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A Note on Injective Factors with
Trivial Bicentralizer

by

Rui OKAYASU

Abstract

We give an alternative proof that an injective factor on a Hilbert space with trivial
bicentralizer is an infinite tensor product of factors of finte type I (ITPFI factor). Our
proof is given in parallel with each type of factor and it is based on the strategy of
Haagerup. As a consequence, the uniqueness theorem of injective factors, except for type
111y, follows from Araki—-Woods’ result.
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§1. Introduction

In Connes’ fundamental works in operator algebras, it is proved that injective
factors on a separable Hilbert space are hyperfinite. In [Col], injective factors
of types IIj, 11, and III) (A # 1) are classified. The remaining problem of the
uniqueness of the injective type III; factor is solved by Haagerup [Ha2] by proving
the so-called bicentralizer problem in [Co2].

Haagerup [Hal] also gives another proof of the first result mentioned above
without the automorphism group machinery of Connes. In Haagerup’s proof, semi-
discreteness rather than injectivity is applied. Popa [Po] gives a third approach to
this result in the case of type II;.

Alternative proofs of the uniqueness of injective factors of types II and IIT
are also given by Haagerup [Hal, Ha3, Ha4]. For each case, similar techniques are
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applied. One of the important notions is the trivial bicentralizer. It is essential in
the case of type III;, but the equivalent condition to a trivial bicentralizer is more
important than the original definition in [Ha4]|. This condition is similar to the
Dixmier property. This property is applied in the case of type II; [Hal], and its
relative version is applied in the case of type III, [Ha3]. Another important notion
is almost unitary equivalence in a Hilbert bimodule.

Moreover, in comparison with his papers [Hal, Ha3, Had], the uniqueness
of the injective type II; factor follows from Marray—von Neumann’s fundamen-
tal result of the uniqueness of the hyperfinite type II; factor. In the case of type
IIT,, it is directly proved that an injective type IIIy factor is isomorphic to the
Powers factor Ry. In the case of type III;, by using Connes—Woods’ character-
ization of ITPFI factors in [CW], it is proved that an injective type III; factor
is ITPFI. Therefore, the uniqueness of the injective type III; factor follows from
Araki-Woods’ result [AW]. These are proved by similar arguments, but they are
dependent on the choice of type of a given injective factor.

In this note, we give an alternative proof that an injective factor on a Hilbert
space with trivial bicentralizer is ITPFI. Our proof is given in parallel with each
type of factor and it is based on the strategy of Haagerup. One of our purposes
is to unify his proof. Here we remark that there exists an injective type Il fac-
tor which is not ITPFI. However, the assumption of a trivial bicentralizer in the
above assertion excludes the case of type IIIy from consideration. Namely, every
type IIly factor has a non-trivial bicentralizer. This fact may be folklore among
specialists, but we do not find it in the literature. Hence we also give its proof
in this note. To do so, we define the bicentralizer for a general weight by using
the free ultrafilter. This is inspired by Houdayer—Isono’s paper [HI|. The start-
ing point is the semidiscreteness, which is equivalent to the injectivity by the
work of Wassermann [Was|. To achieve the above assertion, we need to general-
ize Haagerup’s works. One aim is to obtain an approximate factorization related
to the modular automorphism from the semidiscreteness. In the case of type III,
it relies on the uniqueness of the injective type II; factor [Ha3, Had|. However,
we independently give such an approximate factorization for an arbitrary injec-
tive von Neumann algebra by combining a number of techniques in [Hal]. The
other aim is the almost unitary equivalence in Hilbert bimodules established in
[Ha3], which is a generalization of [Hal]. However, as in the case of [Had], we
require a further generalization. Finally, based on Haagerup’s approach, we give
a proof of the above assertion by using Connes—Woods’ characterization of ITPFI
factors.
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§2. Semidiscreteness with the modular automorphisms

Let M be a von Neumann algebra. We denote by U(M) the unitary group of

M. For an fn (faithful normal) state ¢, we denote by A, (resp. J,) the modular

operator (resp. the modular conjugation operator) associated with ¢. We put

r¥r + xx*
2

We denote by L?(M,¢) the standard form for M with the cyclic unit vector &,
which becomes a normal M—-M bimodule, where the left and right actions are

1/2
|||, = p(z*2)'/?  and ||a:H§D = <p( ) for x € M.

given by
alx = aJyaz*J,& for a,x € M and & € L*(M, ).
The centralizer of ¢ is denoted by M,,. For m € N, we denote by tr,,, the normalized
tracial state and by Tr,, the canonical trace with Tr,,(1) = m on the m X m matrix
algebra M,,,.
If M is semidiscrete, then the identity map idp; on M has an approximate
factorization through matrix algebras M, ),

id
M a M,
N bt
N s
S > © r
N
A N P e A
M)

where (Sy) and (7)) are nets of ucp (unital completely positive) maps. The purpose
of this section is to show that for a given fn state p on M and a positive number
§ > 0, one can choose an approximation factorization such that, moreover,

poly =1y, YroSy=¢

and
|of o Ty — Thool™|| < é|t| forteR,
where () is a net of fn states on M, (x).

To do so, we will prepare some lemmas, which are essentially proved in [Hal,
Ha3, Had]. The first lemma is given in [Hal].

Lemma 2.1 ([Hal, Lem. 3.1)). Let 7 be a tracial state on M, and T: M,, - M
be a faithful ucp map. Put

Y(x) =10T(x) forx € My,
and let h € M,,, be the positive element for which

W(x) = trp(zh)  for x € M,,.
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Then there exists a unique ucp map S: M — M, such that oS =71 and
tr (W28 (y)hY?) = 7(T(x)*y) forx € M,,, y € M.

Moreover,
1T (x)||? < trp(z*h22h?)  for x € M,,.

The second lemma is nothing but [Hal, Lem. 3.2]. However, we necessarily
sketch a proof to use it in Remark 2.3.

Lemma 2.2 ([Hal, Lem. 3.2]). Let ¢ be a state on M, of the form
P(x) = try,(xh) for x € M,

where h has strictly positive rational eigenvalues. Then there exist ucp maps
S: M, =M, and T': M, — M, such that tr,0S =1, YoT =tr, and

|z —ToS@)|, < ||h/%z —azh'/?||y  for x € M,,.

i
[
Proof. We may assume that h is an m x m diagonal matrix with strictly positive
rational eigenvalues \q,..., A,,. Choose positive integers p1,...,Ppm, p such that

=P for 1 <i<m.

p

m
Zpi =D
i=1

For 1 <4,5 <'m, we define the p; x p; matrix Fj; as

3

Note that

[Fijli =0 for 1 <k <p;, 1 <1<pj,
and the p X p matrix f;; with block matrix as
[fij]kl = 5ik5leij for 1 S k,l S m.

Let (e;5) be the matrix units for M,,,. We define the ucp map S: M,, — M, as

m m
S( E zijeij> = E Iijfij-
ij=1 ij=1

Then we have

tr,0S(z) = ¢(z) for x € M,,.
Moreover, S is faithful. By Lemma 2.1, there exists a unique ucp map 7: M, —
M,,, such that

tr, (2R 2T (y)hY?) = tr,(S(x)*y)  for z € M, y € M,
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In particular, we have
YoT(y) =trp(y) forye M,
Moreover, for 1 < k,I < m, we have
tr, (ef R 2T (y)h'/?) = try(S(ew) y) = try(fiyy) for y € M,

Hence the (k,)th element of the m x m matrix h'/2T(y)h'/? is mtr,(fy). This
implies that the (k,[)th element of the m x m matrix T'(y) is

mA N () = e e (Flay).
Note that the (¢, j)th element of the m x m matrix T 0 S(e;;) = T(fi;) is
(pips)~"/* min{pi, p;}

and all other elements of the matrix are zero. Hence

ToS(ei;) = (pip;)~ Y/ min{p;, p; tei;.
Therefore we can obtain

(lz = To S(x)|5)> < [|h"/ 22 — xh'/?|]3. O
Remark 2.3. Let k be an m x m diagonal matrix with eigenvalues i, ..., ttm.

