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Description of Generalized Isomonodromic
Deformations of Rank-Two Linear Differential

Equations Using Apparent Singularities

by

Arata Komyo

Abstract

In this paper, we consider the generalized isomonodromic deformations of rank-two irreg-
ular connections on the Riemann sphere. We introduce Darboux coordinates on the
parameter space of a family of rank-two irregular connections by apparent singularities.
Using the Darboux coordinates, we describe the generalized isomonodromic deformations
as Hamiltonian systems.
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§1. Introduction

For connections on the trivial bundle on P1, the regular singular isomonodromic

deformation is the Schlesinger equation, and the unramified irregular singular gen-

eralized isomonodromic deformation is the Jimbo–Miwa–Ueno equation which is

completely given in [14, 12, 13]. Bertola–Mo and Bremer–Sage have generalized the

Jimbo–Miwa–Ueno equation (see [1, 3, 4]) and Boalch [2] has given the symplec-

tic geometry of the Jimbo–Miwa–Ueno equation. That is, the Jimbo–Miwa–Ueno

equations are equivalent to a flat symplectic Ehresmann connection on a certain

symplectic fiber bundle. The fibers of the symplectic fiber bundle are certain mod-

uli spaces of meromorphic connections over P1. In this paper, we consider the

generalized isomonodromic deformation from this point of view.
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As in [14] the monodromy data for certain families of irregular singular differ-

ential equations involve the asymptotic behavior of solutions along Stokes sectors

at each singular point. Here we impose that the singularities of irregular singular

differential equations satisfy some generic condition. More precisely, these sin-

gularities are regular or unramified irregular. If we have such a generic family of

irregular singular differential equations, then we can locally define the monodromy

map (in other words, Riemann–Hilbert map) from the space of parameters of this

family to the moduli space of irregular monodromy representations (for details, for

example, see [2, 11]). The fibers of the monodromy map are a foliation of the space

of parameters of the family (see [2, 11, 17]). The foliation is called the (generalized)

isomonodromic foliation. (The corresponding vector field is called the (generalized)

isomonodromic deformations). On the other hand, there exists another approach

to generalized isomonodromic deformations. As in [2, Appx.], a submanifold L in

the space of parameters of the family is contained in a leaf of this foliation if and

only if the family of connections corresponding to L is integrable.

When irregular singular differential equations have special singularities (so-

called (generic) ramified irregular singularities), the formulation of the Riemann–

Hilbert map is still not clear. But by using the integrable condition (which is the

second point of view), we can define the generalized isomonodromic deformation

for such a special family of irregular singular differential equations. Moreover, this

generalized isomonodromic deformation is integrable. So we have the generalized

isomonodromic foliation (see [1, 4, 10]).

In this paper, we consider generalized isomonodromic deformations only from

the viewpoint of the integrability condition. More specifically, we construct a hor-

izontal lift of the family of connections as in [11, Thm. 6.2] and [10, Sect. 9]. Here,

the horizontal lift is a first-order infinitesimal extension of the relative connection

with an integrability condition.

Let D be the effective divisor on P1 defined as

D =

ν∑
i=1

ni · ti + n∞ · ∞ and n := deg(D) =

ν∑
i=1

ni + n∞.

Let E be a rank-two vector bundle on P1. Let ∇ : E → E ⊗ Ω1
P1(D) be a con-

nection on E with the polar divisor D. We call such pairs (E,∇) connections.

Remark that we can shift the degree of the vector bundle E by arbitrary integers

by applying some natural operations (twisting by rank-one meromorphic con-

nections and birational bundle modifications, called canonical transformations,

elementary transformations, or Hecke modifications). In this paper, we assume

that the degree of the vector bundle is 1. If H1(P1, E∨) = 0, then we have E ∼=
OP1⊕OP1(1). Here, E∨ is the dual of the vector bundle E. If there exists a family of
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connections of degree 1, then there exists a Zariski open subset of the parameter

space such that this open subset parametrizes connections with the bundle type

OP1 ⊕OP1(1). For connections with the bundle type OP1 ⊕OP1(1), we can define

apparent singularities of the connections and also we can define dual parameters

for the apparent singularities. By the apparent singularities and dual parameters,

we may give a map from a moduli space of connections with the bundle type

OP1 ⊕OP1(1) to Sym(n−3)(C2). On the other hand, Diarra–Loray [5, Sect. 6] gave

global normal forms of the connections with the bundle type OP1 ⊕ OP1(n − 2),

whose connection matrices are companion matrices. By this normal form, we may

construct a family of connections with bundle type OP1 ⊕OP1(1) parametrized by

a Zariski open subset of Sym(n−3)(C2). By this family, we have a map from the

Zariski open subset of Sym(n−3)(C2) to the moduli space of connections. Finally,

we have a birational correspondence between the moduli space of connections and

Sym(n−3)(C2). Our point of view is that this birational correspondence gives coor-

dinates on (a Zariski open set of) the moduli space of connections. In this paper, we

consider the generalized isomonodromic deformations (integrable deformations) of

connections. We may regard the generalized isomonodromic deformations as vec-

tor fields on the moduli space of connections. The main purpose of this paper is to

give an explicit description of generalized isomonodromic deformations by using

these coordinates. Here, the eigenvalues of the leading coefficients of the Laurent

expansions of the connections at each irregular singular point are not necessarily

distinct. (If any leading coefficients have distinct eigenvalues respectively, then the

generalized isomonodromic deformations of this family of connections corresponds

to the Jimbo–Miwa–Ueno equations). That is, we will consider not only unramified

irregular singular points (Definition 2.5 below) but also ramified irregular singular

points (Definition 2.6 below).

There exist many studies on Hamiltonians of the Jimbo–Miwa–Ueno equation

([7, 8, 20, 21, 19, 22]). The main subject of this paper is to give explicit descriptions

of the symplectic structure and the Hamiltonians of the generalized isomonodromic

deformations by using apparent singularities. For the regular singular isomon-

odromic deformations, Dubrovin–Mazzocco [6] have introduced isomonodromic

Darboux coordinates on the moduli space of Fuchsian systems, which are con-

nections on the trivial bundle over P1. They have described the isomonodromic

deformations of Fuchsian systems as Hamiltonian systems by using the isomon-

odromic Darboux coordinates. Roughly speaking, we extend their argument for

the regular singular case to the irregular singular (rank-two) case. In our cal-

culation, Krichever’s formula of the symplectic form [16, Sect. 5] is used as in

[6]. On the other hand, Kimura [15] has studied the degeneration of the two-

dimensional Garnier systems. By the confluence procedure, Hamiltonian systems of
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(generalized) isomonodromic deformations of certain rank-two linear differential

equations are described explicitly. We try to compare our Hamiltonian systems

and Kimura’s Hamiltonian systems by an example. Our Hamiltonian systems are

not necessarily commuting Hamiltonian systems in [6, Def. 3.5].

§1.1. Space of deformation parameters

Now we describe the space of deformation parameters for our generalized isomon-

odromic deformations. Put I := {1, 2, . . . , ν,∞}, t1 := 0, t2 := 1, and t∞ := ∞ ∈
P1. We take a decomposition I = Ireg ∪ Iun ∪ Ira such that Ireg, Iun, and Ira are

disjoint from each other. We assume that ni = 1 for i ∈ Ireg and ni > 1 for

i ∈ Iun ∪ Ira. We set

Tt :=

{
(t3, . . . , tν) ∈ Cν−2

∣∣∣∣ ti ̸= tj (i ̸= j) and

ti /∈ {0, 1} (i = 3, . . . , ν)

}
.

Moreover, put

T res
θ :=

θ0 ∈ C2(ν+1)

∣∣∣∣∣∣∣∣
∑

i∈Ireg∪Iun
(θ+ni−1,ti

+ θ−ni−1,ti
)

+
∑

i∈Ira
(θ2ni−2,ti − 1

2 ) = −1,

θ+0,ti − θ−0,ti /∈ Z for i ∈ Ireg

,
Tθ :=

{
θ ∈

∏
i∈Iun

C2(ni−1) ×
∏

i∈Ira
C2ni−2

∣∣∣∣ θ+0,ti − θ−0,ti ̸= 0 for i ∈ Iun,

θ1,ti ̸= 0 for i ∈ Ira

}
.

Here we set

θ0 := ((θ+ni−1,ti
, θ−ni−1,ti

)i∈Ireg∪Iun , (θ2ni−2,ti)i∈Ira)

and we denote by θ = (θun,θra) an element of Tθ where

θun = ((θ+0,ti , θ
−
0,ti

), . . . , (θ+ni−2,ti
, θ−ni−2,ti

))i∈Iun ,

θra = (θ0,ti , . . . , θ2ni−3,ti)i∈Ira .

The relation in the definition of T res
θ is called the Fuchs relation. Fix a tuple of

complex numbers tra = (ti)i∈{3,4,...,ν}∩Ira , where ti ̸= tj (i ̸= j) and ti /∈ {0, 1}.
We denote the fiber of tra under the projection

Tt −→
∏

i∈{3,4,...,ν}∩Ira

C.

by (Tt)tra .

Definition 1.1. We define the space of deformation parameters as (Tt)tra × Tθ.



Description of Isomonodromy Deformations 189

Hence we consider the positions of the points ti for i ∈ Ireg∪Iun as deformation

parameters. On the other hand, we do not consider the positions of the points ti
for i ∈ Ira as deformation parameters, since the integrable deformations whose

deformation parameters are the positions of the ramified irregular points are more

complicated.

§1.2. Symplectic fiber bundle

Next we define an algebraic variety over the space of deformation parameters

(Tt)tra × Tθ such that this algebraic variety parametrizes connections and there

exists a symplectic form on each fiber. This algebraic variety is considered as the

phase space of our generalized isomonodromic deformations. We set

M̂tra :=


({(q1, p1), . . . , (qn−3, pn−3)}, (t3, . . . , tν))

∈ Sym(n−3)(C2)× (Tt)tra

∣∣∣∣∣∣∣∣
qi ̸= qj (i ̸= j) and

qj /∈ {0, 1, t3, . . . , tν ,∞}
(j = 1, . . . , n− 3)

.
If we take a point t0 = (t3, . . . , tν) of (Tt)tra , we put

Mt0,tra :=

{
{(q1, p1), . . . , (qn−3, pn−3)}

∈ Sym(n−3)(C2)

∣∣∣∣∣ qi ̸= qj (i ̸= j) and qj /∈ {0, 1,∞} ∪ t0

(j = 1, . . . , n− 3)

}
.

Definition 1.2. We define a symplectic fiber bundle πtra,θ0
as the natural pro-

jection

(1.1) πtra,θ0
: M̂tra × Tθ −→ (Tt)tra × Tθ.

Here, the symplectic structure on the fiber Mt0,tra × {θ} of (t0,θ) ∈ (Tt)tra × Tθ
is defined by

(1.2)

n−3∑
j=1

d
( pj∏ν

i=1(qj − ti)ni

)
∧ dqj .

Set D(t0) := n0 · 0 + n1 · 1 +
∑ν

i=3 ni · ti + n∞ · ∞ for t0 = (t3, . . . , tν) ∈
(Tt)tra . We may check that the fiber Mt0,tra × {θ} is isomorphic to the moduli

space Conn(t0,θ,θ0). Here, Conn(t0,θ,θ0) is the moduli space of (θ,θ0)-connections on

OP1⊕OP1(1) such that the polar divisors of connections are D(t0) and connections

satisfy some generic conditions (see (2.12) below). The correspondence between

Mt0,tra × {θ} and Conn(t0,θ,θ0) is given by the theory of apparent singularities

(Section 2.1 below) and construction of a family of connections parametrized by

Mt0,tra × {θ} (Section 2.2 below). For the construction of a family, we will use

Diarra–Loray’s global normal form. We will call M̂tra × Tθ an extended moduli

space of connections.



190 A. Komyo

§1.3. Main results

For the vector fields ∂/∂θ±l,ti (i ∈ Iun, l = 0, 1, . . . , ni − 2), ∂/∂θl′,ti (i ∈ Ira,

l′ = 0, 1, . . . , 2ni − 3), and ∂/∂ti (i ∈ {3, 4 . . . , ν} ∩ (Ireg ∪ Iun)), we define the

vector fields δIMD
θ±
l,ti

, δIMD
θl′,ti

, and δIMD
ti on M̂tra × Tθ by the integrable deformations

of the family of connections parametrized by M̂tra × Tθ (in Sections 3.3, 4.2, and

3.4). We define a 2-form ω̂ on M̂tra × Tθ such that the restriction of ω̂ to each

fiber of πtra,θ0 coincides with the symplectic form (1.2) and the interior products

with the vector fields determined by the integrable deformations vanish:

ι(δIMD
θ±
l,ti

)ω̂ = ι(δIMD
θl′,ti

)ω̂ = ι(δIMD
ti )ω̂ = 0.

We call the 2-form ω̂ the isomonodromy 2-form as in [22]. The main result of

this paper is an explicit description of the isomonodromy 2-form using apparent

singularities. Our description of ω̂ is

ω̂ =

n−3∑
j=1

d

(
pj∏ν

i=1(qj − ti)ni
−

ν∑
i=1

Di(qj ; t,θ)

(qj − ti)ni
−D∞(qj ; t,θ)

)
∧ dqj

+
∑
i∈Iun

ni−2∑
l=0

(dHθ+
l,ti

∧ dθ+l,ti + dHθ−
l,ti

∧ dθ−l,ti)

+
∑
i∈Ira

2ni−3∑
l′=0

dHθl′,ti
∧ dθl′,ti +

∑
i∈{3,4,...,ν}
∩(Ireg∪Iun)

dHti ∧ dti

+ [a section of π∗
tra,θ0

(Ω2
(Tt)tra×Tθ

) ]

(Theorems 3.14 and 4.10). Here, Di(qj ; t,θ) where i ∈ I are defined in Lemma

2.9 as Di. The Hamiltonians Hθ±
l,ti

, Hθl′,ti
, and Hti are defined in Definitions

3.11, 4.9, and 3.12, respectively. Roughly speaking, the Hamiltonians Hθ±
l,ti

and

Hθl′,ti
appear in the holomorphic parts of the diagonalizations of connections at

each singular point ti. By this description of the isomonodromy 2-form, we obtain

Hamiltonian descriptions of the vector fields determined by the integrable defor-

mations:

δIMD
θ±
l,ti

=
∂

∂θ±l,ti
−

n−3∑
j=1

(∂Hθ±
l,ti

∂ηj

∂

∂qj
−
∂Hθ±

l,ti

∂qj

∂

∂ηj

)
,

δIMD
θl′,ti

=
∂

∂θl′,ti
−

n−3∑
j=1

(
∂Hθl′,ti

∂ηj

∂

∂qj
−
∂Hθl′,ti

∂qj

∂

∂ηj

)
,

δIMD
ti =

∂

∂ti
−

n−3∑
j=1

(
∂Hti

∂ηj

∂

∂qj
− ∂Hti

∂qj

∂

∂ηj

)
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(Corollaries 3.15 and 4.11). Here we put

ηj :=
pj∏ν

i=1(qj − ti)ni
−

ν∑
i=1

Di(qj ; t,θ)

(qj − ti)ni
−D∞(qj ; t,θ).

The organization of this paper is as follows. In Section 2 we recall the definition

of the apparent singularities and Diarra–Loray’s global normal form. In Section 3

we consider the integrable deformations of connections which have only regular

singularities and unramified irregular singularities. We define a 2-form on the fiber

Mt0,tra by Krichever’s formula [16, Sect. 5]. We show that this 2-form coincides

with the symplectic form (1.2). Also by Krichever’s formula, we define a 2-form on

M̂tra × Tθ. We show that this 2-form is the isomonodromy 2-form. By calculation

of this 2-form on M̂tra × Tθ by using Diarra–Loray’s global normal form, we

have an explicit formula of this 2-form. In Section 4 we extend the argument

of Section 3 to the integrable deformations of connections which have ramified

irregular singularities. In Section 5 we consider two examples. The first example

is the case where D = 2 · 0 + 2 · 1 + 2 · ∞. We assume that 0, 1,∞ ∈ P1 are

unramified irregular singular points. The dimension of the space of deformation

parameters is 6 and the dimension of the fiber M̂t0,tra is 6. The second example is

the case where D = 5 ·∞. We assume that ∞ ∈ P1 is a ramified irregular singular

point. This example corresponds to Kimura’s H(9/2) in [15]. We consider the

family of connections corresponding to Kimura’s family L(9/2; 2). We reproduce

the Hamiltonian system H(9/2).

§2. Normal forms for rank-two linear irregular differential equations

In the first part of this section, we will give a correspondence between the moduli

space of connections and Mt0,tra ⊂ Sym(n−3)(C2). First, we recall the theory of

apparent singularities in Section 2.1. This theory gives a map from the moduli

space of connections to Mt0,tra . Second, we recall Diarra–Loray’s global normal

form in Section 2.2. This normal form gives a map from Mt0,tra to the moduli

space of connections. In the second part of this section (Sections 2.5 and 2.6),

we will consider infinitesimal deformations of connections and define horizontal

lifts of connections. If we construct a horizontal lift of a connection, then we

have an integrable deformation of a connection. After Section 2, we will discuss

construction of horizontal lifts. In the third part of this section (Section 2.7), we will

discuss local solutions of the differential equations with respect to the connections

at the apparent singularities. We will use these solutions for the definition of the

2-form ω on Mt0,tra (in Section 3.1 below).
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We take a natural affine open covering {U0, U∞} of P1. Denote by x a coordi-

nate on U0 and by w a coordinate on U∞. That is, w = x−1 on U0∩U∞. Let ∞ be

the point w = 0 on U∞. Set Ek := OP1 ⊕OP1(k). Here we define the vector bundle

Ek by two trivializations {φ(k)
U0

: Ek|U0

∼=−→ O⊕2
U0
, φ

(k)
U∞

: Ek|U∞

∼=−→ O⊕2
U∞

} such that

(2.1)

Ek|U0∩U∞

=

��

φ
(k)
U∞ // O⊕2

U0∩U∞

Gk

��

Ek|U0∩U∞

φ
(k)
U0 // O⊕2

U0∩U∞
,

where Gk =
(
1 0
0 xk

)
. Fix a tuple of complex numbers tra = (ti)i∈{3,4,...,ν}∩Ira , where

ti ̸= tj (i ̸= j) and ti /∈ {0, 1}.

§2.1. Apparent singularities

Take t0 = (ti)i∈{3,4,...,ν} ∈ (Tt)tra and set D = n1 · 0 + n2 · 1 + n3 · t3 + · · ·+ nν ·
tν +n∞ ·∞. For a connection (E1,∇ : E1 → E1⊗Ω1

P1(D)), we define the apparent

singularities of (E1,∇) as follows. Consider the sequence of maps

OP1(1)
⊂−−→ E1

∇−−→ E1 ⊗ Ω1
P1(D)

quotient−−−−−→ (E1/OP1(1))⊗ Ω1
P1(D) ∼= OP1(n− 2).

This composition is an OP1 -morphism, and we denote it by φ∇ : OP1(1) → OP1(n−
2). We assume that the subbundle OP1(1) ⊂ E1 is not ∇-invariant. Then φ∇ is

not the zero morphism. The OP1 -morphism φ∇ has n − 3 zeros counted with

multiplicity.

Definition 2.1. We define apparent singularities of (E1,∇) as

div(φ∇) ∈ |OP1(n− 3)| ∼= Sym(n−3)(P1).

By the trivialization φ
(1)
U0

: E1|U0

∼=−→ O⊕2
U0

, we have the description

∇|U0
= d+

(
A(x) B(x)

C(x)D(x)

)
dx

P (x)
,

where P (x) :=
∏ν

i=1(x− ti)ni and A, B, C, D are polynomials such that deg(A) ≤
n − 2, deg(B) ≤ n − 3, deg(C) ≤ n − 1, deg(D) ≤ n − 2. Then the apparent

singularities of (E1,∇) are zeros of the polynomial B(x).

Assume that the apparent singularities of (E1,∇) consist of distinct points

and all of them are distinct from the poles t1, . . . , tν ,∞ of the connection ∇. We

can define a birational bundle transformation

ϕ∇ := id⊕ φ∇ : OP1 ⊕OP1(1) 99K OP1 ⊕OP1(n− 2)
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and consider the pushed-forward connection (ϕ∇)∗∇ on OP1 ⊕ OP1(n − 2). Then

we have a transformation of a connection with bundle type OP1 ⊕OP1(1):

(2.2) (E1,∇) 7−→ (En−2, (ϕ∇)∗∇).

The connection (ϕ∇)∗∇ has simple poles q1, . . . , qn−3 with residual eigenvalues 0

and −1 at each pole. Let DApp be the effective divisor q1 + · · · + qn−3. We may

decompose (ϕ∇)∗∇ as

(2.3)

(
∇11 Φ12

Φ21 ∇22

)
,

where ∇11 : OP1 → OP1 ⊗ Ω1
P1(D +DApp) and ∇22 : OP1(n − 2) → OP1(n − 2) ⊗

Ω1
P1(D+DApp) are connections. Moreover, Φ12 : OP1(n−2) → OP1⊗Ω1

P1(D+DApp)

and Φ21 : OP1 → OP1(n − 2) ⊗ Ω1
P1(D + DApp) are OP1-morphisms. Since the

birational bundle transformation ϕ∇ is given by
(
1 0
0 B(x)

)
, the connection (2.3) has

the description(
∇11 Φ12

Φ21 ∇22

)∣∣∣∣∣
U0

=

(
d+ A(x) dx

P (x)
dx

P (x)
C(x)B(x) dx

P (x) d+ D(x) dx
P (x) −

∑n−3
j=1

dx
x−qj

)
.

By an automorphism of the bundle En−2, we may normalize the connection

(ϕ∇)∗∇ so that the normalized connection has the following conditions (for details,

see [5, Prop. 3]):

� the connection ∇11 is the trivial connection, and

� the OP1 -morphism Φ12 corresponds to the section

(2.4)
dx∏ν

i=1(x− ti)ni
(on U0) and

−w−n+2 dw

w2
∏ν

i=1(1/w − ti)ni
(on U∞)

under the isomorphism

HomOP1
(OP1(n− 2),OP1 ⊗ Ω1

P1(D +DApp))

∼= H0(OP1(−n+ 2)⊗ Ω1
P1(D +DApp)).

Automorphisms of En−2 preserving these conditions of (ϕ∇)∗∇ are just scalars (see

[5, Sect. 3]). For each j = 1, 2, . . . , n−3, the 0-eigendirection of the residue matrix

of the normalized connection at qj corresponds to a point pj ∈ P(En−2)|qj ∼= P1.

Here, this identification is given by the trivialization φ
(n−2)
U0

.

Definition 2.2. Since the (−1)-eigendirection is contained in the second factor

of En−2 = OP1 ⊕OP1(n− 2), we have pj ∈ C such that pj = [1 : pj ]. We call pj a

dual parameter with respect to an apparent singularity qj .
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§2.2. Global normal form for rank-two linear irregular

differential equations

In the previous section, we assign a point on Sym(n−3)(C2) to a connection E1 →
E1 ⊗ Ω1

P1(D). Conversely, take a point {(q1, p1), . . . , (qn−3, pn−3)} on Mt0,tra ⊂
Sym(n−3)(C2). Then we may construct a connection E1 → E1 ⊗Ω1

P1(D) such that

q1 + · · · + qn−3 is the apparent singularity and pj is the dual parameter of qj ,

j = 1, 2, . . . , n− 3 (Proposition 2.4 below). Now we discuss this construction. We

define an effective divisor DApp on P1 as DApp = q1 + · · ·+ qn−3.

Definition 2.3. For the point on Mt0,tra , let

∇(n−2)
DL : En−2 −→ En−2 ⊗ Ω1

P1(D +DApp)

be a connection with the following connection matrix on U0:

(2.5) Ω(n−2) =

(
0 1

P (x)

c0(x) d0(x)

)
dx.

Here we put P (x) :=
∏ν

i=1(x− ti)
ni ,

(2.6)

c0(x) :=

ν∑
i=1

Ci(x)

(x− ti)ni
+

n−3∑
j=1

pj
x− qj

+ C̃(x) + xn−3C∞(x),

d0(x) :=

ν∑
i=1

Di(x)

(x− ti)ni
+

n−3∑
j=1

−1

x− qj
+D∞(x),

where Ci, Di (i = 1, . . . , ν), C∞, D∞, and C̃ are polynomials in x such that

� deg(Ci),deg(Di) ≤ ni − 1 for i = 1, . . . , ν,

� deg(C∞) ≤ n∞ − 1, deg(D∞) ≤ n∞ − 2,

� deg(C̃) ≤ n− 4.

We assume that q1, . . . , qn−3 are apparent singularities, that is, the elementary

transformation

((Φ̃qj )
−1dΦ̃qj + (Φ̃qj )

−1Ω(n−2)Φ̃qj ), where Φ̃qj :=

(
1 0

pj x− qj

)
,

of Ω(n−2) by Φ̃qj has no pole at qj . We call such a connection ∇(n−2)
DL Diarra–

Loray’s global normal form.
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The corresponding connection matrix Ω
(n−2)
∞ on U∞ of ∇(n−2)

DL is

Ω(n−2)
∞ = G−1

n−2 dGn−2 +G−1
n−2Ω

(n−2)Gn−2

=

(
0 0

0−n+ 2

)
dw

w
+

(
0 1

wn−2P (1/w)

wn−2c0(1/w) d0(1/w)

)
−dw
w2

.

We may check that Ω
(n−2)
∞ has a pole of order n∞ at ∞. We decompose the

connection ∇(n−2)
DL as in (2.3). Since the (1, 1)-entry of Ω(n−2) is zero and the

(1, 2)-entry of Ω(n−2) is dx
P (x) , the connection ∇11 is the trivial connection and

the OP1-morphism Φ12 corresponds to the section (2.4). The vector (1, pj) is a

0-eigenvector of the residue matrix of Ω(n−2) at qj .

Now we consider a transformation of the connection ∇(n−2)
DL on En−2 into a

connection on E1. Set Q1(x) =
∏n−3

j=1 (x−qj). Let Q2(x) be the unique polynomial

of degree n− 4 such that Q2(qj) = pj for j = 1, 2, . . . , n− 3. Set

(2.7)

G̃ :=

(
1 0

Q2(x)Q1(x)

)
: O⊕2

U0
99K O⊕2

U0
,

G̃∞ := G−1
n−2

(
1 0

Q2(1/w)Q1(1/w)

)
G1 : O⊕2

U∞
99K O⊕2

U∞
.

Let Ω(1) be the transformation of Ω(n−2) by G̃:

Ω(1) = G̃−1 dG̃+ G̃−1Ω(n−2)G̃

=

(
Q2(x)
P (x)

Q1(x)
P (x)

c0(x)+Q2(x)d0(x)+(Q2(x))
′

Q1(x)
− (Q2(x))

2

P (x)Q1(x)
d0(x) +

(Q1(x))
′

Q1(x)
− Q2(x)

P (x)

)
dx.(2.8)

Proposition 2.4. We set

∇(1)
DL :=

{
d+Ω(1) on U0,

d+G−1
1 dG1 +G−1

1 Ω(1)G1 on U∞.

Then ∇(1)
DL is a connection

OP1 ⊕OP1(1) −→ (OP1 ⊕OP1(1))⊗ Ω1
P1(D).

That is, the pole divisor of ∇(1)
DL is D. Moreover, the apparent singularity of ∇(1)

DL

is q1 + · · ·+ qn−3 and the dual parameter with respect to qj is pj.

Proof. First we will show that ∇(1)
DL has no pole at q1, . . . , qn−3 by induction. Let

s ∈ {1, . . . , n − 3}. We define Q
(s)
1 (x) =

∏s
j=1(x − qj) and Q

(s)
2 (x) is the unique
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polynomial of degree s− 1 such that Q
(s)
2 (qj) = pj for j = 1, 2, . . . , s. Set

G̃(s) :=

(
1 0

Q
(s)
2 (x)Q

(s)
1 (x)

)
.

Assume that d+(G̃(s))−1 dG̃(s) +(G̃(s))−1Ω(n−2)G̃(s) has no pole at q1, q2, . . . , qs.

We will show that d + (G̃(s+1))−1 dG̃(s+1) + (G̃(s+1))−1Ω(n−2)G̃(s+1) has no pole

at q1, q2, . . . , qs+1. We may check the equalities

(G̃(s))−1 dG̃(s) + (G̃(s))−1Ω(n−2)G̃(s)

=

 Q
(s)
2 (x)
P (x)

Q
(s)
1 (x)
P (x)

c0(x)+Q
(s)
2 (x)d0(x)+(Q

(s)
2 (x))′

Q
(s)
1 (x)

− (Q
(s)
2 (x))2

P (x)Q
(s)
1 (x)

d0(x) +
(Q

(s)
1 (x))′

Q
(s)
1 (x)

− Q
(s)
2 (x)
P (x)

 dx

=

 0 0
ps+1−Q

(s)
2 (qs+1)

Q
(s)
1 (qs+1)

−1

 dx

x− qs+1
+ [holomorphic parts].

Here, the last equality is the expansion at x = qs+1. Since qs+1 is an apparent sin-

gularity, we can transform the connection d+(G̃(s))−1 dG̃(s)+(G̃(s))−1Ω(n−2)G̃(s)

into a connection which is holomorphic at qs+1 by the matrix 1 0
ps+1−Q

(s)
2 (qs+1)

Q
(s)
1 (qs+1)

x− qs+1

 .

We may check that

G̃
(s+1)
0 = G̃

(s)
0

 1 0
ps+1−Q

(s)
2 (qs+1)

Q
(s)
1 (qs+1)

x− qs+1

 .

Then we have that d+ (G̃
(s+1)
0 )−1 dG̃

(s+1)
0 + (G̃

(s+1)
0 )−1Ω(n−2)G̃

(s+1)
0 has no pole

at q1, q2, . . . , qs+1. So ∇(1)
DL has no pole at q1, . . . , qn−3 by induction. Since G̃∞ is

holomorphic at w = 0 and the determinant of G̃∞ does not vanish at w = 0,

d+G−1
1 dG1 +G−1

1 Ω(1)G1 = d+ G̃−1
∞ dG̃∞ + G̃−1

∞ Ω(n−2)
∞ G̃∞

has a pole of order n∞ at ∞. Then the polar divisor of ∇(1)
DL is D.

