)

m{h(SG)},U (h) =
∑

v⃗∈TSG
P1

sv⃗(h) + degSG
(h)

=
(2.8)

(deg h− degSG
(h)) + degSG

(h) = deg h.

The quantized pushforward operator hG,∗ from the space of measurable func-

tions on P1/S(ΓG) to that of measurable functions on P1/S(Γh) is defined so that

for every measurable function ψ on P1/S(ΓG), the measurable function hG,∗ψ on

P1/S(Γh) satisfies

(hG,∗ψ)(V ) =
∑

U∈S(Γh)

mV,U (h)ψ(U) for any V ∈ S(Γh) or equivalently

(πΓh
)∗(hG,∗ψ) ≡

∑
U∈S(ΓG)

mV,U (h) · ((πΓG
)∗ψ)|U on each V ∈ S(Γh),

so, in particular,

(2.12) (πΓh
)∗(hG,∗ψ) =

∑
v⃗∈TSG

P1

(h∗δ ·)(Uv⃗) · ((πΓG
)∗ψ)|Uv⃗ on P1 \ {h(SG)}.

The quantized pullback operator h∗G : M(Γh) → M(ΓG) is the transpose of this

quantized pushforward operator hG,∗ so, in particular, for every ω ∈ M(Γh), the
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measure h∗Gω ∈M(ΓG) satisfies

(h∗Gω)({U}) = ⟨1{U}, h
∗
Gω⟩ = ⟨hG,∗(1{U}), ω⟩

=

∫
P1/S(Γh)

( ∑
W∈S(ΓG)

mV,W (h) · 1{U}(W )

)
ω(V )

=

∫
P1/S(Γh)

mV,U (h)ω(V ) for any U ∈ S(ΓG).(2.13)

§3. Degenerating balanced property for degenerating weak limit

points of the maximal entropy measures on P1(C)

We follow the presentation in [5, §2.1–§2.4].

Fixing r ∈ (0, 1) (e.g., r = e−1) once and for all, the field C((t)) of Laurent

series around t = 0 over C is equipped with the non-trivial and non-archimedean

absolute value

(3.1) |x|r = rmin{n∈Z : an ̸=0}

for x(t) =
∑

n∈Z ant
n ∈ C((t)) (under the convention that min ∅ = +∞ and

r+∞ = 0), which extends the trivial absolute value on C to C((t)).
An algebraic closure C((t)) of C((t)) is the field of Puiseux series around t = 0

over C, | · |r extends to C((t)) as an absolute value, and the completion L of C((t))
is the field of formal Puiseux series around t = 0 over C and is still algebraically

closed. We note that O(D)[t−1] ⊂ C((t)),

C ⊂ O(D) ⊂ OC((t)) =

{∑
n∈Z

ant
n ∈ C((t)) : an = 0 if n < 0

}
= C[[t]],

MC((t)) = t · OC((t)),

kL = kC((t)) = C (as fields), and

TSG
P1(L) ∼= P1(kL) = P1(C) (the bijection is the canonical one in (2.1)).

Notation 3.1. Let M(P1(C)) be the space of all complex Radon measures on

P1(C) = C ∪ {∞}. The pullback of each µ ∈ M(P1(C)) under a rational function

R ∈ C(z) on P1(C) of degree > 0 is R∗µ :=
∫
P1(C)(

∑
w∈R−1(z)(degw R)δw)µ(z) on

P1(C), where for each z ∈ P1(C), δz is the Dirac measure at z on P1(C); if R is

constant, then R∗µ := 0 by convention. Also set

M1(P1(C)) :=
{
µ ∈M(P1(C)) : µ ≥ 0 and µ(P1(C)) = 1

}
and

M1(P1(C))† :=
{
µ ∈M1(P1(C)) : µ is purely atomic}.
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Fact 3.2 (Maximal entropy measure on P1(C) [4, 14, 11]). For a rational func-

tion R ∈ C(z) on P1(C) of degree> 1, the equilibrium (or canonical, and indeed the

unique maximal entropy) measure µR of R on P1(C) is the unique µ ∈M1(P1(C))
satisfying R∗µ = (degR)µ on P1(C) and µ(E(R)) = 0, where E(R) := {a ∈ P1(C):
#
⋃

n∈NR
−n(a) < +∞}. Then, for every n ∈ N, µRn = µR on P1(C) and

E(Rn) = E(R). The measure µR is PGL(2,C)-equivariant in that for every Möbius

transformation M ∈ PGL(2,C) on P1(C), µM◦R◦M−1 =M∗µR on P1(C).
When R ∈ C[z] or equivalently R(∞) = ∞ ∈ E(R), µR is supported by

∂(KR), where the filled-in Julia set KR := {z ∈ C : lim supn→∞ |Rn(z)| < +∞}
of R is a compact subset in C.

Let h ∈ (O(D)[t−1])(z) (⊂ L(z)) be a meromorphic family of rational functions

on P1(C), and let us regard h̃ = Hh̃ϕh̃ ∈ P2(deg h)+1(kL) as a point in P2(deg h)+1(C),
ϕh̃ as a rational function on P1(C) of degree deg h−degHh̃, and the effective divisor

[Hh̃ = 0] on P1(kL) as that on P1(C) and in turn also as the Radon measure∑
z∈P1(C)(ordz[Hh̃ = 0])δz on P1(C), under kL = C as fields. Then

(3.2) lim
t→0

ht = ϕh̃ locally uniformly on P1(C) \ (supp[Hh̃ = 0]).

Definition 3.3. For every µ ∈ M1(P1(C)), the (possibly degenerating) pullback

h̃∗µ ∈M(P1(C)) of µ under h̃ is defined by

(3.3) h̃∗µ := (ϕh̃)
∗µ+ [Hh̃ = 0] on P1(C),

still satisfying (h̃∗µ)(P1(C)) = deg h.

Recall Fact 2.2. The following target rescaling theorem is a special case of [13,

Lem. 3.7] (see also [5, Lem. 2.1]).

Theorem 3.4. For every meromorphic family f ∈ (O(D)[t−1])(z) (⊂ L(z)) of

rational functions on P1(C) of degree > 1, there is a meromorphic family A ∈
(O(D)[t−1])(z) of Möbius transformations on P1(C) such that (A◦f)(SG) = SG in

P1(L). Such a family A is unique up to a postcomposition to A of any meromorphic

family B ∈ (O(D)[t−1])(z) of Möbius transformations on P1(C) satisfying B̃ =

ϕB̃ ∈ PGL(2,C).

Also recall (2.2). The degenerating f -balanced property of the pair µ =

(µC , µE) (the former half in (3.4)) is a consequence of (3.2) and the complex

argument principle. The proof of the purely atomicness of µ (the latter half in

(3.4)) is more involved.
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Theorem 3.5 (Consequence of [5, Thms. 2.4 and A]). Let

f ∈ (O(D)[t−1])(z) (⊂ L(z))

be a meromorphic family of rational functions on P1(C) of degree d > 1 satisfying

f−1(SG) ̸= {SG} in P1(L), let A ∈ (O(D)[t−1])(z) be a meromorphic family of

Möbius transformations on P1(C) such that (A ◦ f)(SG) = SG, and let

µC = lim
j→∞

µftj
, µE = lim

j→∞
(Atj )∗µftj

∈M1(P1(C))

be weak limit points on P1(C) as t→ 0 of the families (µft)t∈D∗ and ((At)∗µft)t∈D∗

of the unique maximal entropy measures µft and (At)∗µft = µAt◦ft◦A−1
t

on P1(C)
of ft and of At ◦ ft ◦ A−1

t , respectively, for some sequence (t = tj) in D∗ tending

to 0 as j →∞. Then

(3.4) (Ã ◦ f)∗µE = d · µC on P1(C) and µ := (µC , µE) ∈ (M1(P1(C))†)2.

§4. A direct translation

Pick a meromorphic family f ∈ (O(D)[t−1])(z) (⊂ L(z)) of rational functions on

P1(C) of degree d > 1, and suppose that f−1(SG) ̸= {SG} in P1(L). Choose a

meromorphic family A ∈ (O(D)[t−1])(z) of Möbius transformations on P1(C) such
that (A ◦ f)(SG) = SG (by Theorem 3.4). Also recall

ΓG := {SG} and Γf := {SG, f(SG)} in H1
II(L).