Let p be the positive integer and T the ucp map as in the proof of Lemma 2.2. We
define a p x p diagonal matrix k as

k= Z/L’LFH S Mp.

i=1

Then we have
kKT(y) = T(ky) and T(y)k =T(yk) forye M,,.
The third lemma is also given in [Hal] in the case where ¢ is tracial.

Lemma 2.4 (Cf. [Hal, Lem. 3.3]). Let T: M,, — M be a ucp map. For e > 0,
there exists a ucp map T': M, = M such that ||T —T'|| < e and

poT'(x) = trp(zh’)  for z € M,
where h' € MY, has strictly positive rational eigenvalues.

Now we prove the main theorem in this section.
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Theorem 2.5 (Cf. [Ha4, Thm. 3.1]). If M is injective, then for any uq,...,u, €
U(M), any e > 0 and 6 > 0, there exist a ucp map T: M,,, = M and vy,...,v, €
UM,,) such that v = poT is an fn state on M,,,, and
lof oT —Too?| <dlt| forteR,
1T (vk) —ugll, <e  forl<k<n.
Proof. Step 0. The first part is the same as in [Had, Lem. 3.4]. Let N := M X, R.
We denote by A?(t) the implementing unitary for of, and by 6% the dual action

of 0%. Then there exists an fns (faithful normal semifinite) operator-valued weight
P: Nt — M™T, which is given by

P(y) = / 0% (y)ds forye NT.
R
Let @ := ¢ o P be the dual weight of ¢. Recall that N has an fns trace 7 such that

Tof¥ =e*r forseR.

Let a be the positive self-adjoint operator affiliated with N such that exp(ita) =
A?(t) for t € R. Then 7 is given by

Put e, = 1jg,q)(a) for a > 0. Thanks to [Ha4, Lem. 3.4], we have P(e,) = al.
Hence ¢(e,) = a and 7(ey) = 1 — e~ * < co. By using [Ha4, Lem. 3.4] again, we
obtain
lim HéP(eam‘eQ) - x” =0 forxe M.

a—o0 ©
Let uy,...,u, €U(M), e >0 and 6 > 0 be given. Take £ > 0 such that
(262 ¢ <.
Then we choose &g, e1,€9,e3 > 0 such that 1 > 3 and
85§/2 +egter+eg<e
Take o > 0 such that

1
HfP(eaukea) — ukH <gy forl1<k<n.
« ®
We define the ucp map Ty = o~ P|c,_ ne, : €aNeo — M and the fn state ¢y on
eqNe, as

1 1_
Yo = (POTO = —@OP(ea'ea) = *(P(ea'ea)
« «
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Set 1 = equieq € eaNe, for 1 <k < n. Then |lzx| <1 and
| To(zr) — ukl|l, <eo forl <k <mn.

Moreover, we have
O'fOTOZTOOO'fO for t € R.
We define the fn tracial state 7, on e, Ne, as

1

— —a ).
Ta + 1 Y (p(e €a )
Set p
1—e @
ho = o _7°¢ eeq
dTy o

and @ = 74 (ho - ). Note that

1

sp(ho) C [¢™7,¢] for some ¢ > 1.

Step 1. The second part is similar to [Ha4, Thm. 3.1]. Take ¢’ > 0 with §' < &;
such that if positive elements a, b with sp(a),sp(b) C [¢71,c] and ||a — b|| < &,
then ||log(a) — log(b)|| < §/2.

Choose (2¢)™! > §; > 0 such that 3¢?6; < §’. Then take A € Q such that
0<A<L,A'—1<é&.Thenl—A=AA"1—1)<4d. Set

J=max{j e N| A7/ < c}.

Since A=/ < cand ¢ < )\_(JH), we have ¢! < A/ and A/ < ¢ 1. By using the
spectral decomposition of hg, we can choose projections

€J+1,€Jy.--,€1,€0,€-1,...,E6—J
with 37 ; ;- ;. €; =1 such that

ho= > Nej<hg and |[ho— hfl < cdr.
—J<G<J+1

Put C = 7,(hy) <1 and hy :== C~th{. Since 1 — C' = 1,(hg — hj) < cd1, we have
1<Ct<(1—esy) ™t
Then

lho — hal| < [lho — holl + [1h — hal|
< e+ (C = D]
< (14+2¢)ed; < 3c¢%6; < 6.
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Hence we have 5

Hog(ho) —log(ha)l| < 3
Put the fn state @1 == 74(h1 - ) on e, Ne,. We define a cp map T): e, Ne, — M
as

To(x) = To(b'/2xbY/?)  for & € exNeg,
where b := hy'hy < 1. Then Tj(1) = Tp(b) < 1 and
poTi(z) = wo(bl/szlﬂ) = Ta(hobl/szl/Q) = 71,(hox) for z € eaNe,.

Next we define a cp map T7: e,Ne, — M as

Ta((P1 = ho)x)

Ty (z) = Tj(x) + Tolhir — )

(1—-Ty(1)) for x € eqaNeg.
Then T7(1) =1 and
poTi(x) = To(h1z) = p1(x) for z € eaNeg,.

Moreover,

[To(x) = Ty ()]

IN

llz — b/ 22b' 2] + (|1~ 0] ||
1
= S+ b2l = 72) + (1= /)2 (1 +b1/2) | + (|1 = 0] 1]

(1402 ] 11 =" + 11 = bl |
< 30251||x||.

IN

Hence
HTO — T1|| < 362(51 <d < £1.
Therefore,
171 (zk) — uklle < (|71 (k) — To(@k)lle + [ To(zk) — uklly <e1+eo for 1 <k <n.

Since of o Ty = T} oof° and

i i 1)
[k — || < [[log(ho) — log(ha)]| [t| < 2 1tl;

we have
lof oTi(x) = Tyoof* ()| = I T1(0f* (z) — o7 (x))]]
< lof®(z) = of* ()|
= [|hgzhg™ — hi'why™|
< olt] [|=[]-
Hence

HO’fOTl—TlonlH S(ﬂt‘ for t € R.
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Step 2. The next part is similar to [Ha3, Lem. 5.3]. For j € N, we define the linear

map
Ej:eqNey — Nj = {x € eqNey | 0f* (z) = \'z, t € R}
as
1 o
Ej(z) = t—/ A\"tgP () dt  for x € eqNeg,
0Jo
where tg := —2m/log A. For ¢ € N, we define the ucp map ~, on e, Ne, as
qg—1 | |
ve(x) = Z ( — L)E](x) for z € e, Neg.
j=—at1 ¢

By [Ha3, Lem. 5.2], 1 07, = ¢1 and ||y4(z) — ||, = 0 (¢ = o0) for x € eqNeg,.
Choose g € N such that

||7q(1'k) - 1’k||¢1 <eg forl1<k<n.
Let (ers) be the matrix units for M,. We define the fn state 1), on M, as
1/))‘ = trq<hA : )7

where
q

q
hy = Z)\Terr and A\, = q(z )\S)*l)f.

r=1 s=1
Note that
U;ﬁ/\ (eTS) — h?(ers)h;\zt _ )\i(r_s)ters.

