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Abstract

We study the category Osh of representations over a shifted Yangian. This category has a
tensor product structure and contains distinguished modules, the positive prefundamen-
tal modules and the negative prefundamental modules. Motivated by the representation
theory of the Borel subalgebra of a quantum affine algebra and by the relevance of quan-
tum integrable systems in this context, we prove that tensor products of prefundamental
modules with irreducible modules are either cyclic or cocyclic. This implies the existence
and uniqueness of morphisms, the R-matrices, for such tensor products. We prove the
R-matrices are polynomial in the spectral parameter, and we establish functional rela-
tions for the R-matrices. As applications, we prove the Jordan–Hölder property in the
category Osh. We also obtain a proof, uniform for any finite type, that any irreducible
module factorizes through a truncated shifted Yangian.
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§1. Introduction

Shifted Yangians, and their truncations, appeared for type A in the context of the

representation theory of finite W -algebras in the work of Brundan–Kleshchev [9],

then in the study of quantized affine Grassmannian slices by Kamnitzer–Webster–

Weekes–Yacobi [50] for general types, and in the study of quantized Coulomb

branches of three-dimensional N = 4 SUSY quiver gauge theories by Braverman–

Finkelberg–Nakajima [7] for simply laced types and by Nakajima–Weekes [62] for

non-simply-laced types.

Fix a finite-dimensional complex simple Lie algebra g. The shifted Yangians

Yµ(g) can be seen as variations of the ordinary Yangian Y (g) in its Drinfeld pre-

sentation, but depending on a coweight µ in the coweight lattice, denoted by P∨,

of the underlying simple Lie algebra g. In the particular case µ = 0, we recover

the Yangian Y0(g) = Y (g). The representations of Yangians, and their trigonomet-

ric analogs the quantum affine algebras Uq(ĝ), have been under intense study for

several decades. The truncated shifted Yangians, certain remarkable quotient of

shifted Yangians, depend on additional parameters, including a dominant coweight

λ. These parameters λ and µ can be interpreted as parameters for generalized slices

of the affine Grassmannian Wλ
µ (the usual slices when µ is dominant). These vari-

eties are also Coulomb branches, symplectic dual to Nakajima quiver varieties, and

the truncated shifted Yangians can be seen as quantizations of these symplectic

varieties.

For simply laced types, representations of shifted Yangians and related Cou-

lomb branches have been intensively studied in this context; see [9, 48, 49] and

references therein. For non-simply-laced types, representations of quantizations

of Coulomb branches have been studied by Nakajima–Weekes [62] by using the

method originally developed in [61] for simply laced types (the reader may refer

to the discussion in [40, Introduction]).

One crucial property of shifted Yangians is the existence [20] of a family of

algebra homomorphisms indexed by a pair of coweights µ and ν,

∆µ,ν : Yµ+ν(g) −→ Yµ(g)⊗ Yν(g).

This is analogous to the Drinfeld–Jimbo coproduct for ordinary Yangians. These

coproducts ∆µ,ν induce a tensor product structure on a category

Osh =
⊕
µ∈P∨

Oµ,

which is a sum of categories Oµ of representations over the shifted Yangians Yµ(g)

for various coweights µ.
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By [9, 48, 49], an irreducible module in category Osh is determined by its

highest weight, which is a tuple of ratios of monic polynomials in u, one ratio for

each Dynkin node of g. There is a natural C-action on the shifted Yangians by

algebra automorphisms. Each module V induces on the same underlying vector

space a family of module structures V (a), for a ∈ C referred to as the spectral

parameter, such that V (0) = V . If V is irreducible, then V (a) remains irreducible

and its highest weight is obtained from that of V by the substitution u 7→ u− a.

In a seemingly different direction, the category O of representations of the

Borel subalgebra Uq(b̂) of a quantum affine algebra Uq(ĝ) was introduced and

studied by Jimbo and the first author in [41]. One crucial point for the approach

therein is an asymptotical procedure to construct certain remarkable simple rep-

resentations, the prefundamental representations, as limits of finite-dimensional

representations of Uq(ĝ). It was observed by the second author in [70] that the

category Osh for shifted Yangians provides a Yangian counterpart of the prefun-

damental representations and their asymptotical procedure. The prefundamental

representations play a similar role in category Osh as the fundamental represen-

tations do in the subcategory of finite-dimensional representations of the ordinary

Yangian [14], hence the terminology.

The trigonometric analogs of shifted Yangians, namely the shifted quantum

affine algebras, are other examples of shifted quantum groups. These algebras

Uµ
q (ĝ) were introduced by Finkelberg–Tsymbaliuk [21] as variations of the quan-

tum affine algebras Uq(ĝ), for a quantization parameter q ∈ C∗ which is not a root

of unity. The shifted quantum affine algebras also admit remarkable truncations

which are closely related to K-theoretical Coulomb branches. The approach to the

representation theory of Uµ
q (ĝ) developed by the first author in [40] is based on the

relations with representations in the category O of the Borel algebra Uq(b̂) and on

associated quantum integrable systems. For instance, the study of R-matrices and

transfer matrices of Uq(ĝ) allows one to give a proof, uniform for any finite type,

that simple finite-dimensional representations of shifted quantum affine algebras

Uµ
q (ĝ) descend to a truncation.

In this spirit, it is natural to raise the question of the construction of R-

matrices for representations of shifted quantum groups. It is the problem we

address in this paper and from which we obtain several applications. The Drinfeld–

Jimbo coproduct is only conjecturally known for shifted quantum affine algebras,

that is why we work with shifted Yangians.

More precisely, we study morphisms in category Osh of the form

ŘV,W : V ⊗W −→W ⊗ V

for a pair (V,W ) of irreducible representations of shifted Yangians.
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To state our main results in a neat way, call an irreducible module positive

(respectively, negative) if its highest weight is a tuple of (respectively, inverses

of) monic polynomials. When the total degree of these polynomials is 1, these

are the prefundamental modules [70] mentioned above. Positive modules are one-

dimensional, while negative modules are infinite-dimensional except in the trivial

case.

Construction of R-matrices. Let P be a positive module and N be a negative

module. Let V be an arbitrary irreducible module in category Osh. As our first

main result, we prove the following cyclicity and cocyclicity properties (Theorem

4.8):

(i) The modules P ⊗ V and V ⊗N are generated by tensor products of highest

weight vectors. The modules V ⊗ P and N ⊗ V are cogenerated by tensor

products of highest weight vectors.

Here, a module is cogenerated by a vector if this vector is contained in all non-

zero submodules. As a consequence, we obtain unique module morphisms sending

a tensor product of highest weight vectors to the opposite tensor product,

ŘP,V (a) : P (a)⊗ V −→ V ⊗ P (a)

and

ŘV,N (a) : V (a)⊗N −→ N ⊗ V (a).

Another consequence of the cyclicity property is that the R-matrices ŘP,V (a) and

ŘV,N (a), viewed as vector-valued functions of a, are polynomial.

Our cyclicity property differs from the case of finite-dimensional irreducible

representations of ordinary quantum affine algebras and Yangians where cyclicity

holds true for generic spectral parameters. Indeed, in the non-shifted case the

failure of cyclicity is controlled by the poles of normalized R-matrices viewed as

rational functions [1, 25, 51, 37, 38, 30] of the spectral parameter, which are rarely

polynomial.

Properties of R-matrices. The R-matrices being module morphisms, we are

able to compute them for positive modules, much in the spirit of Jimbo [44]. It

turns out that they are connected to the Gerasimov–Kharchev–Lebedev–Oblezin

truncation series [32], GKLO series for short, which are certain generating series

of the shifted Yangians appearing in the definition of truncated shifted Yangians

[9, 50, 7]. Note that in the trigonometric case, the truncation series defining trun-

cated shifted quantum affine algebras were related to limits of transfer matrices

associated to positive prefundamental representations (the Q-operators) in [40].



Shifted Yangians and Polynomial R-Matrices 5

Since a positive module P is one-dimensional, we view ŘP,V (a) as a linear

operator on V . We establish the following property in the “positive case”:

(ii) For P a positive prefundamental module, the vector-valued polynomial func-

tion a 7→ ŘP,V (a) from C to End(V ) satisfies an additive difference equation

determined by the action of a GKLO series; see equation (5.6).

In the case of finite-dimensional representations of the ordinary Yangian, there

is a general construction of R-matrices by solving additive difference equations

[28, 29, 30]. Point (ii) can be seen as a reverse statement: first the R-matrices are

shown to exist, and then we find difference equations for them.

In the “negative case”, the following is the key technical result of this paper.

(iii) Let V be a fundamental module equipped with a weight basis, and view

ŘV,N (a) as a matrix whose entries are vector-valued polynomial functions

from C to End(N). Then the diagonal entry associated to the lowest weight

basis vector of V is the action of a GKLO series; Equation (8.1).

Here, a fundamental module [14] is a finite-dimensional irreducible module over the

ordinary Yangian whose associated Drinfeld polynomials are of total degree 1 (as

mentioned above, it should not be confused with a prefundamental representation).

Application I: Truncation of irreducible modules. We obtain a proof, uni-

form for any finite type, that any irreducible module in Osh factorizes through

a truncated shifted Yangian. For g of simply laced type, this can be derived

from [48, 49], and then extended to non-simply-laced types by [62, 61], where the

classification for non-simply-laced truncated shifted Yangians is reduced to the

known classification in simply laced types via geometric arguments. In the case of

shifted quantum affine algebras, the result was established for finite-dimensional

irreducible modules [40, Thm. 12.9] by a method involving transfer matrices of

quantum integrable systems.

We prove furthermore that if g is not of type E8, then any highest ℓ-weight

module in category Osh descends to a truncation, by realizing such a module as

a quotient of the tensor product of a positive module with a negative module

(Theorem 4.15).

Application II: Jordan–Hölder property. As another application, we prove

that in category Osh the tensor product of two (and hence finitely many) irre-

ducible modules admits a finite Jordan–Hölder filtration. In other words, the full

subcategory of Osh consisting of modules with a finite Jordan–Hölder filtration is

closed under tensor product. This seems surprising, at least to us, as the analogous

category O for the Borel subalgebra [41] does not satisfy this property.
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We expect the R-matrices introduced in this paper for shifted quantum groups

will be further studied in the future, keeping in mind their importance for ordi-

nary quantum groups. Also, an approach to R-matrices using algebraic versions of

Maulik–Okounkov stable maps for the category O of Borel subalgebras was pro-

posed in [39]. As this category O is closely related to the category Osh for shifted

quantum affine algebras, we expect such algebraic stable maps also to exist for

shifted quantum groups. We also expect more applications of these R-matrices for

the representation theory of shifted quantum groups, in particular to get advances

on the conjecture in [40] which states a parameterization of irreducible represen-

tations of non-simply-laced truncated shifted quantum affine algebras in terms of

Langlands dual q-characters.

The paper is organized as follows.

In Section 2 we recall the basic properties of shifted Yangians and of the trun-

cated shifted Yangians. We also give a first estimation of the coproduct (Lemma

2.5).

In Section 3 we recall basic properties of representations of shifted Yangians,

including the existence of Verma modules, the parameterization of irreducible mod-

ules in category Osh, finite-dimensional irreducible modules, q-characters.

In Section 4 we prove cyclicity and cocyclicity properties for tensor products

of prefundamental representations in category Osh (Theorem 4.8), which moti-

vate our definitions of Weyl modules and standard modules (Definition 4.10). We

describe these modules when g is not of type E8 (Theorem 4.15).

In Section 5 we construct the R-matrices for suitable highest ℓ-weight mod-

ules and establish their first properties in Theorem 5.2 and Propositions 5.3 and

5.7. We also get several results on the eigenvalues of certain of these R-matrices

(Proposition 5.8).

In Section 6 we focus on the case g = sl2, for which we prove the existence and

uniqueness of factorization for all irreducible modules in category Osh into tensor

products of prefundamental modules and Kirillov–Reshetikhin modules (Theorem

6.4).

In Section 7 we compute diagonal entries of certain remarkable R-matrices, by

relating them to one-dimensional R-matrices (Proposition 7.2 and Theorem 7.4).

The proof uses a refined estimation of the coproduct that we establish (Lemma

7.1).

In Section 8 we prove uniformly that any standard module (and so any irre-

ducible module) factorizes through a truncated shifted Yangian (Theorem 8.4).

In Section 9 we establish the Jordan–Hölder property of the category Osh

(Theorem 9.5). We also get a uniform proof that a truncated shifted Yangian has

only a finite number of irreducible representations (Theorem 9.3).
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§2. Shifted Yangians

In this section we recall the basic properties of shifted Yangians from [7, 20, 52].

We review their definition, their standard gradings, and their triangular decom-

position. We recall the shift homomorphism and the coproduct for which we give

an estimation (Lemma 2.5). We also discuss the particular case of the ordinary

Yangian, as well as certain remarkable quotients, the truncated shifted Yangians.

§2.1. Definition and structure

Fix g to be a complex finite-dimensional simple Lie algebra. Set N := Z≥0. Let h

be a Cartan subalgebra of g, and I := {1, 2, . . . , r} be the set of Dynkin nodes.

The dual space h∗ admits a basis of simple roots (αi)i∈I and a non-degenerate

symmetric bilinear form ( , ) : h∗ × h∗ → C. For i, j ∈ I set

cij :=
2(αi, αj)

(αi, αi)
∈ Z, dij :=

(αi, αj)

2
, di := dii.

We assume that the di ∈ Z>0 are coprime. For i ∈ I, the fundamental weight

ϖi ∈ h∗, the fundamental coweight ϖ∨
i ∈ h, and the simple coroot α∨

i ∈ h are

determined by the following equations for j ∈ I:

(ϖi, αj) = diδij , ⟨ϖ∨
i , αj⟩ = δij , ⟨α∨

i , αj⟩ = cij ,

where ⟨ , ⟩ : h × h∗ → C denotes the evaluation map. We shall need the coweight

lattice, the root lattice, and some of their subsets defined as follows:

coweight lattice P∨ :=
⊕
i∈I

Zϖ∨
i ⊂ h, Q∨

+ :=
⊕
i∈I

Nα∨
i ;

root lattice Q :=
⊕
i∈I

Zαi ⊂ h∗, Q+ :=
⊕
i∈I

Nαi, Q− := −Q+.

A coweight means an element of the coweight lattice P∨. It is dominant (respec-

tively antidominant) if all the coefficients of ϖ∨
i belong to N (respectively −N).

On the other hand, a weight means an element of the dual space h∗. The weight

lattice does not play any role in this paper. We let ϖ denote fundamental weights,

and reserve ω for highest ℓ-weight vectors.

For a coweight µ ∈ P∨, the shifted Yangian Yµ(g) is the algebra with gener-

ators

x±i,n, ξi,p for (i, n, p) ∈ I × N× Z,
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called Drinfeld generators, subject to the following relations:

[ξi,p, ξj,q] = 0, [x+i,m, x
−
j,n] = δijξi,m+n,(2.1)

[ξi,p+1, x
±
j,n]− [ξi,p, x

±
j,n+1] = ±dij(ξi,px±j,n + x±j,nξi,p),(2.2)

[x±i,m+1, x
±
j,n]− [x±i,m, x

±
j,n+1] = ±dij(x±i,mx

±
j,n + x±j,nx

±
i,m),(2.3)

ad
1−cij

x±
i,0

(x±j,0) = 0 if i ̸= j,(2.4)

ξi,−⟨µ,αi⟩−1 = 1, ξi,p = 0 for p < −⟨µ, αi⟩ − 1.(2.5)

Here, adx(y) := xy − yx. Define the generating series for i ∈ I:

(2.6) x±i (u) :=
∑
n∈N

x±i,nu
−n−1, ξi(u) :=

∑
p∈Z

ξi,pu
−p−1 ∈ Yµ(g)((u

−1)).

These are Laurent series in u−1, with leading terms x±i,0u
−1 and u⟨µ,αi⟩.

Remark 2.1. Our generators x+i,n, x
−
i,n, and ξi,p correspond to E

(n+1)
i , F

(n+1)
i ,

and H
(n+1)
i in [7, 20]. The zero-shifted Yangian Y0(g) is the ordinary Yangian [17]

with deformation parameter ℏ = 1, which will also be denoted by Y (g).

The algebra Yµ(g) is Q-graded, called weight grading, by declaring the weights

of the generators x+i,n, x
−
i,n, and ξi,p to be αi, −αi, and 0. For β ∈ Q, let Yµ(g)β

denote the subspace of elements of weight β. Setting p = −⟨µ, αi⟩ − 1 in equation

(2.2) and noticing ξi,p = 1, one obtains the following Cartan relation:

(2.7) [ξi,−⟨µ,αi⟩, x
±
j,n] = ±(αi, αj)x

±
j,n.

So the weight grading is characterized alternatively: x ∈ Yµ(g) is of weight β if

and only if [ξi,−⟨µ,αi⟩, x] = (αi, β)x for all i ∈ I.

As in the case of the ordinary Yangian (see for example [28, §2.8]), for a ∈ C
there is an algebra automorphism τa : Yµ(g) → Yµ(g) defined by

(2.8) τa : Yµ(g) −→ Yµ(g), x±j (u) 7→ x±j (u− a), ξj(u) 7→ ξj(u− a).

Note that τa ◦ τb = τa+b for a, b ∈ C and τ0 = Id. Indeed, τa can be obtained from

the evaluation at z = a of the following algebra homomorphism:

(2.9) τz : Yµ(g) −→ Yµ(g)⊗ C[z], Xp 7→
∑
n∈N

(
p

n

)
Xp−n ⊗ zn,

where X ∈ {x±i , ξi} and p ∈ Z. It is understood that x±i,k = 0 for k < 0.

For ζ, η antidominant coweights, the following map extends uniquely to an

algebra morphism ιµ,ζ,η : Yµ(g) → Yµ+ζ+η(g), called the shift homomorphism:

(2.10) x+i,n 7→ x+i,n−⟨ζ,αi⟩, x−i,n 7→ x−i,n−⟨η,αi⟩, ξi,p 7→ ξi,p−⟨ζ+η,αi⟩.
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The shifted Yangian Yµ(g) admits a triangular decomposition. Let us define

three subalgebras by generating subsets. The first Y <
µ (g) is generated by the x−i,n,

the second Y >
µ (g) is generated by the x+i,n, and the third Y =

µ (g) is generated by

the ξi,p. These subalgebras inherit from Yµ(g) the weight grading: the first two are

graded by Q∓, and the third by {0}. Set

Y +
µ (g) := Y =

µ (g)Y >
µ (g) and Y −

µ (g) := Y <
µ (g)Y =

µ (g);

these are subalgebras. The following result is a consequence of the PBW basis

theorem [20, Cor. 3.15].

Theorem 2.2 ([20]). All shift homomorphisms are injective. The multiplication

map Y <
µ (g) ⊗ Y =

µ (g) ⊗ Y >
µ (g) → Yµ(g) is an isomorphism of vector spaces, and

Y ±
µ (g) is the algebra generated by x±i,n and ξi,p for (i, n, p) ∈ I × N × Z subject

to equation (2.5), the first half of equation (2.1), and the ± part of equations

(2.2)–(2.4).

It follows that the assignments x±i (u) 7→ x±i (u) and ξi(u) 7→ u−⟨µ,αi⟩ξi(u)

extend uniquely to four algebra isomorphisms

(2.11)
Y >
0 (g) ∼= Y >

µ (g), Y <
0 (g) ∼= Y <

µ (g),

Y ±
0 (g) ∼= Y ±

µ (g).

The first two isomorphisms being independent of µ, we omit µ from Y >
µ (g) and

Y <
µ (g) when no confusion arises.

The next property of shifted Yangians is the coproduct of Drinfeld–Jimbo,

which plays a key role in our study of representations. We rephrase [20, Thms. 4.8,

4.12, Prop. 4.14]. While [20] considered simply laced types, the proofs apply in

general as commented in [20, Rem. 3.2].

Theorem 2.3 ([20]). There exists a unique family of algebra homomorphisms

∆µ,ν : Yµ+ν(g) −→ Yµ(g)⊗ Yν(g)

for all coweights µ, ν such that ∆0,0 is the coproduct of the ordinary Yangian and

properties (i)–(ii) hold true.

(i) For µ and ν antidominant, i ∈ I, n < −⟨µ, αi⟩, and m < −⟨ν, αi⟩,

(2.12) ∆µ,ν(x
+
i,n) = x+i,n ⊗ 1, ∆µ,ν(x

−
i,m) = 1⊗ x−i,m.
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(ii) If ζ and η are antidominant, then the following diagram commutes:

(2.13) Yµ+ν(g)

ιµ+ν,ζ,η

��

∆µ,ν
// Yµ(g)⊗ Yν(g)

ιµ,ζ,0⊗ιν,0,η

��

Yµ+ν+ζ+η(g)
∆µ+ζ,ν+η

// Yµ+ζ(g)⊗ Yν+η(g).

Furthermore, if ν is antidominant, then the following diagram commutes:

(2.14) Yµ+ν+ρ(g)

∆µ,ν+ρ

��

∆µ+ν,ρ
// Yµ+ν(g)⊗ Yρ(g)

∆µ,ν⊗Id

��

Yµ(g)⊗ Yν+ρ(g)
Id⊗∆ν,ρ

// Yµ(g)⊗ Yν(g)⊗ Yρ(g).

§2.2. The ordinary Yangian

The ordinary Yangian Y (g) endowed with the coproduct ∆0,0 =: ∆ is a Hopf

algebra, which contains the universal enveloping algebra U(g) as a Hopf subalgebra

by identifying the x±i,0 with root vectors in the Lie algebra g associated to the roots

±αi so that α∨
i = 1

di
ξi,0 ∈ h. Let R denote the set of positive roots of g. One can

extend x±i,0 =: x±αi
to root vectors x±γ ∈ g±γ for γ ∈ R suitably normalized with

respect to an invariant bilinear form of g. Then the coproduct is determined by

[17] (see [33, §4.2] for a proof):

(2.15) ∆(ξi,1) = ξi,1 ⊗ 1 + 1⊗ ξi,1 + ξi,0 ⊗ ξi,0 −
∑
γ∈R

(αi, γ)x
−
γ ⊗ x+γ .