By (2.8), the (1, 2)-term of Ω(1) is Q1(x)
P (x) . The apparent singularities of ∇(1)

DL

are the zeros of Q1(x)
P (x) . Then the apparent singularities of ∇(1)

DL are q1 + · · ·+ qn−3,

since the birational bundle transformation ϕ∇ is given by
(
1 0
0 Q1(x)

)
. Moreover,(

1 0

Q2(x)Q1(x)

)
=

(
1 0

Q2(x) 1

)(
1 0

0Q1(x)

)
.
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Here,
(

1 0
Q2(x) 1

)
is an automorphism of En−2. Since the vector (1, pj) is a 0-eigen-

vector of the residue matrix of Ω(n−2) at qj , the dual parameter with respect to

qj is pj .

§2.3. Local formal data

We put xti = (x − ti) for i = 1, . . . , ν and x∞ = w. Put I := {1, 2, . . . , ν,∞},
t1 := 0, t2 := 1, and t∞ := ∞ ∈ P1. We take a decomposition I = Ireg ∪ Iun ∪ Ira
such that Ireg, Iun, and Ira are disjoint from each other. We assume that ni = 1

for i ∈ Ireg and ni > 1 for i ∈ Iun ∪ Ira.
Let ∇ be a connection on E1:

∇ : E1 −→ E1 ⊗ Ω1
P1(D),

where D =
∑

i∈I ni · ti. For each i ∈ I, we take an affine open subset Ui ⊂ P1 such

that ti ∈ Ui. We take a trivialization E1|Ui
∼= O⊕2

Ui
and choose the coordinate xti

on Ui such that the point ti is defined by xti = 0. Let Ω be the connection matrix

of ∇ associated to this trivialization. We may describe Ω as

Ω = Ωti(0)
dxti
xni
ti

+ [higher-order terms], Ωti(0) ∈ gl(2,C)

for each i ∈ I.

Definition 2.5. We say ti is an unramified irregular singular point of ∇ if ni > 1

and Ωti(0) has distinct eigenvalues.

Let (Det(E1),Tr(∇)) be the determinant bundle of E1 with the induced con-

nection Tr(∇), that is, Tr(∇) = ∇ ∧ id + id ∧ ∇. We consider the trivialization

Det(E1)|Ui
∼= OUi

induced by the trivialization of E1|Ui
. Let α′ ∈ OUi

dxti/x
ni
ti

be the connection matrix of Tr(∇)|Ui associated to this trivialization (if neces-

sary, Ui shrinks). We consider the tensor product (O⊕2
Ui
, d + Ω) ⊗ (OUi

, d − 1
2α

′).

Let N(xti) dxti/x
ni
ti be the connection matrix of this tensor product. Remark that

N(xti) ∈ End(O⊕2
Ui

).

Definition 2.6. We say ti is a ramified irregular singular point of ∇ if ni > 1,

N(0) is a nonzero nilpotent matrix, and N(xti)
2 ̸≡ 0 (modx2ti).

We assume that

� the differences of the eigenvalues of Ωti(0) are not integers for any i ∈ Ireg,

� ti are unramified irregular singular points for any i ∈ Iun, and

� ti are ramified irregular singular points for any i ∈ Ira.
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Lemma 2.7 (For example [5, Props. 9 and 10]). Let Ω be the connection matrix

which satisfies the assumption above.

(1) If i ∈ Iun, then there exists a matrix M ∈ GL2(C[[xti ]]) such that

M−1 dM +M−1ΩM =

(
θ+0,ti 0

0 θ−0,ti

)
xni
ti

dxti + · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
xti

dxti .

We call the tuple ((θ+0,ti , θ
−
0,ti

), . . . , (θ+ni−1,ti
, θ−ni−1,ti

)) the local formal data of

∇ at ti.

(2) If i ∈ Ira, then there exists a matrix M ∈ GL2(C[[xti ]]) such that

M−1 dM +M−1ΩM =

(
αi βi

xtiβi αi −
dxti

2xti

)
,

where 
αi :=

θ0,ti
2

dxti
xni
ti

+ · · ·+ θ2l,ti
2

dxti
xni−l
ti

+ · · ·+ θ2ni−2,ti

2

dxti
xti

,

βi :=
θ1,ti
2

dxti
xni
ti

+ · · ·+ θ2l+1,ti

2

dxti
xni−l
ti

+ · · ·+ θ2ni−3,ti

2

dxti
x2ti

.

We call the tuple (θ0,ti , . . . , θ2ni−2,ti) the local formal data of ∇ at ti.

If we define ζi as xti = ζ2i and put

(2.9) Mζi :=

(
1 1

ζi −ζi

)
,

then we have the following diagonalization:

M−1
ζi

dMζi +M−1
ζi

(
αi βi

xtiβi αi −
dxti

2xti

)
Mζi

=
∑

l=0,1,...,ni−1

 θ2l,ti dζi

ζ
2(ni−l)−1

i

0

0
θ2l,ti dζi

ζ
2(ni−l)−1

i

+
∑

l=0,1,...,ni−2

 θ2l+1,ti
dζi

ζ
2(ni−l)−2

i

0

0 − θ2l+1,ti
dζi

ζ
2(ni−l)−2

i

 .

Definition 2.8. Let (θ,θ0) ∈ Tθ × T res
θ .

� Let ∇ : E1 → E1 ⊗ Ω1
P1(D) be a connection. If the tuple of the local formal

data of ∇ is (θ,θ0), we call this connection a (θ,θ0)-connection on E1.

� We say that Diarra–Loray’s normal form ∇(n−2)
DL : En−2 → En−2 ⊗ Ω1

P1(D +

DApp) is a (θ,θ0)-connection if the corresponding ∇(1)
DL : E1 → E1 ⊗ Ω1

P1(D)

is a (θ,θ0)-connection on E1.
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Lemma 2.9 ([5, Lems. 16 and 19]). Let ({(q1, p1), . . . , (qn−3, pn−3)}, (t3, . . . , tν))
∈ M̂tra and (θ,θ0) ∈ Tθ × T res

θ . Set D = n1 · 0 + n2 · 1 +
∑ν

i=3 ni · ti + n∞ · ∞.

There exists a unique tuple of the polynomials ((Ci, Di)i∈I , C̃) in (2.6) such that

� the polar divisor of ∇(n−2)
DL is D + q1 + · · ·+ qn−3,

� q1, . . . , qn−3 are apparent singularities,

� the dual parameter with respect to qj is pj (j = 1, 2, . . . , n− 3),

� ∇(n−2)
DL is a (θ,θ0)-connection.

Let ((Ci, Di)i∈I , C̃) be the tuple of the polynomials in Lemma 2.9. The

polynomials Ci and Di (i ∈ I) have simple descriptions. Now we give explicit

descriptions of Ci and Di (i ∈ I). For i ∈ Ireg ∪ Iun, we define a polynomial Θ±
i in

x as
ni−1∑
l=0

θ±l,ti
(x− ti)ni−l

=
Θ±

i

(x− ti)ni
.

For i ∈ Ira, we define polynomials Ai and Bi in x as

ni−1∑
l=0

θ2l,ti
2(x− ti)ni−l

=
Ai

(x− ti)ni
and

ni−2∑
l=0

θ2l+1,ti

2(x− ti)ni−l
=

Bi

(x− ti)ni
,

respectively. For i ∈ Ireg ∪ Iun, the polynomials Ci and Di have the description

(2.10)


Ci = −

(
Θ+

i Θ
−
i

∏
j ̸=i

(x− tj)
nj

)
mod (x− ti)

ni ,

Di = Θ+
i +Θ−

i .

For i ∈ Ira, the polynomials Ci and Di have the description

(2.11)



Ci = −
((

A2
i −

(x− ti)
ni−1

2
Ai − (x− ti)B

2
i

)
·
∏
j ̸=i

(x− tj)
nj

)
mod (x− ti)

ni ,

Di = 2Ai −
(x− ti)

ni−1

2
.

§2.4. Family of connections

Let (θ,θ0) ∈ Tθ×T res
θ and t0 = (t3, . . . , tν) ∈ (Tt)t0 . Set D = n1 ·0+n2 ·1+n3 ·t3+

· · ·+ nν · tν + n∞ ·∞. Let Conn(t0,θ,θ0) be the moduli space of (θ,θ0)-connections
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satisfying some generic conditions:

(2.12) Conn(t0,θ,θ0) :=


(E,∇)

∣∣∣∣∣∣∣∣∣∣∣∣

E ∼= OP1 ⊕OP1(1) and

∇ is a (θ,θ0)-connection such that

OP1(1) ⊂ E1 is not ∇-invariant,

DApp is reduced, and

DApp has disjoint support with D


/

∼ .

Here, (E,∇) ∼ (E′,∇′) means that there exists an isomorphism φ : E → E′ such

that the following diagram is commutative:

E
∇ //

φ

��

E × Ω1
P1(D)

φ⊗id

��

E′ ∇′
// E′ × Ω1

P1(D).

By taking apparent singularities and the dual parameters from a connection

(E1,∇) ∈ Conn(t0,θ,θ0), we may define a map

App: Conn(t0,θ,θ0) −→ Mt0,tra ⊂ Sym(n−3)(C2),

(E,∇) 7−→ {(q1, p1), . . . , (qn−3, pn−3)}.

Now we construct an inverse map of App as follows. Let d be the relative exterior

derivative of P1 ×Mt0,tra → Mt0,tra . By Definition 2.3 and Lemma 2.9, we may

construct an algebraic family

∇̃(n−2)
DL =

{
d+Ω

(n−2)
(t0,θ,θ0)

on U0 ×Mt0,tra ,

d+G−1
n−2 dGn−2 +G−1

n−2Ω
(n−2)
(t0,θ,θ0)

Gn−2 on U∞ ×Mt0,tra ,

of (θ,θ0)-connections on En−2 parametrized by Mt0,tra . We set

Ω
(1)
(t0,θ,θ0)

= G̃−1 dG̃+ G̃−1Ω
(n−2)
(t0,θ,θ0)

G̃.

Then we have an algebraic family

∇̃(1)
DL =

{
d+Ω

(1)
(t0,θ,θ0)

on U0 ×Mt0,tra ,

d+G−1
1 dG1 +G−1

1 Ω
(1)
(t0,θ,θ0)

G1 on U∞ ×Mt0,tra ,

of (θ,θ0)-connections E1 → E1 ⊗Ω1
P1(D) parametrized by Mt0,tra by Proposition

2.4. The algebraic family ∇̃(1)
DL parametrized by Mt0,tra gives the inverse map of

App:
App−1 : Mt0,tra −→ Conn(t0,θ,θ0),

p = {(q1, p1), . . . , (qn−3, pn−3)} 7−→ (E1, ∇̃(1)
DL|P1×{p}).
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Next we consider the extended moduli space Ĉonn(tra,θ0) of Conn(t0,θ,θ0). We

set D(t0) := n1 · 0 + n2 · 1 +
∑ν

i=3 ni · ti + n∞ · ∞ for t0 = (t3, . . . , tν) ∈ (Tt)t0 .

This extended moduli space Ĉonn(tra,θ0) is defined by

Ĉonn(tra,θ0) :=


(E,∇, t0,θ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t0 ∈ (Tt)tra , θ∈Tθ, E ∼= OP1 ⊕OP1(1), and

∇ is a (θ,θ0)-connection

such that the polar divisor of ∇ is D(t0),

OP1(1) ⊂ E1 is not ∇-invariant,

DApp is reduced, and

DApp has disjoint support with D(t0)


/

∼ .

Here, (E,∇, t0,θ) ∼ (E′,∇′, t′0,θ
′) means that t0 = t′0, θ = θ′, and there exists

an isomorphism φ : E → E′ such that the following diagram is commutative:

E
∇ //

φ

��

E × Ω1
P1(D)

φ⊗id

��

E′ ∇′
// E′ × Ω1

P1(D).

By taking apparent singularities, the dual parameters, the position of singular

points, and the local formal data from a connection (E1,∇) ∈ Ĉonn(tra,θ0), we

may define a map

(2.13)
Âpp: Ĉonn(tra,θ0) −→ M̂tra × Tθ ⊂ (Sym(n−3)(C2)× Tt)× Tθ,

(E,∇, t0,θ) 7−→ (({(q1, p1), . . . , (qn−3, pn−3)}, t0),θ).

Now we may also construct an inverse map of Âpp as follows. Here, let d be the

relative exterior derivative of P1 × (M̂tra × Tθ) → M̂tra × Tθ. By Definition 2.3

and Lemma 2.9, we may construct an algebraic family

∇̃(n−2)
DL,ext =

{
d+ Ω̂

(n−2)
(tra,θ0)

on U0 × (M̂tra × Tθ),

d+G−1
n−2 dGn−2 +G−1

n−2Ω̂
(n−2)
(tra,θ0)

Gn−2 on U∞ × (M̂tra × Tθ),

of connections on En−2 parametrized by M̂tra × Tθ. We set

Ω̂
(1)
(tra,θ0)

= G̃−1 dG̃+ G̃−1Ω̂
(n−2)
(tra,θ0)

G̃.

Then we have an algebraic family

(2.14) ∇̃(1)
DL,ext =

{
d+ Ω̂

(1)
(tra,θ0)

on U0 × (M̂tra × Tθ),

d+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1 on U∞ × (M̂tra × Tθ),
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of connections on E1 parametrized by M̂tra × Tθ by Proposition 2.4. Let t̃0 =

(t̃1, . . . , t̃ν , t̃∞) be a family of (ν + 1)-points on P1 parametrized by (Tt)tra and θ̃

be a family of tuples of complex numbers parametrized by Tθ. We denote by the

same characters t̃0 and θ̃ the pull-backs of t̃0 and θ̃ under the compositions

M̂tra × Tθ
id×πtra,θ0−−−−−−−→(Tt)tra × Tθ

projection−−−−−−→ (Tt)tra ,

M̂tra × Tθ
id×πtra,θ0−−−−−−−→(Tt)tra × Tθ

projection−−−−−−→ Tθ,

respectively. The algebraic family ∇̃(1)
DL,ext parametrized by Mtra × Tθ gives the

inverse map of Âpp:

Âpp
−1

: M̂tra × Tθ −→ Ĉonn(tra,θ0),

p̂ = (({(q1, p1), . . . , (qn−3, pn−3)}, t0),θ) 7−→ (E1, ∇̃(1)
DL,ext|P1×{p̂}, t̃0|p̂, θ̃|p̂).

§2.5. Infinitesimal deformations of connections

Let U be an open subset of Mt0,tra ⊂ Sym(n−3)(C2). Let δ be a vector field on U .

By the vector field δ, we have a map

(2.15) P1 × SpecOU [ε] −→ P1 × U,

where ε2 = 0. We take the pull-back of the family ∇̃(n−2)
DL |P1×U under the map

(2.15). We denote the expansion of this pull-back of ∇̃(n−2)
DL |P1×U with respect to

ε by 
d+Ω

(n−2)
(t0,θ,θ0)

+ εδ(Ω
(n−2)
(t0,θ,θ0)

) on U0 × SpecOU [ε],

d+G−1
n−2 dGn−2 +G−1

n−2Ω
(n−2)
(t0,θ,θ0)

Gn−2

+ εG−1
n−2δ(Ω

(n−2)
(t0,θ,θ0)

)Gn−2 on U∞ × SpecOU [ε].

We also denote the expansion of the pull-back of the family ∇̃(1)
DL|P1×U under the

map (2.15) by{
d+Ω

(1)
(t0,θ,θ0)

+ εδ(Ω
(1)
(t0,θ,θ0)

) on U0 × SpecOU [ε],

d+G−1
1 dG1 +G−1

1 Ω
(1)
(t0,θ,θ0)

G1 + εG−1
1 δ(Ω

(1)
(t0,θ,θ0)

)G1 on U∞ × SpecOU [ε].

Let Û be an open subset of M̂tra × Tθ. Let δ̂ be a vector field on Û . By the

vector field δ̂, we have a map

(2.16) P1 × SpecOÛ [ε] −→ P1 × Û ,

where ε2 = 0. We take the pull-back of the family ∇̃(n−2)
DL,ext|P1×Û under the map

(2.16). We denote the expansion of this pull-back of ∇̃(n−2)
DL,ext|P1×Û with respect to
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ε by 
d+ Ω̂

(n−2)
(tra,θ0)

+ εδ(Ω̂
(n−2)
(tra,θ0)

) on U0 × SpecOÛ [ε]

d+G−1
n−2 dGn−2 +G−1

n−2Ω̂
(n−2)
(tra,θ0)

Gn−2,

+ εG−1
n−2δ(Ω̂

(n−2)
(tra,θ0)

)Gn−2 on U∞ × SpecOÛ [ε].

Here, this Ω̂
(n−2)
(tra,θ0)

means the pull-back of Ω̂
(n−2)
(tra,θ0)

on U0 × Û by the trivial pro-

jection U0 × SpecOÛ [ε] → U0 × Û . Remark that there is a difference between this

Ω̂
(n−2)
(tra,θ0)

and the pull-back of Ω̂
(n−2)
(tra,θ0)

on U0 × Û by (2.16). The ε-part δ(Ω̂
(n−2)
(tra,θ0)

)

adjusts this difference. We also denote the expansion of the pull-back of the family

∇̃(1)
DL,ext|P1×Û under the map (2.16) by{
d+ Ω̂

(1)
(tra,θ0)

+ εδ(Ω̂
(1)
(tra,θ0)

) on U0 × SpecOŨ [ε],

d+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1 + εG−1
1 δ(Ω̂

(1)
(tra,θ0)

)G1 on U∞ × SpecOŨ [ε].

§2.6. Horizontal lifts of a family of connections

Let Ê1 and Ên−2 be the pull-backs of E1 and En−2, respectively, under the pro-

jection P1 × (M̂tra × Tθ) → P1. Set D(t̃0) :=
∑ν

i=1 ni · t̃i + n∞ · t̃∞, which is a

Cartier divisor on P1 × M̂tra × Tθ, which is flat over M̂tra × Tθ. Let

∇̃(1)
DL,ext =

{
d+ Ω̂

(1)
(tra,θ0)

on U0 × (M̂tra × Tθ),

d+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1 on U∞ × (M̂tra × Tθ),

be the family (2.14). This family is a relative connection on Ê1:

∇̃(1)
DL,ext : Ê1 −→ Ê1 ⊗ Ω1

P1×(M̂tra×Tθ)/M̂tra×Tθ
(D(t̃0)).

We will consider an infinitesimal deformation of ∇̃(1)
DL,ext, which means an “inte-

grable deformation”.

Let Êε
1 be the pull-back of Ê1 under the trivial projection

(2.17) P1 × (M̂tra × Tθ)× SpecC[ε] −→ P1 × (M̂tra × Tθ).

Let δtime be a vector field on (Tt)tra × Tθ. The vector field δtime gives a map

πδtime
: ((Tt)tra × Tθ)× SpecC[ε] −→ (Tt)tra × Tθ.

Set

Dred(t̃0) :=
∑
i∈I

t̃i.

We consider Dred(t̃0) as a Cartier divisor on P1 × ((Tt)tra × Tθ). We denote by

D(t̃0)ε and Dred(t̃0)ε the pull-backs of D(t̃0) and Dred(t̃0), respectively, under the
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composition

P1 × (M̂tra × Tθ)× SpecC[ε]
id×πtra,θ0

×id
−−−−−−−−−→P1 × ((Tt)tra × Tθ)× SpecC[ε]

id×πδtime−−−−−−→P1 × (Tt)tra × Tθ.(2.18)

Take local defining equations x̃ti of the Cartier divisor Dred(t̃0)ε. Let Ω̃1
δtime

be

a coherent subsheaf of Ω1
P1×(M̂tra×Tθ)×SpecC[ε]/M̂tra×Tθ

(D(t̃0)ε) which is locally

defined by

(2.19) Ω̃1
δtime

= OP1×(M̂tra×Tθ)×SpecC[ε]
dx̃ti
x̃ni
ti

+OP1×(M̂tra×Tθ)

dε

x̃ni−1
ti

.

Let ∇δtime : Ê
ε
1 → Êε

1 ⊗ Ω̃1
δtime

be a morphism with the Leibniz rule. That is,

∇δtime
(fa) = a⊗ d̂f+f∇δtime

(a) for f ∈ OP1×(M̂tra×Tθ)×SpecC[ε] and a ∈ Êε
1 . Here,

d̂ is the relative exterior derivative of P1 × (M̂tra × Tθ)× SpecC[ε] → M̂tra × Tθ.

We denote the expansion of the morphism ∇δtime with respect to ε by

∇δtime
=


d̂+ Ω̂

(1)
δtime

+ εδ(Ω̂
(1)
δtime

) + Υδtime dε on U0 × (M̂tra × Tθ)× SpecC[ε],
d̂+G−1

1 dG1 +G−1
1 Ω̂

(1)
δtime

G1

+ εG−1
1 δ(Ω̂

(1)
δtime

)G1

+G−1
1 ΥδtimeG1 dε on U∞ × (M̂tra × Tθ)× SpecC[ε].

Here, the connection matrices are decomposed into dxti-terms and dε-terms.

Remark that dxti is the pull-back of dxti under the morphism P1 × (M̂tra ×Tθ)×
SpecC[ε] → P1 × (Tt)tra × Tθ defined by πtra,θ0

and the trivial projection. On the

other hand, dx̃ti is the pull-back of dxti under the morphism P1 × (M̂tra × Tθ)×
SpecC[ε] → P1 × (Tt)tra × Tθ defined in (2.18). Moreover, remark that Ω̂

(1)
δtime

has

a pole on the divisor D(t̃0)× SpecC[ε], which is different from the divisor D(t̃0)ε.

So Ω̂
(1)
δtime

does not belong to End(Êε
1) ⊗ Ω̃1

δtime
. The ε-term εδ(Ω̂

(1)
δtime

) + Υδtime
dε

adjusts the condition that the image of ∇δtime is contained in Êε
1 ⊗ Ω̃1

δtime
.

Let ∇δtime
be the relative connection induced by ∇δtime

:

∇δtime
: Êε

1 −→ Êε
1 ⊗ Ω1

P1×(M̂tra×Tθ)×SpecC[ε]/(M̂tra×Tθ)×SpecC[ε](D(t̃0)ε).

That is,

∇δtime
=


d+ Ω̂

(1)
δtime

+ εδ(Ω̂
(1)
δtime

) on U0 × (M̂tra × Tθ)× SpecC[ε],
d+G−1

1 dG1 +G−1
1 Ω̂

(1)
δtime

G1

+ εG−1
1 δ(Ω̂

(1)
δtime

)G1 on U∞ × (M̂tra × Tθ)× SpecC[ε].
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We consider Ω̂
(1)
(tra,θ0)

as a matrix with values in Ω1
P1×(M̂tra×Tθ)

(D(t̃0)). We take a

pull-back of the matrix Ω̂
(1)
(tra,θ0)

by the trivial projection

U0 × (M̂tra × Tθ)× SpecC[ε] → U0 × (M̂tra × Tθ).

This pull-back induces a matrix with values in

Ω1
P1×(M̂tra×Tθ)×SpecC[ε]/(M̂tra×Tθ)

(D(t̃0)× SpecC[ε]).

We also denote this induced matrix by Ω̂
(1)
(tra,θ0)

.

Definition 2.10. We say ∇δtime
is a horizontal lift of ∇̃(1)

DL,ext if ∇δtime
satisfies

Ω̂
(1)
δtime

= Ω̂
(1)
(tra,θ0)

and the integrable condition

δ(Ω̂
(1)
δtime

) ∧ dε = dΥδtime ∧ dε+ [Ω̂
(1)
δtime

,Υδtime ] ∧ dε.

If ∇δtime
is a horizontal lift of ∇̃(1)

DL,ext, the relative connection ∇δtime
means an

integrable deformation of ∇̃(1)
DL,ext.

The construction of horizontal lifts of ∇̃(1)
DL,ext is discussed in Sections 3.3, 3.4,

and 4.2.

§2.7. Solutions of d + Ω
(n−2)
(t0,θ,θ0)

= 0 at the apparent singularities

Since qj (j = 1, 2, . . . , n−3) are apparent singularities, then we have the following

lemma:

Lemma 2.11. For each j ∈ {1, . . . , n− 3}, the equation (d+Ω
(n−2)
(t0,θ,θ0)

)Ψ = 0 has

a solution ψqj = ΦqjΞqj (x)Λqj (x) at qj. Here,

(2.20)

Φqj :=

(
1 0

pj 1

)
, Λqj (x) :=

(
1 0

0 x− qj

)
,

Ξqj (x) :=

(
1 0

0 1

)
+

∞∑
s=1

(
(ξ

qj
s )11 (ξ

qj
s )12

(ξ
qj
s )21 (ξ

qj
s )22

)
(x− qj)

s,

where (ξ
qj
1 )11 = − pj

P (qj)
, (ξ

qj
1 )12 = − 1

2P (qj)
, (ξ

qj
1 )21 = 0, and

(ξ
qj
1 )22 =

pj
P (qj)

−
ν∑

i=1

Di(qj)

(qj − ti)ni
+
∑
k

1

qj − qk
−D∞(qj).

The solution ψqj has converging entries.
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Proof. The connection matrix Ω
(n−2)
(t0,θ,θ0)

has the following description at qj by

(2.5):

Ω
(n−2)
(t0,θ,θ0)

=

(
0 0
pj

x−qj
−1

x−qj

)
dx+

(
0 1

P (qj)

c
(0)
qj d

(0)
qj

)
dx+O(x− qj).

Here we set

c(0)qj
:=

ν∑
i=1

Ci(qj)

(qj − ti)ni
+
∑
k ̸=j

pj
qj − qk

+ C̃(qj) + qn−3
j C∞(qj),

d(0)qj
:=

ν∑
i=1

Di(qj)

(qj − ti)ni
+
∑
k ̸=j

−1

qj − qk
+D∞(qj).

Let Φqj be the matrix in (2.20). We may check the equality

Φ−1
qj Ω

(n−2)
(t0,θ,θ0)

Φqj =

(
0 0

0 −1
x−qj

)
dx+

(
pj

P (qj)
1

P (qj)

0 d
(0)
qj − pj

P (qj)

)
dx+O(x− qj).

Here, the (2, 1)-entry of this constant term is zero, since qj is an apparent singular

point. Since Φ−1
qj Ω

(n−2)
(t0,θ,θ0)

Φqj has simple pole at qj and qj is an apparent singular

point, there exists a convergent power series Ξqj (x) = id + Ξ
(1)
qj (x− qj) + · · · such

that

(ΦqjΞqj (x))
−1d(ΦqjΞqj (x)) + (ΦqjΞqj (x))

−1Ω
(n−2)
(t0,θ,θ0)

(ΦqjΞqj (x))

=

(
0 0

0−1

)
dx

x− qj
.(2.21)

We calculate the left-hand side of (2.21). The constant term of this left-hand side

is

Ξ(1)
qj +

[(
0 0

0−1

)
,Ξ(1)

qj

]
+

(
pj

P (qj)
1

P (qj)

0 d
(0)
qj − pj

P (qj)

)
.

This matrix is a zero matrix. So we may check that Ξ
(1)
qj is determined as

Ξ(1)
qj =

(
− pj

P (qj)
− 1

2P (qj)

(ξ
qj
1 )21 −d(0)qj +

pj

P (qj)

)
.

We may determine (ξ
qj
1 )21 freely. Here we set (ξ

qj
1 )21 = 0.

§3. Unramified irregular singularities

In this section we assume that Ira = ∅. In Section 3.1, we define a 2-form on

the fiber Mt0,tra by Krichever’s formula [16, Sect. 5]. Remark that Mt0,tra is
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isomorphic to the moduli space Conn(t0,θ,θ0). We show that this 2-form coincides

with the symplectic form (1.2). In Sections 3.3 and 3.4, we will construct horizontal

lifts of ∇̃(1)
DL,ext. Let ∂/∂θ

±
l,ti

(i ∈ Iun and l = 0, 1, . . . , ni − 2) and ∂/∂ti (i =

3, 4 . . . , ν) be the vector fields on (Tt)tra×Tθ. By the construction of the horizontal

lifts, we have the vector fields δIMD
θ±
l,ti

and δIMD
ti on M̂tra × Tθ determined by the

integrable deformations with respect to ∂/∂θ±l,ti and ∂/∂ti, respectively. Remark

that M̂tra ×Tθ is isomorphic to the extended moduli space Ĉonn(tra,θ0). In Section

3.5 we define a 2-form on M̂tra × Tθ by Krichever’s formula. We show that this

2-form is the isomonodromy 2-form. In Section 3.6 we calculate this 2-form on

M̂tra ×Tθ by using Diarra–Loray’s global normal form. Then we obtain an explicit

formula of this 2-form.

We consider the leading coefficient of Ω
(n−2)
(t0,θ,θ0)

at ti:

Ω
(n−2)
(t0,θ,θ0)

=

(
0 1∏

j ̸=i(ti−tj)
nj

θ+0,tiθ
−
0,ti

∏
j ̸=i(ti − tj)

nj θ+0,ti + θ−0,ti

)
dxti
xni
ti

+ [higher-order terms].

Remark that this leading coefficient at ti is independent of {(qj , pj)}j=1,2,...,n−3.

We fix Φi ∈ GL(2,C) so that

Φ−1
i Ω

(n−2)
(t0,θ,θ0)

Φi =

(
θ+0,ti 0

0 θ−0,ti

)
dxti
xni
ti

+ [higher-order terms].

We call the matrix Φi a compatible framing at ti. If we have another Φ′
i such that

the leading coefficient matrix of (Φ′
i)

−1Ω
(n−2)
(t0,θ,θ0)

Φ′
i is diagonal as above, then there

exists a diagonal matrix Cti such that Φ′
i = ΦiCti , since θ

+
0,ti

− θ−0,ti ̸= 0.