From Fact 2.2 and (2.2), the following five statements

ΓG = Γf , f(SG) = SG, deg(ϕf̃ ) > 0, and moreover,

A(SG) = SG and

Ã = ϕÃ ∈ PGL(2, kL) = PGL(2,C) (under kL = C as fields, here and below)

are equivalent. Alternatively, when ΓG ̸= Γf , there are hA, aA ∈ P1(C) such that

supp[HÃ = 0] = {hA} in P1(C), ϕÃ ≡ aA on P1(C),(4.1)

and moreover ϕf̃ ≡ hA on P1(C) (by (3.2) and Fact 2.2).

We note that

Tf(SG)P
1(L)

∼=←
(A−1)∗

TSG
P1(L) ∼=

(2.1)
P1(kL) = P1(C),

also recalling Fact 2.6.



On a Degenerating Limit Theorem of DeMarco–Faber 87

Lemma 4.1. When Γf ̸= ΓG, we have

(4.2) (A−1)∗(
#                   ‰

SGA(SG)) =
#                  ‰

f(SG)SG.

Proof. If (A−1)∗(v⃗) =
#                  ‰

f(SG)SG (=
#                         ‰

A−1(SG)SG) for some (indeed unique) v⃗ ∈
TSG

P1(L), then we have SG ∈ U(A−1)∗(v⃗), which yields A(SG) ∈ A(U(A−1)∗(v⃗)) =

UA∗(A−1)∗(v⃗) = Uv⃗ (using Fact 2.6), and in turn v⃗ =
#                   ‰

SGA(SG).

Lemma 4.2. When Γf ̸= ΓG, for any x̃, ỹ ∈ P1(kL) = P1(C) (and any represen-

tatives x, y ∈ P1(L) of x̃, ỹ, respectively), we have

(4.3)


#      ‰SGx =

#                  ‰

SGf(SG) in TSG
P1(L) ⇔ x̃=hA in P1(kL)=P1(C),

(A−1)∗(
#     ‰SGy)=

#                  ‰

f(SG)SG in Tf(SG)P
1(L) ⇔ ỹ=aA in P1(kL)=P1(C).

Proof. The former assertion is by ϕf̃ ≡ hA on P1(C) (in (4.1)) and (2.3). On the

other hand, by (4.2), we have

(A−1)∗(
#     ‰SGy) =

#                  ‰

f(SG)SG ⇔ #     ‰SGy
(
= A∗(

#                  ‰

f(SG)SG)
)
=

#                   ‰

SGA(SG),

so the latter assertion holds by ϕÃ ≡ aA on P1(C) (in (4.1)) and (2.3).

Definition 4.3 (Admissibility of µ and construction of the measure ωµ). For ev-

ery µ = (µC , µE) ∈ (M1(P1(C)))2 satisfying the following admissibility

(4.4)

Ã
∗µE =µC on P1(C) when Γf = ΓG (⇔ Ã=ϕÃ ⇔ A(SG)=SG),

µC({hA})+µE({aA})≥ 1 when Γf ̸= ΓG

(for A), there is a unique probability measure

ωµ ∈M1(Γf ) (and indeed ωµ ∈M1(Γf )
† if µ ∈ (M1(P1(C))†)2)

on P1/S(Γf ) = S(Γf ) such that, writing µC = νC + ν̃C (resp. µE = νE + ν̃E)

in M(P1) where νC (resp. νE) has no atoms on P1(C) and ν̃C = µC − νC (resp.

ν̃E = µE − νE) is purely atomic, when Γf = ΓG,
ωµ({{SG}}) = νE(P1(C))

(
= νC(P1(C))

)
and

ωµ({U(A−1)∗(
#     ‰SGy)}) = µE({ỹ}) for every ỹ ∈ P1(kL) = P1(C)(

⇔
(4.4)&(2.4)

ωµ({U #     ‰SGy}) = µC({ỹ}) for every ỹ ∈ P1(kL) = P1(C)
)
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and, when Γf ̸= ΓG(, noting also Lemma 4.2),

(4.5)



ωµ({{SG}}) = νC(P1(C)),
ωµ({U #     ‰SGx}) = µC({x̃}) for every x̃ ∈ P1(C) \ {hA},
ωµ({{f(SG)}}) = νE(P1(C)),
ωµ({U(A−1)∗(

#     ‰SGy)}) = µE({ỹ}) for every ỹ ∈ P1(C) \ {aA}, and

ωµ({U #                ‰

SGf(SG) ∩ U #                ‰

f(SG)SG
}) = µC({hA}) + µE({aA})− 1 ( ≥

(4.4)
0).

For every µ = (µC , µE) ∈ (M1(P1(C)))2 satisfying the admissibility (4.4) (for

A), we note that

ωµ(S(Γf ) \ F ) = 0 for some countable subset F in S(Γf ),

and also have

ωµ ∈M1(Γf )
† ⇒ (πΓf ,ΓG

)∗ωµ ∈M1(ΓG)
†(4.6)

⇒ µC = (πΓf ,ΓG
)∗ωµ in M1(P1(C))† =M1(ΓG)

†

identifying M1(ΓG)
† with M1(P1(C))† under the bijection

S(ΓG) \ {SG} = TSG
P1(L) ∼= P1(kL) = P1(C).

The following direct translation from degenerating complex dynamics into

quantized Berkovich dynamics is based on the above explicit definition of ωµ and

bypasses a correspondence between semistable models of P1(L) and semistable

vertex sets in P1(L) from rigid analytic geometry (see, e.g., [1]), which is used in

[5]. See Section 8 for a complement of this proposition.

Proposition 4.4 (Direct translation, cf. [5, Prop. 5.1(1)]). For every ordered pair

µ = (µC , µE) ∈ (M1(P1(C)))2 satisfying the admissibility (4.4) (for A), we have

(Ã ◦ f)∗µE = d · µC in M(P1(C))(4.7)

⇒ f∗Gωµ = d · (πΓf ,ΓG
)∗ωµ in M(ΓG).

Proof. Pick an ordered pair µ = (µC , µE) ∈ (M1(P1(C)))2 satisfying the admissi-

bility (4.4) (for A), and write µC = νC + ν̃C , µE = νE + ν̃E as in Definition 4.3.

(a-1). When Γf ̸= ΓG, for every x̃ ∈ P1(C) = P1(kL) ∼= TSG
P1(L) = S(ΓG) \

{SG} (and every representative x ∈ P1(L) of x̃), recalling Definitions 2.9 and 4.3,
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we compute both

(f∗Gωµ)({U #     ‰SGx})

=
(2.13)

∫
P1/S(Γf )

mV,U #   ‰SGx
(f)ωµ(V )

= s #     ‰SGx(f) · 1 +m #     ‰SGx(f) · ωµ

({
V ∈ S(Γf ) : V ⊂ Uf∗(

#     ‰SGx)

})
= s #     ‰SGx(f) +m #     ‰SGx(f)×

×



1− ωµ

({
Uw⃗ ∈ S(Γf ) : w⃗ ∈ (Tf(SG)P

1(L)) \ {f∗(
#      ‰SGx)}

}
∪ {{f(SG)}}

)
= 1−ωµ

({
U(A−1)∗(

#     ‰SGy) : y∈P1(L) satisfying ỹ ∈P1(kL) \ {aA}
})

− ωµ({{f(SG)}})

= µE({aA}) if f∗(
#      ‰SGx) =

#                  ‰

f(SG)SG,

ωµ

({
Uf∗(

#     ‰SGx)

})
= ωµ

({
U(A−1)∗(

#     ‰SGy)

})
for any such y ∈ P1(L) that f∗(

#      ‰SGx) = (A−1)∗(
#     ‰SGy) otherwise

=
(4.3)

s #     ‰SGx(f) +m #     ‰SGx(f) · µE({ỹ}) for any such y ∈ P1(L)

that (A ◦ f)∗(
#      ‰SGx) =

#     ‰SGy (⇔ f∗(
#      ‰SGx) = (A−1)∗(

#     ‰SGy))

=
(2.9),(2.5),

&(2.4)

ordx̃[HÃ◦f = 0] + (degx̃(ϕÃ◦f )) · µE({ϕÃ◦f (x̃)})

=
(3.3)

((Ã ◦ f)∗µE)({x̃})

and

((πΓf ,ΓG
)∗ωµ)({U #     ‰SGx})

=
(1.3)

ωµ

({
V ∈ S(Γf ) : V ⊂ U #     ‰SGx

})

=


1− ωµ

({
Uv⃗ ∈ S(Γf ) : v⃗ ∈ (TSG

P1(L)) \ { #      ‰SGx}
}
∪ {{SG}}

)
= 1− µC(P1(C) \ {hA}) = µC({hA}) if

#      ‰SGx =
#                  ‰

SGf(SG),

ωµ({U #     ‰SGx}) otherwise

=
(4.3)

µC({x̃}).

