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A Note on Injective Factors with
Trivial Bicentralizer

by

Rui Okayasu

Abstract

We give an alternative proof that an injective factor on a Hilbert space with trivial
bicentralizer is an infinite tensor product of factors of finte type I (ITPFI factor). Our
proof is given in parallel with each type of factor and it is based on the strategy of
Haagerup. As a consequence, the uniqueness theorem of injective factors, except for type
III0, follows from Araki–Woods’ result.
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§1. Introduction

In Connes’ fundamental works in operator algebras, it is proved that injective

factors on a separable Hilbert space are hyperfinite. In [Co1], injective factors

of types II1, II∞ and IIIλ (λ ̸= 1) are classified. The remaining problem of the

uniqueness of the injective type III1 factor is solved by Haagerup [Ha2] by proving

the so-called bicentralizer problem in [Co2].

Haagerup [Ha1] also gives another proof of the first result mentioned above

without the automorphism group machinery of Connes. In Haagerup’s proof, semi-

discreteness rather than injectivity is applied. Popa [Po] gives a third approach to

this result in the case of type II1.

Alternative proofs of the uniqueness of injective factors of types II and III

are also given by Haagerup [Ha1, Ha3, Ha4]. For each case, similar techniques are
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applied. One of the important notions is the trivial bicentralizer. It is essential in

the case of type III1, but the equivalent condition to a trivial bicentralizer is more

important than the original definition in [Ha4]. This condition is similar to the

Dixmier property. This property is applied in the case of type II1 [Ha1], and its

relative version is applied in the case of type IIIλ [Ha3]. Another important notion

is almost unitary equivalence in a Hilbert bimodule.

Moreover, in comparison with his papers [Ha1, Ha3, Ha4], the uniqueness

of the injective type II1 factor follows from Marray–von Neumann’s fundamen-

tal result of the uniqueness of the hyperfinite type II1 factor. In the case of type

IIIλ, it is directly proved that an injective type IIIλ factor is isomorphic to the

Powers factor Rλ. In the case of type III1, by using Connes–Woods’ character-

ization of ITPFI factors in [CW], it is proved that an injective type III1 factor

is ITPFI. Therefore, the uniqueness of the injective type III1 factor follows from

Araki–Woods’ result [AW]. These are proved by similar arguments, but they are

dependent on the choice of type of a given injective factor.

In this note, we give an alternative proof that an injective factor on a Hilbert

space with trivial bicentralizer is ITPFI. Our proof is given in parallel with each

type of factor and it is based on the strategy of Haagerup. One of our purposes

is to unify his proof. Here we remark that there exists an injective type III0 fac-

tor which is not ITPFI. However, the assumption of a trivial bicentralizer in the

above assertion excludes the case of type III0 from consideration. Namely, every

type III0 factor has a non-trivial bicentralizer. This fact may be folklore among

specialists, but we do not find it in the literature. Hence we also give its proof

in this note. To do so, we define the bicentralizer for a general weight by using

the free ultrafilter. This is inspired by Houdayer–Isono’s paper [HI]. The start-

ing point is the semidiscreteness, which is equivalent to the injectivity by the

work of Wassermann [Was]. To achieve the above assertion, we need to general-

ize Haagerup’s works. One aim is to obtain an approximate factorization related

to the modular automorphism from the semidiscreteness. In the case of type III,

it relies on the uniqueness of the injective type II1 factor [Ha3, Ha4]. However,

we independently give such an approximate factorization for an arbitrary injec-

tive von Neumann algebra by combining a number of techniques in [Ha1]. The

other aim is the almost unitary equivalence in Hilbert bimodules established in

[Ha3], which is a generalization of [Ha1]. However, as in the case of [Ha4], we

require a further generalization. Finally, based on Haagerup’s approach, we give

a proof of the above assertion by using Connes–Woods’ characterization of ITPFI

factors.
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§2. Semidiscreteness with the modular automorphisms

Let M be a von Neumann algebra. We denote by U(M) the unitary group of

M . For an fn (faithful normal) state φ, we denote by ∆φ (resp. Jφ) the modular

operator (resp. the modular conjugation operator) associated with φ. We put

∥x∥φ := φ(x∗x)1/2 and ∥x∥♯φ := φ
(x∗x+ xx∗

2

)1/2

for x ∈M.

We denote by L2(M,φ) the standard form for M with the cyclic unit vector ξφ,

which becomes a normal M–M bimodule, where the left and right actions are

given by

aξx := aJφx
∗Jφξ for a, x ∈M and ξ ∈ L2(M,φ).

The centralizer of φ is denoted byMφ. Form ∈ N, we denote by trm the normalized

tracial state and by Trm the canonical trace with Trm(1) = m on them×m matrix

algebra Mm.

If M is semidiscrete, then the identity map idM on M has an approximate

factorization through matrix algebras Mm(λ),

M
idM //

Sλ
""

⟳

M,

Mm(λ)

Tλ

<<

where (Sλ) and (Tλ) are nets of ucp (unital completely positive) maps. The purpose

of this section is to show that for a given fn state φ on M and a positive number

δ > 0, one can choose an approximation factorization such that, moreover,

φ ◦Tλ = ψλ, ψλ ◦Sλ = φ

and

∥σφt ◦Tλ − Tλ ◦σψλ
t ∥ ≤ δ|t| for t ∈ R,

where (ψλ) is a net of fn states on Mm(λ).

To do so, we will prepare some lemmas, which are essentially proved in [Ha1,

Ha3, Ha4]. The first lemma is given in [Ha1].

Lemma 2.1 ([Ha1, Lem. 3.1]). Let τ be a tracial state on M , and T : Mm → M

be a faithful ucp map. Put

ψ(x) := τ ◦T (x) for x ∈ Mm,

and let h ∈ Mm be the positive element for which

ψ(x) = trm(xh) for x ∈ Mm.
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Then there exists a unique ucp map S : M → Mm such that ψ ◦S = τ and

trm(x∗h1/2S(y)h1/2) = τ(T (x)∗y) for x ∈ Mm, y ∈M.

Moreover,

∥T (x)∥2τ ≤ trm(x∗h1/2xh1/2) for x ∈ Mm.

The second lemma is nothing but [Ha1, Lem. 3.2]. However, we necessarily

sketch a proof to use it in Remark 2.3.

Lemma 2.2 ([Ha1, Lem. 3.2]). Let ψ be a state on Mm of the form

ψ(x) := trm(xh) for x ∈ Mm,

where h has strictly positive rational eigenvalues. Then there exist ucp maps

S : Mm → Mp and T : Mp → Mm such that trp ◦S = ψ, ψ ◦T = trp and

∥x− T ◦S(x)∥♯ψ ≤ ∥h1/2x− xh1/2∥2 for x ∈ Mm.

Proof. We may assume that h is an m×m diagonal matrix with strictly positive

rational eigenvalues λ1, . . . , λm. Choose positive integers p1, . . . , pm, p such that

λi
m

=
pi
p

for 1 ≤ i ≤ m.

Note that
m∑
i=1

pi = p.

For 1 ≤ i, j ≤ m, we define the pi × pj matrix Fij as

[Fij ]kl := δkl for 1 ≤ k ≤ pi, 1 ≤ l ≤ pj ,

and the p× p matrix fij with block matrix as

[fij ]kl = δikδjlFij for 1 ≤ k, l ≤ m.

Let (eij) be the matrix units for Mm. We define the ucp map S : Mm → Mp as

S

( m∑
i,j=1

xijeij

)
:=

m∑
i,j=1

xijfij .

Then we have

trp ◦S(x) = ψ(x) for x ∈ Mm.

Moreover, S is faithful. By Lemma 2.1, there exists a unique ucp map T : Mp →
Mm such that

trm(x∗h1/2T (y)h1/2) = trp(S(x)
∗y) for x ∈ Mm, y ∈ Mp.
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In particular, we have

ψ ◦T (y) = trp(y) for y ∈ Mp.

Moreover, for 1 ≤ k, l ≤ m, we have

trm(e∗klh
1/2T (y)h1/2) = trp(S(ekl)

∗y) = trp(f
∗
kly) for y ∈ Mp.

Hence the (k, l)th element of the m×m matrix h1/2T (y)h1/2 is m trp(f
∗
kly). This

implies that the (k, l)th element of the m×m matrix T (y) is

mλ
−1/2
k λ

−1/2
l trp(f

∗
kly) = pp

−1/2
k p

−1/2
l trp(f

∗
kly).

Note that the (i, j)th element of the m×m matrix T ◦S(eij) = T (fij) is

(pipj)
−1/2 min{pi, pj}

and all other elements of the matrix are zero. Hence

T ◦S(eij) = (pipj)
−1/2 min{pi, pj}eij .

Therefore we can obtain

(∥x− T ◦S(x)∥♯ψ)
2 ≤ ∥h1/2x− xh1/2∥22.

Remark 2.3. Let k be an m ×m diagonal matrix with eigenvalues µ1, . . . , µm.

Let p be the positive integer and T the ucp map as in the proof of Lemma 2.2. We

define a p× p diagonal matrix k̄ as

k̄ :=

m∑
i=1

µiFii ∈ Mp.

Then we have

kT (y) = T (k̄y) and T (y)k = T (yk̄) for y ∈ Mp.

The third lemma is also given in [Ha1] in the case where φ is tracial.

Lemma 2.4 (Cf. [Ha1, Lem. 3.3]). Let T : Mm → M be a ucp map. For ε > 0,

there exists a ucp map T ′ : Mm →M such that ∥T − T ′∥ < ε and

φ ◦T ′(x) = trm(xh′) for x ∈ Mm,

where h′ ∈ M+
m has strictly positive rational eigenvalues.

Now we prove the main theorem in this section.



114 R. Okayasu

Theorem 2.5 (Cf. [Ha4, Thm. 3.1]). If M is injective, then for any u1, . . . , un ∈
U(M), any ε > 0 and δ > 0, there exist a ucp map T : Mm →M and v1, . . . , vn ∈
U(Mm) such that ψ = φ ◦T is an fn state on Mm, and

∥σφt ◦T − T ◦σψt ∥ ≤ δ|t| for t ∈ R,
∥T (vk)− uk∥φ < ε for 1 ≤ k ≤ n.