In particular, o, * =id. Put the fn state x :== ¢1 ® 1) on eqNey, @ M. Since
X (2 ® ers) = NP1 (1) @ e,
the centralizer N, = (eqNeqy ® My), is given by
N, = {2375:1 Trs ® ers € €aNeq @My | 2rs € No—y }.
We define ucp maps Sz: eaNeq —+ Ny and T5: Ny — eqNe, as

52(3:) = Z Es—r(x) & €rs,

r,s=1
q q
1
Ty E Trs @ €rg | = — E Lys-
r,s=1 q r,s=1

Since T5 0 Sy = 4, we have

|T5 0 Sy (zk) — apllp, <e2 forl <k <mn.
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Put the state @2 = p1 075 on N,. Then @30S, = ¢ 07, = ¢1. For z,, €
N;_,, we have

q 1 q
902< Z Trs @ ers) = - Z(pl(xm")'
r=1

r,s=1 q =
Hence
wa(y) = (1 @ trg)(y) for y € Ny CeqNeq ® M,.

Namely ¢ is the restriction of ¢; ® try on NV, . Hence we have
of?(y) = (of* @id)(y) fory € N,.
By definition, we have
{208y =Sy00f" and of' 0Ty ="Thoo!>.
Let 7, be the restriction of x on Ny, which is tracial. Then

T (y) = (p1 @A) (y) = (p1 @ trg) (1 @ hy)y) for y € Ny.
Since 1 ® hy € Ny, we have
dpa

2 —1@hit
dry ©h

and

dpa\ it [dipay —it L ‘
P2 _ — 7 it
of*(y) = (TTX) y(—dTX) (1o h iy o hl) forye Ny, ¢ €R.

Step 3. In this step we use the semidiscreteness of M. Since ||Sa2(zx)| < 1 for
1 <k <n, we have

1 i
So(zr) = i(wkl + wi2) + i(wkS + W)
for some unitaries wy;. Put

W1 :ng;l)@e,«s €Ny, CeaNeg @M, for1<k<n,1<1<4.

Set ¢y = max{1, ||l ® hy'||} > 1. Since e, Ne, is semidiscrete, we can take ucp
maps S3: eaNeq — M, and T3: M, = e, Ne, such that

|75 0 S5 (w kD) — wffi””w <2 for1 <k<n,1<1<4,1<rs<gq
C)\\/a

Here, by using Lemma 2.4, we may also assume that T3 satisfies

p10T3(x) = trp(hyx) for € M,
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where hj € M; has strictly positive rational eigenvalues. Let E, be the x-invariant
conditional expectation from e,Ne, ® M, onto IV, , which is given by

q q
Ex( Z Trs ® 67"5) = Z Es—r(xrs) ® ers.
r,s=1 r,s=1
Set S5 = S5 @ idu, and T4" := Ty @ idys,. Then we have
&
1By o T3 o 857 () = wiallr, < >
and
ITS 0 S5 (Sa(wr)) — Sa(wn) | protr, < 2.

Step 4. Let hg :== h% ® hy € M, ® M, = M, be the diagonal matrix with strictly
positive rational eigenvalues. We define

p3 =Ty 0ol 0T3(q).
Then
3 = trpq(hs - ).
By Lemma 2.2, there exist ucp maps Sy: Mpq — M, and Ty: M,,, — M, such
that g 0Ty = try,, tr, 0 Sy = 3 and

I Ty 0 Sa(y) — yll%, < llyhs> — hyPylls for y € My,
Set Y1 = Séq)(wkl) € M,,. By Lemma 2.1, we have
trpg (yihs *yrihs’®) > 1By o TS (yn) |12,
> ([wkllr, = By 0 T4 0 S5 (wit) — wha 7, )?

2 2
><175—3) >1—§.

cA 2
Hence
I = a1 < 2 = 2ty i i) < 2.
Therefore,
1/2
| Ty 0 Ss(yrt) — ykl”sﬁos < 2\8/3@% forishsmlsi=1
Set

1 7
Y = §(yk1 + yk2) + i(yk3 +yea) = S50 0 Sy(ay) €M, for 1 <k <n.

Then
1/2

4es
| Ty 0 Sa(yr) — kagog < NGy for 1 <k <n.
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Step 5. Set ky =1® h;l €M, ® My = M,,. The m x m diagonal matrix ky is
defined in Remark 2.3. We define an fn state ¢ on M, as
V= try, (k- ).
Now we define a ucp map 7: Ml,,, - M as
T=TioThoE, oTiVoTy.
Then, by Remark 2.3, for z € M,,,, we have
©oT(z) = poTi0Tyo0E, o TSV 0 Ty(z)
= p1oT0 By o T3" o Ty(2)
= py0 By o Ti o Ty(2)
= (1@ hy ' (By o T{" o T)(2))
= 1,0 By o T4 (kaTu(2))
= 7y 0 By o Ts¥ o Ty(k»2)
= @30 Ty(krz)
= tr(Fx2) = 6(2).
Hence ¢ = ¢poT and
ol (z) = Eilzk ™ for z € M,,.
By Remark 2.3, for z € M,,, we have
0¥ 0 By o TSV 0 Ty(2) = 1 @ hy " (Ey o TSV 0 Ty(2))1 @ hi
= By o Ty ((Tu()h5 ™)
= By o T o Ty(k{ 2k ™)
=B, 0T\ 0T o0 (2).
Therefore we have
lof oT —Toc?| <é|t| forteR.
Put z, = Su(yr) = S4OS§Q) 0Ss(z) € M, for 1 < k < n. By the Kadison—
Schwarz inequality we have
1By o T3 0 Ta(er) — Ex o T4 (i), < IkallI7a(z6) — il

< 2¢\||Ta(zk) — kaEon
S 3253.
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Hence
IEy o Ts% o Ty (i) — Sa(ar) |,
< | Eyx o T3 0 Ty(z1) — Ex o Ts (i) |z + 1By 0 To” (k) — Ex(Sa(x)) |
< V32e? 4 | T8 0 55 (Sa (i) — Sa(k) | ir,
< 65;,/2 +2e3 < 85;,/2.
Moreover,
Ty 0 To(By o TS 0 Ty(2k) — Sa(ax))||2 < | By 0 T3 0 Tu(21,) — Sals)|2,
< 6453.

Similarly, we have
IT1(T2 0 Sa(xx) — 2112 < | T2 0 Sa(arw) — 2|2, < 3.
Therefore,
1T (%) — k| < [T 0 Ta(By 0 TE? 0 T (k) — Sa (i)l

+ | T1(Ty 0 So(wr) — k)l + IT1(zx) — ukll,

< 85§/2+62+51 +eg<e.
By the polar decomposition, we obtain unitaries vy in M, such that
z = vg|zk| for 1 <k <mn.

Then
2|2 > 1T ()12 > 1 — 2¢'.
Since |z;]| <1 and |2]* + (1 — |zx|)? < 1, we have
ok — zillZ, = 11— |2 II7,
<1zl 113
< 2¢'.

Therefore,

1T (vk) = ulle < T (ox = z)lle + 1T (21) — urlly
< llvk — 2lly + ¢’
< (2?2 4€ <e. O
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Remark 2.6. In Theorem 2.5 we obtain the ucp map 7: M,, — M with ¢ =
o T such that hy has strictly positive rational eigenvalues, where ¢ = tr,, (hy - ).