Hence, if (Ã ◦ f)∗µE = d · µC on P1(C), then for the x, we have the equality

(f∗Gωµ)({U #     ‰SGx}) = (d · (πΓf ,ΓG
)∗ωµ)({U #     ‰SGx}).
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(a-2). Moreover, we also compute both

(f∗Gωµ)({{SG}}) =
(2.13)

∫
P1/S(Γf )

mV,{SG}(f)ωµ(V ) = degSG
(f) · ωµ({{f(SG)}})

=
(2.6)

deg(ϕ
Ã◦f ) · νE(P

1(C)) = ((Ã ◦ f)∗µE)(P1(C) \ F1)

and

((πΓf ,ΓG
)∗ωµ)({{SG}}) =

(1.3)
ωµ({{SG}}) = νC(P1(C)) = µC(P1(C) \ F2),

where F1, F2 are any sufficiently large countable subsets in P1(C).
Hence, if (Ã ◦ f)∗µE = d ·µC on P1(C), then we also have (f∗Gωµ)({{SG}}) =

(d · (πΓf ,ΓG
)∗ωµ)({{SG}}). Now the proof is complete in this case.

(b-1). When Γf = ΓG, for every x̃ ∈ P1(C) = P1(kL) ∼= TSG
P1(L) = S(ΓG) \

{SG}, similarly to (a-1), we compute both

(f∗Gωµ)({U #     ‰SGx})

=
(2.13)

∫
P1/S(ΓG)

mV,U #   ‰SGx
(f)ωµ(V ) = s #     ‰SGx(f) · 1 +m #     ‰SGx(f) · ωµ({Uf∗(

#     ‰SGx)})

= s #     ‰SGx(f) +m #     ‰SGx(f) · µE({ỹ})

for any such y ∈ P1(L) that f∗(
#      ‰SGx) = (A−1)∗(

#     ‰SGy)
=

(2.9),(2.5),
&(2.4)

ordx̃[HÃ◦f = 0] + (degx̃(ϕÃ◦f )) · µE({ϕÃ◦f (x̃)})

=
(3.3)

((Ã ◦ f)∗µE)({x̃})

and

((πΓf ,ΓG
)∗ωµ)({U #     ‰SGx}) =

(1.3)
ωµ({U #     ‰SGx}) = µC({x̃}).

Hence, if (Ã ◦ f)∗µE = d ·µC on P1(C), then we have the equality (f∗Gωµ)({U #     ‰SGx})
= (d · (πΓf ,ΓG

)∗ωµ)({U #     ‰SGx}).

(b-2). Similarly to (a-2), we also compute both

(f∗Gωµ)({{SG}}) =
(2.13)

∫
P1/S(ΓG)

mV,{SG}(f)ωµ(V ) = degSG
(f) · ωµ({{SG}})

=
(2.6)

deg(ϕ
Ã◦f ) · νE(P

1(C)) = ((Ã ◦ f)∗µE)(P1(C) \ F1)

and

((πΓf ,ΓG
)∗ωµ)({{SG}}) =

(1.3)
ωµ({{SG}}) = νC(P1(C)) = µC(P1(C) \ F2),

where F1, F2 are any sufficiently large countable subsets in P1(C).
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Hence, if (Ã ◦ f)∗µE = d ·µC on P1(C), then we also have (f∗Gωµ)({{SG}}) =
(d · (πΓf ,ΓG

)∗ωµ)({{SG}}). Now the proof is also complete in this case.

The following complements Theorem 3.5.

Proposition 4.5. If µC = limj→∞ µftj
, µE = limj→∞(Atj )∗µftj

are weak limit

points on P1(C) as t → 0 of (µft)t∈D∗ , ((At)∗µft)t∈D∗ , respectively, for some

sequence (t= tj) in D∗ tending to 0 as j →∞, then µ := (µC , µE)∈ (M1(P1(C))†)2

also satisfies the admissibility (4.4) (for A).

Proof. When Γf = ΓG or equivalently Ã = ϕÃ, by the uniform convergence (3.2)

and supp[HÃ = 0] = ∅, we have Ã∗µC = µE on P1(C), that is, the admissibility

Ã∗µE = µC on P1(C) in this case holds.

When Γf ̸= ΓG, for 0 < ε ≪ 1, by the outer regularity of µE , there is a

continuous test function ψ on P1(C) such that ψ ≥ 0 on P1(C), that ψ ≡ 1 on

an open neighborhood of aA, and that µE({aA}) + ε/2 >
∫
P1(C) ψµE . Then, for

any continuous test function η on P1(C) supported by P1(C)\{hA} and satisfying

0 ≤ η ≤ 1 on P1(C), we have

µE({aA}) + ε >

∫
P1(C)

ψ((Atj )∗µftj
) =

∫
P1(C)

(ψ ◦Atj )µftj

≥
∫
supp η

(ψ ◦Atj ) · ηµftj
for j ≫ 1.

Then, by the uniform convergence (3.2) and the first item in (4.1), we even have

µE({aA}) + ε >
∫
supp η

1 · ηµftj
=
∫
P1(C) ηµftj

for j ≫ 1, so that µE({aA}) +
ε ≥

∫
P1(C) ηµC making j → ∞. Hence, by the inner regularity of µC , we have

µE({aA}) + 2ε ≥ µC(P1(C) \ {hA}), and in turn µE({aA}) ≥ µC(P1(C) \ {hA}),
that is, the admissibility µC({hA}) + µE({aA}) ≥ (µC(P1(C)) =) 1 in this case

also holds.

§5. Proof of Theorem A

Let K be an algebraically closed field that is complete with respect to a non-trivial

and non-archimedean absolute value | · |, and let f ∈ K(z) be a rational function

on P1 of deg f =: d > 1. Recall that

ΓG := {SG} and Γn := Γfn := {SG, fn(SG)} in H1
II

for each n ∈ N, and the definitions of ∆f , ∆
†
f in Section 1.3.

Lemma 5.1 (Cf. [5, Lem. 4.4]). For every ν ∈ M1(P1), if ν has the f -balanced

property f∗ν = d · ν on P1 and satisfies ν({f(SG)}) = 0, then for every n ∈ N,
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(πΓn
)∗ν ∈ M1(Γn) has the quantized fn-balanced property (see (1.9)), and if in

addition f−1(SG) ̸= {SG}, then (πΓG
)∗ν ∈ ∆†

f .

Proof. Under the assumption on ν, for every U ∈ S(ΓG) \ {{SG}}, we compute

(f∗G((πΓf
)∗ν))({U}) = ⟨(πΓf

)∗(fG,∗1{U}), ν⟩

=
(2.12)

∫
P1\{f(SG)}

((f∗δ · )(U))ν = ⟨(f∗δ · )(U), ν⟩ = ⟨1U , f∗ν⟩

= ⟨(πΓG
)∗1{U}, d · ν⟩ = d · ((πΓG

)∗ν)({U})

= d ·
(
(πΓf ,ΓG

)∗((πΓf
)∗ν)

)
({U}),

so that also recalling (1.7), (πΓf
)∗ν ∈M1(Γf ) has the quantized f -balanced prop-

erty (1.9). On the other hand, for any n ∈ N, we have (fn)∗ν = dn · ν on P1, and

in turn

0 = dn−1 · (degSG
f) · ν({f(SG)}) = dn−1 · (f∗ν)({SG})

= ((fn)∗ν)({SG}) = degSG
(fn) · ν({fn(SG)}) ≥ ν({fn(SG)}) (≥ 0),

so ν({fn(SG)}) = 0. Hence the former assertion holds, and so does the latter by

(1.6), (1.7), (1.8)(, and (πΓG
)∗ = (πΓn,ΓG

)∗(πΓn)∗).