Proof. Step 0. The first part is the same as in [Ha4, Lem. 3.4]. Let N :=M⋊σφ R.
We denote by λφ(t) the implementing unitary for σφt , and by θφ the dual action

of σφ. Then there exists an fns (faithful normal semifinite) operator-valued weight

P : N+ → M̂+, which is given by

P (y) :=

∫
R
θφs (y)ds for y ∈ N+.

Let φ̃ := φ ◦P be the dual weight of φ. Recall that N has an fns trace τ such that

τ ◦ θφs = e−sτ for s ∈ R.

Let a be the positive self-adjoint operator affiliated with Nφ̃ such that exp(ita) =

λφ(t) for t ∈ R. Then τ is given by

τ = φ̃(e−a · ).

Put eα := 1[0,α](a) for α > 0. Thanks to [Ha4, Lem. 3.4], we have P (eα) = α1.

Hence φ̃(eα) = α and τ(eα) = 1 − e−α < ∞. By using [Ha4, Lem. 3.4] again, we

obtain

lim
α→∞

∥∥∥ 1
α
P (eαxeα)− x

∥∥∥
φ
= 0 for x ∈M.

Let u1, . . . , un ∈ U(M), ε > 0 and δ > 0 be given. Take ε′ > 0 such that

(2ε′)1/2 + ε′ < ε.

Then we choose ε0, ε1, ε2, ε3 > 0 such that 1 > ε3 and

8ε
1/2
3 + ε2 + ε1 + ε0 < ε′.

Take α > 0 such that∥∥∥ 1
α
P (eαukeα)− uk

∥∥∥
φ
< ε0 for 1 ≤ k ≤ n.

We define the ucp map T0 := α−1P |eαNeα : eαNeα → M and the fn state φ0 on

eαNeα as

φ0 := φ ◦T0 =
1

α
φ ◦P (eα · eα) =

1

α
φ̃(eα · eα).
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Set xk := eαukeα ∈ eαNeα for 1 ≤ k ≤ n. Then ∥xk∥ ≤ 1 and

∥T0(xk)− uk∥φ < ε0 for 1 ≤ k ≤ n.

Moreover, we have

σφt ◦T0 = T0 ◦σφ0

t for t ∈ R.

We define the fn tracial state τα on eαNeα as

τα :=
1

1− e−α
φ̃(e−aeα · ).

Set

h0 :=
dφ0

dτα
=

1− e−α

α
eaeα

and φ0 = τα(h0 · ). Note that

sp(h0) ⊂ [c−1, c] for some c > 1.

Step 1. The second part is similar to [Ha4, Thm. 3.1]. Take δ′ > 0 with δ′ < ε1
such that if positive elements a, b with sp(a), sp(b) ⊂ [c−1, c] and ∥a − b∥ < δ′,

then ∥ log(a)− log(b)∥ < δ/2.

Choose (2c)−1 > δ1 > 0 such that 3c2δ1 < δ′. Then take λ ∈ Q such that

0 < λ < 1, λ−1 − 1 < δ1. Then 1− λ = λ(λ−1 − 1) < δ1. Set

J := max{j ∈ N | λ−j ≤ c}.

Since λ−J ≤ c and c < λ−(J+1), we have c−1 ≤ λJ and λJ+1 < c−1. By using the

spectral decomposition of h0, we can choose projections

eJ+1, eJ , . . . , e1, e0, e−1, . . . , e−J

with
∑

−J≤j≤J+1 ej = 1 such that

h′0 :=
∑

−J≤j≤J+1

λjej ≤ h0 and ∥h0 − h′0∥ < cδ1.

Put C := τα(h
′
0) ≤ 1 and h1 := C−1h′0. Since 1− C = τα(h0 − h′0) ≤ cδ1, we have

1 ≤ C−1 ≤ (1− cδ1)
−1.

Then

∥h0 − h1∥ ≤ ∥h0 − h′0∥+ ∥h′0 − h1∥
≤ cδ1 + (C−1 − 1)∥h′0∥
≤ (1 + 2c)cδ1 < 3c2δ1 < δ′.
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Hence we have

∥ log(h0)− log(h1)∥ <
δ

2
.

Put the fn state φ1 := τα(h1 · ) on eαNeα. We define a cp map T ′
0 : eαNeα → M

as

T ′
0(x) := T0(b

1/2xb1/2) for x ∈ eαNeα,

where b := h−1
0 h′0 ≤ 1. Then T ′

0(1) = T0(b) ≤ 1 and

φ ◦T ′
0(x) = φ0(b

1/2xb1/2) = τα(h0b
1/2xb1/2) = τα(h

′
0x) for x ∈ eαNeα.

Next we define a cp map T1 : eαNeα →M as

T1(x) := T ′
0(x) +

τα((h1 − h′0)x)

τα(h1 − h′0)
(1− T ′

0(1)) for x ∈ eαNeα.

Then T1(1) = 1 and

φ ◦T1(x) = τα(h1x) = φ1(x) for x ∈ eαNeα.

Moreover,

∥T0(x)− T1(x)∥ ≤ ∥x− b1/2xb1/2∥+ ∥1− b∥ ∥x∥

=
1

2
∥(1 + b1/2)x(1− b1/2) + (1− b1/2)x(1 + b1/2)∥+ ∥1− b∥ ∥x∥

≤ (∥1 + b1/2∥ ∥1− b1/2∥+ ∥1− b∥)∥x∥
≤ 3c2δ1∥x∥.

Hence

∥T0 − T1∥ ≤ 3c2δ1 < δ′ < ε1.

Therefore,

∥T1(xk)−uk∥φ ≤ ∥T1(xk)−T0(xk)∥φ+ ∥T0(xk)−uk∥φ < ε1 + ε0 for 1 ≤ k ≤ n.

Since σφt ◦T1 = T1 ◦σφ0

t and

∥hit0 − hit1 ∥ ≤ ∥ log(h0)− log(h1)∥ |t| ≤
δ

2
|t|,

we have

∥σφt ◦T1(x)− T1 ◦σφ1

t (x)∥ = ∥T1(σφ0

t (x)− σφ1

t (x))∥
≤ ∥σφ0

t (x)− σφ1

t (x)∥
= ∥hit0 xh−it0 − hit1 xh

−it
1 ∥

≤ δ|t| ∥x∥.

Hence

∥σφt ◦T1 − T1 ◦σφ1

t ∥ ≤ δ|t| for t ∈ R.
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Step 2. The next part is similar to [Ha3, Lem. 5.3]. For j ∈ N, we define the linear
map

Ej : eαNeα → Nj := {x ∈ eαNeα | σφ1

t (x) = λijtx, t ∈ R}

as

Ej(x) :=
1

t0

∫ t0

0

λ−ijtσφ1

t (x) dt for x ∈ eαNeα,

where t0 := −2π/ log λ. For q ∈ N, we define the ucp map γq on eαNeα as

γq(x) :=

q−1∑
j=−q+1

(
1− |j|

q

)
Ej(x) for x ∈ eαNeα.

By [Ha3, Lem. 5.2], φ1 ◦ γq = φ1 and ∥γq(x)− x∥φ1
→ 0 (q → ∞) for x ∈ eαNeα.

Choose q ∈ N such that

∥γq(xk)− xk∥φ1 < ε2 for 1 ≤ k ≤ n.

Let (ers) be the matrix units for Mq. We define the fn state ψλ on Mq as

ψλ := trq(hλ · ),

where

hλ :=

q∑
r=1

λrerr and λr := q(

q∑
s=1

λs)−1λr.

Note that

σψλ
t (ers) = hitλ (ers)h

−it
λ = λi(r−s)ters.

In particular, σψλ
t0 = id. Put the fn state χ := φ1 ⊗ ψλ on eαNeα ⊗Mq. Since

σχt (x⊗ ers) = λi(r−s)tσφ1

t (x)⊗ ers,

the centralizer Nχ := (eαNeα ⊗Mq)χ is given by

Nχ =
{∑q

r,s=1 xrs ⊗ ers ∈ eαNeα ⊗Mq

∣∣ xrs ∈ Ns−r
}
.

We define ucp maps S2 : eαNeα → Nχ and T2 : Nχ → eαNeα as

S2(x) :=

q∑
r,s=1

Es−r(x)⊗ ers,

T2

( q∑
r,s=1

xrs ⊗ ers

)
:=

1

q

q∑
r,s=1

xrs.

Since T2 ◦S2 = γq, we have

∥T2 ◦S2(xk)− xk∥φ1
< ε2 for 1 ≤ k ≤ n.
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Put the state φ2 := φ1 ◦T2 on Nχ. Then φ2 ◦S2 = φ1 ◦ γq = φ1. For xrs ∈
Ns−r, we have

φ2

( q∑
r,s=1

xrs ⊗ ers

)
=

1

q

q∑
r=1

φ1(xrr).

Hence

φ2(y) = (φ1 ⊗ trq)(y) for y ∈ Nχ ⊂ eαNeα ⊗Mq.

Namely φ2 is the restriction of φ1 ⊗ trq on Nχ. Hence we have

σφ2

t (y) = (σφ1

t ⊗ id)(y) for y ∈ Nχ.

By definition, we have

σφ2

t ◦S2 = S2 ◦σφ1

t and σφ1

t ◦T2 = T2 ◦σφ2

t .

Let τχ be the restriction of χ on Nχ, which is tracial. Then

τχ(y) = (φ1 ⊗ ψλ)(y) = (φ1 ⊗ trq)((1⊗ hλ)y) for y ∈ Nχ.

Since 1⊗ hλ ∈ Nχ, we have
dφ2

dτχ
= 1⊗ h−1

λ

and

σφ2

t (y) =
(dφ2

dτχ

)it
y
(dφ2

dτχ

)−it
= (1⊗ h−itλ )y(1⊗ hitλ ) for y ∈ Nχ, t ∈ R.