Moreover, in Theorem 2.5 we assume M is a finite von Neumann algebra
with an fn tracial state ¢ = 7. Then we can choose the ucp map 7T satisfying
70T = tr,,. This fact is exactly [Hal, Lem. 3.4]. Indeed, in the proof of Theorem
2.5, we omit Steps 0, 1 and 2. In Step 3, we set M = e, Neq = Ny, T = o1,
up = S2(zx) and g = 1. Then we obtain ucp maps So: M — M, and Tp: M, - M
such that

|72 0 So(ug) — ugl|l- <es for 1 <k <mn.

In Step 4, we set 3 = 70Ty and y, = S2(uy). Then we have ucp maps Ss: M, —
M,,, and T3: M,, — M), such that

1750 S5(y0) = willgs < 25/ for 1<k <n.
In Step 5, if we define T := Ty o T3 and zx = S3(yx), then we have 70T = tr,, and
1T (21) — ugllr <es+ 2511,,/2 for 1 <k <n.

Next we consider the case where M is a type III factor with 0 < A < 1 and
an fn state ¢ on M satisfies of, = id with tg = —2m/log X\. Then we can choose
the ucp map T': M,,, - M with ¢ = ¢ oT = tr,,(hy - ) such that

M/de € {A\" |n€Z} for A1, A2 € sp(hy).

This fact is weaker than [Ha3, Thm. 3.4], but it is sufficient for our purpose. By
identifying Z with R/tyZ,

Nog =M Xgze (R/toZ)

is generated by 7§ (x) and A\§ (t), where

for ¢ € L*(R/toZ, H,). By [HS, Prop. 5.6], we have N ~ Ny ® L>(0,7) by
identifying

T (x) =7f(x)®1,

N(t) = A5 (t) @ m(e™),
where 79 = —log A and m(e?) is the multiplication operator

(m(e)€)(v) = e"7E(y)  for & € L*(0,70).
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We denote the canonical traces by 79 and 7, the dual weights by g and @, on Ny
and N, respectively. Let h, = dgo/dry and k, = dp/dr. Then

ko, = hy @ m(e?).

Note that AJ(t+to) = A (¢) for t € R and hil = A{(t). Hence sp(hy) = {A\" }nezU
{0}. Therefore we have

1—e@

ho = (hy @m(e?))eq.

In Step 1, if A € Q, then we can take p € QQ such that p is sufficiently close to A

and define
1—e ¢
hy = T(hfp ®@m(e”))eq

satisfying [|ho — h1|| < 0’ and sp(hl,) C {§"}nez U {0}. Therefore, by the proof
of Theorem 2.5, we have the ucp map 7: M,,, — M with ¢ = poT such that

¢ = try,(k, - ). Then, by small perturbation of 7', we can obtain 7" such that
=0T =try(ky-).

§3. The bicentralizer of a type I1Iy factor

Let M be a von Neumann algebra. We denote by W(M) and Wy (M) the set of
ns (normal semifinite) weights and fns (faithful normal semifinite) weights on M,
respectively. For ¢ € W(M), we define

n, ={zeM]|p(x'r) <oo}
and my, = nin,. Let w € B(N) \ N be a free ultrafilter on N.

Definition 3.1 ([HI, Def. 3.1]). For an fn state ¢ on M, we define the asymptotic
centralizer and w-asymptotic centralizer of ¢ as

AC(M, p) = {(xn)n €L (N, M) | limy, s o0 [|[Znp — @2n|| = 0}»
AC, (M, p) = {(xn)n € L°(N, M) | limy . [|[Tnp — py]| = 0}7

respectively. We also define the bicentralizer and w-bicentralizer of ¢ as

B(M,p) = {a € M |lim,_, |laz, — znall, =0 for (z,), € AC, (M, <p)},
B,(M,p) = {a € M | lim,_,, |laz, — zpall, =0 for (z,,), € AC, (M, <p)},

respectively.
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We define

Zo(M) = {(2n)n € L°(M) | z, — 0 %-strongly as n — w},
{(wn)n € L(M) | (xn)nTu(M) C L,(M)
and Z,(M)(zp)n C T, (M) }.

Then the multiplier algebra M® (M) is a C*-algebra and Z,(M) C M¥(M) is a
norm closed two-sided ideal. Following [Oc], we define the ultrapower von Neumann
algebra M*¥ = M¥(M)/Z,(M), which is indeed well known to be a von Neumann
algebra.

Definition 3.2 ([AH, Def. 4.25]). For ¢ € W(M), we define ¢* € W(M) as
Y=ok,
where

E: M* > (z,)* — wot-limz, € M

n—w
is the canonical fn conditional expectation and where wot-lim is the limit with
respect to the weak operator topology. If ¢ is faithful, then so is ¢“.

The following fact induces us to define the bicentralizer of a general weight.
Proposition 3.3 ([HI, Props. 3.2, 3.3]). For an fn state p on M, we have
B(M7 @) = Bw(M7 <P) = [(Mw)sa“’], nM.

In particular, the bicentralizer of ¢ does not depend on the choice of a free ultrafilter
we BN)\N.

Definition 3.4. For any ¢ € Wy(M ), we define the w-bicentralizer of ¢ as
Bw(Ma (P) = [(Mw)sa“’]/ N M.

Remark 3.5. Let ¢ € Wy(M). Does B, (M, ) depend on the choice of a free
ultrafilter w € B(N) \ N7 We give a partial answer to this question at the end of
this section.

Lemma 3.6. If ¢ € Wy(M) is lacunary, then we have
By(M,¢) > Z(My).
Proof. Since (M%)« = (My)“ by [AH, Prop. 4.27], we have

Bu(M, @) = [(M¥)pe]' N M = [(My)) N M > Z(M,). H
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Remark 3.7. If M is a type III factor with 0 < A < 1 and ¢ € Wy(M) is
lacunary, then by [Tak, Lem. XII.4.7] we have

Bu(M,¢) = [(M*)o) 0 M = [(M,)*} N M C M, M = Z(M,),
and therefore
By,(M,p) = Z(M,).

The following arguments are based on the work of Connes-Takesaki [CT].
From now on, we assume that M is a o-finite type III) factor for 0 < A < 1 and
@ € Wy(M) is a lacunary weight of infinite multiplicity. Then M, is a type II
von Neumann algebra, and there exists a unitary U € M such that

UMyU" = My, @oAd(U) < Aoy, 0< Ao <1

MZMQ(, NQZ, GZAd(U”M(p

Moreover, 7 = |y, is an fns trace on M. For m € Z, there exists a non-singular
positive self-adjoint operator p,, affiliated to Z(A,) such that

(1) o™ =,

( ) Pmtn = Pm0~ m(pn)
(3) of (U™) =U"pyy,

(4) pm < p1 <1form >0,
(5) pm = p—1>1for m <0.

We simply write p = p;.

Remark 3.8. Let u,v € M be unitaries and x € M with the polar decomposition
x = w|z|. If uz = zv, then uw = wv, u(ww*) = (ww*)u and v(w*w) = (W*w)v.

Lemma 3.9 (Cf. [CT, §3.2, Lem. 2.6]). Suppose that v; = @p,; with h; € M;
satisfying

ps(h;) <h; <1 forj=1,2.
It 5 = (W), for a partial isometry u € M with uwu* = s(¥y) and v u = s(¢§),
then u € (M*%)p0 = (My)“.

Proof. The proof is similar to that of [Tak, Lem. XII.4.14]. Set
k;j == p(1 —s(h;))+h; forj=1,2.
Then p < k; < 1. Note that
s(7) = s(ih;) = s(h;) € My,
by [Tak, Lem. XII1.4.13].
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By [Tak, Lem. XII.4.3], we have

ukl = us(hg)kit = uhil = w(DYY: Dg®)y = uu* (DY : Dp®)of (u)

= s(h)hi'of (u) = ki's(hi)of (u) = ki'of (u).

