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Description of Generalized Isomonodromic
Deformations of Rank-Two Linear Differential
Equations Using Apparent Singularities

by

Arata KoMyo

Abstract

In this paper, we consider the generalized isomonodromic deformations of rank-two irreg-
ular connections on the Riemann sphere. We introduce Darboux coordinates on the
parameter space of a family of rank-two irregular connections by apparent singularities.
Using the Darboux coordinates, we describe the generalized isomonodromic deformations
as Hamiltonian systems.
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§1. Introduction

For connections on the trivial bundle on P!, the regular singular isomonodromic
deformation is the Schlesinger equation, and the unramified irregular singular gen-
eralized isomonodromic deformation is the Jimbo-Miwa—Ueno equation which is
completely given in [14, 12, 13]. Bertola-Mo and Bremer—Sage have generalized the
Jimbo-Miwa—Ueno equation (see [1, 3, 4]) and Boalch [2] has given the symplec-
tic geometry of the Jimbo-Miwa—Ueno equation. That is, the Jimbo-Miwa—Ueno
equations are equivalent to a flat symplectic Ehresmann connection on a certain
symplectic fiber bundle. The fibers of the symplectic fiber bundle are certain mod-
uli spaces of meromorphic connections over P'. In this paper, we consider the
generalized isomonodromic deformation from this point of view.
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As in [14] the monodromy data for certain families of irregular singular differ-
ential equations involve the asymptotic behavior of solutions along Stokes sectors
at each singular point. Here we impose that the singularities of irregular singular
differential equations satisfy some generic condition. More precisely, these sin-
gularities are regular or unramified irregular. If we have such a generic family of
irregular singular differential equations, then we can locally define the monodromy
map (in other words, Riemann—Hilbert map) from the space of parameters of this
family to the moduli space of irregular monodromy representations (for details, for
example, see [2, 11]). The fibers of the monodromy map are a foliation of the space
of parameters of the family (see [2, 11, 17]). The foliation is called the (generalized)
isomonodromic foliation. (The corresponding vector field is called the (generalized)
isomonodromic deformations). On the other hand, there exists another approach
to generalized isomonodromic deformations. As in [2, Appx.], a submanifold £ in
the space of parameters of the family is contained in a leaf of this foliation if and
only if the family of connections corresponding to £ is integrable.

When irregular singular differential equations have special singularities (so-
called (generic) ramified irregular singularities), the formulation of the Riemann—
Hilbert map is still not clear. But by using the integrable condition (which is the
second point of view), we can define the generalized isomonodromic deformation
for such a special family of irregular singular differential equations. Moreover, this
generalized isomonodromic deformation is integrable. So we have the generalized
isomonodromic foliation (see [1, 4, 10]).

In this paper, we consider generalized isomonodromic deformations only from
the viewpoint of the integrability condition. More specifically, we construct a hor-
izontal lift of the family of connections as in [11, Thm. 6.2] and [10, Sect. 9]. Here,
the horizontal lift is a first-order infinitesimal extension of the relative connection
with an integrability condition.

Let D be the effective divisor on P! defined as

v v
D= an “ti+Nne 00 and n:=deg(D) = ZniJrnoo.
i=1 i=1

Let E be a rank-two vector bundle on P!. Let V: E — E ® Qp,(D) be a con-
nection on E with the polar divisor D. We call such pairs (E,V) connections.
Remark that we can shift the degree of the vector bundle E by arbitrary integers
by applying some natural operations (twisting by rank-one meromorphic con-
nections and birational bundle modifications, called canonical transformations,
elementary transformations, or Hecke modifications). In this paper, we assume
that the degree of the vector bundle is 1. If H*(P!, EV) = 0, then we have E =
Op: ®Op:1(1). Here, EY is the dual of the vector bundle E. If there exists a family of
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connections of degree 1, then there exists a Zariski open subset of the parameter
space such that this open subset parametrizes connections with the bundle type
Op: @ Op1(1). For connections with the bundle type Op1 & Op1(1), we can define
apparent singularities of the connections and also we can define dual parameters
for the apparent singularities. By the apparent singularities and dual parameters,
we may give a map from a moduli space of connections with the bundle type
Op1 ® Op1 (1) to Sym™ 3 (C2). On the other hand, Diarra-Loray [5, Sect. 6] gave
global normal forms of the connections with the bundle type Op1 & Opi(n — 2),
whose connection matrices are companion matrices. By this normal form, we may
construct a family of connections with bundle type Op: @ Op:1 (1) parametrized by
a Zariski open subset of Sym (C?). By this family, we have a map from the
Zariski open subset of Sym(™~3)(C?) to the moduli space of connections. Finally,
we have a birational correspondence between the moduli space of connections and
Sym("_3)(C2). Our point of view is that this birational correspondence gives coor-
dinates on (a Zariski open set of ) the moduli space of connections. In this paper, we
consider the generalized isomonodromic deformations (integrable deformations) of
connections. We may regard the generalized isomonodromic deformations as vec-
tor fields on the moduli space of connections. The main purpose of this paper is to
give an explicit description of generalized isomonodromic deformations by using
these coordinates. Here, the eigenvalues of the leading coefficients of the Laurent
expansions of the connections at each irregular singular point are not necessarily
distinct. (If any leading coefficients have distinct eigenvalues respectively, then the
generalized isomonodromic deformations of this family of connections corresponds
to the Jimbo-Miwa—Ueno equations). That is, we will consider not only unramified
irregular singular points (Definition 2.5 below) but also ramified irregqular singular
points (Definition 2.6 below).

There exist many studies on Hamiltonians of the Jimbo-Miwa-Ueno equation
([7, 8, 20, 21, 19, 22]). The main subject of this paper is to give explicit descriptions
of the symplectic structure and the Hamiltonians of the generalized isomonodromic
deformations by using apparent singularities. For the regular singular isomon-
odromic deformations, Dubrovin-Mazzocco [6] have introduced isomonodromic
Darboux coordinates on the moduli space of Fuchsian systems, which are con-
nections on the trivial bundle over P*. They have described the isomonodromic
deformations of Fuchsian systems as Hamiltonian systems by using the isomon-
odromic Darboux coordinates. Roughly speaking, we extend their argument for
the regular singular case to the irregular singular (rank-two) case. In our cal-
culation, Krichever’s formula of the symplectic form [16, Sect. 5] is used as in
[6]. On the other hand, Kimura [15] has studied the degeneration of the two-
dimensional Garnier systems. By the confluence procedure, Hamiltonian systems of
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(generalized) isomonodromic deformations of certain rank-two linear differential
equations are described explicitly. We try to compare our Hamiltonian systems
and Kimura’s Hamiltonian systems by an example. Our Hamiltonian systems are
not necessarily commuting Hamiltonian systems in [6, Def. 3.5].

§1.1. Space of deformation parameters

Now we describe the space of deformation parameters for our generalized isomon-

odromic deformations. Put I := {1,2,...,v,00}, t; =0, t3 := 1, and to, == 00 €
P'. We take a decomposition I = Tieg U Iuy U Iy such that Ieg, Iun, and I, are
disjoint from each other. We assume that n; = 1 for ¢ € I and n; > 1 for

i € Iyn U In. We set

y o |t (i# ) and }

Tt;:{(tg,...,ty)e(c t; ¢ {0,1} (i=3,...,v)

Moreover, put

Zielregwun(ajﬂ_l,ti + 0, 14,)
Tp® =<6y € C2(+1) + Zielra(92nif2,ti — %) =-1,,
G(T,ti — 0, § Zfor i € Lieg
06, — 054, # 0 forie Ium}

Tg :
917ti 75 0 fori e I,

{0 € [Lier,, © 7 x [Ty, C™ 2

Here we set

00 = (0, 14,0 1.4,)i€lregUlun> (O2n; 2.1, )icl,,)
and we denote by 8 = (0., 0,,) an element of Ty where
Oun = ((Q(J)ttia (;,ti)7 AR (9:;-—271&1-7Q;i—Q,t,i))iEIun’
era - (00,15717 .. 7027L7‘,—3,t71)i€]ra-

The relation in the definition of T is called the Fuchs relation. Fix a tuple of
complex numbers .o = (ti)ic(s,4,.. b1, Where t; # t; (i # j) and t; ¢ {0,1}.
We denote the fiber of t., under the projection

T, — H C.

i€{3,4,...,v}"Ira
by (Tt)t,,-

Definition 1.1. We define the space of deformation parameters as (T¢)s,, X To.
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Hence we consider the positions of the points t; for ¢ € I g Ulun as deformation
parameters. On the other hand, we do not consider the positions of the points ¢;
for ¢ € I, as deformation parameters, since the integrable deformations whose
deformation parameters are the positions of the ramified irregular points are more
complicated.

§1.2. Symplectic fiber bundle

Next we define an algebraic variety over the space of deformation parameters
(T¢)t,, x To such that this algebraic variety parametrizes connections and there
exists a symplectic form on each fiber. This algebraic variety is considered as the
phase space of our generalized isomonodromic deformations. We set

g #q; (i#j) and
— ({(Q17p1)7"'a(qn737pn73)}7<t37~">tl/)> !
./’Vlt”l = (n—3) (2 q; ¢ {0,1,t3,...,t,,,00}
€ Sym™ ™ (C%) x (1)t .
(j=1,...,n—=3)

If we take a point tg = (t3,...,t,) of (T¢)s,,, we put

ra )

M _ f{lar,p1), - (-3, Pn-3)} | @i # 45 (i#5) and g; ¢ {0,1,00} Ut
to,tra - . .
€ Sym™ =3 (C?) (j=1,...,n—=23)

Definition 1.2. We define a symplectic fiber bundle 7 g, as the natural pro-
jection

(].1) Ttra,00 - /\//Ttm X Tg — (Tt)tm X To.

Here, the symplectic structure on the fiber My, ¢, x {0} of (t0,0) € (T%)t,, X To
is defined by

n—3 )
(1.2) ;d(l_l_l(q}jj_t)n) A dg;.

Set D(tg) ==ng-04+mn1 -1+ > sn;-t; + ne - 00 for tg = (t3,...,t,) €
(T¢)t,.. We may check that the fiber My, ¢, x {0} is isomorphic to the moduli
space Conn, g.0,)- Here, Conny, g g, is the moduli space of (8, 6)-connections on
Op1 @ Op1 (1) such that the polar divisors of connections are D(tg) and connections
satisfy some generic conditions (see (2.12) below). The correspondence between
My 4. x {0} and Conng, g.9,) is given by the theory of apparent singularities
(Section 2.1 below) and construction of a family of connections parametrized by
M, .. % {0} (Section 2.2 below). For the construction of a family, we will use
Diarra-Loray’s global normal form. We will call M\tra x Ty an extended moduli
space of connections.
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§1.3. Main results

For the vector fields 8/5‘0ﬁi (t € Iyn, 1 = 0,1,...,m; —2), 8/00y +, (i € La,
I'=0,1,...,2n; — 3), and 9/0t; (1 € {3,4...,v} N (Lreg U Iun)), we define the
vector fields 5;1\1/“3, 53;{[?, and 5,2\/“3 on M, x Ty by the integrable deformations

Lt

of the family of connections parametrized by /T/l\tm x Tg (in Sections 3.3, 4.2, and
3.4). We define a 2-form & on /T/l\tm x Tg such that the restriction of @ to each
fiber of m¢,, g, coincides with the symplectic form (1.2) and the interior products
with the vector fields determined by the integrable deformations vanish:

We call the 2-form @ the isomonodromy 2-form as in [22]. The main result of
this paper is an explicit description of the isomonodromy 2-form using apparent
singularities. Our description of & is

n—3 y
® Pj D;(qg;;t,0) )
w = d = . . %—D (q,;t70) /\dq4

j=1
n;—2
+ D0 D (dHgy AdOf, +dHy Adb)
i€lun =0
2n;—3
+ Y Y dHg,, AdOpy 4+ Y dHy, Adt
i€l, 1'=0 i€{3,4,...,v}

N(TregULun)
+ [a section of .. 00 (Q%Tt)tra ng) ]

(Theorems 3.14 and 4.10). Here, D;(g;;t,0) where ¢ € I are defined in Lemma
2.9 as D;. The Hamiltonians H,+ , Hy, and Hy, are defined in Definitions
L,t;

3.11, 4.9, and 3.12, respectively. R(Sughly speaking, the Hamiltonians H,+ and

el
t

1,t;
Hy, , appear in the holomorphic parts of the diagonalizations of connections at
each singular point ¢;. By this description of the isomonodromy 2-form, we obtain
Hamiltonian descriptions of the vector fields determined by the integrable defor-
mations:

§IMD _ 0 _n_3<8H91i,tia_aHefn 8)
el:%ti 86;‘;1 7 877j 8(]]' 8qj 877j ’

n—3
6{19MD _ 9 _Z(%a_akh)“v‘ia),
Vit 00y 4, j=1 3nj aqi 8% 877j

oo _ 9 _ Z(aH 2o, D)
& ot; dn; dq;  Og; On;

-
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(Corollaries 3.15 and 4.11). Here we put

v

pj Di(gj;t,0)
nj=mr—— — Y = — Du(q;;t,0).
T T (g — )™ ; (qj —ts)™ 51t,6)

The organization of this paper is as follows. In Section 2 we recall the definition
of the apparent singularities and Diarra—Loray’s global normal form. In Section 3
we consider the integrable deformations of connections which have only regular
singularities and unramified irregular singularities. We define a 2-form on the fiber
My, t.. by Krichever’s formula [16, Sect. 5]. We show that this 2-form coincides
vzi\th the symplectic form (1.2). Also by Krichever’s formula, we define a 2-form on
Mz,

of this 2-form on M\tm x T by using Diarra-Loray’s global normal form, we

X Tg. We show that this 2-form is the isomonodromy 2-form. By calculation

have an explicit formula of this 2-form. In Section 4 we extend the argument
of Section 3 to the integrable deformations of connections which have ramified
irregular singularities. In Section 5 we consider two examples. The first example
is the case where D = 2-0+2-14 2 - co. We assume that 0,1,00 € P! are
unramified irregular singular points. The dimension of the space of deformation
parameters is 6 and the dimension of the fiber M\to,tm is 6. The second example is
the case where D = 5-0o. We assume that co € P! is a ramified irregular singular
point. This example corresponds to Kimura’s H(9/2) in [15]. We consider the
family of connections corresponding to Kimura’s family L(9/2;2). We reproduce
the Hamiltonian system H(9/2).

§2. Normal forms for rank-two linear irregular differential equations

In the first part of this section, we will give a correspondence between the moduli
space of connections and My, 5. C Sym™ % (C2). First, we recall the theory of
apparent singularities in Section 2.1. This theory gives a map from the moduli
space of connections to My, ¢ . Second, we recall Diarra-Loray’s global normal
form in Section 2.2. This normal form gives a map from My, to the moduli
space of connections. In the second part of this section (Sections 2.5 and 2.6),
we will consider infinitesimal deformations of connections and define horizontal
lifts of connections. If we construct a horizontal lift of a connection, then we
have an integrable deformation of a connection. After Section 2, we will discuss
construction of horizontal lifts. In the third part of this section (Section 2.7), we will
discuss local solutions of the differential equations with respect to the connections
at the apparent singularities. We will use these solutions for the definition of the
2-form w on My, ¢, (in Section 3.1 below).
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We take a natural affine open covering {Up, Uy, } of PL. Denote by z a coordi-
nate on Uy and by w a coordinate on U,,. That is, w = 27! on UyNU. Let 0o be
the point w = 0 on Uy,. Set Ey :== Op1 @ Op1 (k). Here we define the vector bundle
Ej. by two trivializations {gpgjko): Eirlu, = (’)802, @82 Byl = Ogi} such that

(k)
Pu
Exlvonve — O,

(2.1) J_ N lck

Uo ®2
Erlvonve. — Opgnu.. -

where G, = ((1) xok ) Fix a tuple of complex numbers t,, = (t;)ic(3,4,....1}n1,., Where

t; 75 tj (7, 75]) and t; ¢ {071}.
§2.1. Apparent singularities

Take to = (ti)ie(3,4,...0} € (Tt)t,, andset D =ng-0+np-14+n3-t3+---+mn, -
ty + Moo - 00. For a connection (E1,V: Fy — Fy ®QD1)1 (D)), we define the apparent
singularities of (E1, V) as follows. Consider the sequence of maps

quotient

O (1) = By 5 By @ QL(D) (E1/Op1(1)) ® QL (D) = Opi (n — 2).

This composition is an Op:-morphism, and we denote it by ¢y : Op1(1) = Op1 (n—
2). We assume that the subbundle Opi(1) C Fj is not V-invariant. Then ¢y is
not the zero morphism. The Opi-morphism ¢y has n — 3 zeros counted with
multiplicity.

Definition 2.1. We define apparent singularities of (E1,V) as
div(py) € |Op (n — 3)] = Sym™ =2 (P?).

By the trivialization @8) : Filu, = (’)3}2, we have the description

B A(z) B(x)\ dx
Vieo =d+ <0<x> D<x>> Pa)

where P(z) = [[;_,(x—t;)" and A, B, C, D are polynomials such that deg(A) <
n — 2, deg(B) < n —3, deg(C) < n —1, deg(D) < n — 2. Then the apparent
singularities of (Ey, V) are zeros of the polynomial B(x).

Assume that the apparent singularities of (Eq,V) consist of distinct points
and all of them are distinct from the poles tq,...,t,, o0 of the connection V. We
can define a birational bundle transformation

(bv = ld@(pv Oﬂ:al @ O]pl(l) -——> O]}»l EBOHM (n - 2)
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and consider the pushed-forward connection (¢v).V on Opr @ Op:(n — 2). Then
we have a transformation of a connection with bundle type Op1 & Op1 (1):

(2.2) (B1,V) — (En—2, (¢v)«V).

The connection (¢v)«V has simple poles ¢1, ..., ¢,—3 with residual eigenvalues 0
and —1 at each pole. Let Dayp, be the effective divisor ¢; + -+ - + gp—3. We may
decompose (¢v)+V as

Vi @
(2.3) 1 %12

o1 Voo
where Vi1: Op1 = Op1 ® QIlPl (D + DApp) and Vas: Op1 (n — 2) — Op1 (n - 2) ®
Q31 (D+Dapyp) are connections. Moreover, ®15: Op1 (n—2) — Op1 @ Q1 (D+Dapp)
and ®91: Op1 — Opi(n — 2) @ Q31 (D + Dapp) are Opi-morphisms. Since the
birational bundle transformation ¢v is given by ((1) B(()I) ), the connection (2.3) has
the description

Vi1 @12
Dy Voo

By an automorphism of the bundle FE,_s, we may normalize the connection

A(z) dz dz
= (ijw}f% D) da kn-3 )
- T x)dr x)dx n— dx .
Uo R R DD ey

(¢v)+V so that the normalized connection has the following conditions (for details,
see [5, Prop. 3]):
e the connection V1 is the trivial connection, and

e the Opi-morphism ®15 corresponds to the section

a2
M (on Up) and v dw (on Us)
i=1\0 — i)™

2.4 -
24 T, (W~ )
under the isomorphism

Homo,, (Op1 (1 = 2), Op1 @ Qp: (D + Dapyp))
=~ HY(Op1(—n +2) @ Qb1 (D + Dapp))-

Automorphisms of E,,_s preserving these conditions of (¢v ).V are just scalars (see
[5, Sect. 3]). For each j = 1,2,...,n— 3, the 0-eigendirection of the residue matrix
of the normalized connection at g; corresponds to a point p; € P(En_2)lq; = Pl
Here, this identification is given by the trivialization gagg_2)

Definition 2.2. Since the (—1)-eigendirection is contained in the second factor
of B2 = Op1 @ Op1(n — 2), we have p; € C such that p; = [1 : p;]. We call p; a
dual parameter with respect to an apparent singularity q;.
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§2.2. Global normal form for rank-two linear irregular
differential equations

In the previous section, we assign a point on Sym(”f‘o’) (C?) to a connection E; —
E1 ® Qp:(D). Conversely, take a point {(q1,p1), ..., (¢n—3,Pn—3)} on Mg ¢ C
Sym (™) (C2). Then we may construct a connection By — E; ® Q. (D) such that
q1 + -+ + gn—3 is the apparent singularity and p; is the dual parameter of g;,
j=1,2,...,n — 3 (Proposition 2.4 below). Now we discuss this construction. We
define an effective divisor Dap, on P! as Dapp=q1 + -+ gn—3.

Definition 2.3. For the point on My, ¢, let
V2 By — Epg @ Qb (D + Dapp)

be a connection with the following connection matrix on Uy:

1
(2.5) Q(”2)< 0 P<w>> dz.

co(x) do(x)

Here we put P(z) == []/_,(z — t;)™,

T =)™ T —q;
=1 j=1
(26) v D( ) n—3 1
i\ T
= D
do(ﬂU) ; (.T—ti)"i ;x_% + oo(x)7

where Cy, D; (i =1,...,v), Cs, D, and C are polynomials in z such that

o deg(C;),deg(D;) <n;—1fori=1,...,v,
e deg(Co) <Moo — 1, deg(D )gnoon,
. deg(C) <n-—4.