For (γ, n) ∈ R×N, the root vector x−γ ∈ g−γ proportional to an iterated commu-

tator of the x−i,0, we choose exactly one of the x−i,0 in the commutator and replace

it with x−i,n. It depends on the choice of i and the position of x−i,0 in the commuta-

tor. We fix such a choice for all (γ, n) ∈ R × N, and let x−γ,n denote the resulting

element in Y <(g), called a PBW variable as in [20, §3.12].

Remark 2.4. For µ a coweight let us identify the subalgebra Y <
µ (g) with Y <(g)

via (2.11) so that the PBW variables make sense for Y <
µ (g). By [20, §3.12], with

respect to a total order on the set of PBW variables which is in natural bijection

with R× N, the ordered monomials in the PBW variables form a basis of Y <
µ (g).

We shall need the current algebra g[t]; the Lie algebra g⊗ C[t] with bracket

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n for x, y ∈ g and m,n ∈ N.
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It is bigraded by N × Q: the weight grading comes from the adjoint action of

h ⊂ g ⊂ g[t]; the N-grading is defined by declaring x ⊗ tm, for x ∈ g and m ∈ N,
to be of degree m. Its universal enveloping algebra U(g[t]) is bigraded by N×Q.

The algebra Y (g) is N-filtrated, by declaring Y (g)≤n, for n ∈ N, to be the

linear subspace spanned by the monomials in the generators x±i,m, ξi,m for which

the sum of the indexes m is at most n. The N-filtration on Y (g) is compatible with

the weight grading, so that the associated grading grNY (g) is an algebra bigraded

by N×Q. Here, by definition, Y (g)≤−1 = {0} and

grNY (g) :=
⊕
n∈N

Y (g)≤n/Y (g)≤n−1.

We have an isomorphism of (N,Q)-bigraded algebras

(2.16) U(g[t]) −→ grNY (g), x±αi
⊗ tm 7→ x±i,m.

Here, x±i,m denote the images of x±i,m under the projection

Y (g)≤m −→ Y (g)≤m/Y (g)≤m−1 ⊂ grNY (g).

This isomorphism appeared in [54]. For a complete proof, see [22, Thm. B.2].

§2.3. First coproduct estimation

A compact formula for the coproduct of the Drinfeld generators is unknown beyond

sl2 in [20, §6.3]. Still, some partial information on the weight space projection of

the coproduct is sufficient.

Let us define the height function h : Q+ → N to be the additive function such

that h(αi) = 1 for i ∈ I. In the following, when we write h(β) or speak of the

height of a weight β, it is understood that β ∈ Q+.

We shall need the notion of the principal part. For V a vector space, let

V [[u, u−1]] denote the space of formal power series with coefficients in V , and

V [[u−1]] its subspace of power series in u−1. The principal part of a formal power

series f(u) in V [[u, u−1]], denoted by ⟨f(u)⟩+, is a power series in V [[u−1]] defined

by 〈∑
p∈Z

fpu
−p−1

〉
+

:=
∑
p∈N

fpu
−p−1.

This was denoted by f(u) in [48, Lem. 5.13]. As an example,〈 g(u)
u− a

〉
+
=

g(a)

u− a
for g(u) ∈ C[u] and a ∈ C.

As another example, the shift homomorphism of (2.10) acts on x±i (u) as

x+i (u) 7→ ⟨u−⟨ζ,αi⟩x+i (u)⟩+, x−i (u) 7→ ⟨u−⟨η,αi⟩x−i (u)⟩+.
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Multiplication endows V [[u, u−1]] with a module structure over the polynomial

algebra C[u]. It is compatible with taking the principal part:

(2.17) ⟨g⟨hf⟩+⟩+ = ⟨ghf⟩+ for g, h ∈ C[u] and f ∈ V [[u, u−1]].

Lemma 2.5. For all coweights µ and ν, the coproduct ∆µ,ν satisfies

∆µ,ν(x
+
i (u)) ≡ x+i (u)⊗ 1 + ⟨ξi(u)⊗ x+i (u)⟩+ mod.

∑
h(β)>0

Y −
µ (g)−β ⊗ Y +

ν (g)β+αi ,

∆µ,ν(x
−
i (u)) ≡ 1⊗ x−i (u) + ⟨x−i (u)⊗ ξi(u)⟩+ mod.

∑
h(β)>0

Y −
µ (g)−β−αi ⊗ Y +

ν (g)β ,

∆µ,ν(ξi(u)) ≡ ξi(u)⊗ ξi(u)mod.
∑

h(β)>0

Y −
µ (g)−β ⊗ Y +

ν (g)β ,

∆µ,ν(ξi,−⟨µ+ν,αi⟩) = ξi,−⟨µ,αi⟩ ⊗ 1 + 1⊗ ξi,−⟨ν,αi⟩.

In the first three relations, the notation “mod. V ” for V ⊂ Y −
µ (g) ⊗ Y +

ν (g)

should be understood as “modulo V ((u−1))”.

Proof of Lemma 2.5. The case µ = ν = 0 follows from [52, Lem. 1]; while the

statement of [52] is weaker, its proof works in our situation; see also [14, Prop. 2.8]

and [31, Prop. 2.9]. For arbitrary coweights we use the zigzag arguments as in the

proof of [20, Thm. 4.12]. We shall treat only the first assertion, as the other three

are parallel. Our goal is to prove the following relations, denoted by P (n, µ, ν), for

n ∈ N:

∆µ,ν(x
+
i,n) ≡ x+i,n ⊗ 1 +

∑
m≥0

ξi,n−1−m ⊗ x+i,m mod.
∑

h(β)>0

Y −
µ (g)−β ⊗ Y +

ν (g)β+αi
.

For ζ, η antidominant coweights, applying ιµ,ζ,0 ⊗ ιν,0,η to ∆µ,ν(x
+
i,n), from the

commutative diagram (2.13) and injectivity of shift homomorphisms we deduce

P (n, µ, ν) ⇐⇒ P (n− ⟨ζ, αi⟩, µ+ ζ, ν + η).

Let us choose ζ and η such that µ+ ζ and ν + η are antidominant.

If n ≥ −⟨µ, αi⟩, then the above equivalence applied to (n + ⟨µ, αi⟩, 0, 0) and
the antidominant coweights µ+ ζ, ν + η gives

P (n+ ⟨µ, αi⟩, 0, 0) ⇐⇒ P (n− ⟨ζ, αi⟩, µ+ ζ, ν + η).

So P (n, µ, ν) ⇔ P (n+ ⟨µ, αi⟩, 0, 0), and the latter is true by [52].

If n < −⟨µ, αi⟩, then n− ⟨ζ, αi⟩ < −⟨µ+ ζ, αi⟩ and by equation (2.12),

∆µ+ζ,ν+η(x
+
i,n−⟨ζ,αi⟩) = x+i,n−⟨ζ,αi⟩ ⊗ 1.
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In the commutative diagram (2.13) put x+i,n at the top-left corner. Then the ele-

ment at the bottom-right corner is x+i,n−⟨ζ,αi⟩ ⊗ 1. From the injectivity of the

vertical maps we obtain that the element at the top-right corner is x+i,n⊗1, namely,

∆µ,ν(x
+
i,n) = x+i,n ⊗ 1. For m ≥ 0, we have ξi,n−m−1 = 0 in Yµ(g) because

n−m− 1 < −⟨µ, αi⟩ −m− 1 ≤ −⟨µ, αi⟩ − 1.

So the summation
∑

m in P (n, µ, ν) vanishes. This proves P (n, µ, ν), with the

second summation
∑

β being zero.

The zigzag arguments will reappear in this paper at the level of representa-

tions.

§2.4. Truncated shifted Yangians

These are quotients of shifted Yangians appearing first in type A [9] as finite

W-algebras, in the dominant case [50] as quantizations of slices in affine Grass-

mannians, and in the most general case [7] as quantized Coulomb branches. Their

definition involves the notion of ℓ-weight.

To motivate equation (2.18) below, let µ be a coweight and V be a Yµ(g)-

module. Then the actions of the ξi,p on V mutually commute. Suppose that 0 ̸=
v ∈ V is a common eigenvector with ei,p being the eigenvalue of ξi,p. We have

ξi(u)v = ei(u)v, ei(u) :=
∑
p∈Z

ei,pu
−p−1.

From equation (2.5) we see that ei(u) is a Laurent series in u−1 whose leading

term is fixed to be u⟨µ,αi⟩. So the coweight µ can be recovered from the I-tuple

of Laurent series (ei(u))i∈I . The actions of the ξi,−⟨µ,αi⟩ on v are encoded in the

weight β ∈ h∗ defined below in the same way as equation (2.7):

ξi,−⟨µ,αi⟩v = (αi, β)v where β :=
∑
i∈I

ei,−⟨µ,αi⟩
1

di
ϖi.

In notation of Section 3.1, the vector v is of ℓ-weight (ei(u))i∈I and weight β.

Consider the multiplicative group C((u−1))× of the field C((u−1)) of Laurent

series in u−1. The set of ℓ-weights, denoted by L, is the subset of the I-fold product

group
∏

i∈I C((u−1))× consisting of I-tuples of Laurent series in u−1 whose leading

terms are of the form uk for k ∈ Z; it is clearly a subgroup. For e ∈ L and i ∈ I,

let ei(u) be the ith component of e, and let ei,p ∈ C, for p ∈ Z, be the coefficient

of u−p−1 in ei(u). By definition there exists a unique ki ∈ Z such that

ei(u) =
∑
p∈Z

ei,pu
−p−1 with ei,p = 0 for p < −ki − 1 and ei,−ki−1 = 1.



14 D. Hernandez and H. Zhang

Define the weight and the coweight of e by

(2.18) ϖ(e) :=
∑
i∈I

ei,−ki

di
ϖi ∈ h∗, ϖ∨(e) :=

∑
i∈I

kiϖ
∨
i ∈ P∨.

This defines two morphisms of abelian groups ϖ : L → h∗ and ϖ∨ : L → P∨.

Definition 2.6. A pair (µ, r) of coweight µ and ℓ-weight r are truncatable if

(2.19) ϖ∨(r)− µ ∈ Q∨
+.

In this situation, letmi ∈ N, for i ∈ I, be the coefficient of α∨
i inϖ∨(r)−µ. We

have the Gerasimov–Kharchev–Lebedev–Oblezin (GKLO for short) series Ai(u),

a Y =
µ (g)-valued Laurent series in u−1 of leading term umi for i ∈ I, uniquely

determined by the following equations [32, Lem. 2.1 with ιℏ = 1] (see also [50,

§4A] and [7, eq. (B.14)]):

ξi(u) =
ri(u)

Ai(u)Ai(u− di)

∏
j:cji<0

−cji∏
t=1

Aj(u− dij − tdj)

=
ri(u)

Ai(u)Ai(u− di)

∏
j:cji=−1

Aj

(
u− 1

2
dj

) ∏
j:cji=−2

Aj(u)Aj(u− 1)

×
∏

j:cji=−3

Aj

(
u+

1

2

)
Aj

(
u− 1

2

)
Aj

(
u− 3

2

)
.(2.20)

The second equation comes from the fact that cji = −1 implies dij = − 1
2dj , while

cji < −1 implies dj = 1 and dij =
1
2cji.

Lemma 2.7 ([32]). Let (µ, r) be truncatable. In the shifted Yangian Yµ(g) we have

Ai(u)x
−
j,nAi(u)

−1 = x−j,n + diδij
∑
k≥0

x−i,n+ku
−k−1.

Proof. Write Ai(u) =
∑

p ai,pu
−p−1. The following relation is a consequence of

[32, eqs. (2.12),(2.14)]; see [49, Def. 4.1] in simply laced types:

[ai,p+1, x
−
j,n]− [ai,p, x

−
j,n+1] = δijdix

−
i,nai,p.

Since ai,p = 0 for p≪ 0, the above relation can be rewritten as

[ai,p, x
−
j,n] = diδij

∑
k≥0

x−i,n+kai,p−k−1.

Multiplying the above equality by u−p−1 and summing over p ∈ Z, we get

Ai(u)x
−
j,n − x−j,nAi(u) = diδij

∑
k≥0

x−i,n+ku
−k−1Ai(u).

Right multiplying by Ai(u)
−1 gives the desired identity from the lemma.
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Definition 2.8 ([50, 7]). For (µ, r) ∈ P∨ × L a truncatable pair, the truncated

shifted Yangian Y r
µ (g) is the algebra defined as the quotient of the shifted Yangian

Yµ(g) by the two-sided ideal generated by the coefficients of ⟨Ai(u)⟩+ for i ∈ I.

Remark 2.9. Assume each ri(u) is a monic polynomial of u. Our algebra Y r
µ (g)

and series Ai(u) correspond to Ỹ ν
µ (r) and umiAi(u) in [47, §3.4] with ν = ϖ∨(r).

The original truncated shifted Yangian, denoted by Y ν
µ (r), is defined to be the im-

age of Y r
µ (g) under the so-called GKLO representation by difference operators; see

[50, Thm. 4.5] and [7, Thm. B.15]. Conjecturally [50], the quotient map is an iso-

morphism, and a proof in type A is available in [46, Thm. 1.6] and [47, Thm. A.5].

The reason why we drop the polynomiality of r will be given in Section 8.

§3. Representations of shifted Yangians

We recall basic properties of representations of shifted Yangians: Verma mod-

ules, classification of irreducible modules in category Osh, q-characters, finite-

dimensional irreducible modules, and prefundamental modules.

Most of the definitions and results in this section are well known, and were

also known for the representation theory of three classes of algebras: the ordinary

Yangian [17, 14, 52, 28]; the upper Borel subalgebra of the quantum affine algebra

Uq(ĝ) for q ∈ C× generic [41, 24, 39], which we refer to as a Borel algebra; the

shifted quantum affine algebras recently developed in [21, 40]. Their proofs work

for shifted Yangians as well, because the algebraic structures are common for these

quantum groups.

§3.1. Verma modules

We begin with some general remarks on the notions of weights and ℓ-weights for

modules over shifted Yangians. Fix µ a coweight. Let V be a module over Yµ(g).

For β ∈ h∗ and f ∈ L, define

Vβ :=
{
v ∈ V | ∀ i ∈ I, ξi,−⟨µ,αi⟩v = (αi, β)v

}
,

Vf :=
{
v ∈ V | ∀ (i, p) ∈ I × Z, ∃m ∈ N such that (ξi,p − fi,p)

mv = 0
}
.

If Vβ is non-zero, then it is called a weight space of weight β, and a non-zero vector

v ∈ Vβ is called a weight vector of weight wt(v) := β. If Vf is non-zero, then it is

an ℓ-weight space of ℓ-weight f , and similar conventions for ℓ-weight vector and

wtℓ(v). Let wt(V ) ⊆ h∗ be the set of weights of V , and wtℓ(V ) ⊆ L the set of

ℓ-weights. By equations (2.5) and (2.7), for f ∈ wtℓ(V ), β ∈ wt(V ), and α ∈ Q,

we have

µ = ϖ∨(f), Yµ(g)αVβ ⊆ Vα+β .
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Remark 3.1. While the automorphism τa from (2.8) preserves the weight grading

on Yµ(g), this is not the case for modules. Define the weight µ̃ ∈ h∗ associated to

µ and, by abuse of language, the group automorphism τa : L → L by

µ̃ :=
∑
i∈I

⟨µ, αi⟩
1

di
ϖi, τa(f) := (fi(u− a))i∈I for f ∈ L.

For V a Yµ(g)-module, the pullback module τ∗aV is denoted by V (a), with a referred

to as the spectral parameter. We have

Vβ = V (a)β−aµ̃ for β ∈ wt(V ), Vf = V (a)τa(f) for f ∈ wtℓ(V ).

Call V a weight module if it is a direct sum of weight spaces. In such a module,

any ℓ-weight space Vf is contained in the weight space Vϖ(f). We shall say that V

is weight graded by a subset X ⊂ h∗ if V is a weight module and wt(V ) ⊂ X.

Call V top graded if there exists λ ∈ h∗ such that V is weight graded by

λ+Q− and Vλ is one-dimensional. Clearly λ is unique and Vλ equals an ℓ-weight

space Ve for a unique e ∈ L. We refer to λ, Vλ, e, and Ve as the top weight, top

weight space, top ℓ-weight, and top ℓ-weight space.

Let e ∈ L be of coweight µ. The Verma module M(e) is the Yµ(g)-module

defined by parabolic induction [48, §3.3]

M(e) := Yµ(g)⊗Y +
µ (g) C.

Here C = C1 is viewed as a Y +
µ (g) by setting x+i (u)1 = 0 and ξi(u)1 = ei(u)1.

The vector ωe := 1 ⊗ 1 ∈ M(e) is of weight ϖ(e) and ℓ-weight e. From the

triangular decomposition of Theorem 2.2 and the weight grading on Y <
µ (g) we

obtain that M(e) is top graded with e being the top ℓ-weight. Moreover, the

linear map Y <
µ (g) →M(e) sending x ∈ Y <

µ (g) to xωe is bijective.

By standard argument, the Verma module has a unique maximal submodule,

the quotient by which is irreducible and denoted by L(e). By abuse of language,

we still let ωe ∈ L(e) denote the image of ωe ∈M(e) under the quotient.

Let V be a Yµ(g)-module and let v be a non-zero vector of V . Call v a vector

of highest ℓ-weight e if there exists a module morphism M(e) → V sending ωe to

v. Namely, ξi(u)v = ei(u)v and x+i (u)v = 0 for i ∈ I.

Definition 3.2. Call V a module of highest ℓ-weight e if there exists a non-zero

surjective module morphism M(e) → V .

Equivalently, V is generated by a vector v of highest ℓ-weight e. It follows

that V is top graded with e being the top ℓ-weight. In particular, v is unique up to

homothety, and there is a unique surjective module morphism V → L(e) sending

v to ωe.
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Recall the coproduct for µ, ν coweights,

∆µ,ν : Yµ+ν(g) −→ Yµ(g)⊗ Yν(g),

from Theorem 2.3. If W and V are modules over Yµ(g) and Yν(g) respectively,

then their tensor product W ⊗ V is naturally a module over Yµ+ν(g). Since the

coproduct respects the weight grading, we have

Wα ⊗ Vβ ⊂ (W ⊗ V )α+β for α, β ∈ h∗.

So, a tensor product of weight modules is still weight graded.

Example 3.3. Let e, f ∈ L. Consider the tensor product module M(e) ⊗M(f).

From the coproduct of ξi(u) and x+i (u) in Lemma 2.5 we see that ωe ⊗ ωf is of

highest ℓ-weight ef . This implies that L(ef) is a subquotient of L(e)⊗ L(f).

Lowest ℓ-weight vectors/modules can be defined by replacing x+i (u) with

x−i (u).

Example 3.4. Let V be a Yν(g)-module containing a lowest ℓ-weight vector v−
and let W be a Yµ(g)-module containing a highest ℓ-weight vector ω. Then for

j ∈ I, v ∈ V , and w ∈ W , we have the following relations in the module V ⊗W

based on the coproduct estimation of Lemma 2.5:

ξj(u)(v− ⊗ w) = ξj(u)v− ⊗ ξj(u)w, x−j (u)(v− ⊗ w) = v− ⊗ x−j (u)w,

x−j (u)(v ⊗ ω) = v ⊗ x−j (u)ω + ⟨x−j (u)v ⊗ ξj(u)ω⟩+.

In particular, if w is an ℓ-weight vector, then so is v− ⊗ w.

§3.2. Finite-dimensional irreducible modules

In this subsection we recall the classification of finite-dimensional irreducible mod-

ules over shifted Yangians from [48, Thm. 3.5]. The result was proved in simply

laced types by reduction to sl2 and applying [9, §7.2], so it works in general types.

See [40, Thm. 6.4] for a similar classification for shifted quantum affine algebras.

Example 3.5 ([70, Rem. 24]). Let (i, a) ∈ I × C. The positive prefundamental

module L+
i,a is the one-dimensional Yϖ∨

i
(g)-module of highest ℓ-weight (our sign

convention is opposite to [70, eq. (10)] and agrees with [41, Def. 3.7])

(3.1) Ψi,a := (1, . . . , 1︸ ︷︷ ︸
i−1

, u− a, 1, . . . , 1︸ ︷︷ ︸
r−i

) prefundamental weight.

Our terminology follows [24, Def. 3.4]. In the framework of representations of the

Borel algebra [41], the positive prefundamental module is an infinite-dimensional
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irreducible module whose ℓ-weights are rather simple, and it has important appli-

cations in quantum integrable systems (construction of Baxter’s Q-operators [2]

as transfer matrices of this modules, polynomiality of Q-operators). In another

framework of representations of shifted quantum affine algebras, which is closer

to our situation, the positive prefundamental modules are one-dimensional [40,

Exa. 4.12].

For (i, a) ∈ I × C define the fundamental ℓ-weight by

(3.2) Yi,a :=
Ψi,a− 1

2di

Ψi,a+ 1
2di

∈ L.

In the notation of [14, §2.13], L(Yi,a) is the finite-dimensional irreducible module

over Y (g) with Drinfeld polynomials P+
i (u) = u−a− 1

2di and P
+
j (u) = 1 for j ̸= i.

This justifies its name fundamental module.

Theorem 3.6 ([9, 48]). For e ∈ L, the irreducible module L(e) is finite-dimen-

sional if and only if e is a monomial of the Ψi,a and Yi,a for i ∈ I and a ∈ C.
Furthermore, all finite-dimensional irreducible modules over shifted Yangians arise

in this way.

Example 3.7. Fix (i, a) ∈ I × C. Let Ni,a be the irreducible module of highest

ℓ-weight

Yi,a− 1
2di

∏
j:cij<0

Ψj,a−dij .

It is realized on the vector space C2 with basis (e1, e2) such that the only non-zero

actions of the generating series on the basis are

ξj(u)e1 = e1


u− a+ dij
u− a

if cij ≥ 0,

u− a+ dij if cij < 0,

ξj(u)e2 = e2


u− a− dij
u− a

if cij ≥ 0,

u− a− dij if cij < 0,

x+i (u)e2 =
1

u− a
e1, x−i (u)e1 =

di
u− a

e2.