Lemma 3.1 (For example [16, Lem. 3.1]). Assume that θ+0,ti − θ−0,ti ̸= 0 if ni > 1

and θ+0,ti − θ−0,ti /∈ Z if ni = 1. For a compatible framing Φi, there exist unique

� θ±l,ti ∈ Γ(Mt0,tra ,OMt0,tra
) (l ≥ ni and i ∈ I),

�

∑∞
s=1(ξ

(i)
s )12x

s
ti ∈ Γ(Mt0,tra ,OMt0,tra

)[[xti ]], and

�

∑∞
s=1(ξ

(i)
s )21x

s
ti ∈ Γ(Mt0,tra ,OMt0,tra

)[[xti ]]

such that ψi := ΦiΞi(xti) exp(−Λi(xti)) satisfies the equation (d+Ω
(n−2)
(t0,θ,θ0)

)ψi = 0

formally at ti. Here we put

Λi(xti) :=

(
λ̂+i (xti) 0

0 λ̂−i (xti)

)
,

Ξi(xti) :=

(
1 0

0 1

)
+

∞∑
s=1

(
0 (ξ

(i)
s )12

(ξ
(i)
s )21 0

)
xsti ,
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where λ̂±i (xti) :=
∑∞

l=0 θ
±
l,ti

∫
x−ni+l
ti dxti . That is, ψi is a formal fundamental

matrix solution at ti.

Remark 3.2. By the equations in (2.10), we have that the polynomials Ci and Di

(i = 1, 2, . . . , ν,∞) in (2.5) are independent of the parameters {(qj , pj)}j=1,2,...,n−3

of Mt0,tra . If we take a compatible framing Φi so that Φi is independent of

{(qj , pj)}j=1,2,...,n−3, then the coefficients of the formal power series ΦiΞi(xti)

up to the (x − ti)
ni−1-term are independent of {(qj , pj)}j=1,2,...,n−3. This inde-

pendency is the assumption of Lemma 3.13 (below). We will use this fact for the

calculation of Hamiltonians and the isomonodromy 2-form.

§3.1. Symplectic structure

Definition 3.3 ([16, Sect. 5] and [6, form. (3.16), p. 306]). Let δ1 and δ2 be vec-

tor fields on Mt0,tra ⊂ Sym(n−3)(C2), which is isomorphic to the moduli space

Conn(t0,θ,θ0). We fix a formal fundamental matrix solution ψi of (d+Ω
(n−2)
(t0,θ,θ0)

)ψi =

0 at x = ti as in Lemma 3.1. Moreover, we fix a fundamental matrix solution ψqj

of (d+Ω
(n−2)
(t0,θ,θ0)

)ψqj = 0 at x = qj as in Lemma 2.11. We set

δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i := δ1(Ω

(n−2)
(t0,θ,θ0)

)δ2(ψi)ψ
−1
i − δ1(ψi)ψ

−1
i δ2(Ω

(n−2)
(t0,θ,θ0)

)

and

δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψqj )ψ
−1
qj

:= δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψqj )ψ
−1
qj − δ1(ψqj )ψ

−1
qj δ2(Ω

(n−2)
(t0,θ,θ0)

).

We define a 2-form ω on Mt0,tra as

ω(δ1, δ2) :=
1

2

∑
i∈I

resx=ti Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i )

+
1

2

n−3∑
j=1

resx=qj Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψqj )ψ
−1
qj ),(3.1)

where I := {1, 2, . . . , ν,∞}.

In [16, Sect. 5], it is discussed that this definition is well defined. We recall

this argument in [16, Sect. 5]. First, we show that the right-hand side of (3.1)

is independent of the choice of ψqj . If we have another solution ψ′
qj , then we

have matrix Cqj such that this matrix is independent of parameters on P1 and

ψ′
qj = ψqjCqj . By the Leibniz rule, we have

Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψ
′
qj )(ψ

′
qj )

−1) = Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψqjCqj )(ψqjCqj )
−1)

= Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψqj )ψ
−1
qj )

+ Tr(ψ−1
qj δ1(Ω

(n−2)
(t0,θ,θ0)

)ψqjδ2(Cqj )C
−1
qj ).
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We take variations of both sides of the equation dψqj = −Ω
(n−2)
(t0,θ,θ0)

ψqj with respect

to δ1. Then we have the equalities

ψ−1
qj δ1(Ω

(n−2)
(t0,θ,θ0)

)ψqj = −ψ−1
qj d(δ1(ψqj ))− ψ−1

qj Ω
(n−2)
(t0,θ,θ0)

δ1(ψqj )

= −ψ−1
qj d(δ1(ψqj )) + ψ−1

qj d(ψqj )ψ
−1
qj δ1(ψqj )

= −d(ψ−1
qj δ1(ψqj )).(3.2)

Here, the second equality is given by dψqj = −Ω
(n−2)
(t0,θ,θ0)

ψqj . So we have

Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψ
′
qj )(ψ

′
qj )

−1) = Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψqj )ψ
−1
qj )

− Tr(d(ψ−1
qj δ1(ψqj ))δ2(Cqj )C

−1
qj ).

Since the solution ψqj is holomorphic at qj and Cqj is independent of parameters

on P1, the residue of the second term on the right-hand side is zero. This fact

means that the right-hand side of (3.1) is independent of the choice of ψqj .

We may check that the residue of Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i ) at t̃i is well

defined as follows. We have the equality

δ(ψi)ψ
−1
i = δ

(
ΦiΞi(xti) exp(−Λi(xti))

)(
ΦiΞi(xti) exp(−Λi(xti))

)−1

= δ(ΦiΞi(xti))(ΦiΞi(xti))
−1

− (ΦiΞi(xti))δ(Λi(xti))(ΦiΞi(xti))
−1.(3.3)

Since θ±ni−1,ti
is constant on Mt0,tra , δ(θ

±
ni−1,ti

) = 0. Then δ(θ±ni−1,ti

∫
x−1
ti dxti) =

δ(c). Here, c is an integration constant. If we fix integration constants on Λi(xti),

then we can take the residue of Tr(δ(Ω
(n−2)
(t0,θ,θ0)

)∧δ(ψi)ψ
−1
i ) at t̃i. We may check that

resx=ti Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i ) is independent of the choice of the integration

constant as follows. We take other integration constants and a formal solution ψ′
i

is given for the integration constants. There exists a diagonal matrix Cti such that

ψ′
i = ψiCti and Cti is independent of parameters on P1. By the same argument as

above, we have the equality

Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψ
′
i)(ψ

′
i)

−1)

= Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψi)ψ
−1
i )− Tr

(
d(ψ−1

i δ1(ψi))δ2(Cti)C
−1
ti

)
.(3.4)

Since Λi(xti) and Cti are diagonal, we have

exp(−Λi(xti))δ2(Cti)C
−1
ti exp(−Λi(xti))

−1 = δ2(Cti)C
−1
ti .
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We calculate the second term on the left-hand side of (3.4):

Tr
(
d(ψ−1

i δ1(ψi))δ2(Cti)C
−1
ti

)
= Tr

(
d
(
exp(−Λi(xti))

−1(ΦiΞi(xti))
−1δ1(ΦiΞi(xti)) exp(−Λi(xti))

)
× δ2(Cti)C

−1
ti

)
+Tr

(
d
(
exp(−Λi(xti))

−1δ1
(
exp(−Λi(xti))

))
δ2(Cti)C

−1
ti

)
= Tr

(
dΛi(xti)(ΦiΞi(xti))

−1δ1(ΦiΞi(xti))δ2(Cti)C
−1
ti

)
− Tr

(
(ΦiΞi(xti))

−1δ1(ΦiΞi(xti))dΛi(xti)δ2(Cti)C
−1
ti

)
+Tr

(
d
(
(ΦiΞi(xti))

−1δ1(ΦiΞi(xti))
)
δ2(Cti)C

−1
ti

)
+Tr

(
d
(
δ1(−Λi(xti))

)
δ2(Cti)C

−1
ti

)
= Tr

(
d
(
(ΦiΞi(xti))

−1δ1(ΦiΞi(xti))
)
δ2(Cti)C

−1
ti

)
+Tr

(
d
(
δ1(−Λi(xti))

)
δ2(Cti)C

−1
ti

)
.(3.5)

The residue parts of d((ΦiΞi(xti))
−1δ1(ΦiΞi(xti))) and d(δ1(−Λi(xti))) vanish.

Since δ2(Cti)C
−1
ti is independent of parameters on P1, the residues of the formal

meromorphic differentials of the last line of (3.5) at ti are zero. Then we have that

resx=ti Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i ) is independent of the choice of the integration

constant. Finally, the residue of Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i ) at t̃i is well defined.

Next we show that the right-hand side of (3.1) is independent of the choice

of a formal solution ψi. Let Cti(xti) be the following diagonal matrix:(
cti,11(xti) 0

0 cti,22(xti)

)
=

(
c
(0)
ti,11

0

0 c
(0)
ti,22

)
+

(
c
(1)
ti,11

0

0 c
(1)
ti,22

)
xti

+

(
c
(2)
ti,11

0

0 c
(2)
ti,22

)
x2ti + · · · .

We define Ξ′(xti) and Λ′
i(xti) by

Ξ′(xti) = Ξ(xti)Cti(xti),

Λ′
i(xti) = Λi(xti) +

(∫
cti,11(xti)

−1 d(cti,11(xti)) 0

0
∫
cti,22(xti)

−1 d(cti,22(xti))

)
.

Then we have another formal fundamental matrix solution ψ′
i = ΦiΞ

′(xti) ×
exp(−Λ′

i(xti)). There exists a diagonal matrix Cti such that ψ′
i = ψiCti and Cti

is independent of parameters on P1. By the same argument as above, we have

Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψ
′
i)(ψ

′
i)

−1) = Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψi)ψ
−1
i ).

Then we obtain that the right-hand side of (3.1) is independent of the choice of ψi.
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Theorem 3.4. Let ω be the 2-form on Mt0,tra defined by (3.1) in Definition 3.3.

The 2-form ω coincides with

n−3∑
j=1

d
( pj
P (qj)

)
∧ dqj .

Proof. Recall that ω(δ1, δ2) is

1

2

∑
i∈I

resx=ti Tr
(
δ(Ω

(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i

)
+

1

2

n−3∑
j=1

resx=qj Tr
(
δ(Ω

(n−2)
(t0,θ,θ0)

) ∧ δ(ψqj )ψ
−1
qj

)
.

We calculate the residue of Tr(δ(Ω
(n−2)
(t0,θ,θ0)

)∧δ(ψqj )ψ
−1
qj ) at x = qj . For this purpose,

first, we calculate δ(Ω
(n−2)
(t0,θ,θ0)

) around x = qj as follows. The connection matrix

Ω
(n−2)
(t0,θ,θ0)

has the following description at qj by (2.5):

(3.6) Ω
(n−2)
(t0,θ,θ0)

=

(
0 0
pj

x−qj
−1

x−qj

)
dx+

(
0 b′0
c′0 d

′
0

)
dx.

Here, b′0, c
′
0, and d

′
0 are holomorphic at x = qj . Since ti and θ

±
l,ti

(i ∈ I, 0 ≤ l ≤
ni − 1) are constants on Mt0,tra , we have δ(ti) = 0 and δ(θ±l,ti) = 0. By δ(ti) = 0

we have δ(b′0) = 0. By (2.10), we have δ(Di) = 0 for i = 1, 2, . . . , ν,∞. We take

the variation δ(Ω
(n−2)
(t0,θ,θ0)

) of Ω
(n−2)
(t0,θ,θ0)

associated to δ:

δ(Ω
(n−2)
(t0,θ,θ0)

) =

(
0 0

δ(c0) δ(d0)

)
dx,

where

δ(c0) =
pjδ(qj)

(x− qj)2
+

δ(pj)

(x− qj)
+O(x− qj)

0,

δ(d0) = − δ(qj)

(x− qj)2
−
∑
k ̸=j

δ(qk)

(qj − qk)2
+O(x− qj).

Second, we consider δ(ψqj )ψ
−1
qj . We have

δ(ψqj )ψ
−1
qj = δ(ΦqjΞqj (x))(ΦqjΞqj (x))

−1

+ (ΦqjΞqj (x))

(
0 0

0
−δ(qj)
x−qj

)
(ΦqjΞqj (x))

−1.(3.7)
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By using Lemma 2.11, we have the equality

ΦqjΞqj (x) =

(
1 0

pj 1

)

+

(
− pj

P (qj)
− 1

2P (qj)

− p2
j

P (qj)
pj

2P (qj)
−
∑ν

i=1
Di(qj)

(qj−ti)ni
+
∑

k ̸=j
1

qj−qk
−D∞(qj)

)
(x− qj)

+O(x− qj)
2.

By this description of ΦqjΞqj (x), we may check that the constant term of the

expansion of δ(ΦqjΞqj (x)) at qj has the description(
0 0

δ(pj) 0

)
− δ(qj)

(
− pj

P (qj)
− 1

2P (qj)

− p2
j

P (qj)
∗

)
,

and the coefficient of the (x − qj)-term of the expansion of δ(ΦqjΞqj (x)) has the

description (
∗ 0

∗ δ(pj)
2P (qj)

+
∑

k ̸=j
δ(qk)

(qj−qk)2

)
− δ(qj)

(
∗ ∗
∗ ∗

)
.

Here we put the entries having δ(qj) together in the second matrices. Moreover,

we may check that the constant term of the expansion of (ΦqjΞqj (x))
−1 at qj is(

1 0
−pj 1

)
and the coefficient of the (x− qj)-term of the expansion of (ΦqjΞqj (x))

−1

has the description

−

(
− pj

2P (qj)
− 1

2P (qj)

∗ pj

P (qj)
−
∑ν

i=1
Di(qj)

(qj−ti)ni
+
∑

k ̸=j
1

qj−qk
−D∞(qj)

)
.

By the calculation of δ(ΦqjΞqj (x)) and (ΦqjΞqj (x))
−1, we may show that

δ(ΦqjΞqj (x))(ΦqjΞqj (x))
−1 is

(3.8)

(
∗ δ(qj)

2P (qj)

∗ ∗

)
+

(
∗ f

(1)
12 δ(qj)

∗ δ(pj)
P (qj)

+
∑

k
δ(qk)

(qj−qk)2
− f

(1)
22 δ(qj)

)
(x− qj) +O(x− qj)

2,

where f
(1)
12 and f

(1)
22 are rational functions on Mt0,tra . We consider the second term

of (3.7). We may show that

(ΦqjΞqj (x))

(
0 0

0
−δ(qj)
x−qj

)
(ΦqjΞqj (x))

−1

=

(
0 0

∗ −δ(qj)

)
x− qj

+

(
∗ δ(qj)

2P (qj)

∗ ∗

)
+

(
∗ g(1)12 δ(qj)

∗ g(1)22 δ(qj)

)
(x− qj) +O(x− qj)

2,(3.9)
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where g
(1)
12 and g

(1)
22 are rational functions on Mt0,tra . By (3.8) and (3.9), we have

δ(ψqj )ψ
−1
qj =

(
0 0

∗ −δ(qj)

)
x− qj

+

(
∗ δ(qj)

P (qj)

∗ ∗

)

+

(
∗ (g

(1)
12 + f

(1)
12 )δ(qj)

∗ δ(pj)
P (qj)

+
∑

k
δ(qk)

(qj−qk)2
+ (g

(1)
22 − f

(1)
22 )δ(qj)

)
(x− qj) +O(x− qj)

2.

By (3.6) and this equality, we have

resx=qj Tr(δ1(Ω
(n−2)
(t0,θ,θ0)

)δ2(ψqj )ψ
−1
qj )

=
δ1(pj)δ2(qj)

P (qj)
− δ1(qj)δ2(pj)

P (qj)
+
∑
k ̸=j

δ1(qk)δ2(qj)

(qj − qk)2
−
∑
k ̸=j

δ1(qj)δ2(qk)

(qj − qk)2

+ (pj(g
(1)
12 + f

(1)
12 )− (g

(1)
22 − f

(1)
22 ))δ1(qj)δ2(qj).

Since
∑n−3

j=1

∑
k ̸=j

δ1(qk)δ2(qj)−δ1(qj)δ2(qk)
(qj−qk)2

= 0, we have

n−3∑
j=1

resx=qj Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψqj )ψ
−1
qj ) = 2

n−3∑
j=1

(
δ1(pj)δ2(qj)

P (qj)
− 2δ2(pj)δ1(qj)

P (qj)

)
.

Next we calculate the residue of Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i ) at x = ti. First

we consider the expansion of δ(Ω
(n−2)
(t0,θ,θ0)

) at x = ti. Since δ(Ci) = δ(Di) = 0 for

i = 1, 2, . . . , ν,∞, we have δ(c0) = O(x0ti) and δ(d0) = O(x0ti). Second we consider

δ(ψi)ψ
−1
i . By Lemma 3.1 we have

δ(ψi)ψ
−1
i = δ(ΦiΞi(xti))(ΦiΞi(xti))

−1

+ (ΦiΞi(xti))

(
−δ(λ̂+i (xti)) 0

0 −δ(λ̂−i (xti))

)
(ΦiΞi(x))

−1.

Since δ(λ̂±i (xti)) = O(xti), we have that the residue of Tr(δ(Ω
(n−2)
(t0,θ,θ0)

)∧δ(ψi)ψ
−1
i )

at ti is zero. Then we obtain

ω(δ1, δ2) =

n−3∑
j=1

(δ1(pj)δ2(qj)
P (qj)

− δ2(pj)δ1(qj)

P (qj)

)
,

which means that ω coincides with
∑n−3

j=1 d(
pj

P (qj)
) ∧ dqj .

§3.2. Note on the relation to the symplectic structure

of the coadjoint orbits

We apply the argument in [6, proof of Thm. 3.3] for our ω. Let d + Ω0 be a

connection on E1 = OP1 ⊕ OP1(1), whose polar divisor is D. Remark that the
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connection d+Ω0 is related to a connection on En−2 = OP1 ⊕OP1(n− 2) via the

transformation (2.2). Let t be a component of the divisor D. Choosing a formal

coordinate xt near t and a trivialization of E on the formal neighborhood of t, we

describe ∇ near t by

d+Ω0
0

dxt
xnt
t

+ [higher-order terms], Ω0
0 ∈ gl(2,C).

Let ψ be a formal solution at t, that is, (d+Ω0)ψ = 0. For j = 1, 2, let δj(Ω
0) and

δj(ψ) be the variations of Ω0 and ψ, respectively. Here, δj (j = 1, 2) mean vector

fields on Mt0,tra .

We define Gnt
as Gnt

= GL(2,C[xt]/(xnt
t )). Let gnt

be the Lie algebra of

Gnt and g∗nt
be the dual of gnt . We define Ω0

≤nt−1 and U
(j)
≤nt−1 (j = 1, 2) as

Ω0 = (Ω0
≤nt−1)x

−nt
t + O(x0t ) and δj(ψ)ψ

−1 = U
(j)
≤nt−1 + O(xnt

t ), respectively.

We identify Ω0
≤nt−1 and U

(j)
≤nt−1 as elements of g∗nt

by the pairing ⟨X,Y ⟩ =∑nt−1
k=0 (XkYnt−1−k), where X = X0 + X1xt + · · · + Xnt−1x

nt−1
t ∈ gnt

and Y =

Y0+Y1xt+· · ·+Ynt−1x
nt−1
t ∈ gnt

. Since δj(Ω
0) = −[Ω0, δj(ψ)ψ

−1]− d
dxt

(δj(ψ)ψ
−1)

for j = 1, 2, we have

(3.10) δj(Ω
0
≤nt−1) = −[Ω0

≤nt−1, U
(j)
≤nt−1].

By this equality, we have the following equality:

1

2
resxt=0 Tr(δ1(Ω

0)δ2(ψ)(ψ)
−1 − δ1(ψ)(ψ)

−1δ2(Ω
0))

= −Tr⟨Ω0
≤nt−1, [U

(1)
≤nt−1, U

(2)
≤nt−1]⟩.(3.11)

If we consider the elementary transformation (in other words, the Hecke modifi-

cation), we have a connection on the rank-two trivial bundle from the connection

d+Ω0 on E1. By equalities (3.10) and (3.11), we have a relation between ω and the

symplectic form on the product of the coadjoint orbits of Gnt
for each component

t of D (see [2, Prop. 2.1]).

§3.3. Integrable deformations associated to Tθ

First we fix i ∈ I and l ∈ {0, 1, . . . , ni − 2}. Let Ê1 be the pull-back of E1 under

the projection P1 × (M̂tra × Tθ) → P1. Let

∇̃(1)
DL,ext =

{
d+ Ω̂

(1)
(tra,θ0)

on U0 × (M̂tra × Tθ),

d+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1 on U∞ × (M̂tra × Tθ),

be the family (2.14) of connections on Ê1. Let θ
±
l,ti

be the natural coordinate of

(Tt)tra × Tθ and ∂/∂θ±l,ti be the vector field on (Tt)tra × Tθ associated to θ±l,ti . We

will construct a horizontal lift of ∇̃(1)
DL,ext with respect to ∂/∂θ±l,ti .
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We consider diagonalizations of ∇̃(1)
DL,ext until some degree term at each t̃i′

(i′ ∈ I). By using the explicit form of d+ Ω̂
(n−2)
(tra,θ0)

, we take a family of compatible

framings of d+ Ω̂
(n−2)
(tra,θ0)

at t̃i′ for each i
′ ∈ I. We denote this family of compatible

framings at t̃i′ , for each i
′ ∈ I, by Φi′ . Let Ξi′(xti′ ) be the formal transformation of

d+Ω̂
(n−2)
(tra,θ0)

at t̃i′ with respect to Φi′ appearing in Lemma 3.1. Let G̃ be the matrix

defined in (2.7). We write the formal expansion of G̃−1Φi′Ξi′(xti′ ) at xti′ = 0 by

(3.12) G̃−1Φi′Ξi′(xti′ ) = Pi′,0 + Pi′,1xti′ + Pi′,2x
2
ti′

+ · · · .

Set

Pi′ := Pi′,0 + Pi′,1xti′ + Pi′,2x
2
ti′

+ · · ·+ Pi′,2ni′−1x
2ni′−1
ti′

(for i′ ∈ I),

Pν+1 := id.

We take an affine open covering {Ûi′}i′∈I∪{ν+1} of P1 × (M̂tra × Tθ) such that

� for i′ ∈ I, we have t̃i′ ⊂ Ûi′ , t̃j ∩ Ûi′ = ∅ (for any j ̸= i′, j ∈ I), and∑2ni′−1
s=1 Pi′,sx

s
ti′

is invertible on each point of Ûi′ ,

� for i′ = ν + 1, t̃j ∩ Ûi′ = ∅ (for any j ∈ I).

Set Ûi′1,i
′
2
:= Ûi′1

∩ Ûi′2
.

Now we define new trivializations {(Ûi′ , φ̂i′)}i′∈I∪{ν+1} of Ê1. Also, we denote

by (U0× (M̂tra ×Tθ), φ
(1)
U0

) and (U∞× (M̂tra ×Tθ), φ
(1)
U∞

) the trivializations of Ê1

induced by (2.1). We define φ̂i′ (for i
′ ∈ (I ∪ {ν + 1}) \ {∞}) by the composition

φ̂i′ : Ê1|Ûi′

φ
(1)
U0

|Û
i′−−−−−→ O⊕2

Ûi′

P−1

i′−−−→ O⊕2

Ûi′
.

We define φ̂∞ by the composition

φ̂∞ : Ê1|Û∞

φ
(1)
U∞ |Û∞−−−−−−→ O⊕2

Û∞

P−1
∞−−−→ O⊕2

Û∞
.

Then we have new trivializations {(Ûi′ , φ̂i′)}i′∈I∪{ν+1} of Ê1. Let Ω̂i′ be the con-

nection matrix of ∇̃(1)
DL,ext under the new trivialization φ̂i′ :

(3.13)
Ω̂i′ = P−1

i′ dPi′ + P−1
i′ Ω̂

(1)
(tra,θ0)

|Ûi′
Pi′ for i′ ∈ (I ∪ {ν + 1}) \ {∞},

Ω̂∞ = (G1P∞)−1 d(G1P∞) + (G1P∞)−1Ω̂
(1)
(tra,θ0)

|Û∞
(G1P∞).

Remark that Ω̂i′ is diagonal until the x
ni′−1
ti′

-term for each i′ ∈ I.



216 A. Komyo

Now we construct an integrable deformation of ∇̃(1)
DL,ext. For the fixed i ∈ I

and l (0 ≤ l ≤ ni − 2), we define matrices Bθ±
l,ti

(xti) by

Bθ+
l,ti

(xti) :=

(
δ(θ+

l,ti
)

−ni+l+1 0

0 0

)
xni−l−1
ti

and Bθ−
l,ti

(xti) :=

(
0 0

0
δ(θ−

l,ti
)

−ni+l+1

)
xni−l−1
ti

.

For each i′ ∈ I ∪ {ν + 1}, we set (Ê1)i′,ε = Ê1|Ûi′
⊗C C[ε], Ûε

i′ = Ûi′ × SpecC[ε],
and Ûε

i′1,i
′
2
= Ûε

i′1
∩ Ûε

i′2
. We define matrices P ε

i and P ε
i′ by

(3.14) P ε
i = Pi(id + εBθ±

l,ti

(xti)) and P ε
i′ = Pi′ ⊗ id

(where i′ ∈ (I \{i})∪{ν+1}), respectively. In the argument below, we will replace

P ε
∞ with G1P

ε
∞. The matrices give isomorphisms

O⊕2

Ûi′1,i′2

⊗C C[ε]
P ε

i′1−−→ O⊕2

Ûi′1,i′2

⊗C C[ε]

for each i′1, i
′
2 ∈ I ∪ {ν + 1}. First we define a vector bundle (Ê1)

ε
θ±
l,ti

on P1 ×
(M̂tra × Tθ)× SpecC[ε] by gluing {(Ê1)i′,ε}i′∈I∪{ν+1} as follows: we glue (Ê1)i′1,ε

and (Ê1)i′2,ε (i′1, i
′
2 ∈ I ∪ {ν + 1}) by the composition

(Ê1)i′1,ε|Ûε
i′1,i′2

φ̂i′1
|Û

i′1,i′2
⊗1

−−−−−−−−→ O⊕2

Ûi′1,i′2

⊗C C[ε]
(P ε

i′2
)−1P ε

i′1−−−−−−−→ O⊕2

Ûi′1,i′2

⊗C C[ε]

φ̂−1

i′2
|Û

i′1,i′2
⊗1

−−−−−−−−−→ (Ê1)i′2,ε|Ûε
i′1,i′2

.

By construction, we have (Ê1)
ε
θ±
l,ti

⊗C[ε]/(ε) = Ê1. Second we define a morphism

∇ε
∂/∂θ±

l,ti

: (Ê1)
ε
θ±
l,ti

−→ (Ê1)
ε
θ±
l,ti

⊗ Ω̃1
∂/∂θ±

l,ti

with the Leibniz rule. Here, Ω̃1
∂/∂θ±

l,ti

is the coherent subsheaf (2.19). We define

∇ε
i′ (i

′ ∈ I ∪ {ν + 1}) as

(3.15)


∇ε

i′ = d̂+ Ω̂i′ for i′ ∈ (I \ {i}) ∪ {ν + 1},

∇ε
i = d̂+ Ω̂i + ε

( ∂

∂xti
(Bθ±

l,ti

) dxti + [Ω̂i, Bθ±
l,ti

]
)
+Bθ±

l,ti

dε.

We can consider ∇ε
i′ (i

′ ∈ I ∪ {ν + 1}) as a morphism

∇ε
i′ : (Ê1)

ε
θ±
l,ti

|Ûε
i′
−→ (Ê1)

ε
θ±
l,ti

|Ûε
i′
⊗ Ω̃1

∂/∂θ±
l,ti

|Ûε
i′
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by using the trivialization

φ̂i′ ⊗ 1: (Ê1)
ε
θ±
l,ti

|Ûε
i′
= Ê1|Ûi′

⊗C C[ε] → O⊕2

Ûi′
⊗C C[ε].

We may glue {∇ε
i′}i′∈I∪{ν+1}. Finally, we obtain ∇ε

∂/∂θ±
l,ti

by this gluing. Since Ω̂i

and Bθ±
l,ti

are diagonal until the xni−1
ti -terms, the negative parts of the relative

connections ∇ε
∂/∂θ+

l,ti

and ∇ε
∂/∂θ−

l,ti

along the divisor t̃i are(
θ+0,ti 0

0 θ−0,ti

)
dxti
xni
ti

+ · · ·+

(
θ+l,ti + εδ(θ+l,ti) 0

0 θ−l,ti

)
dxti
xni−l
ti

+ · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
dxti
xti

,

(
θ+0,ti 0

0 θ−0,ti

)
dxti
xni
ti

+ · · ·+

(
θ+l,ti 0

0 θ−l,ti + εδ(θ−l,ti)

)
dxti
xni−l
ti

+ · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
dxti
xti

,

respectively.

Let Êε
1 be the pull-back of Ê1 under the projection (2.17). We consider a short

exact sequence

0 −→ εHom((Ê1)
ε
θ±
l,ti

, Êε
1) −→ Hom((Ê1)

ε
θ±
l,ti

, Êε
1) −→ End(Ê1) −→ 0.

Note that

εHom((Ê1)
ε
θ±
l,ti

, Êε
1)

∼= (ε)⊗ End(Ê1).

Since the bundle type is OP1 ⊕ OP1(1), we have R1π∗((ε) ⊗ End(Ê1)) = 0, which

means the rigidity of OP1 ⊕OP1(1). Here, π is the projection P1 × (M̂tra × Tθ) →
M̂tra × Tθ. So we have a short exact sequence

0 −→ π∗
(
εHom((Ê1)

ε
θ±
l,ti

, Êε
1)
)
−→ π∗

(
Hom((Ê1)

ε
θ±
l,ti

, Êε
1)
)

−→ π∗(End(Ê1)
)
−→ 0.