We assume that qi,...,q,—3 are apparent singularities, that is, the elementary
transformation

) - 1 0
((Dg,)1dDy, + (Dg,) 'Q""D D, ), where &, ::( 4 )
p;T—4q;

of Q("=2) by <I> has no pole at g;. We call such a connection VDL Diarra—
Loray’s global normal form.
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The corresponding connection matrix QE,E_Q) on Uy, of v](DnL—2) is

002 =Gy dGy o+ G0 PG,
. (0 0 ) dw < 0 szlD(l/w)) —dw
0-n+2/) w w"2co(1/w)  do(1/w) w?
We may check that 95,2‘2> has a pole of order ny, at co. We decompose the
connection V](D"L_Q) as in (2.3). Since the (1,1)-entry of Q=2 is zero and the
(1,2)-entry of Q=2 is %, the connection Vi is the trivial connection and
the Op:-morphism ®15 corresponds to the section (2.4). The vector (1,p;) is a
0-eigenvector of the residue matrix of Q") at q;-
Now we consider a transformation of the connection V](D"L_m on F,_, into a
connection on Ey. Set Q1 (z) = [['= (z — ¢;)- Let Q2(z) be the unique polynomial

j=1
of degree n — 4 such that Q2(g;) =p; for j =1,2,...,n — 3. Set

Ao L 0 ) her e
G = (QQ((E) Q1($)> : OUo Oan

(2.7)
Goo =Gy ( ! ! ) G O%i ? Ogi'

Q2(1/w) Q1(1/w)
Let Q) be the transformation of Q("~2) by G:

0 =G tdG + G oG

BB N
(2.8) <C(x)+Q2(x)d (@©4(0s() _ (Qa(x))? (@1 (=) Qz(@) dz.
) oNE) ~ P D) + GG~ B

Proposition 2.4. We set

(1) d+ QW on Uy,
Vi, = 1 —10(1)
d+G1 dGl+Gl Q Gl on Uoo

Then Vgﬁ is a connection
Op1 @ Op1 (1) — (Opr ® Op1 (1)) @ Qi1 (D).

That is, the pole divisor of Vgﬁ is D. Moreover, the apparent singularity of Vgﬁ
is q1 + -+ + gn—3 and the dual parameter with respect to q; is p;.

Proof. First we will show that Vgg has no pole at q1, ..., g,—3 by induction. Let

s € {l,...,n — 3}. We define QES)(QU) = [[=1(z — ¢;) and Qés)(m) is the unique
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polynomial of degree s — 1 such that Q(é)( i) =p; for j=1,2,...,5. Set

Fls) 1 0
¢ <Q2 (@) %))'

Assume that d 4 (G*)~1dG® + (G®)) 10" =D G has no pole at g1, qa, - - . , gs.
We will show that d + (GG+D)~1gGs+h) 4+ (G+D)=1QMm=2)Gls+1) has no pole
at q1,42,-..,9s+1. We may check the equalities

(G~ dG®) + (G~ T2 G

— P(x) P(z) dr
0@ Q" @do(@)+(@7 @) _ (QG)® 5y | (@76 _ @y @)
Qi () P(@)Q{" (x) QY (x) P(z)
0 0 dx
= | pors—Q% (gs1) —— + [holomorphic parts].
® — —1] z—¢gst1
Q3 (gs+1)

Here, the last equality is the expansion at = gs41. Since ¢s41 is an apparent sin-
gularity, we can transform the connection d+ (G(®))~1 dG(®) + (G)~1Qn=2 G()
into a connection which is holomorphic at ¢sy; by the matrix

1 0
Por1=Q87 (ds41) .
Qgs)(qsﬁ) ds+1
We may check that
1 0

~A(s+1) _ A(s) ,
GOS = GOg Ps+1*Qéé)(qs+1) — st1

Q% (gs41) st

Then we have that d + (G(SH)) ! dG(SH) + (G(S+1)) 1Qn- 2)G(SH) has no pole
at q1,q2,...,qs+1. SO V has no pole at ¢1,...,q,—3 by induction. Since GOO is
holomorphic at w =0 and the determinant of GOO does not vanish at w = 0,

d+GT Gy + GTIOW Gy = d+ G dGo + GG,
has a pole of order no, at co. Then the polar divisor of Vgﬁ is D.

By (2.8), the (1,2)-term of Q) is %(7(;). The apparent singularities of Vgﬁ

)
are the zeros of %((”“)) Then the apparent singularities of Vgﬁ are g +- -+ ¢qp—3,

since the birational bundle transformation ¢v is given by ((1) Qlo(z)). Moreover,

10 ) (1 0\(1 0
Q2(2) Qi(z) ) \Q2(2)1) \0Q1(z) )"
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Here, (Q;(x) ?) is an automorphism of E,_,. Since the vector (1, p;) is a O-eigen-
vector of the residue matrix of Q=2 at gj, the dual parameter with respect to
q; is Dj- O

§2.3. Local formal data

We put ay, = (x — ;) for i = 1,...,v and 2o = w. Put I = {1,2,...,v,00},
t1 =0, t2 == 1, and t = 0o € P1. We take a decomposition I = Iieg U Ly U Iy
such that I;eg, Iun, and I, are disjoint from each other. We assume that n; =1
for i € Iieg and n; > 1 for i € Iy U L1y,

Let V be a connection on Fjy:

V: E1 — E1 ®QIIP1(D),

where D = Zie] n; -t;. For each i € I, we take an affine open subset U; C P! such
that t; € U;. We take a trivialization E;|y, = OEBf and choose the coordinate x,
on U; such that the point ¢; is defined by z;, = 0. Let €2 be the connection matrix
of V associated to this trivialization. We may describe () as

dxy,
Q=Q(0) xxt" + [higher-order terms], €, (0) € gl(2,C)

g
t;

for each 7 € I.

Definition 2.5. We say t; is an unramified irreqular singular point of V if n; > 1
and €, (0) has distinct eigenvalues.

Let (Det(E7), Tr(V)) be the determinant bundle of E; with the induced con-
nection Tr(V), that is, Tr(V) = V Aid + id A V. We consider the trivialization
Det(E1)|y, = Oy, induced by the trivialization of Ei|y,. Let o' € Oy, dxy, [z}
be the connection matrix of Tr(V)|y, associated to this trivialization (if neces-
sary, U; shrinks). We consider the tensor product ((93_2, d+ Q) ® (Op,,d— 3d).
Let N(xy,)dxs, /3" be the connection matrix of this tensor product. Remark that
N(z,) € End(Og?).

Definition 2.6. We say t; is a ramified irregular singular point of V if n; > 1,
N(0) is a nonzero nilpotent matrix, and N(zy,)? # 0 (mod z7,).

We assume that

o the differences of the eigenvalues of €, (0) are not integers for any i € I g,
e t; are unramified irregular singular points for any i € I,,;,, and

e t; are ramified irregular singular points for any ¢ € I,,.
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Lemma 2.7 (For example [5, Props. 9 and 10]). Let Q be the connection matriz
which satisfies the assumption above.

(1) Ifi € Iy, then there exists a matric M € GLo(Clay,]) such that
05, O
0 0.,
M~ dM +M'OM = ~———~

07—;71,& 0
0 9;171 ti
e dre, +---+ —— dxy, .

xti Tt
We call the tuple ((93:“, 00.4,)s- -+ (0;;_17%, 0,,_14,)) the local formal data of
V at ti-
(2) Ifi € I,,, then there exists a matriz M € GLa(C[xs,]) such that

; %
M~YdM + M7'OM = ( ) d,) :

ztiﬂi Qg — 2%y,
i

where
— GO,ti dwti 92l,ti dxti 92ni—2,ti dmti
o =t +"'+77n»—l L A
2z, 2 zy 2 Ty,
. O1,t, dzy, 021414, dxe, O2n,—3,¢; dTs,
Bi':TTi—F"'"FTﬁ—"”'"F‘ 5 SE.
'Tti -/I;tv 'Tti

i

We call the tuple (Bo,, ..., 02n,—2,) the local formal data of V at t;.

If we define (; as x4, = ¢? and put

11
. M =
29) ¢ (Cz‘ —Ci> ’

then we have the following diagonalization:

% Bi
M YdMm, + M7t da,. | M,
G G Po\a B — gt G

021,¢; dCi O2141,¢; dGi
42(7%41)71 0 <2(nrl)72 0
= § , " 0200, dc; | T E , Ty e dG
1=0,1,...,n;—1 C?("z‘*l)*l 1=0,1,...,n;—2 C?("z‘*l)*Q

Definition 2.8. Let (8,0¢) € Ty x Tp.

e let VI E - E1® Q]%M(D) be a connection. If the tuple of the local formal
data of V is (8, 0¢), we call this connection a (80, 68)-connection on Ej.

e We say that Diarra—Loray’s normal form ngm: E, s> E,>® QI%M (D +
Dayp) is a (0, 800)-connection if the corresponding Vgﬁ: Ey — E1 @ QL (D)
is a (0, 0p)-connection on Ej.
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Lemma 2.9 ([5, Lems. 16 and 19]). Let ({(q1,p1),-- - (@n—-3,Pn—3)}, (t3,..., 1))
€ My, and (0,00) € To x Tp*. Set D =nq1 -0+ ng - 1+Zf:3ni i + N - 00.
There exists a unique tuple of the polynomials ((C;, D;)icr,C) in (2.6) such that

the polar divisor of ngz) s D+q1 4+ qns,

® q1,...,qn_3 are apparent singularities,

the dual parameter with respect to q; isp; (j=1,2,...,n—3),

Vg}:m is a (0, 80¢)-connection.

Let ((C¢7Di)iel75) be the tuple of the polynomials in Lemma 2.9. The
polynomials C; and D; (i € I) have simple descriptions. Now we give explicit

descriptions of C; and D; (i € I). For ¢ € Ieg U Iy, we define a polynomial @ii in

T as
— (z—t)mt (w =ty
For i € I,,, we define polynomials A; and B; in x as
i—1 =2
\ 211, A q £ b1, B
Z — 1. TLi—l - — 4.\, an Z — 1. ni—l - — 1. ni,’
— 2(x —t;) (x —t;) — 2(x —t;) (x —t;)

respectively. For ¢ € I eg U Iy, the polynomials C; and D; have the description

C; = (@j—@; H(x - tj)"j> mod (z — ;)™
J#i
D; =0 +0;.

(2.10)

For i € I,,, the polynomials C; and D; have the description

()™ g
C = ((Ai i 1))
(2.11) - tj)"”) mod (z — ;)™
i
_ 4. \ni—1
D, —o4, - EZW)"T

§2.4. Family of connections

Let (0,00) € To xTp* and tg = (t3,...,t) € (Tt)t,- Set D = nq-04+ng-14+n3-t3+
o ny oty 4 neg - 00. Let Conny, g9, be the moduli space of (0, 8y)-connections
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satisfying some generic conditions:

E = Op @ Op1(1) and

V is a (8, 6)-connection such that

(2.12)  Conngy0.0,) = § (£,V) | Op1(1) C Ey is not V-invariant, / ~.

D pp is reduced, and

D App has disjoint support with D

Here, (E,V) ~ (E’', V') means that there exists an isomorphism ¢: F — E’ such
that the following diagram is commutative:

E—Y 5 Ex QL (D)

B Y B x QL (D).

By taking apparent singularities and the dual parameters from a connection
(E1,V) € Conngy, 9.6,), We may define a map

App: Conng, g.6,) — Mgt C Sym(™=3)(C?),
(E7 v) — {(q17p1)7 ey (Q’n—?npn—?))}'
Now we construct an inverse map of App as follows. Let d be the relative exterior

derivative of P* x My, .. — My, +,.. By Definition 2.3 and Lemma 2.9, we may
construct an algebraic family

n—2
6](;[,_2) = d+ Qgtoﬂ,)@o) on Up X Mg t,,;
d+GylydGr o+ G0 D (G on Use X Mgy

of (0, 0)-connections on E,_, parametrized by My, ¢,,. We set

Q(l)

(t0.000) = GG + G Y 000G

(t0,0,00) " °

Then we have an algebraic family

(1)
68& _ d+ Q(to,e,eo) on Uy x Mt();tra’
d+ G Gy + GTQ) g 0 G on U X My

Ta )

of (6, 0)-connections F; — F1 ® Q}Pl (D) parametrized by My, +., by Proposition
2.4. The algebraic family Vgﬂ parametrized by My, ¢+, gives the inverse map of
App: X

App™ " My t,, —> Conny, 6.6,)>

p={(q1:01)- - (@n_3:Pn—3)} — (B, VO b1 (p})-
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Next we consider the extended moduli space @R(tm,eo) of Conny, 9.0, We
set D(to) =n1-0+n9- -1+ 2;3711' “t; + Neo - 00 for tg = (tg, e ,t,,) € (Tt)t0~
This extended moduli space €Conny,, g, is defined by
tOG(Tt)t 0cTy, F=0Opm EBO[PI(]-), and

V is a (0, 6)-connection

ra’?

— such that the polar divisor of V is D(ty),
Qionn(tm,go) = (E, V, to, 0) . . . / ~
Op:1(1) C E; is not V-invariant,

D app is reduced, and

Dapp has disjoint support with D(tg)

Here, (E,V,t9,0) ~ (E',V',t,0') means that t, = t), @ = 6’, and there exists
an isomorphism ¢: E — FE’ such that the following diagram is commutative:

E—Y 5 Ex QL (D)

B Y B x QL (D).

By taking apparent singularities, the dual parameters, the position of singular
points, and the local formal data from a connection (E1,V) € Conng,, g,), We
may define a map

zglijl Qja‘l(tm’go) — M\tra x Ty C (Sym("_?’) ((Cz) x Ty) x Ty,

(2.13)
(E’ V,to, 0) — (({(thl)v R (qn—Sapn—B)}vtO)a 0)

Now we may also construct an inverse map of A/\pp as follows. Here, let d be the
relative exterior derivative of P! x (Mg, x Tp) — My, x Tp. By Definition 2.3
and Lemma 2.9, we may construct an algebraic family

P —
N](DnL72) _ d -+ Qgtm,e)o) on Uy x (Mtra X Tg),
,ext _ _ (n— e
d+ Gy lydGnoo+ G008 (Goa on U x (My,, x To),
of connections on F,,_o parametrized by M\tra X Ty. We set
o _ A1 54 A-1n-2) &
Q(tweo) =G " dG+ G Q(tm,eo)G'
Then we have an algebraic family
~ d+ 0 Uy x (Mg, x T ,
(214) V1(311)J ext — (trlaveo) 1/\(1) on o ( /ira 9)
s d—+ G; dGl + G; Q(traﬂo)Gl on Uoo X (th X Tg),
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of connections on F; parametrized by M\tra x Tp by Proposition 2.4. Let ty =
(t1, ...ty too) be a family of (v + 1)-points on P! parametrized by (T)¢,, and 8

be a family of tuples of complex numbers parametrized by Tp. We denote by the
same characters £y, and 0 the pull-backs of £y and @ under the compositions

idX e, .00 projection

/\//\ltm x To (Ty)t,, x To (Tt )t

THa

idXme,, 6, projection
e

Mz, x T (Te)t,. x To

respectively. The algebraic family %gﬂext parametrized by My, x Tp gives the
inverse map of Kp\p:
— 1 —~ —
App : th X Tg — €onn(tm 60)>
i) = (({(qlvpl)v RN} (qn73vpn73)}7 t0)7 ) (Ela VDL ext|IP71><{p}a t0|p? 0|P)
§2.5. Infinitesimal deformations of connections

Let U be an open subset of My, ;.. C Sym™~ ¥ (C2). Let & be a vector field on U.
By the vector field §, we have a map

(2.15) P! x Spec Oyle] — P! x U,

where €2 = 0. We take the pull-back of the family V](DL |]P>1><U under the map
(2.15). We denote the expansion of this pull-back of VDL |[p)1><U with respect to
€ by

d+ QE?—;)H + 55(9& 92)90)) on Uy x Spec Oy e],
- n—2

d+GolydGr o+ G000 D G
+€Gn125( (:b 92)90))an2 on Uy X Spec OU[€].

We also denote the expansion of the pull-back of the family %gﬂple under the
map (2.15) by

d+Qt ee)+55( (toeeo)) on Uy x Spec Oyle],
d+GTldGy + GTQ) g 60 G1+eGT1O(QY) 6.))G1 on Use x Spec Ople].

Let U be an open subset of M\tra x Ty. Let & be a vector field on U. By the
vector field & , we have a map

(2.16) P! x Spec Og[e] — P! x U,

where €2 = 0. We take the pull-back of the family §gLL_§it|P1Xﬁ under the map
(2.16). We denote the expansion of this pull-back of %g}:gthﬂ 0 With respect to
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€ by
d+ 622_2) J+ §(an 20)0)) , on Uy x Spec O e]
d—l—Gn QdGn 2 —‘an QQ( GD)G"*%
+ an125( Q- 20)0))Gn—2 on Us, X Spec Op[g].

Here, this Q 9 ;) means the pull back of Q(n 20 on Uy X U by the trivial pro-
Jectlon Uy x Spec Ox [ ] — Up x U. Remark that there is a difference between this

(t2a.00) a0 the pull-back of nga’a}) on Uy x U by (2.16). The e-part 6(9%&30))
adjusts this difference. We also denote the expansion of the pull-back of the family

VDL Cxt|P1 ..o under the map (2.16) by

d+ Q o0 T 56(9 m,eo)) on Uy x Spec O [e],
d+ G e + Gy 19‘ ) oG+ eGTO(Q) o )G on Use x Spec Opel.

§2.6. Horizontal lifts of a family of connections

Let El and En_g be the pull-backs of F4 and E,_s, respectively, under the pro-
jection P! x (My,, x Tg) — PL. Set D(t) == >, wE ti + Moo - too, which is a
Cartier divisor on P! x My, x Ty, which is flat over Mt x Ty. Let

a —
~ 1) d+ Q! ja’go) on Uy x (M, x Tp),
PLest =\ 44 611 dGy + GOl 4 G1 on U x (My,, x Tp),

be the family (2.14). This family is a relative connection on E:

(1)
VDLext By Bye QPlx(MtraxTe)/thxTe (D(to))-

We will consider an infinitesimal deformation of %DlL’ext, which means an “inte-
grable deformation”.
Let Ef be the pull-back of E; under the trivial projection

(2.17) P! x (My,, x To) x SpecCle] — P! x (M., x Te).
Let dtime be a vector field on (Tt)t,, x Tg. The vector field dtime gives a map
T Stime - ((Tt)tra X Tg) X Spec C[E] — (Tt>tra X Tg.

Set
rcd Z t
i€l
We consider Dieq(to) as a Cartier divisor on P* x ((T)s,, x To). We denote by
D(to). and D,eq(o). the pull-backs of D(%o) and Dieq(to), respectively, under the
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composition

id x Ttra,00 X id
—>

P! x (My,, x Tg) x SpecCle] P! x ((Ty)e,. x To) x Spec Ce]

idX s, .
(2.18) X Mimey Pl (T X To.

ra

Take local defining equations Z;, of the Cartier divisor Dred(io)e. Let QL be

Otime

a coherent subsheaf of ! (D(tp)<) which is locally

PL x (M. ra X T )XSpec(C[s]/J(/l\ ra X T
defined by ‘ ’ ‘ ’

dfi'ti de

Pt ><(J\//\ltra XTg) X Spec Cle] j':?fz + OIP>1 X(A//Ttra xTg) jmfl :

i

(2.19) Q=0

Let Vs, Ef — Ef Q ﬁ};ﬁme be a morphism with the Leibniz rule. That is,
Vi (fa) = a®dAf+fV(;nme (a) for f € Oﬂmx(/ﬁtmng)xSpecC[s] and a € Ef Here,
d is the relative exterior derivative of P! x (M, x Tp) x Spec Cle] — My, x Tp.
We denote the expansion of the morphism Vs, . with respect to € by

d+ Q) e85 )+ Yo de on Uy x (M
d+ Gyl dGy +GT'0y) Gy
+eGTQ)) ey

+ Gy, G de on Use X (My,, x Tg) x SpecCle].

x Tp) x Spec Cle],

ra

v(;time =

Here, the connection matrices are decomposed into dz:,-terms and de-terms.
Remark that dz;, is the pull-back of dz;, under the morphism P! x (/T/l\tra x Tp) x
Spec Cle] — P! x (T})s,, x To defined by 74, g, and the trivial projection. On the
other hand, dZ;, is the pull-back of dx;, under the morphism P! x (M\tra x Tg) X
Spec Cle] — P! x (Ty)s,, x Tp defined in (2.18). Moreover, remark that ﬁgi)m has
a pole on the divisor D(£) x Spec C[e], which is different from the divisor D(?ﬁo)e.
So ﬁgi)me does not belong to 5nd(§f) ® ()};Hme. The e-term sd(ﬁgi)me) + Y de

~

adjusts the condition that the image of Vs, . is contained in E§ ® Q}

Otime *

Let Vs,,... be the relative connection induced by Vs, :

_ s ~ L -
Voime B1 — E1 ® Qn»lx(/\?tmng)xspeCC[s]/(ﬂtwng)xspeCC[s](D(tO)g)'

That is,

d+ ﬁgii)me + 55(@&1) ) on Uy x (/\//\ltra x Tg) x SpecCle],

time

Voime = 4 d+GHdGy + GTIOY) G,
+eGT(OY Hay on Uso x (M

5time

x Tg) x SpecCle].

ra
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We consider QE 8,) 8 @ matrix with values in Qé’lx(Mtrdee)( (to)). We take a

pull-back of the matrlx Q( b 00) by the trivial projection

Uy x (My,, x Te) x SpecCle] = Uy x (My.. x Tp).
This pull-back induces a matrix with values in
0l (D(to) x SpecCle]).