Step 3. In this step we use the semidiscreteness of M . Since ∥S2(xk)∥ ≤ 1 for

1 ≤ k ≤ n, we have

S2(xk) =
1

2
(wk1 + wk2) +

i

2
(wk3 + wk4)

for some unitaries wkl. Put

wkl =
∑
r,s

w(kl)
rs ⊗ ers ∈ Nχ ⊂ eαNeα ⊗Mq for 1 ≤ k ≤ n, 1 ≤ l ≤ 4.

Set cλ := max{1, ∥1 ⊗ h−1
λ ∥} ≥ 1. Since eαNeα is semidiscrete, we can take ucp

maps S3 : eαNeα → Mp and T3 : Mp → eαNeα such that

∥T3 ◦S3(w
(kl)
rs )− w(kl)

rs ∥φ1 <
ε3

cλ
√
q

for 1 ≤ k ≤ n, 1 ≤ l ≤ 4, 1 ≤ r, s ≤ q.

Here, by using Lemma 2.4, we may also assume that T3 satisfies

φ1 ◦T3(x) = trp(h
′
3x) for x ∈ Mp,
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where h′3 ∈ M+
p has strictly positive rational eigenvalues. Let Eχ be the χ-invariant

conditional expectation from eαNeα ⊗Mq onto Nχ, which is given by

Eχ

( q∑
r,s=1

xrs ⊗ ers

)
=

q∑
r,s=1

Es−r(xrs)⊗ ers.

Set S
(q)
3 := S3 ⊗ idMq and T

(q)
3 := T3 ⊗ idMq . Then we have

∥Eχ ◦T (q)
3 ◦S(q)

3 (wkl)− wkl∥τχ <
ε3
cλ

and

∥T (q)
3 ◦S(q)

3 (S2(xk))− S2(xk)∥φ1⊗trq < 2ε3.

Step 4. Let h3 := h′3 ⊗ hλ ∈ Mp ⊗Mq = Mpq be the diagonal matrix with strictly

positive rational eigenvalues. We define

φ3 := τχ ◦Eχ ◦T (q)
3 .

Then

φ3 = trpq(h3 · ).
By Lemma 2.2, there exist ucp maps S4 : Mpq → Mm and T4 : Mm → Mpq such

that φ3 ◦T4 = trm, trm ◦S4 = φ3 and

∥T4 ◦S4(y)− y∥♯φ3
≤ ∥yh1/23 − h

1/2
3 y∥2 for y ∈ Mpq.

Set ykl := S
(q)
3 (wkl) ∈ Mpq. By Lemma 2.1, we have

trpq(y
∗
klh

1/2
3 yklh

1/2
3 ) ≥ ∥Eχ ◦T (q)

3 (ykl)∥2τχ
≥ (∥wkl∥τχ − ∥Eχ ◦T (q)

3 ◦S(q)
3 (wkl)− wkl∥τχ)2

>
(
1− ε3

cλ

)2

> 1− 2ε3
cλ

.

Hence

∥h1/23 ykl − yklh
1/2
3 ∥22 ≤ 2− 2 trpq(y

∗
klh

1/2
3 yklh

1/2
3 ) <

4ε3
cλ

.

Therefore,

∥T4 ◦S4(ykl)− ykl∥♯φ3
<

2ε
1/2
3√
cλ

for 1 ≤ k ≤ n, 1 ≤ l ≤ 4.

Set

yk :=
1

2
(yk1 + yk2) +

i

2
(yk3 + yk4) = S

(q)
3 ◦S2(xk) ∈ Mpq for 1 ≤ k ≤ n.

Then

∥T4 ◦S4(yk)− yk∥♯φ3
≤ 4ε

1/2
3√
cλ

for 1 ≤ k ≤ n.
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Step 5. Set kλ := 1 ⊗ h−1
λ ∈ Mp ⊗Mq = Mpq. The m ×m diagonal matrix k̄λ is

defined in Remark 2.3. We define an fn state ψ on Mm as

ψ := trm(k̄λ · ).

Now we define a ucp map T : Mm →M as

T := T1 ◦T2 ◦Eχ ◦T (q)
3 ◦T4.

Then, by Remark 2.3, for z ∈ Mm, we have

φ ◦T (z) = φ ◦T1 ◦T2 ◦Eχ ◦T (q)
3 ◦T4(z)

= φ1 ◦T2 ◦Eχ ◦T (q)
3 ◦T4(z)

= φ2 ◦Eχ ◦T (q)
3 ◦T4(z)

= τχ(1⊗ h−1
λ (Eχ ◦T (q)

3 ◦T4)(z))

= τχ ◦Eχ ◦T (q)
3 (kλT4(z))

= τχ ◦Eχ ◦T (q)
3 ◦T4(k̄λz)

= φ3 ◦T4(k̄λz)
= trm(k̄λz) = ψ(z).

Hence ψ = φ ◦T and

σψt (z) = k̄itλ zk̄
−it
λ for z ∈ Mm.

By Remark 2.3, for z ∈ Mm we have

σφ2

t ◦Eχ ◦T (q)
3 ◦T4(z) = 1⊗ h−itλ (Eχ ◦T (q)

3 ◦T4(z))1⊗ hitλ

= Eχ ◦T (q)
3 (kitλ T4(z)k

−it
λ )

= Eχ ◦T (q)
3 ◦T4(k̄itλ zk̄−itλ )

= Eχ ◦T (q)
3 ◦T4 ◦σψt (z).

Therefore we have

∥σφt ◦T − T ◦σψt ∥ ≤ δ|t| for t ∈ R.

Put zk := S4(yk) = S4 ◦S(q)
3 ◦S2(xk) ∈ Mm for 1 ≤ k ≤ n. By the Kadison–

Schwarz inequality we have

∥Eχ ◦T (q)
3 ◦T4(zk)− Eχ ◦T (q)

3 (yk)∥2φ2
≤ ∥kλ∥ ∥T4(zk)− yk∥2φ3

≤ 2cλ∥T4(zk)− yk∥♯2φ3

≤ 32ε3.
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Hence

∥Eχ ◦T (q)
3 ◦T4(zk)− S2(xk)∥φ2

≤ ∥Eχ ◦T (q)
3 ◦T4(zk)− Eχ ◦T (q)

3 (yk)∥φ2
+ ∥Eχ ◦T (q)

3 (yk)− Eχ(S2(xk))∥φ2

≤
√
32ε

1/2
3 + ∥T (q)

3 ◦S(q)
3 (S2(xk))− S2(xk)∥φ1⊗trq

≤ 6ε
1/2
3 + 2ε3 ≤ 8ε

1/2
3 .

Moreover,

∥T1 ◦T2(Eχ ◦T (q)
3 ◦T4(zk)− S2(xk))∥2φ ≤ ∥Eχ ◦T (q)

3 ◦T4(zk)− S2(xk)∥2φ2

< 64ε3.

Similarly, we have

∥T1(T2 ◦S2(xk)− xk)∥2φ ≤ ∥T2 ◦S2(xk)− xk∥2φ1
< ε22.

Therefore,

∥T (zk)− uk∥φ ≤ ∥T1 ◦T2(Eχ ◦T (q)
3 ◦T4(zk)− S2(xk))∥φ

+ ∥T1(T2 ◦S2(xk)− xk)∥φ + ∥T1(xk)− uk∥φ
< 8ε

1/2
3 + ε2 + ε1 + ε0 < ε′.

By the polar decomposition, we obtain unitaries vk in Mm such that

zk = vk|zk| for 1 ≤ k ≤ n.

Then

∥zk∥2ψ ≥ ∥T (zk)∥2φ > 1− 2ε′.

Since ∥zk∥ ≤ 1 and |zk|2 + (1− |zk|)2 ≤ 1, we have

∥vk − zk∥2ψ = ∥1− |zk| ∥2ψ
≤ 1− ∥ |zk| ∥2ψ
< 2ε′.

Therefore,

∥T (vk)− uk∥φ ≤ ∥T (vk − zk)∥φ + ∥T (zk)− uk∥φ
≤ ∥vk − zk∥ψ + ε′

< (2ε′)1/2 + ε′ < ε.
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Remark 2.6. In Theorem 2.5 we obtain the ucp map T : Mm → M with ψ =

φ ◦T such that hψ has strictly positive rational eigenvalues, where ψ = trm(hψ · ).
Moreover, in Theorem 2.5 we assume M is a finite von Neumann algebra

with an fn tracial state φ = τ . Then we can choose the ucp map T satisfying

τ ◦T = trm. This fact is exactly [Ha1, Lem. 3.4]. Indeed, in the proof of Theorem

2.5, we omit Steps 0, 1 and 2. In Step 3, we set M = eαNeα = Nχ, τ = φ1,

uk = S2(xk) and q = 1. Then we obtain ucp maps S2 : M → Mp and T2 : Mp →M

such that

∥T2 ◦S2(uk)− uk∥τ < ε3 for 1 ≤ k ≤ n.

In Step 4, we set φ3 = τ ◦T2 and yk = S2(uk). Then we have ucp maps S3 : Mp →
Mm and T3 : Mm → Mp such that

∥T3 ◦S3(yk)− yk∥φ3
< 2ε

1/2
3 for 1 ≤ k ≤ n.

In Step 5, if we define T := T2 ◦T3 and zk = S3(yk), then we have τ ◦T = trm and

∥T (zk)− uk∥τ ≤ ε3 + 2ε
1/2
3 for 1 ≤ k ≤ n.

Next we consider the case where M is a type IIIλ factor with 0 < λ < 1 and

an fn state φ on M satisfies σφt0 = id with t0 = −2π/ log λ. Then we can choose

the ucp map T : Mm →M with ψ = φ ◦T = trm(hψ · ) such that

λ1/λ2 ∈ {λn | n ∈ Z} for λ1, λ2 ∈ sp(hψ).