Proof of Theorem A. Suppose that f−1(SG) ̸= {SG}, which is equivalent to

(5.1) νf ({f(SG)}) = νf ({SG}) = ((πΓG
)∗νf )({{SG}}) = 0

(by (1.6)). Then, by Lemma 5.1, we have (πΓG
)∗νf ∈ ∆†

f . Suppose also that

charK = 0 (so #E(f) ≤ 2) and, in turn, that for any a ∈ E(f), f(a) = a or

equivalently f−1(a) = {a}. Then, for every a ∈ E(f), by Lemma 5.1, we also

have (πΓG
)∗δa ∈ ∆†

f . Moreover, for every a ∈ E(f), every n ∈ N, and every

v⃗ ∈ (TSG
P1) \ { #     ‰SGa}, by Facts 2.5 and 2.4, we have

sv⃗(f
n) = 0 (⇔ fn(Uv⃗) = U(fn)∗v⃗) and(5.2)

(fn)∗(v⃗) ̸=
#                 ‰

fn(SG)a,(5.3)

and for every a ∈ E(f) and every n ∈ N, we also have

s #     ‰SGa(f
n) = dn − degSG

(fn) (also using (2.8)) and(5.4)

(fn)∗(
#     ‰SGa) =

#                 ‰

fn(SG)a (also using Fact 2.4).(5.5)

(a). Let us see the former half in Theorem A. If, for any v⃗ ∈ TSG
P1, we have

(5.6) lim sup
n→∞

sv⃗(f
n)

dn
≥ νf (Uv⃗) (= ((πΓG

)∗νf )({Uv⃗})),
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then for every ω ∈ ∆f and n≫ 1, fixing ωn ∈M1(Γn) such that ωn(S(Γn)\F ) = 0

for some countable subset F in S(Γn) and that d−n(fn)∗Gωn = ω (= (πΓn,ΓG
)∗ωn)

in M1(ΓG), also recalling Definition 2.9, for every v⃗ ∈ TSG
P1, we have

ω({Uv⃗}) = lim sup
n→∞

((fn)∗Gωn)({Uv⃗})
dn

≥
(2.13)

lim sup
n→∞

(sv⃗(fn)
dn

· ωn(P
1/S(Γn))

)
= lim sup

n→∞

sv⃗(f
n)

dn
≥ ((πΓG

)∗νf )({Uv⃗}),

which with (5.1) and (1.7) yields ω = (πΓG
)∗νf in M1(ΓG). Hence we have

∆f = ∆†
f = {(πΓG

)∗νf}, i.e., the case (i) in Theorem A holds, under this “surplus

equidistribution” assumption (5.6) (see [5, p. 27]).

(b.1). Alternatively, suppose that there is u⃗ ∈ TSG
P1 not satisfying (5.6).

Then, fixing any S ∈ P1 \ E(f) (⊂ P1 \ (E(f) ∪ {fn(SG) : n ∈ N})), we have

νf (Uu⃗) ≤ lim sup
n→∞

((fn)∗δS)(Uu⃗)

dn

≤
(2.7)

lim sup
n→∞

mu⃗(f
n)

dn
+ lim sup

n→∞

su⃗(f
n)

dn
< lim sup

n→∞

mu⃗(f
n)

dn
+ νf (Uu⃗),

the first inequality in which is by the inner regularity of νf and (1.4)(, and

the equality holds if SG ∈ P1 \ J(f)). Hence 0 < lim supn→∞(mu⃗(f
n)/dn) =∏∞

j=0(m(fj)∗(u⃗)(f)/d), so that m(fn)∗(u⃗)(f) ≡ d (> 1) for n≫ 1, and in turn, also

recalling (2.6) (and the maximal-ramification locus Rmax(f) of f in Section 1.2),

that

(5.7) degfn(SG)(f) ≡ d, i.e., fn(SG) ∈ Rmax(f), for n≫ 1;

then fn+1(SG) ̸= fn(SG) for n≫ 1 under the assumption that f−1(SG) ̸= {SG}.
Also recall that Rmax(f) of f is connected in P1. Hence, for n ≫ 1, we have

f−1([fn(SG), fn+1(SG)]) = [fn−1(SG), fn(SG)] ⊂ Rmax(f), and then f restricts to

a homeomorphism from [fn−1(SG), fn(SG)] onto [fn(SG), fn+1(SG)] and, recalling
(2.6), we also have S 7→ m #                ‰

Sfn(SG)(f) = degS(f) ≡ d (> 1) on [fn−1(SG), fn(SG)].
Then, for any m ≥ n ≫ 1, ρ(fm(SG), fm+1(SG)) = dm−n · ρ(fn(SG), fn+1(SG))
by (2.10). Consequently, also by the upper semicontinuity of deg

�

(f) on P1, there

is a ∈ P1 such that{
fn(a) : n ∈ N ∪ {0}

}
⊂ (P1 ∩ Rmax(f)) ∩

⋂
N∈N
{fn(SG) : n ≥ N},

which with #(P1 ∩ Rmax(f)) ≤ 2 (mentioned in (1.5)) still implies

a ∈ E(f).
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Under the assumption that f(a) = a (or equivalently f−1(a) = {a} so f ′(a) = 0),

we conclude that limn→∞ fn(SG) = a (and SG ∈ P1 \ J(f)) and, moreover, that

fn(SG) ∈ (SG, a] for n ≫ 1, using [8, Thm. F] and (2.10) (see [5, p. 25]) (or now

assuming that f is tamely maximally ramified near this a ∈ E(f) ⊂ Rmax(f)∩P1,

for simplicity).

Remark 5.2. Conversely, if there is such an a ∈ E(f) that limn→∞ fn(SG) = a

and that fn(SG) ∈ (SG, a] for n ≫ 1, then (5.7) is the case (since there is S ∈
(a,SG] so close to a that (a,S] ⊂ Rmax(f)), and (5.7) together with (5.2) and (5.4)

implies that the inequality (5.6) for this a does not hold for some v⃗ ∈ TSG
P1.

(b.2). Once such an a ∈ E(f) is at our disposal, noting that f−1(a) = {a},
that limn→∞ fn(SG) = a, and that fn(SG) ∈ (SG, a] for n≫ 1, we have

(5.8) f(U #               ‰

fn(SG)a) = U #                     ‰

fn+1(SG)a
for n≫ 1

(also by Fact 2.5 applied to
#                 ‰

fn(SG)a ∈ Tfn(SG)P
1) and have not only

(5.9) νf (U #                   ‰

fn(SG)SG
) = 1 for n≫ 1

but also SG ∈ P1 \ J(f) (also since a ∈ P1 \ J(f) and f(J(f)) = J(f)). Hence fixing

such n0 ≫ 1 that degSG
(fn)/dn is constant for n ≥ n0 (by (5.7)) and fixing any

S ∈ P1 \ E(f), for every n ≥ n0, we also have

0 <
degSG

(fn)

dn

(
=

(5.4)

dn − s #     ‰SGa(f
n)

dn
=

=
(5.5)&(2.7)
when n≫1

1− (fn)∗δS
dn

(U #     ‰SGa) ≡ 1− lim sup
n→∞

(fn)∗δS
dn

(U #     ‰SGa) =
)

≡
(1.4)&

SG∈P1\J(f)

1− νf (U #     ‰SGa);(5.10)

in particular, νf (U #     ‰SGa) < 1, and in turn (πΓG
)∗νf ̸= (πΓG

)∗δa.

Now the case (ii) in Theorem A holds under this “surplus inequidistribution”

assumption, and the proof of the former half in Theorem A is complete.

Remark 5.3. In [5, §4.6], the condition J(f) ⊂ P1 \ (U #     ‰SGa ∪ {SG}) was assumed

with loss of some generality; under this condition, the vanishing assumption on

each ωn in the definition (1.10) of ∆f does not matter (and did not appear in
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[5, §4.6]). By (5.10) (and deg
�

(f) ∈ {1, . . . , d}), the statement νf (U #     ‰SGa) = 0 (⇐
J(f) ⊂ P1 \ (U #     ‰SGa ∪ {SG})) is equivalent to

(5.7′) degfn(SG)(f) ≡ d for any n ∈ N ∪ {0},

and is indeed not always the case (as seen in Section 7 below).

(c.1). Let us show the latter half, i.e., the equality (1.11), in Theorem A. For

n ≫ 1, by (5.9), (5.2), the fn-balanced property of νf on P1, and Fact 2.5, for

every v⃗ ∈ (TSG
P1) \ { #     ‰SGa}, we have the equivalence

(5.11) νf (Uv⃗) > 0 ⇔ (fn)∗(v⃗) =
#                     ‰

fn(SG)SG ⇔ fn(Uv⃗) = U #                   ‰

fn(SG)SG

(one of) which is the case for at least one v⃗ ∈ (TSG
P1)\{ #     ‰SGa} since νf (U #     ‰SGa) < 1.