Pt ><(/\/lt,,{l xTg) X Spec (C[a]/(/\/lt]ra xTg)
We also denote this induced matrix by ﬁ(i) 00)"

Definition 2.10. We say Vs, is a horizontal lift of VDL oxt if V... satisfies
Q(l)

Stime

= Q(i)a 00) and the integrable condition

5(5\2(1) ) A d€ - dTétime A d€ + [ﬁ((;ii)me’ Tétime} A de.

6time

If Vs,,.. is a horizontal lift of VSL oxi» the relative connection Vs, = means an

integrable deformation of VD])J ext®

The construction of horizontal lifts of %gﬁ,ext is discussed in Sections 3.3, 3.4,
and 4.2.

§2.7. Solutions of d + Q2 Z) 02390) = 0 at the apparent singularities
Since g; (j = 1,2,...,n—3) are apparent singularities, then we have the following
lemma:

Lemma 2.11. For each j € {1,...,n— 3}, the equation (d+Q t0 9 9 ))\Il =0 has
a solution 1y, = Py Eq. (x)Ay, (w) at q;. Here,

10 1 0
P, = A, =
q] <pj 1) , v (x) (033 Qj> 7

(2.20) . .
qu( = < ) +Z ( o £QJ)12> (x_qj>sa
where ( 1 )11 = 7PI(J(;9.)7 ( ?)12 = *ﬁqj), (6?)21 =0, and
gy _ P ~  Di(g;) o Do
&) P(q;) ; (gj —ti)™ - zk: 4 — Gk (%)

The solution 4, has converging entries.
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Proof. The connection matrix QEZ)_,GZ,)Ho) has the following description at ¢; by

(2.5):
2 0 0 0 5~
Qgto,e,)eo) = (Pj 1 | dz+ 0) 1;((%])) dz + O(x — ¢;).

T—q; T—qj a5 a5

Here we set

Ci(g;) Dj ~ e
= g t o g T O@) + 4 Clay).
' k5

Di(q; -1
5 i

i=1 Ky 13 4k

Let @4, be the matrix in (2.20). We may check the equality

0 0 7= ey
—1(n—2) _ P(q; P(q;
(I)Qj Q(to,@,eo)q)qj' - <0 —1> dr + ( (()1) d(o) _(q )Pj ) dx + O(‘T - qj)'
r=q; 4 P(q;)

Here, the (2, 1)-entry of this constant term is zero, since g; is an apparent singular
point. Since @;leEZ:g )90)<I>qj has simple pole at ¢; and g; is an apparent singular

point, there exists a convergent power series =, (z) = id + ES,}) (x —gj)+--- such
that

(R4, 24, (@) M d(®4,Eq; (2)) + (84, Eq, (@)U Tloyy (24,E4, (@)

(2.21) _ (00 dr
0-1) x—gq;

We calculate the left-hand side of (2.21). The constant term of this left-hand side

p 1
<O 0 > =M 4 (P(;j) (O)P(qj) >
_ ’ g R :
0-t) = 0 do)’ = 7

This matrix is a zero matrix. So we may check that Eé}) is determined as

. 1
=) — Pla;) (O)QP(%‘) v )
Y\ E ) —da + B

We may determine (£]7)2; freely. Here we set (£7)a1 = 0. O

—=(1
B +

§3. Unramified irregular singularities

In this section we assume that I, = 0. In Section 3.1, we define a 2-form on
the fiber My, ., by Krichever’s formula [16, Sect. 5]. Remark that My, ¢, is
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isomorphic to the moduli space €onny, g g,)- We show that this 2-form coincides
with the symplectic form (1.2). In Sections 3.3 and 3.4, we will construct horizontal
lifts of V) .. Let /00, (i € Ly and | = 0,1,...,n; — 2) and 9/0%; (i =
3,4...,v) be the vector fields on (T})+,, X Tp. By the construction of the horizontal
lifts, we have the vector fields 5;¥D and 6;MP on /T/l\tm x Ty determined by the
integrable deformations with respett to 9/ 80?;1_ and 0/0t;, respectively. Remark
that M\tm x Ty is isomorphic to the extended moduli space @(tra,go). In Section
3.5 we define a 2-form on -K/l\tra x Tg by Krichever’s formula. We show that this
2-form is the isomonodromy 2-form. In Section 3.6 we calculate this 2-form on
M\tm x Ty by using Diarra—Loray’s global normal form. Then we obtain an explicit
formula of this 2-form.

We consider the leading coefficient of QE:;;)HO) at t;:
0 A\ dx
Q=2 ( i (ti=t;) J) —% 4 [higher-order terms].
,0,0 — n; — T4
(£0.6.00) eatieo,ti [t — )™ 90+,ti +65:, ) Tt

Remark that this leading coefficient at ¢; is independent of {(g;,p;)}j=1.2,.. n—3.
We fix ®; € GL(2,C) so that

_ T
0 0oy,

(- 0. 0 dzy, .
o, 1QEt0,92,)eo)(I)i = ( 0.3 > x; + [higher-order terms].
We call the matrix ®; a compatible framing at t;. If we have another ®, such that
—10(n—2)
Q(to,e,eo)
exists a diagonal matrix C, such that ®; = ®;Cy,, since 90+) ¢, — o, # 0.

the leading coefficient matrix of (®}) @’ is diagonal as above, then there

Lemma 3.1 (For example [16, Lem. 3.1]). Assume that 03, — 05, #0 if n; > 1
and Hafti — 0o, ¢ Z if n; = 1. For a compatible framing ®;, there exist unique

o 0, €T(Meyt,.,Opy, ) (=i andi € 1),

o« TEE 0w € T( Mgt Ory, o) [0, and

o S (6, € T (Mgt Orey o, )]

such that v; == ®;Z;(x,) exp(—A;(zy,)) satisfies the equation (d+ QEZ;BQ)QO))% =0
formally at t;. Here we put
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where j\;t(ast7) = > 200 fx_"”_l dxy,. That is, 1; is a formal fundamental
matriz solution at t;.

Remark 3.2. By the equations in (2.10), we have that the polynomials C; and D;
(i=1,2,...,v,00) in (2.5) are independent of the parameters {(¢;,p;j)};j=1,2,...n—3
of My, ... If we take a compatible framing ®; so that ®; is independent of
{(gj,;pj)}j=1,2,....n—3, then the coefficients of the formal power series ®;Z;(z,)
n—3. This inde-
pendency is the assumption of Lemma 3.13 (below). We will use this fact for the

up to the (z — ¢;)™~!-term are independent of {(q;,p;)}j=12

.....

calculation of Hamiltonians and the isomonodromy 2-form.
§3.1. Symplectic structure

Definition 3.3 ([16, Sect. 5] and [6, form. (3.16), p.306]). Let d; and d2 be vec-
tor fields on My, ¢, C Sym("_?’)((CQ), which is isomorphic to the moduli space
Conng, 9,0,)- We fix a formal fundamental matrix solution v; of (d—&—QE:O*g)GO))wi =
0 at # = 1; as in Lemma 3.1. Moreover, we fix a fundamental matrix solution g,
of (d+ Q(to 0 60))qu 0 at z = ¢; as in Lemma 2.11. We set

S aaey) N W) = 61(Qf 02 (W) — G1 () 02(y g )
and
S o)) MOy YUzt = 01(Q o )0ty Yot — 01 (g, )by, 02( o )-
We define a 2-form w on Mto, . as

w(b1,02) : Zresz ¢ Tr(6 QE: 02)90))A5(¢¢)¢51)

161
(3.1) + - Zrebx 0 Tr((Q o)) A8 (g, ),

where I :={1,2,...,v,00}.

n [16, Sect. 5], it is discussed that this definition is well defined. We recall
this argument in [16, Sect. 5]. First, we show that the right-hand side of (3.1)
is independent of the choice of 9,,. If we have another solution wl’zj, then we
have matrix Cy, such that this matrix is independent of parameters on P! and
w;j = 14, Cy; - By the Leibniz rule, we have

Te(01 (5 5,021, ) (15,) ™) = Tr(61(9
= TI‘((Sl (Q

o 5)00>>52<wq,- Cy)) (g, Cy) ™)
t0,0 90)>62(¢q1)'¢ b
+ Tr(w 161(9 (t0.0 90))1/1% 62(0 )qujl).

/—\A —_~
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We take variations of both sides of the equation di,, = QE” P 00)7’qu with respect
to d1. Then we have the equalities

U 010 o) Ve, =~ d(01(t0g,)) — Y QU Sy 01 (1)
= _¢;1d(51 (qu)) + ¢qj1d(wqj)wqj151 (wqj')
(3.2) = —d(1y 01 (y,)).

Here, the second equality is given by di,, = QEZ} 92 0o) g, - So we have

Te(80 (0 20032, ) (8,) ™) = Te(Bu (@02 )02y, iy )
— Tr(d(, 81 (1, ))2(C, ) Oy )

Since the solution 9, is holomorphic at g; and Cy; is independent of parameters
on P!, the residue of the second term on the right-hand side is zero. This fact
means that the right-hand side of (3.1) is independent of the choice of v, .

We may check that the residue of Tr(6(QEZO_7;)00)) A S(pi)bt) at E; is well
defined as follows. We have the equality

Syt = 8(®iEs(,) exp(—Ni(we )))(‘I’iEi(w‘ti)eXp(—Ai(xti)))_l
= 6(®iZi(we,) (®iZi(xe,) ™
(33) = (®iZi(we,))0(Ni(we,) (@i (r,))

Since Hiv—l,ti is constant on My, ¢, , 6(93;_17,5,) = 0. Then 6(6 1.t [t day,) =
d(c). Here, ¢ is an integration constant. If we fix integration constants on A;(z,),

then we can take the residue of Tr(&(Qé?o 3)90))/\5(1/%)1/1-71) at t;. We may check that

res;—¢, Tr(d (QEZ) 92)90 ) A S(thi); ) is independent of the choice of the integration

constant as follows. We take other integration constants and a formal solution v

—~

is given for the integration constants. There exists a diagonal matrix C;, such that
Yi = 1;Cy, and Cy, is independent of parameters on P!. By the same argument as
above, we have the equality

Tr(61(Qy, op,))02 (1) () ™)
(3.4) = Tr(01(Q0 g 02 (Wit 1) = Tr(d(w; 61 (1:)02(Ct, ), ).

Since A;(x¢,) and C, are diagonal, we have

exp(—A;(zy,))02(Cy,)Cy, Lexp(—=Ai(zy,)) ™t = 52(C’ti)C’{il.
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We calculate the second term on the left-hand side of (3.4):
Tr(d(y; " 01(¢1))02(Cr, )C )
= Tr(d(exp(—Ai(zs,) " (PiZilar,)) 01(PiZi(wr,)) exp(—Ai(x4,)))
x 62(C,)C )
+ T (d(exp(—Ai(ae,)) 701 (exp(—As(22,))))52(C2 )C1 )
= TI‘(dA (xtz)( Zui(ﬂiti))il(gl(@igi(‘xtl 52 Ct )
— Tr((@i:i(xt ))_151( zEz(xtl))dA (l‘t )(52(0,5 ) )

—|—TI‘( ( i=i xt 151( z—*i(xt ) )52 Ct )
(d( 21,)))82(Ci; )i, )
—TI‘( ( i=i xt 151( z—*i(xti)))(SQ(Cti)Ot_il)

(3.5) Tr(d (51<—Ai<xti>>)62(cti>0t:1>-

The residue parts of d((®;Z;(z¢,)) 161 (®;Zi(x¢,))) and d(d1(—A;(z¢,))) vanish.
Since 62(Cy,)Cy, ! is independent of parameters on P!, the residues of the formal
meromorphic differentials of the last line of (3.5) at t; are zero. Then we have that

resy—t, Tr((?(ﬂé?o 92)90 ) A S(th:)p; ) is independent of the choice of the integration

constant. Finally, the residue of Tr(d (QE?O 92)90)) A S(i); ) at £ is well defined.
Next we show that the right-hand side of (3.1) is independent of the choice
of a formal solution ;. Let Cy,(x,) be the following diagonal matrix:

Ctiall(a:ti,) 0 _ Cg?,)n 0 + Cgl)n 0
0 ct; 22(xe;) o 0 C(O) 0 c(l) o
i i ;.22 5,22

We define ='(x¢,) and Al(x,) by
E/(‘rti) = E(xti)cti ('rt'i)’

) N1 d(C ) 11(.13,5')) 0
A; T, :Ai Tt ) + fCtl’ll(xtl) b, ‘ .
(o) = Al ( 0 Jevi oo ()7 d(ey, 22(,))
Then we have another formal fundamental matrix solution ¢, = ®;Z'(zy,) X

exp(—A%(x¢,)). There exists a diagonal matrix C;, such that ¥ = ¢;Cy, and Cy,
is independent of parameters on P!. By the same argument as above, we have

Tr(81 (25 4600200 (6171 = Te(81(Qf 5o, J02($i) 7).
Then we obtain that the right-hand side of (3.1) is independent of the choice of ;.
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Theorem 3.4. Let w be the 2-form on My, 4. defined by (3.1) in Definition 3.3.
The 2-form w coincides with

n—3 )
; d(%;j)) A dg;.

Proof. Recall that w(dy,02) is

1 n— _
LS e, (A ) S0

iel

n—3
1 n—2 _
+ ) Z 188z=q, TY(‘S(QEtO,e,)eo)) A 5(¢qj)¢qj1)-
=1

We calculate the residue of Tr((S(Q("_Q) YNNG (g, )@[J;jl) at « = ¢;. For this purpose,

(to,e,eg)
first, we calculate § (QEZ]_GZ )90)) around = = g; as follows. The connection matrix
QEZ]_’GZ’)GO) has the following description at g; by (2.5):
(n—2) _ 0 0 0 b6
. Tenosn = ( ) o ( @)

Here, b, ¢, and dj, are holomorphic at z = ¢;. Since t; and Hfti (iel,0<I<
n; — 1) are constants on My, ., we have §(¢;) = 0 and 5(9li7ti) =0.By d(t;)) =0
we have 0(bj,) = 0. By (2.10), we have 6(D;) = 0 for i = 1,2,...,v,00. We take

Q(n—2)

the variation &( (t0.0 90)) of 9220_92)90) associated to J:

52y = d
(2t.0.00)) (&%MW@)IE

where
_ pid(g;) 4(p;y) RPN
)= g Tl gy T
o 0ey) N )
6(d0) - (J} — qj)g ; (q_j — qk)2 + O( QJ)

Second, we consider 6(1%)1/);]_1. We have

5(11)%') (;7'1 = 5(q>q]‘ E‘Ij (x))(q)Qj Eq]‘ (x))_l

(3.7 + (@42, (2) (3 _a?qj>> (24,2, ()7

r—qj
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By using Lemma 2.11, we have the equality

- 10
Dy, Ey;(7) = (pj 1)

P(‘IJ) 2P(q5)
+ P2 i v D;( > (.’E - q])
( P((Jb) 2;(qu) - Zz 1 (qftqj)n + Zk;ﬁg G- qk - Doo(Qj)

+ O($ — Qj)2.

By this description of ®,,Z,, (x), we may check that the constant term of the
expansion of 0(®4, =, (x)) at ¢; has the description

Dj 1
0 0 T P(g) ~ 2P(q))
— 0(q;) 2 s
(5(pj ) 0) ’ _PI(ZJ) *

and the coefficient of the (2 — ¢;)-term of the expansion of §(®y,Z,; (z)) has the

5(ny) sa) | —0(g :
¥ 3Py T 2okt [@—a)” * 0k

Here we put the entries having d(g;) together in the second matrices. Moreover,

description

we may check that the constant term of the expansion of (@4, =, ()~ at ¢; is
(_p, 9) and the coefficient of the (z — g;)-term of the expansion of (®4,Z,, (x)) !

has the description

_ 2P(q5) ~2P(qj)

< * PI();.j) — X (ql?*gqj) + Zk#ﬂ a— qk N DOO(qj)) '

By the calculation of §(®4,Z,,(x)) and (Pg,Z, (z))"!, we may show that
0(Pq,Eq, (2))(Pg, Eq, ()" is

(ay) (1)

* 3P(q * fi2 6(45)
3.8 2P(q5) | + 12 "\ z—q;)+O0(x — q;)?,
Y ( : ) S 4 5 ek — oty ) T WO

P(QJ) (¢j—aqr)?

where fg) and fz(;) are rational functions on My, ¢, . We consider the second term
of (3.7). We may show that

(24,2, () (8 e ) (%, Z,, ()"

z—q;

0 0
(* —6(q; ) IO e
(3.9) = Ar2ot)] + ( 2P(qi)> + < 912 010y )> (x —q;) + Oz — q;)%,

T —dgj * ok *gé?(s( qj)




DESCRIPTION OF ISOMONODROMY DEFORMATIONS 213

(1)

where g7 and gé? are rational functions on My, ;.. By (3.8) and (3.9), we have
(0 0
=0(g)) [ B
St YVp-t=> "/ P(q;)
(/l/}q.] )’lqu T — q] + * «
(1) M
* (912 + f12")0(a5) 2
5 1 1 (z—q;) + Oz —gq5)".
( P 4+ T, ) (6D — )0(ay) g ’

By (3.6) and this equality, we have

( (togeu))52(wq3)¢ )
51 (p 725 2(gj) _ 01(g5)92(p;) 'y 81 (qr)d2(q;) 3 81(g5)02(qx)

res;—g; Tr (6,

, )2 )2
) P(q;) P (g7 — ax) Py (¢ — ax)
+ 5012+ £12)) = (932 — 1227)01(47)8a(ay)-
5 51(g;)3
Since ZJ 1 Zk# 1(ge) 2((2’3) qk)(Qq’) 2(9) — 0 we have
n—3 n—3
_ 01(pj)02(q;) _ 202(p;)01(g;)
resy—g. Ir Q(” 2) AN6(1g. 1y =2 < At I J I2 .
; q; ( (to,0 90)) (qu )w‘b ) ]; P(qj) P(q])
Next we calculate the residue of Tr((S(QE?;g)GO)) AS();t) at & = t;. First
we consider the expansion of 5(9(:0 929 )) at © = t;. Since §(C;) = 0(D;) = 0 for

i=1,2,...,v,00, we have §(co) = O(2} ) and 6(dy) = O(a}.). Second we consider
(i) L By Lemma 3.1 we have

S(pi )byt = 0(DiZ;(wr,) ) (iZi ()~

= —5(Af (@1,)) 0 N
+(®iuz(xti))< 0 50 (e ))> (@2 ()L

Since 5(5\2i (x¢,)) = O(zy,), we have that the residue of Tr(6(QE:0_’;)90)) AS(i)i )

at t; is zero. Then we obtain

SR 01(0)0a(ay)  a(ps)oi(gy)
w((Sl’aQ):Z( Plg)  Plgy) )’

which means that w coincides with Y27~ 5 d( 52 Pay) A daj- O

j=1

§3.2. Note on the relation to the symplectic structure
of the coadjoint orbits

We apply the argument in [6, proof of Thm. 3.3] for our w. Let d + QY be a
connection on E; = Op1 @ Op1(1), whose polar divisor is D. Remark that the
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connection d + Q0 is related to a connection on E,,_5 = Op1 © Op1 (n — 2) via the
transformation (2.2). Let ¢ be a component of the divisor D. Choosing a formal
coordinate x; near t and a trivialization of £ on the formal neighborhood of ¢, we
describe V near ¢ by

0 d.]?t

Onf
t

Let ¢ be a formal solution at ¢, that is, (d+Q°)y = 0. For j = 1,2, let §,;(Q2°) and
8;(1) be the variations of Q° and 1, respectively. Here, §; (j = 1,2) mean vector
fields on My 4. .

We define G,,, as G,,, = GL(2,C|x¢]/(z}*)). Let g,, be the Lie algebra of
Gp, and g;, be the dual of g,,. We define %, | and Ug)bt_l (j = 1,2) as
Q0 = (Q%,, )z " + O(x)) and §;(¢)yp~! = ngt_l + O(z}*), respectively.
We identify Qon _, and Uijr)”fl as elements of gy by the pairing (X,Y) =

N ( Xk Y, 1), where X = Xo 4+ Xy2 + - + Xp, 120"} € g, and ¥ =
YO+Y1xt+ +Y,—127 € gy, Since 6;(2°) = —[Q°, 5, ()] — 22 (5;(¥)v )

dxy

d+Q + [higher-order terms], QY € gl(2,C).

for j = 1,2, we have
(3.10) 5;(9%,, 1) =—19%,, 1,02 ..

By this equality, we have the following equality:

%resxtzo Tr(81(Q0)52 (1) (1) ~* = 61.(4) () ™' 62(29))

(311) = - Tr<Q<nt 1 [Uélrztfl’ Ué27zt*1]>'

If we consider the elementary transformation (in other words, the Hecke modifi-
cation), we have a connection on the rank-two trivial bundle from the connection
d+9Q° on E;. By equalities (3.10) and (3.11), we have a relation between w and the
symplectic form on the product of the coadjoint orbits of GG,,, for each component
t of D (see [2, Prop. 2.1]).