Over the Borel algebra there is an infinite-dimensional irreducible module of similar

highest ℓ-weight [43, §6.1.3], denoted by N+
i,a in [18, eq. (6.2)], which gives rise to

cluster mutations [42, 43] and three-term Baxter TQ relations for transfer matrices

[18, Prop. 6.8]. Over shifted quantum affine algebras, the irreducible module is

two-dimensional [40, Exa. 6.6].

The ratio of the ℓ-weights of Ni,a is a generalized simple root :

(3.3) Ai,a :=
∏
j∈I

Ψj,a−dij

Ψj,a+dij

∈ L.
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Notice that the Ai,a for (i, a) ∈ I ×C generate a free abelian subgroup of L. Orig-

inally, generalized simple roots were defined in [26, eqs. (3.11), (4.8)] as certain

evaluations of the universal R-matrix of Uq(ĝ), and they were linked to ℓ-weights

therein. Similar formulas hold [40, §5.5, Thm. 6.1] for shifted quantum affine alge-

bras.

A finite-dimensional irreducible Y (g)-module is necessarily weight graded, as

an integrable g-module, and it is both of highest ℓ-weight and of lowest ℓ-weight.

Theorem 3.8 ([64, 63, 34]). Let U and V be finite-dimensional irreducible Y (g)-

modules generated by highest ℓ-weight vectors ω1 and ω2 respectively. Let a, b ∈ C.

(i) There exist a tensor product of fundamental modules T and an injective mor-

phism from V to T whose image contains a tensor product of highest ℓ-weight

vectors as well as a tensor product of lowest ℓ-weight vectors.

(ii) There exists a finite subset X of C such that the module U(a) ⊗ V (b) is

irreducible if a− b /∈ X.

(iii) The assignment ω1 ⊗ ω2 7→ ω2 ⊗ ω1 extends uniquely to a linear map

ŘU,V (u) : U ⊗ V −→ V ⊗ U ⊗ C(u)

such that the evaluation at u = a− b of the vector-valued rational function is

a module morphism from U(a)⊗ V (b) to V (b)⊗ U(a), if a− b is not a pole.

We refer to [34, Thm. 3.10] for a proof of the theorem and for a discussion

of relevant results for the quantum affine algebra. Part (i) is a weaker version of

the main results of [64, 63]: such a tensor product can be chosen to have a unique

irreducible submodule (of cohighest ℓ-weight in the sense of Definition 4.4). The

vector-valued rational function ŘU,V (u) in part (iii) is called a normalized R-

matrix. It is rarely polynomial, contrary to our R-matrices constructed later in

Section 5.

As in [31, §3.5], set κ := 1
2 max(di : i ∈ I)h∨, where h∨ is the dual Coxeter

number of g. One has the involution i 7→ ı of the set I of Dynkin nodes of g induced

by w0(αi) = −αı, where w0 is the longest element of the Weyl group of g. Define

(3.4) Vi := L(Yı, 12di−κ) for i ∈ I.

Lemma 3.9 ([14, Prop. 3.2]). For i ∈ I, the lowest ℓ-weight of Vi is Y
−1
i, 12di

.

The ordinary Yangian Y (g) is a Hopf algebra with antipode S. For V a Y (g)-

module, its Hopf dual is the Y (g)-module structure on the linear dual V ∗ defined

by

(af)(v) = f(S(a)v) for a ∈ Y (g), f ∈ V ∗ and v ∈ V .
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By the coproduct estimation of Lemma 2.5, the dual L(Yi,a)
∗ of a fundamental

module L(Yi,a) is of lowest ℓ-weight Y
−1
i,a . The above lemma implies that L(Yi,a)

∗

is the fundamental module L(Yı,a−κ); see [25, Cor. 6.10] for similar arguments.

§3.3. Category Osh and rationality

In this subsection we study a category of representations of shifted Yangians, which

appeared in [49, §5] in simply laced types.

For µ a coweight, define Oµ to be the full subcategory of the category of

Yµ(g)-modules. An object of Oµ is a Yµ(g)-module V such that

(O1) it is a direct sum of finite-dimensional weight spaces;

(O2) there exist λ1, λ2, . . . , λn ∈ h∗ such that

wt(V ) ⊆
n⋃

j=1

(λj +Q−).

Remark 3.10. Assume µ is dominant. The quotient of Yµ(g) by the ideal gen-

erated by the [x, y] for x, y ∈ Yµ(g) is isomorphic to the polynomial algebra in

finitely many variables ξi,p for i ∈ I and −⟨µ, αi⟩ ≤ p < 0. A finite-dimensional

module over the quotient algebra is in category Oµ if and only if it is semisimple. If

µ ̸= 0, then the quotient algebra, as a polynomial algebra in at least one variable,

admits finite-dimensional modules which are non-semisimple and therefore do not

belong to category Oµ; see [9, §5.1] for similar arguments. If µ = 0, then a finite-

dimensional Y (g)-module is necessarily in category O0 viewed as an integrable

g-module.

The category Oµ is abelian. Let us describe its irreducible objects. The fol-

lowing rationality is well known for quantum affine algebras [36] and Yangians

[28].

Lemma 3.11. Let V be a Yµ(g)-module which is a direct sum of finite-dimen-

sional weight spaces. The generating series x±i (u) and ξi(u) restricted to each

weight space of V are rational in the sense that they are expansions at ∞ of

rational functions of u with values in finite-dimensional vector spaces.

Proof. The rationality of the Laurent series ξi(u) and x
±
i (u) is proved in the same

way as [36, Prop. 3.8], [28, Prop. 3.6(i)]: first, one shows explicitly the rationality of

the x±i (u), which implies that of ⟨ξi(u)⟩+; then ξi(u) is ⟨ξi(u)⟩+ plus a polynomial

of u.
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Define R to be the subgroup of L generated by the Ψi,a. An element e ∈ L
belongs toR if and only if all the components ei(u) are ratios of monic polynomials

of u. Let Rµ be the set of e ∈ R of coweight µ.

Theorem 3.12. For µ a coweight, the L(e) for e ∈ Rµ form the set of mutually

non-isomorphic irreducible modules in category Oµ.

Proof. Standard arguments based on the triangular decomposition and rationality

of Lemma 3.11 show that any irreducible module in category Oµ is of the form L(e)

for e ∈ Rµ. It suffices to prove that L(e) is in category Oµ for e ∈ Rµ. Repeatedly

using equation (2.3) as in [15, §5, Proof of (b)], we are reduced to showing that

for fixed i ∈ I the vectors x−i,nωe with n ∈ N span a finite-dimensional subspace of

L(e). Write

ei(u) =
P (u)

Q(u)
with P (u) and Q(u) monic polynomials.

It suffices to prove the recurrence relation ⟨Q(u)x−i (u)ωe⟩+ = 0. Indeed,

x+j,mx
−
i (u) = x−i (u)x

+
j,m + δij

∑
n≥0

ξi,m+nu
−n−1

= x−i (u)x
+
j,m + δij⟨umξi(u)⟩+,

x+j,m⟨Q(u)x−i (u)ωe⟩+ = ⟨Q(u)x+j,mx
−
i (u)ωe⟩+ = δij⟨Q(u)⟨umξi(u)ωe⟩+⟩+

= δij⟨umQ(u)ξi(u)ωe⟩+

= δij

〈
umQ(u)

P (u)

Q(u)
ωe

〉
+
= 0.

The power series ⟨Q(u)x−i (u)ωe⟩+ is annihilated by all the x+j,m. If it is non-

zero, then by applying the triangular decomposition to its coefficients we obtain a

non-zero submodule of L(e) weight graded by ϖ(e)− αi +Q−, contradicting the

irreducibility of L(e).

We define the completed Grothendieck group K0(Oµ) as in [43, §3.2]: its ele-

ments are formal sums
∑

e∈Rµ
ne[L(e)] of the symbols [L(e)], for e ∈ Rµ and

ne ∈ Z, such that the direct sum of Yµ(g)-modules
⊕

e∈Rµ
L(e)⊕|ne| is in category

Oµ; addition is the usual one of formal sums. Let V be in category Oµ. As in the

case of Kac–Moody algebras [45, §9.3], for e ∈ Rµ the multiplicity mL(e),V ∈ N of

the irreducible module L(e) in V makes sense, and we get a well-defined isomor-

phism class of V ,

[V ] :=
∑
e∈Rµ

mL(e),V [L(e)] ∈ K0(Oµ).
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The coproduct ∆µ,ν of Theorem 2.3 induces a functor

Oµ ×Oν −→ Oµ+ν , (W,V ) 7→W ⊗ V.

Define the direct sum of abelian categories and its Grothendieck group

Osh :=
⊕
µ∈P∨

Oµ, K0(Osh) :=
⊕
µ∈P∨

K0(Oµ).

Then the above functor extends to a tensor product functor

⊗ : Osh ×Osh −→ Osh.

The exactness of the tensor product induces a group homomorphism

K0(Osh)×K0(Osh) −→ K0(Osh), ([W ], [V ]) 7→ [W ⊗ V ].

Remark 3.13. Let Osh
− denote the direct sum of the categories Oµ for µ anti-

dominant. Then the commutative diagram (2.14) implies that (Osh
− ,⊗) is a

monoidal category with trivial associators. It is unclear to us whether category

(Osh,⊗) is monoidal because the coproducts fail to be coassociative for general

coweights [20, Rem. 4.15].

If V is in category Oµ, then each weight space Vβ is a direct sum of ℓ-weight

spaces and each ℓ-weight belongs to Rµ by Lemma 3.11. Following Knight [52],

we define the q-character of V to be (we adopt the terminology of [26])

χq(V ) :=
∑

f∈wtℓ(V )

dim(Vf )f ∈ Eℓ.

The target Eℓ is the set of formal sums
∑

f∈R nf f of f ∈ R with integer coefficients

nf subject to the following conditions [41, §3.4]:

(E1) for each β ∈ h∗ the set {f ∈ R | nf ̸= 0, ϖ(f) = β} is finite;

(E2) there exist λ1, λ2, . . . , λm ∈ h∗ such that

ϖ(f) ∈
m⋃
j=1

(λj +Q−) if nf ̸= 0.

It is a ring: addition is the usual one of formal sums; multiplication is induced by

that of R. One views Eℓ as a completion of the group ring Z[R].

Since χq respects exact sequences, the assignment [V ] 7→ χq(V ) extends

uniquely to a group homomorphism

χq : K0(Osh) −→ Eℓ
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called the q-character map. The next result is proved in the same way as [52,

Thm. 2] and [26, Prop. 1], based on the coproduct estimation of Lemma 2.5.

Theorem 3.14 ([52, 26]). The q-character map is an injective group homomor-

phism. Furthermore, for W and V in category Osh, we have

χq(W ⊗ V ) = χq(W )χq(V ).

As an important consequence, the Grothendieck groupK0(Osh) endowed with

the multiplication is a commutative ring: the associativity follows from that of the

target ring Eℓ, and so does the commutativity as in [41, Rem. 3.13]. In the case of

shifted quantum affine algebras, the ring structure of the Grothendieck group is

given by the fusion product of highest ℓ-weight modules [40, Thm. 5.4].

For V a top-graded module in category Osh, we define its normalized q-

character by

χ̃q(V ) := χq(V )× e−1 ∈ Eℓ,
where e is the top ℓ-weight of V . In Example 3.7 we have χ̃q(Ni,a) = 1 + A−1

i,a .

A tensor product of top-graded modules is still top graded, and the normalized

q-characters are multiplicative with respect to tensor product as in Theorem 3.14.

We shall also need the notion of character, which is defined in a standard way.

Let E denote the set of formal sums
∑

λ∈h∗ nλe
λ of the symbols eλ with integer

coefficients nλ under the following condition: there exist λ1, λ2, . . . , λm ∈ h∗ such

that nλ ̸= 0 implies λ ∈
⋃m

j=1(λj +Q−). This is again a ring: addition is the usual

one of formal sums; multiplication is induced by eλeµ = eλ+µ for λ, µ ∈ h∗. In

particular, the weight map ϖ : L → h∗ induces a ring morphism

ϖ : Eℓ −→ E ,
∑
f∈R

nf f 7→
∑
f∈R

nfe
ϖ(f).

The character of a module V in category Osh is defined as

χ(V ) := ϖ(χq(V )) =
∑

λ∈wt(V )

dim(Vλ)e
λ ∈ E .

In Example 3.5, we have χ(L+
i,a) = e−ad−1

i ϖi by equation (2.18).

For (i, a, k) ∈ I×C×N, the Kirillov–Reshetikhin (KR for short) moduleW
(i)
k,a

is the finite-dimensional irreducible Y (g)-module of highest ℓ-weight

Ψi,a−kdi

Ψi,a
= Yi,a− 1

2di
Yi,a− 3

2di
· · ·Yi,a− 2k−1

2 di
.

Following [24, Def. 3.4], define the negative prefundamental module L−
i,a to be

L(Ψ−1
i,a ) in category O−ϖ∨

i
for (i, a) ∈ I × C. As in the case of the Borel algebra

[41], it can be realized as a limit of KR modules [70].
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Proposition 3.15 ([70]). Fix (i, a) ∈ I×C. As the integer k ∈ N tends to infinity,

the normalized q-character of the KR module W
(i)
k,a converges to the normalized q-

character of L−
i,a as a power series in N[[A−1

j,b ]]j∈I,b∈C.

Proof. In [70, Prop. 23] we have constructed a module L in category O−ϖ∨
i
with

q-character Ψ−1
i,a limk→∞ χ̃q(W

(i)
k,a). In particular, Ψ−1

i,a is a highest ℓ-weight of L

and L−
i,a is an irreducible subquotient of L. It suffices to show that Ψi,aχq(L) is

bounded above by χ̃q(L
−
i,a), so that L−

i,a
∼= L. Since the former is the limit of

χ̃q(W
(i)
k,a), we are led to prove that χ̃q(W

(i)
k,a) is bounded above by χ̃q(L

−
i,a) for k ∈

N. This follows by viewingW
(i)
k,a as an irreducible subquotient of L+

i,a−kdi
⊗L−

i,a and

taking normalized q-characters. (Since L+
i,a−kdi

is one-dimensional, its normalized

q-character is 1.)

The character of a negative prefundamental module has a fermionic form [41,

Thm. 6.4]. We shall need its product form, conjectured in [57] and partly proved

recently in [53]. While [53] is about KR-modules over Uq(ĝ), its main result holds

true in the Yangian case by the functor of [28] relating finite-dimensional modules

over Uq(ĝ) and Y (g). Recall that R is the set of positive roots of g. For γ a positive

root and for i ∈ I, by definition ⟨ϖ∨
i , γ⟩ is the coefficient of αi in γ.

Theorem 3.16 ([53]). Assume g is not of type E8. For (i, a) ∈ I × C we have

χ(L−
i,a) = ead

−1
i ϖi

∏
γ∈R

( 1

1− e−γ

)⟨ϖ∨
i ,γ⟩

.

§3.4. Examples in the sl2-case

For the simple Lie algebra sl2, we omit the Dynkin node 1 everywhere: x±n = x±1,n
and ξp = ξ1,p as generators; Na = N1,a and L±

a = L±
1,a as modules: Ψa = u − a

and Aa = u−a+1
u−a−1 as ℓ-weights. We identify the coweight lattice with Z, so that 1 is

the fundamental coweight and 2 is the simple coroot. Similarly, the set of weights

is C, so that 1 is the fundamental weight and 2 the simple root.

Example 3.17 ([13, Prop. 2.6]). Let a, b ∈ C. On the vector space with basis

(vi)i∈N there is a Y (sl2)-module structure, denoted by L a
b :

x+(u)vi =
1

u− b+ i− 1
vi−1, x−(u)vi =

(b− a− i)(i+ 1)

u− b+ i
vi+1,

ξ(u)vi =
(u− b− 1)(u− a)

(u− b+ i− 1)(u− b+ i)
vi.

Its normalized q-character is

χ̃q(L
a
b ) = 1 +A−1

b +A−1
b A−1

b−1 +A−1
b A−1

b−1A
−1
b−2 + · · · .
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The vector v0 generates an irreducible submodule, denoted by La
b , of highest ℓ-

weight u−a
u−b . We have L a

b = La
b if and only if b− a /∈ N. When b− a ∈ N,

χ̃q(L
a
b ) = 1 +A−1

b +A−1
b A−1

b−1 +A−1
b A−1

b−1A
−1
b−2 + · · ·+A−1

b A−1
b−1 · · ·A

−1
a+1.

Let us define ∆a
b := {k ∈ N | k < b− a} if b− a ∈ N, and ∆a

b := N otherwise. Then

k ∈ ∆a
b if and only if A−1

b−k is a factor of an ℓ-weight in χ̃q(L
a
b ).

For a, b ∈ C, the Y (sl2)-module L a
b can be obtained as the pullback by an

evaluation morphism Y (sl2) → U(sl2) of an sl2-module M of cohighest weight

b − a; more precisely, M is the graded Hopf dual of the Verma module of lowest

weight a− b.

In the special case a = b − 1, comparing with Example 3.7 we get a module

isomorphism Nb
∼= Lb−1

b sending e1 to v0 and e2 to v1.

We recall the following result of Tarasov [65, 66] on Y (sl2)-modules with

detailed proof in [55, Prop. 3.6]. It was stated for the larger Yangian Y (gl2) which

contains Y (sl2) as a Hopf subalgebra. Irreducible highest ℓ-weight modules over

Y (gl2) remain irreducible when restricted to Y (sl2).

Theorem 3.18 ([65, 66, 55]). The Y (sl2)-module La1

b1
⊗ La2

b2
⊗ · · · ⊗ Lan

bn
is irre-

ducible if and only if bi − aj /∈ ∆ai

bi
∩∆

aj

bj
for any 1 ≤ i, j ≤ n.

The tensor product factorization in category O0 of Y (sl2)-modules is not

unique:

L9
0 ⊗ L3

2
∼= L

( (u− 9)(u− 3)

u(u− 2)

)
∼= L3

0 ⊗ L9
2.

A similar example appeared for Uq(ŝl2) in [57, Rem. 4.3]. The non-uniqueness issue

will be resolved in the larger category Osh; see Theorem 6.4.

Example 3.19. [70, Prop. 23] In Example 3.17, fix b, divide the right-hand sides

of x−(u)vi and ξ(u)vi by b−a, and take the limit as a goes to infinity. In this way,

we obtain the negative prefundamental module L−
b over Y−1(sl2):

x+(u)vi =
1

u− b+ i− 1
vi−1, x−(u)vi =

i+ 1

u− b+ i
vi+1,

ξ(u)vi =
u− b− 1

(u− b+ i− 1)(u− b+ i)
vi.

§4. Tensor products of prefundamental modules

In this section we study two distinguished families of irreducible modules in cate-

gory Osh, the one-dimensional positive prefundamental modules, and the infinite-

dimensional negative prefundamental modules. We prove cyclicity and cocyclicity



26 D. Hernandez and H. Zhang

properties for tensor products of these modules (Theorem 4.8), which motivate

our definitions of Weyl modules and standard modules (Definition 4.10). In the

end we identify these two modules when g is not of type E8 (Theorem 4.15).

§4.1. One-dimensional modules

Let D be the submonoid ofR generated by the Ψi,a for (i, a) ∈ I×C. This is indeed
the classifying set for one-dimensional modules in category Osh in the following

sense.

Lemma 4.1. Let e ∈ L. Then dimL(e) = 1 if and only if e ∈ D.

Proof. One-dimensional Yµ(g)-modules are necessarily irreducible in category Oµ,

and they factorize through the quotient of Yµ(g) by the ideal generated by the

[x, y] for x, y ∈ Yµ(g). Since such an ideal contains ξi,n for (i, n) ∈ I × N, in the

quotient each ξi(u) is a monic polynomial.

The category Osh does not admit a non-trivial invertible object: if D and E

are modules such that D⊗E ∼= L(1), then both D and E are isomorphic to L(1).

In the case of the Borel algebra [41] or shifted quantum affine algebras [40], there

are infinitely many invertible objects, the one-dimensional weight modules.

By definition (compare with [24, Thm. 4.1])

χq(s) = s for s ∈ D.

The generalized Baxter relations for representations of the Borel algebra [24,

Thm. 4.8] and its proof hold true in category Osh. Recall from Lemma 3.11 that

the q-character of a finite-dimensional module in category Osh lies in Z[R], which

is the ring of Laurent polynomials in the Ψi,a.

Corollary 4.2. Let V be a finite-dimensional module in category Osh. Replace in

χq(V ) each variable Ψi,a by [L+
i,a] and χq(V ) by [V ]. Then multiplying by denom-

inators, we get a relation in the Grothendieck ring of Osh.

Let us apply the corollary to the module Ni,a of Example 3.7:

χq(Ni,a) =
Ψi,a−di

Ψi,a

∏
j:cij<0

Ψj,a−dij +
Ψi,a+di

Ψi,a

∏
j:cij<0

Ψj,a+dij ,

[L+
i,a][Ni,a] =

∏
j:cij ̸=0

[L+
j,a−dij

] +
∏

j:cij ̸=0

[L+
j,a+dij

].

For s ∈ D of coweight µ, let ρs : Yµ(g) → C denote the representation of the

one-dimensional module L(s). Let ν be another coweight. Define the algebra mor-

phisms ιs1 and ιs2, both from Yµ+ν(g) to Yν(g), as follows (we omit the dependence
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of these morphisms on ν which will always be clear from the context):

ιs1 := (ρs ⊗ 1)∆µ,ν , ιs2 := (1⊗ ρs)∆ν,µ.

Then for V a Yν(g)-module, the tensor product modules L(s) ⊗ V and V ⊗ L(s)

are pullbacks of V by ιs1 and ιs2 respectively. Based on Lemma 2.5 we have the

following precise formulas for the algebra morphisms:

(4.1)
ιs1 : x+i (u) 7→ ⟨si(u)x+i (u)⟩+, x−i (u) 7→ x−i (u), ξi(u) 7→ si(u)ξi(u),

ιs2 : x+i (u) 7→ x+i (u), x−i (u) 7→ ⟨si(u)x−i (u)⟩+, ξi(u) 7→ si(u)ξi(u).

Remark 4.3. Let (ν, r) ∈ P∨ ×L be truncatable and let s ∈ D be of coweight µ.