Since M̂tra × Tθ is affine, we have that

Hom((Ê1)
ε
θ±
l,ti

, Êε
1) = Γ

(
M̂tra × Tθ, π∗

(
Hom((Ê1)

ε
θ±
l,ti

, Êε
1)
))

−→ Γ
(
M̂tra × Tθ, π∗(End(Ê1))

)
= End(Ê1)

is surjective. Then we have a lift φΥ ∈ Hom((Ê1)
ε
θ±
l,ti

, Êε
1) of id ∈ End(Ê1). This

lift φΥ is an isomorphism

φΥ : (Ê1)
ε
θ±
l,ti

∼=−→ Êε
1 .

We consider a pair (Êε
1 , (φ

−1
Υ )∗∇ε

∂/∂θ±
l,ti

) induced by ((Ê1)
ε
θ±
l,ti

,∇ε
∂/∂θ±

l,ti

). By

construction, the pair (Êε
1 , (φ

−1
Υ )∗∇ε

∂/∂θ±
l,ti

) is a horizontal lift of ∇̃(1)
DL,ext with
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respect to ∂/∂θ±l,ti . Let (φ−1
Υ )∗∇ε

∂/∂θ±
l,ti

be the relative connection induced by

(φ−1
Υ )∗∇ε

∂/∂θ±
l,ti

. Since φΥ is holomorphic and invertible along the pole divisor of

∇ε
∂/∂θ±

l,ti

, the local formal data of (φ−1
Υ )∗∇ε

∂/∂θ±
l,ti

is the same as in ∇ε
∂/∂θ±

l,ti

. The

family of connections (Êε
1 , (φ

−1
Υ )∗∇ε

∂/∂θ±
l,ti

) parametrized by (M̂tra×Tθ)×SpecC[ε]
gives a map from the base space (M̂tra × Tθ) × SpecC[ε] to the moduli space

Ĉonn(tra,θ0). By taking the composition with Âpp defined in (2.13), we have a map

(3.16) (M̂tra × Tθ)× SpecC[ε] −→ M̂tra × Tθ.

Definition 3.5. Then we may define the vector field on M̂tra × Tθ associated to

the map (3.16). We denote this vector field on M̂tra × Tθ by δIMD
θ±
l,ti

.

Let f IMD
θ±
l,ti

: (M̂tra × Tθ) × SpecC[ε] → M̂tra × Tθ be the map induced by

the vector field δIMD
θ±
l,ti

. We have Êε
1 = (id× f IMD

θ±
l,ti

)∗Ê1. We denote the pull-back of

∇̃(1)
DL,ext under the map id× f IMD

θ±
l,ti

by

(3.17)


d+ Ω̂

(1)
(tra,θ0)

+ εδIMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

) on U0 × (M̂tra × Tθ)× SpecC[ε],

d+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1

+εG−1
1 δIMD

θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)G1 on U∞ × (M̂tra × Tθ)× SpecC[ε] .

Since (Êε
1 , (id× f IMD

θ±
l,ti

)∗∇̃(1)
DL,ext) is isomorphic to (Êε

1 , (φ
−1
Υ )∗∇ε

∂/∂θ±
l,ti

), we have a

lift of (id× f IMD
θ±
l,ti

)∗∇̃(1)
DL,ext:

(3.18)



d̂+ Ω̂
(1)
(tra,θ0)

+ εδIMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)

+ΥIMD
θ±
l,ti

dε on U0 × (M̂tra × Tθ)× SpecC[ε]

d̂+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1

+εG−1
1 δIMD

θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)G1

+G−1
1 ΥIMD

θ±
l,ti

G1 dε on U∞ × (M̂tra × Tθ)× SpecC[ε] ,

which is a morphism Êε
1 → Êε

1 ⊗ Ω̃1
∂/∂θ±

l,ti

with the Leibniz rule. Then, since

(Êε
1 , (φ

−1
Υ )∗∇ε

∂/∂θ±
l,ti

) is relativization of the horizontal lift, we have the equality

(3.19) δIMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

) = dΥIMD
θ±
l,ti

+ [Ω̂
(1)
(tra,θ0)

,ΥIMD
θ±
l,ti

],

which means the integrable condition.



Description of Isomonodromy Deformations 219

§3.4. Integrable deformations associated to (Tt)tra

First we fix i ∈ {3, 4, . . . , ν}. Let

∇̃(1)
DL,ext =

{
d+ Ω̂

(1)
(tra,θ0)

on U0 × (M̂tra × Tθ),

d+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1 on U∞ × (M̂tra × Tθ),

be the family (2.14). Let ti be the natural coordinate of (Tt)tra × Tθ and ∂/∂ti be

the vector field on (Tt)tra × Tθ associated to ti. We will construct a horizontal lift

of ∇̃(1)
DL,ext with respect to ∂/∂ti.

For the fixed index i, we define a matrix Bti(x) by

Bti(x) := −
ni−1∑
l=0

(
θ+l,ti 0

0 θ−l,ti

)
δ̂(ti)

(x− ti)ni−l
.

We define a vector bundle (Ê1)
ε
ti on P1 × (M̂tra × Tθ) × SpecC[ε] by the same

argument as in the construction of (Ê1)
ε
θ±
l,ti

. That is, we replace Bθ±
l,ti

(xti) in (3.14)

with Bti(x). We define a morphism

∇ε
∂/∂ti

: (Ê1)
ε
ti −→ (Ê1)

ε
ti ⊗ Ω̃1

∂/∂ti

by gluing the connections
∇ε

i′ = d̂+ Ω̂i′ for i′ ∈ (I \ {i}) ∪ {ν + 1},

∇ε
i = d̂+ Ω̂i + ε

( ∂

∂xti
(Bti) dxti + [Ω̂i, Bti ]

)
+Bti dε,

as in the construction of∇ε
∂/∂θ±

l,ti

in the previous section. Here, Ω̂i′ (i
′ ∈ I∪{ν+1})

is defined in (3.13). Now we check that the connection matrix of ∇ε
i is a section of

Ω̃1
∂/∂ti

defined in (2.19). We set x̃ti := x− (ti + εδ̂(ti)) = xti − εδ̂(ti). Since ε
2 = 0

and ε dε = 0, we may check the equalities(
θ+0,ti 0

0 θ−0,ti

)
d̂x̃ti
x̃ni
ti

+ · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
d̂x̃ti
x̃ti

=

(
θ+0,ti 0

0 θ−0,ti

)
dxti

(xti − εδ̂(ti))ni

+ · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
dxti

xti − εδ̂(ti)

−

((
θ+0,ti 0

0 θ−0,ti

)
δ̂(ti) dε

xni
ti

+ · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
δ̂(ti) dε

xti

)
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=

(
θ+0,ti 0

0 θ−0,ti

)
dxti
xni
ti

+ · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
dxti
xti

− εδ̂(ti)
∂

∂xti

((
θ+0,ti 0

0 θ−0,ti

)
1

xni
ti

+ · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
1

xti

)
dxti

+Bti dε

=

(
θ+0,ti 0

0 θ−0,ti

)
dxti
xni
ti

+ · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
dxti
xti

+ ε
∂

∂xti
(Bti) dxti

+Bti dε.

Moreover, Ω̂i and Bti are diagonal until the xni−1
ti -terms. So we have that

Ω̂i + ε
( ∂

∂xti
(Bti) dxti + [Ω̂i, Bti ]

)
+Bti dε

is a section of Ω̃1
∂/∂ti

.

As in the previous section, Êε
1
∼= (Ê1)

ε
ti . If we consider the pull-back of ∇ε

∂/∂ti

under this isomorphism, then we have a horizontal lift of ∇̃(1)
DL,ext with respect

to ∂/∂ti. If we take a relativization of this horizontal lift, we have a family of

connections parametrized by (M̂tra × Tθ) × SpecC[ε]. This family gives a map

from the base space (M̂tra × Tθ)× SpecC[ε] to the moduli space Ĉonn(tra,θ0). By

taking composition with Âpp defined in (2.13), we have a map

(3.20) (M̂tra × Tθ)× SpecC[ε] −→ M̂tra × Tθ.

Definition 3.6. Then we may define the vector field on M̂tra × Tθ associated to

the map (3.20). We denote this vector field on M̂tra × Tθ by δIMD
ti .

Let

f IMD
ti : (M̂tra × Tθ)× SpecC[ε] → M̂tra × Tθ

be the map induced by the vector field δIMD
ti . We have Êε

1 = (id× f IMD
ti )∗Ê1. We

denote the pull-back of ∇̃(1)
DL,ext under the map id× f IMD

ti by

(3.21)


d+ Ω̂

(1)
(tra,θ0)

+ εδIMD
ti (Ω̂

(1)
(tra,θ0)

) on U0 × (M̂tra × Tθ)× SpecC[ε],

d+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1

+εG−1
1 δIMD

ti (Ω̂
(1)
(tra,θ0)

)G1 on U∞ × (M̂tra × Tθ)× SpecC[ε].
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As in the previous section, we have a lift of (id× f IMD
ti )∗∇̃(1)

DL,ext:

(3.22)



d̂+ Ω̂
(1)
(tra,θ0)

+ εδIMD
ti (Ω̂

(1)
(tra,θ0)

)

+ΥIMD
ti dε on U0 × (M̂tra × Tθ)× SpecC[ε],

d̂+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1

+εG−1
1 δIMD

ti (Ω̂
(1)
(tra,θ0)

)G1

+G−1
1 ΥIMD

ti G1 dε on U∞ × (M̂tra × Tθ)× SpecC[ε],

which is a morphism Êε
1 → Êε

1 ⊗ Ω̃1
∂/∂ti

with the Leibniz rule and the equality

(3.23) δIMD
ti (Ω̂

(1)
(tra,θ0)

) = dΥIMD
ti + [Ω̂

(1)
(tra,θ0)

,ΥIMD
ti ],

which means the integrable condition.

§3.5. Isomonodromy 2-form

Definition 3.7. Let δ̂1 and δ̂2 be vector fields on M̂tra ×Tθ, which is isomorphic

to the extended moduli space Ĉonn(tra,θ0). We fix a formal fundamental matrix

solution ψi of (d + Ω̂
(n−2)
(tra,θ0)

)ψi = 0 at x = ti as in Lemma 3.1. We take a funda-

mental matrix solution ψqj of (d + Ω̂
(n−2)
(tra,θ0)

)ψqj = 0 at x = qj as in Lemma 2.11.

We define a 2-form ω̂ on M̂tra × Tθ as

ω̂(δ̂1, δ̂2) :=
1

2

∑
i∈I

resx=ti Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψi)ψ
−1
i )

+
1

2

n−3∑
j=1

resx=qj Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψqj )ψ
−1
qj ),(3.24)

where I := {1, 2, . . . , ν,∞}. Here we set δ̂(A) ∧ δ̂(ψ)ψ−1 := δ̂1(A)δ̂2(ψ)(ψ)
−1 −

δ̂1(ψ)(ψ)
−1δ̂2(A).

Since θ±ni−1,ti
is constant on M̂tra × Tθ, δ̂(θ

±
ni−1,ti

) = 0, we have

δ̂

(
θ±ni−1,ti

∫
x−1
ti dxti

)
=

−θ±ni−1,ti
δ̂(ti)

x− ti
+ δ̂(c).

Here, c is an integration constant. By the same argument as in Section 3.1, we

have that the residue of δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψi)ψ
−1
i at t̃i is well defined. By the same

argument as in Section 3.1, we may check that the right-hand side of (3.24) is

independent of the choices of ψqj and ψi.

We will show a transformation formula (Lemma 3.8 below). We will use this

transformation formula for calculation of ω̂(δ̂1, δ̂2). We show this transformation
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formula for general situations. Let C be a smooth projective curve over C and

let M be an algebraic variety over C. Let U be an analytic open subset of C.

Let x be a parameter on U . Let d + Adx be a family of connections on O⊕2
U

parameterized by M . Assume we can take a (formal) fundamental matrix solution

ψ of (d + Adx)ψ = 0, that is, there exists ψ ∈ End(O⊕2
M ) ⊗ ÔU,0 such that

dψ + Aψ dx = 0. Here, d means the relative exterior derivative on the projection

U ×M →M .

Lemma 3.8. Let δ1 and δ2 be vector fields on M . Let g be a family of matrices

parameterized by M such that the entries of the matrix gm for m ∈ M are mero-

morphic functions on U . We assume that we can define g−1, which is the family

of matrices parameterized by M such that for m ∈ M , gm(g−1)m = id and the

entries of (g−1)m are meromorphic functions on U . Set A′ := g−1 dg+ g−1Ag and

ψ′ := g−1ψ. Moreover, set u(l) := δl(g)g
−1 and ũ(l) := g−1δl(g) for l ∈ {1, 2}.

Then we have the equality

Tr(δ(A′) ∧ δ(ψ′)(ψ′)−1)− Tr(δ(A) ∧ δ(ψ)ψ−1)

= −Tr(δ1(A
′)ũ(2) − ũ(1)δ2(A

′))− Tr(δ1(A)u
(2) − u(1)δ2(A))

+ Tr
(
d(ψ−1u(1)δ2(ψ)− ψ−1u(2)δ1(ψ))

)
.(3.25)

Proof. Since ψ′ = g−1ψ, we have the equalities

Tr(δ(A′) ∧ δ(ψ′)(ψ′)−1) = Tr(δ(A′) ∧ δ(g−1ψ)ψ−1g)

= Tr
(
δ(A′) ∧ (−g−1δ(g)g−1ψψ−1g + g−1δ(ψ)ψ−1g)

)
= Tr

(
δ(A′) ∧ (−g−1δ(g) + g−1δ(ψ)ψ−1g)

)
.(3.26)

We calculate Tr(δ(A′) ∧ (g−1δ(ψ)ψ−1g)) as

Tr
(
δ(A′) ∧ (g−1δ(ψ)ψ−1g)

)
= Tr

(
δ(g−1dg + g−1Ag) ∧ (g−1δ(ψ)ψ−1g)

)
= Tr

(
(−g−1δ(g)g−1dg + g−1δ(dg)) ∧ (g−1δ(ψ)ψ−1g)

)
+Tr

(
(−g−1δ(g)g−1Ag+g−1δ(A)g + g−1Aδ(g)) ∧ (g−1δ(ψ)ψ−1g)

)
= Tr

(
d(δ(g)g−1) ∧ (δ(ψ)ψ−1)

)
− Tr

(
(δ(g)g−1A) ∧ (δ(ψ)ψ−1)

)
+Tr

(
δ(A) ∧ (δ(ψ)ψ−1)

)
+Tr

(
(Aδ(g)g−1) ∧ (δ(ψ)ψ−1)

)
.(3.27)

By equalities (3.26) and (3.27), we have

Tr(δ(A′) ∧ δ(ψ′)(ψ′)−1) + Tr
(
δ(A′) ∧ (g−1δ(g))

)
− Tr

(
δ(A) ∧ (δ(ψ)ψ−1)

)
= Tr

(
d(δ(g)g−1) ∧ (δ(ψ)ψ−1)

)
− Tr

(
(δ(g)g−1A) ∧ (δ(ψ)ψ−1)

)
+Tr

(
(Aδ(g)g−1) ∧ (δ(ψ)ψ−1)

)
.(3.28)
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We calculate Tr(d(ψ−1u(1)δ2(ψ)− ψ−1u(2)δ1(ψ))) as

Tr
(
d(ψ−1u(1)δ2(ψ)− ψ−1u(2)δ1(ψ))

)
= Tr(−ψ−1d(ψ)ψ−1u(1)δ2(ψ) + ψ−1d(u(1))δ2(ψ) + ψ−1u(1)δ2(dψ))

− Tr(−ψ−1 d(ψ)ψ−1u(2)δ1(ψ)+ψ
−1 d(u(2))δ1(ψ)+ψ

−1u(2)δ1(dψ))

= Tr(Au(1)δ2(ψ)ψ
−1 + d(u(1))δ2(ψ)ψ

−1 − u(1)δ2(Aψ)ψ
−1)

− Tr(Au(2)δ1(ψ)ψ
−1 + d(u(2))δ1(ψ)ψ

−1 − u(2)δ1(Aψ)ψ
−1)

= Tr
(
(Aδ(g)g−1) ∧ (δ(ψ)ψ−1)

)
+Tr

(
d(δ(g)g−1) ∧ (δ(ψ)ψ−1)

)
− Tr

(
u(1)δ2(A)− u(2)δ1(A) + u(1)Aδ2(ψ)ψ

−1 − u(2)Aδ1(ψ)ψ
−1
)

= Tr
(
(Aδ(g)g−1) ∧ (δ(ψ)ψ−1)

)
+Tr

(
d(δ(g)g−1) ∧ (δ(ψ)ψ−1)

)
+Tr

(
δ(A) ∧ (δ(g)g−1)

)
− Tr

(
(δ(g)g−1A) ∧ (δ(ψ)ψ−1)

)
.(3.29)

Here, the second equality follows from dψ = −Aψ. Equality (3.25) follows from

equalities (3.28) and (3.29).

Proposition 3.9. Let G̃ and G̃∞ be the matrices defined in (2.7). Set ψ̃i :=

G̃−1ψi for any i ∈ Iun \ {∞} and ψ̃∞ := G̃−1
∞ ψ∞. We have the equality

(3.30) ω̂(δ̂1, δ̂2) =
1

2

∑
i∈I

resx=ti Tr(δ̂(Ω̂
(1)
(tra,θ0)

) ∧ δ̂(ψ̃i)(ψ̃i)
−1).

Proof. By Proposition 2.4, we have Ω̂
(1)
(tra,θ0)

= G̃−1 dG̃+G̃−1Ω̂
(n−2)
(tra,θ0)

G̃. Set u
(l)

G̃
:=

δl(G̃)G̃
−1 and ũ

(l)

G̃
:= G̃−1δl(G̃) for l ∈ {1, 2}. Set ψ̃qj := G̃−1ψqj for any j ∈

{1, 2, . . . , n−3}. We calculate the difference between the right- and left-hand sides

of (3.30). By Lemma 2.11, we have ψ̃qj = G̃−1ΦqjΞqj (x)Λqj (x). We calculate

G̃−1Φqj as

G̃−1Φqj =

(
1 0

−Q2(x)
Q1(x)

1
Q1(x)

)(
1 0

pj 1

)
=

(
1 0

−Q2(x)+pj

Q1(x)
1

)(
1 0

0 1
Q1(x)

)
.

Since Q2(qj) = pj , we may remove a pole of
−Q2(x)+pj

Q1(x)
at qj . By Lemma 2.11, we

may check that the pole of (
1 0

0 1
Q1(x)

)
Ξqj (x)Λqj (x)

at qj is removable. So we have that Tr(δ(Ω̂
(1)
(tra,θ0)

)∧ δ(ψ̃qj )(ψ̃qj )
−1) has no pole at

qj (j = 1, 2, . . . , n− 3). Then the difference between the right- and left-hand sides
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of (3.30) is equal to

1

2

∑
i∈I

resx=ti

(
Tr(δ(Ω̂

(1)
(tra,θ0)

) ∧ δ(ψ̃i)(ψ̃i)
−1)− Tr(δ(Ω̂

(n−2)
(tra,θ0)

) ∧ δ(ψi)ψ
−1
i )
)

+
1

2

n−3∑
j=1

resx=qj

(
Tr(δ(Ω̂

(1)
(tra,θ0)

) ∧ δ(ψ̃qj )(ψ̃qj )
−1)

− Tr(δ(Ω̂
(n−2)
(tra,θ0)

) ∧ δ(ψqj )ψ
−1
qj )
)
.(3.31)

By equation (3.25), the difference (3.31) is equal to

− 1

2

∑
i∈I

resx=ti

(
Tr(δ1(Ω̂

(1)
(tra,θ0)

)ũ
(2)

G̃
− ũ

(1)

G̃
δ2(Ω̂

(1)
(tra,θ0)

))

− Tr(δ1(Ω̂
(n−2)
(tra,θ0)

)u
(2)

G̃
− u

(1)

G̃
δ2(Ω̂

(n−2)
(tra,θ0)

))
)

− 1

2

n−3∑
j=1

resx=qj

(
Tr(δ1(Ω̂

(1)
(tra,θ0)

)ũ
(2)

G̃
− ũ

(1)

G̃
δ2(Ω̂

(1)
(tra,θ0)

))

− Tr(δ1(Ω̂
(n−2)
(tra,θ0)

)u
(2)

G̃
− u

(1)

G̃
δ2(Ω̂

(n−2)
(tra,θ0)

))
)
.(3.32)

Here, note that the third term of the right-hand side of (3.25) is an exact form.

Then the residue of this third term vanishes. We claim that (3.32) vanishes. We

show this claim as follows. Set u
(l)

G̃,∞
:= δl(G̃∞)G̃−1

∞ and ũ
(l)

G̃,∞
:= G̃−1

∞ δl(G̃∞)

for l ∈ {1, 2}. Since G̃∞ = G−1
n−2G̃G1, we have ũ

(l)

G̃,∞
= G−1

1 ũ
(l)

G̃
G1 and u

(l)

G̃,∞
=

G−1
n−2u

(l)

G̃
Gn−2 for l = 1, 2. The meromorphic differential form

(3.33)



1

2
Tr(δ1(Ω̂

(1)
(tra,θ0)

)ũ
(2)

G̃
− ũ

(1)

G̃
δ2(Ω̂

(1)
(tra,θ0)

))

−1

2
Tr(δ1(Ω̂

(n−2)
(tra,θ0)

)u
(2)

G̃
− u

(1)

G̃
δ2(Ω̂

(n−2)
(tra,θ0)

)) on U0 × (M̂tra × Tθ),

1

2
Tr(G−1

1 δ1(Ω̂
(1)
(tra,θ0)

)G1ũ
(2)

G̃,∞

−ũ(1)
G̃,∞

G−1
1 δ2(Ω̂

(1)
(tra,θ0)

)G1)

−1

2
Tr(G−1

n−2δ1(Ω̂
(n−2)
(tra,θ0)

)Gn−2u
(2)

G̃,∞

−u(1)
G̃,∞

G−1
n−2δ2(Ω̂

(n−2)
(tra,θ0)

)Gn−2) on U∞ × (M̂tra × Tθ),

is a family of global meromorphic differential forms on P1 parametrized by M̂tra ×
Tθ. The differential forms have poles at only ti and qj (i ∈ I and j = 1, 2, . . . ,

n− 3). The sums of residues (3.32) are just the sums of all residues of the global

meromorphic differential forms (3.33) on P1 parametrized by M̂tra × Tθ. By the

residue theorem, we have that (3.32) is zero. Finally, we obtain equality (3.30).
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Theorem 3.10. For the vector field δIMD
θ±
l,ti

, we have ω̂(δIMD
θ±
l,ti

, δ̂) = 0 for any vector

field δ̂ ∈ ΘM̂tra×Tθ
. Moreover, for the vector field δIMD

ti , we have ω̂(δIMD
ti , δ̂) = 0

for any vector field δ̂ ∈ ΘM̂tra×Tθ
.

Proof. By equality (3.30), we have

ω̂(δIMD
θ±
l,ti

, δ̂) =
1

2

∑
i′∈I

resx=ti′ Tr(δ
IMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1

− δIMD
θ±
l,ti

(ψ̃i′)(ψ̃i′)
−1δ̂(Ω̂

(1)
(tra,θ0)

)).(3.34)

Here, δIMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

) appears in the ε-term of the morphism (3.17).

Now we consider replacement of δIMD
θ±
l,ti

(ψ̃i′)(ψ̃i′)
−1 in (3.34) for each i′ ∈ I.

We will show that we may replace δIMD
θ±
l,ti

(ψ̃i′)(ψ̃i′)
−1 with ΥIMD

θ±
l,ti

as follows. Here,

ΥIMD
θ±
l,ti

appeared in (3.18). We take an analytic open subset V of M̂tra × Tθ. We

take an inverse image of V under the projection

pP1 : P1 × (M̂tra × Tθ) −→ M̂tra × Tθ.

Let ∆̂an
i′ (i′ ∈ I) be an analytic open subset of the inverse image p−1

P1 (V ) such that

t̃i′ ∩ p−1
P1 (V ) ⊂ ∆̂an

i′ and the fibers of pP1 |∆̂an
i′
: ∆̂an

i′ → V for each point of V are

unit disks such that xti gives a coordinate of the unit disks. Let Uan
t be an analytic

open subset of C1 = SpecC[t] such that 0 ∈ Uan
t and Uan

t is small enough. We

consider the restriction of (3.17) to ∆̂an
i′ × SpecC[ε]. This is a morphism

Êε
1 |∆̂an

i′ ×SpecC[ε] → (Êε
1 ⊗ Ω̃1

∂/∂θ±
l,ti

)|∆̂an
i′ ×SpecC[ε].

Let Êt
1 be the pull-back of E1 under the first projection

∆̂an
i′ × Uan

t ↪→ P1 × (M̂tra × Tθ)× Uan
t → P1.

Let D(t̃0)ε be the pull-back of D(t̃0) under the composition (2.18). We take a

divisor D(t̃0)t on ∆̂an
i′ ×Uan

t such that the pull-back of D(t̃0)t under the map ∆̂an
i′ ×

SpecC[ε] → ∆̂an
i′ × Uan

t is D(t̃0)ε|∆̂an
i′ ×SpecC[ε]. Here, this map ∆̂an

i′ × SpecC[ε] →
∆̂an

i′ ×Uan
t is given by the substitution t = ε. We take a relative connection on Êt

1:

Êt
1 −→ Êt

1 ⊗ Ω1
∆̂an

i′ ×Uan
t /M̂tra×Tθ×Uan

t

(D(t̃0)t)

such that the pull-back of this relative connection on Êt
1 under the map ∆̂an

i′ ×
SpecC[ε] → ∆̂an

i′ × Uan
t is just the restriction of (3.17). We denote the connection
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matrix of the relative connection by Ω̂
(1)
(tra,θ0)

(xti′ , t), where

Ω̂
(1)
(tra,θ0)

(xti′ , 0) = Ω̂
(1)
(tra,θ0)

|∆̂an
i′
,

∂

∂t
Ω̂

(1)
(tra,θ0)

(xti′ , t)|t=0 = δIMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)|∆̂an
i′
.

Let Σ̂ ⊂ ∆̂an
i′ be a family of sufficiently small sectors in ∆̂an

i′ → M̂tra × Tθ. We

take a fundamental matrix solution ΨΣ̂(xti′ , t) on Σ̂× Uan
t of the connection

dΨΣ̂(xti′ , t) + Ω̂
(1)
(tra,θ0)

(xti′ , t)ΨΣ̂(xti′ , t) = 0

with uniform asymptotic relation

ΨΣ̂(xti′ , t) exp(Λ
−
i′ (xti′ , t)) ∼ P̂i′(xti′ , t) (xti′ → 0, xti′ ∈ Σ̂).

Here we set

Λ−
i′ (xti′ ) :=

ni−1∑
l=0

(
θ+l,ti′

∫
x
−ni′+l
ti′

dxti′ 0

0 θ−l,ti′
∫
x
−ni′+l
ti′

dxti′

)
and we take

P̂i′(xti′ , t) = P̂i′,0(t) + P̂i′,1(t)xti′ + · · · ,

Λ−
i′ (xti′ , t) =

ni−1∑
l=0

(
θ+l,ti′ (t)

∫
x
−ni′+l
ti′

dxti′ 0

0 θ−l,ti′ (t)
∫
x
−ni′+l
ti′

dxti′

)
,

so that the expansions of Λ−
i′ (xti′ , ε) and P̂i′(xti′ , ε) with respect to ε are

Λ−
i′ (xti′ , ε) = Λ−

i′ (xti′ ) + εδIMD
θ±
l,ti

(Λ−
i′ (xti′ )),

P̂i′(xti′ , ε) = ψ̃i′ exp(Λ
−
i′ (xti′ )) + εδIMD

θ±
l,ti

(
ψ̃i′ exp(Λ

−
i′ (xti′ ))

)
.

The uniform asymptotic relation means that

lim
xt

i′
→0

xt
i′
∈ΓΣ̂

∥ΨΣ̂(xti′ , t) exp(Λ
−
i′ (xti′ , t))−

∑N
j=0 P̂i′,jx

j
ti′
∥

|xti′ |N
= 0 (uniformly)

for any positive integer N . We may check that

(3.35)
∂ΨΣ̂(xti′ , t)

∂t
ΨΣ̂(xti′ , t)

−1
∣∣∣
t=0

∼ δIMD
θ±
l,ti

(ψ̃i′)(ψ̃i′)
−1.

By the integrable condition (3.19), we may take a fundamental matrix solution

Ψflat
Σ̂

(xti′ , t) on Σ̂ × Uan
t of the connection d + Ω̂

(1)
(tra,θ0)

(xti′ , t) = 0 such that
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Ψflat
Σ̂

(xti′ , t) satisfies Ψ
flat
Σ̂

(xti′ , 0) = ΨΣ̂(xti′ , 0) and

∂Ψflat
Σ̂

(xti′ , t)

∂t
Ψflat

Σ̂
(xti′ , t)

−1
∣∣∣
t=0

= ΥIMD
θ±
l,ti

|Σ̂.

There exists a matrix Cti′ (t) such that Cti′ (t) is independent of xti′ and

Ψflat
Σ̂

(xti′ , t) = ΨΣ̂(xti′ , t)Cti′ (t). We calculate ΥIMD
θ±
l,ti

|Σ̂ as

ΥIMD
θ±
l,ti

|Σ̂ =
∂Ψflat

Σ̂
(xti′ , t)

∂t
Ψflat

Σ̂
(xti′ , t)

−1
∣∣∣
t=0

=
∂ΨΣ̂(xti′ , t)

∂t
ΨΣ̂(xti′ , t)

−1
∣∣∣
t=0

+ΨΣ̂(xti′ , 0)
(∂Cti′ (t)

∂t
Cti′ (t)

−1
)∣∣∣

t=0
ΨΣ̂(xti′ , 0)

−1.(3.36)

Set

C̃ti′ (xti′ ) := exp(−Λ−
i′ (xti′ , t))

(∂Cti′ (t)

∂t
Cti′ (t)

−1
)
exp(Λ−

i′ (xti′ , t))
∣∣∣
t=0

.