§3.3. Integrable deformations associated to Ty
First we fix i € I and [ € {0,1,...,n; — 2}. Let E be the pull-back of E; under
the projection P! x (M, x Tp) — P*. Let
=(1) d—+ Q (1) 00) on Uy x (M\tra X Tg),
vDL ext —

tra,

d+G LGy + GO o G on Use x (M, x Tp),

be the family (2.14) of connections on E;. Let Gl’ti be the natural coordinate of
(Ty)t,, x T and ('3/076’i be the vector field on (Tt)t,, x Tp associated to Hfti. We

will construct a horizontal lift of Vgg,ext with respect to 9/ 89?;1
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We consider diagonalizations of V](DL ext until some degree term at each #;
(i € I). By usmg the explicit form of d + Q(n 2) 0,) We take a family of compatible
framings of d 4 Q 9) ) at ty for each i’ € I We denote this family of compatible
framings at £,/ for each i’ € I, by ®;r. Let 2y (2, ) be the formal transformation of
d+ Q(n 2) 60) at t; with respect to ®;; appearing in Lemma 3.1. Let G be the matrix
deﬁned in (2.7). We write the formal expansion of G119, (x¢,) at &, =0 by

(312) éilq)i/Ei/(:Cti,) = Pi/70 + Pi’,ll't,i/ + Piggxfi, + -
Set

2n,—1 .
Py = Py o+ Py xy, + PZ'/’QZU?/ “+ Py on, - 1xt7f (for i’ € I),
Py+1 = ld

We take an affine open covering {ﬁi/}i/elu{yﬂ} of P! x (M\tra x Tgp) such that

e for i’ € I, we have t; C UZ/,t ﬂU/ =0 (foranyj # 4, j € I), and
Zin{ ! Py S;Uti is invertible on each point of UM

e for ¢’ :y—l—l,fjﬂﬁi/:@(foranyje[).

Set [71/1,1/2 = U’le N [71/2

Now we define new trivializations {(ﬁi/, Qi) Yireruqu41y of B Also, we denote
by (Up x (/T/l\tm x Tp), gogo)) and (Us X (/T/l\tm x Tp), go(Ulo)o) the trivializations of
induced by (2.1). We define @;s (for i/ € (I U {v + 1}) \ {occ}) by the composition

(1) _
~ ‘pUO‘U., ,,1

P
~ i 2 i D2
(Yoriam El|ﬁz’ O% OA .

il i/

We define @, by the composition

P

Wue)o 600 2 Po 2
(9@ (9@

Erlg

Uso oo

Then we have new trivializations {(Us, 3i)}s reru{v+1} of Ej. Let Q; be the con-

nection matrix of V L ext under the new trivialization @, :

~

1) Qp = Pyl dPy + PO o5 Pr for i € (TU{v+1})\ {oo},
Qoo = (G1Poo) 1 d(G1 Poc) + (G1P) Q) 15 (G1Pso).

Remark that € is diagonal until the xZ’j'_l—term for each i’ € I.
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Now we construct an integrable deformation of 61(311)4 oxt- Tor the fixed i € 1
and ! (0 <1 < n; —2), we define matrices By= (xy,) by
lt;
(O : )
507,)
0 7n1fH+1

56,7,
it 0
0 0
n; —Il—1

and B T ) =
x;z;fl 1 ( tz) o

Bétti (xtz) =

For each i € TU{v + 1}, we set (El)i/7€ = Eﬂﬁ_/ ®c Cle], ﬁf, = Uy x Spec C[e],
and U5 ;, = Us N U7, We define matrices P and P§ by

K2

(3.14) P7 = P(id + By (z¢,)) and P =Py®id

(where i’ € (I'\{i})U{vr+1}), respectively. In the argument below, we will replace
PS with G PS,. The matrices give isomorphisms

Og% , ®c Cle] ,__> (9@2 ®C Cle]

for each i},i, € I U {v + 1}. First we define a vector bundle (El) on P x
(th x Tp) x Spec C[e] by gluing {(E1): e tireru{v+1y as follows: we glue (El)
and (E\l)ié’g (#},45 € IU{v + 1}) by the composition

@7’"[7, ®1 (Ps 71Ps

~ U 1
(Buiely, 0% 02 gecl] 2 022 gocp
il i, Uir ity il
@;éllﬁi, . QL
——2— (E1)iyelp-

Y
iy

By construction, we have (El)ei ® C[e]/(¢) = E1. Second we define a morphism

Lty

g/aej—j (El)ei —>(E1)9i ®Qa/ae

with the Leibniz rule. Here, Qa so0%, is the coherent subsheaf (2.19). We define
VS (i e ITUu{r+1}) as

Ve =d+Qy fori' e (I\{i})U{v+1},

(3.15)

VE=d+ 0, +5< 4

ox T, (Bezi,ti)dxti + [Qi’ Beli,rti}) + Bali,tqz de.

We can consider V5, (i € I U{v + 1}) as a morphism

% (El)glitwfjs (El)gi ‘UE ®Qa/60i |U5
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by using the trivialization

~

Pw ®1: (El)zﬁ. g = E1lg, ®c Cle] = 02 @c C[e].

We may glue {V5, };/erufp+1y- Finally, we obtain V¢ . by this gluing. Since Q;

8/00%,

and Bei are diagonal until the x”’fl—terms the negatlve parts of the relative
€
connectlons Ve o/007 and \Y o067, along the divisor ¢; are

08—% E) dq;:l 4+ 4 Hi:ti + 56(9?:%) ? dxﬁl 44 ezi_lati _ 0 day, ,
0 o) i) 0 0, ) xp 0 0,14/ 7t

i

ear’ti 0 ) o + 4 0?’“ 0 dzy, 4t eii_lvti 0 dwy;
0 O, ) o 0@%+wwh)xg4 0 0, 1)

respectively.
Let ES be the pull-back of E; under the projection (2.17). We consider a short
exact sequence

0— E/Hom((El)g’if.’Ef) — ’Hom((El)zﬁ ES) — End(E,) — 0.

Note that
67-[0m((E1)Zlit. ,E) 2 (e) ® End(Fy).

Since the bundle type is Op1 & Op1(1), we have Rlm,((c) ® End(E;)) = 0, which
means the rigidity of Op1 @ Op1(1). Here, 7 is the projection P! x (M, x Tp) —
My, x Ty. So we have a short exact sequence

0 — (e Hom((El)gﬁ,Ef)) — ("Hom((E\l)gﬁ LEY))

— w*(gnd(ﬁl)) —0.

Since -X/l\tm x Tp is affine, we have that
Hom((E1);e Ef) = T(My, x To,m(Hom((E1)je , EY)))
— T(My,, x T, m.(End(E)))) = End(E})

is surjective. Then we have a lift oy € Hom((El)ei ,El) of id € End(E}). This
lift @y is an isomorphism
T: (El)zlit = EE.

We consider a pair (EX, (p3h)* ) induced by ((El)ei ’va/aei ). By

is a horizontal lift of VD% ext with

g
9/00},,

construction, the pair (Efv(%_fl)* g/aei )
1,t;
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respect to 3/89jE Let m

(@}1)* o/00%, . Since @y is holomorphlc and invertible along the pole divisor of
The

be the relative connection induced by

the local formal data of (py')* is the same as in V¢

d/aai )
family of connections (ES, (px1)* Ve

a/aei 0/00},

01067, ) parametrlzed by (Mt,a xTg) X Spec Cle]

gives a map from the base space (/\/lt 5 x Tg) x SpecCle]| to the moduli space
Conngy,, g,)- By taking the composition with App defined in (2.13), we have a map

(3.16) (My.. x To) x Spec Cle] — My, x Tp.
Definition 3.5. Then we may define the vector field on M\t x Ty associated to
the map (3.16). We denote this vector field on Mt,a x Tg by (5IMD.

Let IMD (/\/lt x Tg) x SpecCle] — M\tm x Ty be the map induced by

ey ﬁeld 6IMD We have B = (id x f§¥D)*El. We denote the pull-back of
Vgﬁ oxt under the map id x fIMD by it

d+ 9 o +551MD(Q(1)M90)) on Up x (M

(817)  {d+Gy'dGy+ G 4 Gy

+eGy 151MD(Q§1> 00))G1 on Use x (Mg

x Tp) x Spec Cle],

ra

x Tg) x SpecC[e] .

ra

Since (ES, (id x fIMD) Vgﬁ oxt) 18 isomorphic to (E:, (pxh)* ), we have a

g/aeﬁti
lift of (id x fIMD) V](;I)J ext’

1
d+Q ) » )+551MD( Et3a790))

+THL\{D de on Uy x (My,. x Tg) x SpecC[e]
(318) {d+GildGi+GT'QY) 4G

+eGT 151MD(QE? on)G1

+G7 ITIMDGl de on Uy, X (M\td x Tg) x SpecCle] ,

which is a morphism EE — Es ® QL with the Leibniz rule. Then, since

a/aei
(E5, (¢ H* 5 Jo0* ) is relativization of the horizontal lift, we have the equality
Lty

)

IMD (1) IMD o) IMD
(3.19) 0t Uay00) = ATGE" + 190, 0, o]

which means the integrable condition.
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§3.4. Integrable deformations associated to (T%):,,

First we fix i € {3,4,...,v}. Let

~(1 —~
N](:;LI)J _ d+ Qgtza,go) on Uy x (M,ira X Tg),
,ext d—+ G;l dG1 + G;lﬂgir)moo)(;l on Uy, X (th X Tg),

be the family (2.14). Let ¢; be the natural coordinate of (Tt)s,, X Tp and 9/0t; be
the vector field on (T%),, x Tp associated to t;. We will construct a horizontal lift
of %gﬂext with respect to 9/0t;.

For the fixed index i, we define a matrix By, (z) by

n71 A~
AP o(t;)
By, (z) = — bee 7] —
! ; ( 0 0, ) (@—t)m!
We define a vector bundle (El)i on P x (M\tra x Ty) x SpecCle] by the same

argument as in the construction of (£1)7. . That is, we replace Byz (z4,) in (3.14)
1.t i,t;

Tt

with By, (x). We define a morphism
Vasor,: (B, — (B, © R,

by gluing the connections

Ve =d+Qy fori’ € (I\{i})U{v+1},
SR 9 N
Vf =d+ Qi + E(ax (Btz) dmti + [Ql7 Btz]) + Bti d57
ti
as in the construction of Vg/agi in the previous section. Here, ;s (i’ € TU{v+1})
I,t;

is defined in (3.13). Now we check that the connection matrix of V5 is a section of
Q}?/@ti defined in (2.19). We set &y, == & — (t; +e0(t;)) = x4, — €d(t;). Since 2 = 0
and € de = 0, we may check the equalities

9(-)’:;:1. 0 dit’7+...+ 07—'7"—1‘*17751‘ 0 Czjti
0" t,) 7 0" 0) T
(% 0 e (O O ) dm

0 00—7t7 (mti_{s&(ti))m 0 0;7:—1,251’ xti_g(s(ti>

(%5 0 Y dtade (65, 0 ) St de
0 oo_vtl le O e;i—l,ti xti
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_ 90+,1‘4 0 d.’Eti by 9:;71715 0 d(IJti
0 aati le 0 9;171 t: ) Tt
s 0 [ (05, 0\ 1 o+ 0 1
— &b ti 0,t; . n;—1,t; — | da;.
o )5£Ct7; (( 0 9@) zy - +< 0 0,14 ) 2, i

+ Bti de
Og,. 0\ day, oF ., 0 dxy, 0
_ (96 RN LA B.)d
< 0 007,151 I?z'l " 0 9,;.,1’“ Lt; 8mt ( t) o
+ Bti dE.

Moreover, SAIZ and By, are diagonal until the xzfl—terms. So we have that

§¢+E( 9

(By,) dzy, + [§i7Bti]) + By, de
da,

is a section of ﬁé/é)t
As in the previous section, EE ~ (El) . If we consider the pull back of va/at

under this isomorphism, then we have a horizontal lift of VDL ot With respect
to 0/0t;. If we take a relativization of this horizontal lift, we have a family of
connections parametrized by (M\tra x Tp) x SpecCle]. This family gives a map
from the base space (M\tra x Tg) x Spec Cle] to the moduli space &R(tm,go). By
taking composition with A/[;) defined in (2.13), we have a map

(3.20) (M\t x Tg) X Spec Cle] — M\tra x To.

ra

Definition 3.6. Then we may define the vector field on M\tra x Ty associated to
the map (3.20). We denote this vector field on My, x Ty by 6P,
Let
FMP (My,. x Tg) x SpecCle] — My, x Tp

be the map induced by the vector field §MP. We have Ef = (id x f,}iMD)*El. We
denote the pull-back of ﬁgg,ext under the map id x fgl_MD by

+ Q) o) +e0MP@f) 5 ) on Uy x (M,

(t
(321)  §d+GrltdGy+ GO 4G

+eGr PP (Qf) o )G on Use x (My

x Tg) x Spec Cle],

ra

x Tg) x SpecCle].

ra
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As in the previous section, we have a lift of (id x fMP)* 68{ oxct

1) 1)
d + Q(txa 00) + E(SIMD( (tza700))
+TMP de on Uy x (My,, x Tg) x SpecCle],
5 -1 161
(322) 0 d+G1dG + Gy 4 Gh
+601‘16%?AD(9E? ye
+GTITIMP G de on Uy X (My,, x Tg) x SpecCle],

which is a morphism EE — E8 ® Qa Jot: with the Leibniz rule and the equality

(3.23) SMP (O

() = T8+ ()

IMD
(tra,00)’ T ]

which means the integrable condition.

§3.5. Isomonodromy 2-form

Definition 3.7. Let 51 and 52 be vector fields on M\tm X Tp, which is isomorphic

to the extended moduli space @1@ 00)- We fix a formal fundamental matrix
solution ; of (d + Q(n 2) ,))¥i =0at x =1; as in Lemma 3.1. We take a funda-
mental matrix solutlon leqj of (d+ Q(" 20)0))¢q7 0 at = g; as in Lemma 2.11.

We define a 2-form & on M\t . X T as

(01, 02) : Zresz r, Tr(3(22 "mi?o))Aé(wnw;U

ZEI

n—3
(3.24) +- Zresx 0 TrOQ 5 ) A S (g, g1,
j 1

where T := {1,2,...,v,00}. Here we set S(A) A ()t = 61 (A)dy () ()~ —
o1(¥)(¥)~o2(A).

Since Qi__ui is constant on My, x Tp, 6(9i_17ti) = 0, we have

) 05 1, 0(t) .
5(9?;—1,@- /mtildxti> = M +4(c).

xr—t;

Here, ¢ is an integration constant. By the same argument as in Section 3.1, we
have that the residue of 5(9(” 2) ) Ad(bi); ! at T is well defined. By the same
argument as in Section 3.1, we may check that the right-hand side of (3.24) is
independent of the choices of ¥, and ;.

We will show a transformation formula (Lemma 3.8 below). We will use this
transformation formula for calculation of &(d1,d2). We show this transformation



222 A. Komyo

formula for general situations. Let C' be a smooth projective curve over C and
let M be an algebraic variety over C. Let U be an analytic open subset of C.
Let = be a parameter on U. Let d + Adx be a family of connections on 032
parameterized by M. Assume we can take a (formal) fundamental matrix solution
¥ of (d+ Adzx)y = 0, that is, there exists 1 € End(Oj’if) ® @U,O such that
dy + A dx = 0. Here, d means the relative exterior derivative on the projection
UxM— M.

Lemma 3.8. Let §; and 02 be vector fields on M. Let g be a family of matrices
parameterized by M such that the entries of the matriz ¢,, for m € M are mero-
morphic functions on U. We assume that we can define g~', which is the family
of matrices parameterized by M such that for m € M, gyn(97 )m = id and the
entries of (g~1)m are meromorphic functions onU. Set A/ =g Vdg+¢g 'Ag and
Y = g~ Y. Moreover, set u) = §,(g)g~" and aY) = g='6,(g) for 1 € {1,2}.

Then we have the equality

Tr(5(A’) NS (")) = Te(8(A) Ad(w)p)
Tr(6,(A)a? — u(1)52(A')) Tr(01 (A)u® — uM oy (A))
(3.25) +Tr(d P Moy (1) — v~ @6 (1)),

Proof. Since ¢/ = g~ 11, we have the equalities

Tr(6(A") Ad(¢")(¢')~ ):Tr(é(A’)/\d( _11/1)11) 9)
= Tr(6(A") A Y6(g)g T g+ g o(v)w T g))
(3.26) =Tr(6(A") A 15( )+ 978y g)).

We calculate Tr(§(A") A (g716()p1g)) as

Tr(5(A) A (g7 ()¢ 1g))
= Tr(d6(g~"dg + g~ Ag) A (g7 6(¥)y 1 g))
= Tr((—g~'0(9)g"dg + g~ 10(dg)) A (g7 6(¢)y 1 g))
+Tr((—g'6(9)g~ " Ag+g~"0(A)g + g~ Ad(9)) A (g~ 6(¥)yg))
= Tr(d(5(9)g~ ) B()p~1) = Tr((6(g)g " A) A (6(¥)p~ 1))
(3.27) + Tr(6(A) A (B()™ 1) + Tr((Ad(g)g™") A (5(w)ph)).
By equalities (3.26) and (3.27), we have
Tr(6(A") AS(W) (")) + Tr(8(A") A (g7 10(g))) — Tr(6(A) A (5(¥)y 1))
Tr(d(6(g)g~") A (6(¥)p 1)
(3.28) — Tr((8(9)g~ " A) A (B() 1)) + Tr((Ad(g)g ™) A (8()p~ ).
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We calculate Tr(d(y~ uMda(v) — = uP 6, () as

Tr(d(y~ uM oy (¢) — ¢~ a6y (1))
= Tr(—¢~ 'd(¥)y uM o (1) + ¢~ Hd(uM)da(v) + 9 uM by (de))
— Tr(—y ™" d@)g u® 8y () + 4~ d(u®) 8y () + ¢~ a6y (dv))
= Tr(Au 5 ()" + d(uM)da ()" — uM oy (Ag)ypt)
— Tr(Au® 8y (V)" + d(u®)d, ()" — <2>51<Aw> )
= Tr((A5(9)g™") A (6() ™) + Tr(d(3(9)g ™) A (5(x) ")
Tr(uM o2 (A) — u® 1 (A) +u Ay (1)~ — u<2>A51( )
=Tr((Ad(g)g™") A (6()y™ 1)) + Tr(d(5(g)g~") A )
(3.29) +Tr(5(A) A (5(9)g™ ")) — Tr((6(9)g™ " A) A (5(¢ > 1)).

)
v
)

Here, the second equality follows from dy = —Awy. Equality (3.25) follows from
equalities (3.28) and (3.29). O

Proposition 3.9. Let G and Go, be the matrices defined in (2.7). Set v; =
G 1; for any i € Iy, \ {00} and Voo == G pso. We have the equality

(3.30) &by, 89) = Zresz 0 T3 g0)) A O () ).

Proof. By Proposition 2.4, we have 5\283&790) =G-! dé—l—é‘lﬁgzr:’ze)o)é. Set ug) =
§(G)G™1 and ﬂg) = G 16,(G) for I € {1,2}. Set @qu = é‘lwqj for any j €
{1,2,...,n—3}. We calculate the difference between the right- and left-hand sides
of (3.30). By Lemma 2.11, we have {/JZM = é‘l@quq]. (r)Ag; (z). We calculate
é*lcqu as

_ 10 10 1o\ /1 o
G”%Z( Qa(z) 1 )( ) ( Q2(z)+p; )( 1 )
“o o) \Pil oY) am

Since Q2(g;) = p;j, we may remove a pole of % at g;. By Lemma 2.11, we

10 \_
<0 1 ) :qg' (x)AQj (l‘)
Q1(x)

at ¢; is removable. So we have that Tr(d(ﬁ&)a,eo)) A (5(1qu)(1ij)_1) has no pole at
g; (j=1,2,...,n—23). Then the difference between the right- and left-hand sides

may check that the pole of
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of (3.30) is equal to

fzres“ (Tr(3(2,). g)) A (i) (i) ™) = Tr(8(Qfy 5 ) A d(w)w; )

el
n—3
1 AN 7 e —
+3 Z resq—g, (Tr(0(Qy) o)) A 8(tg,)(1hg,) ™)

(3.31) — Te(3(Ql o) A 8(g, )03 h)).
By equation (3.25), the difference (3.31) is equal to

1 ¢ ~(2)  ~(1) 1)
N 5 Z resx:ti (Tr(51 (Qgtja»eo))u( ) ( 62(Qgtr3100)))

el
—Tr(51(Q(" 29)0)) @ _ (1)5( (traﬁ)o))))
n—3
= 5 D resey, (T(1(Qf) 6,008 — a5 0@ 4,))
j=1
(3.32) — Tr(0 (R g us) —uG 6a(Q0 5 )

Here, note that the third term of the right-hand side of (3.25) is an exact form.
Then the residue of this third term vanishes. We claim that (3. 32) vanishes. We
show this claim as follows. Set u() = §(G)Gt and u(l) = G16/(Gx)

for I € {1,2}. Since Go = anzGGl, we have ﬁg) = Gila l)G and u!. )Oo =

G;iQUg)Gn,g for [ = 1,2. The meromorphic differential form

~(2) _
§Tr((51( tmoo))u 62( (tm,go)»

1 n A(n— o
-3 Tr(al(agtmi)o))u<3> —ul0(Qf 0 ) on Uy x (My,, x Tp),

1
= Te (G761 () )Gy u3>

(3.33) {2 o0
o o0
g G102y, 0,)G1)
n—2 2
—§Tr(G 201 )G gu%{m

,ug’)ooa 202(Qfy 5 )G 2) on Uso x (M

X Tg),

ra

is a family of global meromorphic differential forms on P! parametrized by M\tra X
Ty. The differential forms have poles at only ¢, and ¢; (i € [ and j = 1,2,...,
n — 3). The sums of residues (3.32) are just the sums of all residues of the global
meromorphic differential forms (3.33) on P! parametrized by My, x Ty. By the
residue theorem, we have that (3.32) is zero. Finally, we obtain equality (3.30). O
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Theorem 3.10. For the vector field 5IMD, we have @(63\1@, 5) = 0 for any vector
1,t; o
field 6 € @thsz,AMoreover, for the vector field 52VID’ we have @(62\@’5) =0

for any vector field ¢ € GﬂtmxTe'

Proof. By equality (3.30), we have

B(0749) =%Zrebz t/Tr((SIMD(QEr oSN

el
~ 1
(3.34) — P (W) (W) 'O, g,))-
Here, 5;1;/“3 (ﬁgi)de )) appears in the e-term of the morphism (3.17).