Hence, for n ≫ 1, using the fn-balanced property of νf on P1 again, for every

v⃗ ∈ (TSG
P1) \ { #     ‰SGa} satisfying νf (Uv⃗) > 0, we have

(0 <) νf (Uv⃗) =
(fn)∗νf
dn

(Uv⃗) =
1

dn

∫
fn(Uv⃗)

((fn)∗δS)(Uv⃗)νf (S)

(5.12)

=
(5.11)&(2.7)

mv⃗(f
n) + sv⃗(f

n)

dn
· νf (U #                   ‰

fn(SG)SG
) =
(5.2)&(5.9)

mv⃗(f
n)

dn

(and m(fn)∗v⃗(f) ≡ d). On the other hand, for n ≫ 1, by (5.3), (5.5), (5.11), and

Fact 2.4, we have{
(fn)∗(v⃗) : v⃗ ∈ (TSG

P1) \ { #     ‰SGa} satisfying νf (Uv⃗) = 0
}

(5.13)

= (Tfn(SG)P
1) \

{ #                 ‰

fn(SG)a,
#                     ‰

fn(SG)SG
}
.

Now we assume that f is tamely maximally ramified near this a ∈ E(f) ⊂ R(f)∩
P1. Then there is S ∈ (SG, a] \ {a} such that Rmax(f) ∩ U # ‰Sa = (S, a], and in turn

for every S ′ ∈ (S, a] \ {a} and every w⃗ =
#       ‰

S ′S ′′ ∈ (TS′P1) \ {
#   ‰

S ′a,
#    ‰

S ′S}, diminishing

[S ′,S ′′] if necessary, we have mw⃗(f) = m #       ‰

S′′S′(f) ≤ degS′′(f) < d by (2.10) and

(2.6). Hence, by (5.13), for n≫ 1, since limn→∞ fn(SG) = a and fn(SG) ∈ (SG, a],
for every v⃗ ∈ (TSG

P1) \ { #     ‰SGa} satisfying νf (Uv⃗) = 0, we have

(5.14) m(fn)∗(v⃗)(f) ≤ d− 1.

(c.2). Pick ω ∈ ∆f and, for n ≫ 1, fix ωn ∈ M1(Γn) satisfying ωn(S(Γn) \
F ) = 0 for some countable subset F in S(Γn) and d

−n(fn)∗Gωn = ω = (πΓn,ΓG
)∗ωn
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in M1(ΓG). Then, by the latter equality ω = (πΓn,ΓG
)∗ωn, ω also satisfies

ω(S(ΓG) \ F ) = 0 for some countable subset F in S(ΓG).

Let us compute ω({U}) for each U ∈ S(ΓG). For n ≫ 1, using the equality

d−n(fn)∗Gωn = ω (and recalling Definition 2.9), we have both

ω({Uv⃗}) =
(5.2)&(2.13)

mv⃗(f
n)

dn
· ωn

({
V ∈ S(Γn) : V ⊂ U(fn)∗(v⃗)

})
(5.15)

for any v⃗ ∈ (TSG
P1) \ { #     ‰SGa}

and

(5.16) ωn({{fn(SG)}}) =
(2.13)

dn · ω({{SG}})
degSG

(fn)
=

(5.10)

ω({{SG}})
1− νf (U #     ‰SGa)

.

Then, for n ≫ 1, by (5.15), (5.11), and (5.12), we have ωn({V ∈ S(Γn) : V ⊂
U #                   ‰

fn(SG)SG
}) = ω({Uv⃗})/νf (Uv⃗) for every v⃗ ∈ (TSG

P1) \ { #     ‰SGa} satisfying

νf (Uv⃗) > 0. Hence there exists a constant sω ∈ [0, 1] such that for n≫ 1,

(5.17) ωn

({
V ∈ S(Γn) : V ⊂ U #                   ‰

fn(SG)SG

})
≡ sω

and that for every v⃗ ∈ (TSG
P1) \ { #     ‰SGa} satisfying νf (Uv⃗) > 0,

(5.18) ω({Uv⃗}) = sωνf (Uv⃗).

Moreover, for every v⃗ ∈ (TSG
P1) \ { #     ‰SGa} satisfying νf (Uv⃗) = 0, we have

0 ≤ ω({Uv⃗}) ≤
(5.15)

mv⃗(f
n)

dn
· 1 =

n−1∏
j=0

m(fj)∗(v⃗)(f)

d
→

(5.14)
0 as n→∞,

so we still have

(5.19) ω({Uv⃗}) = 0 = sωνf (Uv⃗).

Now, for n≫ 1, we also have

ω({U #     ‰SGa}) = 1− ω
({
Uv⃗ ∈ S(ΓG) : v⃗ ∈ (TSG

P1) \ { #     ‰SGa}
}
∪ {{SG}}

)
(

=
(5.18),(5.19),

&(1.7)

1− sωνf (P1 \ U #     ‰SGa)− ω({{SG}})
)

= (sωνf (U #     ‰SGa) + (1− sω))− ω({{SG}}).(5.20)
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(c.3). Let us also see the desired estimate on ω({{SG}}). For n≫ 1, recalling

fn(SG) ∈ (SG, a], we compute

0 ≤ ωn

(
{U #                   ‰

fn(SG)SG
∩ U #     ‰SGa}

)
(
= ωn

({
V ∈ S(Γn) : V ⊂ U #                   ‰

fn(SG)SG

})
− ωn

({
Uv⃗ ∈ S(Γn) : v⃗ ∈ (TSG

P1) \ { #     ‰SGa}
}
∪ {{SG}}

)
≡

(5.17)&(5.20)
sω +

(
(sωνf (U #     ‰SGa) + (1− sω))− ω({{SG}})− 1

))
= sωνf (U #     ‰SGa)− ω({{SG}}),(5.21)

which yields the upper bound ω({{SG}}) ≤ sωνf (U #     ‰SGa). Moreover, for n≫ 1, by

(5.13), (1.7), (5.15), and (5.19), we have

(5.22) ωn

({
Uw⃗ ∈ S(Γn) : w⃗ ∈ (Tfn(SG)P

1) \ {
#                 ‰

fn(SG)a,
#                     ‰

fn(SG)SG}
})

= 0,

and using the equality (πΓn,ΓG
)∗ωn = ω in M1(ΓG) (and (1.3)), we also have

ωn

({
V ∈ S(Γn) : V ⊂ U #     ‰SGa

})
= ω({U #     ‰SGa})(5.23)

=
(5.20)

(sωνf (U #     ‰SGa) + (1− sω))− ω({{SG}}).

Then, for n≫ 1, we compute

0 ≤ ωn

({
U #               ‰

fn(SG)a

})
= ωn

({
V ∈ S(Γn) : V ⊂ U #     ‰SGa

})
− ωn

({
U #                   ‰

fn(SG)SG
∩ U #     ‰SGa

})
− ωn

({
Uw⃗ : w⃗∈ (Tfn(SG)P

1) \ {
#                 ‰

fn(SG)a,
#                     ‰

fn(SG)SG}
})
−ωn({{fn(SG)}})

=
(5.23),(5.21),
(5.22),&(5.16)

(1− sω)−
ω({{SG}})

1− νf (U #     ‰SGa)
,

which yields the other upper bound ω({{SG}}) ≤ (1 − sω)(1 − νf (U #     ‰SGa)). Hence

∆f is contained in the right-hand side in (1.11).

(c.4). Conversely, pick ω in the right-hand side in (1.11), so that for some

s ∈ [0, 1] and some s′ ∈ [0,min{sνf (U #     ‰SGa), (1− s)(1− νf (U #     ‰SGa))}], we have

ω({Uv⃗}) = sνf (Uv⃗) for every v⃗ ∈ (TSG
P1) \ { #     ‰SGa},

ω({{SG}}) = s′, and

ω({U #     ‰SGa}) = (sνf (U #     ‰SGa) + (1− s))− s′.
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For n ≫ 1, recalling that limn→∞ fn(SG) = a, that fn(SG) ∈ (SG, a], and that

νf (U #     ‰SGa) < 1, there is ωn ∈M1(Γn) such that

ωn({{SG}}) = s′,

ωn({{fn(SG)}}) =
s′

1− νf (U #     ‰SGa)
,

ωn({Uv⃗}) =

{
sνf (Uv⃗) for every v⃗ ∈ (TSG

P1) \ { #     ‰SGa},
0 for every v⃗ ∈ (Tfn(SG)P

1) \ {
#                 ‰

fn(SG)a,
#                     ‰

fn(SG)SG},

ωn

({
U #     ‰SGa ∩ U #                   ‰

fn(SG)SG

})
= sνf (U #     ‰SGa)− s

′ (≥ 0), and

ωn

({
U #               ‰

fn(SG)a

})
= 1− s− s′

1− νf (U #     ‰SGa)
(≥ 0)