By equalities (3.35) and (3.36) we have

C̃ti′ (xti′ ) ∼ P̂i′(xti′ , 0)
−1ΥIMD

θ±
l,ti

P̂i′(xti′ , 0)

− P̂i′(xti′ , 0)
−1δIMD

θ±
l,ti

(ψ′
i′)(ψ

′
i′)

−1P̂i′(xti′ , 0).

By this asymptotic relation, we have that x
ni′
ti′
C̃ti′ (xti′ ) is bounded on Σ̂ × Uan

t .

Then we may check that (
∂Ct

i′
(t)

∂t Cti′ (t)
−1)|t=0 is a triangular matrix and that

C̃ti′ (xti′ ) ∼ C̃diag
ti′

, where C̃diag
ti′

is a diagonal matrix and C̃diag
ti′

is independent

of xti′ . By combining this asymptotic relation, asymptotic relation (3.35), and

equality (3.36), we have the asymptotic relation

(3.37) δIMD
θ±
l,ti

(ψ̃i′)(ψ̃i′)
−1 ∼ ΥIMD

θ±
l,ti

− P̂i′(xti′ , 0)C̃
diag
ti′

P̂i′(xti′ , 0)
−1.

So we have

resx=ti′ Tr(δ
IMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1 − δIMD

θ±
l,ti

(ψ̃i′)(ψ̃i′)
−1δ̂(Ω̂

(1)
(tra,θ0)

))

= resx=ti′ Tr(δ
IMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1 −ΥIMD

θ±
l,ti

δ̂(Ω̂
(1)
(tra,θ0)

))

+ resx=ti′ Tr(P̂i′(xti′ , 0)C̃
diag
ti′

P̂i′(xti′ , 0)
−1δ̂(Ω̂

(1)
(tra,θ0)

))

= resx=ti′ Tr(δ
IMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1)

− resx=ti′ Tr(Υ
IMD
θ±
l,ti

δ̂(Ω̂
(1)
(tra,θ0)

)).(3.38)
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Here we may check the last equality as follows. By the same calculations as in

(3.2), we have

resx=ti′ Tr(P̂i′(xti′ , 0)C̃
diag
ti′

P̂i′(xti′ , 0)
−1δ̂(Ω̂

(1)
(tra,θ0)

))

= resx=ti′ Tr(ψ̃i′C̃
diag
ti′

ψ̃−1
i′ δ̂(Ω̂

(1)
(tra,θ0)

))

= resx=ti′ Tr
(
C̃diag

ti′
d((ψ̃i′)

−1δ̂(ψ̃i′))
)
.

Here, remark that C̃diag
ti′

and exp(−Λ−
i′ (xti′ )) are diagonal, and ψ̃i′ = P̂i′(xti′ , 0)×

exp(−Λ−
i′ (xti′ )). This is equal to

resx=ti′ Tr
(
C̃diag

ti′
d
(
exp(−Λ−

i′ (xti′ ))
−1P̂i′(xti′ , 0)

−1δ̂(P̂i′(xti′ , 0)) exp(−Λ−
i′ (xti′ ))

))
+ resx=ti′ Tr

(
C̃diag

ti′
d
(
exp(−Λ−

i′ (xti′ ))
−1δ̂
(
exp(−Λ−

i′ (xti′ ))
)))

= resx=ti′ Tr
(
C̃diag

ti′
dΛ−

i′ (xti′ )P̂i′(xti′ , 0)
−1δ̂(P̂i′(xti′ , 0))

)
− resx=ti′ Tr

(
C̃diag

ti′
P̂i′(xti′ , 0)

−1δ̂(P̂i′(xti′ , 0)) dΛ
−
i′ (xti′ )

)
+ resx=ti′ Tr

(
C̃diag

ti′
d
(
P̂i′(xti′ , 0)

−1δ̂(P̂i′(xti′ , 0))
))

+ resx=ti′ Tr
(
C̃diag

ti′
d
(
δ̂(−Λ−

i′ (xti′ ))
))

= resx=ti′ Tr
(
C̃diag

ti′
d
(
P̂i′(xti′ , 0)

−1δ̂(P̂i′(xti′ , 0))
))

(3.39) + resx=ti′ Tr
(
C̃diag

ti′
d
(
δ̂(−Λ−

i′ (xti′ ))
))
.

Since C̃diag
ti′

is independent of xti′ , the last line of (3.39) is zero. Then we have

the last equality of (3.38). This means that we may replace δIMD
θ±
l,ti

(ψ̃i′)(ψ̃i′)
−1 with

ΥIMD
θ±
l,ti

.

Next we will calculate Tr(δIMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1). By taking variations

of the both sides of dψ̃i′ = −Ω̂
(1)
(tra,θ0)

ψ̃i′ , we have

(3.40) Ω̂
(1)
(tra,θ0)

δ̂(ψ̃i′)(ψ̃i′)
−1 = −d(δ̂(ψ̃i′))(ψ̃i′)

−1 − δ̂(Ω̂
(1)
(tra,θ0)

).

By the integrable condition (3.19), we have

Tr(δIMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1)

= Tr
(
(dΥIMD

θ±
l,ti

+ [Ω̂
(1)
(tra,θ0)

,ΥIMD
θ±
l,ti

])δ̂(ψ̃i′)(ψ̃i′)
−1
)

= Tr(d(ΥIMD
θ±
l,ti

)δ̂(ψ̃i′)(ψ̃i′)
−1 + Ω̂

(1)
(tra,θ0)

ΥIMD
θ±
l,ti

δ̂(ψ̃i′)(ψ̃i′)
−1

−ΥIMD
θ±
l,ti

Ω̂
(1)
(tra,θ0)

δ̂(ψ̃i′)(ψ̃i′)
−1)
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= Tr
(
d(ΥIMD

θ±
l,ti

)δ̂(ψ̃i′)(ψ̃i′)
−1 − dψ̃i′(ψ̃i′)

−1ΥIMD
θ±
l,ti

δ̂(ψ̃i′)(ψ̃i′)
−1

+ΥIMD
θ±
l,ti

d(δ̂(ψ̃i′))(ψ̃i′)
−1 +ΥIMD

θ±
l,ti

δ̂(Ω̂
(1)
(tra,θ0)

)
)

= Tr
(
d(ΥIMD

θ±
l,ti

)δ̂(ψ̃i′)(ψ̃i′)
−1 +ΥIMD

θ±
l,ti

d(δ̂(ψ̃i′))(ψ̃i′)
−1

+ΥIMD
θ±
l,ti

δ̂(ψ̃i′) d((ψ̃i′)
−1)
)

+Tr(ΥIMD
θ±
l,ti

δ̂(Ω̂
(1)
(tra,θ0)

))

= Tr
(
d(ΥIMD

θ±
l,ti

δ̂(ψ̃i′)(ψ̃i′)
−1)
)
+Tr(ΥIMD

θ±
l,ti

δ̂(Ω̂
(1)
(tra,θ0)

)).(3.41)

Here, the third equality of (3.41) is given by (3.40). By combining (3.38) and

(3.41), we have the equalities

resx=ti′ Tr(δ
IMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1 − δIMD

θ±
l,ti

(ψ̃i′)(ψ̃i′)
−1δ̂(Ω̂

(1)
(tra,θ0)

))

= resx=ti′ Tr(δ
IMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1)

− resx=ti′ Tr(Υ
IMD
θ±
l,ti

δ̂(Ω̂
(1)
(tra,θ0)

))

= resx=ti′ Tr
(
d(ΥIMD

θ±
l,ti

δ̂(ψ̃i′)(ψ̃i′)
−1)
)
= 0.(3.42)

By combining (3.34) and (3.42), we have

ω̂(δIMD
θ±
l,ti

, δ̂) =
1

2

∑
i′∈I

resx=ti′ Tr(δ
IMD
θ±
l,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1

− δIMD
θ±
l,ti

(ψ̃i′)(ψ̃i′)
−1δ̂(Ω̂

(1)
(tra,θ0)

))

= 0.

Next we will show that ω̂(δIMD
ti , δ̂) = 0 for any δ̂. For this purpose, we show

that

ω̂(δIMD
ti , δ̂) =

1

2

∑
i′∈I

resx=ti′ Tr(δ
IMD
ti (Ω̂

(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1

−ΥIMD
ti δ̂(Ω̂

(1)
(tra,θ0)

))(3.43)

for any δ̂. Here, ΥIMD
ti appeared in (3.22). We define ∆̂an

i′ and Uan
t as above. Let

D(t̃0)ε be the pull-back of D(t̃0) under the composition (2.18) with respect to the

vector field ∂/∂ti. We define a divisor D(t̃0)t on ∆̂an
i′ ×Uan

t for this divisor D(t̃0)ε.

We take a vector bundle Êt
1 on ∆̂an

i′ × Uan
t and a relative connection

Êt
1 −→ Êt

1 ⊗ Ω1
∆̂an

i′ ×Uan
t /M̂tra×Tθ×Uan

t

(D(t̃0)t)
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corresponding to (3.21). We denote the connection matrix of the relative connec-

tion by Ω̂
(1)
(tra,θ0)

(xti′ , t), where the expansion of Ω̂
(1)
(tra,θ0)

(xti′ − εδIMD
ti (ti′), ε) with

respect to ε is equal to

Ω̂
(1)
(tra,θ0)

|∆̂an
i′

+ εδIMD
ti (Ω̂

(1)
(tra,θ0)

)|∆̂an
i′
.

Let Σ̂ ⊂ ∆̂an
i′ be a family of sufficiently small sectors in ∆̂an

i′ → M̂tra × Tθ. We

take a fundamental matrix solution ΨΣ̂(xti′ , t) on Σ̂× Uan
t of the connection

dΨΣ̂(xti′ , t) + Ω̂
(1)
(tra,θ0)

(xti′ , t)ΨΣ̂(xti′ , t) = 0

with uniform asymptotic relation

(3.44) ΨΣ̂(xti′ , t) exp(Λ
−
i′ (xti′ , t)) ∼ P̂i′(xti′ , t) (xti′ → 0, xti′ ∈ Σ̂).

Here we define Λ−
i′ (xti′ , t) and P̂i′(xti′ , t) so that the expansions of Λ−

i′ (xti′ −
εδIMD

ti (ti′), ε) and P̂i′(xti′ − εδIMD
ti (ti′), ε) with respect to ε are

Λ−
i′ (xti′ − εδIMD

ti (ti′), ε) = Λ−
i′ (xti′ ) + εδIMD

ti (Λ−
i′ (xti′ )),

P̂i′(xti′ − εδIMD
ti (ti′), ε) = ψ̃i′ exp(Λ

−
i′ (xti′ )) + εδIMD

ti

(
ψ̃i′ exp(Λ

−
i′ (xti′ ))

)
.

By the asymptotic relation (3.44) and the same argument as above, we have

δIMD
ti (ψ̃i′)(ψ̃i′)

−1 ∼ ΥIMD
ti − P̂i′(xti′ , 0)C̃

diag
ti′

P̂i′(xti′ , 0)
−1

as in (3.37). Here, C̃diag
ti′

is a diagonal matrix and C̃diag
ti′

is independent of xti′ . By

this asymptotic relation, we may check that (3.43) is as above. By the integrable

condition (3.23), we may check that

ω̂(δIMD
ti , δ̂) =

1

2

∑
i′∈I

resx=ti′ Tr(δ
IMD
ti (Ω̂

(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1 −ΥIMD

ti δ̂(Ω̂
(1)
(tra,θ0)

))

= 0

for any δ̂.

By Theorems 3.4 and 3.10, we have that the 2-form ω̂ is the isomonodromy

2-form.
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§3.6. Hamiltonian systems

First, we define Hamiltonians on M̂tra ×Tθ as follows. By Lemma 3.1 we have the

diagonalization

Ωdiag
ti =

(
θ+0,ti 0

0 θ−0,ti

)
xni
ti

dxti + · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
xti

dxti

+

(
θ+ni,ti 0

0 θ−ni,ti

)
dxti + · · ·+

(
θ+2ni−1,ti

0

0 θ−2ni−1,ti

)
xni−1
ti dxti + · · · .

Here we set Ωdiag
ti

:= (ΦiΞi)
−1 d(ΦiΞi) + (ΦiΞi)

−1Ω̂
(n−2)
(tra,θ0)

(ΦiΞi). Remark that we

have an equation (d+Ωdiag
ti ) exp(−Λi(xti)) = 0. We set

Λ+
i (xti) =

(∑∞
k=ni

θ+k,ti
∫
x−ni+k
ti dxti 0

0
∑∞

k=ni
θ−k,ti

∫
x−ni+k
ti dxti

)
.

Definition 3.11. For each i ∈ Iun and each l (0 ≤ l ≤ ni − 2), we define rational

functions Hθ±
l,ti

on M̂tra × Tθ as

Hθ+
l,ti

= −[the coefficient of the xni−l−1
ti -term of the (1, 1)-entry of Λ+

i (xti)]

= −
θ+2ni−l−2,ti

ni − l − 1
,

Hθ−
l,ti

= −[the coefficient of the xni−l−1
ti -term of the (2, 2)-entry of Λ+

i (xti)]

= −
θ−2ni−l−2,ti

ni − l − 1
.

We call Hθ±
l,ti

the Hamiltonian associated to θ±l,ti .

Definition 3.12. For each i ∈ {3, 4, . . . , ν}, put λ̂≤2ni−1
i,± (x) :=

∑2ni−1
l=0 θ±l,ti

∫
(x−

ti)
−ni+l dx. We define a rational function Hti on M̂tra × Tθ as

Hti := −1

2
resx=ti(Tr(Ω

diag
ti )2)

= −
ni−1∑
l=0

θ+l,tiθ
+
2ni−l−1,ti

−
ni−1∑
l=0

θ−l,tiθ
−
2ni−l−1,ti

.

We call Hti the Hamiltonian associated to ti.

We will give a description of integrable deformations by using these Hamilto-

nians. This description is derived by calculation of the isomonodromy 2-form ω̂.
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Now we prepare a lemma for calculation of the isomonodromy 2-form ω̂. Let t be a

component of the divisor D and (Ut, xt) be a couple of an affine open subset such

that t ∈ Ut and xt = x − t. Let Ω be an element of gl(2,C) ⊗ Ω1
Ut
(D +DApp) ⊗

OM̂tra×Tθ
, which has an expansion at t as

Ω =
Ω0 dxt
xnt
t

+
Ω1 dxt

xnt−1
t

+ · · ·+ Ωnt−1 dxt
xt

+ · · · ,

where Ωk ∈ gl(2,C)⊗OM̂tra×Tθ
. Let g be an element of End(O⊕2

Ut×(M̂tra×Tθ)
) such

that g has an expansion at t as

(3.45) g = g0 + g1xt + · · ·+ gnt
xnt
t + · · · ,

where gk ∈ End(O⊕2

M̂tra×Tθ
) .

Lemma 3.13. Let δ̂1 and δ̂2 be vector fields on an open subset of M̂tra ×Tθ such

that Ω and g are defined on this open subset. Let ψ be a formal solution of d+Ω = 0

at t. We assume that

� Ωk ∈ gl(2,C)⊗ π−1
tra,θ0

(O(Tt)tra×Tθ
) for k = 0, 1, . . . , nt − 1,

� gk ∈ End(π−1
tra,θ0

(O(Tt)tra×Tθ
)⊕2) for k = 0, 1, . . . , nt − 1,

� we can define the inverse matrix g−1
0 ∈ End(π−1

tra,θ0
(O(Tt)tra×Tθ

)⊕2) of g0,

� the (1, 1)- and (2, 2)-entries of g−1
0 gnt

vanish,

� g−1
0 Ω0g0 is a diagonal matrix, and

� δ̂1(ψ)ψ
−1 and δ̂2(ψ)ψ

−1 are formally meromorphic at t.

If we set Ω′ = g−1 dg + g−1Ωg and ψ′ = g−1ψ, then the difference

resx=t Tr(δ̂(Ω
′) ∧ δ̂(ψ′)(ψ′)−1)− resx=t Tr(δ̂(Ω) ∧ δ̂(ψ)(ψ)−1)

is a section of π−1
tra,θ0

(Ω2
(Tt)tra×Tθ

).

Proof. Put δ̂(Ω) ∧ δ̂(ψ)ψ−1 := δ̂1(Ω)δ̂2(ψ)(ψ)
−1 − δ̂1(ψ)(ψ)

−1δ̂2(Ω). By Lemma

3.8, we have the equality

Tr(δ̂(Ω′) ∧ δ̂(ψ′)(ψ′)−1)− Tr(δ̂(Ω) ∧ δ̂(ψ)ψ−1)

= −Tr(δ̂1(Ω
′)ũ(2) − ũ(1)δ̂2(Ω

′))− Tr(δ̂1(Ω)u
(2) − u(1)δ̂2(Ω))

+ Tr
(
d(ψ−1u(1)δ̂2(ψ)− ψ−1u(2)δ̂1(ψ))

)
,(3.46)

where u(i) := δ̂i(g)g
−1 and ũ(i) := g−1δ̂i(g) for i ∈ {1, 2}. We set δ̂1 = δ1 ∈

Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

. We will show that the residue of (3.46) at t vanishes. We
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consider the residues of the first term and the second term of the right-hand side

of (3.46). We calculate δ̂2(Ω
′) as

δ̂2(Ω
′) = δ̂2((g

−1
0 Ω0g0)(x− t)−nt) dx+ · · ·

= g−1
0 Ω0g0δ̂2((x− t)−nt) dx+ δ̂2(g

−1
0 Ω0g0)(x− t)−nt dx+ · · ·

= nti δ̂2(t)g
−1
0 Ω0g0(x− t)−nt−1 dx+ δ̂2(g

−1
0 Ω0g0)(x− t)−nt dx+ · · · .

So we have that the variation δ̂2(Ω
′) has a pole of order nt+1 at t and the leading

coefficient of δ̂2(Ω
′) is the diagonal matrix ntδ̂2(t)g

−1
0 Ω0g0. Since δ1 is an element

of Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

, we may check that δ1(Ω
′)ũ(2) is holomorphic at t. We

calculate the residue of the first term as

−resx=t Tr(δ1(Ω
′)ũ(2) − ũ(1)δ̂2(Ω

′)) = resx=t Tr(ũ
(1)δ̂2(Ω

′))

= ntδ̂2(t) Tr(g
−1
0 δ1(gnt

)g−1
0 Ω0g0)

= ntδ̂2(t) Tr(δ1(g
−1
0 gnt

)g−1
0 Ω0g0).(3.47)

Since the diagonal entries of g−1
0 gnt

vanish and g−1
0 Ω0g0 is a diagonal matrix, the

residue (3.47) is zero. Next we calculate the residue of the second term as

− resx=t Tr(δ1(Ω)u
(2) − u(1)δ̂2(Ω))

= resx=t Tr(δ1(g)g
−1δ̂2(Ω))

= resx=t Tr
(
g−1δ1(g)(δ̂2(g

−1Ωg)− δ̂2(g
−1)Ωg − g−1Ωδ̂2(g))

)
= ntδ̂2(t) Tr(g

−1
0 δ1(gnt

)g−1
0 Ω0g0) = 0.

Here, remark that δ1(g) ∈ O(xnt
t ). Finally, the residue of the third term of (3.46)

at t is zero, since Tr(ψ−1u(1)δ̂2(ψ)− ψ−1u(2)δ̂1(ψ)) is formally meromorphic at t.

Then we have that the residue of (3.25) at t vanishes. We obtain the assertion of

this lemma.

Theorem 3.14. Set P (x; t) :=
∏ν

i=1(x− ti)
ni and Di(x; t,θ) := Di(x) for i ∈ I.

We put

ω̂′ :=

n−3∑
j=1

d

(
pj

P (qj ; t)
−

ν∑
i=1

Di(qj ; t,θ)

(qj − ti)ni
−D∞(qj ; t,θ)

)
∧ dqj

+
∑
i∈Iun

ni−2∑
l=0

(dHθ+
l,ti

∧ dθ+l,ti + dHθ−
l,ti

∧ dθ−l,ti) +
∑

i∈{3,4,...,ν}

dHti ∧ dti.(3.48)

Then the difference ω̂ − ω̂′ is a section of π∗
tra,θ0

(Ω2
(Tt)tra×Tθ

).
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Proof. Recall that ω̂ is

1

2

∑
i∈I

resx=ti Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψi)ψ
−1
i )

+
1

2

n−3∑
j=1

resx=qj Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψqj )ψ
−1
qj ).

The plan of the proof is as follows. First we will consider the first term of

this formula. We calculate the residue at ti for some (local) gauge transforma-

tion of d + Ω̂
(n−2)
(tra,θ0)

. We need to consider the difference between the residue

after taking the gauge transformation and the residue before taking the gauge

transformation. Here, the residue before taking the gauge transformation is just

resx=ti Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

)∧ δ̂(ψi)ψ
−1
i ). To consider this difference, we will use Lemma

3.13. By calculation of the residue after taking the gauge transformation, we may

derive the second part of (3.48):

∑
i∈Iun

ni−2∑
l=0

(dHθ+
l,ti

∧ dθ+l,ti + dHθ−
l,ti

∧ dθ−l,ti) +
∑

i∈{3,4,...,ν}

dHti ∧ dti.

Second we will calculate the second term (the residue of Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

)∧δ̂(ψqj )ψ
−1
qj )

at x = qj) by the same argument as in the proof of Theorem 3.4. Then we may

derive the first part of (3.48):

n−3∑
j=1

d

(
pj

P (qj ; t)
−

ν∑
i=1

Di(qj ; t,θ)

(qj − ti)ni
−D∞(qj ; t,θ)

)
∧ dqj .

First, we consider the residue of Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

)∧ δ̂(ψi)ψ
−1
i ) at ti. Now we take

diagonalizations of d+ Ω̂
(n−2)
(tra,θ0)

until some degree term at each point ti. For i ∈ I,

we put

Ξ≤2ni−1
i (xti) :=

(
1 0

0 1

)
+

2ni−1∑
s=1

(
(ξ

(i)
s )11 (ξ

(i)
s )12

(ξ
(i)
s )21 (ξ

(i)
s )22

)
xsti .

Here, the coefficient matrices of Ξ≤2ni−1
i appear in Lemma 3.1 as the coefficient

matrices of Ξi for the connection d+ Ω̂
(n−2)
(tra,θ0)

. We put

Ω̃i := (ΦiΞ
≤2ni−1
i )−1 d(ΦiΞ

≤2ni−1
i ) + (ΦiΞ

≤2ni−1
i )−1Ω̂

(n−2)
(tra,θ0)

(ΦiΞ
≤2ni−1
i ),

ψ̃i := (ΦiΞ
≤2ni−1
i )−1ψi,



Description of Isomonodromy Deformations 235

where ψi is the formal solution as in Lemma 3.1. We may describe Ω̃i as

Ω̃i =

(
θ+0,ti 0

0 θ−0,ti

)
dx

(x− ti)ni
+ · · ·+

(
θ+ni−1,ti

0

0 θ−ni−1,ti

)
dx

x− ti

+

(
θ+ni,ti 0

0 θ−ni,ti

)
dx+ · · ·+

(
θ+2ni−1,ti

0

0 θ−2ni−1,ti

)
(x− ti)

ni−1 dx

+O(x− ti)
ni .

The residue part θ±ni−1,ti
of Ω̃i is constant on M̂tra×Tθ. So we have δ̂(θ±ni−1,ti

) = 0

for any δ̂ ∈ ΘM̂tra×Tθ
. We may check that the variation δ̂1(Ω̃i) is equal to δ̂1(θ

+
0,ti

)

(x−ti)ni
0

0
δ̂1(θ

−
0,ti

)

(x−ti)ni

 dx+ · · ·+

 δ̂1(θ
+
ni−2,ti

)

(x−ti)2
0

0
δ̂1(θ

−
ni−2,ti

)

(x−ti)2

 dx

+

(
δ̂1(θ

+
ni,ti) 0

0 δ̂1(θ
−
ni,ti)

)
dx+ · · ·

+

(
δ̂1(θ

+
2ni−1,ti

) 0

0 δ̂1(θ
−
2ni−1,ti

)

)
(x− ti)

ni−1 dx

+ niδ̂1(ti)

 θ+
0,ti

(x−ti)ni+1 0

0
θ−
0,ti

(x−ti)ni+1

 dx+ · · ·+ δ̂1(ti)

 θ+
ni−1,ti

(x−ti)2
0

0
θ−
ni−1,ti

(x−ti)2

 dx

− δ̂1(ti)

(
θ+ni+1,ti

0

0 θ−ni+1,ti

)
dx− · · ·

− (ni − 1)δ̂1(ti)

(
θ+2ni−1,ti

0

0 θ−2ni−1,ti

)
(x− ti)

ni−2 dx

− δ̂1(ti)

(
∗ ∗
∗ ∗

)
(x− ti)

ni−1 dx+O(x− ti)
ni .

We define λ̂≤2ni−1
i,± (xti) as

λ̂≤2ni−1
i,± (xti) =

θ±0,ti
−ni + 1

(x− ti)
−ni+1 + · · ·+

θ±ni−2,ti

−1
(x− ti)

−1

+ θ±ni−1,ti
log(x− ti) + θ±ni,ti(x− ti) + · · ·

+
θ±2ni−1,ti

ni
(x− ti)

ni .
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On the other hand, the variation δ̂2(ψ̃i)ψ̃
−1
i is equal to

δ(g≤2ni−1
i )(g≤2ni−1

i )−1 + g≤2ni−1
i

(
−δ̂2(λ̂+i (xti)) 0

0 −δ̂2(λ̂−i (xti))

)
(g≤2ni−1

i )−1

=

(
−δ̂2(λ̂≤2ni−1

i,+ (xti)) 0

0 −δ̂2(λ̂≤2ni−1
i,− (xti))

)

+ δ̂2(ti)

(
∗ ∗
∗ ∗

)
xni
ti +O(xni+1

ti ).

Here we set

g≤2ni−1
i := (ΦiΞ

≤2ni−1
i )−1ΦiΞi.

Since δ̂2(λ̂
≤2ni−1
i,± (xti)) is equal to

δ̂2(θ
±
0,ti

)

−ni + 1
(x− ti)

−ni+1 + · · ·+
δ̂2(θ

±
ni−2,ti

)

−1
(x− ti)

−1

+ δ̂2(θ
±
ni,ti)(x− ti) + · · ·+

δ̂2(θ
±
2ni−1,ti

)

ni
(x− ti)

ni

+ θ±0,ti(−δ̂2(ti))(x− ti)
−ni + · · ·+ θ±ni−2,ti

(−δ̂2(ti))(x− ti)
−2

+ θ±ni−1,ti
(−δ̂2(ti))(x− ti)

−1

+ θ±ni,ti(−δ̂2(ti)) + · · ·+ θ±2ni−1,ti
(−δ̂2(ti))(x− ti)

ni−1,

we may check that the residue Tr(δ̂1(Ω̃i)δ̂2(ψ̃i)ψ̃
−1
i ) at ti coincides with

∑
l∈{0,1,...,2ni−2}

\{ni−1}

(
δ̂1(θ

+
l,ti

)
δ̂2(θ

+
2ni−l−2,ti

)

ni − l − 1

)

+
∑

l∈{0,1,...,2ni−2}
\{ni−1}

(
δ̂1(θ

−
l,ti

)
δ̂2(θ

−
2ni−l−2,ti

)

ni − l − 1

)

+
∑

l∈{0,1,...,2ni−1}
\{ni}

(
(ni − l)θ+l,ti δ̂1(ti)

δ̂2(θ
+
2ni−l−1,ti

)

ni − l
− δ̂1(θ

+
l,ti

)θ+2ni−l−1,ti
δ̂2(ti)

)

+
∑

l∈{0,1,...,2ni−1}
\{ni}

(
(ni − l)θ−l,ti δ̂1(ti)

δ̂2(θ
−
2ni−l−1,ti

)

ni − l
− δ̂1(θ

−
l,ti

)θ−2ni−l−1,ti
δ̂2(ti)

)

+Riδ̂1(ti)δ̂2(ti),
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where Ri is a rational function on M̂tra × Tθ. We may check that∑
l∈{0,1,...,2ni−2}

\{ni−1}

(
δ̂1(θ

±
l,ti

)
δ̂2(θ

±
2ni−l−2,ti

)

ni − l − 1

)

=

ni−2∑
l=0

δ̂1(θ
±
l,ti

)
δ̂2(θ

±
2ni−l−2,ti

)

ni − l − 1
−

ni−2∑
l=0

δ̂1(θ
±
2ni−l−2,ti

)

ni − l − 1
δ̂2(θ

±
l,ti

)

and ∑
l∈{0,1,...,2ni−1}

\{ni}

(
(ni − l)θ±l,ti δ̂1(ti)

δ̂2(θ
±
2ni−l−1,ti

)

ni − l
− δ̂1(θ

±
l,ti

)θ±2ni−l−1,ti
δ̂2(ti)

)

= δ̂1(ti)δ̂2

( ni−1∑
l=0

θ±l,tiθ
±
2ni−l−1,ti

)
− δ̂1

( ni−1∑
l=0

θ±l,tiθ
±
2ni−l−1,ti

)
δ̂2(ti),

since δ̂(θ±ni−1,ti
) = 0. Remark that δ̂1(ti) = δ̂2(ti) = 0 for i = 0, 1,∞. Then we

have

1

2

∑
i∈I

resx=ti Tr(δ̂(Ω̃i) ∧ δ̂(ψ̃i)ψ̃
−1
i )

=

( ∑
i∈Iun

ni−2∑
l=0

(dHθ+
l,ti

∧ dθ+l,ti + dHθ−
l,ti

∧ dθ−l,ti)

+
∑

i∈{3,4,...,ν}

dHti ∧ dti
)
(δ̂1, δ̂2).(3.49)

This is just the second part of (3.48). We may take Φi and Ξ≤2ni−1
i (xti) so that

ΦiΞ
≤2ni−1
i (xti) satisfies the assumption of Lemma 3.13 (see Remark 3.2). Since

Ω̂
(n−2)
(tra,θ0)

also satisfies the assumption of Lemma 3.13, the difference between the

residue (3.49) and the residue of

1

2
Tr(δ̂(Ω̂

(n−2)
(tra,θ0)

) ∧ δ̂(ψi)ψ
−1
i )

at ti is zero if δ1 ∈ Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

.