Now we consider replacement of (5IMD( i/)(lzi/)_l in (3.34) for each ¢’ € I.
We will show that we may replace 5}91\;”3(1/%’)(7;1'/)*1 with T?fD as follows. Here,
Lit; 1,t;

TIMD appeared in (3.18). We take an analytic open subset V' of M\tm x Tp. We

take an inverse image of V' under the projection

Pl - Pl X (M\t X Tg) — M\tra X Tg.

ra

Let ﬁf,n (i € I) be an analytic open subset of the inverse image pp,' (V) such that
tir N plgl (V) C Aan and the fibers of p]p1|Aan. Aan — V for each point of V are
unit disks such that z;, gives a coordinate of the unit disks. Let U?" be an analytic
open subset of C! = SpecC[t] such that 0 € U2 and U is small enough. We
consider the restriction of (3.17) to A2" x Spec C[e]. This is a morphism

Eﬂ&;pxspecu ] (EE ® Qa/aei )|8§,nxspec<c[s]-
Let Ef be the pull-back of F; under the first projection
& UM s P x (My,, x To) X U™ — P,

Let D(to). be the pull-back of D(%) under the composition (2.18). We take a

divisor D(io)t on A% x U such that the pull-back of D(y); under the map A‘m X

SpecCle] — Aa“ x UM is D(ty)- |Aa"><SpeCC[ - Here, this map A x Spec Cle] —

A x U™ is given by the substitution ¢ = e. We take a relative connection on Et
it 1
El — El ® QAanUdn/th XTGXUAII(D(tO)t)

such that the pull-back of this relative connection on Ef under the map ﬁ‘j,“ X

Spec Cle] — A% x U™ is just the restriction of (3.17). We denote the connection
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matrix of the relative connection by QE 60)(:17t ,,t), where

Ol A1)
o rd,@o)(act" 0) = Q4. 00) |Ba,"7
9 50

91 U(ten,00) (Pt =0 —6IMD( D

(trayeo)) |3?/n :

Let & C E?,n be a family of sufficiently small sectors in 3?,“ — M\tra x Ty. We
take a fundamental matrix solution Wg (¢, ,t) on X x U™ of the connection

/\

d\:[/i (xti’ s ) Q rd’oo)(fEt . ,t)\Ili(l'ti, s t) =0

with uniform asymptotic relation

~

Ue(x¢,,,t) exp(A; (w,,t) ~ Py(xg,,t) (re, =0, ¢, € 2).
Here we set
Ai_/ (xti/) = nli:l ( Lty fxt . dmtﬂ _ 7(3L,~/+l >
1=0 0 00, )z, " dry,
and we take

ﬁi’(xti/at) = ﬁi',o(t) + 131‘/,1(75)%, +eey

ni—1 7L/+l
i 9"1‘ t d ; 0
A (e t) = 3 ( e () J e, dy )

/+l
=0 0 lt il f xt o di[:ti,
so that the expansions of A}, (¢, ,¢) and Py (z4,,€) with respect to € are

Az_’ (Z‘ti, ) 6) = Az_’ (xti/) + eagl\i/ltD (Al_/ (l‘ti/ ))a

Py (xy,,€) = qzi, exp(A; (x¢,,)) + 55IMD (wz' exp(A;, (¢, )))
The uniform asymptotic relation means that

_ N 3 y
lim H\II (xt i’ )eXp(Ai’ (xti/ ) t)) - Zj:o Pﬂjl‘iU H

Tt —0 |Iti’
zt'i’ GFi

=0 (uniformly)

for any positive integer V. We may check that

6‘1’ (.’I}t,, )

(3.35) 5

-1 IMD (7 \(J \—1
W ()| ~ P () ()
By the integrable condition (3.19), we may take a fundamental matrix solution

\I,i%at(mti/,t) on 3 x U™ of the connection d + ﬁ&)a,eo)(xtwt) = 0 such that
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\Il%at(wti,,t) satisfies \I/%at(zti,,O) = WUg(zy,,0) and
8\11%“ (w¢,,,t)
ot

There exists a matrix Cy,(t) such that Ci,(t) is independent of z;, and
UL (g, ,t) = Ug(we,,t)Cy,, (t). We calculate TIMD\E as

a _
\Ifzat(l't,,t) 1 IMD'E'

o=

oWhat (g, 1)

IMD _ p)) flat -1
Tezi,f,i s = ot \Ili (@e,t) t=0
V(1) .
B ot s, ) ’t:O
o, (1) . ., 5
(3.36) + W (ar, 0 (=5 Cr, (07| W, 007
Set
aCy, (1)

éti/ (xti/) = eXp(*A; (xti/ s t))(

By equalities (3.35) and (3.36) we have

Co (07" exp(A7 (21, 1))

ot t=0

éti/ (xti/) ~ ﬁi/ (l't‘/ ) 0) TIMD (xt 7y O)

= Py(ar, >*16§§{P<w§/>(wzl>*lﬁ ((@1,,0).

By this asymptotic relation, we have that J:Z,’ 5”, (7, ) is bounded on 5 x .
8Ct (1)

Then we may check that ( Ct, (t)7Y)]¢i=o is a triangular matrix and that

Ci. o(Te,) ~ C’dlag, where Cdlag is a diagonal matrix and C’dlag is independent
of zy,. By comblnmg this asymptotlc relation, asymptotic relatlon (3.35), and
equality (3.36), we have the asymptotic relation

(8:37)  GEP W) (bi) " ~ TP = P, 0)CT P (i, ,0)
So we have
res;—¢,, Tr((SIMD(Qg) )3(?@')(1@’)71 - 6;%’?(%)(Ji/)*lé(ﬁ(ifa,eo)))
= IeSy=t, (6IMD( 90)) (wz )(Ji’)_l IMD&(Q& a790))>
+vesy—y, Te(Py(wr,,, 0)C1 8 Py (wr,,, 0)16(Q) ,)))
= res;—t, (5IMD( (tmeo)) 3(thir) (i) ™)

(3.38) —Tes,—y,, Tr(TIMDé(QEiL,%)))-
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Here we may check the last equality as follows. By the same calculations as in
(3.2), we have
D ~diag 15 N (1)
res;—t, Tr(Py(24,,0)Cy " Py (24,,0)” 1o(Q (ta.00)))
= resy—r,, Tr(dy Cf "4, 15(98 00)))
= resg—r, Tr(CP® d((di) "' 6(vs))).
Here, remark that éii,ag and exp(—A;, (x4, )) are diagonal, and Yy = Py (¢,,,0) x
exp(—A; (zy,)). This is equal to
resq—r, Tr(Cd(exp(—A; (w1,) " Py (wr,,0) " 8(Py (w1, 0)) exp(—Aj (x¢,))))
+resg—, Tr <C~’Siag d(exp(—A; (z,)) " (exp( —Ay (xt/)))))
= Tes;— t,Tr(Ctdl/agdA (¢ ) (z T, ( (xt,,O)))
— resg—r, Tr(CiM8 Py (xy,,0) 7 0(Py (24, 0)) dA; (4,,))
+resg—y, Te(Ci8 d(Py (x4,,,0)~10(Py (2¢,,0))))
+ resg— =t TI'( dlagd( ( z/ Itz’) ))
= resy—, Tr(Cy1% d(Py (, ) L5(Py(24,,,0))))
(3.39) -+ resp—y, Tr(C7%d(5 ( v (21,))))-

0)~"!
(

Since éii,ag is independent of x;,, the last line of (3.39) is zero. Then we have
the last equality of (3.38). This means that we may replace (%th (yr) (b )~ with
TIMD. b

Next we will calculate Tr(6IMD(Q(1) 00))5(@/)(%/)—1). By taking variations

(tra
of the both sides of dwlz =— 83& O)T/Ji/, we have
(3.40) Q) )0 (0i) (i)™t = =d(8(di) (thir) T = 8y o)

By the integrable condition (3.19), we have
Te(GE° (), 0))0i)(B0) ™)
= Tr((d X + 0f,) g, TRPDIWe) () ™)
= Te(d(TREP)0(i) (i) ™+ Oy, g TREDO(Wi)(Bi) 7!

TIMDQELL o0) @y)(wm- )
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T (A(CEP)8 (W) ()™ = b (bir) M TS (W) ()™
YR (3 ) () + IMD6<9<tm,90>>>
= Tr(d <Tl¥f) (Do) (i) ™" + TP d(O(Di) (W) !
+ TP (Ge) () ™)
+Tr(TIMD6( +00)
(3.41) = Tr(d(Y IMDé(%)(%) ))+TY(TIMD5(Q< ! o)

Here, the third equality of (3.41) is given by (3.40). By combining (3.38) and
(3.41), we have the equalities

t,TrwIMD(nE; 00)0(0) (D)™ = B () () 18 ,)))
= xes,—, TGP0, 0,))0(Wi) () ™)
—res,y, Tr(TIMDd(QEi)MQO)))
(3.42) = res,—, Tr(d(T IMD5(¢Z)(W)’1)) =0.

By combining (3.34) and (3.42), we have

1 LN T N
(6IMD 5) = 5 Z reS,;— t, TI‘((SIMD(Qgiza790))5(¢i’)(¢i/) !
i'el ~ a o~
= P () (80) Q) 6,))
=0.

Next we will show that @(ﬁlMD, 5) = 0 for any 4. For this purpose, we show
that

~ A 1 o~ o~
B, 8) = 5 Y resp—s, TGP (), 6,))3(80) (W)~

el
(3.43) TIMDé(le o))

for any 4. Here, TB_YID appeared in (3.22). We define ﬁ?,n and U as above. Let
D(ty). be the pull-back of D(ty) under the composition (2.18) with respect to the
vector field 8/0t;. We define a divisor D (&), on A% x U™ for this divisor D(o)..
We take a vector bundle E! on ﬁ?,n x UM and a relative connection

ot 1
El — El Y QAanUdn/MtrmXTeXUdn(D(tO)t)
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corresponding to (3.21). We denote the connection matrix of the relative connec-
. ¢! . ¢!

tion by Qgtr)a,eo)(xti/ ,t), where the expansion of Qgtr)a,oo)(xt , —e6iMP(t), ) with

respect to € is equal to

o

1
(tra’90)|3?n + 6IMD( ( )

(tmoo>)‘£j,“'

Let & C ﬁ‘;,“ be a family of sufficiently small sectors in 3?}1 — /T/l\tm x Tg. We
take a fundamental matrix solution Wg (2, ,t) on X x U™ of the connection

~

AV (2, 1) + Q)

(tr0,00) (Tt ) W5 (@1 1) = 0

with uniform asymptotic relation

~

(3.44) Ue(@,,t) exp(Ay (z1,,1)) ~ Pu(we,,t) (2, — 0,2, €).

Here we define A_(a:t,,, t) and P (z4,,t) so that the expansions of A} (x;, —
e6iMP(t;),¢) and 2y (z¢, — e6MP (ty), €) with respect to ¢ are

A (e, — e8P (t),€) = Ay (we,) + 6, (A7 (,,)),
Py (wr, — 0P (tr), €) = P exp(Ag (w1,,)) + e (i exp(A (w1,,))).
By the asymptotic relation (3.44) and the same argument as above, we have
SO (5 ) (Gi) ™t ~ TR — By (g, 0)C%5 By, 0)

as in (3.37). Here, Cf '%8 is a diagonal matrix and C’d *% is independent of z;,. By
this asymptotic relation, we may check that (3.43) is as above. By the integrable
condition (3.23), we may check that

B(6T™MP | §) Zresx b TeOPIP Q) Y3 ) (i)~ = TMPFQ) )

ze]
=0

for any 5. O

By Theorems 3.4 and 3.10, we have that the 2-form & is the isomonodromy
2-form.
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§3.6. Hamiltonian systems

First, we define Hamiltonians on /\//7,5ra x Ty as follows. By Lemma 3.1 we have the
diagonalization
s = A0 o0/

(97—;—1,1&,- 0 )
0o 6 ..
ng Ty, +--+ ni—1,t; dr

:Cti Tt.

Li

o, 0 05 0 .
Tyt dx;. 2n;—1,t; m—ld .
* ( 0 em,t) oot ( 0 6y, )" T

Here we set Q%8 = (&,2;) "1 d(®,Z;) + (CIJZ-E,-)_lQEZ;QB)O)( ;Zi). Remark that we

have an equation (d + Q?;ag) exp(—A;(2,)) = 0. We set
—n;+k
A () = i O fx ot s o 0 _ntk :
Zk:'ni ok,ti fxti ‘ dl’t,',

Definition 3.11. For each ¢ € I;;, and each [ (0 <[ < n; — 2), we define rational
functions Hyx on My, x Ty as
i,t;

i

Hyp = —[the coefficient of the x?j—l_l—term of the (1,1)-entry of A} (,)]
+
_ 02m—l—2,ti
n; — [—1 ’
Hy- = —[the coefficient of the xZ"_l_l—term of the (2,2)-entry of Aj (z4,)]
agnq—l 2,t;
—1-1

We call H 0 the Hamiltonian associated to Hft
i ti

Definition 3.12. For each i € {3,4,...,v}, put )\<2n1 (z) =" Gi -

t;)~™*! dx. We define a rational function H;, on th x Ty as

H,

i

1 ia,
= §resﬂl:ti (TI"(Q;{ g>2)

n;—1 n;—1
_ + gt
- Z Ol,t,i02ni—l—1,t Z 91 i 2n@—l 1,t;°
1=0
We call H;, the Hamiltonian associated to t;.

We will give a description of integrable deformations by using these Hamilto-
nians. This description is derived by calculation of the isomonodromy 2-form &.
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Now we prepare a lemma for calculation of the isomonodromy 2-form &. Let ¢ be a
component of the divisor D and (Uy, x;) be a couple of an affine open subset such
that t € Uy and z; = & — t. Let Q be an element of gl(2,C) ® Qf, (D + Dapp) ®

O M, xTo’ which has an expansion at ¢ as

Qod W d Qp,—1d
Q= Omxt :z—xlt ...+M+...’
" Tt Tt
where Qy, € gl(2,C) @055, w1, Let g be an element of End(0%? ) such

U x (th xTg)
that g has an expansion at t as

(3.45) g=go+g1xe+ -+ gnxit+-,

®2
where g, € End(OthxTe) .

Lemma 3.13. Let 31 and 52 be vector fields on an open subset of M\tra x Ty such
that 2 and g are defined on this open subset. Let ¢ be a formal solution of d+2 =0
at t. We assume that

e O, €gl(2,0)® W;i,GO(O(Tt)thTe) fork=0,1,....,ny — 1,
® (i € Snd(wgiﬂo (O(Tt)traXTe)@z) fO'f' k= 0, ]., N 1 ].,

e we can define the inverse matriz gy ' € End(ﬂ't_rieo(O(Tt)tmXTS)@Q) of go,

the (1,1)- and (2,2)-entries of gy *gn, vanish,
g(;lQOgO 1$ a diagonal matriz, and
51()~t and bo()~t are formally meromorphic at t.

If we set Q¥ = g~ Vdg + g~ 'Qg and ¢ = g~ ', then the difference
res,— Tr(5() A 6() (1) ™) — res,—; Tr(6(2) A d(¥) (1) ™)

is a section of 7rt_i 00 (Q?Tt)t X T)-

Proof. Put 6(2) A d(1h)~" = d1(2)d2(¥) () ™" — 01(1) (1) "102(€). By Lemma
3.8, we have the equality

Tr(0() A (W) (W) h) — Tr(5(Q) A (b))
:—Tr(Sl( )11 1)52( ))—Tr(Sl(Q)u(Q)—u(l)SQ(Q))
(3.46) Tr(d(y 1u<”62(w)—w—lu@)&w))),

where u(® = §;(g)g! and @) = g=15,(g) for i € {1,2}. We set &, = &, €

@(M\traXTe)/((Tt)traXTe). We will show that the residue of (3.46) at ¢ vanishes. We
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consider the residues of the first term and the second term of the right-hand side
of (3.46). We calculate 6,(€) as

82(Y) = 02((g5 " Qogo)( — t) ™) da + - - -
= g5 'Qogoda((x — )™ dx + d2(gy *Qogo) (z — )™ dx + - --
= ntiSQ(t)g()_lgogO(x —t) "y 4 32(90_19090)@ — )" dr
So we have that the variation §5(€') has a pole of order ny + 1 at ¢ and the leading

coefficient of d5(€') is the diagonal matrix nyd, (t)g5 *Q0go- Since d; is an element

of e(ﬁtmxTe)/((Tt)tmxTe)’ we may check that d;(Q)@(®) is holomorphic at t. We

calculate the residue of the first term as

—resg—g Tr(81 ()@ — aM5y(Q)) = resy—; Tr(aMds(Q))
= n4d2(t) Tr(gg " 61(gm, )90 " Q0go)
(3.47) = 1402 (t) Tr(81(95 " 9n. )90 Q0go)-
Since the diagonal entries of g, g, vanish and do 'Q0go is a diagonal matrix, the
residue (3.47) is zero. Next we calculate the residue of the second term as
— resg—; Tr(01 (Q)u® —uM s (Q))

= res,— Tr(61(9)g~12(92))

= res,— Tr(g701(9) (929" Qg) — 82(97 )29 — 7' Q02(9)))

= 1402 (t) Tr(gg 61 (9n. )9 ' R0g0) = 0.
Here, remark that d1(g) € O(z}"*). Finally, the residue of the third term of (3.46)
at t is zero, since Tr(¢¥LuM by (1) — v Lu® 61 (1)) is formally meromorphic at ¢.

Then we have that the residue of (3.25) at ¢ vanishes. We obtain the assertion of
this lemma. O

Theorem 3.14. Set P(z;t) = [[._,(z — t;)" and D;(x;t,0) := D;(x) fori € I.
We put

n—3 v
. D L.
o = Zd( Py _Z z(%vtve) _Doo(Qj§t70)> A dg;

P(g;t) = (g —t:)™

j=1
’I’Li72
(348) D> > (dHgy AdOf, +dHy- AdOL)+ Y dHy Adt.
1€y 1=0 i€{3,4,...,v}

Then the difference @ — &' is a section of Tf o (Q%Tt)traXTe).
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Proof. Recall that @ is

fzresx W TG ) A S )

i€l

2 . _
+ = Zresz g, Tr(o QEZMO)O ) A d(thg, gt

The plan of the proof is as follows. First we will consider the first term of
this formula. We calculate the residue at ¢; for some (local) gauge transforma-
tion of d + ngam) We need to consider the difference between the residue
after taking the gauge transformation and the residue before taking the gauge
transformation. Here, the residue before taking the gauge transformation is just
res;—t, Tr(é(Q(n 2) ) AS(;)1h;7Y). To consider this difference, we will use Lemma
3.13. By calculatlon of the residue after taking the gauge transformation, we may
derive the second part of (3.48):

’I’Li72

Y > (dHye AdOf, +dH, AdO; )+ Y dHy Adb.
i€lun 1=0 o o i€{3,4,...,v}

Second we will calculate the second term (the residue of Tr(d (QE: 29)0))/\5 (Vg;)%g;")
at ¢ = ¢;) by the same argument as in the proof of Theorem 3.4. Then we may
derive the first part of (3.48):

n—3 v q t 0
S pliy -3 P b (40.0)) n
j=1 P(g;t) i=1 (a5 —

First, we consider the residue of Tr(§(QE" %9)0)) AS(1hi) 1) at t;. Now we take

diagonalizations of d + QE: 2) 60) until some degree term at each point t;. For ¢ € I,

2n;—1 i i
= (g ) 10 N Z ( g.))ll (fg_))lz .
' ' 01 po ()21 (68722
Here, the coefficient matrices of Z; S2ni= appear in Lemma 3.1 as the coefficient
(n 2) . We put

we put

S
t;

matrices of =; for the connection d + Q

Q; = (P,
Vi = (B,E;

[I]

n;—1 —<2n;—1 —<2n;— A(n—2 f—‘<2ni7
)L A(@ES T + (@) TG (@ET Y,
)_11/)7;7

<2
[
<2n

[I]
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where v); is the formal solution as in Lemma 3.1. We may describe §~21 as

q, 93’“ 0 dx T 9?{1_71’% 0 dx
! 0 007’151 (x —t;)™ 0 97;71’“ T —1t;

o, 0 0 0
TNz d - 2n;—1,t; —t. nifld
+ ( i 9;7“> T4+ < 0oy ., (z —t;) z

The residue part Gi,_ui of Q; is constant on M\tra x Tp. So we have S(Hi_ljti) =0
for any 6 € © Mo, xTo" We may check that the variation 31((21) is equal to

51(05,.) 0 81001 5. 0
(z—ti)™ . (z—ti)?
. 51(05.,.) dr + -+ . 5107, a)) dz
(x—ti)”i (I*ti)z

st ) 0
+ Tisti/ _ de + - --
( 0 61 (ani,ti)

51(93__1 t~) 0 i—1
n ni-1t) (z — ;)™ Lda
( 0 61(02ni71,ti)

o, o

. b 0 . niolbi
+ ni(Sl (tz) (z—t;)nit? - de+ -+ 0, (tz) (z—t;) B da
Lty n;—1,t;
0 (w—t;)mitt 0 (xz—t;)2

. 0 1. O
n;+1,t;

R +
_ (nz _ 1)51(ti) (92ni1,ti 0 > (x _ ti)m72 dr

0 02?7,1‘71,251‘

* %

— () (* *) (z — t:)" L dzx + O(a — t;)™.