This fact is weaker than [Ha3, Thm. 3.4], but it is sufficient for our purpose. By

identifying Ẑ with R/t0Z,

N0 =M ⋊σφ (R/t0Z)

is generated by πφ0 (x) and λ
φ
0 (t), where

(πφ0 (x)ξ)(s) = σφ−s(x)ξ(s),

(λφ0 (t)ξ)(s) = ξ(s− t)

for ξ ∈ L2(R/t0Z, Hφ). By [HS, Prop. 5.6], we have N ≃ N0 ⊗ L∞(0, γ0) by

identifying

πφ(x) = πφ0 (x)⊗ 1,

λφ(t) = λφ0 (t)⊗m(eit),

where γ0 = − log λ and m(eit) is the multiplication operator

(m(eit)ξ)(γ) = eitγξ(γ) for ξ ∈ L2(0, γ0).
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We denote the canonical traces by τ0 and τ , the dual weights by φ̃0 and φ̃, on N0

and N , respectively. Let hφ = dφ̃0/dτ0 and kφ = dφ̃/dτ . Then

kφ = hφ ⊗m(eγ).

Note that λφ0 (t+ t0) = λφ0 (t) for t ∈ R and hitφ = λφ0 (t). Hence sp(hφ) = {λn}n∈Z∪
{0}. Therefore we have

h0 =
1− e−α

α
(hφ ⊗m(eγ))eα.

In Step 1, if λ ̸∈ Q, then we can take µ ∈ Q such that µ is sufficiently close to λ

and define

h1 :=
1− e−α

α
(h′φ ⊗m(eγ))eα

satisfying ∥h0 − h1∥ < δ′ and sp(h′φ) ⊂ {µn}n∈Z ∪ {0}. Therefore, by the proof

of Theorem 2.5, we have the ucp map T : Mm → M with ψ = φ ◦T such that

ψ = trm(k̄µ · ). Then, by small perturbation of T , we can obtain T ′ such that

ψ = φ ◦T ′ = trm(k̄λ · ) .

§3. The bicentralizer of a type III0 factor

Let M be a von Neumann algebra. We denote by W(M) and W0(M) the set of

ns (normal semifinite) weights and fns (faithful normal semifinite) weights on M ,

respectively. For φ ∈ W(M), we define

nφ := {x ∈M | φ(x∗x) <∞}

and mφ := n∗φnφ. Let ω ∈ β(N) \ N be a free ultrafilter on N.

Definition 3.1 ([HI, Def. 3.1]). For an fn state φ onM , we define the asymptotic

centralizer and ω-asymptotic centralizer of φ as

AC(M,φ) :=
{
(xn)n ∈ ℓ∞(N,M) | limn→∞ ∥xnφ− φxn∥ = 0

}
,

ACω(M,φ) :=
{
(xn)n ∈ ℓ∞(N,M) | limn→ω ∥xnφ− φxn∥ = 0

}
,

respectively. We also define the bicentralizer and ω-bicentralizer of φ as

B(M,φ) :=
{
a ∈M | limn→∞ ∥axn − xna∥φ = 0 for (xn)n ∈ ACω(M,φ)

}
,

Bω(M,φ) :=
{
a ∈M | limn→ω ∥axn − xna∥φ = 0 for (xn)n ∈ ACω(M,φ)

}
,

respectively.
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We define

Iω(M) :=
{
(xn)n ∈ ℓ∞(M) | xn → 0 ∗-strongly as n→ ω

}
,

Mω(M) :=
{
(xn)n ∈ ℓ∞(M) | (xn)nIω(M) ⊂ Iω(M)

and Iω(M)(xn)n ⊂ Iω(M)
}
.

Then the multiplier algebra Mω(M) is a C∗-algebra and Iω(M) ⊂ Mω(M) is a

norm closed two-sided ideal. Following [Oc], we define the ultrapower von Neumann

algebra Mω := Mω(M)/Iω(M), which is indeed well known to be a von Neumann

algebra.

Definition 3.2 ([AH, Def. 4.25]). For φ ∈ W(M), we define φω ∈ W(M) as

φω := φ ◦E,

where

E : Mω ∋ (xn)
ω 7→ wot-lim

n→ω
xn ∈M

is the canonical fn conditional expectation and where wot-lim is the limit with

respect to the weak operator topology. If φ is faithful, then so is φω.

The following fact induces us to define the bicentralizer of a general weight.

Proposition 3.3 ([HI, Props. 3.2, 3.3]). For an fn state φ on M , we have

B(M,φ) = Bω(M,φ) = [(Mω)φω ]′ ∩M.

In particular, the bicentralizer of φ does not depend on the choice of a free ultrafilter

ω ∈ β(N) \ N.

Definition 3.4. For any φ ∈ W0(M), we define the ω-bicentralizer of φ as

Bω(M,φ) := [(Mω)φω ]′ ∩M.

Remark 3.5. Let φ ∈ W0(M). Does Bω(M,φ) depend on the choice of a free

ultrafilter ω ∈ β(N) \ N? We give a partial answer to this question at the end of

this section.

Lemma 3.6. If φ ∈ W0(M) is lacunary, then we have

Bω(M,φ) ⊃ Z(Mφ).

Proof. Since (Mω)φω = (Mφ)
ω by [AH, Prop. 4.27], we have

Bω(M,φ) = [(Mω)φω ]′ ∩M = [(Mφ)
ω]′ ∩M ⊃ Z(Mφ).
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Remark 3.7. If M is a type IIIλ factor with 0 ≤ λ < 1 and φ ∈ W0(M) is

lacunary, then by [Tak, Lem. XII.4.7] we have

Bω(M,φ) = [(Mω)φω ]′ ∩M = [(Mφ)
ω]′ ∩M ⊂M ′

φ ∩M = Z(Mφ),

and therefore

Bω(M,φ) = Z(Mφ).

The following arguments are based on the work of Connes–Takesaki [CT].

From now on, we assume that M is a σ-finite type IIIλ factor for 0 ≤ λ < 1 and

φ ∈ W0(M) is a lacunary weight of infinite multiplicity. Then Mφ is a type II∞
von Neumann algebra, and there exists a unitary U ∈M such that

UMφU
∗ =Mφ, φ ◦Ad(U) ≤ λ0φ, 0 < λ0 < 1;

M ≃Mφ ⋊θ Z, θ = Ad(U)|Mφ
.

Moreover, τ := φ|Mφ is an fns trace on Mφ. For m ∈ Z, there exists a non-singular

positive self-adjoint operator ρm affiliated to Z(Mφ) such that

(1) φ ◦ θm = φρm ,

(2) ρm+n = ρmθ
−m(ρn),

(3) σφt (U
m) = Umρitm,

(4) ρm ≤ ρ1 < 1 for m > 0,

(5) ρm ≥ ρ−1 > 1 for m < 0.

We simply write ρ := ρ1.

Remark 3.8. Let u, v ∈M be unitaries and x ∈M with the polar decomposition

x = w|x|. If ux = xv, then uw = wv, u(ww∗) = (ww∗)u and v(w∗w) = (w∗w)v.

Lemma 3.9 (Cf. [CT, §3.2, Lem. 2.6]). Suppose that ψj = φhj with hj ∈ M+
φ

satisfying

ρs(hj) ≤ hj < 1 for j = 1, 2.

It ψω2 = (ψω1 )u for a partial isometry u ∈Mω with uu∗ = s(ψω1 ) and u
∗u = s(ψω2 ),

then u ∈ (Mω)φω = (Mφ)
ω.

Proof. The proof is similar to that of [Tak, Lem. XII.4.14]. Set

kj := ρ(1− s(hj)) + hj for j = 1, 2.

Then ρ ≤ kj < 1. Note that

s(ψωj ) = s(ψj) = s(hj) ∈Mφ

by [Tak, Lem. XII.4.13].
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By [Tak, Lem. XII.4.3], we have

ukit2 = us(h2)k
it
2 = uhit2 = u(Dψω2 : Dφω)t = uu∗(Dψω1 : Dφω)tσ

φω

t (u)

= s(h1)h
it
1 σ

φω

t (u) = kit1 s(h1)σ
φω

t (u) = kit1 σ
φω

t (u).

Therefore we obtain

ukit2 = kit1 σ
φω

t (u) for t ∈ R.

By [AH, Prop. 6.23], Mω is canonically isomorphic to (Mφ)
ω ⋊θω Z. Hence we

choose a sequence (x(m)) in (Mφ)
ω = (Mω)φω such that u =

∑
m∈Z x

(m)Um in

Mω. Now we have

ukit2 =
∑
m∈Z

x(m)Umkit2 =
∑
m∈Z

x(m)θm(kit2 )U
m

and

kit1 σ
φω

t (u) = kit1
∑
m∈Z

σφ
ω

t (x(m)Um) =
∑
m∈Z

kit1 x
(m)Umρitm =

∑
m∈Z

kit1 x
(m)θm(ρitm)Um.

By the uniqueness of the expansion, we have

kit1 x
(m)θm(ρitm) = x(m)θm(kit2 ).

Hence

kit1 x
(m) = x(m)θm(kit2 ρ

−it
m ).

For each m ∈ Z, by Remark 3.8 we may and do assume that w := x(m) is a partial

isometry in (Mφ)
ω such that w∗w commutes with θm(kit2 ρ

−it
m ) and ww∗ commutes

with kit1 . Then

kit1 ww
∗ = wθm(kit2 ρ

−it
m )w∗.

Ifm > 0, then ρm ≤ ρ ≤ k2. Hence H := θm(k2ρ
−1
m ) ≥ 1 and 0 ≤ K := k1 < 1.

Then the functions

{z ∈ C | Im(z) ≥ 0} ∋ z 7→ wHizw∗

and

{z ∈ C | Im(z) ≤ 0} ∋ z 7→ Kizww∗

are analytic and bounded, and Hitww∗ = wKitw∗ for t ∈ R. Hence the func-

tion z 7→ Kizww∗ can be extended to a bounded entire function, which must be

constant by Liouville’s theorem. Therefore, ww∗ = ww∗k1 and ww∗(1 − k1) = 0.