Therefore we obtain
ukd = kitafw (u) forteRR.
By [AH, Prop. 6.23], M* is canonically isomorphic to (M,)¥ Xg Z. Hence we
choose a sequence (z(™)) in (My)* = (M%)ge such that u = Y, z™U™ in
M*®. Now we have
uky = 2Tk =Y aMem kU™
meZ meZ

and

Mot (w) =k of @™Um) = 3 KUl = Y kM (o) U

meZ mEZ meEZ

By the uniqueness of the expansion, we have
KL (pit) = ™0™ ().

Hence
k,zitx(m) — .’L‘(m)em(kétpr_nit).

For each m € Z, by Remark 3.8 we may and do assume that w := (™) is a partial
isometry in (M,)“ such that w*w commutes with 0™ (k¥ p,."*) and ww* commutes
with k%, Then
Eitww* = w™ (k¥ p®)w*.
If m > 0, then p,, < p < ko. Hence H == 0™ (kop,,}) > 1and 0 < K := k; < 1.
Then the functions

{z€C|Im(z) >0} 3z wH*w*

and
{z€C|Im(z) <0} 3 2z — K*ww*

are analytic and bounded, and H*ww* = wK"w* for t € R. Hence the func-
tion z — K*ww* can be extended to a bounded entire function, which must be
constant by Liouville’s theorem. Therefore, ww* = ww*k; and ww*(1 — k1) = 0.
Since 1 — k; is non-singular, we have ww* = 0. Similarly, we can show the case
m < 0. O
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Lemma 3.10 (Cf. [Tak, Lem. XII.4.14]). Let v € Wo(M). If ¢ = ¢, for some
h € M} with ps(h) < h < 1, then

(M“)ww - (MW)W = (M«o)w-

Proof. If u € (M¥)y is a partial isometry such that uu* = s(¢*) = u*u, then
Y = ¢¢. By Lemma 3.9, we have u € (M¥)g0 = (M,)“. O

Theorem 3.11. If M is a type Iy factor with separable prequel, then
B,(M,y) #C1

for any ¢ € Wo(M). In particular,
B(M,vy) #C1

for any fn state ¢ on M.

Proof. By [Tak, Thm. XIL.4.10], there exists h € M} satisfying ps(h) < h < 1
such that ¥ ~ ¢y, i.e., there exists an isometry w € M such that 1 = s(v) = u*u,
s(pn) = wu* and Y (z) = @p(uzu®) for x € M.

By Lemma 3.10 we have

(M*) gy C (M¥) e = (M)~
If a € My« satisfies uau* = 0, then
0 = ¢} (ua*u*uau™) = Y (a*a).

Since ¢ is faithful, we have a = 0. Hence the adjoint map Ad(u): My« — Mye
is an injective normal *-homomorphism. Since

u(M®)ywu™ C (MY)pe C (MY)pw
we have
Bu(M, ) = [(M*)gu]' N M C [(M¥)ge]" N M C [u(M*)ywu’] N M.
By Lemma 3.6 we have
Z(My) C By(M, @) C [u(M¥)yeu*] N M.
Let a € Z(M,). For x € (M¥)y«, since u is an isometry, we have
wraur = v a(uzu®)u = u* (uzu*)au = zu*au.

Hence u*au € B, (M, ).
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Now suppose that v*au € Cl1 for any a € Z(M,), i.e., u*au = 1 for some
v € C. Recall that Z(M,) = M, N M by [Tak, Cor. XIL.4.17]. Then ae = e,
because e = uu* = s(h) € M,. Since are = zae = yze for any = € M,, we
have ac(e) = vyc(e), where c(e) is the central support of e in M,. Therefore we
have Z(M,)c(e) = Cc(e), which contradicts the fact that Z(M,,) is non-atomic

by [Tak, Cor. XII.3.15]. Hence it follows that B, (M, ) # C1. O

Next we discuss a von Neumann algebra M with trivial bicentralizer, except
for type I1I;.

Proposition 3.12. Let ¢ be an fn state on M with B(M,v) = C1.

(1) If M is a semifinite von Neumann algebra, then M is finite and ¢ is tracial.
(2) If M is a type III factor with 0 < X < 1, then O'Z/; = id, where to = —27/log \.

Proof. (1) Assume M is a semifinite von Neumann algebra with an fns trace 7.
Then there exists a non-singular positive self-adjoint operator h affiliated with M,
such that ¢ = 75, by [Tak, Thm. VIII.3.14]. Hence

o (x) = h''zh™" forteR, z e M.

For (z,,)¥ € (M%)yw, thanks to [AH, Thm. 4.1], we have

hit(xn)wh_it = (Uzp(xn))w = U;p (20)%) = (zn)*.

Hence
Rt € [((M*)ye] "M = B(M,) = Cl.

Therefore we have UZ/’ = id, which means that v is tracial.

(2) We assume that M is a type III factor with 0 < A < 1. Let ¢ € Wy(M) be
a lacunary weight with infinite multiplicity. By [Tak, Cor. XII.4.10], there exist
h € M} and an isometry u € M such that 1 = s(¢)) = u*u, s(¢p) = uu* and
P(z) = op(uzu*) for v € M. By Lemma 3.10 we have

(M¥)ge C (M*) g0 = (My)*.
By the proof of Theorem 3.11,

u(M®)pou™ C (M) ge.

Hence we obtain

he[(M*)e] MM C [u(M®)yeu®] N M.
Then
uw*hu € [(M¥)ye]) N M = B,(M,v) = C1.
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Therefore, u*hu = ~1 for some constant . Since h = wu*huu* = yuux
for v € M we have

P(x) = op(uzu™) = p(huzu™) = p(uuhuzu™) = yo(uzu™).
By [Tak, Lem. XII.4.3],
(Dy: D)y = u*(Dyp: D)ol (u) = v u*of (u) = u;.

Then
(w)of (x)of (u*)u = u*of (uzu*)u.
Therefore,

02{; (z) = u"of (uru")u = u* (uru*)u = .

129

vs(h),

O

Finally we discuss the problem in Remark 3.5. Recall that ¢ € Wy(M) is

strictly semifinite if its restriction to M, is also semifinite.

Proposition 3.13. If ¢ € Wy(M) is strictly semifinite, then B, (M, ) does not

depend on the choice of a free ultrafilter w € BN\ N.
Proof. We claim that a € B.,(M, ¢) = [(M¥)~]" N M if and only if
ac () ()] M.

e€eM,
p(e)<oo

Assume that @ € M commutes with any element in (M), for any projection

e € M, with ¢(e) < oco. Since ¢ is strictly semifinite, there exists an orthogonal

family (ex)rer of projections in M, with sum 1 such that ¢(ey) < co. Put pp =
> rer ek for a finite subset F' € I. Then M, > pr /1 and ¢p(pr) < oo. Let

x € (M?)pw. Then praprp € (M )ew . Hence

pr(ax)pr = a(prrpr) = (prepr)a = pr(za)pr

and so ax = za, namely a € B, (M, p).

Conversely, let a € B, (M, ). Let e € M, be a projection with ¢p(e) < oo.

Since (M)pe C (M®) 4w, we have ax = xa for x € (M),

Moreover,
[(Mg)wtf]l NM = ([(M:)%f]/ N Me) D M.
Indeed, let a € [(M),«]" N M. Since e € (M) ,«, we have

a=eae+eaet € ([(ME)pe] NM.) & M,..
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Conversely, let a = ay +az € ([((Mg)pw] N M) @ M,1. For any x € (M)pw, we
have xay = azr = 0. Hence ax = za, and so a € [(M{) =] N M.