{<2n;—1 .
We define \71" 7 (xy,) as

+ +
{S2ni—1 5, nitl 021, 1
it (%)—T_H(l“—ti) +"'+T($—ti)
+ 0y g log(e — ) + 05, (x — 1) + -+
03, 1.1,
+ —2na— Lt (J} — ti)m.

Uz
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On the other hand, the variation 8, (1;2)1;;1 is equal to

+
S(gm (g2 T gt ( =0 6( ) —52(&9(@,))> (g=2m—hH™!

_ —0a(AST T () ) 0
0 —0a (A (wy,))
+ 8o (ts) (: :) 24 O,

Here we set

<2n;—1 ,__ —=<2n;—1\-1 -
9; ° = ((I)Z‘—‘Z ‘ ) D,=;.

Since ds(A i" “xy,)) is equal to

02(0% 5,
(x—t;) " 4 4 2(7:1712“)(90 —t) !

. 6o(0F, |,
+ 52(931_)”)@ )+t M(m — )

0, (<0a(t) (= 1) 05y (<o (t)) (@ — )2
05 4, (—0at)) (@ —t;)
+ 07, (=02(t:)) + -+ + 03, L1, (= Sa(t)) (@ — )™ L,

02(65.1,)
—n; + 1

we may check that the residue Tr(d; (€2;)ds (%)w 1) at t; coincides with

<t 62(9 N — )
S (B
1€{0,1,...,2n;—2} ¢
\{n;—1}

N — 62(9771-7 — )
+ > (51(917“)”,2_1 /_21’“ )

1€{0,1,...,2n; —2}

\{ni—1}
L0 ) R
S S (e Y e M (/) Lo U/w))
1€{0,1,...,2n;,—1} v
\{ni}
— 2 52(9771,-7 — ) <t — — <t
+ > (ns —l)&htiél(ti)% - 51(9“1,)9%_1_17“52@1-))

1€{0,1,...,2n;—1}

\{ns}

+ Ri(§1(ti)52(ti),
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where R; is a rational function on /\//\ltm X Ty. We may check that

N A
> (=)

1€{0,1,...,2n;—2}

\{n;—1}
— S + 52(03:711,_1—27ti) K=y Sl(e;u—l—lti) 5o (6F
=Y 6o - %2(01.)
2 Lt -1 —~  ni- -1 Lt

and

+ 2 52(0§tni—l—1,t,i) 2 4 + 2
Z (ni — 1035, 01 (t;) — =0 — 51(075, )03, 114, 02(t:)

Tn; —1
1€{0,1,... 2n;—1}
\{ni}

n;—1 n;—1
= Sl(ti)&( Z Hli,ti02inill,ti) - 51( Z el%tiezinilui)é?(ti)a
1=0 =0

since 8(97?1-71,@) = 0. Remark that 6(t;) = 85(t;) = 0 for i = 0,1, 00. Then we
have

% Z resy—t, TI‘((;(ﬁz) A 5(1;1)1;;1)

iel
n172
(3 Yvaty, oy, +atty nan,)
i€lun 1=0
(3.49) + > dH, A dti) (81,85).
i€{3,4,...,v}
This is just the second part of (3.48). We may take ®; and E;Q"i_l(xti) so that
®,=52" "1 (x;,) satisfies the assumption of Lemma 3.13 (see Remark 3.2). Since
Q"2 also satisfies the assumption of Lemma 3.13, the difference between the

(tra,00)
residue (3.49) and the residue of

1 ~(n— - _
5 T 5) NS

at t; is zero if §; € @(ﬂtraxTe)/((Tt)tmxTe)‘

Second we calculate the residue of
cA(n—2 2 —
Tr(3(Q; - 50y) A 6, ),

at x = ¢;. First, 5(@2::29)0)) is described at x = g; as

S(QE::,?O)) = <A 0 8(1/AP(I;t))> 7

6(co)  0(do)
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/P ) = 3 5 (g )3t + Ol = ).

o) (@ —q)? = —a)? =
= oy
+ 2}: l}%( 73 (6,)) + O - 47).

Second, we consider 5(1/),1_7.)1/);7,1. By Lemma 2.11, we have
0(thg; g, = 8(Pg,Zq, (2))(Pg,Eq ()

0 0
+ (q)thqu' (1‘)) <0 —S(q])> ((I)qg'Eq]’ ('T>)_1'

r—qj

By using Lemma 2.11, we have the equality

10
®, =, =
qj q,(x) (pj 1)

Pj 1
T P(q;it) _2P(q;7t)
+ vt j v ) )(xq])
< P(q;it) 2Pfq_j;t) _Zl 1 (q77tq)7’ "‘Zk;e] q;— qk _DOO(qj)

+ O(I - qj)z.
By this description of ®,.Z, (z), we may check that the constant term of the

expansion of 0(®4, =, (x)) at ¢; has the description

1
00 ~ Pl P
—6(q; Pt A

P(q_]7t)
Since s
- Dl(l‘) = —1
4 Do () = do — ;
—t;)m ; T —qj

i=1
the coefficient of the (x—g;)-term of the expansion of §(®,; =4, (x)) has the descrip-

tion

<* 0 )—5(qj) (I:>+<* 2 2ui= 18;( w0t ))

I(py 5(qr)
* 2P<qj,t> + 2kt @)
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Here, the (2, 2)-entry z3, of the third matrix is
—2

p;;;ti(P(qu;t))s(m_zyj(fg‘ji)<qj>s<ti>)— 3 (g‘lj;i(qm(eii)),

=3 i€lyn =0

and we put the entries having §(g;) together in the second matrices. Moreover,
we may check that the constant term of the expansion of (@4, 2, ()~ ! at ¢; is
(_i,j ?) and the coefficient of the (z — g;)-term of the expansion of (®4,Z,, (z))

has the description

_ < 2P(g5;t) Di )2P(qj;t) ) )
Pj v i\dj :
* P(gjit) 21 (@t T Dot G—ak Do (q5)

By the calculation of §(®4,Z,,(x)) and (®g,Z, (z))"!, we may show that
5(<I)Q_7‘E’Qj (x))(q)%‘Eq]’ (1’))71 is

( zﬁiq”w) ( i ) (2 — ;) + Oz — q;)°
43 3(p; § T —q;)+O0(x—q;)°.
* ok * P(q], ) +> (q](qqk)g + X2z

Here we put

T12 = f125(%‘)*% i( 1” )3(757)7

. "\ /0d .
Tag = f220(q;) — <8t(-) (qj)é(ti))
i=3 v
n;—2 v
\ ddy St Dy 0 1 A
a 0 5 a5 o(t; y
Z > ( 7 ()5 £))+ 5 > (prgo)5®)

where f12 and foe are rational functions on My, x Tp. Moreover, we may show
that

0 0 L
(®q,Eq, (2)) <0 —5(%)) (®g,5q, (@)~

r—qj

0 0 )
5(q;
) (ws( ) =0@)) | (v i) *g%‘“ %)) (2 - g)
“rO(x_qj)Qa
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where géQ), g12 , and g are rational functions on /\//\ltm X Ty. Finally, we have

1 n— N —
5 8e=q; Tr(é(ﬂ( ?9)0)) A 5(¢qj)wqj1)

_ 01(p;)da(q;)  a(py)or(ay) 3 01(qn)da(q;) 3 01(g;)02(qr)

P(g;:t) P(g;:t) 7 G-a)? (G a)?
+Dp; Z oL, ( Plg;:t )(5 (Q)&(%‘) - 52(ti)51(qj))
- Z 9% (43) B (13)32(a5) — Ba(40)61(a,))
B Z Z ado ,)gQ(Qj) - 52(9%)51(%))

i€lyn =0 ltz

Moreover, this is equal to

51(Pj) ) - i 1
<P(qj;t)+pjgati(Pq t

-y 51<qk>52<qj‘> —b1(4)%(ar)

Py

In the first and second terms of this formula, the exterior derivative of

pj ~ Di(g;3t,0)
N 2RO git.6
P(gj3t) z; (qj —ti)™ (4:1,)

on the extended moduli space M\tra X Ty appears. Here, remark that

n—3

> LD bt 0) =y - Y

x — ;)" T — Q;
i=1 i) j=1 9
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and the coeflicients of D;(x;t,0) and Do (z;t,0) are independent of the parame-
ters {(¢j, pj)}j=1.2....n—3. Since

ZZ 51 qk i _51(%)5 (qk) =0,

Py q—q;e)

we have

*ZreSw 0 Te(O Q5 ) A d(g, )0

_ (lesd(P(zj;t) _ z_ij(q_f)"’ - Dy t.0)) Ay ) Gre).

Jj=1

‘We obtain the assertion of this theorem. O

Corollary 3.15. Set n; = ﬁj_t) -3 % — D (gj;t,0). The vector
elds 1€ lyp and { = 0,1,...,n; — an ) 1 =3,4,...,v) have the
field JIMD e T, dl=0,1 2 d 62“3 = 3,4 h h

followmg Hamiltonian description:

6IMD 9 n3(8H9li,t7¢ ) aHolitl a)
1

07, on; dq;  Da; Om
(3.50)
0 OH;, 0 0OH;, 0
oo 0 S (om o om0
bi ot; jZ: on; dq;  dq; O,
respectively.

Proof. We can put
S = +Z X 2y 2,
0 Ltg 89i 9, 8(]]‘ gl,ti (3'77]'

- oS i)

By Theorem 3.14, the terms of dg;, dn; (j = 1,2,...,n — 3) of the 1-forms
(5IMD,*) and @(6MP, x) are

n—3 ' n—3 aH@ﬁ 8H9li
-X’, d Y d — dn, L dg;
Z( (_)L:t’:ti n; + oF, qj) — . < o n; + dq; %)7

Jj=
n—3
] j OHy, OH,
; o dq;

j=1 i=1 j
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respectively. By Theorem 3.10, we have the equalities

) 3H0l¢ ) 8Heli
X/ — _ ot , Y. = ti ,
i, on; i, dq;
7 _ _8Ht,i YJ:E _ 3Ht1 '
b anj ’ O, 8qj
Then we have the Hamiltonian description (3.50). O

Remark. In [15], the Hamiltonian systems of the two-dimensional (degenerated)
Garnier systems have been described by using the coordinates (g;, 7;)o<j<2, where
il = —%. In these cases, the 2-form

e

"\ D;i(q;:t,0)

d _
C L

— Doo(q53t,0)) A dgj,

which comes from the residue at an apparent singularity, is canceled by some terms
of the 2-form
n; — 2

>N (dHgs A g, +dH, - AdOL),

iel =0

which comes from the residues at unramified irregular singular points.

§4. Ramified irregular singularities

In this section we assume that I, # 0. For i € I,,, the leading coefficient Q,(0) is
a nontrivial Jordan block. In Section 4.1 we define a 2-form on the fiber My, ¢ by
Krichever’s formula [16, Sect. 5]. Remark that My, +,, is isomorphic to the moduli
space Conn, g.9,)- We show that this 2-form coincides with the symplectic form
(1.2). In Section 4.2 we will construct horizontal lifts of 681)1,ext' Let 98/06y 4, (i €
L., U =0,1,...,2n; — 3) be the vector fields on (T})¢,, X Tp. By the construction
of the horizontal lifts, we have the vector field 551;,4?_ on M\tra x Tp determined
;- Remark that My x Ty

i

by the integrable deformations with respect to 9/ 8971:7,5
is isomorphic to the extended moduli space @(trmgo). In Section 4.3 we define
a 2-form on M\t,.a x Ty by Krichever’s formula. We show that this 2-form is the
isomonodromy 2-form. In Section 4.4 we calculate this 2-form on M\t,,a x Ty by
using Diarra—Loray’s global normal form. Then we obtain an explicit formula for
this 2-form.
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For i € I'\ I,,, we fix a compatible framing ®; and take Hl(zti) as in Lemma
3.1. For each i € I,,, we consider the leading coefficient of Q(t 92)90) at t;:

(n—2) ( 0 Hj;éz(tl - tj)_nj> dl‘ti

(t(],e,eo) = 03 t :L.Z'L

= Lt —t5)™ 0ot

+ [higher-order terms].

This leading coefficient at ¢; is independent of {(g;,p;)}j=1,2,...n—3. We fix ®; €
GL(2,C) so that

00,1, 01,1, da
(4.1) 19520_02 )90)<I> (2) b, ?t’ [higher-order terms].

We call the matrix ®; a compatible framing at t;. If we have another ®, such that
the leading coefficient matrix of (®/)~ 105:0 02 )9 ,) @i is an upper triangular matrix
as in (4.1), then there exists an upper triangular matrix

Ct;,11 Ct;,12
Cy, = | "o o
i ( 0 Cm,ll)
such that ®, = ®;C;,. We define ¢; as 2, = (?. Let M, be the matrix (2.9). For

the compatible framing ®;, there exist a unique

e formal transformation

(12) Zi(ar,) = ( >+Z< é‘fi )x

and
o Oy, € T( My n,,, OMto,tra) (' >2n; —2and i € I,)

such that

(1) we have the equality

(@:Zi(wr,)) 7 d(®iZi(2,)) + (@iZi(20,) Q0 g (@:Zi(w,)

oy Bi
43 - dxy, )
(4:3) <33t1; Bi a; — 2ar )

where we set

o = 00,751- d%&i o 02l,ti diﬂti o 02ni72,ti dmti o
1 T mn; n_l bl
2 ) 2 z 2 T,
ﬁ' o al,ti dxti 92l+1,t1‘ d‘rti 027‘”73,&' dxti
L = gL, L 22Ot

s s T
2z 2z 2 T,
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(2) there exists a formal power series £((;) € I'(M¢y t,., Omy, ,, )[Ci] such that
1 i&§(Gi
(1.4 MZIE ()M, = (_Cg(_g)g e )> .

Indeed, the C;Q”“H— and C;2ni+2—terms of the expansion of

(4.5) (@:M¢,)™H d(®; M) + (B M, ) Tl g (C2)(®i M)

it2 torm are distinct. After

at ¢; = 0 are diagonal. The eigenvalues of the (;
the (i_2”1+2—term, we can diagonalize (4.5) by a matrix as in Lemma 3.1. By the
argument as in the proof of [5, Prop. 10], we may check that, in this situation,
this matrix has a form as in the right-hand side of (4.4). Moreover, by the gauge
transformation of this diagonal matrix by M, ! we have the right-hand side of

(4.3). We may check that

1 Gi&(G) —1
M. M
¢ <—Ci§(—Ci) 1 ) G

is invariant under replacing (; with —;. So we have Z;(x,). By Lemma 3.1, such
a Z;(xy,) is unique.

Let U, be an affine open subset on P! for i € I,, so that x, is a coordinate
on Uy,. Let Ue, be the inverse image of Uy, under the map Spec C[¢;] — Spec C[z,]
by x;, = (2. Let

fCi : UCi X MtOytra — Uy, ¥ Mto’tra

be the map induced by Spec C[¢;] — Spec C[zs,]. We consider the pull-back
(f( n— 2|Ut XMy, tra’fCL ‘Ut X Mz, t,a)

Let QE: 02)0 »)(¢?) be the pull-back of the connection matrix QE:O_,HQ,)G())MH X Mg tra
under the map fZ. Now we take a formal fundamental matrix solution of

d+ ngo_,:,)ﬂo)@?) = 0 as follows. We have the diagonalization

o Bi
MQ:I dMe, + M 2 deti M,
‘ ‘ xtiﬁi a; — 27y,
021,¢, dC; 0 02141,¢; dCi 0

2(n; —1)—1 2(n; —1)—2

_ } : G G
(4.6) = 0 621+, dl; + 0 _ O2141,¢; dGi
1=0,1,... C2("i_l)—1 1=0,1,... C?(ni—l)—2
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We set
islG) = SO B, [ G,
I’=0
(4.7) AN Nt (G) 0
Aale) "( 0 ANi-(¢))’

Pe, = ‘I)l‘—‘l(c )MC eXp( (Cl))
Then ¢, is a formal matrix solution of d + Q=2 (¢?) = 0, that is, (d +

(t0,0,600)
Qo) (€, = 0.
For i € I,,, we take a tuple (®;,Z;(x¢,)) of a compatible framing and a formal
transformation as above. We may give another formal fundamental matrix solution
1/)’41_ as follows. If we set

5ti (xtl) — Cti,odd ("I‘.tl) Cti,even ("L‘tl) _ cti,l cti,Q + cti,?) Cti,4 xti 4o ,
xti Cti,even (xtl) Cti,Odd (xtl) 0 Cti,l Cti,2 cti,3

then ~ ~
+ (élEZ(CZQ)CVVtz (xti)MC7.) 'Q :0,92 00)(®152(C22)5t1 (xtl)MC7.)

is also diagonal, since Miléti (¢?)M¢, is diagonal. Let &, 11(¢;) and &, 22((;) be
the formal power series such that

T [ En11(G) 0
MCi Ct (¢) M, = ( 0 Eti,22(Ci)) .

We define AL (¢/) b

() = fctull Cl (Cti,ll(Ci)) 0
Aj (Gir) = Air(Gir) ( 0 f5%',22(Ci)_1d(6ti722((i))> .

If we set
(4.8) W, = BiEi(C7)Cr (GF) My, exp(—A5(G),
we have another formal solution (d—l—QE:{;j}eo) ((3))1#2 = 0. There exists a diagonal

matrix ai such that 97, = 1), 6& and @i is independent of ¢;.
§4.1. Symplectic structure
Definition 4.1. Let §; and d5 be vector fields on

My b, © Sym" ™2 (Tot(24: (D)),
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which is isomorphic to the moduli space Conny, g.0,). We fix a (formal) funda-
mental matrix solution ; of (d + Qg:o 02)60))1#1 =0atax=t; foriel\I,asin

Lemma 3.1. We fix a fundamental matrix solution 1,; of (d + QEtO 0 90))¢qJ =0

at * = ¢; as in Lemma 2.11. Moreover, we take 1), defined in (4.7). We define a
2-form w on My, ¢, as

w(d1,02) = = Z resg—¢, Tr(d Q(? 02)9 )Aé(wi)zp;l)
ZEI\Ira

+i S resc,mo Te (800 2y (C2)) A 6, )z )

i€lra

1 n— _
(4.9) +3 Z resy—g, Tr(&(QEtO);)OO)) A 5(1/1%)1/}%1).
=1

Asin Section 3.1, we may check that the residue of (5( t 0 90) (Cz))/\é(zl)ct)wcl
at ¢; = 0 is well defined. Moreover, we may also check that the right-hand side of
(4.9) is independent of the choice of 4, and a formal solution v; (i € I'\ ). Let
¢, be another fundamental matrix solution (4.8). There exists a diagonal matrix
ai such that z//ci = ¢, E'ti and CN'tz. is independent of ;. By the same argument,
to check the independency of the choice of v;, we may check that the residue

(n—2 — . (n—2
of Tr(3(Q;.. 9{%)(42)) AO(e)ost) at G = 0 is equal to Tr(5(Q 9{%)(42))
Sy, )(g,)~") at G = 0.

Lemma 4.2. For any vector field § on My, , the formal series 6(1&@)1#61
descends under the ramification x;, = (2.

Proof. We consider ¢, M, !, We decompose A;(¢;) into the odd-degree part, the
even-degree part, and the logarithmic term:

_ Xodd(Ci) 0 5\even(Ci) 0
Ai(g)‘( 0 xodd(g)>+< 0 Xeven(ci)>

n O2n, 2,1, log((;) 0
0 020, —2,t,108(Ci) |

Since

e -1 _ . 0 Odd( )/Cl even(Ci) R 0
Ml = (cmodd@» 0 >+< 0 Aeven«i))

1 927“,—2,151: log(CE) 0
+ = 2 |
2 0 O2n,; 2,1, 10g(¢})
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we may check that M, A;((;) M, ! descends under the ramification z;, = ¢?. Since

e, Mgt = ®Ei(CF) Me, exp(—Air (Gr)) M
= 0,5(¢7) exp(—M¢, A (Gr) M),
we have that ¢, M ! descends under the ramification z;, = (2. Since M, is

mdependent of the parameters of My, t,., we have §(M;,) = 0. Then we have

8(the, M) (b, M) ™1 = 6(te, )bt Finally, we have that 6(i¢, )i descends
under the ramlﬁcatlon zy, = (2. O

Remark. In the proof of this lemma, we check that t¢, M, ~1 descends under the
ramification x;, = Cf. If we set v; == ¢, M, LYfor i € I,, we have

1 (n
qresc—o Tr(3(9, 51,0)(42)) NO(e )t
_ %resw:ti Te(8(20 2, ) A S ).