Since 1 − k1 is non-singular, we have ww∗ = 0. Similarly, we can show the case

m < 0.
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Lemma 3.10 (Cf. [Tak, Lem. XII.4.14]). Let ψ ∈ W0(M). If ψ = φh for some

h ∈M+
φ with ρs(h) ≤ h < 1, then

(Mω)ψω ⊂ (Mω)φω = (Mφ)
ω.

Proof. If u ∈ (Mω)ψω is a partial isometry such that uu∗ = s(ψω) = u∗u, then

ψω = ψωu . By Lemma 3.9, we have u ∈ (Mω)φω = (Mφ)
ω.

Theorem 3.11. If M is a type III0 factor with separable prequel, then

Bω(M,ψ) ̸= C1

for any ψ ∈ W0(M). In particular,

B(M,ψ) ̸= C1

for any fn state ψ on M .

Proof. By [Tak, Thm. XII.4.10], there exists h ∈ M+
φ satisfying ρs(h) ≤ h < 1

such that ψ ∼ φh, i.e., there exists an isometry u ∈M such that 1 = s(ψ) = u∗u,

s(φh) = uu∗ and ψ(x) = φh(uxu
∗) for x ∈M .

By Lemma 3.10 we have

(Mω)φω
h
⊂ (Mω)φω = (Mφ)

ω.

If a ∈Mψω satisfies uau∗ = 0, then

0 = φωh(ua
∗u∗uau∗) = ψω(a∗a).

Since ψω is faithful, we have a = 0. Hence the adjoint map Ad(u) : Mψω → Mφω
h

is an injective normal ∗-homomorphism. Since

u(Mω)ψωu∗ ⊂ (Mω)φω
h
⊂ (Mω)φω

we have

Bω(M,φ) = [(Mω)φω ]′ ∩M ⊂ [(Mω)φω
h
]′ ∩M ⊂ [u(Mω)ψωu∗]′ ∩M.

By Lemma 3.6 we have

Z(Mφ) ⊂ Bω(M,φ) ⊂ [u(Mω)ψωu∗]′ ∩M.

Let a ∈ Z(Mφ). For x ∈ (Mω)ψω , since u is an isometry, we have

u∗aux = u∗a(uxu∗)u = u∗(uxu∗)au = xu∗au.

Hence u∗au ∈ Bω(M,ψ).
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Now suppose that u∗au ∈ C1 for any a ∈ Z(Mφ), i.e., u
∗au = γ1 for some

γ ∈ C. Recall that Z(Mφ) = M ′
φ ∩M by [Tak, Cor. XII.4.17]. Then ae = γe,

because e := uu∗ = s(h) ∈ Mφ. Since axe = xae = γxe for any x ∈ Mφ, we

have ac(e) = γc(e), where c(e) is the central support of e in Mφ. Therefore we

have Z(Mφ)c(e) = Cc(e), which contradicts the fact that Z(Mφ) is non-atomic

by [Tak, Cor. XII.3.15]. Hence it follows that Bω(M,ψ) ̸= C1.

Next we discuss a von Neumann algebra M with trivial bicentralizer, except

for type III1.

Proposition 3.12. Let ψ be an fn state on M with B(M,ψ) = C1.

(1) If M is a semifinite von Neumann algebra, then M is finite and ψ is tracial.

(2) IfM is a type IIIλ factor with 0 < λ < 1, then σψt0 = id, where t0 = −2π/ log λ.

Proof. (1) Assume M is a semifinite von Neumann algebra with an fns trace τ .

Then there exists a non-singular positive self-adjoint operator h affiliated withMψ

such that ψ = τh by [Tak, Thm. VIII.3.14]. Hence

σψt (x) = hitxh−it for t ∈ R, x ∈M.

For (xn)
ω ∈ (Mω)ψω , thanks to [AH, Thm. 4.1], we have

hit(xn)
ωh−it = (σψt (xn))

ω = σψ
ω

t ((xn)
ω) = (xn)

ω.

Hence

hit ∈ [(Mω)ψω ]′ ∩M = B(M,ψ) = C1.
Therefore we have σψt = id, which means that ψ is tracial.

(2) We assume that M is a type IIIλ factor with 0 < λ < 1. Let φ ∈ W0(M) be

a lacunary weight with infinite multiplicity. By [Tak, Cor. XII.4.10], there exist

h ∈ M+
φ and an isometry u ∈ M such that 1 = s(ψ) = u∗u, s(φh) = uu∗ and

ψ(x) = φh(uxu
∗) for x ∈M . By Lemma 3.10 we have

(Mω)φω
h
⊂ (Mω)φω = (Mφ)

ω.

By the proof of Theorem 3.11,

u(Mω)ψωu∗ ⊂ (Mω)φω
h
.

Hence we obtain

h ∈ [(Mω)φω
h
]′ ∩M ⊂ [u(Mω)ψωu∗]′ ∩M.

Then

u∗hu ∈ [(Mω)ψω ]′ ∩M = Bω(M,ψ) = C1.
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Therefore, u∗hu = γ1 for some constant γ. Since h = uu∗huu∗ = γuu∗ = γs(h),

for x ∈M we have

ψ(x) = φh(uxu
∗) = φ(huxu∗) = φ(uu∗huxu∗) = γφ(uxu∗).

By [Tak, Lem. XII.4.3],

(Dψ : Dφ)t = u∗(Dγφ : Dφ)tσ
φ
t (u) = γitu∗σφt (u) =: ut.

Then

σψt (x) = utσ
φ
t (x)u

∗
t = u∗σφt (u)σ

φ
t (x)σ

φ
t (u

∗)u = u∗σφt (uxu
∗)u.

Therefore,

σψt0(x) = u∗σφt0(uxu
∗)u = u∗(uxu∗)u = x.

Finally we discuss the problem in Remark 3.5. Recall that φ ∈ W0(M) is

strictly semifinite if its restriction to Mφ is also semifinite.

Proposition 3.13. If φ ∈ W0(M) is strictly semifinite, then Bω(M,φ) does not

depend on the choice of a free ultrafilter ω ∈ βN \ N.

Proof. We claim that a ∈ Bω(M,φ) = [(Mω)φω ]′ ∩M if and only if

a ∈
⋂

e∈Mφ

φ(e)<∞

[(Mω
e )φω

e
]′ ∩M.

Assume that a ∈ M commutes with any element in (Mω
e )φω

e
for any projection

e ∈ Mφ with φ(e) < ∞. Since φ is strictly semifinite, there exists an orthogonal

family (ek)k∈I of projections in Mφ with sum 1 such that φ(ek) < ∞. Put pF :=∑
k∈F ek for a finite subset F ⋐ I. Then Mφ ∋ pF ↗ 1 and φ(pF ) < ∞. Let

x ∈ (Mω)φω . Then pFxpF ∈ (Mω
pF )φω

pF
. Hence

pF (ax)pF = a(pFxpF ) = (pFxpF )a = pF (xa)pF

and so ax = xa, namely a ∈ Bω(M,φ).

Conversely, let a ∈ Bω(M,φ). Let e ∈ Mφ be a projection with φ(e) < ∞.

Since (Mω
e )φω

e
⊂ (Mω)φω , we have ax = xa for x ∈ (Mω

e )φω
e
.

Moreover,

[(Mω
e )φω

e
]′ ∩M = ([(Mω

e )φω
e
]′ ∩Me)⊕Me⊥ .

Indeed, let a ∈ [(Mω
e )φω

e
]′ ∩M . Since e ∈ (Mω

e )φω
e
, we have

a = eae+ eae⊥ ∈ ([(Mω
e )φω

e
]′ ∩Me)⊕Me⊥ .
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Conversely, let a = a1 + a2 ∈ ([(Mω
e )φω

e
]′ ∩Me) ⊕Me⊥ . For any x ∈ (Mω

e )φω
e
, we

have xa2 = a2x = 0. Hence ax = xa, and so a ∈ [(Mω
e )φω

e
]′ ∩M .

By Proposition 3.3, we have

[(Mω
e )φω

e
]′ ∩Me = Bω(Me, φ

ω
e ) = B(Me, φ

ω
e ).

Therefore,

Bω(M,φ) =
⋂

e∈Mφ

φ(e)<∞

B(Me, φ
ω
e )⊕Me⊥ ,

which means independence in the choice of a free ultrafilter ω.

§4. Almost unitary equivalence

In this section we generalize the notion of δ-relatedness for two n-tuples of unit

vectors in a Hilbert bimodule. In [Ha4, Rem. 2.9], this is stated, but there is no

proof, and so we give details.

Throughout this section, M is a von Neumann algebra, and H is a Hilbert

M -bimodule, i.e., H is a Hilbert space with left and right actions

(x, ξ) 7→ xξ, (x, ξ) 7→ ξx

such that the above maps are bilinear and (xξ)y = x(ξy) for x, y ∈ M , ξ ∈ H.

Moreover,

x 7→ Lx, x 7→ Rx

are a normal ∗-homomorphism and ∗-antihomomorphism, respectively, where

Lxξ := xξ and Rxξ := ξx for x ∈M , ξ ∈ H.

Definition 4.1 (Cf. [Ha3, Def. 2.1]). Two n-tuples (ξ1, . . . , ξn) and (η1, . . . , ηn)

of unit vectors in H are called almost δ-related if, for any ε > 0, there exist

a1, . . . , ap ∈M such that for 1 ≤ k ≤ n,

(a1) ∥(1−
∑p
j=1 a

∗
jaj)ξk∥ < ε, ∥(1−

∑p
j=1 a

∗
jaj)ηk∥ < ε;

(a2) ∥ξk(1−
∑p
j=1 a

∗
jaj)∥ < ε, ∥ηk(1−

∑p
j=1 a

∗
jaj)∥ < ε;

(b1) ∥(1−
∑p
j=1 aja

∗
j )ξk∥ < ε, ∥(1−

∑p
j=1 aja

∗
j )ηk∥ < ε;

(b2) ∥ξk(1−
∑p
j=1 aja

∗
j )∥ < ε, ∥ηk(1−

∑p
j=1 aja

∗
j )∥ < ε;

(c)
∑p
j=1 ∥ajξk − ηkaj∥2 < δ.