By Proposition 3.3, we have

[(ME)ge]" N Me = Byy(Me,¢¢) = B(Me, ¢¢).

Therefore,
Bw(M,QO) = m B(M&QD:)EBMGLa
ecM,
p(e)<oo
which means independence in the choice of a free ultrafilter w. O

8§4. Almost unitary equivalence

In this section we generalize the notion of J-relatedness for two n-tuples of unit
vectors in a Hilbert bimodule. In [Ha4, Rem. 2.9], this is stated, but there is no
proof, and so we give details.

Throughout this section, M is a von Neumann algebra, and H is a Hilbert
M-bimodule, i.e., H is a Hilbert space with left and right actions

(#,8) = 26, (2,§) = &

such that the above maps are bilinear and (x€)y = x(€y) for z,y € M, £ € H.
Moreover,
r— Ly, x+— R,

are a normal x-homomorphism and x-antihomomorphism, respectively, where

L., =z and R,{ =E&xforx e M, € H.

Definition 4.1 (Cf. [Ha3, Def. 2.1]). Two n-tuples (&1,...,&,) and (91,...,7)
of unit vectors in H are called almost §-related if, for any € > 0, there exist
ai,...,ap, € M such that for 1 <k <mn,

(al) 11 =325y ajay)&ell < e (1 =320 aja;)nell <&
(a2) [16x(1 =225 ajay)ll <&, k(1 = 325 ajay)|| <&
(b1) [[(X =320y ajaf)8ell <e, (11— 325 aja5)mell <&
(b2) [I€k(1 = 325y aja))ll <& llme(1 =325, aja5)ll <&
(c) 35— 1||aj§k—nkajll2 <9.

Remark 4.2. In this case, we can easily check that

(d) X0, llagnke — &rajl|* < 26 for 1 <k <n.
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Indeed, for 6/4 > ¢ > 0, we take a1,...,a, € M satistying (al), (a2), (bl), (b2)
and (c). Then we have

P p
> llajme = &azl® = lajmll® + ll€xaj|® — 2 Re(ajm, éxaf)
=1

j=1

(o) (ron(1-F0)

Jj=1

+ <77ka77kzaj j> + <£ka£k<za;aj - 1)>
=1

+ <(1 - Za aj>£k7£k> + <Z a;aj§k7£k>
J=1

2Re<aj§k,77kaj>

<de+ Z lajéx — mrag||* < 26.
j=1

Remark 4.3. If two n-tuples (&1,...,&,) and (n1,...,m,) are almost d-related,

then for each € > 0, we can choose ay,...,a, such that for 1 <k < n,
(@'1) [[(1 =227y ajag)éll < 2e, [(1 = 2271 ajag)mell < 2e;

(a'2) [|€x(1 - §-’=1 ajay)|l < 2e, (1 = 225 ajay)| < 2e;

(b)) 10 =328 agai)€ell < 2e, 11— 328, azaf)me]l < 2

(

)
)
)
b'2) [I&k (1 = 3251 azaj)ll < 2¢, [lme(1 = 32571 ajaf)l| < 2
)
)
)
)

1€ f 1@ j)€k||<1 1(325=1 a5 J)nk||<1

Indeed, we take a1, ...,q, satisfying (al), (a2), (bl), (b2), (c) and (d) by Remark
4.2. Then it is easy to check that operators

) 1 \1/2
aj = (1+€) a; forj=1,....p

satisfy the above properties for sufficiently small € > 0.
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Lemma 4.4. Let &, n be two almost §-related unit vectors in a Hilbert M-
bimodule. Then there exist bi,...,b, € M such that

) (1= 3252 b50))€, )] < 462

2) (1= 325, bib5)m,my| < 461/%;

3) 22%_1 b€ —mbs]|* < 44;

5

(1

(2)

(3)

(4) 1||b*77 €037 < 49;
(5) bib; < 1;
(6)

6 1 bjb; < 1.

Proof. Choose 0 < e < 1 such that 5¢ < 26'/2 and 4¢'/2 < §'/2. By Remark 4.3,
there exist ay,...,a, of M satisfying

(@'1) (1 =320 ajay)Ell <&, 11 = 325, ajag)nll < &%

(a2) 6(1 = 3271 ajay)|l < &2, [In(1 = 325, ajay)l| < &%
(b1) (11 = 325y ajai)éll < &2, (1= 325y ajai)nll < e
(b2) fle(t = f vajai)l < e fIn(l =325, ajap)l| < e

(
(@) S0y llagn — €a | < 25;
(@) () aa)él < 1, (S0, gyl < 1

() 1252y aga)éll < 1, 13252y ajai)nll < 1.
Then we define cp maps S and T on M as

P P
x) = Za}‘xaj, T(x) = Z ajza; for x € M.
j=1 j=1

We define e := 1. 14(S(1)) and f = 1y_. 14(T(1)). Since (S(1) —1)* >
£2(1 — e), we have

(1= e)e]* = (1 — )&, &) < [[(S(1) — g|* < ™.

)
)
)
) i1 llaj€ —mag|* < o
)
)
)

Hence
[(1—e)l <e.

Similarly, we have

[A—emll<e, €A -e)l<e [nl—e)ll <e.
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We also obtain

A=l <e [A=Pinll<e [[€Q=HlI<e [n-fl <e.

Next we define cp maps S’ and T/ on M as
1
14¢€

Then S’(1) <1 and 77(1) < 1. In particular, S” and T” are contractive.
Now we define

S'(z) = eS(xz)e, T'(x):= ifT(x)f for z € M.

1
b, = ——fae forl1<j<np.
J mf J SJ)J=Pp
Then
p 1 &
DUk = 12 D caifae=S'(f) < 1.
j=1 j=1

Similarly, we have ijl b;b; < 1. Thus we obtain (5) and (6).
We will check (1). Since £ and #n are unit vectors, we have

(-2 m)se)] =l - iz Ressns )
j=1

+\<n(l—2aﬂ?)w>\+!<<1—f>wiw>\

Z 77% a’Jg a]€>’
j=1

p
Z<fagf7ag (1—e) ]

o)

(X ||77aj||2)1 (g Ina, —aj£||2) ;
(e - 5)/(2 o)
(
(

p
Z fa;(1 f,aje@‘

]||n||+|| (1-f

1/2

> lasl?) /(g los(a - e)el?)
3 a1 - ) /(Z Josee]?) "
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By (), (f'), we have Y ¥ _ 1 [na;|* <1, and 3°%_, |la;€[|* < 1. Since the projection

e commutes with Z *aj, we have

i—1 J

p

Z||a]1—e£||2 <z_: (1—e)¢ 1—e)£>
(e

P p
Z a;e€||* = <Za a]e§,6§> = <Za ajf,e§>
j=1

j=1

M@

alasE, (1 - ) ><|<1—e>§||<e

Jj=1

and

Therefore,

p
‘<<1 — Zb;bj)g,g>’ < Be + 262 < 452,

j=1
Similarly, we have (2).
Next we will check (3):

(Z bjé—nbjllz)
j=1
p 1/2
< (anajeg—nfajeﬁ)

j=1

- (il [ fa;(e— 1)€||2)1/2 + (i Ifase(l - €)|2>
' (Z ot -mselF) 4 (Z I~ )
+ (i (1 — f)aje||2> 2

Jj=1

< ((S(H)le = DE (e = DENY2 + ((S(HE(L —e), (1 —e)))'/?