Second we calculate the residue of

Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψqj )ψ
−1
qj )

at x = qj . First, δ̂(Ω̂
(n−2)
(tra,θ0)

) is described at x = qj as

δ̂(Ω̂
(n−2)
(tra,θ0)

) =

(
0 δ̂(1/P (x; t))

δ̂(c0) δ̂(d0)

)
,
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where

δ̂(1/P (x; t)) =

ν∑
i=1

∂

∂ti

( 1

P (qj ; t)

)
δ̂(ti) +O(x− qj),

δ̂(c0) =
pj δ̂(qj)

(x− qj)2
+

δ̂(pj)

(x− qj)
+O(x− qj)

0,

δ̂(d0) = − δ̂(qj)

(x− qj)2
−
∑
k ̸=j

δ̂(qk)

(qj − qk)2
+

ν∑
i=3

(∂d0
∂ti

(qj)δ̂(ti)
)

+
∑
i∈Iun

ni−2∑
l=0

( ∂d0

∂θ±l,ti
(qj)δ̂(θ

±
l,ti

)
)
+O(x− qj).

Second, we consider δ̂(ψqj )ψ
−1
qj . By Lemma 2.11, we have

δ̂(ψqj )ψ
−1
qj = δ̂(ΦqjΞqj (x))(ΦqjΞqj (x))

−1

+ (ΦqjΞqj (x))

(
0 0

0
−δ̂(qj)
x−qj

)
(ΦqjΞqj (x))

−1.

By using Lemma 2.11, we have the equality

ΦqjΞqj (x) =

(
1 0

pj 1

)

+

(
− pj

P (qj ;t)
− 1

2P (qj ;t)

− p2
j

P (qj ;t)
pj

2P (qj ;t)
−
∑ν

i=1
Di(qj)

(qj−ti)ni
+
∑

k ̸=j
1

qj−qk
−D∞(qj)

)
(x−qj)

+O(x− qj)
2.

By this description of ΦqjΞqj (x), we may check that the constant term of the

expansion of δ(ΦqjΞqj (x)) at qj has the description(
0 0

δ(pj) 0

)
− δ(qj)

(
− pj

P (qj ;t)
− 1

2P (qj ;t)

− p2
j

P (qj ;t)
∗

)
.

Since
ν∑

i=1

Di(x)

(x− ti)ni
+D∞(x) = d0 −

n−3∑
j=1

−1

x− qj
,

the coefficient of the (x−qj)-term of the expansion of δ(ΦqjΞqj (x)) has the descrip-

tion(
∗ 0

∗ δ(pj)
2P (qj ;t)

+
∑

k ̸=j
δ(qk)

(qj−qk)2

)
− δ(qj)

(
∗ ∗
∗ ∗

)
+

(
∗ − 1

2

∑ν
i=1

∂
∂ti

( 1
P (qj ;t)

)δ̂(ti)

∗ x322

)
.



Description of Isomonodromy Deformations 239

Here, the (2, 2)-entry x322 of the third matrix is

pj
2

ν∑
i=3

∂

∂ti

( 1

P (qj ; t)

)
δ̂(ti)−

ν∑
i=3

(∂d0
∂ti

(qj)δ̂(ti)
)
−
∑
i∈Iun

ni−2∑
l=0

( ∂d0

∂θ±l,ti
(qj)δ̂(θ

±
l,ti

)
)
,

and we put the entries having δ(qj) together in the second matrices. Moreover,

we may check that the constant term of the expansion of (ΦqjΞqj (x))
−1 at qj is(

1 0
−pj 1

)
and the coefficient of the (x− qj)-term of the expansion of (ΦqjΞqj (x))

−1

has the description

−

(
− pj

2P (qj ;t)
− 1

2P (qj ;t)

∗ pj

P (qj ;t)
−
∑ν

i=1
Di(qj)

(qj−ti)ni
+
∑

k ̸=j
1

qj−qk
−D∞(qj)

)
.

By the calculation of δ(ΦqjΞqj (x)) and (ΦqjΞqj (x))
−1, we may show that

δ(ΦqjΞqj (x))(ΦqjΞqj (x))
−1 is(

∗ δ̂(qj)
2P (qj ;t)

∗ ∗

)
+

(
∗ x12

∗ δ̂(pj)
P (qj ;t)

+
∑

k
δ̂(qk)

(qj−qk)2
+ x22

)
(x− qj) +O(x− qj)

2.

Here we put

x12 := f12δ̂(qj)−
1

2

ν∑
i=3

∂

∂ti

( 1

P (qj ; t)

)
δ̂(ti),

x22 := f22δ̂(qj)−
ν∑

i=3

(∂d0
∂ti

(qj)δ̂(ti)
)

−
∑
i∈Iun

ni−2∑
l=0

( ∂d0

∂θ±l,ti
(qj)δ̂(θ

±
l,ti

)
)
+
pj
2

ν∑
i=3

∂

∂ti

( 1

P (qj ; t)

)
δ̂(ti),

where f12 and f22 are rational functions on M̂tra × Tθ. Moreover, we may show

that

(ΦqjΞqj (x))

(
0 0

0
−δ̂(qj)
x−qj

)
(ΦqjΞqj (x))

−1

=

(
0 0

pj δ̂(qj)−δ̂(qj)

)
x− qj

+

(
∗ δ̂(qj)

2P (qj ;t)

∗ g(0)22 δ̂(qj)

)
+

(
∗ g(1)12 δ̂(qj)

∗ g(1)22 δ̂(qj)

)
(x− qj)

+O(x− qj)
2,
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where g
(0)
22 , g

(1)
12 , and g

(1)
22 are rational functions on M̂tra × Tθ. Finally, we have

1

2
resx=qj Tr(δ̂(Ω̂

(n−2)
(tra,θ0)

) ∧ δ̂(ψqj )ψ
−1
qj )

=
δ̂1(pj)δ̂2(qj)

P (qj ; t)
− δ̂2(pj)δ̂1(qj)

P (qj ; t)
+
∑
k ̸=j

δ̂1(qk)δ̂2(qj)

(qj − qk)2
−
∑
k ̸=j

δ̂1(qj)δ̂2(qk)

(qj − qk)2

+ pj

ν∑
i=3

∂

∂ti

( 1

P (qj ; t)

)
(δ̂1(ti)δ̂2(qj)− δ̂2(ti)δ̂1(qj))

−
ν∑

i=3

∂d0
∂ti

(qj)(δ̂1(ti)δ̂2(qj)− δ̂2(ti)δ̂1(qj))

−
∑
i∈Iun

ni−2∑
l=0

∂d0

∂θ±l,ti
(qj)(δ̂1(θ

±
l,ti

)δ̂2(qj)− δ̂2(θ
±
l,ti

)δ̂1(qj)).

Moreover, this is equal to(
δ̂1(pj)

P (qj ; t)
+ pj

ν∑
i=3

∂

∂ti

( 1

P (qj ; t)

)
δ̂1(ti)

−
ν∑

i=3

∂d0
∂ti

(qj)δ̂1(ti)−
∑
i∈Iun

ni−2∑
l=0

∂d0

∂θ±l,ti
(qj)δ̂1(θ

±
l,ti

)

)
δ̂2(qj)

−
(
δ̂2(pj)

P (qj ; t)
+ pj

ν∑
i=3

∂

∂ti

( 1

P (qj ; t)

)
δ̂2(ti)

−
ν∑

i=3

∂d0
∂ti

(qj)δ̂2(ti)−
∑
i∈Iun

ni−2∑
l=0

∂d0

∂θ±l,ti
(qj)δ̂2(θ

±
l,ti

)

)
δ̂1(qj)

−
∑
k ̸=j

δ̂1(qk)δ̂2(qj)− δ̂1(qj)δ̂2(qk)

(qj − qk)2
.

In the first and second terms of this formula, the exterior derivative of

pj
P (qj ; t)

−
ν∑

i=1

Di(qj ; t,θ)

(qj − ti)ni
−D∞(qj ; t,θ)

on the extended moduli space M̂tra × Tθ appears. Here, remark that

ν∑
i=1

Di(x; t,θ)

(x− ti)ni
+D∞(x; t,θ) = d0 −

n−3∑
j=1

−1

x− qj
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and the coefficients of Di(x; t,θ) and D∞(x; t,θ) are independent of the parame-

ters {(qj , pj)}j=1,2,...,n−3. Since

n−3∑
j=1

∑
k ̸=j

δ̂1(qk)δ̂2(qj)− δ̂1(qj)δ̂2(qk)

(qj − qk)2
= 0,

we have

1

2

n−3∑
j=1

resx=qj Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψqj )ψ
−1
qj )

=

( n−3∑
j=1

d

(
pj

P (qj ; t)
−

ν∑
i=1

Di(qj ; t,θ)

(qj − ti)ni
−D∞(qj ; t,θ)

)
∧ dqj

)
(δ̂1, δ̂2).

We obtain the assertion of this theorem.

Corollary 3.15. Set ηj :=
pj

P (qj ;t)
−
∑ν

i=1
Di(qj ;t,θ)
(qj−ti)ni

− D∞(qj ; t,θ). The vector

fields δIMD
θ±
l,ti

(i ∈ Iun and l = 0, 1, . . . , ni − 2) and δIMD
ti (i = 3, 4, . . . , ν) have the

following Hamiltonian description:

(3.50)

δIMD
θ±
l,ti

=
∂

∂θ±l,ti
−

n−3∑
j=1

(∂Hθ±
l,ti

∂ηj

∂

∂qj
−
∂Hθ±

l,ti

∂qj

∂

∂ηj

)
,

δIMD
ti =

∂

∂ti
−

n−3∑
j=1

(
∂Hti

∂ηj

∂

∂qj
− ∂Hti

∂qj

∂

∂ηj

)
,

respectively.

Proof. We can put

δIMD
θ±
l,ti

=
∂

∂θ±l,ti
+

n−3∑
j=1

(
Xj

θ±
l,ti

∂

∂qj
+ Y j

θ±
l,ti

∂

∂ηj

)
,

δIMD
ti =

∂

∂ti
+

n−3∑
j=1

(
Xj

ti

∂

∂qj
+ Y j

ti

∂

∂ηj

)
.

By Theorem 3.14, the terms of dqj , dηj (j = 1, 2, . . . , n − 3) of the 1-forms

ω̂(δIMD
θ±
l,ti

, ∗) and ω̂(δIMD
ti , ∗) are

n−3∑
j=1

(−Xj

θ±
l,ti

dηj + Y j

θ±
l,ti

dqj)−
n−3∑
j=1

(∂Hθ±
l,ti

∂ηj
dηj +

∂Hθ±
l,ti

∂qj
dqj

)
,

n−3∑
j=1

(−Xj
ti dηj + Y j

ti dqj)−
n−3∑
j=1

(
∂Hti

∂ηj
dηj +

∂Hti

∂qj
dqj

)
,
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respectively. By Theorem 3.10, we have the equalities

Xj

θ±
l,ti

= −
∂Hθ±

l,ti

∂ηj
, Y j

θ±
l,ti

=
∂Hθ±

l,ti

∂qj
,

Xj
ti = −∂Hti

∂ηj
, Y j

θ±
l,ti

=
∂Hti

∂qj
.

Then we have the Hamiltonian description (3.50).

Remark. In [15], the Hamiltonian systems of the two-dimensional (degenerated)

Garnier systems have been described by using the coordinates (qj , η̃j)0≤j≤2, where

η̃j := − pj

P (qj ;t)
. In these cases, the 2-form

d(−
ν∑

i=1

Di(qj ; t,θ)

(qj − ti)ni
−D∞(qj ; t,θ)) ∧ dqj ,

which comes from the residue at an apparent singularity, is canceled by some terms

of the 2-form ∑
i∈I

ni−2∑
l=0

(dHθ+
l,ti

∧ dθ+l,ti + dHθ−
l,ti

∧ dθ−l,ti),

which comes from the residues at unramified irregular singular points.

§4. Ramified irregular singularities

In this section we assume that Ira ̸= ∅. For i ∈ Ira, the leading coefficient Ωti(0) is

a nontrivial Jordan block. In Section 4.1 we define a 2-form on the fiber Mt0,tra by

Krichever’s formula [16, Sect. 5]. Remark that Mt0,tra is isomorphic to the moduli

space Conn(t0,θ,θ0). We show that this 2-form coincides with the symplectic form

(1.2). In Section 4.2 we will construct horizontal lifts of ∇̃(1)
DL,ext. Let ∂/∂θl′,ti (i ∈

Ira, l
′ = 0, 1, . . . , 2ni − 3) be the vector fields on (Tt)tra × Tθ. By the construction

of the horizontal lifts, we have the vector field δIMD
θl′,ti

on M̂tra × Tθ determined

by the integrable deformations with respect to ∂/∂θl′,ti . Remark that M̂tra × Tθ
is isomorphic to the extended moduli space Ĉonn(tra,θ0). In Section 4.3 we define

a 2-form on M̂tra × Tθ by Krichever’s formula. We show that this 2-form is the

isomonodromy 2-form. In Section 4.4 we calculate this 2-form on M̂tra × Tθ by

using Diarra–Loray’s global normal form. Then we obtain an explicit formula for

this 2-form.
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For i ∈ I \ Ira, we fix a compatible framing Φi and take Ξi(xti) as in Lemma

3.1. For each i ∈ Ira, we consider the leading coefficient of Ω
(n−2)
(t0,θ,θ0)

at ti:

Ω
(n−2)
(t0,θ,θ0)

=

(
0

∏
j ̸=i(ti − tj)

−nj

− θ2
0,ti

4

∏
j ̸=i(ti − tj)

nj θ0,ti

)
dxti
xni
ti

+ [higher-order terms].

This leading coefficient at ti is independent of {(qj , pj)}j=1,2,...,n−3. We fix Φi ∈
GL(2,C) so that

(4.1) Φ−1
i Ω

(n−2)
(t0,θ,θ0)

Φi =

(
θ0,ti
2

θ1,ti
2

0
θ0,ti
2

)
dxti
xni
ti

+ [higher-order terms].

We call the matrix Φi a compatible framing at ti. If we have another Φ′
i such that

the leading coefficient matrix of (Φ′
i)

−1Ω
(n−2)
(t0,θ,θ0)

Φ′
i is an upper triangular matrix

as in (4.1), then there exists an upper triangular matrix

Cti =

(
cti,11 cti,12
0 cti,11

)
such that Φ′

i = ΦiCti . We define ζi as xti = ζ2i . Let Mζi be the matrix (2.9). For

the compatible framing Φi, there exist a unique

� formal transformation

(4.2) Ξi(xti) :=

(
1 0

0 1

)
+

∞∑
s=1

(
(ξ

(i)
s )11 (ξ

(i)
s )12

(ξ
(i)
s )21 (ξ

(i)
s )22

)
xsti ,

and

� θl′,ti ∈ Γ(Mt0,tra ,OMt0,tra
) (l′ ≥ 2ni − 2 and i ∈ Ira)

such that

(1) we have the equality

(ΦiΞi(xti))
−1 d(ΦiΞi(xti)) + (ΦiΞi(xti))

−1Ω
(n−2)
(t0,θ,θ0)

(ΦiΞi(xti))

=

(
αi βi

xtiβi αi −
dxti

2xti

)
,(4.3)

where we set
αi :=

θ0,ti
2

dxti
xni
ti

+ · · ·+ θ2l,ti
2

dxti
xni−l
ti

+ · · ·+ θ2ni−2,ti

2

dxti
xti

+ · · · ,

βi :=
θ1,ti
2

dxti
xni
ti

+ · · ·+ θ2l+1,ti

2

dxti
xni−l
ti

+ · · ·+ θ2ni−3,ti

2

dxti
x2ti

+ · · · ,
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(2) there exists a formal power series ξ(ζi) ∈ Γ(Mt0,tra ,OMt0,tra
)[[ζi]] such that

(4.4) M−1
ζi

Ξi(ζ
2
i )Mζi =

(
1 ζiξ(ζi)

−ζiξ(−ζi) 1

)
.

Indeed, the ζ−2ni+1
i - and ζ−2ni+2

i -terms of the expansion of

(4.5) (ΦiMζi)
−1 d(ΦiMζi) + (ΦiMζi)

−1Ω
(n−2)
(t0,θ,θ0)

(ζ2i )(ΦiMζi)

at ζi = 0 are diagonal. The eigenvalues of the ζ−2ni+2
i -term are distinct. After

the ζ−2ni+2
i -term, we can diagonalize (4.5) by a matrix as in Lemma 3.1. By the

argument as in the proof of [5, Prop. 10], we may check that, in this situation,

this matrix has a form as in the right-hand side of (4.4). Moreover, by the gauge

transformation of this diagonal matrix by M−1
ζi

, we have the right-hand side of

(4.3). We may check that

Mζi

(
1 ζiξ(ζi)

−ζiξ(−ζi) 1

)
M−1

ζi

is invariant under replacing ζi with −ζi. So we have Ξi(xti). By Lemma 3.1, such

a Ξi(xti) is unique.

Let Uti be an affine open subset on P1 for i ∈ Ira so that xti is a coordinate

on Uti . Let Uζi be the inverse image of Uti under the map SpecC[ζi] → SpecC[xti ]
by xti = ζ2i . Let

fζi : Uζi ×Mt0,tra −→ Uti ×Mt0,tra

be the map induced by SpecC[ζi] → SpecC[xti ]. We consider the pull-back

(f∗ζiEn−2|Uti
×Mt0,tra

, f∗ζi∇̃
(n−1)
DL |Uti

×Mt0,tra
).

Let Ω
(n−2)
(t0,θ,θ0)

(ζ2i ) be the pull-back of the connection matrix Ω
(n−2)
(t0,θ,θ0)

|Uti
×Mt0,tra

under the map f∗ζi . Now we take a formal fundamental matrix solution of

d+Ω
(n−2)
(t0,θ,θ0)

(ζ2i ) = 0 as follows. We have the diagonalization

M−1
ζi

dMζi +M−1
ζi

(
αi βi

xtiβi αi −
dxti

2xti

)
Mζi

=
∑

l=0,1,...

 θ2l,ti dζi

ζ
2(ni−l)−1

i

0

0
θ2l,ti dζi

ζ
2(ni−l)−1

i

+
∑

l=0,1,...

 θ2l+1,ti
dζi

ζ
2(ni−l)−2

i

0

0 − θ2l+1,ti
dζi

ζ
2(ni−l)−2

i

 .(4.6)
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We set

(4.7)

λ̂i,±(ζi) :=

∞∑
l′=0

(±1)l
′
θl′,ti

∫
ζ−2ni+l′+1
i dζi,

Λi(ζi) :=

(
λ̂i,+(ζi) 0

0 λ̂i,−(ζi)

)
,

ψζi := ΦiΞi(ζ
2
i )Mζi exp(−Λi(ζi)).

Then ψζi is a formal matrix solution of d + Ω
(n−2)
(t0,θ,θ0)

(ζ2i ) = 0, that is, (d +

Ω
(n−2)
(t0,θ,θ0)

(ζ2i ))ψζi = 0.

For i ∈ Ira, we take a tuple (Φi,Ξi(xti)) of a compatible framing and a formal

transformation as above. We may give another formal fundamental matrix solution

ψ′
ζi

as follows. If we set

C̃ti(xti) :=

(
cti,odd(xti) cti,even(xti)

xticti,even(xti) cti,odd(xti)

)
=

(
cti,1 cti,2
0 cti,1

)
+

(
cti,3 cti,4
cti,2 cti,3

)
xti + · · · ,

then
(ΦiΞi(ζ

2
i )C̃ti(xti)Mζi)

−1d
(
(ΦiΞi(ζ

2
i )C̃ti(xti)Mζi)

)
+ (ΦiΞi(ζ

2
i )C̃ti(xti)Mζi)

−1Ω
(n−2)
(t0,θ,θ0)

(ΦiΞi(ζ
2
i )C̃ti(xti)Mζi)

is also diagonal, since M−1
ζi
C̃ti(ζ

2
i )Mζi is diagonal. Let c̃ti,11(ζi) and c̃ti,22(ζi) be

the formal power series such that

M−1
ζi
C̃ti(ζ

2
i )Mζi =

(
c̃ti,11(ζi) 0

0 c̃ti,22(ζi)

)
.

We define Λ′
i′(ζi′) by

Λ′
i′(ζi′) = Λi′(ζi′) +

(∫
c̃ti,11(ζi)

−1d(c̃ti,11(ζi)) 0

0
∫
c̃ti,22(ζi)

−1d(c̃ti,22(ζi))

)
.

If we set

(4.8) ψ′
ζi

:= ΦiΞi(ζ
2
i )C̃ti(ζ

2
i )Mζi exp(−Λ′

i(ζi)),

we have another formal solution (d+Ω
(n−2)
(t0,θ,θ0)

(ζ2i ))ψ
′
ζi

= 0. There exists a diagonal

matrix C̃ti such that ψ′
ζi

= ψζiC̃ti and C̃ti is independent of ζi.

§4.1. Symplectic structure

Definition 4.1. Let δ1 and δ2 be vector fields on

Mt0,tra ⊂ Sym(n−3)(Tot(Ω1
P1(D))),
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which is isomorphic to the moduli space Conn(t0,θ,θ0). We fix a (formal) funda-

mental matrix solution ψi of (d + Ω
(n−2)
(t0,θ,θ0)

)ψi = 0 at x = ti for i ∈ I \ Ira as in

Lemma 3.1. We fix a fundamental matrix solution ψqj of (d + Ω
(n−2)
(t0,θ,θ0)

)ψqj = 0

at x = qj as in Lemma 2.11. Moreover, we take ψζi defined in (4.7). We define a

2-form ω on Mt0,tra as

ω(δ1, δ2) :=
1

2

∑
i∈I\Ira

resx=ti Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i )

+
1

4

∑
i∈Ira

resζi=0 Tr
(
δ(Ω

(n−2)
(t0,θ,θ0)

(ζ2i )) ∧ δ(ψζi)ψ
−1
ζi

)
+

1

2

n−3∑
j=1

resx=qj Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψqj )ψ
−1
qj ).(4.9)

As in Section 3.1, we may check that the residue of δ(Ω
(n−2)
(t0,θ,θ0)

(ζ2i ))∧δ(ψζi)ψ
−1
ζi

at ζi = 0 is well defined. Moreover, we may also check that the right-hand side of

(4.9) is independent of the choice of ψqj and a formal solution ψi (i ∈ I \ Ira). Let
ψ′
ζi

be another fundamental matrix solution (4.8). There exists a diagonal matrix

C̃ti such that ψ′
ζi

= ψζiC̃ti and C̃ti is independent of ζi. By the same argument,

to check the independency of the choice of ψi, we may check that the residue

of Tr(δ(Ω
(n−2)
(t0,θ,θ0)

(ζ2i )) ∧ δ(ψζi)ψ
−1
ζi

) at ζi = 0 is equal to Tr(δ(Ω
(n−2)
(t0,θ,θ0)

(ζ2i )) ∧
δ(ψ′

ζi
)(ψ′

ζi
)−1) at ζi = 0.

Lemma 4.2. For any vector field δ on Mt0,tra , the formal series δ(ψζi)ψ
−1
ζi

descends under the ramification xti = ζ2i .

Proof. We consider ψζiM
−1
ζi

. We decompose Λi(ζi) into the odd-degree part, the

even-degree part, and the logarithmic term:

Λi(ζi) =

(
λ̂odd(ζi) 0

0 −λ̂odd(ζi)

)
+

(
λ̂even(ζi) 0

0 λ̂even(ζi)

)

+

(
θ2ni−2,ti log(ζi) 0

0 θ2ni−2,ti log(ζi)

)
.

Since

MζiΛi(ζi)M
−1
ζi

=

(
0 λ̂odd(ζi)/ζi

ζiλ̂odd(ζi) 0

)
+

(
λ̂even(ζi) 0

0 λ̂even(ζi)

)

+
1

2

(
θ2ni−2,ti log(ζ

2
i ) 0

0 θ2ni−2,ti log(ζ
2
i )

)
,
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we may check that MζiΛi(ζi)M
−1
ζi

descends under the ramification xti = ζ2i . Since

ψζiM
−1
ζi

= ΦiΞi(ζ
2
i )Mζi exp(−Λi′(ζi′))M

−1
ζi

= ΦiΞi(ζ
2
i ) exp(−MζiΛi′(ζi′)M

−1
ζi

),

we have that ψζiM
−1
ζi

descends under the ramification xti = ζ2i . Since Mζi is

independent of the parameters of Mt0,tra , we have δ(Mζi) = 0. Then we have

δ(ψζiM
−1
ζi

)(ψζiM
−1
ζi

)−1 = δ(ψζi)ψ
−1
ζi

. Finally, we have that δ(ψζi)ψ
−1
ζi

descends

under the ramification xti = ζ2i .

Remark. In the proof of this lemma, we check that ψζiM
−1
ζi

descends under the

ramification xti = ζ2i . If we set ψi := ψζiM
−1
ζi

for i ∈ Ira, we have

1

4
resζi=0 Tr

(
δ(Ω

(n−2)
(t0,θ,θ0)

(ζ2i )) ∧ δ(ψζi)ψ
−1
ζi

)
=

1

2
resx=ti Tr(δ(Ω

(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i ).

So we may define the 2-form ω as

ω(δ1, δ2) :=
1

2

∑
i∈I

resx=ti Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψi)ψ
−1
i )

+
1

2

n−3∑
j=1

resx=qj Tr(δ(Ω
(n−2)
(t0,θ,θ0)

) ∧ δ(ψqj )ψ
−1
qj ).

In this definition of ω, the variable ζi disappears.

Theorem 4.3. Let ω be the 2-form on Mt0,tra defined by (4.9) in Definition 4.1.

The 2-form ω coincides with

n−3∑
j=1

d
( pj
P (qj)

)
∧ dqj .

Proof. Let δ be a vector field on Mt0,tra . Since ti (i ∈ I), θ±l,ti (i ∈ Iun, 0 ≤ l ≤
ni − 1), and θl′,ti (i ∈ Ira, 0 ≤ l′ ≤ 2ni − 2) are constants on Mt0,tra , we have

δ(ti) = 0, δ(θ±l,ti) = 0, and δ(θl′,ti) = 0. By equalities (2.10) and (2.11), we have

δ(Ci) = δ(Di) = 0 for i = 1, 2, . . . , ν,∞. Here, Ci and Di are the polynomials

in (2.6). We compute the residue of the trace of δ(Ω
(n−2)
(t0,θ,θ0)

(ζ2i )) ∧ δ(ψζi)ψ
−1
ζi

at

ζi = 0. First, we consider the expansion of δ(Ω
(n−2)
(t0,θ,θ0)

(ζ2i )) at ζi = 0. Since δ(Ci) =

δ(Di) = 0 for i = 1, 2, . . . , ν,∞, we have δ(c2) = O(x0ti) and δ(d2) = O(x0ti).

Second, we consider δ(ψζi)ψ
−1
ζi

. By the definition (4.7), we have that δ(ψζi)ψ
−1
ζi
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coincides with

ΦiΞi(ζ
2
i )δ(Mζi)M

−1
ζi

(ΦiΞi(ζ
2
i ))

−1 + δ(ΦiΞi(ζ
2
i ))(ΦiΞi(ζ

2
i ))

−1

+ (ΦiΞi(ζ
2
i )Mζi)

(
−δ(λ̂i,+(ζi)) 0

0 −δ(λ̂i,−(ζi))

)
(ΦiΞi(ζ

2
i )Mζi)

−1.

Since δ(Mζi) = 0 and δ(λ̂i,±(ζi)) = O(ζi), we have

resζi=0 Tr
(
δ(Ω

(n−2)
(t0,θ,θ0)

(ζ2i )) ∧ δ(ψζi)ψ
−1
ζi

)
= 0.

The remaining residues are calculated as in the proof of Theorem 3.4. Then we

obtain

ω(δ1, δ2) =

n−3∑
j=1

(
δ1(pj)δ2(qj)

P (qj)
− δ2(pj)δ1(qj)

P (qj)

)
,

which means that ω coincides with
∑n−3

j=1 d(
pj

P (qj)
) ∧ dqj .

§4.2. Integrable deformations associated to θl′,ti for i ∈ Ira

First we fix i ∈ Ira and l′ ∈ {0, 1, 2, . . . , 2ni − 3}. Let

∇̃(1)
DL,ext =

{
d+ Ω̂

(1)
(tra,θ0)

on U0 × (M̂tra × Tθ),

d+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1 on U∞ × (M̂tra × Tθ),

be the family (2.14). Let θl′,ti be the natural coordinate of (Tt)tra×Tθ and ∂/∂θl′,ti
be the vector field on (Tt)tra×Tθ associated to θl′,ti . We will construct a horizontal

lift of ∇̃(1)
DL,ext with respect to ∂/∂θl′,ti .

By using the explicit form of ∇̃(n−2)
DL,ext, we take a family of compatible framings

of ∇̃(n−2)
DL,ext at t̃i′ for i

′ ∈ Ira. We denote this family of compatible framings at t̃i′ ,

for i′ ∈ Ira, by Φi′ . Let Ξi′(xti′ ) be the formal transformation (4.2) for i′ ∈ Ira. If

i′ ∈ I \ Ira, let Φi′ and Ξi′(xti′ ) be a compatible framing at t̃i′ and the (formal)

transformation with respect to Φi′ appearing in Lemma 3.1, respectively. Let G̃

be the matrix defined in (2.7). For each i′ ∈ I, we denote formal expansion of

G̃−1Φi′Ξi′(xti′ ) at xti′ = 0 by

G̃−1Φi′Ξi′(xti′ ) = Pi′,0 + Pi′,1xti′ + Pi′,2x
2
ti′

+ · · · .