Remark 4.2. In this case, we can easily check that

(d)
∑p
j=1 ∥a∗jηk − ξka

∗
j∥2 < 2δ for 1 ≤ k ≤ n.
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Indeed, for δ/4 > ε > 0, we take a1, . . . , ap ∈ M satisfying (a1), (a2), (b1), (b2)

and (c). Then we have

p∑
j=1

∥a∗jηk − ξka
∗
j∥2 =

p∑
j=1

∥a∗jηk∥2 + ∥ξka∗j∥2 − 2Re⟨a∗jηk, ξka∗j ⟩

=

〈( p∑
j=1

aja
∗
j − 1

)
ηk, ηk

〉
+

〈
ηk, ηk

(
1−

p∑
j=1

aja
∗
j

)〉

+

〈
ηk, ηk

p∑
j=1

aja
∗
j

〉
+

〈
ξk, ξk

( p∑
j=1

a∗jaj − 1

)〉

+

〈(
1−

p∑
j=1

a∗jaj

)
ξk, ξk

〉
+

〈 p∑
j=1

a∗jajξk, ξk

〉
− 2Re⟨ajξk, ηkaj⟩

< 4ε+

p∑
j=1

∥ajξk − ηkaj∥2 < 2δ.

Remark 4.3. If two n-tuples (ξ1, . . . , ξn) and (η1, . . . , ηn) are almost δ-related,

then for each ε > 0, we can choose a1, . . . , ap such that for 1 ≤ k ≤ n,

(a′1) ∥(1−
∑p
j=1 a

∗
jaj)ξk∥ < 2ε, ∥(1−

∑p
j=1 a

∗
jaj)ηk∥ < 2ε;

(a′2) ∥ξk(1−
∑p
j=1 a

∗
jaj)∥ < 2ε, ∥ηk(1−

∑p
j=1 a

∗
jaj)∥ < 2ε;

(b′1) ∥(1−
∑p
j=1 aja

∗
j )ξk∥ < 2ε, ∥(1−

∑p
j=1 aja

∗
j )ηk∥ < 2ε;

(b′2) ∥ξk(1−
∑p
j=1 aja

∗
j )∥ < 2ε, ∥ηk(1−

∑p
j=1 aja

∗
j )∥ < 2ε;

(c′)
∑p
j=1 ∥ajξk − ηkaj∥2 < δ;

(d′)
∑p
j=1 ∥a∗jηk − ξka

∗
j∥2 < 2δ;

(e′) ∥(
∑p
j=1 a

∗
jaj)ξk∥ ≤ 1, ∥(

∑p
j=1 a

∗
jaj)ηk∥ ≤ 1;

(f′) ∥(
∑p
j=1 aja

∗
j )ξk∥ ≤ 1, ∥(

∑p
j=1 aja

∗
j )ηk∥ ≤ 1.

Indeed, we take a1, . . . , ap satisfying (a1), (a2), (b1), (b2), (c) and (d) by Remark

4.2. Then it is easy to check that operators

a′j :=
( 1

1 + ε

)1/2

aj for j = 1, . . . , p

satisfy the above properties for sufficiently small ε > 0.
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Lemma 4.4. Let ξ, η be two almost δ-related unit vectors in a Hilbert M -

bimodule. Then there exist b1, . . . , bp ∈M such that

(1) |⟨(1−
∑p
j=1 b

∗
j bj)ξ, ξ⟩| < 4δ1/2;

(2) |⟨(1−
∑p
j=1 bjb

∗
j )η, η⟩| < 4δ1/2;

(3)
∑p
j=1 ∥bjξ − ηbj∥2 < 4δ;

(4)
∑p
j=1 ∥b∗jη − ξb∗j∥2 < 4δ;

(5)
∑p
j=1 b

∗
j bj ≤ 1;

(6)
∑p
j=1 bjb

∗
j ≤ 1.

Proof. Choose 0 < ε < 1 such that 5ε ≤ 2δ1/2 and 4ε1/2 ≤ δ1/2. By Remark 4.3,

there exist a1, . . . , ap of M satisfying

(a′1) ∥(1−
∑p
j=1 a

∗
jaj)ξ∥ < ε2, ∥(1−

∑p
j=1 a

∗
jaj)η∥ < ε2;

(a′2) ∥ξ(1−
∑p
j=1 a

∗
jaj)∥ < ε2, ∥η(1−

∑p
j=1 a

∗
jaj)∥ < ε2;

(b′1) ∥(1−
∑p
j=1 aja

∗
j )ξ∥ < ε2, ∥(1−

∑p
j=1 aja

∗
j )η∥ < ε2;

(b′2) ∥ξ(1−
∑p
j=1 aja

∗
j )∥ < ε2, ∥η(1−

∑p
j=1 aja

∗
j )∥ < ε2;

(c′)
∑p
j=1 ∥ajξ − ηaj∥2 < δ;

(d′)
∑p
j=1 ∥a∗jη − ξa∗j∥2 < 2δ;

(e′) ∥(
∑p
j=1 a

∗
jaj)ξ∥ ≤ 1, ∥(

∑p
j=1 a

∗
jaj)η∥ ≤ 1;

(f′) ∥(
∑p
j=1 aja

∗
j )ξ∥ ≤ 1, ∥(

∑p
j=1 aja

∗
j )η∥ ≤ 1.

Then we define cp maps S and T on M as

S(x) :=

p∑
j=1

a∗jxaj , T (x) :=

p∑
j=1

ajxa
∗
j for x ∈M.

We define e := 1[1−ε,1+ε](S(1)) and f := 1[1−ε,1+ε](T (1)). Since (S(1) − 1)2 ≥
ε2(1− e), we have

ε2∥(1− e)ξ∥2 = ε2⟨(1− e)ξ, ξ⟩ ≤ ∥(S(1)− 1)ξ∥2 < ε4.

Hence

∥(1− e)ξ∥ ≤ ε.

Similarly, we have

∥(1− e)η∥ ≤ ε, ∥ξ(1− e)∥ ≤ ε, ∥η(1− e)∥ ≤ ε.
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We also obtain

∥(1− f)ξ∥ ≤ ε, ∥(1− f)η∥ ≤ ε, ∥ξ(1− f)∥ ≤ ε, ∥η(1− f)∥ ≤ ε.

Next we define cp maps S′ and T ′ on M as

S′(x) :=
1

1 + ε
eS(x)e, T ′(x) :=

1

1 + ε
fT (x)f for x ∈M.

Then S′(1) ≤ 1 and T ′(1) ≤ 1. In particular, S′ and T ′ are contractive.

Now we define

bj :=
1√
1 + ε

faje for 1 ≤ j ≤ p.

Then
p∑
j=1

b∗j bj =
1

1 + ε

p∑
j=1

ea∗jfaje = S′(f) ≤ 1.

Similarly, we have
∑p
j=1 bjb

∗
j ≤ 1. Thus we obtain (5) and (6).

We will check (1). Since ξ and η are unit vectors, we have∣∣∣∣〈(1− p∑
j=1

b∗j bj

)
ξ, ξ

〉∣∣∣∣ = ∣∣∣∣⟨η, η⟩ − 1

1 + ε

p∑
j=1

⟨ea∗jfajeξ, ξ⟩
∣∣∣∣

≤ ε+

∣∣∣∣〈η(1− p∑
j=1

aja
∗
j

)
, η

〉∣∣∣∣+ ∣∣∣∣〈(1− f)η, η

p∑
j=1

aja
∗
j

〉∣∣∣∣
+

∣∣∣∣ p∑
j=1

⟨fηaj , (ηaj − ajξ)⟩
∣∣∣∣+ ∣∣∣∣ p∑

j=1

⟨f(ηaj − ajξ), ajξ⟩
∣∣∣∣

+

∣∣∣∣ p∑
j=1

⟨fajξ, aj(1− e)ξ⟩
∣∣∣∣+ ∣∣∣∣ p∑

j=1

⟨faj(1− e)ξ, ajeξ⟩
∣∣∣∣

≤ ε+

∥∥∥∥η(1− p∑
j=1

aja
∗
j

)∥∥∥∥ ∥η∥+ ∥(1− f)η∥
∥∥∥∥η p∑

j=1

aja
∗
j

∥∥∥∥
+

( p∑
j=1

∥ηaj∥2
)1/2( p∑

j=1

∥ηaj − ajξ∥2
)1/2

+

( p∑
j=1

∥ηaj − ajξ∥2
)1/2( p∑

j=1

∥ajξ∥2
)1/2

+

( p∑
j=1

∥ajξ∥2
)1/2( p∑

j=1

∥aj(1− e)ξ∥2
)1/2

+

( p∑
j=1

∥aj(1− e)ξ∥2
)1/2( p∑

j=1

∥ajeξ∥2
)1/2

.
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By (e′), (f′), we have
∑p
j=1 ∥ηaj∥2 ≤ 1, and

∑p
j=1 ∥ajξ∥2 ≤ 1. Since the projection

e commutes with
∑p
j=1 a

∗
jaj , we have

p∑
j=1

∥aj(1− e)ξ∥2 =

〈 p∑
j=1

a∗jaj(1− e)ξ, (1− e)ξ

〉

=

〈 p∑
j=1

a∗jajξ, (1− e)ξ

〉
≤ ∥(1− e)ξ∥ ≤ ε

and
p∑
j=1

∥ajeξ∥2 =

〈 p∑
j=1

a∗jajeξ, eξ

〉
=

〈 p∑
j=1

a∗jajξ, eξ

〉
≤ 1.

Therefore, ∣∣∣∣〈(
1−

p∑
j=1

b∗j bj

)
ξ, ξ

〉∣∣∣∣ ≤ 5ε+ 2δ1/2 ≤ 4δ1/2.

Similarly, we have (2).