Then a Yν(g)-module V factorizes through the truncated shifted Yangian Y r
ν (g)

if and only if L(s) ⊗ V factorizes through Y rs
ν+µ(g). Indeed, the uniqueness of

factorization in equation (2.20) shows that ιs1(Ai(u)) = Ai(u) for i ∈ I, where

the first GKLO series is taken in the shifted Yangian Yν+µ(g) with respect to the

truncatable pair (ν + µ, rs) and the second in Yν(g) with respect to (ν, r).

§4.2. Cyclicity and cocyclicity

The main result of this subsection is the cyclicity and cocyclicity properties of

tensor product modules. By cyclicity we mean the module is generated by a highest

ℓ-weight vector. Let us explain cocyclicity.

Definition 4.4. Call a Yµ(g)-module V of cohighest ℓ-weight if it is top graded

and its top weight space is contained in all non-zero submodules of V .

It follows that the submodule of V generated by the top weight space is

isomorphic to L(e), where e ∈ L is the top ℓ-weight of V . We shall also say that

V is cogenerated by a vector of highest ℓ-weight e.

Remark 4.5. Suppose that V is a module of highest ℓ-weight e and W of co-

highest ℓ-weight e. Then there exists a non-zero module morphism V →W which

factorizes through L(e). Such a map is unique up to homothety. It is surjective if

and only if W is irreducible, and injective if and only if V is irreducible.

Lemma 4.6. Let V be a top-graded Yµ(g)-module. Then V is of cohighest ℓ-weight

if and only if its top weight space equals the subspace of vectors in V annihilated

by the x+i,n for all (i, n) ∈ I × N.

Proof. Let λ ∈ h∗ be the top weight of V . Let S ⊂ V be the subspace of vectors

annihilated by all the x+i,n. Then Vλ ⊂ S because λ + αi is not a weight of V by

assumption and x+i,nVλ ⊂ Vλ+αi
. Moreover, S is weight graded.
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Assume V is of cohighest ℓ-weight. Let β ∈ λ+Q− be any weight of S. The

non-zero submodule S′ = Yµ(g)Sβ contains Vλ. In particular, λ ∈ wt(S′). Applying

the triangular decomposition to Sβ gives wt(S′) ⊂ β +Q− and λ ∈ β +Q−. So

β = λ. This proves wt(S) = {λ} and S = Vλ.

Assume S = Vλ. Let T be a non-zero submodule of V . Since T is weight

graded by λ+Q−, there exists β ∈ wt(T ), such that β + αi /∈ wt(T ) for all i ∈ I.

This implies x+i,nTβ = {0} for all (i, n) ∈ I × N and therefore {0} ≠ Tβ ⊂ S = Vλ.

Since Vλ is one-dimensional, Vλ = Tβ ⊂ T .

Recall from (2.9) the algebra homomorphism for µ a coweight,

τz : Yµ(g) −→ Yµ(g)⊗ C[z].

Let V be a Yν(g)-module andW be a Yµ(g)-module. The vector spaceW⊗V ⊗C[z]
is a module over the tensor product algebra Yµ+ν(g)⊗C[z]: the tensor factor C[z]
acts by polynomial multiplication; the tensor factor Yµ+ν(g) acts by

(1⊗ τz)∆µ,ν : Yµ+ν(g) −→ Yµ(g)⊗ Yν(g) −→ Yµ(g)⊗ Yν(g)⊗ C[z].

Similarly, the Yµ+ν(g)⊗C[z]-module V ⊗C[z]⊗W is defined using (τz ⊗ 1)∆ν,µ.

Remark 4.7. For x ∈ Yµ+ν(g) and w ⊗ v ∈ W ⊗ V , the action of x on w ⊗ v

in the Yµ+ν(g)-module W ⊗ V (a) is the evaluation at z = a of the vector-valued

polynomial x(w ⊗ v) computed in the Yµ+ν(g) ⊗ C[z]-module W ⊗ V ⊗ C[z]. A
similar statement holds for the Yµ+ν(g)⊗ C[z]-module V ⊗ C[z]⊗W .

Theorem 4.8. Let s ∈ D be of coweight µ and e ∈ L be of coweight ν.

(i) If V is a Yν(g)-module of cohighest ℓ-weight, then so are the Yν+µ(g)-module

V ⊗ L(s) and the Yν−µ(g)-module L(s−1)⊗ V .

(ii) The assignment ωs ⊗ ωe 7→ ωse extends uniquely to a module isomorphism

L(s)⊗M(e) ∼=M(se).

(iii) The Yν−µ(g)⊗C[z]-module M(e)⊗C[z]⊗L(s−1) is generated by ωe ⊗ ωs−1 .

Therefore, if a Yν(g)-module V is of highest ℓ-weight, then so are the Yν+µ(g)-

module L(s)⊗ V and the Yν−µ(g)-module V ⊗ L(s−1).

Proof. Assume (ii)–(iii). If V is of highest ℓ-weight, then V is a quotient of a

Verma module M(e). So L(s)⊗ V is a quotient of L(s)⊗M(e), which is another

Verma module M(se) by (ii). Therefore L(s)⊗ V is of highest ℓ-weight. Similarly,

by evaluating the Yν−µ(g) ⊗ C[z]-module M(e) ⊗ C[z] ⊗ L(s−1) at z = 0, which
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makes sense because of Remark 4.7, we obtain from (iii) that the Yν−µ(g)-module

M(e)⊗ L(s−1) is of highest ℓ-weight, so is its quotient V ⊗ L(s−1).

We shall prove (i)–(iii) for L(s) and L(s−1) separately.

First half of part (i). Let λ be the top weight of V . The tensor product V ⊗
L(s) is top graded with Vλ ⊗ ωs being the top weight space. From the formula

ιs2(x
+
i (u)) = x+i (u) of equation (4.1) we get x(v ⊗ ωs) = xv ⊗ ωs for v ∈ V and

x ∈ Y >(g) ∼= Y >
ν+µ(g)

∼= Y >
ν (g). By Lemma 4.6, the module V is of cohighest

ℓ-weight if and only if the module V ⊗ L(s) is of cohighest ℓ-weight.

Part (ii). By Example 3.3, ωs⊗ωe ∈ L(s)⊗M(e) is a vector of highest ℓ-weight se.

This induces a module morphism F : M(se) → L(s)⊗M(e) sending ωse to ωs⊗ωe.

From the formula ιs1(x
−
i (u)) = x−i (u) of equation (4.1) we get F (xωse) = ωs⊗xωe

for x ∈ Y <(g) ∼= Y <
ν+µ(g)

∼= Y <
ν (g). Identifying the underlying space of Verma

modules with Y <(g), we see that F is an isomorphism.

From now on fix W := L(s−1) and ω := ωs−1 . For i ∈ I setting P (u) = 1 and

Q(u) = si(u) ∈ C[u] in the proof of Theorem 3.12, we get

(4.2) ⟨si(u)x−i (u)ω⟩+ = 0 for i ∈ I.

Applying x+i (u)x
−
i,n = x−i,nx

+
i (u) + ⟨unξi(u)⟩+ to the highest ℓ-weight vector ω

gives

(4.3) ⟨si(u)x+i (u)x
−
i,nω⟩+ = 0 for (i, n) ∈ I × N.

Indeed, the term x−i,nx
+
i (u) annihilates ω and

⟨si(u)⟨unξi(u)ω⟩+⟩+ = ⟨unsi(u)si(u)−1ω⟩+ = ⟨un⟩+ω = 0.

Part (iii). The Verma module M(e) is N-graded M(e) =
⊕

n∈NM(e)n by declar-

ing M(e)n to be the subspace spanned by the weight vectors x−i1,m1
x−i2,m2

· · ·
x−in,mn

ωe, where (ik,mk) ∈ I × N for 1 ≤ k ≤ n. Similarly, the N-grading on

the highest ℓ-weight module W is defined. Let S be the Yν−µ(g)⊗C[z]-submodule

of M(e)⊗C[z]⊗W generated by ωe ⊗ ω. It suffices to show that M(e)⊗W ⊂ S.

Step 1. Prove M(e)n ⊗ ω ⊂ S by induction on n ∈ N. The initial case n = 0

is trivial because M(e)0 = Cωe and ωe ⊗ ω ∈ S by definition. Let n > 0 and

v ∈M(e)n. By linearity one may assume v = x−i,mv
′ for certain v′ ∈M(e)n−1 and

(i,m) ∈ I × N. By the induction hypothesis we have v′ ⊗ ω ∈ S.

In the moduleM(e)⊗C[z]⊗W we have by Example 3.4 and equations (2.8)–

(2.9),

x−i (u)(v
′ ⊗ ω) = x−i (u− z)v′ ⊗ si(u)

−1ω + v′ ⊗ x−i (u)ω.
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Here one views x−i (u− z) as the Laurent series
∑

k≥0 τz(x
−
i,k)u

−k−1 whose coeffi-

cients belong to Yν(g) ⊗ C[z] and act as linear maps M(e) → M(e) ⊗ C[z]. The
principal part at the right-hand side is unnecessary because si(u)

−1x−i (u − z) is

a power series of u−1. Multiply the above equation by the polynomial si(u) and

then take the principal part. We obtain from equation (4.2) that

(4.4) ⟨si(u)x−i (u)⟩+(v
′ ⊗ ω) = x−i (u− z)v′ ⊗ ω ∈ S[[u−1]].

For p ∈ N, let Cp be the coefficient of u−p−1 at the right-hand side. We have

Cp =

p∑
k=0

(
p

k

)
x−i,p−kv

′ ⊗ zk ⊗ w ∈ S.

It follows from the Newton formula τ−aτa = Id that

v ⊗ w = x−i,mv
′ ⊗ w =

m∑
k=0

(
m

k

)
(−z)m−kCk ∈ S.

Therefore M(e)n ⊗ ω ⊂ S for all n ∈ N and M(e)⊗ ω ⊂ S.

Step 2. Prove M(e)⊗Wn ⊂ S by induction on n ∈ N. The initial case n = 0

follows from Step 1 because W0 = Cω. Let n > 0 and w ∈ Wn. By linearity

assume w = x−i,mw
′ for a certain weight vector w′ ∈Wn−1 and (i,m) ∈ I ×N. By

the induction hypothesis we have v ⊗ w′ ∈ S. In the module M(e) ⊗ C[z] ⊗W ,

take an arbitrary vector v ∈M(e) and apply x−i,m ∈ Y <
ν−µ(g) to v ⊗ w′. From the

coproduct formula ∆ν,−µ(x
−
i,m) of Lemma 2.5 we get

S ∋ x−i,m(v ⊗ w′) = (τz ⊗ 1)∆ν,−µ(x
−
i,m)(v ⊗ ω)

≡ v ⊗ x−i,mw
′ mod.

∑
w′′∈W :wt(w′′)−wt(w′)∈Q+

M(e)⊗ C[z]⊗ w′′.

Since wt(w) = wt(w′)−αi, any w
′′ in the summation belongs to Wn′ for a certain

0 ≤ n′ < n. The induction hypothesis applied to w′′, together with the fact that

S is stable by C[z], gives M(e) ⊗ C[z] ⊗ w′′ ⊂ S. So v ⊗ w ∈ S for all v ∈ M(e)

and w ∈Wn. Therefore, M(e)⊗Wn ⊂ S for all n ∈ N and M(e)⊗W ⊂ S.

Second half of part (i). As in the first half of part (i), it suffices to show that if

g ∈W ⊗V is annihilated by the x+i (u), then g ∈ ω⊗Vλ. Assume 0 ̸= g is a weight

vector of weight β. Choose a weight basis BV of V and write g =
∑

v∈BV
gv ⊗ v.

Then each gv ∈ W is a weight vector and gv ̸= 0 only if wt(gv) + wt(v) = β.

Moreover, gv = 0 for all but finitely many v. Choose γ ∈ wt(V ) such that

(A) there exists v1 ∈ BV of weight γ such that gv1 ̸= 0;

(B) if gv ̸= 0 and wt(v) ̸= γ then wt(v) /∈ γ +Q−.
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Let i ∈ I. By Lemma 2.5, x+i (u)(gv ⊗ v) is x+i (u)gv ⊗ v plus a linear combination

of vectors in W ⊗ v′, where v′ ∈ BV satisfies wt(v′) ∈ wt(v) + αi + Q+. We get

from assumption (B) that the component of Wβ−γ+αi
⊗ Vγ in x+i (u)g = 0 is∑

v∈BV :wt(v)=γ

x+i (u)gv ⊗ v = 0.

Since the second tensor factors are linearly independent, for each v in the sum-

mation, we have x+i (u)gv = 0 for i ∈ I. Since W is cogenerated by the highest

ℓ-weight vector ω, there exists cv ∈ C with gv = cvω. By assumption (A), cv1 ̸= 0

and so β − γ = wt(gv1) = wt(ω).

Next we consider the component Wwt(ω) ⊗ Vγ+αi of in x+i (u)g. This comes

from two parts by the coproduct estimation of Lemma 2.5 and assumption (B):

0 =
∑

v∈BV :wt(v)=γ

ξi(u)cvω ⊗ x+i (u)v +
∑

v′∈BV :wt(v′)=γ+αi

x+i (u)gv′ ⊗ v′.

In the first summation, ξi(u)ω = si(u)
−1ω. Multiply the above equality by si(u)

and take the principal part. We obtain

0 = ω ⊗ x+i (u)
∑

v∈BV :wt(v)=γ

cvv +
∑

v′∈BV :wt(v′)=γ+αi

⟨si(u)x+i (u)gv′⟩+ ⊗ v′.

For each v′ in the second summation, wt(gv′) = β− γ−αi = wt(ω)−αi. So gv′ is

a linear combination of the x−i,nω for n ∈ N and ⟨si(u)x+i (u)gv′⟩+ = 0 by equation

(4.3). The vector g′ :=
∑

v∈BV :wt(v)=γ cvv ∈ Vγ is annihilated by all the x+i (u).

Since V is of cohighest ℓ-weight and since cv1 ̸= 0, we obtain 0 ̸= g′ ∈ Vλ and so

γ = λ. In particular, V is weight graded by γ+Q−. Assumption (B) forces gv = 0

if wt(v) ̸= γ. So g = ω ⊗ g′ ∈ ω ⊗ Vλ.

Part (i) of Theorem 4.8 was known for V ⊗ L where V is an irreducible

Uq(ĝ)-module in category O of [35, §4.3] and L is a tensor product of positive

prefundamental modules over the Borel algebra [18, Lem. 5.7]. Part (iii) can be

seen as an integral version of cyclicity results in the fusion constructions, over

the field C(z), of representations of current algebras [19, Prop. 1.1] and quantum

affinizations [36, Thm. 6.2]. In the non-shifted case, the field C(z) is necessary

because cyclicity holds true only for generic spectral parameters; see [1, 25, 67, 51,

10] for Uq(ĝ) and [64, 63, 31] for Y (g).

Corollary 4.9. Let r, s ∈ D. The assignment ωr−1 ⊗ ωs−1 7→ ωr−1s−1 extends

uniquely to a module isomorphism

L(r−1)⊗ L(s−1) ∼= L(r−1s−1).
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Proof. It suffices to prove the irreducibility of the tensor product L(r−1)⊗L(s−1).

By Theorem 4.8, the tensor product is at the same time of highest ℓ-weight and

of cohighest ℓ-weight. So it must be irreducible.

For the Borel algebra and shifted quantum affine algebras, a tensor product

of negative prefundamental modules is shown to be irreducible by realizing it as

a limit of an inductive system of irreducible tensor products of KR modules over

Uq(ĝ); see [24, Thm. 4.11], [43, Thm. 7.6], and [40, Thm. 5.5]. A similar limit

procedure was carried out in [5] with KR-modules replaced by finite-dimensional

standard modules [58, §13.2], resulting in modules outside the category O for the

Borel algebra [41].

§4.3. Weyl modules and standard modules

We introduce two families of highest ℓ-weight modules in categoryOsh based on the

properties of tensor product modules in the previous subsection. Their definitions

resemble those in the category of finite-dimensional modules over the quantum

affine algebra Uq(ĝ) [16, 58, 67].

Definition 4.10. For r, s ∈ D, define the standard module W(r, s) to be the

tensor product of irreducible modules L(r) ⊗ L(s−1). Define the Weyl module

W (r, s) to be the quotient of the Verma module M(s−1r) by the relations

⟨si(u)x−i (u)⟩+ωs−1r = 0 for i ∈ I.

For r = Ψi1,a1
Ψi2,a2

· · ·ΨiM ,aM
and s = Ψj1,b1Ψj2,b2 · · ·ΨjN ,bN we have the

following factorization of the standard module (one need not care about non-

associativity because each tensor product in the parentheses is irreducible)

W(r, s) ∼= (L+
i1,a1

⊗ L+
i2,a2

⊗ · · · ⊗ L+
iM ,aM

)⊗ (L−
j1,b1

⊗ L−
j2,b2

⊗ · · · ⊗ L−
jN ,bN

).

This resembles the case of finite-dimensional standard modules over Uq(ĝ) in [67,

Cor. 7.17] and [59, Cor. 6.13]. It implies the following equation in K0(Osh):

(4.5) [W(r, s)⊗W(m,n)] = [W(rm, sn)] for r, s,m,n ∈ D.

Our definition of a Weyl module is similar to the one in the categories of

finite-dimensional modules over Uq(ĝ) [16, §4] and over the quantum affine super-

algebra Uq(ŝl(m,n)) [69, §4.1]. The difference from [16] is that apart from the

highest ℓ-weight s−1r we have to introduce a new parameter s. This is because in

category Osh and the related category for the quantum affine superalgebra among

the highest ℓ-weight modules of a fixed highest ℓ-weight, there is no universal one.
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Remark 4.11. For dominantly shifted Yangians of type A, there is another def-

inition of a standard module in [9, eq. (7.1)] as an ordered tensor product of

irreducible modules. These modules are parameterized by their highest ℓ-weight.

We do not know whether they are particular cases of our standard modules.

Proposition 4.12. Let m, r, s ∈ D.

(i) There exists a unique surjective module morphism W (r, s) → W(r, s) sending

ωs−1r to ωr ⊗ ωs−1 .

(ii) The map ωm ⊗ ωs−1r 7→ ωs−1mr extends uniquely to a module isomorphism

L(m)⊗W (r, s) −→W (mr, s).

(iii) Weyl modules are in category Osh. A highest ℓ-weight module in category Osh

is necessarily a quotient of a Weyl module.

Proof. Part (i). By Theorem 4.8, the module W(r, s) is of highest ℓ-weight s−1r.

Combining equation (4.2) in L(s−1) with equation (4.1), we get for j ∈ I,

⟨sj(u)x−j (u)⟩+(ωr ⊗ ωs−1) = ωr ⊗ ⟨sj(u)x−j (u)⟩+ωs−1 = 0.

All the defining relations of the Weyl module W (r, s) are realized in W(r, s).

Part (ii). Let µ=
∑

j∈I kjϖ
∨
j be the coweight of s−1r. Set x̃−i (u) := ⟨si(u)x−i (u)⟩+.

Let V (r, s) be the subspace of the Verma module M(s−1r) spanned by the coef-

ficients of x̃−i (u)ωs−1r for i ∈ I, and let K(r, s) be the submodule generated by

this subspace. Then W (r, s) = M(s−1r)/K(r, s). For (j,m) ∈ I × N, as in the

proof of Theorem 3.12 we have x+j,mV (r, s) = {0}. Next we prove by induction

on p ≥ −kj − 1 that ξj,pV (r, s) ⊂ V (r, s). The initial case is trivial because

ξj,−kj−1 = 1. Applying the following relation to the highest ℓ-weight vector ωs−1r,

which is a common eigenvector of the ξj,q for q ∈ Z,

ξj,p+1x̃
−
i (u) = x̃−i (u)ξj,p+1 + ξj,p⟨ux̃−i (u)⟩+

− ⟨ux̃−i (u)⟩+ξj,p − dijξj,px̃
−
i (u)− dij x̃

−
i (u)ξj,p,

we derive the case of p+ 1 from the case of p. From the triangular decomposition

of Theorem 2.2 we get K(r, s) = Y <(g)V (r, s).

Theorem 4.8(ii) affords a module isomorphism F : M(s−1mr) → L(m) ⊗
M(s−1r) which sends xωs−1mr to ωm ⊗ xωs−1r for x ∈ Y <(g). In particular, F

maps the subspace V (mr, s) of the Verma module M(s−1mr) onto ωm ⊗ V (r, s).

Furthermore,

F (K(mr, s)) = F (Y <(g)V (mr, s)) = ωm ⊗ Y <(g)V (r, s) = ωm ⊗K(r, s).

This induces the desired module isomorphism W (mr, s) ∼= L(m)⊗W (r, s).
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Part (iii). Let W be a Weyl module generated by a highest ℓ-weight vector ω,

so that wt(W ) ⊂ wt(ω) + Q−. By definition, Wwt(ω)−αi
is finite-dimensional for

i ∈ I. One can copy [15, §5, Proof of (b)] to show that all weight spaces of W are

finite-dimensional. Therefore W is in category Osh.

Let V be a module in category Osh generated by a highest ℓ-weight vector v of

ℓ-weight n. Fix i ∈ I. The x−i,mv for m ∈ N span a finite-dimensional weight space.

We get a monic polynomial Qi(u) =
∑n

k=0 cku
k with

∑n
k=0 ckx

−
i,kv = 0. Applying

x+i,m for m ∈ N to this equality we get that Qi(u)ni(u) is a monic polynomial of

u. Apply ξi,−ki+1 − 1
2ξ

2
i,−ki

repeatedly to the equality. From[
ξi,−⟨µ,αi⟩+1 −

1

2
ξ2i,−⟨µ,αi⟩, x

−
i,m

]
= −2dix

−
i,m+1,

we get
∑n

k=0 ckx
−
i,k+mv = 0 for all m ∈ N, namely, ⟨Qi(u)x

−
i (u)⟩+v = 0. Let us

set s := (Qi(u))i∈I and r := ns. Then r, s ∈ D and V is a quotient of W (r, s).