So we may define the 2-form w as

w(dy,82) : Zresz b Tr(6( ) A S (i)

161

- Zrebqur (s o) N (g, )31,

In this definition of w, the variable (; disappears.

Theorem 4.3. Let w be the 2-form on My, ¢, defined by (4.9) in Definition 4.1.
The 2-form w coincides with

Z (5y) A das

Proof. Let § be a vector field on My, ¢, . Since t; (i € I), Gli,ti (i€, 0<I<

n; — 1), and Oy 4, (0 € Ia, 0 < 1" < 2n; — 2) are constants on My, ¢, we have

o(t;) = 0, 5(911) =0, and 6(0y,) = 0. By equalities (2.10) and (2.11), we have

(5(014) = 46(D;) =0 for i = 1,2,...,v,00. Here, C; and D; are the polynomials
n (2.

6). We compute the residue of the trace of 6(9%:0 92)90)(Ci2)) A 6(1&@)1#&1

¢; = 0. First, we consider the expansion of5( (t 0 9 )(C2)) at ¢; = 0. Since 6(C;) =
0(D;) = 0 for i = 1,2,...,v,00, we have 5(02) = O(af) and 6(dz) = O(a}).
Second, we consider (5(1/)@)17&@:1. By the definition (4.7), we have that (wgi)wal
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coincides with

(I’z—*z(C )6(MC )M ((I)z—*z(C )) +5( z—*z(g ))( 1~z(<2))

+ (5 (¢F) Me,) <_6(/\i6+(<i)> _5(5\:)_ (Cz))) (®:Z:(¢7)Me,) ™"

Since §(M¢,) = 0 and (A +(¢)) = O(C;), we have

res¢,—o Tr(3(y o) (CB) A 6 ), !) =

The remaining residues are calculated as in the proof of Theorem 3.4. Then we

obtain ,
= ((01(p5)02(g5)  G2(py)di(gs)
w(d ,5 ) — < J J/ J J )
0.0 =2 T5p,) P&
which means that w coincides with Z;:lg d(+2 Prey) A dg;. O

§4.2. Integrable deformations associated to 0y, for i € I,

First we fix ¢ € I, and I’ € {0,1,2,...,2n; — 3}. Let

6(1) {d+ Q rd700) on Uy x (Mtra X Tg),

PR d+ GG+ G 5 G1 o on Use x (M, x Tp),

be the family (2.14). Let 6y ¢, be the natural coordinate of (Tt)¢,, X Tp and 0/00) 4,
be the vector field on (T})¢,, X Tp associated to 6 ;,. We will construct a horizontal
lift of Vgﬁ ext With respect to 8/861/

By using the explicit form of VDL e)zt, we take a family of compatible framings

of V](D"L izt at t; for i’ € I,. We denote this family of compatible frammgs at tpr,
for i’ € I;a, by ®ir. Let Zi(zy,) be the formal transformation (4.2) for i’ € I,. If
i' € I\ ILia, let @ and Zy(z¢, ) be a compatible framing at ti and the (formal)
transformation with respect to ®;; appearing in Lemma 3.1, respectively. Let G
be the matrix defined in (2.7). For each i’ € I, we denote formal expansion of
G 1,=, (x4,) at 2y, =0 by
é_l(I)i/Ei/(l‘ti,) = Pi’,O + Pi’,lxti/ + Pi/72.’Et2i/ + -

Set

2 2n,;—1

Py = Pyo+ Pyaxy, + Proxy, +--+ P o, 17y,
Py+1 = id.

(for i' € 1),

We take an affine open covering {U Yreruqu41y of P! x (th x Tg) as in Section
3.3. By using the matrices P;/, we define a new trivialization @; of E1 on U for
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cach i’ € IU{v+1} as in Section 3.3. Let € be the connection matrix of 68{ oxt
under the new trivialization @, :

Qi = Pt dPy + P10 o |g Pr for i € (1U{v+1})\ {oo},
Qoo = (G1P) 1 d(G1Psc) + (G1Po) Q) o |5 (G1Pxo).

2n, —3
™' 7 _terms for each

Remark that M dMC +M Q 1M, is diagonal until the ¢,
i’ € I,.

For the fixed indices i € I, and I’ € {0,1,...,2n; — 3}, we define a matrix

By, . by
-1 0(0214,) (10 -
v f — 2
2(n; —1—1) Cf(ni—l—l) 01 if 1 l

-1 0(02141¢,) 10 L
D f1'=20+1.
2(n; —1) —3Ci2(ni—1—l)—1 0-1 if { 1+

Bel',ti =

We may check that

-1 x—nq—&-l-&-l 0 ‘
mé(oﬂ,ti) < b 0 —ni+i+1 if l/ = 2[7

1 T,
M, By, , M~ =

-1 0 gpmtiHl

S — _ ti if I/ =20+ 1.
2(m—l)—36(92l+1’t'l)<zti’”“+2 0 ) EE=20+

In particular, M, By, , Mgl descends under the ramification z;, = (2. We define
a vector bundle (El)gl, ., on P! x (/Wt x Tg) x Spec C[e] by the same argument
as in the construction of (El)‘S . That is, we replace Bej: (2¢,) in (3.14) with

l

M, B@l, M . We define a morphlsm

Vison,. - (B1i,, — (B, 90,

by the same argument as in the construction of Va/ae in Section 3.3. That is,

we replace By (@,) in (3.15) with M, By, , MCi The &-term of Vo0, , |- for
fixed i € Ia is o

d(MQBOl/ iMC ) [QzaMQBGL/ _M(:.l]

= MQ (8< (Bgl, 1)dCl + [M{ll dMgi + Mglﬁngi,Bgl,ytiDMgl
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506 ' —n;+l
( 2l,tl) o —Srs—l dzti
2 0 =

+ M, [M: " dMe, + M QM By, IM; " i 1 =21,

Gi
6(02141,1,) 0w de
D) —n;+I+1 0 ti

Ty,

+M [MZ dMe, + M M, By, |M;" i U/ =21+ 1.

Since M{il dM¢, + M{ilﬁiMQ and By, , are diagonal until the Cf""f?’—terms, the

negative part of the relative connection V§ /86,1, along the divisor [z;, = 0] is
Q; Bi
dxy, .
Ty, i i — 55

Oo,t, dy, N Oo1i, +€0(6214,) day, T O2n;—2.¢; ATy,
2 oz 2 g;;“*l 2 Ty

7

Here, if I’ = 2, the entry «; is

and the coefficients of 3; are independent of ¢ until the a:t:z—term. Ifl'=20+1,
the expansion of ; at ¢; until the m;z—term is

01+ dxy, 0 +e6(0 ) dx Oy, 54, dxy,
1.t ntvl N 20+1,t; (O2141,4,) til Ly Pnis ;L7
2 ! 2 i 2 xi,

and the coefficients of «; are independent of & until the L_term.
As in Section 3.3, E1 (El)e . . If we consider the pull-back of Vo0, ,

under this isomorphism, then we have a horizontal lift of %gﬁ ext With respect
to 0/00y 1,. If we take a relativization of this horizontal lift, we have a family of
connections parametrized by (./\/ltra x Tp) x SpecC[e]. This family gives a map
from the base space (-X/l\tm x Tp) x Spec Cle] to the moduli space @(tmgo). By
taking composition with App defined in (2.13), we have a map

(4.10) (ﬂtm x Tg) x SpecCle] — /Wtra x To.

Definition 4.4. Then we may define the vector field on M\t x Ty associated to
the map (4.10). We denote this vector field on My, x Ty by 62{“?.

Let f(_I)ll\//”? (Mt . X Tp) x Spec Cle] — M\tm x Tg be the map induced by the

vector field 551\,/“3_ We have

~ (i x ) B,
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We denote the pull-back of V](DL ext under the map id x fe,, D_ by

d+ Q(l) 80) + 55(%\{[]37( 8) 00)) on Uy x (ﬂtm x Tp) x SpecCle],

(411) {d+Gy dG1+GllQ(1) el

tra,00)

teGr 15IMIZ (Q( 09))G1 on Us X (M\t x Tg) x Spec Cle].

ra

As in Section 3.3, we have a lift of (id x fIMD) ﬁgg,ext:

i1 0o IMD (H(1)
d+Q + 5691/,% (Q ))

(tra,00) (tra,00

Tgl\f[D de on Uy x (My,. x Tp) x Spec C[e],
(412)  {d+GiMdG + Gy o G
+eGy opP Q) 6,))G1

+G1_1THZYIR Gy de on Use % (Mg, x Tp) x SpecC[e],

which is a morphism E1 — EE ® Qa Jot: with the Leibniz rule and the equality

(4.13) 3o (D), 00)) = ATOD + () o) TH]

6o) ,00) ~ 0 4 1

which means the integrable condition.

Remark. In this paper, we consider only rank-two connections on P'. Moreover,
we impose some Zariski open conditions, for example the underlying vector bundles
are isomorphic to Opr @ Op1(1). That is, we consider only a Zariski open subset
of the moduli space of connections constructed in [9]. Horizontal lifts for more
general situations are constructed by Inaba [10, Sect. 9].

§4.3. Isomonodromy 2-form

Definition 4.5. Let 51 and 52 be vector fields on M\tm X Ty, which is isomor-

phic to the extended moduli space @R(t 80)- For each i € Ip,, we fix a formal
fundamental matrix solution ¢, of (d + Q(n ?U)(CQ)WQ =0 at x = t; defined in
(4.7). For each i € Leg U Iy, we fix a formal fundamental matrix solution 1; of
(d+ - 2) )wz =0 at x = t; as in Lemma 3.1. We take a fundamental matrix

(tra,
solution ’(/Jq of (d+ Q v ?9)0))1&% =0 at x = ¢; as in Lemma 2.11. We define a
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2-form & on My, x Ty as

a1 S M2 R
W(d1,09) = 3 Z resy—t, Tr(6(QEtra720)0)) AS(i); )
iEI\Ira

1 £ A
+ 1 2 resc—o Tr(B@ 5, (€) A (e )

i€1,

+ = Zresm q; Tr(0 Q(" 20)0))/\3(1/1%)111;],1).

By the same argument as in Section 4.1, we may check that the residue of
n—2 _
5(Q§tm o)) A0 (i)0; tat i (for i € T\I,) and 6(Q) 90)(<2))A5(¢Q)¢Q1 at G =0
(fori e Ira) are well defined. Moreover, the right-hand side of (3.24) is independent
of the choice of 1)y, ¥; (i € I'\ I1a), and ¥, (i € Ira). By the same argument as in
the proof of Lemma 4.2, we may check that the formal series 5(wci)z/}a1 descends

under the ramification z,, = ¢2 for any vector field 4 on M\tm x Tp.

Proposition 4.6. Let G and Go be the matrices defined in (2.7). If co is an
element of Ieg U Iun, we set 1/)z =G~ 11/}z for any i € (Iyeg U Iun) \ {00}, 1/)@

1w< for any i € I, and woo = G Sthoo. If o0 is an element of I, we set
’(/JZ = G~ for any i € Lieg U L, 1/’41 = G~ Y, for any i € Iy \ {00}, and
’(/JCOC = G2 L. We have the equality

B8 =5 O resems, TH@L) ) ASTIE) ™)

ie[\lra

(4.14) + i Z Tes¢; =0 T‘T(S(Q(tm,go)(éh ) A 5(1/142)1#@ )

i€lr,

Proof. Since 6(tp¢, )= descends under the ramification z;, = ¢2, we have
Ci Ci i )

1 P s
17080 T (800 9,y (C) A 8(0)0)
1 < e ~_
= Sresa—t, Te(5(f;) g,)) AW )o:).

By this equality and the same argument as in Proposition 3.9, we may check
equality (4.14). O

Theorem 4.7. For the vector field 5IMP , we have w((SIMD ) =0 for any vector
field b € © = ;

M raXTB.
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Proof. By equality (4.14) we have

B I 1 1 87T NT—
DG 0 =5 D rese, Tr(éé?f%(ﬁ ) o) b0
€l SIMD

S (Wi iy 6! 0,))
1
+ 7 2 vese,—o Tr( (), g, ()30, i)
V' €lra
= 3o (P, g, 0@y, 00y (G2D))-

We take i’ € I'\ I,. We may show that

resp=r, Tr(g - (O] 0,00 ) (W) " = o™ ($2r) () 18R], g,))) =0

by the same argument as in the proof of Theorem 3.10. So we have

. o1 e~
BT .0) =7 D resc,—o Tr(FY (), 6, (NI, )0,
i/ E€lra
) éll\//[D W’C )wg ( (tmeg)(@)))'

We take i’ € I,. Let Ui, be an affine open subset on P' so that Ty, 18 a
coordinate on Uy, . We define ¢ as Ty, = CE,. Let U, be the inverse image of Ui,
under the map Spec C[¢/] — SpecClxzy,,] by @y, = (2. We take an analytic open
subset V' of M\tra x Tp. We take an inverse image of V under the composition of

fgi/: Uci/ X (./T/l\tm X Tg) — Uti/ X (M\tx-a X Tg)

and the projection pu,, Ui, % (./T/l\tra x Tg) — /\//Ytra x Tg. Here, ngi, is defined
by x;, = (?. Let 3?,“ (' € I) be an analytic open subset of the inverse image
(pu., © f< )~1(V) such that [¢;; = 0] N (pu., © fci,)_l(V) C 3?,“ and the fibers of
(pu, L ° fC )|Adr‘: ﬁ — V for each point of V are unit disks such that (;; gives

a coordinate of the unit disks. We denote the pull-back of the connection matrix

A&)moo)‘Uti,X(Mtra/iT") under the map fg, by Q(l) o (§2) We define a matrix

S(Cz") on Ugi, X (thTg) as

. (10
(Cl ) T ¢l/ (0 Cﬂ) .

Remark that G~ 1@, is a compatible framing of Q at t;7. So

tra, 90)|Ut it X(/T/l\traXTg)
we can define the (local) elementary transformation of Q(l )(Cf,) by S(¢ir). We
denote the elementary transformation by ’ Q(l) (C 2). That is,

Q) 0,)(C2) = S(C) 1 dS(Gr) + S(G) T 6, (CBIS(G)-



254 A. Komyo

Let @8) 90)( 2.t) be a connection matrix such that

(1 1
Q). 0031 0) =) 00y (D)l zap,

9 ,a(
57 Hen.00) (o lemo = T (DG 50y ()]s

Let & C ﬁf,n be a family of sufficiently small sectors in ﬁ‘;,“ — .A//Ttm x Ty. By [18,
Thm. 12.1], we may take a fundamental matrix solution "Wg((ir,t) on ¥ x U™ of
the differential equation

(TG, 1)+l ) (G 1) (W5 (G 1) =0

with uniform asymptotic relation

"W (Cor ) exp(A (Giry 1)) ~ Py (Cirst) (G — 0,Ci € 5).

Here we set

o O, [T g 0
Ai’ (Ci’) = Z v —2n, +1'+1 )
=0 0 (_1) 91/,%/ fCl/ d(i’
0
(0 1) :‘Z (C;)Mcqm
e
and we take

P (Cost) = Poo(t) + P a(t)Cor + -+

27 i’_2 —2n., /
A5 (G t) = LZ: (01'@ (t) [ ¢ 2 gy )
it \Si75 V) = —2n, 4+l J
' = 0 (=) Gy, (¢ f( Hag

so that the expansions of A, (¢, ¢) and Py (Cir, €) with respect to e are
A7 (Ci’ ) 5) = A7 (C ) + 56(19?{[131 (Aj(cl’))v
Py (Grre) = Pu(Co) + 852/4%( (Gir))-

Remark that Py/(¢)~! has no pole at ¢ = 0 and S(Cir) Py (¢ Jexp(—A; (Gr)) =
e, - We set

Pu(Co) -

e, = Pr(Gir) exp(—Ag (Gi))-
Let Tgl\fli (¢2) be the pull-back of TIMI? l, ,
set

« (Me,. xTo) under the map f¢,. We

oy (G7) = S(Ce, ) TG, (S (G) = S(G) 7105, (S(Gin))-
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By the same argument as the verification of (3.37), we may check the asymptotic
relation

(4.15) 0o (e, ) (e, )™~ TR (CR) = Por(Ge VO™ P (G, )

Here, C’f '*8 is a diagonal matrix such that C’dlag is independent of (. By the

asymptotic relation (4.15) and the definition of v TIMD (¢2), we have

O™ (e, ) (e, ) ™~ TR (GF) = S (G ) P (G )O3 P (G, ) 715G )

By this asymptotic relation and the same calculation as in the proof of Theorem
3.10, we may check the equalities

resc,—o Te (92 () . (C2))d(c,, ) (W, ) !
é&“{m ) (9, ) 1), 6,y (69)))
= resc, —o Tr(35"} (), 6,y (€)W, ) (9c,)
L (AL (€))
+resc, o Tr(Cyh8d(Pir(Gir, 0) 71 S (G, ) 71 0(S(Gr, ) Prr (G, 0))))
+res¢, —o Tr(Ci8d(8(—A5 (Gr))))
= resc, =0 Tr(0p (O, 61 (¢2)d (e, )(e,) ™!
(4.16) =i ()R] 0,)(C2)).
By the integrable condition (4.13), we have the equality
SR () 0,)(C2)) = (TR (2)) + 24, 9, (¢3), TR (¢2)].

We may check that

resc, =0 T (00> (). g,) ()3 (e, ) (Ge,) " =ThP ()6, 0,)(¢2)))
(4.17) = rese,—o Tr(d(TH> (¢2)d (e, Ve, ) ™) =0

by the same calculation as in the proof of Theorem 3.10. By combining (4.16) and
(4.17), we obtain

1 A, ~ T
(6IMD (5) 1 Z resc, = OTI'((%?{IDI( 83& 90)(@2’))6(1/}@/)1/}(“1

lt [AR<Y
— 0p™ (e, W Q) 4, (€2))) =0,

That is, we have the assertion of this theorem. O
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As in Sections 3.3 and 3.4, respectively, we may define vector fields §IMD

(i € Iyn, 0 < 1 < ny —2) and 6MP (i € {3,4,...,v} N (Jreg U Lun)). By the
same argument as in the proofs of Theorems 3.10 and 4.7, we obtain the following
theorem:

Theorem 4.8. Let i € I,. For the vector field (5IMD, we have w(éIMD 5 =0

for any vector field §e @ﬂtraXTe' Moreover, for the vector field 5,{1MD, we have
w(oMP, ) = 0 for any vector field § € eﬂtraxTe‘

Then we have that the 2-form @ is the isomonodromy 2-form.

§4.4. Hamiltonian systems

We have the diagonalization

2,"%(¢)

= (F M) d(®E M) + (95, M) 7O () (@M,

and
2 ()

o, O dg¢; O2n;—24, O dg;
= wr Jr PN Jr z e —
( 0 90,&-) Gt 0 Oon, 2+ ) G

Oon. 1 ¢, 0 Osn;—ae;, O 2n;—3
+ i dé; + -+ i im de + ---
( 0 _9277471,& C 0 94’”474,& <

Remark that we have an equation (d + Qd“g(g ))exp(—A;(¢;)) = 0. We set

+ S0 O [ GG 0
A7 (G) = " PO oo Iz —2n; 4141
0 Do, 1 (D) O, [ dg
Definition 4.9. For each ¢; (i € I1a) and each I (0<1l < 2n; —3), we define a

rational function Hg, , on ./\/lt .. X Tp as
st

D= term of the (1, 1)-entry of A ()]

Hy,, , = —[the coefficient of the ¢2mi=
Os(ni—1)—1 .1,

2 —1) =1

We call Hgl, the Hamiltonian associated to Oy 4,

We define Hei (i€lymandl=0,1,...,n; —2) and Hy, (i € {3,4,...,v} N
(Ireg U Iyn)) as in Deﬁmtlons 3.11 and 3.12.
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Theorem 4.10. Set P(x;t) .= [[;_,(x — t;)"™ and D;(z;t,0) := D;(z) foric I.
We put

Z Dilg;it,6) _ Doo(qg';tﬁ)) A dg;

P(gt) = (g —t:)™

o= S5

+ > Z (dHys AdOf, +dHy Ndb;,.)

i€lun 1=0
2711'73
+ > > dHp,, AdOvy, + Y dHy, Adt;
i€la 1'=0 i€{3,4,...,v}
N(IregUTun)
Then the difference & — @' is a section of .. 60 (Q%Tt)t XTe).
Proof. Recall that &(8y,82) is
1 2 n—2)
3 > resp—y, Te(6(; ) NSt
iEI\Ira
1 n—2
7 2 ese—o T (8@ 9 () A S(ve)v)

iGIm
+ = Zresz q; Tr( 5(Q nrd,QG)o)) /\5(¢qj)z/)q_j1).

The plan of this proof is as follows. The calculation of the first and third terms in
this formula is the same as in the proof of Theorem 3.14. So we omit the calculation
of these terms. Now we consider only the second term

= Z res¢,—o Tr(3(Qf; 51 (¢B) A (v )vst).
zEI,a

We calculate the residue at ¢; = 0 for some (local) gauge transformation of d +

EZL,ZOO (¢?). We need to consider the difference between the residue after taking
the gauge transformation and the residue before taking the gauge transformation.
Here, the residue before taking the gauge transformation is just the residue of

(5((2(" 2) (CQ)) A 5(1/@)1/)&1) at ¢; = 0. This difference is more complicated
than the unramlﬁed irregular singular cases, since the (1,2)-entry of the residue
part of (4.3) is not a piece of the local formal data. We consider this difference by
using Lemma 3.8.