(indeed, ωn ≥ 0 and ωn(P
1/S(Γn)) = 1 − s + sνf (P

1 \ {SG}) =
(5.1)

1) and that

ωn(S(Γn) \ F ) = 0 for some countable subset F in S(Γn) (by (1.7)). Then, for

n≫ 1, we have (πΓn,ΓG
)∗ωn = ω in M1(ΓG) (also by (1.3)). Moreover, for n≫ 1,

recalling Definition 2.9,

(I) for every v⃗ ∈ (TSG
P1) \ { #     ‰SGa} satisfying νf (Uv⃗) > 0, we have

(d−n(fn)∗Gωn)({Uv⃗}) =
(2.13),(5.2),

&(5.11)

mv⃗(f
n) · ωn

({
V ∈S(Γn) : V ⊂ U #                   ‰

fn(SG)SG

})
dn

=
(5.12)&(1.7)

νf (Uv⃗) · sνf (P1 \ {SG})

=
(5.1)

sνf (Uv⃗) = ω({Uv⃗}),

(II) for every v⃗ ∈ (TSG
P1) \ { #     ‰SGa} satisfying νf (Uv⃗) = 0,

(d−n(fn)∗Gωn)({Uv⃗}) =
(2.13)&(5.2)

mv⃗(f
n) · ωn

({
U(fn)∗(v⃗)

})
dn

=
(5.13)

0 = sνf (Uv⃗) = ω({Uv⃗}),

(III) and we have

(d−n(fn)∗Gωn)({{SG}}) =
(2.13)

degSG
(fn) · ωn({{fn(SG)}})

dn

=
(5.10)

(1− νf (U #     ‰SGa)) · ωn({{fn(SG)}})

= s′ = ω({{SG}}),
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and then

(d−n(fn)∗Gωn)({U #     ‰SGa}) = 1− (d−n(fn)∗Gωn)(S(ΓG) \ {U #     ‰SGa})
= 1− ω(S(ΓG) \ {U #     ‰SGa}) = ω({U #     ‰SGa}).

Hence, for n ≫ 1, we also have d−n(fn)∗Gωn = ω in M1(ΓG), and the right-hand

side in (1.11) is contained in ∆f .

(d). Once the equality (1.11) is at our disposal, the final assertion in case (ii)

in Theorem A (under the assumption that f is tamely maximally ramified near a)

is clear, also recalling Remark 5.3. Now the proof of Theorem A is complete.

§6. Proof of Theorem B

We use the notation in Sections 3 and 4. Let

f ∈ (O(D)[t−1])(z)(⊂ L(z))

be a meromorphic family of rational functions on P1(C) of degree d > 1, and

suppose that f−1(SG) ̸= {SG} in P1(L). Then f−n(SG) ̸= {SG} for every n ∈ N
(see Section 1.2). Recall that charL = char kL = charC = 0 and that the absolute

value | · |r on L is (the extension of) (3.1), fixing r ∈ (0, 1) once and for all. Since

νf2 = νf on P1(L), µ(ft)2 = µft on P1(C) for every t ∈ D∗, E(f2) = E(f), and

#E(f) ≤ 2, replacing f with f2 if necessary, we can assume that f(a) = a or

equivalently f−1(a) = {a} for any a ∈ E(f) with no loss of generality.

Recall that

ΓG := {SG} and Γn = Γfn := {SG, fn(SG)} in H1
II(L)

for every n ∈ N, and that M1(ΓG)
† is identified with M1(P1(C))† under the

bijection S(ΓG) \ {SG} = TSG
P1(L) ∼= P1(kL) = P1(C). For every n ∈ N, pick a

meromorphic family

An ∈ (O(D)[t−1])(z)

of Möbius transformations on P1(C) such that (An ◦ fn)(SG) = SG in P1(L) (by
the existence part of Theorem 3.4).

Let

µ0 = lim
j→∞

µftj

be any weak limit point of (µft)t∈D∗ on P1(C) as t → 0, where the sequence (tj)

in D∗ tends to 0 as j → ∞. Then, taking a subsequence of (tj) if necessary, for

any n ∈ N, there also exists the weak limit

µ
(n)
E := lim

j→∞
((An)tj )∗µftj

on P1(C).
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For every n ∈ N, by Theorem 3.5 and Proposition 4.5, the ordered pair

µ(n) := (µ0, µ
(n)
E ) ∈ (M1(P1(C))†)2

not only has the degenerating fn-balanced property (the former half in (3.4)) but

also satisfies the admissibility (4.4) (for An), and in turn also by Proposition 4.4,

we have

ω0 := (πΓn,ΓG
)∗ωµ(n) ∈ ∆†

f ;

this measure ω0 is indeed independent of n ∈ N, and is identified with µ0 under

the identification of M1(ΓG)
† with M1(P1(C))† (by (4.6)).

Hence, in the case (i) in Theorem A, we have the desired µ0 (= ω0)= (πΓG
)∗νf

in M1(ΓG)
† =M1(P1(C))†.

(a). Suppose now that the case (ii) in Theorem A occurs. Then there is a =

a(t) ∈ E(f) (⊂ P1(L)) such that limn→∞ fn(SG) = a and that fn(SG) ∈ (SG, a]
for n≫ 1, and then degfn(SG)(f) ≡ d for n≫ 1; since νfn = νf on P1(L) for every
n ∈ N, µ(ft)n = µft on P1(C) for every t ∈ D∗ and every n ∈ N, and E(fn) = E(f)

for every n ∈ N, replacing f with f ℓ for some ℓ ≫ 1 if necessary, we also assume

that for every n ∈ N, fn(SG) ∈ (SG, a] (so Γn ̸= ΓG), degfn(SG)(f) ≡ d, and both

(5.8) and (5.10) hold, with no loss of generality.

(b). Set

B1(z) :=



1

z − a
if a ∈ OL,

−z
(z/a)− 1

if a ∈ L \ OL,

z if a =∞ ∈ P1(L) (= L ∪ {∞})

∈ PGL(2,OL),

so that B1(a) =∞ and that B1(SG) = SG (or equivalently B̃1 = ϕ
B̃1
∈ PGL(2, kL)

= PGL(2,C), and then B̃−1
1 = ϕ

B̃−1
1

= ϕ−1

B̃1
∈ PGL(2, kL) = PGL(2,C)), and set

fB1
:= B1 ◦ f ◦B1

−1 ∈ L[z].

(c.1). Write fB1
(z) =

∑d
j=0 cj(t)z

j ∈ L[z] (so cd ∈ L \ {0}) and set

d0 := max
{
j ∈ {0, 1, . . . , d} : |cj |r = max

i∈{0,1,...,d}
|ci|r

}
.

Then, noting that fB1
(SG) ∈ (SG,∞], we have |cd0

|r > 1, and fB1
(SG) is repre-

sented by (the constant sequence of) the L-closed disk B(0, |cd0
|r). Setting

B2(z) := c−1
d0
z ∈ L[z] ∩ PGL(2,L),
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so that (B2 ◦ fB1
)(SG) = SG, we have ϕ

B̃2◦fB1

(ζ) =
∑d0

j=0 (̃
cj
cd0

) · ζj ,

d0 = deg(ϕ
B̃2◦fB1

) =
(2.6)

degSG
(B2 ◦ fB1

)(6.1)

= degf(SG)(B2 ◦B1) · degB−1
1 (SG)(f) · degSG

(B−1
1 ) = degSG

(f) (> 0),

and (H
B̃2◦fB1

(ζ0, ζ1) = ζd−d0
0 , so in particular)

(6.2) ordζ=∞
[
H

B̃2◦fB1

= 0
]
= d− d0 = d− degSG

(f).

(c.2). For each j ∈ {0, . . . , d}, set

Cj = Cj(t) :=
cj
cd0

· cj−d0

d0
∈ L, so that Cd0

= 1 and that |Cj |r < 1 if j < d0,

and also set

fB2B1
(w) := (B2 ◦ fB1

◦B−1
2 )(w) = cd0

d0

(
wd0 +

∑
j∈{0,1,...,d}\{d0}

Cjw
j

)
∈ L[z].