In the rest of this subsection we show that Weyl modules are standard modules

when g is not of type E8. Recall from Section 2.2 the root vectors x±γ ∈ g±γ and

the PBW variables x−γ,n ∈ Y (g)≤n for (γ, n) ∈ R × N. Identify the associated

grading grNY (g) with U(g[t]) via the isomorphism of (2.16). Then for i ∈ I and

n ∈ N,

x−i,n + Y (g)≤n−1 = x−αi,n + Y (g)≤n−1 = x−αi
⊗ tn and diα

∨
i = ξi,0.

In general, x−γ,n + Y (g)≤n−1 is proportional to x−γ ⊗ tn ∈ g[t] for γ ∈ R.

Let s ∈ D. Consider the Weyl module W (s, s) over Y (g). Its zero weight

space W (s, s)0 is spanned by a highest ℓ-weight vector ω. The N-filtration of Y (g)

descends to the module W (s, s) by setting

W (s, s)≤m := Y (g)≤mω for m ∈ N.

The associated grading grNW (s, s) is then naturally an N-graded U(g[t])-module.

This is referred to as the classical limit of W (s, s), denoted by W (s, s).

Lemma 4.13. Let s ∈ D. As a module over h ⊂ g[t], the classical limit W (s, s)

is semisimple and has character equal to χ(W (s, s)). Moreover, the g[t]-module

W (s, s) is generated by ω and satisfies the relations

(x+αi
⊗ tn)ω = 0 = (α∨

i ⊗ tn)ω = (x−αi
⊗ t⟨ϖ

∨(s),αi⟩)ω for (i, n) ∈ I × N.

Proof. The first part comes from the compatibility of N-filtration and weight grad-

ing on Y (g). For the second part, fix i ∈ I and set N := ⟨ϖ∨(s), αi⟩. By definition,
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si(u) =
∑N

k=0 cku
k ∈ C[u] with cN = 1. In the Weyl module W (s, s) we have

x−i,Nω = −
N−1∑
k=0

ckx
−
i,kω ∈W (s, s)≤N−1.

In the associated grading, the left-hand side becomes (x−αi
⊗ tN )ω and is of degree

N , while the right-hand side is of degree N − 1. So both sides vanish and (x−αi
⊗

tN )ω = 0 in the classical limit. The first two relations are proved in the same

way.

Let as be the Lie subalgebra of g[t] generated by the elements x+αi
⊗tn, α∨

i ⊗tn,
and x−αi

⊗ t⟨ϖ
∨(s),αi⟩ for (i, n) ∈ I × N. Define the U(g[t])-module

Ps := U(g[t])⊗U(as) C,

where as acts on C as zero. Lemma 4.13 shows that W (s, s) is a quotient of Ps.

Lemma 4.14. The action of h ⊂ g[t] on Ps is semisimple with character

χ(Ps) =
∏
γ∈R

( 1

1− e−γ

)⟨ϖ∨(s),γ⟩
.

Proof. We claim that the subalgebra as of g[t] is spanned by

(B) x+γ ⊗ tn, α∨
i ⊗ tn, x−γ ⊗ tm,

where (i, γ,m, n) ∈ I ×R×N2 and m ≥ ⟨ϖ∨(s), γ⟩. Assume the claim. Take V to

be the subspace of g[t] with basis x−γ ⊗tk, where (γ, k) ∈ R×N and k < ⟨ϖ∨(s), γ⟩.
Then g[t] = as⊕V is a direct sum of semisimple h-modules. By the PBW theorem

for U(g[t]), the h-module Ps is isomorphic to the symmetric algebra Sym(V ) whose

h-module structure is induced from that of V . Each basis vector x−γ ⊗ tk of V is of

weight −γ and gives rise to a factor 1
1−e−γ in the character χ(Sym(V )) = χ(Ps).

Taking their products gives the desired product character formula.

First we show that each vector in (B) belongs to as. This is clear for the first

two families of vectors because x+γ ⊗ tn is proportional to a commutator of the

x+αi
⊗ tk for (i, k) ∈ I × N. For the third family, one may assume m = ⟨ϖ∨(s), γ⟩,

as the other cases can be deduced from adjoint actions of the α∨
i ⊗ t. Write γ =∑

i∈I miαi. Then x
−
γ is proportional to a commutator of the x−αi

, where each x−αi

appears exactly mi times. Replacing each x−αi
in the commutator formula of x−γ

with x−αi
⊗ t⟨ϖ

∨(s),αi⟩, we obtain x−γ ⊗ tm in the Lie subalgebra as.

It remains to show that the subspace of g[t] spanned by (B) is a Lie subalgebra.

The only non-trivial case is to check that the following vector belongs to this
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subspace for (δ, γ, n,m) ∈ R2 × N2 with m ≥ ⟨ϖ∨(s), γ⟩:

[x+δ ⊗ tn, x−γ ⊗ tm] = [x+δ , x
−
γ ]⊗ tm+n.

If γ − δ /∈ R, then [x+δ , x
−
γ ] is spanned by the x+β and α∨

i for (i, β) ∈ I ×R, so we

get the first two families of vectors in (B). If γ − δ ∈ R, then [x+δ , x
−
γ ] ∈ Cx−γ−δ

and

m+ n ≥ m ≥ ⟨ϖ∨(s), γ⟩ > ⟨ϖ∨(s), γ − δ⟩.
So the commutator does belong to the third family of vectors in (B).

Theorem 4.15. Assume that g is not of type E8. Then for r, s ∈ D, the surjective

morphism W (r, s) → W(r, s) of Proposition 4.12(i) is an isomorphism. Further-

more, the ordered monomials in the x−γ,n for (γ, n) ∈ R × N and n < ⟨ϖ∨(s), γ⟩
applied to ωs−1r form a basis of the Weyl module W (r, s).

Proof. By Proposition 4.12(i), χ(W(s, s)) is bounded above by χ(W (s, s)). Lemma

4.14 implies that χ(W (s, s)) = χ(W (s, s)) is bounded above by χ(Ps). In view of

Corollary 4.9 and Theorem 3.16, if we write s = Ψi1,a1Ψi2,a2 · · ·ΨiN ,aN
, then

χ(W(s, s)) =

N∏
k=1

χ(W(Ψik,ak
,Ψik,ak

)) =

N∏
k=1

∏
γ∈R

( 1

1− e−γ

)⟨ϖ∨
ik

,γ⟩
= χ(Ps).

So all the characters are equal and the quotient map Ps → W (s, s) is bijective.

From the tensor product factorizations of Proposition 4.12(ii) we get

χ̃q(W (r, s)) = χ̃q(W (s, s)) = χ̃q(W(s, s)) = χ̃q(L(s
−1)) = χ̃q(W(r, s)).

This implies W (r, s) ∼= W(r, s).

For the second part, the case r = s follows from the PBW basis of the classical

limit W (s, s) ∼= Ps obtained in the proof of Lemma 4.14. The rest follows from

the fact that the isomorphism L(m)⊗W (n, s) ∼=W (mn, s) of Proposition 4.12(ii)

for m,n ∈ D identifies the actions of Y <(g) on the Weyl modules W (n, s) and

W (mn, s).

Remark 4.16. Our proof of Theorem 4.15 in category Osh is simpler than the

finite-dimensional case [12, Thm. 7.5]. The reason is that we take the quotient of

U(g[t]) by a left ideal generated by elements of the Lie algebra g[t]. In the finite-

dimensional case, depending on a dominant integral weight
∑

i∈I kiϖi, the left

ideal of U(g[t]) to define the classical limit is generated by [16, §2]:

x+αi
⊗ tn, α∨

i ⊗ tn − δn0ki, (x−αi
⊗ 1)ki+1 for (i, n) ∈ I × N.

The third family of generators is not in g[t]. This makes it highly non-trivial to

find a basis for the quotient, even in type A [11].
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§5. Properties of R-matrices

In this section we study R-matrices, which are module morphisms

V ⊗W −→W ⊗ V,

where V and W are suitably chosen highest ℓ-weight modules. First we establish

properties of the R-matrices: existence, uniqueness, factorization, and polynomi-

ality (Theorem 5.2, Propositions 5.3 and 5.7). We also compute the eigenvalues of

certain of these R-matrices in Proposition 5.8.

Definition 5.1. A module in category Osh is called negative if it is irreducible

and its highest ℓ-weight is of the form s−1 with s ∈ D.

Theorem 5.2. Let V be a Yν(g)-module generated by a highest ℓ-weight vector

v0 and W be a Yµ(g)-module generated by a highest ℓ-weight vector ω. Then the

assignment v0 ⊗ ω 7→ ω ⊗ v0 extends uniquely to a Yµ+ν(g)-module morphism

ŘV,W : V ⊗W −→W ⊗ V

under one of the following conditions:

(i) The module V is irreducible, and W is negative.

(ii) The module V is one-dimensional, and W is either a Verma module, or a

highest ℓ-weight irreducible module, or a Weyl module.

Proof. Part (i). By Theorem 4.8, V ⊗W is of highest ℓ-weight, and W ⊗ V is of

cohighest ℓ-weight. Their highest ℓ-weights coincide by Example 3.3. The existence

and uniqueness of ŘV,W follow from Remark 4.5.

Part (ii). The same arguments as above work when dimV = 1 and W is irre-

ducible.

Suppose V = L(s) and W = M(e) with s ∈ D and e ∈ L. Then V ⊗W is

isomorphic to the Verma moduleM(se) by Theorem 4.8(ii). Since ω⊗v0 ∈W ⊗V
is of highest ℓ-weight se, the existence and uniqueness of ŘV,W follow.

Suppose V = L(m) and W = W (r, s) with m, r, s ∈ D. Then V ⊗ W is

isomorphic to the Weyl module W (mr, s) by Proposition 4.12(ii). The existence

and uniqueness of ŘV,W follow if the highest ℓ-weight vector ω⊗v0 ∈W⊗V satisfies

the defining relations of the Weyl module W (mr, s). We have ⟨si(u)x−i (u)ω⟩+ = 0

in the Weyl module W (r, s) = W and x−i (u)(ω ⊗ v0) = ⟨mi(u)x
−
i (u)ω⟩+ ⊗ v0 in

the tensor product module W ⊗ L(m) =W ⊗ V by equation (4.1). So

⟨si(u)x−i (u)(ω ⊗ v0)⟩+ = ⟨si(u)⟨mi(u)x
−
i (u)ω⟩+⟩+ ⊗ v0

= ⟨mi(u)⟨si(u)x−i (u)ω⟩+⟩+ ⊗ v0 = 0.

The second equality used equation (2.17) twice.
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The morphism ŘV,W is independent of the choice of the highest ℓ-weight

vectors v0 and ω because both of them span a one-dimensional weight space. It is

normalized as in Theorem 3.8.

As a first application, we consider the situation of Theorem 5.2(i). For a ∈ C
there exists a unique Yµ+ν(g)-module morphism

ŘV,W (a) : V (a)⊗W −→W ⊗ V (a), v0 ⊗ ω 7→ ω ⊗ v0.

Proposition 5.3. Let V be a highest ℓ-weight irreducible Yν(g)-module and let W

be a negative module. Then there exists a unique linear map

ŘV,W (u) : V ⊗W −→W ⊗ V ⊗ C[u]

whose evaluation at u = a is ŘV,W (a) for any a ∈ C.

(i) Assume ν is antidominant. For r, s ∈ D, we have

ŘV,L(r−1s−1) = (1⊗ ŘV,L(s−1))(ŘV,L(r−1) ⊗ 1),

where we have identified L(r−1)⊗L(s−1) with L(r−1s−1) as in Corollary 4.9.

(ii) Let U and V be finite-dimensional irreducible Y (g)-modules. Then we have

the following quantum Yang–Baxter equation:

(5.1) Ř23
U,V (u− v)Ř12

U,W (u)Ř23
V,W (v) = Ř12

V,W (v)Ř23
U,W (u)Ř12

U,V (u− v).

It is an equality of linear maps from U ⊗ V ⊗W to W ⊗ V ⊗ U ⊗ C(u, v),
where R23 = 1⊗R, R12 = R⊗1, and ŘU,V (u−v) is the normalized R-matrix

of Theorem 3.8.

Proof. Suppose that the negative module W is defined over the shifted Yangian

Yµ(g) and fix highest ℓ-weight vectors ω in W and v0 in V . We need to show that

for any vectors v ∈ V and w ∈W , the function a 7→ ŘV,W (a)(v⊗w) is polynomial,

in the sense that it is the evaluation at z = a of polynomial of z taking values in

W ⊗ V . By Remark 4.7, the Yµ+ν(g)-module V (a)⊗W is the evaluation at z = a

of the Yµ+ν(g) ⊗ C[z]-module V ⊗ C[z] ⊗W . By Theorem 4.8(iii), there exists a

polynomial
∑N

s=0Xsz
s with coefficients Xs ∈ Yµ+ν(g) such that in the module

V (a)⊗W ,

v ⊗ w =

N∑
s=0

asXs(v0 ⊗ ω) ∈ V (a)⊗W.

Applying ŘV,W (a) to the relation yields

ŘV,W (a)(v ⊗ w) =

N∑
s=0

asXs(ω ⊗ v0) ∈W ⊗ V (a).

Conclude from the polynomial actions of the Xs on W ⊗ V (a).
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Part (i). Both sides are module morphisms because all the tensor factors V ,

L(r−1), and L(s−1) are modules over antidominantly shifted Yangians and belong

to the monoidal category Osh
− of Remark 3.13. Both sides send v0⊗ωr−1 ⊗ωs−1 to

ωr−1 ⊗ωs−1 ⊗v0. They have to be equal by uniqueness of the R-matrix in Theorem

5.2.

Part (ii). Let ω1, ω2, and ω3 denote highest ℓ-weight vectors of U , V , and W .

By the rationality of ŘU,V (u) and polynomiality of ŘU,W (u) and ŘV,W (u), it suf-

fices to prove equation (5.1) evaluated at u = a and v = b for a, b ∈ C satisfying

the conditions of Theorem 3.8(ii)–(iii). Both sides are module morphisms from

U(a) ⊗ V (b) ⊗W to W ⊗ V (b) ⊗ U(a) since the tensor factors are modules over

antidominantly shifted Yangians and belong to the monoidal category Osh
− of

Remark 3.13. The source module is generated by ω1⊗ω2⊗ω3 by Theorem 4.8 and

the irreducibility of U(a) ⊗ V (b). Both sides send the generator to ω3 ⊗ ω2 ⊗ ω1,

so they must coincide.

For v and w weight vectors in the modules V and W respectively, the vector

v ⊗ w in the module V (a) ⊗W is of weight wt(v) + wt(w) − aν̃ by Remark 3.1;

recall that V is defined over Yν(g). So ŘV,W (a)(v⊗w) belongs to the weight space

of the module W ⊗ V (a) of the same weight, which by Remark 3.1 coincides with

the finite-dimensional weight space (W ⊗ V )wt(v)+wt(w) of the module W ⊗ V . It

follows that ŘV,W (u) restricts to polynomials taking values in finite-dimensional

vector spaces:

ŘV,W (u) ∈ Hom((V ⊗W )γ , (W ⊗ V )γ)⊗ C[u] for γ ∈ wt(V ⊗W ).

Definition 5.4. In the situation of Theorem 5.2(i), the highest diagonal entry of

ŘV,W (u) is the linear operator sV,W (u) ∈ Hom(V, V ⊗ C[u]) such that for v ∈ V ,

(5.2) ŘV,W (u)(v ⊗ ω) ≡ ω ⊗ sV,W (u)vmod.
∑

wt(ω)̸=γ∈wt(W )

Wγ ⊗ V ⊗ C[u].

If we assume furthermore that V is finite-dimensional with v− being a lowest ℓ-

weight vector, then the lowest diagonal entry of ŘV,W (u) is defined to be the linear

operator tV,W (u) ∈ Hom(W,W ⊗ C[u]) such that for w ∈W ,

(5.3) ŘV,W (u)(v− ⊗ w) ≡ tV,W (u)w ⊗ v− mod.
∑

wt(v− )̸=γ∈wt(V )

W ⊗ Vγ ⊗ C[u].

Define the polynomial λV,W (u) ∈ C[u] to be the eigenvalue of tV,W (u) associated

to ω.

The above definition makes sense because both of the vectors ω and v− span

a one-dimensional weight space.
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Remark 5.5. Let W be a highest ℓ-weight module over the quantum affine alge-

bra Uq(ĝ) and V be a lowest ℓ-weight module over the Borel subalgebra. We

specialize the universal R-matrix R(z) of Uq(ĝ) to obtain ŘV,W (z) : V ⊗ W →
(W ⊗ V )[[z]]. Then we attach the highest diagonal entry sV,W (z) : V → V [[z]] to a

highest ℓ-weight vector ω ofW and the lowest diagonal entry tV,W (z) : W →W [[z]]

to a lowest ℓ-weight vector v− of V as above. The proofs of [25, Lem. 2.6] and [24,

Prop. 5.5] indicate that

sV,W (z) = R0(z)R∞|V⊗ω, tV,W (z) = R0(z)R∞|v−⊗W .

Here the abelian part R0(z) and the Cartan part R∞ of R(z) are written in terms

of Drinfeld–Cartan generators. Therefore, both diagonal entries are determined by

the action of the Drinfeld–Cartan generators. Our computation of the diagonal

entries in the Yangian situation (Proposition 7.2 and Theorem 7.4) is guided by

this principle, although we do not have a universal R-matrix for shifted Yangians.

Example 5.6. Fix i ∈ I. Let V = Ni,0 and v0 be the highest ℓ-weight vector e1 in

Example 3.7. Write si(u) =
∑m

k=0 cku
k with cm = 1. Apply ŘV,W (a) to equation

(4.4) with v′ = e1 and z = a and then use Example 3.4 to compute x−i (u)(ω⊗ e1).
We obtain

di
u− a

ŘV,W (a)(e2 ⊗ω) = ŘV,W (a)(x−i (u)e1 ⊗ ω) = ⟨si(u)x−i (u)(ω ⊗ e1)⟩+

= ⟨si(u)x−i (u)ω ⊗ ξi(u)e1⟩+ + ⟨si(u)ω ⊗ x−i (u)e1⟩+

=
〈
si(u)

u− a+ di
u− a

x−i (u)
〉
+
ω⊗ e1 +

〈
si(u)

di
u− a

〉
+
ω ⊗ e2,

ŘV,W (a)(e2 ⊗ ω) = si(a)ω ⊗ e2 +

m−1∑
n=0

m∑
k=n+1

cka
k−n−1x−i,nω⊗ e1.

Since e2 is a lowest ℓ-weight vector, λV,W (u) = si(u).

Next consider Theorem 5.2(ii). Let s ∈ D denote the highest ℓ-weight of

V = Cv0. We have a unique linear operator RW
s on W such that RW

s (ω) = ω and

ŘV,W (v0 ⊗ w) = RW
s (w)⊗ v0 for w ∈W.

Proposition 5.7. Let W be either a Verma module, or its irreducible quotient,

or a Weyl module, of highest ℓ-weight e.

(i) We have RW
r ◦RW

s = RW
rs for r, s ∈ D. In particular, the RW

s for s ∈ D form

a commuting family of linear endomorphisms on W .

(ii) For i ∈ I, there exists a unique linear map

RW
i (u) : W −→W ⊗ C[u]
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whose evaluation at u = a, for a ∈ C, is RW
Ψi,a

. Furthermore, for β ∈ ϖ(e) +

Q−, restricted to the weight space Wβ, the operator RW
i (−u) is an End(Wβ)-

valued monic polynomial of degree ⟨ϖ∨
i , ϖ(e)− β⟩.

Proof. Suppose W =M(e) is a Verma module and write ω = ωe.

Part (i). Comparing the actions of the shifted Yangian on the two tensor products,

we see that the linear map RW
s : W → W for s ∈ D is uniquely characterized by

the equations RW
s (ω) = ω and RW

s ◦ ιs1 = ιs2 ◦RW
s , namely,

RW
s (ω) = ω, RW

s x−i (u) = ⟨si(u)x−i (u)⟩+R
W
s ,(5.4)

RW
s ξi(u) = ξi(u)R

W
s , RW

s ⟨si(u)x+i (u)⟩+ = x+i (u)R
W
s .(5.5)

Equation (5.4) already determines RW
s , because W is obtained from ω by repeat-

edly applying the x−i,n. We need to check equation (5.4) for RW
r ◦ RW

s with s

replaced by rs. The first half is evident. For the second half,

RW
r ◦RW

s x−i (u) = RW
r ⟨si(u)x−i (u)⟩+R

W
s

= ⟨si(u)⟨ri(u)x−i (u)⟩+⟩+R
W
r ◦RW

s

= ⟨si(u)ri(u)x−i (u)⟩+R
W
r ◦RW

s .

The second half of part (i) follows from the commutativity of D.

Part (ii). For (j, n) ∈ I × N we have by equation (5.4),

RW
Ψi,−a

x−i,n = (x−i,n+1 + ax−i,n)R
W
Ψi,−a

, RW
Ψi,−a

x−j,n = x−j,nR
W
Ψi,a

if j ̸= i.

Write ϖ(e) − β =
∑

j∈I hjαj so that hj = ⟨ϖ∨
j , ϖ(e) − β⟩. By the triangular

decomposition, Wβ is spanned by the vectors of the form x−j1,n1
· · ·x−jK ,nK

ω, where

each j ∈ I appears exactly hj times. Applying RW
Ψi,−a

to such a vector gives

RW
Ψi,−a

(x−j1,n1
· · ·x−jK ,nK

ω) =

K∏
s=1

(δjsix
−
i,ns+1 + aδjsix−js,ns

)× ω.

The right-hand side is the evaluation at u = a of an Wβ-valued polynomial whose

dominant term is uhix−j1,n1
· · ·x−jK ,nK

ω. We have therefore proved for each v ∈Wβ

the existence of hi vectors v0, v1, . . . , vhi−1 ∈Wβ such that

RW
Ψi,−a

(v) = ahiv + ahi−1vhi−1 + · · ·+ av1 + v0 for a ∈ C.

By a standard argument of the Vandermonde determinant, each v 7→ vs defines a

linear operator Qs on Wβ for 0 ≤ s < hi. The End(Wβ)-valued monic polynomial

uhiId + uhi−1Qhi−1 + · · ·+ uQ1 +Q0

defines the restriction of RW
i (−u) to Wβ .
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Suppose W is either the irreducible quotient of M(e), or a Weyl module. Let

π : M(e) →W denote the quotient map. The diagram

L(s)⊗M(e)

1⊗π

��

ŘL(s),M(e)
// M(e)⊗ L(s)

π⊗1

��

L(s)⊗W
ŘL(s),W

// W ⊗ L(s)

is commutative because the top-left module is generated by ωs ⊗ωe, which is sent

to ωe ⊗ ωs by both paths. So (i)–(ii) for the Verma module descend to W .