In fact, for each ¢ € I,,, we consider the residue

Lresemo (B2 (¢3)) A bl )uzh).

(4.18) I
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Now we take a diagonalization of d+§$—29)0) (¢2) until some degree term at ¢; = 0.

We put
—~<2n;—1 = (i))12 s
=5 ( 1) + Z ) wti
s )22

= f—\<2n1 (

for ¢ € I. Here, the coefficient matrices o +,) appear as in the coefficient

matrices of Z;(x¢,) defined by (4.2). Moreover7 we put

P —<2n;—1\— —<2n;—1 —_<2n;—1 n—2 —_<2n;—1
Qi = ((I)l:‘f ) 1 d((I)Z.:; )+ (@Z:‘; ) 1Q( tn 9)0)(@1:‘; ),

Op = MZ dM, + MZ M,
o = @)1y, U = Mg e,

where )¢, is the formal solution (4.7). We may describe Q; as

=~ Boe; O dg¢; O2n,—2.¢, 0 dg;
Q. = obi 4 i 5t il
< ( 0 00,ti> ¢t 0 Oopy24, ) G

O 1.1, 0 Osn;—ap, O 2n;—3
+ i—Lt dé; + -+ v LT dx
( 0 92m—1,ti> G < 0 9471«;—4,15«; CZ

Lo,

The residue part 6a,,_2 ¢, of ﬁ’cl is constant on /(/l\tm xTg. So we have 5(927”727“) =

0 for any 6 € GﬁtmxTe

b100e) 0\ _dG o (6i(Omisn) O &
0 61(6os,)) ¢t 0 —61(02n,-31,) ) ¢

51(92”71 t) 0
+ t A d¢; +
( 0 —51(927”—1,75)) ¢

n (51(94ni—47ti) ) 0 ><2m 3w + O(C22).

. Then the variation &, (QICZ) is equal to

0 01(0an;—a,t;)

We define )\<4"1_4(Ci) as

i —2n; n; — 0”1"— i =
_ (il)o+ci mit2 4 (i1)2 i 32l_7137tl€~1 1 + O, _21, log (;

P P— 9 n; — n; —
DT O, 1,0, G o (DTSR
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On the other hand, the variation &, (1’/;'4)(12;2)71 is equal to

i— <2n;—1\—
6(92271 1)( C_L n ) 1

<2n;—1 () 0 <mi—1y_1
s ) ( : 0+ —02(\i —(Ci))) (o )

:< (S 0

O _52( <4m_4(€z))> +O(¢™ ).

Here we set
gE2M T = (REFT T M) T B E M,

Since
O (AT THG))

B 0 02(00.0,) . —onita 2n;—3
= e 22loa) iz oy

5 (9271173 ts )

1
R

i—1¢% n;— 8 ani_ i n;—
+ (£1)?" 7 02(02n, —1,6,)Ci + -+ + (£1)*™ 4%@ 2

we may check that the residue of Tr(gl (ﬁé)gz ({/;/(1)(12;21)*1) at ¢; = 0 is equal to

o 02 (Oa(ms—1y—17 1)
9 L 22 A ) Ut ),
Z (51(01 t) 2y — 1) — I’
'ef{0,1,...,4n; —4}
\{2n; -2}

2n;—3 < 2n;—3 ¢
7. 02(O0an—1)—trts) = 01(Oa(ni—1)—1rt,) ¢
—2( 3 BRI - X S o)
Then we have

T3 resqmo TR, A L)) )

€1,

27’7,1‘73
(4.19) = (Z > dH,, /\delf,ti>(51,62).

i€l, 1'=0

Now we consider the difference between the residue after taking the gauge
transformation and the residue before taking the gauge transformation. Put g¢, :=
;=520 and g = ®;E=""'. We consider the difference between the
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residues (4.18) and (4.19) when 6; = 6, € O, (Mes xTo)/(To)e,, xTo)’

Te(5(2,) A (W) (W) ™) = Te (8@ %) (¢ A d(we)us )
= —Tr(61 (0, )a® — aMs,(QL,))

— T (0 ()5, (C3)u® —uME @5 D (¢2)))
(

(tra,00) (tra,00)
(4.20) + Tr(d(vg uMoa(ve,) — vz u® o1 (1,))).-

Here we set u(®) = 5k(g< )gC and a(F) = 9, 5k(g< ) for k = 1,2. We calculate
the residue of the second term on the right-hand side of (4.20) at ¢; = 0. Since
t; (i € I,) is not a deformation parameter, 3k(ti) = Sk(g-) =0 for k = 1,2.
Then u®) coincides with dy, (9)g~'. We expand g as (3.45). Since go, ..., gn,_2 are
parametrized by only (T%)¢,, X Te and §; € ©
01(90), - -, 01(gn,—2) vanish.

We will calculate the variation d1(gn,—1). We consider the gauge transforma-

(Fhev xTo)/((To)er xTo)? the variations

tion
(421) (gOMCi)_l d(goMCi) + (QOMQ) 1QEZMQ@)O)(C2)(90M(1)
The C;Q""‘H— and Ci_2""+2—terms of the expansion of (4.21) at ¢; = 0 are diagonal.

The eigenvalues of the ¢; >

-term are distinct. The terms of this expansion after
the ¢, 2ni+2_torm are diagonalized by the gauge transformation by the right-hand
side of (4.4). Since this negative part of (4.21) is independent of (g;,p;)i<j<n—3,
we have that the coefficients of (;£(¢;) in the right-hand side of (4.4) are indepen-
dent of (g;,pj)1<j<n—3 until the Cf"i_?’—term. So the (2,1)-entry of go_lgm_l is
(Mtva XTo)/(Te)ey xTp) 20 the (2,1)-
entry of gy 'gn,_1 is independent of (g5, pj)1<j<n—3, we have that the (2,1)-entry

independent of (g;,p;)1<j<n—3. Since §; € O

of g5 01(gn,_1) vanishes. Moreover, we have that Tr(gy *gn,_1) is constant. By
comparing the !_terms of the expansions of both sides of

_ ~ _ _1A(n-—2 —
90 "9 = g5 " dg + 9510l . 90(95 ),

we have the equality

05 g (90,157;/2 91,&/2) bt gilg (92m—2,n/2 92n7;—1,t1/2>

0 6o4,/2 Oon;—3.4,/202n,—2.4,/2
7] 26 2\ _ n
(422) - < 0 B/ b t1§2> 9o 1gn1—1 + -+ go (Qgtm,e)o))"l_lgogo go-

We consider the variations of the z;, L_terms of both sides of (4.22). In particular,

we focus on the (1,2)-entries of both sides. Since §; € O and

(M, XTo)/ ((Tt)tra X To)
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Tr(gy Yg,, 1) is constant, we have explicit descriptions of the (1,1)-entry and the
(2,2)-entry of gy d1(gn,—1). So we have

01(02n;—1,1,;)

- T 201, *
(423) 90 151 (gni_l) = Ol, ‘ 01(02n,;—1,t;)
201,¢,;
Since d1(go), - - - 91(gn,—2) vanish, we have
_ 61(02n;-1,¢;) «
_ 201 ¢, Mg — Uz
(4.24) g5 'oi(g) = e | (@ = )T O — )™,
0 20, 1,
On the other hand, 52( 9) )) has the expansion
S ([T oz (ti—t5)"9)
n o 0 AL oA R 1
n—2 n
52(9&”“0)0)) = Lr o v H]/'\#’i(ti—tj)Z J (gj — t')ni
—302(05 ¢, [12:(ts — 1)) d2(0o,t,) :

+ [higher-order terms].
Now we take a compatible framing gg as

0o, rl J
(4.25) g <00 4 : 05, H#l(tel iy 3 ) :
2 Hj;éi(ti — ;)" (= H];&z( —t;)" + =5+) Hj;éi(ti — ;)"

)

Then the leading term of g, 1(2( )90 coincides with the 1ead1ng term of the

right-hand side of (4.1). We have the followmg expansion of gg 52( ( t R 9)0)) go at
tit

_ eo,ti 82(Hj¢i(ti_tj)nj )

2 L (tit;) ) * 1
0 Lty 0. (HJ i(t'i_t")”j) N —1; nq
0 =N 21—11‘;@/14]‘;"7 +02(00.r,) (@=t)
(4.26) + [higher-order terms].
Since 91 (Q(n %9)0))32 (9)g~*! is holomorphic at t;, we have the equalities
1 n—2 n—2
= qresc—o Tr(8: (5 (C)u® —uWaQ 5 (D))

1 _ 1 A (n—
= — resa—, Tr(1(Qf59,)02(9)g ™" = d1(9)g 022 5,)

1 N n—
= Srese—, Tr(01(9)g ™ 02(Qf7 )

1 . _ qa
Srose—t, Tr((95 1 81(9))9™ 90 (90 " 82(} 5, )90)
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_ 61(02ni—1,ti)32(007ti) L 261(92m—1,ti) 0o.¢, 02(ITj.0i(ti — tj)éj)
8 01,1, Hj;éi(ti — )"

401 4,

01020, —1,t,) 02(Bo.1, [Tt —t)™)

4.27 =
( ) 4 ol,ti H];éz(tl — tj)nj

Remark that §; € © (Ma,. xTo)/((Te) 8, X To)" The fourth equality follows from equal-
ities (4.24) and (4.26).
Next we calculate the residue of the first term on the right-hand side of (4.20)
at (; = 0. We calculate this residue as
— res¢,—o Tr(61(Q,)a® — aMdy(,))
= —res,—o Tr (81 (O, ) M, g~ 02(gMe,) — Mg, g~ 2(gMe,)02(%,))
= —res¢,—o Tr(0y (M, M )g ™ 02(g) — g7 02(9)da (M, O, M 1))

= —2res,—¢, Tr(51(Q:)g " d2(g) — g 81(9)d2(C%)).

Here, the last equality follows from 6, (1\4{1 dM,) = SQ(M;I dM¢.,) = 0. The
coefficients of the expansion of 6;(€;) at = ¢; vanish until the z; 2_term. The
(1,2)-entry of the xt_il-term of Q; depends on (¢j,p;)1<j<n—3 and the other entries
of the x;l—term of ; are independent of (¢j:Pj)1<j<n—3. The (1,2)-entry of the
z; -term of 61(€%) is 81 (Aan,_14,)/2 and the other entries are zero. On the other
hand, the (2,1)-entry of the leading coefficient of g~1d5(g) is

02(00,1, [0 (ti = £)"™)
(O, [Tt —t5)m) 7

since we set go as (4.25). Then the residue of Tr(61 ()9~ 2(g)) dz at t; is

61(02ni—1,ti) 52(‘907&: Hj;éz‘(ti B tj)nj)
2 01,0 T1; 00 (ti — )™

We consider the residue of Tr(g~18;(g)d2(€%)) at t;. By (4.23), the residue of
Tr(g161(g)d2(€)) at t; vanishes. Then we have

- irescizo Tr(01 (9, )a® — aMéy(QF,))

= _%resa::ti TI‘(51 (ﬁz)g_lgg(g) — 9_151 (9)52(61))

01(O2n,—1,1,) 02(6o.1, [Tt —t5)™)
4 Ov, [Tj2i(t: = t5)™

(4.28) = -
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By combining (4.20), (4.27), and (4.28), we have

1 n a _
rosc—o T (8(Q( 9, (E) A S(ve)ve)
1 . VLI
= J1es¢,=0 Tr(0(S%,) A o(ve, ) (W)™
1 N
= qresci=o Tr(d(we uWoy(ve,) — v w1 (vc,)))
1 . & T
= gresci=o Tr(0(8,) A o(ve,) (v,)™)-
By equality (4.19) we have
1 2n; —3 o
iresCionr(é(Q(" oy (€) A B ) (Z > dHg,, Adfy, .)(51,52)
1€ls 1'=0

when 81 € O, ry) /(1o xTy)- SO We have ©(61,02) — &'(81,82) = 0 when
0 € @( M, xTo)/((Te)s,. xTo)" Then we obtain the assertion of this theorem. O

By Theorems 4.7, 4.8, and 4.10, we obtain the following corollary:

j v Di(qy5t,0 .
Corollary 4.11. Set n; = P(Zj;t) - > (qj(fti)ni) — Doo(g;;t,0). The vector
fields 5IMD (i € Isn and 1 =0,1,...,n; —2), ;™P (i € {3,4,..., v} N (Lreg Ulun)),
and (59l,1t‘ (i € Ity andl' =0,1,...,2n; — 3) have the Hamiltonian descriptions

s _ 0 _“(Weftia_“fem %)
w06, =\ Oy 9q;  Oq; Oy

snp _ 0 2/oH, & OH, 0
=g 2oy, Ay ag o)
U nj 04q; q; onj

d “3/0Hy,, o OHp,, 9
SIMD _ _ v O Vit .
01 ¢, 0y +, Z( )

dn;  dgj dq; O,
§5. Examples
§5.1. Example (v = 2, n1 = ng = ng, = 2)

We consider the connection d + € on O @ O(4) with the connection matrix
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Here we put P(x) == 22(x — 1)2,

C(O)—i—C(l)x C(O)—I—C(l) z—1 3 )
co(z) = 20 2o 1 1 ( ) Z bj

(@—1)? P

&€ :
Jj=1

+CO 4+ CWg 4 0?2 4 0V 4 0Wat,
D" +DVz DY+ D1 X

td = _ DO
o(2) 22 + (x—1) Jr;w_qur Y

We set t1 := 0, t3 := 1, and to, := c0. The polar divisor of the connection d + € is
2-t1+ 2 ta+ 2 teo + @1 + g2 + q3. We assume that the leading coefficients €, (0)
are semi-simple for ¢ = 1,2,00. We put oy, =2 —t; for e =1,2 and x;_, = w. We
fix the formal type of the negative part of d+ € for each ¢;. That is, we fix 0?;1_ for
l=0,1andi=1,2, 00, and the negative part of d+ € for each ¢; is diagonalizable

05, O 07, 0
0 g, 0 014,
_|_

2
.’I;ti Tt,

7

as

by a formal transformation (see Section 2.3). Then the coefficients of ¢y and da
are determined as

0 1 _ _ _ _
(5.1) Cé )+ Cé V= —9({09070 + (293,000,0 - 9({091,0 - eo,oeio)xa
DS + DV = 65y + 05,0 + (65 + 61 )z,

0 1 _ _ _ _
(5.2) Cf )+ Cf )(95 -1)= _9({1‘90,1 - (29({190,1 + 9({191,1 + 90,191+,1)(95 -1),
D + DV (& — 1) = 05, + 65, + (05, +07,)(x — 1),

53) O+ CWw =208 05 oo — Oy 07 oo — 05 o7 00 — (0 b o),

' DY) = 05 . — 05 oo
Moreover, we assume that g1, g2, and g3 are apparent singularities. We define éqj
for j =1,2,3 so that C© + CWg + C@)z? is equal to
(5.4) Co, (= q2)(x — g3) + Cy, (z — q1) (@ — g3) + Cg (z — 1) (2 — q2).-

Since q1, ¢, and g3 are apparent singularities, we have

~ 1 i Di(g5)p; + Ci(g;)
0 = Q) ((ﬁ-(% - 1) ;2 (qj —t:)?

Pj — Pk
(55 +> B DOy oW - )
ke{1,231\{j}
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for j = 1,2, 3, where we put Q(x) = (z — q1)(z — ¢2)(z — ¢3). We determine the
matrices ®; and =; as in Lemma 3.1:

205405, )
Ego) _ . 0+ ) (03.0—05.0)9% 0 Eéo) _ (2(; ( (() ))12
=l &0 0
205 ,+0; )
=) = . 0 . (05.1—05.1)051 = = ( (20) (¢! ))12>
- (200,1+91,1)90_,1 ’ - 0 ’
-t 0 (&)1
205 oo —07 00 )
=) — . 0+ G =) _ (20) (€, .
_(290é°°+7_9_1@°—°)9°’°° 0 (7)1 0
0,00 0,00

Here, the descriptions of (552))12 and (552))21 are omitted. Set
252 —id + 2wy, + 2042

K2

Let 92i7ti (i =1,2,00) be the coefficient as in Lemma 3.1. That is,

0 0, 0 07, +
LUV SLTANS (02*“ 0 > + O(4,)

0 6,

for i = 0,1, 00. Remark that :?2 is degree 2 in x¢,. This degree is sufficient to
define Hamiltonians since there is no parameter corresponding to the positions
of irregular singularities. By equations (5.1), (5.2), (5.3), (5.4), and (5.5), we can
determine the Hamiltonians Heiw Hﬁl’ and Heim as

-1

+ + + +
0E _oF <90,0‘9(3)F,0 + 01,0070 — 2(00,067 0 + 63,065,0)
0,0 ~ .0

+CO +(cf” — ) + (DY - DY + DO)o,

plfe(:)t,o _292*9&0 _P393E,0>
q1 q2 q3 ’

— _pr —
Hego =ty =
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—1
. +
Hai = —02,1 ==

+ + + +
=, o= oF (90,195{1 + 91,1951 + 2(90,191?1 + 91,19():F,1)
' 0,1 — Y.,

+(CO 4 CW 4 C?) 4 (" + a5V
+(CQ + V) + (D + DY + DY),
plfe(:]t_; p2*‘90i71 p39$1>

Gq—1 2 —1 gs —1
-1
. + + + + +
HGi = _02 0o T 90,000(:)F,OO + 91,009?:,00 - 2(907009?:,00 + 91,000(:)':,00)

" i =0 =2 ©) , 10, Ayt
+C® —(Dg” + DI + DYos

0,00

+(q1 + g2 + q3)96|:,oo>’

Set
0 1 0 1
__p D+ DYg DY D)
M= 73 )2 2 )2 o
a;(g; — 1) q; (g —1)
for j = 1,2,3. By Corollary 3.15, the vector field determined by the generalized
isomonodromic deformations is described as

o - 3 (8H0({ti i B 8H93:,ti a)
890iﬂfz j=1 8’17]' aqj aqj 877]' '
§5.2. Example corresponding to Kimura’s L(9/2;2)

In this section we consider Kimura’s family L(9/2; 2) of rank-two linear differential
equations in [15, p.37]. We describe the corresponding global normal form (see
[5, Sect. 6]) and consider the integrable deformations of the family given by the
global normal form. Then we can reproduce Kimura’s Hamiltonian H(9/2) from
[15, p. 40].

Let D be the effective divisor defined as D = 5-00. We consider the connection
d+ Q) on Op1 © Op1(3) with

where
2 2
(00) X 9 9t1 3t2 piw
=—— - — — — —3Ky - 3Kyw —
¢ (w) - w 2 1w - 1—quw’
(5.6) ) . ;
d(OO) — —
o (w) Z w(l —qw) w
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(see [5, Sect. 6]). The polar divisor is D + ¢1 + g2. Assume that w = 1/¢; and
w = 1/go are apparent singularities. Then we can determine K; and K5 as rational
functions whose variables are t1, t2, q1, q2, pP1, pP2-

If we set @ == (§ %) and

4
Wb + w * w3 + w? + w
a1 by 2
5.8 O
(5.8) +<b3 o)t (w)*,
where Qu dw = (P Z58) 7100 (B ZS0) + (Poo ES6) 1d(Poe ZES6). We have
Q. Q2 3t Ky tita Ky
M=y T g T g M T

After ramification w = (2 and the following transformation of Qoo
o’ -1/ -1 11
Qe d¢ == M (Qoo dw)M¢ + M~ dM¢,  where M¢ = c—c)

we have an unramified irregular singular point with matrix connection

60 3t 0 ty 0 -10
& 06 0 —3t 0 —t» -1
<:

& Tt tT¢

23 0 2a1 0 2y 0\ . .
(o) Coran ) e+ (e 5, ) 2ot

We define Hamiltonians
Hy := —[the coefficient of the (*-term of 377 ¢ Oy, oo [ ¥~ d(]
B Kt

-3 3 6’
H, == —the coefficient of the (-term of 377 o Oy o0 [ ¢¥7% d(]
3t3
— 9by = — Ky 4 2L,

4
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Then the 2-form @’ defined in Theorem 4.10 is described as

&' =Y dpi Adg; + dHy Ad(3t1) + dHy A d(ts)
1=1,2

= —( Z dni ANdg; — d(3H1) Adt; — dHy N dt2>

i=1,2
(5.9) = —( > dni Adg; + dEy Adty + dKy Adty — ty dty A dt2>,
i=1,2
where 7; := —p; for i = 1,2. By Theorems 4.7 and 4.10, the vector field determined
by the integrable deformations is described as
2

9 (a0 om0
ot; dn; dq;  Oq; On;

=1

for ¢ = 1,2. This description is given in [15].

Remark. We may check that & = &’ by the calculation of the right-hand side
of (3.25) for (5.6), (5.7), and (5.8). Then the 2-form (5.9) is the isomonodromy
2-form. In fact, we may check the equality

O(3H,) OH; Z(a(gﬂl)aﬁr2 8(3H1)0H2>:0

Ot ot

Opi  0q; dq;  Op;

i=1,2

directly.
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