P 1/2
(Z laz€ = na )

=1

+(((f = D, (f = DnT(e))? + ((n(1 = £),n(1 — £)T(e)))*/?
< 4?4 512 < 2812,

1/2

1/2

Similarly, we can check (4). The proof is complete.
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Then we can show Theorem 4.6 by using following lemma, which is also proved
by similar arguments to [Ha3, Lem. 2.5].

Lemma 4.5 (Cf. [Ha3, Lem. 2.5]). Assume that § > 0 and r € N satisfy

1
oM< —.
8r
Let £, 1 be two almost d-related unit vectors in a Hilbert M-bimodule. Then there
exist v operators cq,...,c, € M such that ||c;|| <1,1<j <r and
T 2 T 2
. 12 . 12
[(See 1) < [(See 1) <
Jj=1 j=1
p P
> " llej& — e |? < 326, > llesn — &e;lI* < 32,
j=1 j=1

By similar arguments to [Ha3] with Lemma 4.5, we can prove almost unitary
equivalence for two almost J-related n-tuples in a Hilbert bimodule, which is a
generalization of [Ha3, Thm. 2.3].

Theorem 4.6 (Cf. [Ha3, Thm. 2.3]). For every n € N and every ¢ > 0, there
exists a 6 = d(n,e) > 0 such that for all von Neumann algebras M and all almost
0-related n-tuples (§1,...,&n), (M, ..., Mn) of unit vectors in a Hilbert M -bimodule,
there exists a unitary u € M such that

|uér —meul| <& forl<k<n.

§5. I'-stable states

Definition 5.1 (Cf. [Ha4, Def. 4.1]). Let T’ be a multiplicative subgroup of R*.
An fn state ¢ on a von Neumann algebra M is called I'-stable if for every n € N,
0<r<1and~vy,...,7p € I' with 1 = ry; + --- + 77,, there exist n partial
isometries vy, ...,v, € M and a projection e € M such that

Zvjv;-‘ =1, gle)=r
j=1

and
*

€:UJ

v, @u; =050 for1<j<n.

Remark 5.2. If T = Q%, then Q-stable states in [Ha4, Def. 4.1] are equivalent
to our QT-stable states. Indeed, an fn state ¢ is Q-stable in the sense of [Had,
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Def. 4.1] if and only if, for q1,...,¢q, € QT with 1 = ¢; + -+ + ¢y, there exist n
isometries vy, ...,v, € M such that

Zvjv; =1 and @v; = qv;p,
j=1
because of [Ha4, Lem. 4.6]. Therefore, if ¢ is QT-stable, then for ¢1,...,q, € QT

with 1 = ¢; +- - -+ ¢y, there are partial isometries vy, ...,v, € M and a projection
e € M such that

n
> wr =1, ple)=1
j=1

and
*

6:1}]

v, v; = qujp for 1 <j<n.
Since ¢(e) = 1 and ¢ is faithful, we have e = 1. Hence vy, ...,v, are isometries,
and thus ¢ is Q-stable.

Conversely, let 0 <7 <1 and y1,...,v € QT with 1 = roy +---+7v,. Then
r € QT and put ¢; == ry; € QT for 1 < j < n. By using Q-stability, there are
isometries vq,...,v, € M such that

n

Zvjv; =1 and @v; = qvje.
j=1

Moreover, there is an isometry w such that pw = rwe. We define partial isometries
wj = vjw*. Then wiw; = ww* and

n n

* U
g wijw; = E vv; = 1.
j=1 j=1

Moreover,
pw; = pujw’ = girTvw'e = Ywie
and
p(wijw;) =77 e(wjwh) = o(vv)) =77 gie(vfv;) =7
Lemma 5.3 (Cf. [Ha4, Thm. 4.5]). Let ¢ be a I'-stable fn state on a von Neu-
mann algebra M, and let 0 < r < 1, y1,...,7% € T with 1 = rvy1 + -+ + ry,.
Then there exists a type L, subfactor F of M such that of (F) = F fort € R and
olp =Try(h- ), where
Y1
b =

™In
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Proof. There exist n partial isometries vy,...,v, € M and a projection e € M
such that

and
e=vjv;, vj =705 forl<j<n.

Then ej;, = v;v} for 1 < j,k < n give a system of matrix units. Moreover, we

have
e(eje) = p(vjvg) = 70 (v5v;) = k-
Since
of (eji) = of (vj03) = Vi o0k = Vi Cens
we have of (F) = F for t € R. O

Remark 5.4. If 7 is a tracial fn state on a type II; factor, then it is easy to see
that 7 is {1}-stable.
If ¢ is an fn state on a type III factor (0 < A < 1) for which of = id,

where tg = —2n/log A, then ¢ is {A\"},,cz-stable. Indeed, let 0 < r < 1 and
Yooy Yo € I with 1 = ryy + -+ + ry,. Put Aj := rv;. Since M, is a type II;
factor, we can choose a projection e and mutually orthogonal projections eq, ..., e,

in M, with sum 1 such that
p(e)=r and (P(ej) =) for1<j<n.

By using [Ha3, Lem. 4.2], there exist partial isometries v, ..., v, in M such that

*

6:’0]

vj, €= vjv;-‘ and  @v; = ;050 for1 <j<n.
In these cases, by Lemma 5.3, we obtain a finite-dimensional subfactor F' of

M such that
of (F)=F forteR.
Note that it is equivalent to
¢ = ¢lF ® ¢lpe,

where F©¢ := F'N M. We expect that ¢|pe is also T-stable. If 7 is tracial, then 7| pec
is also tracial, and thus is {1}-stable. If M is a type III) factor with an fn state ¢
for which 02‘2 = id, then F° is also a type III, factor and o} I7¢ i the restriction
of of to F¢. Hence p|p- is also {\"™},cz-stable. In the case of type III; factors,

it is proved in [Ha4, Thm. 4.5] that if ¢ is QT-stable, then | p. is also QT -stable.
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Lemma 5.5 (Cf. [Had, Lem. 4.6]). If ¢ is I'-stable, then for v € T, there exist
m € N and partial isometries wy, ..., w, € M such that

m
Zw;‘wj =1 and @w; =ywje forl<j<m.
j=1

Proof. If v =1 €T, then m = 1and w; = 1. If 0 < v < 1, then set r = 7.
By using I'-stability for 1 = ry~!, there exists a partial isometry v € M such
that vv* = 1, pv = v tvp and p(v*v) = 7. Then w; = v* satisfies the desired
properties. If 1 <, then there is m € N such that

m'y_l > 1.

Then take 0 < 7 < 1 such that r(my~!) = 1. By using I'-stability, there exist

partial isometries vy, ..., v, € M such that
m
Zvjv; =1, pvj=7tv;o forl1<j<m.
j=1
Then wy = v7,..., wn = v}, satisfy the desired properties. O]

§6. Injective factors and ITPFI factors

Throughout this section, we assume that I' is a multiplicative subgroup of R,
which is {1}, {\"},nez with 0 < XA < 1 or Qt. We also assume that M is an
injective factor M not of type I, with separable predual and ¢ is a I'-stable fn
state on M with B(M, ¢) = C1. If M is of type IIy, then ¢ is tracial with T’ = {1},
and if M is of type IIIy (0 < A < 1), then ¢f = id with ' = {\"},,ez, where
to = —2mw/log \. If M is of type IIl;, then we assume that ¢ is Qt-stable. We
recall that every type III; factor with separable predual has a Q*-stable fn state
by [Had, Thm. 4.2]. Moreover, every injective type I1I; with separable predual
factor has trivial bicentralizer by [Ha2, Thm. 2.3].
We prove the main theorem in this section.