In the rest of this section, we compute the eigenvalues of RW
i (u) for W a

Weyl module or its irreducible quotient. From equation (5.5) we get RW
i (u)ξj,p =

ξj,pR
W
i (u). So RW

i (u) restricts to an End(Wf )-valued polynomial for each ℓ-weight

f of W .

Proposition 5.8. Let (µ, r) ∈ P∨ × L be a truncatable pair and Ai(u) for i ∈ I

be the GKLO series in Yµ(g). Let W be either a Weyl module or an irreducible

module, generated by a vector ω of highest ℓ-weight e ∈ Rµ. Let gi(u) ∈ C((u−1))×

be the eigenvalue of Ai(u) associated to ω and normalize Āi(u) := gi(u)
−1Ai(u).

(i) We have an additive difference equation

(5.6) RW
i (u+ di) = RW

i (u)Āi(u) ∈ Hom(W,W ⊗ C[u]).

(ii) Each ℓ-weight f of W has a unique decomposition

f = e
∏
j∈I

hj∏
s=1

A−1
j,aj,s

,

where hj = ⟨ϖ∨
j , ϖ(f−1e)⟩ and aj,s ∈ C for 1 ≤ s ≤ hj. Furthermore, both

of the operators RW
i (u) and Ai(u) acting on Wf have a unique eigenvalue,

respectively
hi∏
s=1

(ai,s − u) and gi(u)

hi∏
s=1

u− ai,s + di
u− ai,s

.

As a consequence, the normalized q-character of an arbitrary highest ℓ-weight mod-

ule in category Osh is a power series in N[[A−1
i,a ]]i∈I,a∈C with leading term 1.

Proof. Part (i). The left-hand side of equation (5.6) sends W to W ⊗ C[u] by
Proposition 5.7, and the right-hand side sends each finite-dimensional weight space

Wβ of W to Wβ ⊗ C((u−1)). Since W is obtained from ω by repeatedly applying
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the x−j,n for j ∈ I and n ∈ N, and since both sides send ω to ω, it suffices to show

that both sides have the same commutation relations with the x−j,n.

By Lemma 2.7 and equation (5.4), if j ̸= i, then RW
i (u), Ai(u), and both

sides of equation (5.6) commute with x−j,n. If j = i, then

RW
i (u+ di)x

−
i,n = (x−i,n+1 − ux−i,n − dix

−
i,n)R

W
i (u+ di),

RW
i (u)Āi(u)x

−
i,n = RW

i (u)

(
x−i,n + di

∑
k≥0

x−i,n+ku
−k−1

)
Āi(u)

=

(
x−i,n+1−ux

−
i,n+di

∑
k≥0

(x−i,n+k+1−ux
−
i,n+k)u

−k−1

)
RW

i (u)Āi(u)

= (x−i,n+1 − ux−i,n − dix
−
i,n)R

W
i (u)Āi(u).

This proves equation (5.6).

Part (ii). The finite-dimensional ℓ-weight space Wf admits mutually commuting

actions of the series RW
j (u), ξj(u), Āi(u) for j ∈ I. One can choose a basis B ofWf

with respect to which the matrices of these series are upper triangular. Fix a basis

vector b ∈ B. For X(u) any of these series, let [X(u)]b denote the bth diagonal of

the matrix of X(u). Then [ξj(u)]b = fj(u) by definition of the ℓ-weight space.

By Proposition 5.7, the linear map RW
j (−u) : Wϖ(f) →Wϖ(f) ⊗C[u], viewed

as an End(Wϖ(f))-valued polynomial in u, is monic of degree hj . Its restriction to

the ℓ-weight space Wf as an End(Wf )-valued polynomial is also monic of degree

hj , so is its diagonal entry [RW
j (−u)]b ∈ C[u] associated to the basis vector b. Let

−aj,s for 1 ≤ s ≤ hj denote the roots of the eigenvalue, which may depend on b.

Then [Āj(u)]b can be computed from the difference equation (5.6):

[RW
j (u)]b =

hj∏
s=1

(aj,s − u),

[Āj(u)]b =
[RW

j (u+ dj)]b

[RW
j (u)]b

=

hj∏
s=1

u− aj,s + dj
u− aj,s

.

By definition, Āi(u) is the normalization of Ai(u) by its eigenvalue associated to

ω. Applying (2.20) to ω and then to b ∈ B we get

fi(u)

ei(u)
=

1

[Āi(u)]b[Āi(u− di)]b

∏
j:cji<0

−cji∏
t=1

[Āj(u− dij − tdj)]b

=

hi∏
s=1

(u− ai,s)(u− ai,s − di)

(u− ai,s + di)(u− ai,s)
×

∏
j:cji<0

hj∏
s′=1

−cji∏
t=1

u− dij − tdj − aj,s′ + dj
u− dij − tdj − aj,s′
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=

hi∏
s=1

u− ai,s − di
u− ai,s + di

×
∏

j:cji<0

hj∏
s′=1

u− dij − aj,s′

u− dij + cjidj − aj,s′

=
∏
j∈I

hj∏
s=1

u− aj,s − dij
u− aj,s + dij

(because cjidj = 2dij).

From equation (3.3) we get f = e
∏

j∈I

∏hj

s=1A
−1
j,aj,s

. Since the generalized simple

roots generate a free abelian subgroup of R, the ai,s for i ∈ I and 1 ≤ s ≤ hi are

uniquely determined by f−1e and they are independent of the basis vector b ∈ B.

This shows that both RW
i (u) and Ai(u) have a single eigenvalue of the desired

form.

Remark 5.9. Let us compare with R-matrices of ordinary Yangians and quantum

affine algebras:

(i) Recall from (2.11) that Y −
µ (g) ∼= Y −

0 (g). As in [27, §2.6], there are shift

operators σi for i ∈ I, which are algebra endomorphisms defined by

σi : Y
−
µ (g) −→ Y −

µ (g), ξj,p 7→ ξj,p, x−j,n 7→ x−j,n+δij
.

It follows from Lemma 2.7 and equation (5.4) that

Ai(u)x
−
j,n =

u− σi + diδij
u− σi

x−j,nAi(u),(5.7)

RW
i (u)x−j,n = (−u+ σi)

δijx−j,nR
W
i (u).(5.8)

This also illustrates the additive difference equation (5.6).

(ii) In the Borel situation, there is a universal solution to equation (5.8),

denoted by Ti(z) in [24, Prop. 5.5], whose action on a Uq(ĝ)-module W is the

lowest diagonal entry of the specialization R(z)|L⊗W , where L is a lowest ℓ-weight

module over the Borel subalgebra obtained as the graded Hopf dual of a negative

prefundamental module; see [24, §3.4, §7.2] and Remark 5.5. The polynomiality

of Ti(z) follows from the stronger one for the transfer matrix; see [24, Thms. 5.9,

5.17]. Our difference equation (5.6) corresponds to [40, eqs. (9.18), (10.20)] for

shifted quantum affine algebras.

(iii) The ordinary Yangian Y (g) processes the abelian part R0(u) of the uni-

versal R-matrix. While it is divergent as a formal infinite product, its specialization

on a tensor product of finite-dimensional Y (g)-modules makes sense by viewing

it as a solution to a difference equation [29, §5.8]. Proposition 5.8 is close to this

approach. We expect that a suitably shifted version of R0(u) can be specialized to

a tensor product of modules in category Osh and that it recovers the highest/lowest

diagonal entries as in the case of quantum affine algebras in Remark 5.5.
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Corollary 5.10. Let

s = Ψi1,a1
Ψi2,a2

· · ·ΨiN ,aN
∈ D

andW be an irreducible module in category Osh. The module L(s)⊗W is irreducible

if and only if, for all 1 ≤ s ≤ N and f ∈ wtℓ(W ), we must have A−1
is,as

f /∈ wtℓ(W ).

Proof. From the proof of Theorem 5.2 we get a module morphism ŘL(s),W from

the highest ℓ-weight module L(s)⊗W to the cohighest ℓ-weight module W ⊗L(s).
It is injective if and only if L(s)⊗W is irreducible. We have

RW
s = RW

i1 (a1)R
W
i2 (a2) · · ·R

W
iN (aN ),

which is a product of mutually commuting operators on W . The linear operator

RW
s is injective if and only if 0 is not an eigenvalue of any of the operators RW

is
(as).

The rest follows from Proposition 5.8(ii).

The “if” part of the corollary was known [18, Lem. 5.9] for L⊗V , where L is

a tensor product of positive prefundamental modules over the Borel algebra and

V is an irreducible Uq(ĝ)-module in category O of [35, §4.3].

Example 5.11. Let W = Ni,a as in Example 3.7 and write L+
i,a = C1. Then e1

and e2 are eigenvectors of RW
i (u) of eigenvalues 1 and a−u respectively. Consider

the module morphism ŘL+
i,a,W

from L+
i,a⊗W to W ⊗L+

i,a: its image is spanned by

the vector e1⊗1 of ℓ-weight
∏

j:cij ̸=0 Ψj,a−dij
; its kernel is spanned by 1⊗ e2 of ℓ-

weight
∏

j:cij ̸=0 Ψj,a+dij
. We obtain a short exact sequence of modules in category

Osh:

0 −→
⊗

j:cij ̸=0

L+
i,a+dij

−→ L+
i,a ⊗Ni,a −→

⊗
j:cij ̸=0

L+
j,a−dij

−→ 0.

A similar short exact sequence appeared in the category O of the Borel algebra

[39, Thm. 5.16], whose proof also made use of R-matrices.

§6. Tensor product factorization in the sl2-case

In this section g is fixed to be sl2. We prove existence and uniqueness of fac-

torization for all irreducible modules in category Osh into tensor products of

prefundamental modules and KR modules (Theorem 6.4). This result will be cru-

cial in the proof of the Jordan–Hölder property in Section 9.

In our situation, R is the subgroup of the multiplicative group of the field

C(u) generated by the u− a for a ∈ C. From Section 3.4 recall the subset ∆a
b ⊂ N

and the irreducible modules La
b and L±

a for a, b ∈ C.
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Definition 6.1. Let e ∈ R. A standard factorization of e is

e =

m∏
r=1

(u− xr)×
n∏

s=1

u− ys
u− zs

×
k∏

t=1

1

u− wt
,

where for 1 ≤ r ≤ m, 1 ≤ s, l ≤ n, and 1 ≤ t ≤ k,

0 ̸= zs − ys ∈ N, zs − yl /∈ ∆ys
zs ∩∆yl

zl
,

zs − xr /∈ ∆ys
zs , wt − xr /∈ N, wt − ys /∈ ∆ys

zs .

For example, (u− 3)(u− 9)× u−5
u−6 × 1

u
1

u−2 is a standard factorization, while

this is false for (u− 5)(u− 9)× u−3
u−6 × 1

u
1

u−2 .

Proposition 6.2. Consider the following factorization and tensor product:

(F) : e =

m∏
r=1

(u− xr)×
n∏

s=1

u− ys
u− zs

×
k∏

t=1

1

u− wt
,

T = (L+
x1

⊗ · · · ⊗ L+
xm

)⊗ (Ly1
z1 ⊗ · · · ⊗ Lyn

zn )⊗ (L−
w1

⊗ · · · ⊗ L−
wk

).

Suppose 0 ̸= zs − ys ∈ N for all 1 ≤ s ≤ n. Then (F) is a standard factorization

of e if and only if T is an irreducible module isomorphic to L(e).

Proof. Note that the irreducibility of T would force it to be isomorphic to L(e),

by comparing highest ℓ-weights. Write T = T1 ⊗ T2, where T1 denotes the tensor

product of the first m factors, and T2 the remaining part. First, notice that T1,

being one-dimensional, is isomorphic to L((u− x1) · · · (u− xm)).

For 1 ≤ t ≤ k let us choose w′
t ∈ C in such a way that w′

t − wl /∈ Z and

w′
t − zs /∈ Z for all 1 ≤ l ≤ k and 1 ≤ s ≤ n. Set s := (u− w′

1) · · · (u− w′
k).

Claim 1. The module T2 is irreducible if and only if T2 ⊗ L(s) is irreducible.

The ⇐ part is trivial since tensor product is exact. For the ⇒ part, assume the

irreducibility of T2. By Corollary 5.10, it suffices to prove that none of the A−1
w′

t
for

1 ≤ t ≤ k appears as a factor of any ℓ-weight in the normalized q-character of T2:

χ̃q(T2) =

n∏
s=1

χ̃q(L
ys
zs )

k∏
l=1

χ̃q(L
−
wl
),

where χ̃q(L
ys
zs ) only admits the A−1

zs−c for c ∈ ∆ys
zs as factors, and χ̃q(L

−
wl
) only

admits the A−1
wl−c for c ∈ N as factors. The assumptions wl−w′

t /∈ Z and zs−w′
t /∈ Z

guarantee the condition of Corollary 5.10, hence the irreducibility of T2 ⊗ L(s).

Claim 2. The module T2 ⊗ L(s) is irreducible if and only if the tensor product

T ′
2 := (Ly1

z1 ⊗ · · · ⊗ Lyn
zn )⊗ (L

w′
1

w1 ⊗ · · · ⊗ L
w′

k
wk)

is irreducible. This is because the two modules have the same q-character.
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Applying Theorem 3.18 to T ′
2, in view of our choice of the additional param-

eters w′
t, we get that T2 is irreducible if and only if

zl − ys /∈ ∆ys
zs ∩∆yl

zl
, wt − ys /∈ ∆ys

zs for 1 ≤ s, l ≤ n, 1 ≤ t ≤ k.

Note that the irreducibility of T is equivalent to the irreducibility of the module

T2 and the tensor product L((u− x1) · · · (u− xm))⊗T2. The latter is again in the

situation of Corollary 5.10. It is irreducible if and only if for 1 ≤ r ≤ m, 1 ≤ s ≤ n,

and 1 ≤ t ≤ k,

� A−1
xr

does not appear in χ̃q(L
ys
zs ), which means zs − xr /∈ ∆ys

zs ;

� A−1
xr

does not appear in χ̃q(L
−
wt
), which means wt − xr /∈ N.

Therefore, T is irreducible if and only if all the conditions from Definition 6.1 on

the xr, ys, zs, wt are satisfied, meaning that (F) is a standard factorization.

If k ≤ m in the standard factorization then the irreducibility of the tensor

product follows from [9, Thm. 7.7], by first identifying L+
xt

⊗ L−
wt

with Lxt
wt

for

1 ≤ t ≤ k (so that there is no negative prefundamental module), and then replacing

La
b and L+

b with the modules L(ab ) and L(b) respectively in [9, Thm. 7.7].

If e is a product of the u−a+1
u−a for a ∈ C, then a standard factorization is

equivalent to writing a finite set of complex numbers with multiplicities as a union

of pairwise non-interacting strings [13, Prop. 3.5].

Lemma 6.3. Let e ∈ R. Standard factorizations of e as in Definition 6.1 exist,

and they are unique in the sense that the two polynomials (u−x1) · · · (u−xm) and

(u− w1) · · · (u− wk), and the pairs (ys, zs) for 1 ≤ s ≤ n up to Sn-permutations

are completely determined by e.

Proof. We begin with some easy observations.

Observation 1. A standard factorization gives rise to the reduced form of the

rational function e: its numerator and denominator as monic polynomials are

(u−x1) · · · (u−xm)(u−y1) · · · (u−yn), (u−z1) · · · (u−zn)(u−w1) · · · (u−wn).

This is because the two polynomials are coprime by Definition 6.1.

Observation 2. If for all zero a and pole b of e we have b−a /∈ N, then the reduced

form of e is the unique standard factorization.

Observation 3. In Definition 6.1, deleting a factor of the form u − xr,
u−ys

u−zs
, or

1
u−wt

, one gets another standard factorization.

We prove the existence and uniqueness of standard factorization by induction

on the number, denoted by d(e), of zeros and poles of e counted with multiplicities.
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Namely, d(e) is the degree of the numerator plus that of the denominator. The

initial case d(e) = 0 is trivial since e = 1.

Suppose d(e) > 0. If e satisfies the hypothesis of Observation 2, then we

conclude. Assume that there exist a zero y0 and a pole z0 of e such that z0−y0 ∈ N.
Since there are finitely many such pairs, we assume further that

(H1) If y is a zero of e and z a pole, then z − y ∈ N implies z − y ≥ z0 − y0.

Set f := u−z0
u−y0

e. Since u−y0

u−z0
appears in the reduced form of e, it cancels with the

factor u−z0
u−y0

and we get d(f) = d(e)−2. By the induction hypothesis, the existence

and uniqueness of standard factorization hold for f . Fix such a factorization:

(F1) f =

m∏
r=1

(u− xr)×
n∏

s=1

u− ys
u− zs

×
k∏

t=1

1

u− wt
.

Step 1: Existence. We show that the following is a standard factorization:

(F2) e =

m∏
r=1

(u− xr)×
n∏

s=0

u− ys
u− zs

×
k∏

t=1

1

u− wt
.

In view of Definition 6.1, it suffices to show that none of the following complex

numbers belongs to ∆y0
z0 for 1 ≤ r ≤ m, 1 ≤ s ≤ n, and 1 ≤ t ≤ k:

z0 − xr, z0 − ys, zs − y0, wt − y0.

Let us prove it for the first number, the other three being parallel. Applying

Observation 1 to the standard factorization of e, and noting that d(e) = d(f) + 2,

we see that the above factorization of e is reduced. In particular, xr is a zero of e.

If z0 − xr ∈ ∆y0
z0 , then by definition of ∆y0

z0 ⊂ N we have z0 − xr < z0 − y0, in

contradiction with hypothesis (H1) which forces z0 − xr ≥ z0 − y0.

Step 2: Uniqueness. Let the following be a standard factorization:

(F3) e =

m′∏
r=1

(u− x′r)×
n′∏
s=0

u− y′s
u− z′s

×
k′∏
t=1

1

u− w′
t

.

We claim that (y0, z0) = (y′l, z
′
l) for certain 0 ≤ l ≤ n′. When this is the case, by

Observation 3 we have another standard factorization of f :

(F4) f =

m′∏
r=1

(u− x′r)×
∏

0≤s≤n′,s̸=l′

u− y′s
u− z′s

×
k′∏
t=1

1

u− w′
t

.

Applying the induction hypothesis to (F1) and (F4), we get

m′∏
r=1

(u− x′r) =

m∏
r=1

(u− xr),

k∏
t=1

(u− wt) =

k′∏
t=1

(u− w′
t),
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and the pairs (y′s, z
′
s) for 0 ≤ s ≤ n′, s ̸= l′ are in one-to-one correspondence with

the (ys, zs) for 1 ≤ s ≤ n. In other words, the standard factorizations (F2) and

(F3) are the same after permutation.

To prove the claim, notice by Observation 1 that

y0 ∈ {x′1, . . . , x′m′ , y′0, y
′
1, . . . , y

′
n′}, z0 ∈ {z′0, z′1, . . . , z′n′ , w′

1, . . . , w
′
k′}.

Applying (H1) to the zero y′s and pole z′s we get the following:

(H2) For 0 ≤ s ≤ n′ we have z0 − y0 ≤ z′s − y′s.

In the standard factorization (F3), we have w′
t − x′r /∈ N. So z0 − y0 ∈ N forces

(y0, z0) ̸= (x′r, w
′
t) for 1 ≤ r ≤ m′ and 1 ≤ t ≤ k′. There remain three cases.

Case 1. We have (y0, z0) = (x′r, z
′
s) for certain 1 ≤ r ≤ m′ and 0 ≤ s ≤ n′.

Again in the standard factorization (F3) we have z′s − x′r /∈ ∆
y′
s

z′
s
. Together with

the assumption z′s − x′r = z0 − y0 > 0 and the definition of ∆
y′
s

z′
s
we have z′s − x′r =

z0 − y0 ≥ z′s − y′s. In view of (H2), equality holds. Now z0 = z′s forces y0 = y′s.

Case 2. We have (y0, z0) = (y′s, w
′
t) for certain 0 ≤ s ≤ n′ and 1 ≤ t ≤ k′.

Similar arguments to Case 1 show (y0, z0) = (y′s, z
′
s).

Case 3. We have (y0, z0) = (y′s, z
′
l) for certain 0 ≤ s, l ≤ n′. From the condi-

tion z0−y0 = z′l−y′s /∈ ∆
y′
s

z′
s
∩∆

y′
l

z′
l
imposed by (F3) we get either z0−y0 ≥ z′s−y′s or

z0−y0 ≥ z′l−y′l. In both situations, equality holds by (H2). Applying y0 = y′s to the

first situation and z0 = z′l to the second situation, we get either (y0, z0) = (y′s, z
′
s)

or (y0, z0) = (y′l, z
′
l).

We point out that the existence arguments closely follow [55, Prop. 3.6]. It is

the uniqueness that is the key point of Lemma 6.3.

Proposition 6.2 together with Lemma 6.3 implies the following.

Theorem 6.4. Each simple module in category Osh factorizes uniquely as a ten-

sor product of prefundamental modules L±
a (a ∈ C) and of Kirillov–Reshetikhin

modules La
b (a, b ∈ C, 0 < a− b ∈ N).

Example 6.5. Let us revisit the example after Theorem 3.18,

L9
0 ⊗ L3

2
∼= L9

2 ⊗ L3
0
∼= L+

9 ⊗ L+
3 ⊗ L−

0 ⊗ L−
2 .

In the subcategoryO0 ofOsh, the irreducible module La
b for b−a /∈ N is prime in the

sense that if La
b
∼= V ⊗W in category O0 then either V orW is the one-dimensional

trivial module. The first isomorphism forms two non-equivalent factorizations into

primes of the same irreducible module. The issue of non-uniqueness is resolved in

category Osh by further factorizing La
b
∼= L+

a ⊗ L−
b .