Set

Pi′ := Pi′,0 + Pi′,1xti′ + Pi′,2x
2
ti′

+ · · ·+ Pi′,2ni′−1x
2ni′−1
ti′

(for i′ ∈ I),

Pν+1 := id.

We take an affine open covering {Ûi′}i′∈I∪{ν+1} of P1 × (M̂tra × Tθ) as in Section

3.3. By using the matrices Pi′ , we define a new trivialization φ̂i′ of Ê1 on Ûi′ for
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each i′ ∈ I ∪{ν+1} as in Section 3.3. Let Ω̂i′ be the connection matrix of ∇̃(1)
DL,ext

under the new trivialization φ̂i′ :

Ω̂i′ = P−1
i′ dPi′ + P−1

i′ Ω̂
(1)
(tra,θ0)

|Ûi′
Pi′ for i′ ∈ (I ∪ {ν + 1}) \ {∞},

Ω̂∞ = (G1P∞)−1 d(G1P∞) + (G1P∞)−1Ω̂
(1)
(tra,θ0)

|Û∞
(G1P∞).

Remark thatM−1
ζi′

dMζi′ +M
−1
ζi′

Ω̂i′Mζi′ is diagonal until the ζ
2ni′−3
i′ -terms for each

i′ ∈ Ira.

For the fixed indices i ∈ Ira and l′ ∈ {0, 1, . . . , 2ni − 3}, we define a matrix

Bθl′,ti
by

Bθl′,ti
=


−1

2(ni − l − 1)

δ(θ2l,ti)

ζ
2(ni−1−l)
i

(
1 0

0 1

)
if l′ = 2l

−1

2(ni − l)− 3

δ(θ2l+1,ti)

ζ
2(ni−1−l)−1
i

(
1 0

0−1

)
if l′ = 2l + 1.

We may check that

MζiBθl′,ti
M−1

ζi
=


−1

2(ni − l − 1)
δ(θ2l,ti)

(
x−ni+l+1
ti 0

0 x−ni+l+1
ti

)
if l′ = 2l,

−1

2(ni − l)− 3
δ(θ2l+1,ti)

(
0 x−ni+l+1

ti

x−ni+l+2
ti 0

)
if l′ = 2l + 1.

In particular, MζiBθl′,ti
M−1

ζi
descends under the ramification xti = ζ2i . We define

a vector bundle (Ê1)
ε
θl′,ti

on P1 × (M̂tra × Tθ)× SpecC[ε] by the same argument

as in the construction of (Ê1)
ε
θ±
l,ti

. That is, we replace Bθ±
l,ti

(xti) in (3.14) with

MζiBθl′,ti
M−1

ζi
. We define a morphism

∇ε
∂/∂θl′,ti

: (Ê1)
ε
θl′,ti

−→ (Ê1)
ε
θl′,ti

⊗ Ω̃1
∂/∂ti

by the same argument as in the construction of ∇ε
∂/∂θ±

l,ti

in Section 3.3. That is,

we replace Bθ±
l,ti

(xti) in (3.15) withMζiBθl′,ti
M−1

ζi
. The ε-term of ∇ε

∂/∂θl′,ti
|Ûε

i
for

fixed i ∈ Ira is

d(MζiBθl′,ti
M−1

ζi
) + [Ω̂i,MζiBθl′,ti

M−1
ζi

]

=Mζi

( ∂

∂ζi
(Bθl′,ti

) dζi + [M−1
ζi

dMζi +M−1
ζi

Ω̂iMζi , Bθl′,ti
]
)
M−1

ζi
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=



δ(θ2l,ti)

2

(
x−ni+l
ti 0

0 x−ni+l
ti

)
dxti

+Mζi [M
−1
ζi

dMζi +M−1
ζi

Ω̂iMζi , Bθl′,ti
]M−1

ζi
if l′ = 2l,

δ(θ2l+1,ti)

2

(
0 x−ni+l

ti

x−ni+l+1
ti 0

)
dxti

+Mζi [M
−1
ζi

dMζi +M−1
ζi

Ω̂iMζi , Bθl′,ti
]M−1

ζi
if l′ = 2l + 1.

Since M−1
ζi

dMζi +M−1
ζi

Ω̂iMζi and Bθl′,ti
are diagonal until the ζ2ni−3

i -terms, the

negative part of the relative connection ∇ε
∂/∂θl′,ti

along the divisor [xti = 0] is(
αi βi

xtiβi αi −
dxti

2xti

)
.

Here, if l′ = 2l, the entry αi is

θ0,ti
2

dxti
xni
ti

+ · · ·+ θ2l,ti + εδ(θ2l,ti)

2

dxti
xni−l
ti

+ · · ·+ θ2ni−2,ti

2

dxti
xti

,

and the coefficients of βi are independent of ε until the x−2
ti -term. If l′ = 2l + 1,

the expansion of βi at ti until the x
−2
ti -term is

θ1,ti
2

dxti
xni
ti

+ · · ·+ θ2l+1,ti + εδ(θ2l+1,ti)

2

dxti
xni−l
ti

+ · · ·+ θ2ni−3,ti

2

dxti
x2ti

,

and the coefficients of αi are independent of ε until the x−1
ti -term.

As in Section 3.3, Êε
1
∼= (Ê1)

ε
θl′,ti

. If we consider the pull-back of ∇ε
∂/∂θl′,ti

under this isomorphism, then we have a horizontal lift of ∇̃(1)
DL,ext with respect

to ∂/∂θl′,ti . If we take a relativization of this horizontal lift, we have a family of

connections parametrized by (M̂tra × Tθ) × SpecC[ε]. This family gives a map

from the base space (M̂tra × Tθ)× SpecC[ε] to the moduli space Ĉonn(tra,θ0). By

taking composition with Âpp defined in (2.13), we have a map

(4.10) (M̂tra × Tθ)× SpecC[ε] −→ M̂tra × Tθ.

Definition 4.4. Then we may define the vector field on M̂tra × Tθ associated to

the map (4.10). We denote this vector field on M̂tra × Tθ by δIMD
θl′,ti

.

Let f IMD
θl′,ti

: (M̂tra × Tθ)× SpecC[ε] → M̂tra × Tθ be the map induced by the

vector field δIMD
θl′,ti

. We have

Êε
1 = (id× f IMD

θl′,ti
)∗Ê1.
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We denote the pull-back of ∇̃(1)
DL,ext under the map id× f IMD

θl′,ti
by

(4.11)


d+ Ω̂

(1)
(tra,θ0)

+ εδIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

) on U0 × (M̂tra × Tθ)× SpecC[ε],

d+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1

+εG−1
1 δIMD

θl′,ti
(Ω̂

(1)
(tra,θ0)

)G1 on U∞ × (M̂tra × Tθ)× SpecC[ε].

As in Section 3.3, we have a lift of (id× f IMD
θl′,ti

)∗∇̃(1)
DL,ext:

(4.12)



d̂+ Ω̂
(1)
(tra,θ0)

+ εδIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

)

+ΥIMD
θl′,ti

dε on U0 × (M̂tra × Tθ)× SpecC[ε],

d̂+G−1
1 dG1 +G−1

1 Ω̂
(1)
(tra,θ0)

G1

+εG−1
1 δIMD

θl′,ti
(Ω̂

(1)
(tra,θ0)

)G1

+G−1
1 ΥIMD

θl′,ti
G1 dε on U∞ × (M̂tra × Tθ)× SpecC[ε],

which is a morphism Êε
1 → Êε

1 ⊗ Ω̃1
∂/∂ti

with the Leibniz rule and the equality

(4.13) δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

) = dΥIMD
θl′,ti

+ [Ω̂
(1)
(tra,θ0)

,ΥIMD
θl′,ti

],

which means the integrable condition.

Remark. In this paper, we consider only rank-two connections on P1. Moreover,

we impose some Zariski open conditions, for example the underlying vector bundles

are isomorphic to OP1 ⊕ OP1(1). That is, we consider only a Zariski open subset

of the moduli space of connections constructed in [9]. Horizontal lifts for more

general situations are constructed by Inaba [10, Sect. 9].

§4.3. Isomonodromy 2-form

Definition 4.5. Let δ̂1 and δ̂2 be vector fields on M̂tra × Tθ, which is isomor-

phic to the extended moduli space Ĉonn(tra,θ0). For each i ∈ Ira, we fix a formal

fundamental matrix solution ψζi of (d+ Ω̂
(n−2)
(tra,θ0)

(ζ2i ))ψζi = 0 at x = ti defined in

(4.7). For each i ∈ Ireg ∪ Iun, we fix a formal fundamental matrix solution ψi of

(d + Ω̂
(n−2)
(tra,θ0)

)ψi = 0 at x = ti as in Lemma 3.1. We take a fundamental matrix

solution ψqj of (d + Ω̂
(n−2)
(tra,θ0)

)ψqj = 0 at x = qj as in Lemma 2.11. We define a
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2-form ω̂ on M̂tra × Tθ as

ω̂(δ̂1, δ̂2) :=
1

2

∑
i∈I\Ira

resx=ti Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψi)ψ
−1
i )

+
1

4

∑
i∈Ira

resζi=0 Tr
(
δ̂(Ω̂

(n−2)
(tra,θ0)

(ζ2i )) ∧ δ̂(ψζi)ψ
−1
ζi

)
+

1

2

n−3∑
j=1

resx=qj Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψqj )ψ
−1
qj ).

By the same argument as in Section 4.1, we may check that the residue of

δ̂(Ω̂
(n−2)
(tra,θ0)

)∧δ̂(ψi)ψ
−1
i at t̃i (for i ∈ I\Ira) and δ̂(Ω̂(n−2)

(tra,θ0)
(ζ2i ))∧δ̂(ψζi)ψ

−1
ζi

at ζi = 0

(for i ∈ Ira) are well defined. Moreover, the right-hand side of (3.24) is independent

of the choice of ψqj , ψi (i ∈ I \ Ira), and ψζi (i ∈ Ira). By the same argument as in

the proof of Lemma 4.2, we may check that the formal series δ̂(ψζi)ψ
−1
ζi

descends

under the ramification xti = ζ2i for any vector field δ̂ on M̂tra × Tθ.

Proposition 4.6. Let G̃ and G̃∞ be the matrices defined in (2.7). If ∞ is an

element of Ireg ∪ Iun, we set ψ̃i := G̃−1ψi for any i ∈ (Ireg ∪ Iun) \ {∞}, ψ̃ζi :=

G̃−1ψζi for any i ∈ Ira, and ψ̃∞ := G̃−1
∞ ψ∞. If ∞ is an element of Ira, we set

ψ̃i := G̃−1ψi for any i ∈ Ireg ∪ Iun, ψ̃ζi := G̃−1ψζi for any i ∈ Ira \ {∞}, and
ψ̃ζ∞ := G̃−1

∞ ψζ∞ . We have the equality

ω̂(δ̂1, δ̂2) =
1

2

∑
i∈I\Ira

resx=ti Tr(δ̂(Ω̂
(1)
(tra,θ0)

) ∧ δ̂(ψ̃i)(ψ̃i)
−1)

+
1

4

∑
i∈Ira

resζi=0 Tr
(
δ̂(Ω̂

(1)
(tra,θ0)

(ζ2i )) ∧ δ̂(ψ̃ζi)ψ̃
−1
ζi

)
.(4.14)

Proof. Since δ̂(ψζi)ψ
−1
ζi

descends under the ramification xti = ζ2i , we have

1

4
resζi=0 Tr

(
δ̂(Ω̂

(1)
(tra,θ0)

(ζ2i )) ∧ δ̂(ψ̃ζi)ψ̃
−1
ζi

)
=

1

2
resx=ti Tr(δ̂(Ω̂

(1)
(tra,θ0)

) ∧ δ̂(ψ̃ζi)ψ̃
−1
ζi

).

By this equality and the same argument as in Proposition 3.9, we may check

equality (4.14).

Theorem 4.7. For the vector field δIMD
θl′,ti

, we have ω̂(δIMD
θl′,ti

, δ̂) = 0 for any vector

field δ̂ ∈ ΘM̂tra×Tθ
.
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Proof. By equality (4.14) we have

ω̂(δIMD
θl′,ti

, δ̂) =
1

2

∑
i′∈I\Ira

resx=ti′ Tr
(
δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)ψ̃
−1
i′

− δIMD
θl′,ti

(ψ̃i′)ψ̃
−1
i′ δ̂(Ω̂

(1)
(tra,θ0)

)
)

+
1

4

∑
i′∈Ira

resζi′=0 Tr
(
δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

(ζ2i′))δ̂(ψ̃ζi′ )ψ̃
−1
ζi′

− δIMD
θl′,ti

(ψ̃ζi′ )ψ̃
−1
ζi′
δ̂(Ω̂

(1)
(tra,θ0)

(ζ2i′))
)
.

We take i′ ∈ I \ Ira. We may show that

resx=ti′ Tr(δ
IMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

)δ̂(ψ̃i′)(ψ̃i′)
−1 − δIMD

θl′,ti
(ψ̃i′)(ψ̃i′)

−1δ̂(Ω̂
(1)
(tra,θ0)

)) = 0

by the same argument as in the proof of Theorem 3.10. So we have

ω̂(δIMD
θl′,ti

, δ̂) =
1

4

∑
i′∈Ira

resζi′=0 Tr
(
δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

(ζ2i′))δ̂(ψ̃ζi′ )ψ̃
−1
ζi′

− δIMD
θl′,ti

(ψ̃ζi′ )ψ̃
−1
ζi′
δ̂(Ω̂

(1)
(tra,θ0)

(ζ2i′))
)
.

We take i′ ∈ Ira. Let Uti′ be an affine open subset on P1 so that xti′ is a

coordinate on Uti′ . We define ζi′ as xti′ = ζ2i′ . Let Uζi′ be the inverse image of Uti′

under the map SpecC[ζi′ ] → SpecC[xti′ ] by xti′ = ζ2i′ . We take an analytic open

subset V of M̂tra × Tθ. We take an inverse image of V under the composition of

f̂ζi′ : Uζi′ × (M̂tra × Tθ) −→ Uti′ × (M̂tra × Tθ)

and the projection pUt
i′
: Uti′ × (M̂tra × Tθ) → M̂tra × Tθ. Here, f̂ζi′ is defined

by xti = ζ2i . Let ∆̂an
i′ (i′ ∈ I) be an analytic open subset of the inverse image

(pUt
i′
◦ f̂ζi′ )

−1(V ) such that [ζi′ = 0] ∩ (pUt
i′
◦ f̂ζi′ )

−1(V ) ⊂ ∆̂an
i′ and the fibers of

(pUt
i′
◦ f̂ζi′ )|∆̂an

i′
: ∆̂an

i′ → V for each point of V are unit disks such that ζi′ gives

a coordinate of the unit disks. We denote the pull-back of the connection matrix

Ω̂
(1)
(tra,θ0)

|
Ut

i′
×(M̂tra×Tθ)

under the map f̂ζi′ by Ω̂
(1)
(tra,θ0)

(ζ2i′). We define a matrix

S(ζi′) on Uζi′ × (M̂traTθ) as

S(ζi′) := G̃−1Φi′

(
1 0

0 ζi′

)
.

Remark that G̃−1Φi′ is a compatible framing of Ω̂
(1)
(tra,θ0)

|
Ut

i′
×(M̂tra×Tθ)

at ti′ . So

we can define the (local) elementary transformation of Ω̂
(1)
(tra,θ0)

(ζ2i′) by S(ζi′). We

denote the elementary transformation by ′Ω̂
(1)
(tra,θ0)

(ζ2i′). That is,

′Ω̂
(1)
(tra,θ0)

(ζ2i′) = S(ζi′)
−1 dS(ζi′) + S(ζi′)

−1Ω̂
(1)
(tra,θ0)

(ζ2i′)S(ζi′).
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Let ′Ω̂
(1)
(tra,θ0)

(ζ2i′ , t) be a connection matrix such that

′Ω̂
(1)
(tra,θ0)

(ζ2i′ , 0) =
′Ω̂

(1)
(tra,θ0)

(ζ2i′)|∆̂an
i′
,

∂

∂t
′Ω̂

(1)
(tra,θ0)

(ζ2i′ , t)|t=0 = δIMD
θl′,ti

(′Ω̂
(1)
(tra,θ0)

(ζ2i′))|∆̂an
i′
.

Let Σ̂ ⊂ ∆̂an
i′ be a family of sufficiently small sectors in ∆̂an

i′ → M̂tra ×Tθ. By [18,

Thm. 12.1], we may take a fundamental matrix solution ′ΨΣ̂(ζi′ , t) on Σ̂× Uan
t of

the differential equation

d(′ΨΣ̂(ζi′ , t)) +
′Ω̂

(1)
(tra,θ0)

(ζ2i′ , t)(
′ΨΣ̂(ζi′ , t)) = 0

with uniform asymptotic relation

′ΨΣ̂(ζi′ , t) exp(Λ
−
i′ (ζi′ , t)) ∼ P̂i′(ζi′ , t) (ζi′ → 0, ζi′ ∈ Σ̂).

Here we set

Λ−
i′ (ζi′) :=

2ni′−2∑
l′=0

(
θl′,ti′

∫
ζ
−2ni′+l′+1
i′ dζi′ 0

0 (−1)l
′
θl′,ti′

∫
ζ
−2ni′+l′+1
i′ dζi′

)
,

P̂i′(ζi′) :=

(
1 0

0 1
ζi′

)
Ξi′(ζ

2
i′)Mζi′ ,

and we take

P̂i′(ζi′ , t) = P̂i′,0(t) + P̂i′,1(t)ζi′ + · · · ,

Λ−
i′ (ζi′ , t) =

2ni′−2∑
l′=0

(
θl′,ti′ (t)

∫
ζ
−2ni′+l′+1
i′ dζi′ 0

0 (−1)l
′
θl′,ti′ (t)

∫
ζ
−2ni′+l′+1
i′ dζi′

)
,

so that the expansions of Λ−
i′ (ζi′ , ε) and P̂i′(ζi′ , ε) with respect to ε are

Λ−
i′ (ζi′ , ε) = Λ−

i′ (ζi′) + εδIMD
θl′,ti

(Λ−
i′ (ζi′)),

P̂i′(ζi′ , ε) = P̂i′(ζi′) + εδIMD
θl′,ti

(P̂i′(ζi′)).

Remark that P̂i′(ζi′)
−1 has no pole at ζi′ = 0 and S(ζi′)P̂i′(ζi′) exp(−Λ−

i′ (ζi′)) =

ψ̃ζi′ . We set
′ψ̃ζi′

:= P̂i′(ζi′) exp(−Λ−
i′ (ζi′)).

Let ΥIMD
θl′,ti

(ζ2i′) be the pull-back of ΥIMD
θl′,ti

|
Ut

i′
×(M̂tra×Tθ)

under the map f̂ζi′ . We

set
′ΥIMD

θl′,ti
(ζ2i′) := S(ζti′ )

−1ΥIMD
θl′,ti

(ζ2i′)S(ζti′ )− S(ζi′)
−1δIMD

θl′,ti
(S(ζi′)).
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By the same argument as the verification of (3.37), we may check the asymptotic

relation

(4.15) δIMD
θl′,ti

(′ψ̃ζi′ )(
′ψ̃ζi′ )

−1 ∼ ′ΥIMD
θl′,ti

(ζ2i′)− P̂i′(ζti′ )C̃
diag
i′ P̂i′(ζti′ )

−1.

Here, C̃diag
ti′

is a diagonal matrix such that C̃diag
ti′

is independent of ζi′ . By the

asymptotic relation (4.15) and the definition of ′ΥIMD
θl′,ti

(ζ2i′), we have

δIMD
θl′,ti

(ψ̃ζi′ )(ψ̃ζi′ )
−1 ∼ ΥIMD

θl′,ti
(ζ2i′)− S(ζti′ )P̂i′(ζti′ )C̃

diag
i′ P̂i′(ζti′ )

−1S(ζti′ )
−1.

By this asymptotic relation and the same calculation as in the proof of Theorem

3.10, we may check the equalities

resζi′=0 Tr
(
δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

(ζ2i′))δ̂(ψ̃ζi′ )(ψ̃ζi′ )
−1

− δIMD
θl′,ti

(ψ̃ζi′ )(ψ̃ζi′ )
−1δ̂(Ω̂

(1)
(tra,θ0)

(ζ2i′))
)

= resζi′=0 Tr
(
δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

(ζ2i′))δ̂(ψ̃ζi′ )(ψ̃ζi′ )
−1

−ΥIMD
θl′,ti

(ζ2i′)δ̂(Ω̂
(1)
(tra,θ0)

(ζ2i′))
)

+ resζi′=0 Tr
(
C̃diag

ti′
d
(
P̂i′(ζi′ , 0)

−1S(ζti′ )
−1δ̂(S(ζti′ )P̂i′(ζi′ , 0))

))
+ resζi′=0 Tr

(
C̃diag

ti′
d
(
δ̂(−Λ−

i′ (ζi′))
))

= resζi′=0 Tr
(
δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

(ζ2i′))δ̂(ψ̃ζi′ )(ψ̃ζi′ )
−1

−ΥIMD
θl′,ti

(ζ2i′)δ̂(Ω̂
(1)
(tra,θ0)

(ζ2i′))
)
.(4.16)

By the integrable condition (4.13), we have the equality

δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

(ζ2i′)) = d(ΥIMD
θl′,ti

(ζ2i′)) + [Ω̂
(1)
(tra,θ0)

(ζ2i′),Υ
IMD
θl′,ti

(ζ2i′)].

We may check that

resζi′=0 Tr
(
δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

(ζ2i′))δ̂(ψ̃ζi′ )(ψ̃ζi′ )
−1−ΥIMD

θl′,ti
(ζ2i′)δ̂(Ω̂

(1)
(tra,θ0)

(ζ2i′))
)

= resζi′=0 Tr
(
d(ΥIMD

θl′,ti
(ζ2i′)δ̂(ψ̃ζi′ )(ψ̃ζi′ )

−1)
)
= 0(4.17)

by the same calculation as in the proof of Theorem 3.10. By combining (4.16) and

(4.17), we obtain

ω̂(δIMD
θ±
l,ti

, δ̂) =
1

4

∑
i′∈Ira

resζi′=0 Tr
(
δIMD
θl′,ti

(Ω̂
(1)
(tra,θ0)

(ζ2i′))δ̂(ψ̃ζi′ )ψ̃
−1
ζi′

− δIMD
θl′,ti

(ψ̃ζi′ )ψ̃
−1
ζi′
δ̂(Ω̂

(1)
(tra,θ0)

(ζ2i′))
)
= 0.

That is, we have the assertion of this theorem.
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As in Sections 3.3 and 3.4, respectively, we may define vector fields δIMD
θ±
l,ti

(i ∈ Iun, 0 ≤ l ≤ ni − 2) and δIMD
ti (i ∈ {3, 4, . . . , ν} ∩ (Ireg ∪ Iun)). By the

same argument as in the proofs of Theorems 3.10 and 4.7, we obtain the following

theorem:

Theorem 4.8. Let i ∈ Iun. For the vector field δIMD
θ±
l,ti

, we have ω̂(δIMD
θ±
l,ti

, δ̂) = 0

for any vector field δ̂ ∈ ΘM̂tra×Tθ
. Moreover, for the vector field δIMD

ti , we have

ω̂(δIMD
ti , δ̂) = 0 for any vector field δ̂ ∈ ΘM̂tra×Tθ

.

Then we have that the 2-form ω̂ is the isomonodromy 2-form.

§4.4. Hamiltonian systems

We have the diagonalization

Ωdiag
ti (ζ2i )

:= (ΦiΞiMζi)
−1 d(ΦiΞiMζi) + (ΦiΞiMζi)

−1Ω̂
(n−2)
(tra,θ0)

(ζ2i )(ΦiΞiMζi)

and

Ωdiag
ti (ζ2i )

=

(
θ0,ti 0

0 θ0,ti

)
dζi

ζ2ni−1
i

+ · · ·+

(
θ2ni−2,ti 0

0 θ2ni−2,ti

)
dζi
ζi

+

(
θ2ni−1,ti 0

0 −θ2ni−1,ti

)
dζi + · · ·+

(
θ4ni−4,ti 0

0 θ4ni−4,ti

)
ζ2ni−3
i dx+ · · · .

Remark that we have an equation (d+Ωdiag
ti (ζ2i )) exp(−Λi(ζi)) = 0. We set

Λ+
i (ζi) =

(∑∞
l′=2ni−1 θl′,ti

∫
ζ−2ni+l′+1
i dζi 0

0
∑∞

l′=2ni−1(−1)l
′
θl′,ti

∫
ζ−2ni+l′+1
i dζi

)
.

Definition 4.9. For each ti (i ∈ Ira) and each l′ (0 ≤ l′ ≤ 2ni − 3), we define a

rational function Hθl′,ti
on M̂tra × Tθ as

Hθl′,ti
= −[the coefficient of the ζ

2(ni−1)−l′

i -term of the (1, 1)-entry of Λ+
i (ζi)]

= −
θ4(ni−1)−l′,ti

2(ni − 1)− l′
.

We call Hθl′,ti
the Hamiltonian associated to θl′,ti .

We define Hθ±
l,ti

(i ∈ Iun and l = 0, 1, . . . , ni − 2) and Hti (i ∈ {3, 4, . . . , ν} ∩
(Ireg ∪ Iun)) as in Definitions 3.11 and 3.12.
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Theorem 4.10. Set P (x; t) :=
∏ν

i=1(x− ti)
ni and Di(x; t,θ) := Di(x) for i ∈ I.

We put

ω̂′ :=

n−3∑
j=1

d

(
pj

P (qj ; t)
−

ν∑
i=1

Di(qj ; t,θ)

(qj − ti)ni
−D∞(qj ; t,θ)

)
∧ dqj

+
∑
i∈Iun

ni−2∑
l=0

(dHθ+
l,ti

∧ dθ+l,ti + dHθ−
l,ti

∧ dθ−l,ti)

+
∑
i∈Ira

2ni−3∑
l′=0

dHθl′,ti
∧ dθl′,ti +

∑
i∈{3,4,...,ν}
∩(Ireg∪Iun)

dHti ∧ dti.

Then the difference ω̂ − ω̂′ is a section of π∗
tra,θ0

(Ω2
(Tt)tra×Tθ

).

Proof. Recall that ω̂(δ̂1, δ̂2) is

1

2

∑
i∈I\Ira

resx=ti Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψi)ψ
−1
i )

+
1

4

∑
i∈Ira

resζi=0 Tr
(
δ̂(Ω̂

(n−2)
(tra,θ0)

(ζ2i )) ∧ δ̂(ψζi)ψ
−1
ζi

)
+

1

2

n−3∑
j=1

resx=qj Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

) ∧ δ̂(ψqj )ψ
−1
qj ).

The plan of this proof is as follows. The calculation of the first and third terms in

this formula is the same as in the proof of Theorem 3.14. So we omit the calculation

of these terms. Now we consider only the second term

1

4

∑
i∈Ira

resζi=0 Tr
(
δ̂(Ω̂

(n−2)
(tra,θ0)

(ζ2i )) ∧ δ̂(ψζi)ψ
−1
ζi

)
.

We calculate the residue at ζi = 0 for some (local) gauge transformation of d +

Ω̂
(n−2)
(tra,θ0)

(ζ2i ). We need to consider the difference between the residue after taking

the gauge transformation and the residue before taking the gauge transformation.

Here, the residue before taking the gauge transformation is just the residue of

Tr(δ̂(Ω̂
(n−2)
(tra,θ0)

(ζ2i )) ∧ δ̂(ψζi)ψ
−1
ζi

) at ζi = 0. This difference is more complicated

than the unramified irregular singular cases, since the (1, 2)-entry of the residue

part of (4.3) is not a piece of the local formal data. We consider this difference by

using Lemma 3.8.

In fact, for each i ∈ Ira, we consider the residue

(4.18)
1

4
resζi=0 Tr

(
δ̂(Ω̂

(n−2)
(tra,θ0)

(ζ2i′)) ∧ δ̂(ψζi)ψ
−1
ζi

)
.
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Now we take a diagonalization of d+Ω̂
(n−2)
(tra,θ0)

(ζ2i′) until some degree term at ζi = 0.

We put

Ξ≤2ni−1
i (xti) :=

(
1 0

0 1

)
+

2ni−1∑
s=1

(
(ξ

(i)
s )11 (ξ

(i)
s )12

(ξ
(i)
s )21 (ξ

(i)
s )22

)
xsti

for i ∈ I. Here, the coefficient matrices of Ξ≤2ni−1
i (xti) appear as in the coefficient

matrices of Ξi(xti) defined by (4.2). Moreover, we put

Ω̃i := (ΦiΞ
≤2ni−1
i )−1 d(ΦiΞ

≤2ni−1
i ) + (ΦiΞ

≤2ni−1
i )−1Ω̂

(n−2)
(tra,θ0)

(ΦiΞ
≤2ni−1
i ),

Ω̃′
ζi

:=M−1
ζi

dMζi +M−1
ζi

Ω̃iMζi ,

ψ̃ζi := (ΦiΞ
≤2ni−1
i )−1ψζi , ψ̃′

ζi
:=M−1

ζi
ψ̃ζi ,

where ψζi is the formal solution (4.7). We may describe Ω̃i as

Ω̃′
ζi =

(
θ0,ti 0

0 θ0,ti

)
dζi

ζ2ni−1
i

+ · · ·+

(
θ2ni−2,ti 0

0 θ2ni−2,ti

)
dζi
ζi

+

(
θ2ni−1,ti 0

0 −θ2ni−1,ti

)
dζi + · · ·+

(
θ4ni−4,ti 0

0 θ4ni−4,ti

)
ζ2ni−3
i dx

+O(ζ2ni−2
i ).