Then, using Fact 2.6 and (2.4) (for B−1
2 , B2 ∈ PGL(2,L)), we have

fB2B1
(U #       ‰SG∞)(6.3) (
= (B2 ◦ fB1

)(B−1
2 (U #       ‰SG∞)) = (B2 ◦ fB1

)(U #                      ‰

B−1
2 (SG)∞

)

=
(B2◦fB1

)(SG)=SG

(B2 ◦ fB1)(U #                    ‰

fB1
(SG)∞) = B2(fB1(U #                    ‰

fB1
(SG)∞))

=
(5.8) applied

to n = 1

B2(U #                    ‰

f2
B1

(SG)∞) = U #                                      ‰

((B2◦f2
B1

)(SG))∞

)
⊊ P1(L).

Claim 1. Either d0 = d or there is j > d0 such that |Cj |r ≥ 1.

Proof. Otherwise, d0 < d and |Cj |r < 1 for every j ∈ {0, . . . , d} \ {d0}. Then,
since |cd0

d0
|r = |cd0

|d0
r > 1, we have H

f̃B2B1

(ζ0, ζ1) = ζd−d0
0 ζd0

1 (and ϕ
f̃B2B1

≡ ∞ ∈
P1(kL)), so that ordζ=∞[H

f̃B2B1

= 0] = d− d0. In particular, we must have

s #       ‰SG∞(fB2B1
) = ordζ=∞[H

f̃B2B1

= 0] = d− d0 > 0

(by Fact 2.7), so fB2B1(U #       ‰SG∞) = P1(L) (by Fact 2.5). This contradicts (6.3).

(c.3). Since this a ∈ E(f) is a fixed point in P1(L) of f ∈ (O(D)[t−1])(z), this

a = a(t) is indeed in P1(K) over a finite algebraic field extension K of the quotient
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field of the domain O(D)[t−1], that is, for 0 < s0 ≪ 1, by the substitution/change

of indeterminants t = sm for some m ∈ N, we have

a = a(sm) ∈ P1(O(Ds0)[s
−1]) (⊂ P1(L)),

where Ds0 := {s ∈ C : |s| < s0} (cf. [5, Proof of Corollary 5.3]). Then, decreasing

0 < s0 ≪ 1 if necessary, we have not only cj(s
m), Cj(s

m) ∈ O(Ds0)[s
−1] ⊂ L

for every j ∈ {0, 1, . . . , d} but also (B1)sm , (B2)sm ∈ PGL(2,O(Ds0)[s
−1]) (⊂

PGL(2,L) and indeed (B1)sm ∈ PGL(2,OL)), and still (B1)sm(SG) = SG in P1(L)
or equivalently ˜(B1)sm = ϕ ˜(B1)sm

(= ϕ
B̃1

= B̃1) in PGL(2,C) = PGL(2, kL).

Let us, for notational simplicity, denote by

A := A1 = (A1)t ∈ (O(D)[t−1])(z)

the meromorphic family A1 (An for n = 1) of Möbius transformations on P1(C),
and also by

µE := µ
(1)
E ∈M1(C)† and µ := µ(1) = (µ0, µE) ∈

(
M1(P1(C))†

)2
the probability measure µ

(1)
E and the ordered pair µ(1), respectively. Set

D = Ds := (B2 ◦B1)sm ◦ (Asm)−1 ∈ PGL(2,O(Ds0)[s
−1]) (⊂ PGL(2,L)),

so that D̃ = ϕD̃ in PGL(2,C) = PGL(2, kL) (by the uniqueness part in The-

orem 3.4) since ((B2 ◦ B1)sm ◦ fsm)(SG) = (B2 ◦ fB1)sm((B1)sm(SG)) = (B2 ◦
fB1

)sm(SG) = SG = (A ◦ f)sm(SG).

Claim 2. supp((ϕD̃)∗µE) ⊂ P1(C) \ {∞}.

Proof. Recall that | · |r and | · | are the absolute values on L and on C, respectively.
For every s ∈ D∗

s0 and every z ∈ C, we compute

(fB1
)sm(cd0

(sm)z) =
(
cd0

(sm)
)d0+1

zd0 ·
{
1 +

∑
j∈{0,1,...,d}\{d0}

Cj(s
m)zj−d0

}
.

Let us see that for ℓ≫ 1, if 0 < |s| ≪ s0, then

inf
|z|=ℓ

∣∣∣∣1 + ∑
j∈{0,1,...,d}\{d0}

Cj(s
m)zj−d0

∣∣∣∣ ≥ 1

2
(> 0);

for, in the latter case in Claim 1, we set

d1 := max
{
j ∈ {d0 + 1, . . . , d} : |Cj |r = max

j>d0

|Cj |r (≥ 1)
}
,

so that (d1 > d0, that) lim sups→0 |Cd1
(sm)| ∈ (0,+∞] (since |Cd1

(sm)|r =

|Cd1
|mr ≥ 1), and that for every j > d0, Cj(s

m)/Cd1
(sm) ∈ O(Ds0), which vanishes
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at s = 0 if j > d1 (since |Cj(s
m)/Cd1

(sm)|r = |Cj |mr /|Cd1
|mr is ≤ 1 if j > d0, and

is < 1 if j > d1). Then, for ℓ≫ 1 (so that the second and third inequalities below

hold), if 0 < |s| ≪ s0 (so that the first and fourth ones below hold), then∣∣∣∣ ∑
j<d0

Cj(s
m)zj−d0

∣∣∣∣(
≤
∑
j<d0

(0 + 1)ℓj−d0 (by |Cj(s
m)|r = |Cj |mr < 1 if j < d0)

≤ d0 (noting that the sum above is over j < d0)

≤
(
min

{
1, 2−1 · lim sup

s→0
|Cd1

(sm)|
})

×
(
ℓd1−d0

(
1−

∑
d1>j>d0

(∣∣∣ Cj(s
m)

Cd1(s
m)

∣∣∣∣∣
s=0

+ 1
)
ℓj−d1

)
− 1

)
− 3

2

≤ |Cd1(s
m)| ·

(
ℓd1−d0 −

∑
d1>j>d0

∣∣∣ Cj(s
m)

Cd1(s
m)

∣∣∣ℓj−d0 −
∑
j>d1

∣∣∣ Cj(s
m)

Cd1(s
m)

∣∣∣ℓj−d0

)
− 3

2

)

≤
∣∣∣∣ ∑
j>d0

Cj(s
m)zj−d0

∣∣∣∣−3

2

on {z ∈ C : |z| = ℓ}, which yields the desired inequality in this case. Similarly, in

the former case (d0 = d) in Claim 1, for ℓ≫ 1 (so that the final inequality below

holds), if 0 < |s| ≪ s0 (so that the second inequality below holds), then∣∣∣∣ ∑
j<d0

Cj(s
m)zj−d0

∣∣∣∣ ≤ ∑
j<d0

|Cj(s
m)|ℓj−d0 ≤

∑
j<d0

(0 + 1)ℓj−d0 ≤ 1

2

on {z ∈ C : |z| = ℓ}, which still yields the desired inequality in this case.

Hence, since d0 ≥ 1 (in (6.1)) and |cd0
(sm)|r = |cd0

|mr > 1, fixing ℓ0 ≫ 1,

if 0 < |s| ≪ s0, then (fB1)sm({z ∈ C : |z| = |cd0(s
m)|ℓ0}) ⊂ {z ∈ C : |z| ≥

|cd0
(sm)|d0+1ℓd0

0 /2} ⊂ {z ∈ C : |z| ≥ 2|cd0
(sm)|ℓ0}, which with the maximum

modulus principle for holomorphic functions applied to 1/((fB1)sm(1/w)) near

w = 0 ∈ C in turn yields

(fB1)sm
({
z ∈ C : |z| > |cd0

(sm)|ℓ0
})
⊂
{
z ∈ C : |z| > 2|cd0

(sm)|ℓ0
}
,

so that supp(((B1)sm)∗(µfsm )) (= supp(µ(fB1
)sm )) ⊂ {z ∈ C : |z| ≤ |cd0

(sm)|ℓ0}
(see Fact 3.2). Hence, for 0 < |s| ≪ s0, recalling that (B2)sm(z) = (cd0

(sm))−1z,

we have

supp((Ds)∗(Asm)∗µfsm )
(
= supp

(
((B2 ◦B1)sm)∗µfsm

))
⊂
{
z ∈ C : |z| ≤ ℓ0

}
.
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Recall that µE := limj→∞(Atj )∗µftj
weakly on P1(C), and pick a sequence (sj) in

D∗ so that tj = smj for every j ∈ N. Then limj→∞Dsj = ϕD̃ (= D̃) uniformly on

P1(C) (by (3.2)). Now the above inclusion for s = sj , j ≫ 1, completes the proof

of Claim 2, by making j →∞.