50 D. Hernandez and H. Zhang

§7. Computation of diagonal entries

In this section we compute the diagonal entries introduced in Definition 5.4 for

the R-matrix ŘV,W (u), where V is a finite-dimensional irreducible module and W

is a negative module (Proposition 7.2 and Theorem 7.4). A technical point in the

proofs is a refined estimation of the coproduct that we establish in Lemma 7.1.

§7.1. Second coproduct estimation

As a preparatory step, we refine the coproduct estimation of Lemma 2.5 for the

Drinfeld–Cartan series ξi(u). In the ordinary Yangian Y (g) the following relations

hold:

[x+j (u), x
−
j,0] = [x+j,0, x

−
j (u)] = ⟨ξj(u)⟩+ = ξj(u)− 1,(7.1)

[ξi(u), x
−
j,0] = −2dijξi(u)x

−
j (u− dij) = −2dijx

−
j (u+ dij)ξi(u).(7.2)

The first relation follows from (2.1). The second is obtained by taking specializa-

tions v = u+ dij and v = u− dij of the relation [28, §2.4]

(u− v + dij)ξi(u)x
−
j (v)− (u− v − dij)x

−
j (v)ξi(u) = −[ξi(u), x

−
j,0].

Lemma 7.1. For all coweights µ and ν, the coproduct ∆µ,ν satisfies

∆µ,ν(ξi(u)) ≡ ξi(u)⊗ ξi(u)−
∑
j∈I

2dijx
−
j (u+ dij)ξi(u)⊗ ξi(u)x

+
j (u+ dij)

mod.
∑

h(β)≥2

Y −
µ (g)−β ⊗ Y +

ν (g)β .

Proof. One adapts the zigzag arguments of [20, Thm. 4.12] to reduce to the case

µ = ν = 0, as in the proof of Lemma 2.5. For α ∈ Q, let πα denote the projection

of Y (g) onto the weight space Y (g)α. It suffices to prove for i, j ∈ I,

(7.3) (π−αj
⊗ παj

) ◦∆(ξi(u)) = −2dijx
−
j (u+ dij)ξi(u)⊗ ξi(u)x

+
j (u+ dij).

The strategy is to produce a system of linear equations which will have a unique

solution, given by both sides of this equation. Let

A(u) :=
∑
p≥−1

Apu
−p−1

denote the power series on the left-hand side. We view the coefficients Ap as

elements in Y (g)−αj ⊗ Y (g)αj . From equation (2.15) we get A−1 = A0 = 0.

Next, applying ∆ to the second formula of [ξi(u), x
−
j,0] from equation (7.2),

taking into account ∆(x−j,0) = 1⊗ x−j,0 + x−j,0 ⊗ 1 and Lemma 2.5,

∆(x−j (u)) ≡ 1⊗ x−j (u) + x−j (u)⊗ ξj(u)mod.
∑

h(β)>0

Y (g)−β−αj ⊗ Y (g)β ,
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after projection onto the weight space of bi-weight (−αj , 0) we obtain

[ξi(u)⊗ ξi(u), x
−
j,0 ⊗ 1] + [A(u), 1⊗ x−j,0]

= −2dij(1⊗ x−j (u+ dij))A(u)− 2dijx
−
j (u+ dij)ξi(u)⊗ ξj(u+ dij)ξi(u).

Making use of equations (7.1)–(7.2) we simplify the equality as follows:

[A(u), 1⊗ x−j,0] + (2dij ⊗ x−j (u+ dij))A(u)

= −2dijx
−
j (u+ dij)ξi(u)⊗ ⟨ξj(u+ dij)⟩+ξi(u).(7.4)

Equation (7.4) forms a linear system whose unknown variables are the Ap for

p ≥ −1. It expresses [Ap, 1 ⊗ x−j,0] in terms of the Am for m < p. Therefore, the

system has a unique solution provided that the following linear map is injective:

Y (g)−αj
⊗ Y (g)αj

−→ Y (g)−αj
⊗ Y (g)0, a 7→ [a, 1⊗ x−j,0].

This map is the restriction of −Id ⊗ adx−
j,0
. It suffices to establish the injec-

tivity of adx−
j,0

restricted to Y (g)αj . Note that x−j,0,
1
dj
ξj,0,

1
dj
x+j,0 span a sub-

Lie algebra of Y (g) isomorphic to sl2. The adjoint action of sl2 on Y (g) is

integrable by the Serre relation (2.4). If w ∈ ker(adx−
j,0
) ∩ Y (g)αj is non-zero,

then w is a vector of lowest weight 1
dj
(αj , αj) = 2, contradicting the integrable

representation theory of sl2.

It remains to show that the right-hand side is a solution to equation (7.4).

This follows from equations (7.1)–(7.2) and commutativity of the ξi(u).

When g = sl2, Lemma 7.1 agrees with the term k = 1 of the coproduct formula

of ∆(h(u)) in [56, Def. 2.24] and [20, eq. (6.9)].

§7.2. Highest diagonal entry

Let V be an irreducible module in category Osh and W be a negative module as

in Definition 5.4. We identify the highest diagonal entry sV,W (u) with R-matrices

of Proposition 5.7. When V is finite-dimensional, this leads to a formula for the

polynomial λV,W (u) in terms of ℓ-weights of V and W .

Proposition 7.2. Let r = Ψi1,a1Ψi2,a2 · · ·ΨiN ,aN
∈ D and V be a highest ℓ-weight

irreducible module over Yν(g). Then the highest diagonal entry of ŘV,L(r−1)(u) is

sV,L(r−1)(u) = RV
i1(a1 − u)RV

i2(a2 − u) · · ·RV
iN (aN − u).

Proof. Write W = L(r−1) and ω = ωr−1 . Choose a highest ℓ-weight vector v0 of

V . Since both sides are linear maps from V to V ⊗ C[u], it suffices to prove the

equality specialized at an arbitrary complex number a ∈ C.
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Set v = v0 in equation (5.2). Since ŘV,W (a) sends v0 ⊗ ω to ω ⊗ v0, we get

sV,W (a)v0 = v0.

Next, for i ∈ I and v′ ∈ V , from equation (4.4) we obtain the following relation in

the module V (a)⊗W :

x−i (u)v
′ ⊗ ω = ⟨ri(u)x−i (u)⟩+(v

′ ⊗ ω).

Applying the module morphism ŘV,W (a) : V (a)⊗W →W ⊗ V (a) gives

ŘV,W (a)(x−i (u)v
′ ⊗ ω) = ⟨ri(u)x−i (u)⟩+ŘV,W (a)(v′ ⊗ ω).

We compute the components of ω⊗V (a) at both sides. By definition, the left-hand

side is ω⊗sV,W (a)x−i (u)v
′. On the right-hand side, ŘV,W (a)(v′⊗ω) is ω⊗sV,W (a)v′

plus a linear combination of vectors in Wγ ⊗ V (a), where γ ∈ wt(ω) + Q− and

γ ̸= wt(ω). By Lemma 2.5, the coproduct of x−i (u) is 1 ⊗ x−i (u) plus a linear

combination of tensor products of elements of shifted Yangians such that the weight

of each first tensor factor is in Q− \{0}. For weight reasons the desired component

is

ω ⊗ ⟨ri(u)x−i (u)⟩+sV,W (a)v′.

So we have the following equality in the module V (a):

sV,W (a)x−i (u)v
′ = ⟨ri(u)x−i (u)⟩+sV,W (a)v′.

In the module V the equality becomes

sV,W (a)x−i (u− a)v′ = ⟨ri(u)x−i (u− a)⟩+sV,W (a)v′.

Replacing u by u + a, we obtain the following commutation relation in the mod-

ule V :

sV,W (a)x−i (u) = ⟨ri(u+ a)x−i (u)⟩+sV,W (a) for i ∈ I.

Combining with sV,W (a)v0 = v0 we obtain all the defining properties of the

operator RV
τ−a(r)

in equation (5.4). Here we recall from Remark 3.1 the one-

parameter family of group automorphisms τb : L → L for b ∈ C. By uniqueness,

sV,W (a) = RV
τ−a(r)

and

sV,W (a) = RV
Ψi1,a1−aΨi2,a2−a···ΨiN ,aN−a

= RV
i1(a1 − a)RV

i2(a2 − a) · · ·RV
iN (aN − a).

This is exactly the equality of the proposition evaluated at u = a.

Proposition 7.2 implies that RV
i (−u) is the highest diagonal entry of

ŘV,L−
i,0
(u). This is dual to the Borel situation of Remark 5.9(ii).
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Theorem 7.3. Let s ∈ D and V be a finite-dimensional irreducible module in

category Osh. Write the ratio of the highest ℓ-weight to the lowest ℓ-weight of V as

a monomial of the Aj,b, and replace each Aj,b with the polynomial sj(u+ b). Then

we obtain λV,L(s−1)(u). In particular, the polynomial λV,L(s−1)(u) ∈ C[u] is monic.

Proof. Setting v in equation (5.2) to be a lowest ℓ-weight vector v− of V , and

w = ωs−1 in equation (5.3), we see that λV,L(s−1)(u) is also the eigenvalue of

the highest diagonal entry sV,L(s−1)(u) : V → V ⊗ C[u] associated to the lowest

ℓ-weight vector v− of V .

Let
∏

i∈I

∏hi

t=1Ai,ai,t
be the ratio of highest ℓ-weight to lowest ℓ-weight of

V . By Proposition 7.2, each factor u − b of the polynomial si(u) gives rise to a

factor RV
i (b− u) of sV,L(s−1)(u). The eigenvalue of RV

i (b− u) associated to v− is∏hi

t=1(ai,t− b+u) by Proposition 5.8(ii). Each component si(u) of s gives rise to a

factor
∏hi

t=1 si(u+ai,t) of the eigenvalue of sV,L(s−1)(u) . After taking the product

over all i ∈ I, we get

λV,L(s−1)(u) =
∏
i∈I

hi∏
t=1

si(u+ ai,t).

§7.3. Lowest diagonal entry

We express the lowest diagonal entry tV,W (u) from Definition 5.4 in terms of

one-dimensional R-matrices from Proposition 5.7, assuming that V is a finite-

dimensional irreducible module over the ordinary Yangian. The idea is to reduce

to the case of a fundamental module by a fusion construction of R-matrices, which

appeared for example in [37, Cor. 5.5].

Theorem 7.4. Let W be a negative module and V be a finite-dimensional irre-

ducible Y (g)-module whose lowest ℓ-weight is

Y −1
i1,a1+

1
2di1

Y −1
i2,a2+

1
2di2

· · ·Y −1
im,am+ 1

2dim
.

Then we have the following equality in Hom(W,W ⊗ C[u]):

(7.5) tV,W (u)

m∏
s=1

RW
is (u+ as) = λV,W (u)

m∏
s=1

RW
is (u+ as + dis).

Moreover, tV,W (u) is an End(W )-valued monic polynomial of degree deg λV,W (u).

Proof. Let ω denote a highest ℓ-weight vector of the moduleW defined over Yµ(g).

SinceW is an irreducible module in category Oµ, by Proposition 5.8(ii) there exists

a countable subset Γ ⊂ C such that the normalized q-character of W is a power



54 D. Hernandez and H. Zhang

series in the A−1
j,b with (j, b) ∈ I × Γ. Notably, a ∈ C \ Γ and f ∈ wtℓ(W ) imply

A−1
i,a f /∈ wtℓ(W ).

Restricted to each weight space Wβ of W , by Propositions 5.3 and 5.7,

RW
i (−u) is a monic polynomial of u and tV,W (u) is a polynomial. Equation (7.5)

implies that the degree of tV,W (u)|Wβ
is deg λV,W (u), which is independent of the

weight β. This proves the second part of the theorem assuming equation (7.5). By

polynomiality, it suffices to prove equation (7.5) evaluated at u = a for a ∈ C such

that a+ as /∈ Γ for all 1 ≤ s ≤ m.

Step 1: Reduction to the fundamental case. For 1 ≤ s ≤ m, let vs and vs−
denote a highest ℓ-weight vector and a lowest ℓ-weight vector of the fundamental

module Vis of equation (3.4). By Theorem 3.8(i), one may assume, after a per-

mutation of the pairs (is, as), that V is the irreducible submodule of the tensor

product

T := Vi1(a1)⊗ Vi2(a2)⊗ · · · ⊗ Vim(am)

generated by v0 := v1 ⊗ v2 ⊗ · · · ⊗ vm and v− := v1− ⊗ v2− ⊗ · · · ⊗ vm− . In particular,

v0 and v− are the highest ℓ-weight vector and lowest ℓ-weight vector of V .

From the fact that τb is a Hopf algebra automorphism of Y (g) and from the

equation τbτc = τb+c, for b, c ∈ C, we get an identification of modules

T (a) = Vi1(a1 + a)⊗ Vi2(a2 + a)⊗ · · · ⊗ Vim(am + a).

Consider the composite map

R(a) =

m∏
s=1

(1⊗s−1 ⊗ ŘVis ,W
(a+ as)⊗ 1⊗m−s) : T (a)⊗W −→W ⊗ T (a).

Since all modules are defined over antidominantly shifted Yangians, it follows from

the monoidality of category Osh
− in Remark 3.13 that R(a) is a module morphism

from T (a)⊗W to W ⊗T (a). It restricts to a module morphism from V (a)⊗W to

W ⊗V (a) because the former is generated by the highest ℓ-weight vector v0⊗ω by

Theorem 4.8(iii) and R(a) sends v0⊗ω to ω⊗v0 by definition of the ŘVis ,W
(a+as).

From uniqueness of the R-matrix in Theorem 5.2, we obtain

R(a)|V (a)⊗W = ŘV,W (a).

For w ∈W , by definition tV,W (a)w⊗v− is the projection toW⊗v1−⊗v2−⊗· · ·⊗vm−
of the vector R(a)(v1− ⊗ v2− ⊗ · · · ⊗ vm− ⊗w), which by the factorization of R(a) is

tVi1
,W (a+ a1)tVi2

,W (a+ a2) · · · tVim ,W (a+ am)w ⊗ v1− ⊗ v2− ⊗ · · · ⊗ vm− .

We obtain therefore a factorization

tV,W (a) = tVi1 ,W
(a+ a1)tVi2 ,W

(a+ a2) · · · tVim ,W (a+ am) ∈ End(W ).
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We are reduced to computing the lowest diagonal entry tVi,W (u) for a fixed i ∈ I.

Assume from now on that m = 1, (i1, a1) = (i, 0), and a ∈ C \ Γ.
By Lemma 3.9, the finite-dimensional Y (g)-module V contains a g-submodule

of lowest weight −ϖi and V−ϖi = Cv−. By Weyl group symmetry, v+ := x+i,0v−
spans the weight space Vαi−ϖi

. Complete v± to a weight basis BV of V . If v ∈
BV \ {v−, v+}, then 0 ̸= wt(v) − αi + ϖi ∈ Q+. Since V is defined over the

ordinary Yangian, by Remark 3.1 it has the same weight grading as V (a). We

have the following relations in the module V (a) similar to Example 3.7:

(7.6)

x+j (u)v− =
δij
u− a

v+, ξj(u)v+ =
u− a− diδij

u− a

u− a+ dij
u− a− dij

v+,

x−j (u)v+ =
diδij
u− a

v−, ξj(u)v− =
u− a− diδij

u− a
v−.

From the paragraph above Definition 5.4, we get a family of linear operators

fv(u) : W →W ⊗ C[u] for v ∈ BV such that for a ∈ C and w ∈W we have

ŘV,W (a)(v− ⊗ w) =
∑
v∈BV

fv(a)w ⊗ v.

In particular, fv−(u) = tV,W (u) by equation (5.2). To simplify notation, write

Ra := ŘV,W (a), λa := λV,W (a), Ca := fv+(a), Da := fv−(a),

C̃a := RW
Ψi,a

Ca, D̃a := RW
Ψi,a

Da, Ẽa := C̃a + x−i,0D̃a.

Our goal is to show that for a ∈ C\Γ we have D̃a = λaR
W
Ψi,a+di

as linear operators

on W . By polynomiality, this would imply that RW
i (u)tV,W (u) = λV,W (u)RW

i (u+

di). From Proposition 5.7 we get that the operators tV,W (u), RW
i (u) for i ∈ I

acting on W mutually commute, so that the order of the products in equation

(7.5) does not matter.

Step 2: Projection formulas. . The Y (g)-modules V and V (a) have the same

weight grading. With respect to the weight basis BV of V (a), let

ϕ : W ⊗ V (a) −→W and ψ : W ⊗ V (a) −→W

denote linear maps which send
∑

v∈BV
gv ⊗ v to gv− and to gv+ respectively. We

apply these maps to the following relations in W ⊗ V (a) for j ∈ I and w ∈W :

Rax
−
j (u)(v− ⊗ w) = x−j (u)Ra(v− ⊗ w), Raξj(u)(v− ⊗ w) = ξj(u)Ra(v− ⊗ w).

By Example 3.4, the left-hand sides of the above equations are Ra(v− ⊗ x−j (u)w)

and Ra(ξj(u)v− ⊗ ξj(u)w) respectively. Based on the coproduct estimations of
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∆µ,0(x
−
j (u)) from Lemma 2.5 and of ∆µ,0(ξj(u)) from Lemma 7.1, we have

ϕ(Rax
−
j (u)(v− ⊗ w)) = ϕ(Ra(v− ⊗ x−j (u)w)) = Dax

−
j (u)w,

ϕ(x−j (u)Ra(v− ⊗ w)) = ϕ

(
x−j (u)

( ∑
v∈BV

fv(a)w ⊗ v

))
= ϕ(x−j (u)Da(w)⊗ ξj(u)v−) + ϕ(Ca(w)⊗ x−j (u)v−)

=
u− a− diδij

u− a
x−j (u)Da(w) +

diδij
u− a

Ca(w),

ϕ(Raξj(u)(v− ⊗ w)) = ϕ
(
Ra(ξj(u)v− ⊗ ξj(u)w)

)
=
u− a− diδij

u− a
Daξj(u)w,

ϕ(ξj(u)Ra(v− ⊗ w)) = ϕ

(
ξj(u)

( ∑
v∈BV

fv(a)w ⊗ v

))
= ϕ(ξj(u)Da(w)⊗ ξj(u)v−) =

u− a− diδij
u− a

ξj(u)Da(w),

ψ(Raξj(u)(v− ⊗ w)) = ψ
(
Ra(ξj(u)v− ⊗ ξj(u)w)

)
=
u− a− diδij

u− a
Caξj(u)w,

ψ(ξj(u)Ra(v− ⊗ w)) = ψ

(
ξj(u)

( ∑
v∈BV

fv(a)w ⊗ v

))
= ψ(ξj(u)Ca(w)⊗ ξj(u)v+)

− 2dijψ(x
−
i (u+ dij)ξj(u)Da(w)⊗ ξj(u)x

+
i (u+ dij)v−)

=
u− a− diδij

u− a

u− a+ dij
u− a− dij

ξj(u)Ca(w)

− u− a− diδij
u− a

2dij
u− a− dij

x−i (u+ dij)ξj(u)Da(w).

Step 3: Commutation relations. It follows from the projection formulas that

Dax
−
j (u) =

u− a− diδij
u− a

x−j (u)Da +
diδij
u− a

Ca,(7.7)

Daξj(u) = ξj(u)Da,(7.8)

Caξj(u) =
u− a+ dij
u− a− dij

ξj(u)Ca −
2dij

u− a− dij
x−i (u+ dij)ξj(u)Da.(7.9)

Notice that x−i (u+ dij)ξj(u) = ξj(u)x
−
i (u− dij) as a rewriting of the second half

of equation (7.2). Left multiplying equation (7.9) by ξj(u)
−1, we obtain

ξj(u)
−1Caξj(u) =

u− a+ dij
u− a− dij

Ca −
2dij

u− a− dij
x−i (u− dij)Da.
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Left multiplying the above equation by RW
Ψi,a

, which commutes with ξj(u), we get

ξj(u)
−1C̃aξj(u) =

u− a+ dij
u− a− dij

C̃a −
2dij

u− a− dij
⟨(u− a− dij)x

−
i (u− dij)⟩+D̃a

=
u− a+ dij
u− a− dij

(C̃a + x−i,0D̃a)− 2dijx
−
i (u− dij)D̃a − x−i,0D̃a.

Combining with equation (7.8) and the relation ξj(u)
−1x−i,0ξj(u) = x−i,0 +

2dijx
−
i (u− dij), which rewrites the first half of equation (7.2), we obtain

(7.10) ξj(u)
−1Ẽaξj(u) =

u− a+ dij
u− a− dij

Ẽa.

Recall that a ∈ C\Γ. Let w ∈W be a vector of ℓ-weight f . If the vector Ẽa(w)

is non-zero, then it is of ℓ-weight A−1
i,a f by equations (7.10) and (3.3), contradicting

our choice of Γ. So Ẽa(w) = 0 for all ℓ-weight vectors w ∈W and Ẽa = 0.

Let us multiply equation (7.7) by RW
Ψi,a

. Making use of the defining properties

equation (5.4), we recover all the defining properties of λaR
W
Ψi,a+di

:

D̃a(ω) = λaω, D̃ax
−
j (u) = x−j (u)D̃a for j ̸= i,

D̃ax
−
i (u) = ⟨(u− a− di)x

−
i (u)⟩+D̃a +

di
u− a

Ẽa = ⟨(u− a− di)x
−
i (u)⟩+D̃a.

This proves the desired identity D̃a = λaR
W
Ψi,a+di

for a ∈ C \ Γ.

Example 7.5. Let g = sl2. Consider ŘV,W (a) with V = N0 and W = L−
0 . Exam-

ple 5.6 gives λV,W (u) = u. Furthermore, vi is an eigenvector of RW
1 (u) of eigenvalue

−u(−u−1)(−u−2) · · · (−u− i+1) by Proposition 5.8(ii) and Example 3.19. From

equation (7.5) and its proof we obtain that

Da(vi) = a
RW

1 (a+ 1)

RW
1 (a)

vi = a
(a+ 1)(a+ 2) · · · (a+ i)

a(a+ 1) · · · (a+ i− 1)
vi = (a+ i)vi,

Ca(vi) = −RW
1 (a)−1x−0 R

W
1 (a)tWe2,e2(a)vi = (i+ 1)vi+1.

This gives

ŘV,W (a)(e2 ⊗ vi) = (a+ i)vi ⊗ e2 + (i+ 1)vi+1 ⊗ e1.