The residue part θ2ni−2,ti of Ω̃
′
ζi
is constant on M̂tra×Tθ. So we have δ̂(θ2ni−2,ti) =

0 for any δ̂ ∈ ΘM̂tra×Tθ
. Then the variation δ̂1(Ω̃

′
ζi
) is equal to(

δ̂1(θ0,ti) 0

0 δ̂1(θ0,ti)

)
dζi

ζ2ni−1
i

+ · · ·+

(
δ̂1(θ2ni−3,ti) 0

0 −δ̂1(θ2ni−3,ti)

)
dζi
ζ2i

+

(
δ̂1(θ2ni−1,ti) 0

0 −δ̂1(θ2ni−1,ti)

)
dζi + · · ·

+

(
δ̂1(θ4ni−4,ti) 0

0 δ̂1(θ4ni−4,ti)

)
ζ2ni−3
i dx+O(ζ2ni−2

i ).

We define λ̂≤4ni−4
i,± (ζi) as

λ̂≤4ni−4
i,± (ζi)

= (±1)0
θ0,ti

−2ni + 2
ζ−2ni+2
i + · · ·+ (±1)2ni−3 θ2ni−3,ti

−1
ζ−1
i + θ2ni−2,ti log ζi

+ (±1)2ni−1θ2ni−1,tiζi + · · ·+ (±1)4ni−4 θ4ni−4,ti

2ni − 2
ζ2ni−2
i .
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On the other hand, the variation δ̂2(ψ̃
′
ζi
)(ψ̃′

ζi
)−1 is equal to

δ(g≤2ni−1
ζi

)(g≤2ni−1
ζi

)−1

+ (g≤2ni−1
ζi

)

(
−δ̂2(λ̂i,+(ζi)) 0

0 −δ̂2(λ̂i,−(ζi))

)
(g≤2ni−1

ζi
)−1

=

(
−δ̂2(λ̂≤4ni−4

i,+ (ζi)) 0

0 −δ̂2(λ̂≤4ni−4
i,− (ζi))

)
+O(ζ2ni−1

i ).

Here we set

g≤2ni−1
ζi

:= (ΦiΞ
≤2ni−1
i Mζi)

−1ΦiΞiMζi .

Since

δ̂2(λ̂
≤4ni−4
i,± (ζi))

= (±1)0
δ̂2(θ0,ti)

−2ni + 2
ζ−2ni+2
i + · · ·+ (±1)2ni−3 δ̂2(θ2ni−3,ti)

−1
ζ−1
i

+ (±1)2ni−1δ̂2(θ2ni−1,ti)ζi + · · ·+ (±1)4ni−4 δ̂2(θ4ni−4,ti)

2ni − 2
ζ2ni−2
i ,

we may check that the residue of Tr(δ̂1(Ω̃
′
ζi
)δ̂2(ψ̃

′
ζi
)(ψ̃′

ζi
)−1) at ζi = 0 is equal to

∑
l′∈{0,1,...,4ni−4}

\{2ni−2}

2

(
δ̂1(θl′,ti)

δ̂2(θ4(ni−1)−l′,ti)

2(ni − 1)− l′

)

= 2

( 2ni−3∑
l′=0

δ̂1(θl′,ti)
δ̂2(θ4(ni−1)−l′,ti)

2(ni − 1)− l′
−

2ni−3∑
l′=0

δ̂1(θ4(ni−1)−l′,ti)

2(ni − 1)− l′
δ̂2(θl′,ti)

)
.

Then we have

1

4

∑
i∈Ira

resζi=0 Tr(δ̂(Ω̃
′
ζi) ∧ δ̂(ψ̃

′
ζi)(ψ̃

′
ζi)

−1)

=

( ∑
i∈Ira

2ni−3∑
l′=0

dHθl′,ti
∧ dθl′,ti

)
(δ̂1, δ̂2).(4.19)

Now we consider the difference between the residue after taking the gauge

transformation and the residue before taking the gauge transformation. Put gζi :=

ΦiΞ
≤2ni−1
i Mζi and g := ΦiΞ

≤2ni−1
i . We consider the difference between the
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residues (4.18) and (4.19) when δ̂1 = δ1 ∈ Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

:

Tr(δ̂(Ω̃′
ζi) ∧ δ̂(ψ̃

′
ζi)(ψ̃

′
ζi)

−1)− Tr
(
δ̂(Ω̂

(n−2)
(tra,θ0)

(ζ2i )) ∧ δ̂(ψζi)ψ
−1
ζi

)
= −Tr(δ1(Ω̃

′
ζi)ũ

(2) − ũ(1)δ̂2(Ω̃
′
ζi))

− Tr
(
δ1(Ω̂

(n−2)
(tra,θ0)

(ζ2i′))u
(2) − u(1)δ̂2(Ω̂

(n−2)
(tra,θ0)

(ζ2i′))
)

+Tr
(
d(ψ−1

ζi
u(1)δ̂2(ψζi)− ψ−1

ζi
u(2)δ1(ψζi))

)
.(4.20)

Here we set u(k) := δ̂k(gζi)g
−1
ζi

and ũ(k) := g−1
ζi
δ̂k(gζi) for k = 1, 2. We calculate

the residue of the second term on the right-hand side of (4.20) at ζi = 0. Since

ti (i ∈ Ira) is not a deformation parameter, δ̂k(ti) = δ̂k(ζi) = 0 for k = 1, 2.

Then u(k) coincides with δ̂k(g)g
−1. We expand g as (3.45). Since g0, . . . , gni−2 are

parametrized by only (Tt)tra × Tθ and δ1 ∈ Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

, the variations

δ1(g0), . . . , δ1(gni−2) vanish.

We will calculate the variation δ1(gni−1). We consider the gauge transforma-

tion

(4.21) (g0Mζi)
−1 d(g0Mζi) + (g0Mζi)

−1Ω̂
(n−2)
(tra,θ0)

(ζ2i )(g0Mζi).

The ζ−2ni+1
i - and ζ−2ni+2

i -terms of the expansion of (4.21) at ζi = 0 are diagonal.

The eigenvalues of the ζ−2ni+2
i -term are distinct. The terms of this expansion after

the ζ−2ni+2
i -term are diagonalized by the gauge transformation by the right-hand

side of (4.4). Since this negative part of (4.21) is independent of (qj , pj)1≤j≤n−3,

we have that the coefficients of ζiξ(ζi) in the right-hand side of (4.4) are indepen-

dent of (qj , pj)1≤j≤n−3 until the ζ2ni−3
i -term. So the (2, 1)-entry of g−1

0 gni−1 is

independent of (qj , pj)1≤j≤n−3. Since δ1 ∈ Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

and the (2, 1)-

entry of g−1
0 gni−1 is independent of (qj , pj)1≤j≤n−3, we have that the (2, 1)-entry

of g−1
0 δ1(gni−1) vanishes. Moreover, we have that Tr(g−1

0 gni−1) is constant. By

comparing the x−1
ti -terms of the expansions of both sides of

g−1
0 gΩ̃i = g−1

0 dg + g−1
0 Ω̂

(n−2)
(tra,θ0)

g0(g
−1
0 g),

we have the equality

g−1
0 gni−1

(
θ0,ti/2 θ1,ti/2

0 θ0,ti/2

)
+ · · ·+ g−1

0 g0

(
θ2ni−2,ti/2 θ2ni−1,ti/2

θ2ni−3,ti/2 θ2ni−2,ti/2

)

=

(
θ0,ti/2 θ1,ti/2

0 θ0,ti/2

)
g−1
0 gni−1 + · · ·+ g−1

0 (Ω̂
(n−2)
(tra,θ0)

)ni−1g0g
−1
0 g0.(4.22)

We consider the variations of the x−1
ti -terms of both sides of (4.22). In particular,

we focus on the (1, 2)-entries of both sides. Since δ1 ∈ Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

and
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Tr(g−1
0 gni−1) is constant, we have explicit descriptions of the (1, 1)-entry and the

(2, 2)-entry of g−1
0 δ1(gni−1). So we have

(4.23) g−1
0 δ1(gni−1) =

− δ1(θ2ni−1,ti
)

2θ1,ti
∗

0
δ1(θ2ni−1,ti

)

2θ1,ti

 .

Since δ1(g0), . . . , δ1(gni−2) vanish, we have

(4.24) g−1
0 δ1(g) =

− δ1(θ2ni−1,ti
)

2θ1,ti
∗

0
δ1(θ2ni−1,ti

)

2θ1,ti

 (x− ti)
ni−1 +O((x− ti)

ni).

On the other hand, δ̂2(Ω̂
(n−2)
(tra,θ0)

) has the expansion

δ̂2(Ω̂
(n−2)
(tra,θ0)

) =

 0 − δ̂2(
∏

j ̸=i(ti−tj)
nj )∏

j ̸=i(ti−tj)
2nj

− 1
4 δ̂2(θ

2
0,ti

∏
j ̸=i(ti − tj)

nj ) δ̂2(θ0,ti)

 1

(x− ti)ni

+ [higher-order terms].

Now we take a compatible framing g0 as

(4.25) g0 =

(
1

θ0,ti
2

∏
j ̸=i(ti − tj)

nj

θ0,ti
2

∏
j ̸=i(ti − tj)

nj (
θ2
0,ti

4

∏
j ̸=i(ti − tj)

nj +
θ1,ti
2 )

∏
j ̸=i(ti − tj)

nj

)
.

Then the leading term of g−1
0 Ω̂

(n−2)
(tra,θ0)

g0 coincides with the leading term of the

right-hand side of (4.1). We have the following expansion of g−1
0 δ̂2(Ω̂

(n−2)
(tra,θ0)

)g0 at

ti: − θ0,ti
2

δ̂2(
∏

j ̸=i(ti−tj)
nj )∏

j ̸=i(ti−tj)
nj ∗

0
θ0,ti
2

δ̂2(
∏

j ̸=i(ti−tj)
nj )∏

j ̸=i(ti−tj)
nj + δ̂2(θ0,ti)

 1

(x− ti)ni

+ [higher-order terms].(4.26)

Since δ1(Ω̂
(n−2)
(tra,θ0)

)δ̂2(g)g
−1 is holomorphic at ti, we have the equalities

− 1

4
resζi=0 Tr

(
δ1(Ω̂

(n−2)
(tra,θ0)

(ζ2i ))u
(2) − u(1)δ̂2(Ω̂

(n−2)
(tra,θ0)

(ζ2i ))
)

= −1

2
resx=ti Tr

(
δ1(Ω̂

(n−2)
(tra,θ0)

)δ̂2(g)g
−1 − δ1(g)g

−1δ̂2(Ω̂
(n−2)
(tra,θ0)

)
)

=
1

2
resx=ti Tr(δ1(g)g

−1δ̂2(Ω̂
(n−2)
(tra,θ0)

))

=
1

2
resx=ti Tr

(
(g−1

0 δ1(g))g
−1g0(g

−1
0 δ̂2(Ω̂

(n−2)
(tra,θ0)

)g0)
)



262 A. Komyo

=
δ1(θ2ni−1,ti)

4θ1,ti
δ̂2(θ0,ti) + 2

δ1(θ2ni−1,ti)

8

θ0,ti
θ1,ti

δ̂2(
∏

j ̸=i(ti − tj)
nj )∏

j ̸=i(ti − tj)nj

=
δ1(θ2ni−1,ti)

4

δ̂2(θ0,ti
∏

j ̸=i(ti − tj)
nj )

θ1,ti
∏

j ̸=i(ti − tj)nj
.(4.27)

Remark that δ1 ∈ Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

. The fourth equality follows from equal-

ities (4.24) and (4.26).

Next we calculate the residue of the first term on the right-hand side of (4.20)

at ζi = 0. We calculate this residue as

− resζi=0 Tr(δ1(Ω̃
′
ζi)ũ

(2) − ũ(1)δ̂2(Ω̃
′
ζi))

= −resζi=0 Tr(δ1(Ω̃
′
ζi)M

−1
ζi
g−1δ̂2(gMζi)−M−1

ζi
g−1δ̂2(gMζi)δ̂2(Ω̃

′
ζi))

= −resζi=0 Tr(δ1(MζiΩ̃
′
ζiM

−1
ζi

)g−1δ̂2(g)− g−1δ̂2(g)δ̂2(MζiΩ̃
′
ζiM

−1
ζi

))

= −2resx=ti Tr(δ1(Ω̃i)g
−1δ̂2(g)− g−1δ1(g)δ̂2(Ω̃i)).

Here, the last equality follows from δ1(M
−1
ζi

dMζi) = δ̂2(M
−1
ζi

dMζi) = 0. The

coefficients of the expansion of δ1(Ω̃i) at x = ti vanish until the x−2
ti -term. The

(1, 2)-entry of the x−1
ti -term of Ω̃i depends on (qj , pj)1≤j≤n−3 and the other entries

of the x−1
ti -term of Ω̃i are independent of (qj , pj)1≤j≤n−3. The (1, 2)-entry of the

x−1
ti -term of δ1(Ω̃i) is δ1(θ2ni−1,ti)/2 and the other entries are zero. On the other

hand, the (2, 1)-entry of the leading coefficient of g−1δ̂2(g) is

δ̂2(θ0,ti
∏

j ̸=i(ti − tj)
nj )

(θ1,ti
∏

j ̸=i(ti − tj)nj )
,

since we set g0 as (4.25). Then the residue of Tr(δ1(Ω̃i)g
−1δ̂2(g)) dx at ti is

δ1(θ2ni−1,ti)

2

δ̂2(θ0,ti
∏

j ̸=i(ti − tj)
nj )

θ1,ti
∏

j ̸=i(ti − tj)nj
.

We consider the residue of Tr(g−1δ1(g)δ̂2(Ω̃i)) at ti. By (4.23), the residue of

Tr(g−1δ1(g)δ̂2(Ω̃i)) at ti vanishes. Then we have

− 1

4
resζi=0 Tr(δ1(Ω̃

′
ζi)ũ

(2) − ũ(1)δ̂2(Ω̃
′
ζi))

= −1

2
resx=ti Tr(δ1(Ω̃i)g

−1δ̂2(g)− g−1δ1(g)δ̂2(Ω̃i))

= −δ1(θ2ni−1,ti)

4

δ̂2(θ0,ti
∏

j ̸=i(ti − tj)
nj )

θ1,ti
∏

j ̸=i(ti − tj)nj
.(4.28)
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By combining (4.20), (4.27), and (4.28), we have

1

4
resζi=0 Tr

(
δ̂(Ω̂

(n−2)
(tra,θ0)

(ζ2i )) ∧ δ̂(ψζi)ψ
−1
ζi

)
=

1

4
resζi=0 Tr(δ̂(Ω̃

′
ζi) ∧ δ̂(ψ̃

′
ζi)(ψ̃

′
ζi)

−1)

− 1

4
resζi=0 Tr

(
d(ψ−1

ζi
u(1)δ̂2(ψζi)− ψ−1

ζi
u(2)δ1(ψζi))

)
=

1

4
resζi=0 Tr(δ̂(Ω̃

′
ζi) ∧ δ̂(ψ̃

′
ζi)(ψ̃

′
ζi)

−1).

By equality (4.19) we have

1

4
resζi=0 Tr

(
δ̂(Ω̂

(n−2)
(tra,θ0)

(ζ2i )) ∧ δ̂(ψζi)ψ
−1
ζi

)
=

( ∑
i∈Ira

2ni−3∑
l′=0

dHθl′,ti
∧ dθl′,ti

)
(δ̂1, δ̂2)

when δ1 ∈ Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

. So we have ω̂(δ1, δ̂2) − ω̂′(δ1, δ̂2) = 0 when

δ1 ∈ Θ
(M̂tra×Tθ)/((Tt)tra×Tθ)

. Then we obtain the assertion of this theorem.

By Theorems 4.7, 4.8, and 4.10, we obtain the following corollary:

Corollary 4.11. Set ηj :=
pj

P (qj ;t)
−
∑ν

i=1
Di(qj ;t,θ)
(qj−ti)ni

− D∞(qj ; t,θ). The vector

fields δIMD
θ±
l,ti

(i ∈ Iun and l = 0, 1, . . . , ni− 2), δIMD
ti (i ∈ {3, 4, . . . , ν}∩ (Ireg ∪ Iun)),

and δθl′,ti (i ∈ Ira and l′ = 0, 1, . . . , 2ni − 3) have the Hamiltonian descriptions

δIMD
θ±
l,ti

=
∂

∂θ±l,ti
−

n−3∑
j=1

(∂Hθ±
l,ti

∂ηj

∂

∂qj
−
∂Hθ±

l,ti

∂qj

∂

∂ηj

)
,

δIMD
ti =

∂

∂ti
−

n−3∑
j=1

(
∂Hti

∂ηj

∂

∂qj
− ∂Hti

∂qj

∂

∂ηj

)
,

δIMD
θl′,ti

=
∂

∂θl′,ti
−

n−3∑
j=1

(
∂Hθl′,ti

∂ηj

∂

∂qj
−
∂Hθl′,ti

∂qj

∂

∂ηj

)
.

§5. Examples

§5.1. Example (ν = 2, n1 = n2 = n∞ = 2)

We consider the connection d+Ω on O ⊕O(4) with the connection matrix

Ω =

(
0 1

P (x)

c0(x) d0(x)

)
dx.
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Here we put P (x) := x2(x− 1)2,

c0(x) :=
C

(0)
0 + C

(1)
0 x

x2
+
C

(0)
1 + C

(1)
1 (x− 1)

(x− 1)2
+

3∑
j=1

pj
x− qj

+ C̃(0) + C̃(1)x+ C̃(2)x2 + C(0)
∞ x3 + C(1)

∞ x4,

td0(z) :=
D

(0)
0 +D

(1)
0 x

x2
+
D

(0)
1 +D

(1)
1 (x− 1)

(x− 1)2
+

n−3∑
j=1

−1

x− qj
+D(0)

∞ .

We set t1 := 0, t2 := 1, and t∞ := ∞. The polar divisor of the connection d+Ω is

2 · t1 + 2 · t2 + 2 · t∞ + q1 + q2 + q3. We assume that the leading coefficients Ωti(0)

are semi-simple for i = 1, 2,∞. We put xti := x− ti for i = 1, 2 and xt∞ = w. We

fix the formal type of the negative part of d+Ω for each ti. That is, we fix θ
±
l,ti

for

l = 0, 1 and i = 1, 2,∞, and the negative part of d+Ω for each ti is diagonalizable

as (
θ+0,ti 0

0 θ−0,ti

)
x2ti

+

(
θ+1,ti 0

0 θ−1,ti

)
xti

by a formal transformation (see Section 2.3). Then the coefficients of c2 and d2
are determined as{

C
(0)
0 + C

(1)
0 x = −θ+0,0θ

−
0,0 + (2θ+0,0θ

−
0,0 − θ+0,0θ

−
1,0 − θ−0,0θ

+
1,0)x,

D
(0)
0 +D

(1)
0 x = θ+0,0 + θ−0,0 + (θ+1,0 + θ−1,0)x,

(5.1)

{
C

(0)
1 + C

(1)
1 (x− 1) = −θ+0,1θ

−
0,1 − (2θ+0,1θ

−
0,1 + θ+0,1θ

−
1,1 + θ−0,1θ

+
1,1)(x− 1),

D
(0)
1 +D

(1)
1 (x− 1) = θ+0,1 + θ−0,1 + (θ+1,1 + θ−1,1)(x− 1),

(5.2)

{
C

(0)
∞ + C

(1)
∞ x = 2θ+0,∞θ

−
0,∞ − θ−0,∞θ

+
1,∞ − θ+0,∞θ

−
1,∞ − (θ+0,∞θ

−
0,∞)x,

D
(0)
∞ = −θ+0,∞ − θ−0,∞.

(5.3)

Moreover, we assume that q1, q2, and q3 are apparent singularities. We define C̃qj

for j = 1, 2, 3 so that C̃(0) + C̃(1)x+ C̃(2)x2 is equal to

(5.4) C̃q1(x− q2)(x− q3) + C̃q2(x− q1)(x− q3) + C̃q3(x− q1)(x− q2).

Since q1, q2, and q3 are apparent singularities, we have

C̃qj =
1

Q′(qj)

(
p2j

q2j (qj − 1)2
−
∑
i=1,2

Di(qj)pj + Ci(qj)

(qj − ti)2

+
∑

k∈{1,2,3}\{j}

pj − pk
qj − qk

−D(0)
∞ pj − C(0)

∞ q3j − C(1)
∞ q4j

)
(5.5)
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for j = 1, 2, 3, where we put Q(x) := (x − q1)(x − q2)(x − q3). We determine the

matrices Φi and Ξi as in Lemma 3.1:

Φ0 =

(
1 1

θ−
0,0

θ+0,0 1

)
, Φ1 =

(
1 1

θ−
0,1

θ+0,1 1

)
, Φ∞ =

(
1 − 1

θ−
0,∞

−θ+0,∞ 1

)
,

Ξ
(0)
1 =

 0 − 2θ−
0,0−θ−

1,0

(θ+
0,0−θ−

0,0)θ
−
0,0

(2θ+
0,0−θ+

1,0)θ
−
0,0

θ+
0,0−θ−

0,0

0

 , Ξ
(0)
2 =

(
0 (ξ

(2)
0 )12

(ξ
(2)
0 )21 0

)
,

Ξ
(1)
1 =

 0
2θ−

0,1+θ−
1,1

(θ+
0,1−θ−

0,1)θ
−
0,1

− (2θ+
0,1+θ+

1,1)θ
−
0,1

θ+
0,1−θ−

0,1

0

 , Ξ
(1)
2 =

(
0 (ξ

(2)
1 )12

(ξ
(2)
1 )21 0

)
,

Ξ
(∞)
1 =

 0
2θ−

0,∞−θ−
1,∞

(θ+
0,∞−θ−

0,∞)θ−
0,∞

− (2θ+
0,∞−θ+

1,∞)θ−
0,∞

θ+
0,∞−θ−

0,∞
0

 , Ξ
(∞)
2 =

(
0 (ξ

(2)
1 )12

(ξ
(2)
1 )21 0

)
.

Here, the descriptions of (ξ
(2)
i )12 and (ξ

(2)
i )21 are omitted. Set

Ξ≤2
i := id + Ξ

(i)
1 xti + Ξ

(i)
2 x2ti .

Let θ±2,ti (i = 1, 2,∞) be the coefficient as in Lemma 3.1. That is,

(ΦiΞ
≤2
i )−1 d(ΦiΞ

≤2
i ) + (ΦiΞ

≤2
i )−1Ω(ΦiΞ

≤2
i )

=

(
θ+0,ti 0

0 θ−0,ti

)
x2ti

+

(
θ+1,ti 0

0 θ−1,ti

)
xti

+

(
θ+2,ti 0

0 θ−2,ti

)
+O(xti)

for i = 0, 1,∞. Remark that Ξ≤2
i is degree 2 in xti . This degree is sufficient to

define Hamiltonians since there is no parameter corresponding to the positions

of irregular singularities. By equations (5.1), (5.2), (5.3), (5.4), and (5.5), we can

determine the Hamiltonians Hθ±
0,0

, Hθ±
0,1

, and Hθ±
0,∞

as

Hθ±
0,0

:= −θ±2,0 =
−1

θ±0,0 − θ∓0,0

(
θ±0,0θ

∓
0,0 + θ±1,0θ

∓
1,0 − 2(θ±0,0θ

∓
1,0 + θ±1,0θ

∓
0,0)

+ C̃(0) + (C
(0)
1 − C

(1)
1 ) + (D

(0)
1 −D

(1)
1 +D(0)

∞ )θ±0,0

−
p1 − θ±0,0

q1
−
p2 − θ±0,0

q2
−
p3 − θ±0,0

q3

)
,
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Hθ±
0,1

:= −θ±2,1 =
−1

θ±0,1 − θ∓0,1

(
θ±0,1θ

∓
0,1 + θ±1,1θ

∓
1,1 + 2(θ±0,1θ

∓
1,1 + θ±1,1θ

∓
0,1)

+ (C̃(0) + C̃(1) + C̃(2)) + (C
(0)
0 + C

(1)
0 )

+ (C(0)
∞ + C(1)

∞ ) + (D
(0)
0 +D

(1)
0 +D(0)

∞ )θ±0,1

−
p1 − θ±0,1
q1 − 1

−
p2 − θ±0,1
q2 − 1

−
p3 − θ±0,1
q3 − 1

)
,

Hθ±
0,∞

:= −θ±2,∞ =
−1

θ±0,∞ − θ∓0,∞

(
θ±0,∞θ

∓
0,∞ + θ±1,∞θ

∓
1,∞ − 2(θ±0,∞θ

∓
1,∞ + θ±1,∞θ

∓
0,∞)

+ C̃(2) − (D
(0)
0 +D

(0)
1 +D

(1)
1 )θ±0,∞

+ (q1 + q2 + q3)θ
±
0,∞

)
.

Set

ηj :=
pj

q2j (qj − 1)2
− D

(0)
0 +D

(1)
0 qj

q2j
− D

(0)
1 +D

(1)
1 (qj − 1)

(qj − 1)2
−D(0)

∞

for j = 1, 2, 3. By Corollary 3.15, the vector field determined by the generalized

isomonodromic deformations is described as

∂

∂θ±0,ti
−

3∑
j=1

(∂Hθ±
0,ti

∂ηj

∂

∂qj
−
∂Hθ±

0,ti

∂qj

∂

∂ηj

)
.

§5.2. Example corresponding to Kimura’s L(9/2; 2)

In this section we consider Kimura’s family L(9/2; 2) of rank-two linear differential

equations in [15, p. 37]. We describe the corresponding global normal form (see

[5, Sect. 6]) and consider the integrable deformations of the family given by the

global normal form. Then we can reproduce Kimura’s Hamiltonian H(9/2) from

[15, p. 40].

Let D be the effective divisor defined as D = 5·∞. We consider the connection

d+Ω(∞) on OP1 ⊕OP1(3) with

Ω(∞) =

(
0 − 1

w5

c
(∞)
0 (w) d

(∞)
0 (w)

)
dw,

where

(5.6)

c
(∞)
0 (w) := − 9

w4
− 9t1
w2

− 3t2
w

− 3K2 − 3K1w −
2∑

i=1

piw
2

1− qiw
,

d
(∞)
0 (w) :=

2∑
i=1

1

w(1− qiw)
− 3

w
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(see [5, Sect. 6]). The polar divisor is D + q1 + q2. Assume that w = 1/q1 and

w = 1/q2 are apparent singularities. Then we can determine K1 and K2 as rational

functions whose variables are t1, t2, q1, q2, p1, p2.

If we set Φ∞ :=
(
1 0
0 −3

)
and

Ξ≤6
∞ := id +

(
− t1

4 0

0 t1
4

)
w2 +

(
− t2

12
1
24

0 t2
12

)
w3 +

(
t21
8 − K2

12 − q1+q2
12

− 1
24 − t21

8 + K2

12

)
w4

+

(
t1t2
12 − K1

12 0
q1+q2
12 − t1t2

12 + K1

12

)
w5 +

(
∗ ∗
∗ ∗

)
w6,(5.7)

then we have

Ω̃∞ =

(
0 3

0 0

)
w5

+

(
0 0

3 0

)
w4

+

(
0 3t1

2

0 0

)
w3

+

(
0 t2

2
3t1
2 0

)
w2

+

(
− 1

4 b3
t2
2 − 1

4 − 1
2

)
w

+

(
a1 b4
b3 a1

)
+O(w)2,(5.8)

where Ω̃∞ dw := (Φ∞Ξ≤6
∞ )−1Ω(∞)(Φ∞Ξ≤6

∞ ) + (Φ∞Ξ≤6
∞ )−1d(Φ∞Ξ≤6

∞ ). We have

a1 =
q1
2

+
q2
2
, b3 = −3t21

8
+
K2

2
, b4 = − t1t2

4
+
K1

2
.

After ramification w = ζ2 and the following transformation of Ω̃∞:

Ω̃′
ζ dζ :=M−1

ζ (Ω̃∞ dw)Mζ +M−1
ζ dMζ , where Mζ =

(
1 1

ζ −ζ

)
,

we have an unramified irregular singular point with matrix connection

Ω̃′
ζ =

(
6 0

0−6

)
ζ8

+

(
3t1 0

0 −3t1

)
ζ4

+

(
t2 0

0 −t2

)
ζ2

+

(
− 1

2 0

0 − 1
2

)
ζ

+

(
2b3 0

0 −2b3

)
+

(
2a1 0

0 2a1

)
ζ +

(
2b4 0

0 −2b4

)
ζ2 +O(ζ)3.

We define Hamiltonians

H1 := −
[
the coefficient of the ζ3-term of

∑∞
k=9 θk,∞

∫
ζk−9 dζ

]
= −2b4

3
= −K1

3
+
t1t2
6
,

H2 := −
[
the coefficient of the ζ-term of

∑∞
k=9 θk,∞

∫
ζk−9 dζ

]
= −2b3 = −K2 +

3t21
4
.
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Then the 2-form ω̂′ defined in Theorem 4.10 is described as

ω̂′ =
∑
i=1,2

dpi ∧ dqi + dH1 ∧ d(3t1) + dH2 ∧ d(t2)

= −
( ∑

i=1,2

dηi ∧ dqi − d(3H1) ∧ dt1 − dH2 ∧ dt2
)

= −
( ∑

i=1,2

dηi ∧ dqi + dK1 ∧ dt1 + dK2 ∧ dt2 − t1 dt1 ∧ dt2
)
,(5.9)

where ηi := −pi for i = 1, 2. By Theorems 4.7 and 4.10, the vector field determined

by the integrable deformations is described as

∂

∂ti
−

2∑
j=1

(
∂Ki

∂ηj

∂

∂qj
− ∂Ki

∂qj

∂

∂ηj

)
for i = 1, 2. This description is given in [15].

Remark. We may check that ω̂ = ω̂′ by the calculation of the right-hand side

of (3.25) for (5.6), (5.7), and (5.8). Then the 2-form (5.9) is the isomonodromy

2-form. In fact, we may check the equality

∂(3H1)

∂t2
− ∂H2

∂t1
−
∑
i=1,2

(
∂(3H1)

∂pi

∂H2

∂qi
− ∂(3H1)

∂qi

∂H2

∂pi

)
= 0

directly.
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