(d). Recalling that ω0 (= (πΓf ,ΓG
)∗ωµ)∈ ∆†

f (⊂ ∆f ), there are s ∈ [0, 1] and

s′ ∈ [0,min{sνf (U #     ‰SGa), (1− s)(1− νf (U #     ‰SGa))}] such that
ω0({Uv⃗}) = sνf (Uv⃗) for every v⃗ ∈ (TSG

P1) \ { #     ‰SGa},
ω0({{SG}}) = s′, and

ω0({U #     ‰SGa}) = (sνf (U #     ‰SGa) + (1− s))− s′,

using the computation (1.11) of ∆f under the standing assumption that the case

(ii) in Theorem A occurs and by char kL = 0. Since ω0 ∈ ∆†
f , we first have s′ = 0.

Recalling the identification ω0 = µ0 in M1(ΓG)
† = M1(P1(C))† and the

degenerating f -balanced property (the former half in (3.4)) of µ = (µ0, µE), we

compute

(sνf (U #     ‰SGa) + (1− s))− s′ = ω0({U #     ‰SGa}) = µ0({ã})

=
(Ã ◦ f)∗µE

d
({ã}) =

((ϕ
Ã◦f )

∗µE + [H
Ã◦f = 0])({ã})

d

and, moreover, recalling that D̃ = ϕD̃, B̃1 = ϕ
B̃1
∈ PGL(2,C), that a = B−1

1 (∞),

that (B2 ◦ fB1)(∞) = ∞, and that deg(ϕ
B̃2◦fB1

) = d0 > 0 (in (6.1)) and using

Claim 2, we compute

((ϕ
Ã◦f )

∗µE)({ã}) = ((ϕ ˜(D−1◦B2◦B1◦f◦B−1
1 )

)∗µE)({∞})

= ((ϕ
B̃2◦fB1

)∗(ϕD̃)∗µE)({∞})

= (deg∞(ϕ
B̃2◦fB1

)) · ((ϕD̃)∗µE)({∞}) = 0,

and on the other hand, we compute

ordζ=ã[HÃ◦f = 0]
(

=
(2.9)

s #     ‰SGa(f) =
(2.7)

s(B1)∗(
#     ‰SGa)(fB1) =

(2.4)
s #       ‰SG∞(fB1) =

)
=

(2.9)
ordζ=∞[H

B̃2◦fB1

= 0] =
(6.2)

d− degSG
(f) =

(5.10)
for n = 1

d · νf (U #     ‰SGa).

Hence we also have s′ = (1− s)(1− νf (U #     ‰SGa)).

Consequently, we have not only s′ = 0 but also s = 1 since νf (U #     ‰SGa) < 1

(which is a consequence of (5.10)) in the case (ii) in Theorem A. Then we still

have the desired µ0 = ω0 = (πΓG
)∗νf in M1(P1(C))† =M1(ΓG)

† (also by (1.2)).
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Now the proof of Theorem B is complete.

Remark 6.1. The arguments in steps (c.1), (c.2), and (c.3) in the proof of Theo-

rem B relate the non-archimedean absolute value | · |r on L, which is an extension

of the trivial absolute value on C = kL, with the Euclidean absolute value | · | on
C and complement [5, Proof of Theorem B]. The final assertion in [5, Cor. 5.3],

which [5, Proof of Theorem B] is based on, was shown in [5] under the condition

(5.7′) (see also Remark 5.3).

§7. Examples

Pick a meromorphic family

f(z) = z2 + t−1z ∈ (O(D)[t−1])[z] (⊂ L[z])

of quadratic polynomials on P1(C). Then f−1(∞) = {∞} = E(f), and the case (ii)

(for a =∞) in Theorem A occurs (indeed, (SG, a] ∋ fn(SG) = SB(0,|t−2n−1 |r) →∞
as n→∞ since SG is represented by (the constant sequence of) the L-closed disk

OL = B(0, 1), f(0) = 0, |f(1)|r = |t−1|r (> 1), |f(t−1)|r = |t−2|r > |t−1|r, and
|f(z)|r = |z|2r on L \B(0, |t−1|r); see (3.1) for the absolute value | · |r on L). Since
f ′(z) = 2z + t−1 ∈ L[z], the point −t−1 + 1 ∈ U #       ‰SG∞ ∩ L is a (classical) repelling

fixed point of f (indeed f(−t−1+1) = −t−1+1 and |f ′(−t−1+1)|r = |t−1|r > 1),

which is in J(f) = supp νf , so we in particular have νf (U #       ‰SG∞) > 0. Hence (5.7′)

in Remark 5.3 is not the case for this f .

§8. A complement of Proposition 4.4

Let us continue to use the notation in Sections 3 and 4. Let

f ∈ (O(D)[t−1])(z) (⊂ L(z))

be a meromorphic family of rational functions on P1(C) of degree d > 1, and

suppose that f−1(SG) ̸= {SG} in P1(L). Recall that ΓG := {SG} and Γn :=

Γfn := {SG, fn(SG)} in H1
II(L) for every n ∈ N and that M1(ΓG)

† is identified

withM1(P1(C))† under the bijection S(ΓG)\{SG} = TSG
P1(L) ∼= P1(kL) = P1(C).

For every n ∈ N, pick a meromorphic family An ∈ (O(D)[t−1])(z) of Möbius

transformations on P1(C) such that (An ◦ fn)(SG) = SG in P1(L) (by Theorem

3.4), and set

A := A1.

We note that for any µ = (µC , µE) ∈ (M1(P1(C))†)2 satisfying the admissibility

(4.4) (for this A), we still have ωµ ∈ M1(Γf )
† (and ωµ(S(Γf ) \ F ) = 0 for some

countable subset F in S(Γf )).



106 Y. Okuyama

Conversely, for every ω ∈ M1(Γf )
† satisfying ω(S(Γf ) \ F ) = 0 for some

countable subset F in S(Γf ), there is a unique ordered pair

µω = (µω,C , µω,E) ∈
(
M1(P1(C))†

)2
= (M1(ΓG)

†)2

such that when Γf = ΓG (⇔ Ã = ϕÃ),{
µω,C := (πΓf ,ΓG

)∗ω ∈M1(ΓG)
† =M1(P1(C))†,

µω,E := Ã∗(πΓf ,ΓG
)∗ω = Ã∗µω,C ∈M1(ΓG)

† =M1(P1(C))†

and that when Γf ̸= ΓG, noting that {f(SG)} ⊂ Γf ⊂ H1
II(L),{

µω,C({x̃}) := ((πΓf ,ΓG
)∗ω)({U #     ‰SGx}) for every x̃ ∈ P1(kL) = P1(C),

µω,E({ỹ}) := ((πΓf ,{f(SG)})∗ω)({U(A−1)∗(
#     ‰SGy)}) for every ỹ ∈ P1(kL) = P1(C).

Then this ordered pair µω = (µω,C , µω,E) satisfies the admissibility (4.4) (for A)

(by Lemma 4.2 when Γf ̸= ΓG), and in turn we have both

(8.1) ωµω
= ω in M1(Γf )

† and µωµ
= µ in

(
M1(P1(C))†

)2
,

that is, the map (M1(P1(C))†)2 ∋ µ 7→ ωµ ∈M1(Γf )
† is bijective.

We conclude with the following complement of Proposition 4.4.

Proposition 8.1 (Cf. [5, Prop. 5.1 and Thm. 5.2]). There is the bijection{
(µC , µE) ∈

(
M1(P1(C))†

)2
: satisfying the admissibility (4.4) (for A) and

the degenerating f -balanced property (Ã ◦ f)∗µE = d · µC in M(P1)
}
∋ µ

7→ ωµ ∈
{
ω ∈M1(Γf )

† : satisfying ω(S(Γf ) \ F )= 0 for some countable subset F

in S(Γf ) and f
∗
Gω = d · (πΓf ,ΓG

)∗ω in M(ΓG)
}
,

the inverse of which is given by the map ω 7→ µω. This bijection induces the

bijection

∆†
0 ∋ µC 7→ (πΓn,ΓG

)∗(ω(µC ,µ
(n)
E )

) ∈ ∆†
f ,

where

∆†
0 :=

{
µC ∈M1(P1(C))† : for (any) n≫ 1, there is µ

(n)
E ∈M1(P1(C))†

such that (Ãn ◦ fn)∗µ(n)
E = d · µC

}
.

Proof. The former assertion follows from (8.1) and the computations in (a-1) and

(b-1) in the proof of Proposition 4.4. Then the latter assertion holds also by (4.6).
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