Apply x+0 to the equality and notice that ∆0,−1(x
+
0 ) = x+0 ⊗ 1 + 1 ⊗ x+0 and

∆−1,0(x
+
0 ) = x+0 ⊗ 1:

x+0 (e2 ⊗ vi) = x+0 e2 ⊗ vi + e2 ⊗ x+0 vi = e1 ⊗ vi + e2 ⊗ vi−1,

x+0 (vi ⊗ e2) = x+0 vi ⊗ e2 = vi−1 ⊗ e2,

x+0 (vi+1 ⊗ e1) = x+0 vi+1 ⊗ e1 = vi ⊗ e1.
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We obtain from the commutativity of ŘV,W (a) with x+0 that

ŘV,W (a)(vi ⊗ e1 + e2 ⊗ vi−1) = (a+ i)vi−1 ⊗ e2 + (i+ 1)vi ⊗ e1,

ŘV,W (a)(vi ⊗ e1) = e1 ⊗ vi + e2 ⊗ vi−1.

With respect to the basis (e1, e2) of V we get

ŘV,W (u) =

(
1 a+

a− u+ a+a−

)
where

{
a+(vi) = (i+ 1)vi+1,

a−(vi) = vi−1.

This is a monodromy matrix of Baxter’s Q-operator for Y (gl2); see [4, eq. (3.38)].

The Yang–Baxter equation [4, eq. (3.1)] is a particular case of equation (5.1).

In Definition 5.4, we think of ŘV,W (u) as a monodromy matrix. Taking a

suitable trace over V gives a transfer matrix acting onW , and tV,W (u) is a leading

term of the transfer matrix. We expect equation (7.5) to be a leading term of

generalized Baxter relations for transfer matrices [24, Thm. 5.11].

§8. Truncations of standard modules

In this section, we prove that any standard module (and so any irreducible module)

in category Osh factorizes through a truncated shifted Yangian (Theorem 8.4). Our

proof is uniform for all finite types (see the introduction for a discussion of known

results).

From equation (3.4) and the paragraph above recall the involution i 7→ ı on I,

the rational number κ, and the fundamental module Vi. From Definition 5.4 and

Theorem 7.3 recall the monic polynomial λV,W (u).

Definition 8.1. Let r 7→ r̃ denote the group automorphism on R which sends

each generator Ψi,a to Ψı,a+κ. For s ∈ D, define the polynomial ℓ-weight (gsi (u))i∈I

∈ D and the rational ℓ-weight s̄ = (s̄i(u))i∈I ∈ R as follows:

gsi (u) := λVi,L(s−1)(u),

s̄i(u) :=
gsi (u)g

s
i (u− di)

si(u)

∏
j:cji<0

−cji∏
t=1

1

gsj(u− dij − tdj)
.

Example 8.2. We describe the map s 7→ s̄ of Definition 8.1 for g of type B2. Let

α1 be the long root and α2 the short root so that d1 = 2, d2 = 1, and d12 = −1.

The dual Coxeter number is 3 and so κ = 3. The Dynkin diagram automorphism

i 7→ ı is the identity. We have V1 = L(Y1,−2) and V2 = L(Y2,− 5
2
). The ratios of

highest to lowest ℓ-weights for V1 and V2 are given by

A1,0A1,−1A2,0A2,−1, A1,−1A2,0A2,−2.
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We obtain from Theorem 7.3 and Definition 8.1 that for s ∈ D,

gs1(u) = s1(u− 1)s1(u)s2(u− 1)s2(u), gs2(u) = s1(u− 1)s2(u− 2)s2(u),

s̄1(u) =
gs1(u)g

s
1(u− 2)

s1(u)gs2(u)g
s
2(u− 1)

= s1(u− 3), s̄2(u) =
gs2(u)g

s
2(u− 1)

s2(u)gs1(u− 1)
= s2(u− 3).

Therefore, in type B2 we have s̄ = s̃ ∈ D.

Example 8.3. Assume g is of type G2. Let α1 be the long root and α2 the short

root, so that d1 = 3, d2 = 1, and d12 = − 3
2 . The dual Coxeter number is 4 and so

κ = 6. The Dynkin diagram automorphism is the identity. We have V1 = L(Y1,− 9
2
)

and V2 = L(Y2,− 11
2
). The ratios of highest to lowest ℓ-weights for V1 and V2 are

given by

A1,0A1,−1A1,−2A1,−3A2, 12
A2,− 1

2
A2

2,− 3
2
A2,− 5

2
A2,− 7

2
,

A1,− 3
2
A1,− 7

2
A2,0A2,−2A2,−3A2,−5.

As in the previous example, we have for s ∈ D,

gs1(u) = s1(u)s1(u− 1)s1(u− 2)s1(u− 3)

× s2

(
u+

1

2

)
s2

(
u− 1

2

)
s2

(
u− 3

2

)2
s2

(
u− 5

2

)
s2

(
u− 7

2

)
,

gs2(u) = s1

(
u− 3

2

)
s1

(
u− 7

2

)
s2(u)s2(u− 2)s2(u− 3)s2(u− 5),

s̄1(u) =
gs1(u)g

s
1(u− 3)

s1(u)gs2(u+ 1
2 )g

s
2(u− 1

2 )g
s
2(u− 3

2 )
= s1(u− 6),

s̄2(u) =
gs2(u)g

s
2(u− 1)

s2(u)gs1(u− 3
2 )

= s2(u− 6).

Therefore, in type G2 we have s̄ = s̃ ∈ D.

Theorem 8.4. For r, s ∈ D, the standard module W(r, s) factorizes through the

truncated shifted Yangian Y rs̄
ϖ∨(s−1r)(g). In particular, any irreducible module in

category Osh factorizes through a truncated shifted Yangian.

Proof. We have W(r, s) = L(r)⊗L(s−1), with L(r) being one-dimensional. For an

irreducible module L(e) in category Osh, one can write e = n−1m with m,n ∈ D.

Then Theorem 4.8 shows that L(e) is a quotient of the standard module W(m,n).

By Remark 4.3, it suffices to show that L(s−1) factorizes through Y s̄
−ϖ∨(s)(g).

Note that (−ϖ∨(s), s̄) ∈ P∨ ×R is truncatable:

ϖ∨(s̄) +ϖ∨(s) =
∑
i∈I

deg(gsi (u))α
∨
i .
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In the situation of Proposition 5.8 with W = L(s−1), we have gi(u) = gsi (u) by

Definition 8.1. Take V = Vi in Theorem 7.4 and compare with equation (5.6). We

get the following equality of End(L(s−1))-valued Laurent series in u−1:

(8.1) Ai(u)|L(s−1) = tVi,L(s−1)(u) for i ∈ I.

The polynomiality of the lowest diagonal entries in Theorem 7.4 implies in the mod-

ule L(s−1) the defining relation ⟨Ai(u)⟩+ = 0 of the truncated shifted Yangian.

Remark 8.5. A similar identification of GKLO series with matrix entries as in

equation (8.1) was given in [48, Cor. 5.9]. As commented in [48, Rem. 5.10], these

should be specializations of RTT realizations of shifted Yangians [68]. Some partic-

ular cases of such a realization appeared in [8, 23]. Notice from equation (5.1) that

our R-matrix ŘV,W (u) satisfies an RTT relation when V is a finite-dimensional

irreducible module over the ordinary Yangian and W is a negative module.

Remark 8.6. There are other approaches to truncations of simple modules over

shifted Yangians and shifted quantum affine algebras:

(i) Fix r, s ∈ D and set µ and ν to be the coweights of s−1r and rs̃ respectively.

Recall from Remark 2.9 the quotient map Ỹ ν
µ (rs̃) → Y ν

µ (rs̃). If g is simply laced,

then there is a classification of irreducible highest ℓ-weight modules for the original

truncated shifted Yangian Y ν
µ (rs̃) in terms of monomial crystals [48, 49], which

translated into the language of q-characters by [60, Thm. 3.3] implies that the

Yµ(g)-module W(r, s) factorizes through

Yµ(g) −→ Y rs̃
µ (g) = Ỹ ν

µ (rs̃) −→ Y ν
µ (rs̃)

and is a module over Y rs̃
µ (g). Theorem 8.4 shows that W(r, s) is a module over

Y rs̄
µ (g). So we expect that s̃ = s̄ for g simply laced. By Examples 8.2–8.3, such

an equality seems to hold for g of arbitrary type. This would imply that s̄ ∈ D in

Definition 8.1.

(ii) For g of non-simply-laced types, the classification of irreducible highest

ℓ-weight modules over the original truncated shifted Yangians of Remark 2.9 can

be reduced to the known classification in simply laced types [48, 49] via geomet-

ric arguments [62, 61]. Theorem 8.4 in non-simply-laced types follows from this

analysis.

(iii) For shifted quantum affine algebras, the second part of Theorem 8.4

was known for finite-dimensional irreducible modules [40, Thm. 12.9] (see also

the discussion in [40, Introduction]). More generally, a conjectural description of

highest ℓ-weights of irreducible modules over truncated shifted quantum affine

algebras in terms of Langlands dual q-characters was formulated in [40, Conj. 12.3].
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§9. Jordan–Hölder property

In this section, as an application of our study of R-matrices in Sections 5–7, we

establish a property in category Osh: finite-length modules are stable under tensor

product (Theorem 9.5). This is referred to as the Jordan–Hölder property.

We also obtain a uniform proof of the following known result (see Remark

9.4): a truncated Yangian has only a finite number of irreducible representations

in the category Osh (Theorem 9.3).

The following result is well known in the non-shifted case. We omit its proof

as it is a direct consequence of the definition of shifted Yangians.

Lemma 9.1. Let µ =
∑

j∈I kjϖ
∨
j be a coweight of g. Then for i ∈ I there exists

a unique algebra homomorphism fµ,i : Yki(sl2) → Yµ(g) such that

x+(u) 7→ d−ki
i x+i (udi), x−(u) 7→ dix

−
i (udi), ξ(u) 7→ d−ki

i ξi(udi).

For f(u) ∈ C(u) a rational function, by the denominator of f(u) we mean

the monic polynomial q(u) of u of smallest degree such that q(u)f(u) ∈ C[u]. The
numerator of f(u) is the denominator of f(u)−1.

Lemma 9.2. Let e ∈ R and (i, a,m) ∈ I × C × Z>0. Then (u − a)m divides the

denominator of ei(u) if and only if A−m
i,a e is an ℓ-weight of L(e).

Proof. Write µ = ϖ∨(e) =
∑

j∈I kjϖ
∨
j . Set L := fµ,i(Yki

(sl2))ωe ⊂ L(e); it is a

Yki
(sl2)-module via the pullback by fµ,i. We claim that

(i) the Yki
(sl2)-module L is isomorphic to L(d−ki

i ei(udi));

(ii) as subspaces of L(e), the ℓ-weight space of the Yki
(sl2)-module L of ℓ-weight

d−ki
i ei(udi)A

−1
a1
A−1

a2
· · ·A−1

aN
is equal to the ℓ-weight space of the Yµ(g)-

module L(e) of ℓ-weight eA−1
i,a1di

A−1
i,a2di

· · ·A−1
i,aNdi

.

Part (i) can be proved as in [14, Lem. 4.3] by restriction to diagram subalge-

bras.

For (ii), write ϖ(e) =
∑

j∈I mjϖj . Then ωe is of weight mi in the Yki
(sl2)-

module L. From L(e) = Y <
µ (g)ωe and the Q−-grading on Y <

µ (g) we get an

identification of weight spaces for N ∈ N:

Lmi−2N = L(e)ϖ(e)−Nαi

= Vect(x−i,m1
x−i,m2

· · ·x−i,mN
ωe | m1,m2, . . . ,mN ∈ N).

Since a weight space is a direct sum of ℓ-weight spaces, it suffices to prove that

the right-hand side of the equality of (ii) is contained in the left-hand side. This

is obvious from fµ,i(ξ(u)) = d−ki
i ξi(udi).
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It follows that A−m
i,a e is an ℓ-weight of L(e) if and only if d−ki

i ei(udi)A
−1

ad−1
i

is an ℓ-weight of the Yki
(sl2)-module L(d−ki

i ei(udi)). We are reduced to the case

g = sl2. Then this follows from the tensor product factorization of Proposition 6.2

because, by Definition 6.1, the standard factorization of a rational function fixes

its denominator and each factor u− a in the denominator contributes to a factor

A−1
a of an ℓ-weight.

For (µ, r) ∈ P∨ × R a truncatable pair, define Rr
µ to be the set of e ∈ Rµ

such that the Yµ(g)-module L(e) factorizes through the truncated shifted Yangian

Y r
µ (g).

Theorem 9.3. The set Rr
µ is finite for any truncatable pair (µ, r) ∈ P∨ ×R.

Remark 9.4. When r ∈ D, there is a geometric proof of the finiteness, as ex-

plained in [48, Cor. 3.13], by viewing the truncated shifted Yangian Y r
µ (g) as a

quantization of a scheme supported on a generalized affine Grassmannian slice

Wλ
µ with λ := ϖ∨(r) (see [47, Prop. 4.10]), and then applying the general result

[6, Prop. 5.1]. If r /∈ D, choose s ∈ D such that rs ∈ D. Remark 4.3 shows that

Rr
µ ⊂ s−1Rrs

µ+ϖ∨(s). The finiteness of Rr
µ follows from the known case. Our proof

is algebraic and close to the situation of truncated shifted quantum affine algebras

[40, Thm. 11.15].

Proof of Theorem 9.3. For e ∈ R and i ∈ I, let pei (u) and q
e
i (u) denote respectively

the numerator and denominator of ei(u). Recall from equation (2.19) the coefficient

mi ∈ N of α∨
i in ϖ∨(r)− µ.

Step 1. We shall give a necessary condition for e ∈ Rr
µ. As in Proposition

5.8, let gi(u) ∈ C[u] be the eigenvalue of Ai(u) ∈ Y r
µ (g)[u] associated to the eigen-

vector ωe of L(e). Then gi(u) is a monic polynomial of degree mi. We claim that

gi(u)ei(u) is a polynomial, which by equation (2.20) is equivalent to divisibility of

polynomials:

(9.1) gi(u)q
r
i (u+ di) | pri (u+ di)×

∏
j:cji<0

−cji∏
t=1

gj(u+ di − dij − tdj).

We need to prove qei (u) | gi(u). Namely, for any (a,m) ∈ C × Z>0 such that

(u − a)m | qei (u), we must have (u − a)m | gi(u). By Lemma 9.2, eA−m
i,a is an

ℓ-weight of L(e). From Proposition 5.8(ii) we see that the eigenvalue of Ai(u) on

L(e)eA−m
i,a

is gi(u)(
u−a+di

u−a )m, which must be a polynomial. Since (u−a+di)m and

(u− a)m are coprime, we have (u− a)m | gi(u), as desired.
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Step 2. Introduce the following finite subsets of C for s ∈ Z>0:

Dg :=
{
di − dij − tdj | i, j ∈ I, t ∈ Z, cji < 0, 1 ≤ t ≤ −cji

}
,

X0
r :=

{
a ∈ C | pri (a+ di) = 0 for certain i ∈ I

}
,

Xs
r :=

{
a− c1 − c2 − · · · − cs ∈ C | a ∈ X0

r , ck ∈ Dg for 1 ≤ k ≤ s
}
.

Clearly, Dg depends on g, and Xs
r on the triple (r, s, g). Set m :=

∑
i∈I mi and

X :=
⋃m−1

s=0 Xs
r . Then X is a finite set depending on the triple (r, µ, g).

Each e ∈ Rr
µ is uniquely determined by the monic polynomials gi(u) for i ∈ I

from Step 1. Let us attach a quiver Γe to e as follows:

� The set of vertices is Ve := {(i, a) ∈ I × C | gi(a) = 0}.
� Draw an arrow (i, a) → (j, b) if cji < 0 and there exists 1 ≤ t ≤ −cji such that

b = a+ di − dij − tdj and pri (a+ di) ̸= 0. In particular, b− a ∈ Dg.

We prove that Ve ⊂ I ×X. Since gi(u) is of fixed degree mi, this will imply that

there are finitely many choices of gi(u), from which comes the finiteness of Rr
µ.

Let V 0
e be the set of sink vertices (namely, vertices with no outgoing arrows)

of Γe. If (i, a) is sink, by relation (9.1) we must have pri (a + di) = 0, since the

product
∏

j is non-zero. This means V 0
e ⊂ I ×X0

r .

For s ∈ Z>0, define V
s
e to be the set of vertices (i, a) of Γe which can be joint

to a sink vertex with s arrows. Namely, (i, a) ∈ V s
e if there exist s vertices

(i1, a1), (i2, a2), . . . , (is, as)

such that (is, as) is sink and there are arrows

(i, a) −→ (i1, a1) −→ (i2, a2) −→ · · · −→ (is−1, as−1) −→ (is, as).

From our definition of arrows it follows that ak+1 − ak ∈ Dg, as ∈ X0
r , and

a = as − (as − as−1)− · · · − (a2 − a1)− (a1 − a0) ∈ Xs
r .

This gives V s
e ⊂ I ×Xs

r .

By Claim 1 below, the quiver Γe is acyclic and every vertex is connected to a

sink vertex by at most m− 1 arrows. We obtain the desired relation

Ve =

m−1⋃
s=0

V s
e ⊂

m−1⋃
s=0

(I ×Xs
r ) = I ×X.

Claim 1. In the quiver Γe there does not exist any sequence of vertices (ik, ak)

for 0 ≤ k ≤ m with arrows (il, al) → (il+1, al+1) for 0 ≤ l < m.

Assume the contrary and fix such a sequence

S : (i0, a0) −→ (i1, a1) −→ (i2, a2) −→ · · · −→ (im, am).
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Since m + 1 >
∑

j∈I mj , there must exist j ∈ I which appears in the sequence

i0i1i2 · · · im at least mj + 1 times. Each appearance of j, say ik = j, gives a root

ak of gj(u). If ik = il and k < l then necessarily l− k > 1 and from Claim 2 below

we get ak ̸= al. So the polynomial
∏

0≤k≤m,ik=j(u− ak) divides gj(u); the former

is of degree at least mj + 1, while the latter of degree mj , contradiction.

Claim 2. In the sequence S, if 0 ≤ k < k + 1 < l ≤ m then al − ak ∈ 1
2Z>0.

If g is not of type G2, then cji ≥ −2 for all i, j ∈ I. By equation (2.20), we

have Dg ⊂ 1
2N; moreover, if 0 ∈ Dg, then it must arise from 0 = di − 1

2dj so that

di = 1 and dj = 2. This means that for an arrow (i, a) → (j, b) of the quiver Γe,

either b− a ∈ 1
2Z>0, or b = a and (di, dj) = (1, 2). Apply this to the sequence S:

a1 − a0, a2 − a1, . . . , am − am−1 ∈ 1

2
N.

So al − ak ∈ 1
2N. If al = ak, then ak = ak+1 = ak+2. From ak = ak+1 we obtain

dik+1
= 2, while from ak+1 = ak+2 we obtain dik+1

= 1, contradiction.

If g is of type G2 with d1 = 3 and d2 = 1, we check Claim 2 directly. By

equation (2.20), the arrows in the quiver Γe are of the form

(1, a) −→
(
2, a+

3

2

)
, (1, a) −→

(
2, a+

5

2

)
,

(1, a) −→
(
2, a+

7

2

)
, (2, a) −→

(
1, a− 1

2

)
.

The sequence i0i1 · · · im−1im is alternating of the form 1212 · · · or 2121 · · · . For
an arrow (1, a) → (2, b), we have b − a ≥ 3

2 , while for an arrow (2, a) → (1, b) we

have b− a = − 1
2 . It follows that al − ak =

∑l−1
t=k(at+1 − at) as a half integer is at

least S, where S is an alternating sum of l − k > 1 terms of the following form:

3

2
− 1

2
+

3

2
− 1

2
+ · · · , −1

2
+

3

2
− 1

2
+

3

2
− · · · .

Clearly al − ak ≥ S > 0.

Define Ofin
µ to be the full subcategory of Oµ consisting of modules with a finite

Jordan–Hölder filtration. In other words, a module V in category Oµ is in Ofin
µ if

and only if V admits a finite number of irreducible subquotients, if and only if [V ]

is a finite sum of irreducible isomorphism classes [L(e)] for e ∈ Rµ. Let Osh
fin be

the direct sum of the categories Ofin
µ over all coweights µ.

Theorem 9.5. The category Osh
fin is closed under tensor product.

Proof. We need to show that the tensor product T of two arbitrary irreducible

modules belongs to category Osh
fin, namely, T admits a finite number of irreducible
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subquotients. From Theorem 4.8 we see that T can be realized as a quotient of a

tensor product T ′ of two standard modules. By equation (4.5) the module T ′ has

the same isomorphism class as a third standard module W. By Theorem 8.4, the

standard module W factorizes through a truncated shifted Yangian Y s
ν (g). Since

Rs
ν is finite, W admits a finite number of irreducible subquotients, so do the tensor

products T ′ and T .

The Grothendieck group of category K0(Osh
fin), which is the abelian subgroup

of K0(Osh) freely generated by the [L(e)] for e ∈ R, is a therefore a subring.

Remark 9.6. Let us make further comments on the Jordan–Hölder property:

(i) Assume g is not of type E8. Combining Proposition 4.12(iii) and Theorems

4.15 and 8.4, we obtain that any highest ℓ-weight module in category Osh factorizes

through a truncated shifted Yangian and belongs to category Osh
fin.

(ii) The Jordan–Hölder property is known to be true [36, Thm. 5.27] for

a certain category of integrable modules over a quantum affinization. It fails in

the original category O of g-modules (counterexample: the tensor product of two

irreducible Verma modules over sl2 has infinitely many irreducible subquotients)

and in the category O of modules over the Borel algebra [41] as observed in [43,

Rem. 5.12].

(iii) For g = slr+1 there is another proof of Theorem 9.5 by extending Y (slr+1)

to the Yangian Y (glr+1) and using the big center of Y (glr+1); see [9, Lems. 6.13,

7.16]. This is close to the proof of classical fact in the original category O of

g-modules that each Verma module admits a finite Jordan–Hölder filtration.
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