Next we will check (3):( p∑
j=1

∥bjξ − ηbj∥2
)1/2

≤
( p∑
j=1

∥fajeξ − ηfaje∥2
)1/2

=

( p∑
j=1

∥faj(e− 1)ξ∥2
)1/2

+

( p∑
j=1

∥fajξ(1− e)∥2
)1/2

+

( p∑
j=1

∥f(ajξ − ηaje)∥2
)1/2

+

( p∑
j=1

∥(f − 1)ηaje∥2
)1/2

+

( p∑
j=1

∥η(1− f)aje∥2
)1/2

≤ (⟨S(f)(e− 1)ξ, (e− 1)ξ⟩)1/2 + (⟨S(f)ξ(1− e), ξ(1− e)⟩)1/2

+

( p∑
j=1

∥ajξ − ηaj∥2
)1/2

+ (⟨(f − 1)η, (f − 1)ηT (e)⟩)1/2 + (⟨η(1− f), η(1− f)T (e)⟩)1/2

< 4ε1/2 + δ1/2 ≤ 2δ1/2.

Similarly, we can check (4). The proof is complete.
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Then we can show Theorem 4.6 by using following lemma, which is also proved

by similar arguments to [Ha3, Lem. 2.5].

Lemma 4.5 (Cf. [Ha3, Lem. 2.5]). Assume that δ > 0 and r ∈ N satisfy

δ1/2 <
1

8r
.

Let ξ, η be two almost δ-related unit vectors in a Hilbert M -bimodule. Then there

exist r operators c1, . . . , cr ∈M such that ∥cj∥ ≤ 1, 1 ≤ j ≤ r and∥∥∥∥( r∑
j=1

c∗jcj − 1

)
ξ

∥∥∥∥2 < 12

r
,

∥∥∥∥( r∑
j=1

cjc
∗
j − 1

)
η

∥∥∥∥2 < 12

r
,

p∑
j=1

∥cjξ − ηcj∥2 < 32δ,

p∑
j=1

∥c∗jη − ξc∗j∥2 < 32δ.

By similar arguments to [Ha3] with Lemma 4.5, we can prove almost unitary

equivalence for two almost δ-related n-tuples in a Hilbert bimodule, which is a

generalization of [Ha3, Thm. 2.3].

Theorem 4.6 (Cf. [Ha3, Thm. 2.3]). For every n ∈ N and every ε > 0, there

exists a δ = δ(n, ε) > 0 such that for all von Neumann algebras M and all almost

δ-related n-tuples (ξ1, . . . , ξn), (η1, . . . , ηn) of unit vectors in a HilbertM -bimodule,

there exists a unitary u ∈M such that

∥uξk − ηku∥ < ε for 1 ≤ k ≤ n.

§5. Γ-stable states

Definition 5.1 (Cf. [Ha4, Def. 4.1]). Let Γ be a multiplicative subgroup of R+.

An fn state φ on a von Neumann algebra M is called Γ-stable if for every n ∈ N,
0 < r ≤ 1 and γ1, . . . , γn ∈ Γ with 1 = rγ1 + · · · + rγn, there exist n partial

isometries v1, . . . , vn ∈M and a projection e ∈M such that

n∑
j=1

vjv
∗
j = 1, φ(e) = r

and

e = v∗j vj , φvj = γjvjφ for 1 ≤ j ≤ n.

Remark 5.2. If Γ = Q+, then Q-stable states in [Ha4, Def. 4.1] are equivalent

to our Q+-stable states. Indeed, an fn state φ is Q-stable in the sense of [Ha4,



136 R. Okayasu

Def. 4.1] if and only if, for q1, . . . , qn ∈ Q+ with 1 = q1 + · · · + qn, there exist n

isometries v1, . . . , vn ∈M such that

n∑
j=1

vjv
∗
j = 1 and φvj = qjvjφ,

because of [Ha4, Lem. 4.6]. Therefore, if φ is Q+-stable, then for q1, . . . , qn ∈ Q+

with 1 = q1+ · · ·+qn, there are partial isometries v1, . . . , vn ∈M and a projection

e ∈M such that
n∑
j=1

vjv
∗
j = 1, φ(e) = 1

and

e = v∗j vj , φvj = qjvjφ for 1 ≤ j ≤ n.

Since φ(e) = 1 and φ is faithful, we have e = 1. Hence v1, . . . , vn are isometries,

and thus φ is Q-stable.

Conversely, let 0 < r ≤ 1 and γ1, . . . , γn ∈ Q+ with 1 = rγ1 + · · ·+ rγn. Then

r ∈ Q+ and put qj := rγj ∈ Q+ for 1 ≤ j ≤ n. By using Q-stability, there are

isometries v1, . . . , vn ∈M such that

n∑
j=1

vjv
∗
j = 1 and φvj = qjvjφ.

Moreover, there is an isometry w such that φw = rwφ. We define partial isometries

wj := vjw
∗. Then w∗

jwj = ww∗ and

n∑
j=1

wjw
∗
j =

n∑
j=1

vjv
∗
j = 1.

Moreover,

φwj = φvjw
∗ = qjr

−1vjw
∗φ = γjwjφ

and

φ(w∗
jwj) = γ−1

j φ(wjw
∗
j ) = γ−1

j φ(vjv
∗
j ) = γ−1

j qjφ(v
∗
j vj) = r.

Lemma 5.3 (Cf. [Ha4, Thm. 4.5]). Let φ be a Γ-stable fn state on a von Neu-

mann algebra M , and let 0 < r ≤ 1, γ1, . . . , γn ∈ Γ with 1 = rγ1 + · · · + rγn.

Then there exists a type In subfactor F of M such that σφt (F ) = F for t ∈ R and

φ|F = Trn(h · ), where

h =

rγ1 . . .
rγn

 .
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Proof. There exist n partial isometries v1, . . . , vn ∈ M and a projection e ∈ M

such that
n∑
j=1

vjv
∗
j = 1, φ(e) = r

and

e = v∗j vj , φvj = γjvjφ for 1 ≤ j ≤ n.

Then ejk := vjv
∗
k for 1 ≤ j, k ≤ n give a system of matrix units. Moreover, we

have

φ(ejk) = φ(vjv
∗
k) = γjφ(v

∗
kvj) = δjkrγj .

Since

σφt (ejk) = σφt (vjv
∗
k) = γitj γ

−it
k vjv

∗
k = γitj γ

−it
k ejk,

we have σφt (F ) = F for t ∈ R.

Remark 5.4. If τ is a tracial fn state on a type II1 factor, then it is easy to see

that τ is {1}-stable.
If φ is an fn state on a type IIIλ factor (0 < λ < 1) for which σφt0 = id,

where t0 = −2π/ log λ, then φ is {λm}m∈Z-stable. Indeed, let 0 < r ≤ 1 and

γ1, . . . , γn ∈ Γ with 1 = rγ1 + · · · + rγn. Put λj := rγj . Since Mφ is a type II1
factor, we can choose a projection e and mutually orthogonal projections e1, . . . , en
in Mφ with sum 1 such that

φ(e) = r and φ(ej) = λj for 1 ≤ j ≤ n.

By using [Ha3, Lem. 4.2], there exist partial isometries v1, . . . , vn in M such that

e = v∗j vj , ej = vjv
∗
j and φvj = γjvjφ for 1 ≤ j ≤ n.

In these cases, by Lemma 5.3, we obtain a finite-dimensional subfactor F of

M such that

σφt (F ) = F for t ∈ R.

Note that it is equivalent to

φ = φ|F ⊗ φ|F c ,

where F c := F ′∩M . We expect that φ|F c is also Γ-stable. If τ is tracial, then τ |F c

is also tracial, and thus is {1}-stable. If M is a type IIIλ factor with an fn state φ

for which σφt0 = id, then F c is also a type IIIλ factor and σ
φ|Fc

t is the restriction

of σφt to F c. Hence φ|F c is also {λm}m∈Z-stable. In the case of type III1 factors,

it is proved in [Ha4, Thm. 4.5] that if φ is Q+-stable, then φ|F c is also Q+-stable.
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Lemma 5.5 (Cf. [Ha4, Lem. 4.6]). If φ is Γ-stable, then for γ ∈ Γ, there exist

m ∈ N and partial isometries w1, . . . , wm ∈M such that

m∑
j=1

w∗
jwj = 1 and φwj = γwjφ for 1 ≤ j ≤ m.

Proof. If γ = 1 ∈ Γ, then m = 1 and w1 = 1. If 0 < γ < 1, then set r := γ.

By using Γ-stability for 1 = rγ−1, there exists a partial isometry v ∈ M such

that vv∗ = 1, φv = γ−1vφ and φ(v∗v) = γ. Then w1 := v∗ satisfies the desired

properties. If 1 < γ, then there is m ∈ N such that

mγ−1 ≥ 1.

Then take 0 < r ≤ 1 such that r(mγ−1) = 1. By using Γ-stability, there exist

partial isometries v1, . . . , vm ∈M such that

m∑
j=1

vjv
∗
j = 1, φvj = γ−1vjφ for 1 ≤ j ≤ m.

Then w1 := v∗1 , . . . , wm := v∗m satisfy the desired properties.

§6. Injective factors and ITPFI factors

Throughout this section, we assume that Γ is a multiplicative subgroup of R+,

which is {1}, {λm}m∈Z with 0 < λ < 1 or Q+. We also assume that M is an

injective factor M not of type I, with separable predual and φ is a Γ-stable fn

state onM with B(M,φ) = C1. IfM is of type II1, then φ is tracial with Γ = {1},
and if M is of type IIIλ (0 < λ < 1), then σφt0 = id with Γ = {λm}m∈Z, where

t0 = −2π/ log λ. If M is of type III1, then we assume that φ is Q+-stable. We

recall that every type III1 factor with separable predual has a Q+-stable fn state

by [Ha4, Thm. 4.2]. Moreover, every injective type III1 with separable predual

factor has trivial bicentralizer by [Ha2, Thm. 2.3].

We prove the main theorem in this section.

Theorem 6.1. Let M be an injective factor M with separable predual and φ be a

Γ-stable fn state on M with B(M,φ) = C1. Then M is ITPFI.