Theorem 6.1. Let M be an injective factor M with separable predual and ¢ be a
T-stable fn state on M with B(M, @) = C1. Then M is ITPFL

Lemma 6.2 (Cf. [Ha4, Lem. 5.4]). Let ¢ be a I'-stable fn state with B(M,¢) =
C1 on an injective factor M. Let uy,...,u, € U(M) and 6 > 0. Then there
exist a finite-dimensional o¥-invariant subfactor F of M and vy,...,v, € U(F)
satisfying the following: for € > 0, there exist operators by, ..., b, in M such that
for1<k<n,
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a) (1= 3220 1 b5y unbell < e, [I(1 = 3271 bbj)vrdoll <e;

(a)

(b) ||( 1 ere (00 urboll <&, (1 =320 erp(b;b}))oréoll <e;
(c) -1 ”b fw ftpijQ < d;

(d) EJ 1 bjur —ogby||7 < 6.

Proof. By Theorem 2.5 and Remark 2.6, for 1 > § > 0 there exists a ucp map
T:M,, = M anduvi,...,v, € UM,,) such that an fn state Y := @ o T = tr,, (hy- )
on M,,, satisfies

lof oT —=Too| <dlt| forteR,
51/2
\|T(vk)—uk||w<7 for1<k<n

and
)\1/)\2 eI’ for A1, Ao € Sp(hw).

Since ¢ is T-stable, as in the proof of [Had, Lem. 5.4], we may assume that F :=
M, C M, and T: F — M satisfies poT = ¢|r and

|of 0T —Toof!"|| < 8|t forteR.
Set & = uré, and ny, = vi€, for 0 < k < n, where ugp = vg = 1.
By [Hal, Prop. 2.1], there exist a1,...,a, € M such that
P
= Za;fxaj for x € F.
j=1

Since T is unital, we have
P
* p—
g aja; =1.
=1

If M is of type II;, then operators ay, ..., a, satisfy the desired properties by
the proof of [Hal, Prop. 5.2].

Next we assume that M is properly infinite. By [Hal, Prop. 2.1], we can take
a single operator a € M such that

T(x) =a*xa forx e F.
Then we can find finitely many operators a; satisfying the following conditions:
(@) 11 =35, ajay)&ell <e/2, (1 =328 ajaz)mell < e/2;

(b) 1(1=325—_, A epp(aa)))&ell < e/2, 1(1=30__, A erp(a;a}))mkll < e/2;
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(c) ]_—p laj&p — A7/2Epa4|? < 6;

(d/) ]_ p Hajuk — vkaj”i < 4.

If M is of type III; and ¢ is Q4-stable, then by the argument of [Ha4, Lem. 5.4],
we can choose A € Q4 and operators a; for —p < j < p satisfy conditions (a’)—(d’).

If M is of type IIIy (0 < A < 1), then it suffices to set a; := ¢;(a), where ¢;
is the projection of norm 1 of M onto

M; ={zx € M |of(r) =\ (z), t e R}
given by
1ot ® —ijt
gj(z) = — of (x)A\™Y" dt.
to Jo

Indeed, it follows from similar arguments to [Ha4, Lem. 5.4]. We give a sketch
proof below. Note that every z € M has a formal expansion

T~ Y g(@)

j=—o00

For £ € L?(M, ), we have

S ey (@l = Amewmw

]7—00

Let x € F. Since

we obtain

ZAJ%MMUH=ZWMMM»

j=—00 Jj=—o0

= Z (rej(a)ép, e5(a)éy)

(vof (a)ép, 0f (a),) dt

ga(of oT o Uft(x)) dt
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Since &,¢,(a) = M/%¢;(a)é,, we have

> llei(@)é — A72E e (a)||* = 0.

j=—o0

For £,m € L?(M, ), we obtain

3 Gyl = oo [ Gaot (@g.af ()
j=—00 o
=& [ erorest @t ar

Hence

7 - S o5(a) o (a)

j=—o00

< o=

Therefore, it follows from the above arguments that, for sufficiently large integer
p > 0, operators a; for —p < j < p satisfy conditions (a’)—(d’).
By Remark 5.4, ¢|pe is also I-stable. By Lemma 5.5, for each —p < j < p,

there exist a finite set of operators ¢;1,...,¢;j ;) in F° such that
_ r(4)
wcj = A"7cj1p  and ZC;JCJ'J =1.
=1

Then operators b;; = ¢ja; for —p < j<pandl=1,...,p(j) satisfy the desired
properties as in the proof of [Ha4, Lem. 5.4]. O

Lemma 6.3 (Cf. [Ha4, Lem. 5.5]). Letd > 0 and uq,...,u, € U(M), Then there
exist a finite-dimensional 0¥ -invariant subfactor F' of M and unitaries vy, ..., v, €
U(F) such that (n+1)-tuples of unit vectors ({y, w16y, - - -, unéy) and (§y, 1€y, . - .,
vn€,) are almost d-related.

Proof. The proof is the same as [Had, Lem. 5.5]. So we only give a sketch of the
proof. Let § > 0 and wy,...,u, € U(M). Thanks to Lemma 6.2, there exist a
finite-dimensional o¥-invariant subfactor F of M and vy,...,v, € U(F) as in the
statement of Lemma 6.2. For a given ¢ > 0, we can choose operators by, ..., b, in
M satisfying conditions (a)—(d) in Lemma 6.2.

Let ¢’ > 0 be arbitrary. Set b = ‘;:1 b;b;. Since B(M, ) = C, thanks to
[Ha2] and [Ha4, Prop. 2.6] we have

er,p(b) € conv{wbw* | w € U(F°), ||wé, — E,w]|| < 6'},
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where the closure means the o-strong operator topology. Hence there exist wq, ...,
wg €U(F) and Ay,..., Ay € RT with >} ; A\, = 1 such that

[wige = Sour]| < &

q
¢ and H (1 - Z )\lwlbw?>vk§¢

=1

H (1 - Z /\lwlbwl )uk@,

Then one can easily check that operators
1/2
aj = )\l/ wib;

for j =1,...,pand [ = 1,...,q have the desired properties for the almost J-
relatedness. O

Now we prove our main theorem in this section.

Proof of Theorem 6.1. Let uq,...,u, € U(M) and € > 0. Then we take § =
d(n,e/4) > 0 with properties in Theorem 4.6. By Lemma 6.3, we choose a finite-
dimensional o¥-invariant subfactor F' of M and vy, ...,v, € U(F') such that (n +
1)-tuples of unit vectors (&, u1éy, ..., unéy,) and (§,,v1€,, . .., vn&,) are almost
o-related. Therefore, by Theorem 4.6, there exists w € U (M) such that

€
||w§¢ *&pwH < 1

and
lwuréy, — veéow| < i for 1 <k <n.
Then
[uk — wrvpw|y = [Jw" (wur — vew)Ee ||
< Nwuréy — vibowl| + [Jvr(€ow — wé, )|
€

< -.
2

Set Fy = w*Fw and wy, = w*v,w for 1 < k < n. Then
€
lur, — wi |, < 3 for 1 <k <n.

Put g = w*pw. Then since F is g¥-invariant, Fy is also o¥°-invariant, i.e.,

%0 = ¥o|F, ® wolFg-
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Since {,, = w*{,w, we have

o — ol < [1§p — w*Ewl| |€p + w"Epw|
< 2”“’&0 - fgow”
<E.

Therefore, by [CW, Lem. 7.6], M is ITPFI. O
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