Lemma 6.2 (Cf. [Ha4, Lem. 5.4]). Let φ be a Γ-stable fn state with B(M,φ) =

C1 on an injective factor M . Let u1, . . . , un ∈ U(M) and δ > 0. Then there

exist a finite-dimensional σφ-invariant subfactor F of M and v1, . . . , vn ∈ U(F )
satisfying the following: for ε > 0, there exist operators b1, . . . , bp in M such that

for 1 ≤ k ≤ n,
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(a) ∥(1−
∑p
j=1 b

∗
j bj)ukξφ∥ < ε, ∥(1−

∑p
j=1 b

∗
j bj)vkξφ∥ < ε;

(b) ∥(1−
∑p
j=1 εF,φ(bjb

∗
j ))ukξφ∥ < ε, ∥(1−

∑p
j=1 εF,φ(bjb

∗
j ))vkξφ∥ < ε;

(c)
∑p
j=1 ∥bjξφ − ξφbj∥2 < δ;

(d)
∑p
j=1 ∥bjuk − vkbj∥2φ < δ.

Proof. By Theorem 2.5 and Remark 2.6, for 1 > δ > 0 there exists a ucp map

T : Mm →M and v1, . . . , vn ∈ U(Mm) such that an fn state ψ := φ ◦T = trm(hψ · )
on Mm satisfies

∥σφt ◦T − T ◦σψt ∥ ≤ δ|t| for t ∈ R,

∥T (vk)− uk∥φ <
δ1/2

2
for 1 ≤ k ≤ n

and

λ1/λ2 ∈ Γ for λ1, λ2 ∈ sp(hψ).

Since φ is Γ-stable, as in the proof of [Ha4, Lem. 5.4], we may assume that F :=

Mm ⊂M , and T : F →M satisfies φ ◦T = φ|F and

∥σφt ◦T − T ◦σφ|Ft ∥ ≤ δ|t| for t ∈ R.

Set ξk := ukξφ and ηk := vkξφ for 0 ≤ k ≤ n, where u0 = v0 = 1.

By [Ha1, Prop. 2.1], there exist a1, . . . , ap ∈M such that

T (x) =

p∑
j=1

a∗jxaj for x ∈ F .

Since T is unital, we have
p∑
j=1

a∗jaj = 1.

If M is of type II1, then operators a1, . . . , ap satisfy the desired properties by

the proof of [Ha1, Prop. 5.2].

Next we assume that M is properly infinite. By [Ha1, Prop. 2.1], we can take

a single operator a ∈M such that

T (x) = a∗xa for x ∈ F .

Then we can find finitely many operators aj satisfying the following conditions:

(a′) ∥(1−
∑p
j=−p a

∗
jaj)ξk∥ < ε/2, ∥(1−

∑p
j=1 a

∗
jaj)ηk∥ < ε/2;

(b′) ∥(1−
∑p
j=−p λ

−jεF,φ(aja
∗
j ))ξk∥ < ε/2, ∥(1−

∑p
j=−p λ

−jεF,φ(aja
∗
j ))ηk∥ < ε/2;
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(c′)
∑p
j=−p ∥ajξφ − λ−j/2ξφaj∥2 < δ;

(d′)
∑p
j=−p ∥ajuk − vkaj∥2φ < δ.

If M is of type III1 and φ is Q+-stable, then by the argument of [Ha4, Lem. 5.4],

we can choose λ ∈ Q+ and operators aj for −p ≤ j ≤ p satisfy conditions (a′)–(d′).

If M is of type IIIλ (0 < λ < 1), then it suffices to set aj := εj(a), where εj
is the projection of norm 1 of M onto

Mj = {x ∈M | σφt (x) = λijt(x), t ∈ R}

given by

εj(x) :=
1

t0

∫ t0

0

σφt (x)λ
−ijt dt.

Indeed, it follows from similar arguments to [Ha4, Lem. 5.4]. We give a sketch

proof below. Note that every x ∈M has a formal expansion

x ∼
∞∑

j=−∞
εj(x).

For ξ ∈ L2(M,φ), we have

∞∑
j=−∞

∥εj(a)ξ∥2 =
1

t0

∫ t0

0

∥σφt (a)ξ∥2 dt = ∥ξ∥2.

Let x ∈ F . Since

φ
(
εF,φ(εj(a)εj(a)

∗)x
)
= φ ◦ εF,φ(εj(a)εj(a)∗x)
= φ(εj(a)εj(a)

∗x)

= φ
(
εj(a)

∗xσφ−i(εj(a))
)

= λjφ(εj(a)
∗xεj(a)),

we obtain
∞∑

j=−∞
λ−jφ

(
εF,φ(εj(a)εj(a)

∗)x
)
=

∞∑
j=−∞

φ(εj(a)
∗xεj(a))

=

∞∑
j=−∞

⟨xεj(a)ξφ, εj(a)ξφ⟩

=
1

t0

∫ t0

0

⟨xσφt (a)ξφ, σ
φ
t (a)ξφ⟩ dt

=
1

t0

∫ t0

0

φ(σφt ◦T ◦σφ−t(x)) dt

= φ(x).
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Since ξφεj(a) = λj/2εj(a)ξφ, we have

∞∑
j=−∞

∥εj(a)ξφ − λ−j/2ξφεj(a)∥2 = 0.

For ξ, η ∈ L2(M,φ), we obtain

∞∑
j=−∞

⟨xεj(a)ξ, εj(a)η⟩ =
1

t0

∫ t0

0

⟨xσφt (a)ξ, σ
φ
t (a)η⟩ dt

=
1

t0

∫ t0

0

⟨σφt ◦T ◦σφ−t(x)ξ, η⟩ dt.

Hence ∥∥∥∥T (x)− ∞∑
j=−∞

εj(a)
∗xεj(a)

∥∥∥∥ ≤ δ∥x∥.

Therefore, it follows from the above arguments that, for sufficiently large integer

p > 0, operators aj for −p ≤ j ≤ p satisfy conditions (a′)–(d′).

By Remark 5.4, φ|F c is also Γ-stable. By Lemma 5.5, for each −p ≤ j ≤ p,

there exist a finite set of operators cj,1, . . . , cj,p(j) in F
c such that

φcj,l = λ−jcj,lφ and

p(j)∑
l=1

c∗j,lcj,l = 1.

Then operators bj,l := cj,laj for −p ≤ j ≤ p and l = 1, . . . , p(j) satisfy the desired

properties as in the proof of [Ha4, Lem. 5.4].

Lemma 6.3 (Cf. [Ha4, Lem. 5.5]). Let δ > 0 and u1, . . . , un ∈ U(M), Then there

exist a finite-dimensional σφ-invariant subfactor F ofM and unitaries v1, . . . , vn ∈
U(F ) such that (n+1)-tuples of unit vectors (ξφ, u1ξφ, . . . , unξφ) and (ξφ, v1ξφ, . . . ,

vnξφ) are almost δ-related.

Proof. The proof is the same as [Ha4, Lem. 5.5]. So we only give a sketch of the

proof. Let δ > 0 and u1, . . . , un ∈ U(M). Thanks to Lemma 6.2, there exist a

finite-dimensional σφ-invariant subfactor F of M and v1, . . . , vn ∈ U(F ) as in the

statement of Lemma 6.2. For a given ε > 0, we can choose operators b1, . . . , bp in

M satisfying conditions (a)–(d) in Lemma 6.2.

Let δ′ > 0 be arbitrary. Set b :=
∑p
j=1 bjb

∗
j . Since B(M,φ) = C, thanks to

[Ha2] and [Ha4, Prop. 2.6] we have

εF,φ(b) ∈ conv{wbw∗ | w ∈ U(F c), ∥wξφ − ξφw∥ < δ′},
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where the closure means the σ-strong operator topology. Hence there exist w1, . . . ,

wq ∈ U(F c) and λ1, . . . , λq ∈ R+ with
∑q
l=1 λq = 1 such that

∥wlξφ − ξφwl∥ < δ′

and ∥∥∥∥(1− q∑
l=1

λlwlbw
∗
l

)
ukξφ

∥∥∥∥ < ε and

∥∥∥∥(1− q∑
l=1

λlwlbw
∗
l

)
vkξφ

∥∥∥∥ < ε.

Then one can easily check that operators

aj,l := λ
1/2
l wlbj

for j = 1, . . . , p and l = 1, . . . , q have the desired properties for the almost δ-

relatedness.

Now we prove our main theorem in this section.

Proof of Theorem 6.1. Let u1, . . . , un ∈ U(M) and ε > 0. Then we take δ =

δ(n, ε/4) > 0 with properties in Theorem 4.6. By Lemma 6.3, we choose a finite-

dimensional σφ-invariant subfactor F of M and v1, . . . , vn ∈ U(F ) such that (n+

1)-tuples of unit vectors (ξφ, u1ξφ, . . . , unξφ) and (ξφ, v1ξφ, . . . , vnξφ) are almost

δ-related. Therefore, by Theorem 4.6, there exists w ∈ U(M) such that

∥wξφ − ξφw∥ <
ε

4

and

∥wukξφ − vkξφw∥ <
ε

4
for 1 ≤ k ≤ n.

Then

∥uk − w∗vkw∥φ = ∥w∗(wuk − vkw)ξφ∥
≤ ∥wukξφ − vkξφw∥+ ∥vk(ξφw − wξφ)∥

<
ε

2
.

Set F0 := w∗Fw and wk := w∗vkw for 1 ≤ k ≤ n. Then

∥uk − wk∥φ <
ε

2
for 1 ≤ k ≤ n.

Put φ0 := w∗φw. Then since F is σφ-invariant, F0 is also σφ0-invariant, i.e.,

φ0 = φ0|F0
⊗ φ0|F c

0
.
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Since ξφ0
= w∗ξφw, we have

∥φ− φ0∥ ≤ ∥ξφ − w∗ξφw∥ ∥ξφ + w∗ξφw∥
≤ 2∥wξφ − ξφw∥
< ε.

Therefore, by [CW, Lem. 7.6], M is ITPFI.
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